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ABSTRACT

In this study, independent component analysis (ICA) was first adopted as the sole tool

in conducting NIR quantitative analyses of biomaterials, including wax jambu fruit

(Syzygium samarangense Merrill & Perry), medicinal plant Gentiana scabra Bunge,

and milled white rice, to evaluate the applicability of this method. The influence due to

various types of samples (sucrose solution, intact fruit, dry powder of Gentiana scabra

Bunge, and rice kernel) was also studied. In the first part, ICA was integrated with near

infrared (NIR) spectroscopy for rapid quantification of sugar content in wax jambu. The

JADE algorithm (Joint Approximate Diagonalization of Eigenmatrices) and linear

regression with spectral pretreatments were incorporated to analyze the NIR spectra of

wax jambu as well as sucrose solutions. Unlike other multivariate approaches, ICA

enabled comprehensive quantification of sugar content in wax jambu. In the present

study, ICA was used as the sole tool to build the NIR calibration model of internal

quality of intact wax jambu without any other assisted multivariate analysis methods.

The best spectral calibration model of wax jambu (600 to 700 nm and 900 to 1098 nm)

yielded Rc = 0.988, SEC = 0.243 °Brix, and SEV = 0.381 °Brix using the normalized

first derivative spectra. Thus, ICA can quickly identify and effectively quantify the

sugar contents in wax jambu with calibration models achieving high predictability. In

the second part, ICA was applied to NIR spectroscopy on the analysis of gentiopicroside



and swertiamarin, the two bioactive components of Gentiana scabra Bunge.
Independent components (ICs) that are highly correlated to the two bioactive
components were selected for the analysis of tissue cultures, shoots and roots, which
were found to distribute in three different positions within the domain (2D and 3D)
constructed by the ICs. This setup could be used for quantitative determination of
respective contents of gentiopicroside and swertiamarin within the plants. For
gentiopicroside, the spectral calibration model based on the 2" derivative spectra
produced the best effect in the wavelength ranges of 600 to 700 nm, 1600 to 1700 nm,
and 2000 to 2300 nm (R = 0.847, SEC = 0.865 %, and SEV = 0.909 %). For
swertiamarin, spectral calibration model based on the 1% derivative spectra gave the best
effect in the wavelength ranges of 600 to 800 nm and 2200 to 2300 nm (Rc = 0.948,
SEC =0.168 %, and SEV = 0.216 %). Both models showed a satisfactory predictability.
This study successfully established qualitative and quantitative correlations for
gentiopicroside and swertiamarin with NIR spectra, enabling rapid and accurate
inspection on the bioactive components of Gentiana scabra Bunge at different growth
stages. Furthermore, determination of freshness is an important issue for rice quality.
The storage time of rice has an enormous effect on its appearance, flavor, and quality of
the nutrients. A total of 180 white rice samples were collected from 6 crop seasons (2"

crop of 2010, 1% crop of 2010, 1% crop of 2009, 1% crop of 2008, 1% crop of 2007 and 1%



crop of 2006) for the purpose of developing an ICA NIR based procedure for rice

freshness as quantified by pH. Freshness of white rice could be distinguished either

visually by a 3-dimensional diagram composed from ICs 2, 3 and 4, or statistically by a

calibration model (Rc = 0.939, SEC = 0.202, and SEP = 0.233). The results showed that

ICA with NIR has the potential to be a useful tool for evaluating rice freshness.

Compared to harvest time, pH value and fat acidity were more appropriate to serve as

indicators of rice freshness. By combining ICA with NIR spectroscopy, fast and

accurate evaluation of constituents in biomaterials could be achieved. ICA offers a rapid

and reliable tool for quantitative analyses of constituents in biomaterials by NIR

spectroscopy. The obtained results contribute substantially to identify multiple

constituents of biomaterials and evaluate their concentrations.

Keywords: Near infrared spectroscopy, Independent component analysis, Wax jambu,

Sugar content, Gentiana scabra Bunge, Gentiopicroside, Swertiamarin,

Rice freshness
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CHAPTER 1. GENERAL INTRODUCTION

1.1 INTRODUCTION

Near infrared (NIR) spectroscopy, a nondestructive sensing method based on specific

absorptions within a given range of wavelength corresponding to the constituents in the

sample (McClure, 2003), has been widely applied for the evaluation of internal quality

of agricultural products (Davey et al., 2009; Lebot et al., 2011). Since NIR spectra of a

mixture is the linear summation of individual spectra of the constituents in the mixture,

such a mixture spectra thus can be regarded as ‘blind sources’ (Hyvarinen et al., 2001)

as the proportion of constituents in the samples remains unknown. Many attempts have

been made in recent years to extract critical features from the spectra using multivariate

analysis (Blanco and Villarroya, 2002; Burns and Ciurczak, 2008), including multiple

linear regression (MLR) (Chang et al., 1998), principal component regression (PCR)

(Wold, 1987), and partial least squares regression (PLSR) (Wold et al., 2001). However,

these methods were not designed for resolving the ‘blind source’ problem and may not

correlate well with the properties of constituents in the mixture, consequently hindering

the applicability of the spectra for chemometric analysis of the constituents

(Al-Mbaideen and Benaissa, 2011; Chen and Wang, 2001; Kaneko et al., 2008).

A multiuse statistical approach originally used to implement ‘blind source separation’



in signal processing (Herault and Jutten, 1986; Vittoz and Arreguit, 1989), independent

component analysis (ICA) is capable of disassembling the mixture signals of Gaussian

distribution into non-Gaussian independent constituents with only a little loss of

information and does not require any information to be added to the source (Comon,

1994). In practice, multiple ICA algorithms have been developed, including JADE

algorithm (joint approximate diagonalization of eigenmatrices) (Cardoso and

Souloumiac, 1993; Cardoso, 1999) and FastICA algorithm (Hyvérinen and Oja, 1997;

Hyvarinen, 1999), making ICA a high-speed and reliable tool (Hyvérinen and Oja, 2000)

for analytical chemistry (Lathauwer et al., 2000; Al-Mbaideen and Benaissa, 2011),

biomedical signal processing, telecommunications, econometrics, audio processing, and

image processing (Hyvarinen et al., 2001).

Application of ICA for spectrum analysis has been demonstrated by Chen and Wang

(2001) to separate the pure spectra of various constituents from the NIR spectra of the

mixture and to build qualitative relationship between the estimated independent

components and the constituents. Such a capability also enabled complete explanation

of the constituents’ properties for NIR qualitative analyses (Westad and Kermit, 2003).

In addition, ICA was used to obtain statistically independent and chemically

interpretable latent variables (LVs) in multivariate regression (Gustafsson, 2005). It was



also noted that the number of independent components extracted from the spectra of

mixtures is related to the performance of ICA (Westad, 2005). Moreover, ICA was

employed to identify the infrared spectrum of mixtures containing two pure materials

(Hahn and Yoon, 2006) as well as the constituents in commercial gasoline (Pasadakis

and Kardamakis, 2006; Kardamakis et al., 2007). Equally noteworthy is that the

calibration model built through MLR, after using ICA to extract independent

components of aqueous solutions, gave good predictability (Kaneko et al., 2008),

whereas NIR estimation of sucrose concentration (Chuang et al., 2010) and glucose

concentration (Al-Mbaideen and Benaissa, 2011) were enhanced by using ICA.

While application of ICA for spectral analysis appears promising, available literature

still focuses mainly on chemical samples or non-natural products, such as (1)

identification of constituents in the mixture, especially for chemical compounds (Chen

and Wang, 2001; Hahn and Yoon, 2006; Pasadakis and Kardamakis, 2006; Kardamakis

et al., 2007; Liu et al., 2008; Kaneko et al., 2008; Al-Mbaideen and Benaissa, 2011); (2)

a preprocessing method for improving predictability of calibration model (Zou and

Zhao, 2006); and (3) combination of ICA and other multivariate analysis methods, such

as PCA-ICA (Pasadakis and Kardamakis, 2006), ICA-MLR (Kaneko et al., 2008; Liu et

al., 2009), ICA-PLS (Liu et al., 2009), ICA-LS-SVM (Wu et al., 2008) and ICA-NNR



(Fang and Lin, 2008) to deal with linear or nonlinear problems. However, no literature

exists by using ICA with NIR spectroscopy as the sole tool to quantify internal quality

or constituents of biomaterials without any other assisted multivariate analysis methods.

The applicability of ICA for quantitative inspection of biomaterials thus should be

evaluated and studied. In this dissertation, ICA was first applied as the sole tool in

conducting NIR quantitative analyses of biomaterials, including wax jambu fruit (see

CHAPTER 2), medicinal plant Gentiana scabra Bunge (see CHAPTER 3 and 4), and

milled white rice (see CHAPTER 5), to evaluate the applicability of this method.

Influence due to various types of sample (sucrose solution, intact fruit, dry powder of

Gentiana scabra Bunge, and cargo rice) was also studied.

1.1.1 WAX JAMBU

Wax jambu (Syzygium samarangense Merrill & Perry), an endemic fruit in Taiwan

and parts of southeast Asia has very unique surface and texture that are easily bruised or

damaged, hence requiring wax jambu to be handled delicately from harvest to shipping

and distribution. To date, several researches aimed to develop a non-invasive and rapid

detection method for the analysis of internal quality of wax jambu (You, 2002; Lin,

2002; Chung et al., 2004). For further applications of ICA with NIR spectroscopy in the

inspection of fruits, wax jambu is suitable to serve as an example for discussion. In the



present study, ICA was integrated with NIR spectral analysis to quantify the sugar

content in intact wax jambu. The results of wax jambu were also compared with those

of sucrose solutions — mixtures of sucrose and de-ionized water. Spectral pretreatments

and linear regression were then used to build spectral calibration models of sugar

content. The analysis results of ICA were also compared with those of PLSR to assess

the abilities in predicting sugar content in wax jambu.

1.1.2 GENTIANA SCABRA BUNGE

Medicinal plants have always been considered an important and reliable source of

pharmacy, since they are rich in many bioactive components. The international trade

market for medicinal plant products continues to expand and covers food, beverages,

drugs, cosmetics, and skin care products. Gentiana scabra Bunge, a perennial

herbaceous plant, is mainly grown in temperate regions such as Taiwan, China, Japan,

South Korea, and Russia. Dried root and rootstock of Gentiana scabra Bunge are

commonly used as pharmaceutical raw materials, since they are rich in many

secoiridoid glycosides such as gentiopicroside, swertiamarin and sweroside (Kakuda et

al., 2001). In particular, gentiopicroside has been shown to protect liver, inhibit liver

dysfunction, and promote gastric acid secretion in addition to its antimicrobial and

anti-inflammatory effects, making it a popular ingredient in Chinese herbal medicine



and health products (Kim et al., 2009).

In early days, Gentiana scabra Bunge was mainly collected from the wild. As the

demand for Gentiana scabra Bunge increases, the wild resources diminish gradually,

thus restoration of Gentiana scabra Bunge became an important issue (Zhang et al.,

2010). Studies in recent years used tissue culture technology to cultivate of Gentiana

scabra Bunge (Cai et al., 2009), by domesticating the tissue culture of Gentiana scabra

Bunge, then transplanting it to the greenhouse for cultivation. In order to monitor the

change of Gentiana scabra Bunge during the growth process, it is necessary to measure

the bioactive components of Gentiana scabra Bunge. However, the commonly used

methods such as micellar electrokinetic capillary chromatography (MECC) (Glatz et al.,

2000), high performance liquid chromatography (HPLC) (Szlcs et al., 2002; Kikuchi et

al., 2005; Carnat et al., 2005; Kusar et al., 2010; Hayta et al., 2011a; Hayta et al.,

2011b), liquid chromatography-mass spectrometry (LC-MS) (Aberham et al., 2007;

Aberham et al., 2011), and ultra-performance liquid chromatography (UPLC)

(Nastasijevi¢ et al., 2012) are all time-consuming and energy-intense, hence cannot be

applicable for daily quality inspection of Gentiana scabra Bunge during cultivation.

NIR spectroscopy has been widely used in dispensation, such as herbal component



analysis of Chinese herbal plants Angelicae gigantis Radix (Woo et al., 2005), Rhubarb

(Zhang and Tang, 2005), licorice (Glycyrrhizia uralensis Fisch,) (Wang et al., 2007),

Panax Species (Chen et al., 2011), and Lonicera japonica (Wu et al., 2012), as well as

the content detection of active pharmaceutical ingredients (APIs) in tablets (Paris et al.,

2006; Jamrogiewicz, 2012; Porfire et al., 2012). However, it has not been employed to

qualitatively monitor the growth of Gentiana scabra Bunge. In recent years, ICA has

been used in medicinal tests (Fang and Lin, 2008; Wang et al., 2009; Shao et al., 2009).

Considering there hasn’t been any study applying NIR spectroscopy in inspection on

internal components of Gentiana scabra Bunge currently, it is the intent of this study to

apply ICA, which could analyze various components simultaneously, in NIR

spectroscopy analysis on gentiopicroside and swertiamarin to discuss qualitative and

quantitative relationships of the two bioactive components. Efforts were also made to

build spectral calibration models with high predictability in order to evaluate the

potentiality of NIR for quality inspection on Gentiana scabra Bunge.

1.1.3RICE

Rice is one of the most important and popular food crops in the world, and freshness

of rice depends on the storage conditions such as storage time, storage temperature, and

relative humidity. Among them, the storage time of rice has an enormous effect on its



appearance, flavor, and quality of the nutrients (Zhou et al., 2002). Previous studies

demonstrated that most lipids in rice hydrolyze into free fatty acids and cause the acidity

of rice to increase with prolonged storage (Takano, 1989; Hu, 2011; Chen et al., 2011).

Therefore, the determination of rice freshness is one of the main goals in site

examination. There is a strong need to develop a non-invasive, rapid detection method

for the analysis of freshness. Therefore, the objective of the current study was to inspect

rice freshness in terms of qualitative and quantitative approaches using NIR

spectroscopy. Rice freshness was expressed by both pH value and fat acidity. The pH

values were determined by bromothymol blue - methyl red (BTB-MR) method (Hsu

and Song, 1988) and fat acidity by AACC International method 02-02.02 (AACC

International, 2000). By means of a calibration curve, a relationship between pH and fat

acidity was established. ICA was subsequently integrated with NIR spectral analysis to

quantify the pH in rice. Linear regression was then used to build spectral calibration

models of pH value.

1.2 GENERAL OBJECTIVE

The objective of the dissertation was to apply ICA as the sole tool in conducting NIR

guantitative analyses of biomaterials, including wax jambu fruit, medicinal plant

Gentiana scabra Bunge, and milled white rice, to evaluate its applicability. Influence



due to various types of sample (sucrose solution, intact fruit, dry powder of Gentiana

scabra Bunge, and cargo rice) was also studied in the dissertation.

1.3 DISSERTATION ORGANIZATION

The dissertation is written in the alternative format. The “GENERAL

INTRODUCTION” section is followed by chapters containing manuscripts of four

research papers: (1) Integration of independent component analysis with near infrared

spectroscopy for rapid quantification of sugar content in wax jambu (Syzygium

samarangense Merrill & Perry), (2) Quantification of bioactive gentiopicroside in a

medicinal plant Gentiana scabra Bunge using near infrared spectroscopy, (3)

Integration of independent component analysis with near infrared spectroscopy for

analysis of bioactive components in a medicinal plant Gentiana scabra Bunge, and (4)

Integration of independent component analysis with near infrared spectroscopy for

evaluation of rice freshness. These are followed by “GENERAL CONCLUSIONS”

section.



CHAPTER 2. INTEGRATION OF INDEPENDENT COMPONENT ANALYSIS
WITH NEAR INFRARED SPECTROSCOPY FOR RAPID
QUANTIFICATION OF SUGAR CONTENT IN WAX JAMBU

2.1 INTRODUCTION

Near infrared (NIR) spectroscopy, a nondestructive inspection method based on

specific absorptions within a given range of wavelength corresponding to the

constituents in the sample (McClure, 2003), has been widely applied for the evaluation

of internal quality of agricultural products (Davey et al., 2009; Lebot et al., 2011). Since

NIR spectra of a mixture is the linear summation of individual spectra of the

constituents in the mixture, such a mixture spectra thus can be regarded as ‘blind

sources’ (Hyvarinen et al., 2001) as the proportion of constituents in the samples

remains unknown. Many attempts have been made in recent years to extract critical

features from the spectra using multivariate analysis (Blanco and Villarroya, 2002;

Burns and Ciurczak, 2008), including multiple linear regression (MLR) (Chang et al.,

1998), principal component regression (PCR) (Wold, 1987), and partial least squares

regression (PLSR) (Wold et al., 2001). However, these methods were not designed for

resolving the ‘blind source’ problem and may not correlate well with the properties of

constituents in the mixture, consequently hindering the applicability of the spectra for

chemometric analysis of the constituents (Al-Mbaideen and Benaissa, 2011; Chen and

Wang, 2001; Kaneko et al., 2008).
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A multiuse statistical approach originally used to implement ‘blind source separation’

in signal processing (Herault and Jutten, 1986; Vittoz and Arreguit, 1989), independent

component analysis (ICA) is capable of disassembling the mixture signals of Gaussian

distribution into non-Gaussian independent constituents with only a little loss of

information and does not require any information to be added to the source (Comon,

1994). In practice, multiple ICA algorithms have been developed, including JADE

algorithm (joint approximate diagonalization of eigenmatrices) (Cardoso and

Souloumiac, 1993; Cardoso, 1999) and FastICA algorithm (Hyvérinen and Oja, 1997;

Hyvarinen, 1999), making ICA a high-speed and reliable tool (Hyvérinen and Oja, 2000)

for analytical chemistry (Lathauwer et al., 2000; Al-Mbaideen and Benaissa, 2011),

biomedical signal processing, telecommunications, econometrics, audio processing, and

image processing (Hyvérinen et al., 2001).

Application of ICA for spectrum analysis has been demonstrated by Chen and Wang

(2001) to separate the pure spectra of various constituents from the NIR spectra of the

mixture and to build relationship between the estimated independent components and

the constituents. Such a capability also enabled complete explanation of the

constituents’ properties for NIR qualitative analyses (Westad and Kermit, 2003). In

addition, ICA was used to obtain statistically independent and chemically interpretable

11



latent variables (LVs) in multivariate regression (Gustafsson, 2005). It was also noted

that the number of independent components extracted from the spectra of mixtures is

related to the performance of ICA (Westad, 2005). Moreover, ICA was employed to

identify the infrared spectrum of mixtures containing two pure materials (Hahn and

Yoon, 2006) as well as the constituents in commercial gasoline (Pasadakis and

Kardamakis, 2006; Kardamakis et al., 2007). Equally noteworthy is that the calibration

model built through MLR, after using ICA to extract independent components of

aqueous solutions, gave good predictability (Kaneko et al., 2008), whereas NIR

estimation of sucrose concentration (Chuang et al., 2010) and glucose concentration

(Al-Mbaideen and Benaissa, 2011) were enhanced by using ICA.

While application of ICA for spectral analysis appeared promising, available

literatures still focused mainly on (1) identification of constituents in the mixture,

especially for chemical compounds (Chen and Wang, 2001; Hahn and Yoon, 2006;

Pasadakis and Kardamakis, 2006; Kardamakis et al., 2007; Liu et al., 2008; Kaneko et

al., 2008; Al-Mbaideen and Benaissa, 2011); (2) a preprocessing method for improving

predictability of calibration model (Zou and Zhao, 2006); and (3) combination of ICA

and other multivariate analysis methods, such as PCA-ICA (Pasadakis and Kardamakis,

2006), ICA-MLR (Kaneko et al., 2008; Liu et al., 2009), ICA-PLS (Liu et al., 2009),

12



ICA-LS-SVM (Wu et al., 2008) and ICA-NNR (Fang and Lin, 2008) to deal with linear

or nonlinear problems. However, no literature exists for ICA with NIR spectroscopy to

be applied as the sole tool to quantify internal quality of intact fruit without any other

multivariate analysis methods. Wax jambu (Syzygium samarangense Merrill & Perry),

an endemic fruit in Taiwan and parts of southeast Asia (Fig. 2.1) has very unique surface

and texture that are easily bruised or damaged, hence requiring wax jambu to be

handled delicately from harvest to shipping and distribution. To date, several researches

aimed to develop a non-invasive and rapid detection method for the analysis of internal

quality of wax jambu (You, 2002; Lin, 2002; Chung et al., 2004). For further

applications of ICA as the sole tool with NIR spectroscopy in the inspection of fruits,

wax jambu is suitable to serve as sample for discussion. In the present study, ICA was

integrated for NIR spectral analysis to quantify the sugar content in intact wax jambu.

The results of wax jambu were also compared with those of sucrose solutions. Spectral

pretreatments and linear regression were then used to build spectral calibration models

of sugar content. The analysis results of ICA were also compared with those of PLSR to

assess the abilities in predicting sugar content in wax jambu.

13



2.2 MATERIALS AND METHODS

2.2.1 SAMPLE PREPARATION

Sucrose (Ci2H22011, FW: 342.30) powder was solubilized in de-ionized water to

prepare 78 sucrose solutions with sugar content ranging from 0.4 to 19.0 °Brix. The

average sugar content was 9.83 °Brix, and the standard deviation was 5.48 °Brix. A total

of 114 wax jambu (S. samarangense Merrill & Perry) samples purchased from Fangliao,

Pingtung County in Taiwan were employed for the study. Before measuring the sugar

content, wax jambu was first pressed to extract 15 mL juice which was centrifuged for

15 min at 2500 rpm and 22°C to clarify the sample in centrifuge KUBOTA 2700

(KUBOTA Corporation Co., Ltd., Osaka City, Osaka, Japan).

2.2.2 NIR SPECTRA AND SUGAR CONTENT MEASUREMENT

A NIRS 6500 spectrophotometer and sample transport (FOSS NIRSystems, Laurel,

MD, U.S.A.) with quartz cuvette were used to measure the transmittance spectra of

sucrose solutions. The wavelength ranged from 400 to 2498 nm with 2 nm intervals.

The quartz cuvette (light path: 1 mm; external dimensions: length = 3.0 cm, width = 0.2

cm, and height = 3.5 cm) was filled with sucrose solution for transmittance

measurements. An on-line NIRS 6500 spectrophotometer (FOSS NIRSystems, Laurel,

MD, U.S.A.) was used to measure the reflectance spectra of the wax jambu samples.
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The wavelength range was from 400 to 2498 nm and the interval was 2 nm. As shown

in Fig. 2.1(A), the wax jambu was examined to find an area with no defects, which was

then selected as the location for reflectance measurements. The wax jambu was placed

horizontally in line with the spectrophotometer in a dark compartment, and the distance

between the light source and the top of sample was adjusted to the suggested value of

7.62 cm, as shown in Fig. 2.1(B). The spectrophotometer was controlled by a personal

computer to perform NIR acquisition and spectrum editing. All spectral data were

recorded as the logarithm of reciprocal of reflectance (log 1/R), and NIR spectrum of

each sample was the average of 32 scans. A digital refractometer (PR-101, ATAGO Co.,

Ltd., Itabashi-ku, Tokyo, Japan) was used to measure the sugar content as the reference

values. The index ‘°Brix’ used for PR-101 refractometer is a parameter that denotes the

total amount of soluble solids in the sample. For fruits such as wax jambu, most of

soluble solids in the juice are sugars, mainly sucrose, fructose and glucose. Therefore,

the value of °Brix measured from wax jambu can be regarded as the total sugar content.
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Fig. 2.1 A wax jambu (Syzygium samarangense Merrill & Perry) sample (A) side view

and the NIR measurement location, and (B) sample placement with suggested

distance 7.62 cm between the light source and the top of sample in the on-line

NIRS 6500 spectrophotometer.

2.2.3 DATAANALYSIS

2.2.3.1 INDEPENDENT COMPONENT ANALYSIS (ICA)

Independent component analysis (ICA) is a method used to transform the observed

multivariate data to statistically independent components (ICs) and to present them as a

linear combination of observation variables. The number of receptors defined by ICA

algorithm must be more than or equal to the number of sources, and the signals emitted

by the sources are in non-Gaussian distribution (Hyvéarinen and Oja, 2000). The ICs are

latent variables; therefore, they cannot be directly observed, indicating that the mixing
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matrix is also unknown. The purpose of the ICA algorithm is to determine the mixing

matrix (M) or the separating matrix (W). In order to predict the unknown source, it is

assumed that W = M1,

§=Wx =M1Ms (2.1)
where § is the estimation of the sources (s) and x represents the observed spectra of

the objects.

In the present study JADE (joint approximate diagonalization of eigenmatrices)
algorithm (Cardoso and Souloumiac, 1993; Cardoso, 1999) was employed to conduct
ICA analysis. In general, JADE offers rapid performance for dealing with spectra data
due to it works off-the-shelf, an improvement over other multivariate approaches like
PCR and PLSR. Assuming that the spectra obtained through measurement of the
unknown mixtures were the linear combination of various components’ spectra, it can
be expressed as:

A =Ml (2.2)

The spectra of samples were all linearly composed of m ICs. Matrix Aixn Stands for |
samples containing n values; Imxn Stands for the matrix of 1Cs, including m independent
components. Mixm stands for the mixing matrix, which is related to the component

concentration in the mixture. The linear relationship between the mixing matrix (M) and
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the component concentration (C) can be expressed as:

C=MB (2.3)

Among them, B referred to the matrix of regression coefficient. In doing so, the

concentration of each component in the mixture could be determined by the

combination of ICA and linear regression.

2.2.3.2 PARTIAL LEAST SQUARES REGRESSION (PLSR)

Partial least squares regression (PLSR), a typical method in chemometrics (Wold et

al., 2001), has been widely applied to chemical and engineering fields. When PLSR is

applied to spectral analysis, the spectra can be regarded as the composition of several

principal components (PCs), and be expressed as a ‘factor’ in the PLSR algorithm. The

factors’ sequence is determined by their influences; the more important factor is ranked

earlier in the order, such as factor 1 and factor 2. Since information from spectral bands

was used in PLSR analysis, the analysis results can be improved by selecting

appropriate number of factors and specific wavelength ranges. To avoid overfitting of

the PLSR model’s results with too many factors, the factors were selected based on the

following principles in this study: (1) A maximum factor limit was set at 1/10 of

calibration set data + 2 to 3 factors; (2) new factors were not added if they caused a rise

in the prediction error; and (3) new factors were not added if they resulted in a standard
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error of validation (SEV) smaller than the standard error of calibration (SEC).

2.2.3.3 SPECTRAL PRETREATMENTS

The purpose of spectral pretreatments was to eliminate the spectral variation, which
was not caused by chemical information contained in the samples (de Noord, 1994). For
the raw NIR spectra of sucrose solutions and wax jambu, three different spectral
pretreatments were employed in this study: (1) normalization; (2) 1% derivative with
normalization; and (3) 2" derivative with normalization. Normalization scaled the
spectrum absorbance of all samples to fall within an interval of -1 to 1. For further
applications of ICA in fast on-line inspection of fruits, the procedure of selecting best
pretreatment parameters, including points of smoothing and gap of derivative, were not
employed to save computational time. The gap of derivative was set at a minimal value

of 2, so as to maintain the most wavelength values as inputs for the model.

2.2.3.4 MODEL ESTABLISHMENT

This study used the mathematic software MATLAB (The MathWorks, Inc., Natick,
MA, U.S.A)) to write ICA programs based on JADE algorithm for establishing ICA
spectral calibration models. The results of ICA were compared with the spectral

calibration models of PLSR built by WinISI 1l (Infrasoft International, LLC., Port
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Matilda, PA, U.S.A.) chemometric software package. The analysis procedure of both

ICA and PLSR for wax jambu and sucrose solution samples included: (1) selecting

calibration set and validation set, (2) spectral pretreatments, and (3) determining best

calibration model. Since the sucrose solutions were mixtures of sucrose powder and

water, their composition were rather simple. Therefore, the data of full wavelength

range (400 to 2498 nm) were used for comparing the tolerance abilities of ICA and

PLSR since spectral bands with more noises (e.g. 2200 to 2498 nm) often affect the

analysis results. Identification of specific wavelength ranges was needed for wax jambu

because their composition was more complicated than that in sucrose solutions, which

required additional correlation analysis between wavelengths and sugar content. All of

the sucrose solutions and wax jambu samples were respectively used for analysis to

assess the tolerance abilities of ICA and PLSR. A ratio of calibration to validation

samples of 2:1 was adopted according to the sugar content in the sample. All samples

were ranked ascendantly according to their sugar content. Number 1 and 2 were

assigned for calibration and 3 for validation, with subsequent numbers following the

same alternating sequence. The same sets of calibration and validation were used for

both ICA and PLSR analyses.

After the respective spectral calibration models of sucrose solution and wax jambu
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were built, these models were then used to predict the sugar contents of the calibration

and the validation set. The evaluation of predictability was based on the following

statistical parameters, including coefficient of correlation of calibration set (Rc),

standard error of calibration (SEC), coefficient of correlation of validation set (rv),

standard error of validation (SEV), bias, and ratio of [standard error of] performance to

[standard] deviation (RPD), as defined by:

. 1/2
SEC = {ni (vr —Yc)f} (2.4)
ci=1
10 1/2
SEV = {n— [(vr —vv) - Bias]f} (2.5)
v i=1
1
Bias = —» (Yr - ), (2.6)
nv i=1
RPD = SD/SEV (2.7)

where Yc and Yv represent the estimated sugar contents of the calibration set and the

validation set, respectively. Yr is the reference sugar content, nc and ny are the number of

samples in the calibration set and validation set, and SD is the standard deviation of

sugar content within the validation set. RPD is one of the indices used to evaluate the

performance of a model. The greater the value of RPD is considered adequate for

analytical purposes in most of NIR spectroscopy applications for agricultural products

(Williams and Sobering, 1993).
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2.3 RESULTS AND DISCUSSION
2.3.1 SUCROSE SOLUTION

The 78 sucrose solution samples were divided into 52 calibration samples and 26
validation samples with a ratio of 2:1. The distribution of their sugar content (°Brix) is
shown in Table 2.1. For all the samples within the calibration and validation sets, the
difference between maximum values of two sets was 0.2 °Brix; the differences for other
items including minimum, average, standard deviation, and coefficient of variation
(CV), were all smaller than 0.5 °Brix. The above sets of samples were conforming to the

consistent requirement of sugar content distributions.

Table 2.1 Summary of sucrose solutions and sample sugar contents. Total samples (n =
78), calibration set (n = 52) and validation set (n = 26) were arranged to have

consistent distributions of sugar content.

Sucrose Solutions

Sugar Content (°Brix)

Group n
Max. Min. Mean SD CVv

Total Samples 78 19.00 0.40 9.83 5.48 0.56

Calibration Set 52 19.00 0.40 9.72 5.52 0.57

Validation Set 26 18.80 090 10.06 5.52 0.55
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2.3.1.1 SELECTION OF THE MOST APPROPRIATE NUMBER OF ICS

According to the definition of ICA, the observed receptor signals can be decomposed

at most into a number of ICs (independent components) equal to the number of samples

(Hyvérinen and Oja, 2000). This study used the data of full range of wavelength (400 to

2498 nm) as the inputs of ICA, conducted ICA for the original spectra of 52 calibration

samples of sucrose solution by selecting 1 to 52 ICs, and observed the prediction error

by using the calibration model. Both situations with and without normalization were

examined. When only one IC applied, the prediction error was high, so the results were

only shown by applying 2 to 50 ICs. As shown in Fig. 2.2, when the number of ICs

increased to 4, SEC of the case without normalization sharply decreased to 0.14 °BriX,

and SEV fell to 0.21 °Brix, indicating that different numbers of I1Cs can influence the

predictability of the spectral calibration model. However, application of more ICs did

not necessarily help improve the ability of the calibration model because the sucrose

solutions were mixtures of sucrose and water, hence only the initial 4 1Cs were applied

in the calibration model.

The results of ICA with normalized spectra can be observed in Fig. 2.2. The

prediction error greatly reduced as the number of ICs increased to 7; the SEC and SEV
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with 7 1Cs were 0.12 and 0.22 °Brix, respectively. Normalization apparently gave less

variations of SEV compared with that of original spectra.

x
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Fig. 2.2 Relationship between the numbers of ICs and errors of the predicted sugar
content for sucrose solutions. The most appropriate number of ICs for
normalized spectra was determined by the tendency of SEC (green-short dash

line) and SEV (blue-dash dot dot line) values.
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2.3.1.2 SPECTRA DECOMPOSITION AND CORRELATION ANALYSIS OF
SUGAR CONTENT

Based on ICA analysis it is critical to examine whether these 7 ICs were statistically
independent. To illustrate the operation, IC 1 and 4 were selected and their correlation
was shown in Fig. 2.3, with the coefficient of determination (r?) being only 4.0 x 108,
This indicated that IC 1 and 4 were independent of each other. Diagrams of every two
ICs among the 7 ICs also showed a similar distribution to that in Fig. 2.3, with all of the
r> smaller than 0.243, conforming to the mutually independent characteristics of 1Cs

(Hyvérinen and Oja, 2000).
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Fig. 2.3 Distribution of calibration and validation samples of sucrose solutions in IC

1-1C 4 space. IC 1 and IC 4 were randomly selected from the 7 ICs.

Eq. 2.5 shows that the constituent information ‘sugar content’ should mainly
correspond to a specific IC, and there should be a high correlation between the values of
the IC in the mixing matrix and the sugar content. So a diagram was made with the
reference sugar content and the values of each column (each IC) in the mixing matrix.
As shown in Fig. 2.4, the correlation coefficient (r) between IC 1 and the reference
sugar content could reach 0.977, which meant that with 7 I1Cs extracted, the IC 1 among

all 7 1Cs could reveal the most information resulted from the sugar content in the
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spectra. The results were in agreement with Westad (2005). Therefore, selection of the

numbers of ICs is important since it influences how the information is used after spectra

decomposition.
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Fig. 2.4 Correlation between the values of IC 1 in the mixing matrix and the reference

sugar contents of sucrose solutions.

The regression coefficient matrix by the NIR spectra and the reference sugar content

of calibration sets was shown in Table 2.2, and the values from the top to the bottom

referred to IC 1 to 7. All values were compared in terms of absolute values. It was found

that the value of the first row (IC 1) was the largest, closely followed by the value of IC
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4. The results agreed with the order of correlation between each IC and the reference

sugar content, and indicated that the importance of each IC was independent of the IC

sequence. Each major constituent had its corresponding IC decomposed by ICA, in

which IC contribution was clearly defined, so that all constituents of the mixtures could

be distinguished by ICA (Chen and Wang, 2001; Hahn and Yoon, 2006; Pasadakis and

Kardamakis, 2006; Kardamakis et al., 2007; Kaneko et al., 2008).

Table 2.2 Regression coefficient matrix of sucrose solutions with 7 ICs were extracted

from the NIR spectra of calibration sets. Correlation between the absolute

value of each IC in regression coefficient matrix and sugar content was

examined.

IC# Regression Coefficient
1 -2.1811
2 -0.2843
3 -0.1843
4 1.2976
5 0.1876
6 -0.1334
7 -0.1416
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The 1Cs, decomposed from the spectra by ICA, reflected the spectral characteristics

of the unknown mixture and constituted the pure materials’ spectra of this mixture under

an ideal state (Chen and Wang, 2001; Hahn and Yoon, 2006; Pasadakis and Kardamakis,

2006; Kardamakis et al., 2007). Since the sucrose solutions were mixtures of sucrose

and water, and the spectra was comprised of both constituents, the ICs decomposed by

ICA should reflect the characteristics of these two pure substances. For the original

spectra of the normalized calibration set, among the 7 ICs applied for ICA, the order of

the 7 ICs, according to the correlation with reference sugar content, was IC 1, 4, 2, 5, 3,

7, and 6. The NIR original spectra of the calibration set and IC 1 were shown in Fig.

2.5(A) and (B), and the reflectance spectrum of sucrose powder post-Detrend was

shown in Fig. 2.5(C). The peak positions of IC 1 (964, 1090, 1436, 2100, and 2276 nm)

matched the specific wavelength ranges of sugar content (C-H band) (Chang et al., 1998;

Park, 2003; Hahn and Yoon, 2006), which was also consistent with the absorption bands

seen in Fig. 2.5(C). So IC 1 can be considered to respond mainly to the sugar content,

conforming to the above results. The other ICs had poor correlation with reference sugar

content, and the absolute values in the regression coefficient matrix were much smaller

than that of IC 1, so they exerted an assisting function.
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Fig. 2.5 (A) Original NIR spectra of sucrose solutions, (B) IC 1 decomposed from
calibration sets, and (C) the reflectance spectrum of sucrose powder

post-Detrend.

2.3.1.3 SUGAR CONTENT QUANTIFICATION BASED ON ICAAND PLSR
Quantitative analyses of sugar content in sucrose solutions were conducted by ICA
and PLSR using the full range of wavelength from 400 to 2498 nm. The results of

spectral calibration models built by ICA are shown in Table 2.3. It was found that the
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best spectral calibration model was the original spectra normalized, with 7 1Cs applied.

The results were Rc = 0.9998, SEC = 0.124 °Brix, rv = 0.9993, SEV = 0.216 °Brix, bias

= 0.014 °Brix, and RPD = 25.54. A comparison was made in light of the result of the

original spectra with and without normalization, and it was found that the calibration

model yielded similar outcomes in the validation sets, whereas the SEC value was

improved when normalization was applied. Although derivatives can improve baseline

shift of the original spectra and amplify the signal characteristics, noise interference

may also be enhanced at the same time, making it unsuitable for spectral bands with

much noises. The spectrum in the range of 2200 to 2498 nm contained more noises;

therefore, the predictability of the spectral calibration models would decrease as

derivatives were attempted.
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Table 2.3 Regression results by ICA and PLSR analyses for sucrose solutions.

Calibration Set (52)

Validation Set (26)

ICs/ Mean: 9.715, SD: 5.515 Mean: 10.058, SD: 5.515
Method Spectrum
Factors SEC RSEC SEV RSEV bhias

Rc v RPD

(°Brix) (%) (°Brix) (%)  (°Brix)
Original 4 0.9997 0.144 6.97 0.9995 0.215 357 0.045 25.69
Original + Normalization 7 0.9998 0.124 4.01 09993 0.216 3.68 0.014 2554

ICA

1%t Derivative + Normalization 4 0.9994 0.193 13.71 0.9984 0.331 10.34 0.028 16.66
2" Derivative + Normalization 5 0.9983 0.321 19.66 0.9973 0.409 16.20 -0.014 13.48
Original 2 0.9995 0.181 11.41 0.9985 0.300 8.78 0.069 18.38
PLSR Original + Normalization 4 0.9990 0.218 11.59 0.9975 0.399 8.68 0.022 13.82
1% Derivative + Normalization 3 0.9995 0.192 11.50 0.9950 0.546 1292 0.031 10.10
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2" Derivative + Normalization 2 0.9990 0.243 20.96 09869 0.899 3499 0.013 6.14
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The results of spectral calibration models built by PLSR indicated that the best
spectral calibration model was acquired when the original spectra and 2 factors were
employed, and the results were as follows: Rc =0.9995, SEC = 0.181 °Brix, rv = 0.9985,
SEV = 0.300 °Brix, bias = 0.069 °Brix, and RPD = 18.38 (Table 2.3). Moreover, with
the SEC = 0.192 °Brix and the SEV = 0.546 °Brix for the 1% derivative with
normalization, and the SEC = 0.243 °Brix and the SEV = 0.899 °Brix for the 2"
derivative with normalization, it is apparent that the SEV values of both 1% and 2™
derivatives were many times higher than SEC. The results showed that the PLSR

spectral calibration models had poor predictability when applied to validation sets.

Comparing the quantitative analysis results of ICA and PLSR, all ICA spectral
calibration models had better ability than PLSR in predicting calibration and validation
sets. This means that ICA extracts the characteristic information from the spectra more
effectively, not only improving the expository ability of calibration models for the
calibration sets, but also increasing the tolerance for the validation sets. Results also
showed that ICA was preferable to PLSR due to much lower bias (Table 2.3). This
finding became more obvious with normalization, indicating that ICA had a better
tolerance to the influences caused by factors other than chemical characteristics of the

constituents in the samples, which helped to build more robust spectral calibration
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models. In summary for the sucrose solutions, ICA achieved better quantitative analysis

of sugar content than PLSR did, while selecting a suitable number of ICs and spectral

pretreatments could help improve the predictability of spectral calibration models. The

results of sucrose solutions also helped establish proper procedures with useful

information applicable when conducting ICA analysis of wax jambu.

2.3.2 WAX JAMBU

Wax jambu samples totaling 114 were used; their sugar contents ranged from 6.4 to

14.5 °Brix. The average sugar content was 9.92 °Brix with the standard deviation of

1.61 °Brix. All the samples were divided in a 2:1 ratio into 76 and 38 calibration and

validation samples (Table 2.4).
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Table 2.4 Summary of wax jambu (Syzygium samarangense Merrill & Perry) and

sample sugar contents. Total samples (n = 114), calibration set (n = 76) and

validation set (n = 38) were arranged to have consistent distributions of

sugar content.

Wax Jambu

Sugar Content (°Brix)

Group n
Max. Min. Mean SD CcVv

Total Samples 114 1450 6.40 9.92 1.61 0.16

CalibrationSet 76 1450 6.40 9.89 1.61 0.16

Validation Set 38 14.00 7.10 9.99 1.62 0.16

2.3.2.1 CORRELATION ANALYSIS OF NIR SPECTRA AND SUGAR
CONTENT

Fig. 2.6 showed the distribution of the correlation coefficients for the original, the 1%
derivative and the 2" derivative spectra of the wax jambu samples and their sugar
contents. The main absorption wavelengths of the original spectra were 676, 968, and
1144 nm, of which 676 nm was located within the visible region of red light, whereas
968 and 1144 nm in the NIR region, belonging to the 2" overtone of the C-H bond. The

main absorption wavelengths of the 1% derivative spectra were 626, 974, 1070, and
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1406 nm, of which 626 nm was located in the visible region of orange light, with the
correlation up to 0.808, while the remaining wavelengths in the NIR region. The main
absorption wavelengths of the 2" derivative spectra were located in the visible region
between orange light and red light, namely 594, 642, and 692 nm. Fig. 2.6 showed that
the wavelength range of 600 to 1098 nm was the major absorption band, and the 1%
derivative spectra were most significantly correlated to the sugar content (Chung et al.,
2004). As for the spectral band 650 to 700 nm, which belonged to the absorption band
of red light, it was consistent with the color of wax jambu skin, indicating that color

information was also reflected in the spectrum.
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Fig. 2.6 Correlation coefficient distributions of the spectra and the sugar content of wax
jambu through three different spectral pretreatments (original spectra, 1%

derivative spectra, and 2" derivative spectra).

The NIR spectra of wax jambu samples were analyzed by taking every 100 nm as a
band region, and full spectrum range from 400 to 2498 nm was divided into 21 band
regions, in which they were separately analyzed. Analysis of the 76 wax jambu
calibration samples could have been decomposed into 76 1Cs; however, applying too
many ICs could easily lead to overfitting of the model. Hence, in this study ICA was
conducted with the limit of 30 ICs. The SEV showed no obvious trend when applying 1

to 6 ICs, and was greatly influenced by water (O-H bond). There is a high proportion of
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water in the wax jambu samples, so it was necessary to avoid using the spectral bands of
1450 and 1900 nm that represent primarily water absorption. When applying 7 to 30 ICs
(Fig. 2.7), the SEV values in the ranges of 600 to 700 nm and 800 to 1098 nm were less
than 1 °Brix, so were the results of the 1% and the 2" derivative spectra. All three
spectra fitted the spectral bands of higher correlation in Fig. 2.6, so the specific
wavelength regions for spectrum analyses of wax jambu were selected from the

wavelength range of 600 to 700 nm and 800 to 1098 nm (Chung et al., 2004).
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Fig. 2.7 Relationship between spectral bands and errors of the predicted sugar content
for wax jambu when applying 7 to 30 ICs. Full spectrum range from 400 to
2498 nm was divided into 21 band regions by taking every 100 nm as a band

region.

2.3.2.2 SUGAR CONTENT QUANTIFICATION BASED ON ICAAND PLSR
2.3.2.2.1 ANALYSIS WITHOUT SPECTRAL PRETREATMENT

The ICA results of the spectral calibration model for wax jambu are shown in Table
2.5. The best spectral calibration model was found with the normalized 1% derivative

spectra and 10 ICs, resulting in Rc = 0.956, SEC = 0.471 °Brix, rv = 0.954, SEV = 0.489
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°Brix, bias = -0.013 °Brix, RPD = 3.32. Among the 10 ICs applied for ICA, the order of
the initial 4 ICs, according to the correlation with reference sugar content, is IC 3, 7, 8,
and 6, with respective correlation coefficient (r) of -0.805, 0.647, -0.612, and 0.279. IC
3, 7, and 8 can be considered to respond mainly to the information of sugar content
(including fructose, glucose and sucrose) (Moneruzzaman et al., 2011; Tehrani et al.,
2011) as the composition of wax jambu is rather complicated than that of sucrose
solution alone. Since the specific wavelengths used were within the wavelength range of
600 to 700 nm and 800 to 1098 nm, the spectra covered the 3" overtone of C-H bond,
conforming to the results of Fig. 2.6 and 2.7. Additionally, the spectral calibration
models built after normalization used the characteristic information of 10 ICs, which is
in line with the SEV trend observed in Fig. 2.7. Moreover, the small values of bias
indicated that ICA had good tolerance to the influence caused by factors other than the

internal chemical composition of the samples.

The PLSR results of the spectral calibration model are shown in Table 2.5, with the
best spectral calibration model found in the normalized original spectra with 5 factors,
yielding Rc = 0.884, SEC = 0.753 °Brix, rv = 0.867, SEV = 0.816 °Brix, and bias =
0.238 °Brix. The specific wavelength regions used were within the wavelength range of

600 to 700 nm and 800 to 1098 nm, consistent with the aforementioned results.

41



Table 2.5 Regression results by ICA and PLSR analyses for wax jambu (without spectral pretreatment).

Calibration Set (76)

Validation Set (38)

Wavelength  ICs/ Mean: 9.891, SD: 1.610 Mean: 9.990, SD: 1.624
Method Spectrum
Range (hm)® Factors SEC RSEC SEV RSEV  bias
Rc rv RPD
(°Brix) (%) (°Brix) (%)  (°Brix)
600-700, 2
Original 7 0930 0.591 6.37 0919 0642 711 -0.024 253
1000-1098, 2
Original + 600-700, 2
ICA 10 0948 0515 551 0940 0568 573 0.054 286
Normalization ~ 800-1000, 2
1% Derivative +  600-700, 2
10 0956 0.471 4.88 0954 0.489 498 -0.013 3.32
Normalization ~ 900-1098, 2
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2" Derivative +  600-700, 2
10 0.943 0.535 5.85 0.944 0553 577 -0.017 294

Normalization  800-1000, 2
Original 800-1098, 2 2 0.428 1.455 1556 0.237 1599 1580 0.351 1.02

Original + 600-700, 2
5 0.884 0.753 8.11 0.867 0.816 890 0.238 1.99

Normalization  800-1098, 2

PLSR 1% Derivative + 600-700, 2
3 0.876 0.777 8.44 0.880 0.782 8.89 -0.020 2.08

Normalization  800-1098, 2

2" Derivative +  600-700, 2
2 0.797 0.973 11.58 0.803 0.975 1095 0.182 1.67

Normalization  800-1000, 2

& Interval is 2 nm.
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After comparing the results of ICA and PLSR quantitative analysis, it was found that

the ICA calibration model performed better than PLSR, since not only did it enhance the

predictability of the model but it also reduced the bias. The specific wavelengths used in

ICA and PLSR showed a high degree of coincidence. When applied to wax jambu

samples, the correlation analysis between NIR spectra and sugar content provided a

basis to select the appropriate specific wavelength regions.

2.3.2.2.2 ANALYSIS WITH SPECTRAL PRETREATMENT

To evaluate the best predictability of ICA models for wax jambu, ICA analysis was

further performed with pretreatment and outlier procedures. After selecting the best

pretreatment parameters (points of smoothing and gap of derivative were both 3) and

eliminating 1/10 outliers (11 samples) from the total of 114 samples, the best spectral

calibration model was found, as shown in Table 2.6, with the normalized 1% derivative

spectra and 9 ICs, resulting in Rc = 0.988, SEC = 0.243 °Brix, rv = 0.971, SEV = 0.381

°Brix, bias = 0.001 °Brix, RPD = 4.15. The PLSR analysis results under the same

conditions were Rc = 0.983, SEC = 0.287 °Brix, rv = 0.963, SEV = 0.426 °Brix, bias =

-0.039 °Brix, RPD = 3.71. The ICA spectral calibration model had better results than

PLSR results with pretreatment and outlier procedures in predicting calibration and

validation sets.
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Table 2.6 Regression results by ICA and PLSR analyses for wax jambu (with spectral pretreatment).

Calibration Set (68)

Validation Set (35)

Wavelength  Smoothing  ICs/  Mean: 9.953, SD: 1.556 Mean: 9.953, SD: 1.580
Method Spectrum
Range (hnm)® Points/ Gap Factors SEC RSEC SEV RSEV Dbias
Rc rv RPD
(°Brix) (%) (°Brix) (%) (°Brix)
1% Derivative +  600-700, 2
ICA 3,3 9 0.988 0.243 2.46 0971 0381 391 0.001 4.15
Normalization  900-1098, 2
1% Derivative +  600-700, 2
PLSR 4,4 8 0.983 0.287 281 0963 0426 441 -0.039 3.71
Normalization  800-1098, 2

& Interval is 2 nm.
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Compared to the previous literatures (You, 2002; Lin, 2002; Chung et al., 2004), the

spectral calibration models built by ICA had higher predictability for wax jambu since

the SEC values reported by You (2002), Chung et al. (2004) and Lin (2002) were 0.413

°Brix, 0.388 °Brix and 0.252 °Brix, respectively. Among them, the SEP values reported

by Chung et al. (2004), 0.262 °Brix, 0.207 °Brix and 0.322 °Brix, were all lower than

its SEC value (0.388 °Brix); these MLR analysis results seemed unreasonable because

that the prediction sets were unknown to the calibration model, thus the SEP values

should be higher than SEC value. Even though, our ICA results listed in Table 2.6 were

better than those reported by Chung et al. (2004) and Lin (2002) in terms of Rc, SEC, rp

and RPD.

The results of ICA sugar content quantification based on NIR spectroscopy showed

that ICA can effectively extract the characteristic information in the spectra, and build

the spectral calibration models with desirable abilities to evaluate the concentration of

the constituents. It thus can be expected that integration of ICA with NIR spectroscopy

could become a powerful tool for quantitative analysis of specific targets.

2.4 CONCLUSIONS

ICA was applied as the sole tool to integrate with NIR spectroscopy for rapid
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quantification of sugar content in sucrose solutions and wax jambu. ICA gave a

comprehensive approach to characterize the NIR spectra with respect to the sugar

content in wax jambu and sucrose solutions that other multivariate analysis methods

cannot deal with. The spectral calibration models built by ICA had high predictability

for both wax jambu and sucrose solutions. Compared to PLSR, ICA can identify the

sugar features in the spectra of wax jambu and then evaluate their concentrations more

effectively. Therefore, it offers a reliable tool for quantitative analysis of sugar content

in wax jambu by NIR spectroscopy. ICA in conjunction with NIR spectroscopy also has

a potential to be applied to identify multiple constituents and evaluate their

concentrations of agricultural products.
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CHAPTER 3. QUANTIFICATION OF BIOACTIVE GENTIOPICROSIDE IN A
MEDICINAL PLANT GENTIANA SCABRA BUNGE BY NEAR
INFRARED SPECTROSCOPY

3.1 INTRODUCTION

Dried root and rootstock of Gentiana scabra Bunge are commonly used as

pharmaceutical raw materials, since they are rich in many secoiridoid glycosides, such

as gentiopicroside, swertiamarin and sweroside (Kakuda et al., 2001). In particular,

gentiopicroside has been shown to protect liver, inhibit liver dysfunction, and promote

gastric acid secretion in addition to its antimicrobial and anti-inflammatory effects,

making it a popular ingredient in Chinese herbal medicine and health products (Kim et

al., 2009).

In early days, G. scabra Bunge was mainly collected in the wild. As the demand for G.

scabra Bunge increases and the wild resources diminish, the restoration of G. scabra

Bunge thus became an important issue (Zhang et al., 2010). Studies in recent years used

tissue culture technology to artificial cultivate G. scabra Bunge (Cai et al., 2009), by

domesticating the tissue culture of G. scabra Bunge, then transplanting it to the

greenhouse for cultivation. In order to monitor the change of G. scabra Bunge during

the growth process, it is necessary to measure the bioactive components of G. scabra

Bunge. However, the commonly used methods, such as micellar electrokinetic capillary

chromatography (MECC) (Glatz et al., 2000), high performance liquid chromatography
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(HPLC) (Szics et al., 2002; Kikuchi et al., 2005; Carnat et al., 2005; Kusar et al., 2010;

Hayta et al., 2011a; Hayta et al., 2011b), liquid chromatography-mass spectrometry

(LC-MS) (Aberham et al., 2007; Aberham et al., 2011), and ultra-performance liquid

chromatography (UPLC) (Nastasijevi¢ et al., 2012), are all time-consuming and

energy-intense, hence not applicable for daily quality inspection of G. scabra Bunge

during cultivation.

Near infrared (NIR) spectroscopy is a nondestructive inspection method that can

rapidly measure the target object. Its spectrum contains characteristic spectral

information of the internal constituents in the sample, so it has been widely used in

dispensation, such as herbal component analysis of Chinese herbal plants Angelicae

gigantis Radix (Woo et al.,, 2005), Rhubarb (Zhang and Tang, 2005), licorice

(Glycyrrhizia uralensis Fisch,) (Wang et al., 2007), Panax species (Chen et al., 2011),

and Lonicera japonica (Wu et al., 2012), as well as the content detection of active

pharmaceutical ingredients (APIs) in tablets (Paris et al., 2006; Jamrdgiewicz, 2012;

Porfire et al., 2012). However, it has not been employed to qualitatively monitor the

growth of G. scabra Bunge.

The present study was aimed to explore the NIR feature of gentiopicroside, the
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bioactive component of G. scabra Bunge, in order to build the spectral calibration

models. Moreover, the applicability of silicon CCD sensing band when using

multi-spectral imaging technology to inspect the quality of G. scabra Bunge was

evaluated.

3.2 MATERIALS AND METHODS

3.2.1 G. SCABRA BUNGE SAMPLE PREPARATION

The samples of G. scabra Bunge were provided by Taiwan Sugar Research Institute

(TSRI; Tainan, Taiwan). A total of 94 tissue culture samples and 68 grown plant samples

of different cultivation time was acquired (Yang et al., 2008; Cheng, 2009). The shoot

and root of the grown plant samples were measured separately in order to compare their

differences. The G. scabra Bunge samples were first dried for 48 hours in a dryer (50

°C), then milled with a high speed grinder (RT-02A, Sun-Great Technology Co., Ltd.,

New Taipei City, Taiwan). The dried powder was filtered with a 100 mesh sieve and

stored in amber sample vials to avoid light exposure (Yang et al., 2008; Cheng, 2009).

3.2.2 NIR SPECTRAAND HPLC MEASUREMENT

Dry powder of G. scabra Bunge was gently poured into a small ring cup (i.d. 5 cm)

and subjected to NIR measurement (NIRS 6500, FOSS NIRSystems, Inc., Laurel, MD,
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U.S.A.). The reflectance spectra of the samples were collected in the range of 400 to

2498 nm with 2 nm intervals, and the NIR spectrum of each sample was the average of

32 scans (Yang et al., 2008; Cheng, 2009).

To attain the reference value of the bioactive component, gentiopicroside was

measured by HPLC (DX 500 ion chromatograph, Dionex Corporation, Sunnyvale, CA,

U.S.A)) equipped with a DIONEX C18 column (250 mm x 4.6 mm i.d.). The peak of

gentiopicroside appeared at 250 nm when methanol : water (20:80) was used as the

mobile phase at a flow rate of 1 mL/min. A high-precision scale was used to measure

the gentiopicroside standard powder, and diluted into 1000, 500, and 250 ppm with 70%

methanol as the standard solutions for the three-point calibration of HPLC. A

quantitative linear relationship was established between the standard concentration and

the peak area (Yang et al., 2008; Cheng, 2009).

3.2.3 DATAANALYSIS

In order to apply the specific wavelengths identified to multi-spectral imaging

inspection of G. scabra Bunge, the spectra of the full wavelength range (400 to 2498 nm)

and the silicon CCD sensing band (400 to 1098 nm) were analyzed. Modified partial

least squares regression (MPLSR) and stepwise multiple linear regression (SMLR)
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methods were employed to build the calibration models of gentiopicroside.

3.2.3.1 MPLSR

An extension of partial least squares regression (PLSR), MPLSR abides by the

principle of normalization of the spectra and constituent values prior to PLSR, which is

a standard tool in chemometrics and has been widely used in the pharmaceutical,

chemical, and agricultural fields (Wold et al., 2001). When PLSR is applied to spectral

analysis, the spectra can be regarded as the composition of several principal components

(PCs), and be expressed as a ‘factor’ in the PLSR algorithm. The factors’ sequence is

determined by their influences, i.e., the more important factor is ranked earlier in the

order. Since PLSR analysis uses information from spectral bands, the analysis results

can be improved by selecting appropriate number of factors and specific wavelength

ranges.

3.2.3.2 SMLR

SMLR selects the specific wavelengths according to the F-test (F > 3) of null

hypothesis testing (Chang et al., 1998). To build the calibration model with numerous

wavelengths, the SMLR algorithm chooses the most important specific wavelength

from the major molecular bonding region of the objects, and the second most important
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specific wavelength is usually chosen between the combination of related molecular
bonding, or the overtone of complementary bonding, and by analogy. When adding a
new wavelength for training, the algorithm will base on the previously selected specific
wavelengths to continue finding the wavelength, which can allow the highest multiple
coefficient of determination (r?) and the minimum prediction error, and determine
whether such wavelength can replace the current specific wavelength or not. In case of
poor competency of the newly-added wavelength for training, the algorithm will stop

training.

3.2.3.3 SPECTRAL PRETREATMENTS

The purpose of spectral pretreatments was to eliminate the spectral variation not
caused by chemical information contained in the samples (de Noord, 1994; Fearn, 2001).
Since inevitable light scattering could be added into the spectra when using NIR to
measure powder samples, especially when the particle size is not uniform,
multiplicative scatter correction (MSC) was used to allow additive and multiplicative
transformation of the spectra (Eq. 3.1). It was conducted using the average spectrum of
all samples as the reference value, and calculating the parameters a and b with the least
square. After MSC treatment, the spectra of G. scabra Bunge powder not only reduced

the physical impact of non-uniform particles (Helland et al., 1995; Maleki et al., 2007),
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but also confirmed the linearity of the spectral information (Isaksson and N&s, 1988),
which would contribute to subsequent linear regression analysis (Thennadil et al.,

2006).

X, (new) = M (3.1)

The spectra of G. scabra Bunge powder post-MSC was subjected to three
independent treatments, namely (1) smoothing; (2) smoothing with 1% derivative; and (3)
smoothing with 2" derivative, in order to choose the best pretreatment parameters,
including the smoothing points and the gap ranging from 2 to 50, with the gap being

greater than or equal to the smoothing points.

3.2.3.4 MODEL ESTABLISHMENT

The spectral calibration models of MPLSR and SMLR were built by WinISI I
chemometric software (Infrasoft International, LLC., Port the Matilda, PA, U.S.A.). The
MPLSR analysis procedure included: (1) spectral pretreatments; (2) selecting the
specific wavelength regions; (3) selecting calibration set and validation set; and (4)
determining best calibration model. In steps 1 and 2, 3-fold cross validation (CV) was
used to enable objective selection of the parameters. A 2:1 ratio of calibration to

validation samples was adopted according to the gentiopicroside concentration in the
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sample. All samples were ranked ascendantly according to their gentiopicroside

concentration, with the gentiopicroside concentration in the calibration set higher than

the validation set, yet both sets contained similar gentiopicroside concentration

distribution of all samples. When selecting the best calibration model, in order to avoid

over-fitting caused by use of excessive factors, the following principles were adhered to:

(1) the maximum number of factors is one tenth of the number of calibration sets + 2 to

3; (2) stop if the adding of a new factor makes the SEV rise; and (3) when the SEV is

lower than the SEC, stop adding new factor. The SMLR analysis procedure was: (1)

selecting calibration set and validation set; (2) spectral pretreatments; and (3)

determining best calibration model and the specific wavelengths. The same calibration

and validation sets were used for both MPLSR and SMLR analyses.

After the respective spectral calibration models of MPLSR and SMLR were built,

these models were then used to predict the gentiopicroside concentration of the

calibration and the validation set. The predictability of the models was evaluated based

on the following statistical parameters, including coefficient of correlation of calibration

set (Rc), standard error of calibration (SEC), standard error of validation (SEV), bias

and the ratio of the standard error of performance to the standard deviation of the

reference values (RPD), as defined below:
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1 1/2
SEC = {n— (Yr —Yc)f} (3.2)

ci=1
10 1/2
SEV = {n—Z[(Yr —Y)- Bias]f} (3.3)
v i=1
1
Bias = —>» (Yr —Yv), (3.4)
nv i=1
RPD = SD/SEV (3.5)

where Yc and Yv represent the estimated gentiopicroside concentration of the
calibration set and the validation set, respectively. Yr is the reference gentiopicroside
concentration; nc and ny are the number of samples in the calibration set and validation
set, respectively; SD is the standard deviation of gentiopicroside concentration within

the validation set.

3.3 RESULTS AND DISCUSSION
3.3.1 GENTIOPICROSIDE CONCENTRATION AND DISTRIBUTION IN G
SCABRA BUNGE

The gentiopicroside contents in different parts (94 tissue culture, 68 shoot and 68 root
samples) of G. scabra Bunge samples are shown in Table 3.1. It can be seen that the
gentiopicroside content in G. scabra Bunge whole grown plant (including shoot and root)
increased after G. scabra Bunge tissue culture was transplanted into the greenhouse for

cultivation. Within the grown plant itself, the gentiopicroside content was significantly
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higher in root than in shoot, indicating that during greenhouse cultivation, the

gentiopicroside was mainly stored in the root.

Table 3.1 The gentiopicroside content in tissue culture and grown plants of G. scabra

Bunge.
Gentiopicroside Content (%)
Sample n

Min. Max. Mean SD Ccv
Tissue Culture 94 2.69 8.18 5.35 1.29 0.24

Grown Plant
Shoot 68 1.34 5.90 3.26 0.91 0.28
Root 68 2.24 8.77 4.68 1.62 0.35

3.3.2 CORRELATION BETWEEN NIR SPECTRA AND GENTIOPICROSIDE
CONTENT

The NIR spectra of the 94 G. scabra Bunge tissue culture samples and the 136 grown
plant samples (68 shoot and 68 root) were acquired using the MSC treatment. As shown
in Fig. 3.1(A) and 3.1(B), there were absorption peaks in both visible region of blue
light (452 nm) and red light (666 nm) because the chlorophyll in G. scabra Bunge

would absorb the majority of blue and red light during photosynthesis. The spectra of
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tissue culture and shoot were similar, which could be attributed to the fact that, during

the domestication period, the tissue is mainly composed of shoots, while the root

development of G. scabra Bunge is not obvious at that time. The root spectra in the

visible region showed a significant difference, with high absorption from green to

yellow light (492 to 586 nm) and low absorption (flat waveform) from orange to red

light (606 to 700 nm). This could be due to lack of chlorophyll in the roots of G. scabra

Bunge plant, which reduces absorption of blue and red light, and reflects green light.
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Fig. 3.1 The spectra of G. scabra Bunge powder post-MSC (A) tissue culture and (B)

grown plants.

After MSC treatment, the spectra of G. scabra Bunge tissue culture and grown plant
were analyzed using the following pretreatments: (1) smoothing; (2) smoothing with 1%

derivative; and (3) smoothing with 2" derivative. The best pretreatment parameters of
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the tissue culture spectra (smoothing points / gap) were (1/0), (6/6) and (8/8), whereas
the best ones of the grown plant spectra were (1/0), (2/2) and (3/3); both the smoothing
points and the gap were less than 10, indicating that NIRS 6500 spectrophotometer is

stable, and the spectra of G. scabra Bunge powder exhibits minimal noise.

The correlation between the spectra and gentiopicroside of G. scabra Bunge powder
was analyzed before selecting the specific wavelength regions. The gentiopicroside
correlation coefficient distribution of G. scabra Bunge tissue culture samples and grown
plant samples were compared using the original spectra, 1%t derivative spectra, and 2"
derivative spectra, and the threshold value (|r] > 0.55) was set to determine the degree of
correlation. It is unnecessary to avoid the O-H bond absorption band around 1450 nm
and 1900 nm because the influence of water absorption on the spectra of G. scabra
Bunge powder has been eliminated. Fig. 3.2(A) shows that the bands of high correlation
between the spectra and gentiopicroside of tissue culture were mainly distributed in the
NIR region, with only a few in the visible region. The absorption bands of the original
spectra were located in the 1% overtone of the C-H bond and C-C bond, whereas the
absorption bands of the 1% derivative spectra were located in the orange light and the
combination of the 1% overtone of C-H bond. Moreover, the absorption bands of the 2"

derivative spectra were found to locate in the 2" overtone of C=0 bond stretch.
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The correlation coefficient distributions between absorbance values of the spectra and
gentiopicroside contents of the G. scabra Bunge grown plants were also compared using
the original spectra, the 1% derivative spectra, and the 2" derivative spectra (Fig. 3.2(B)).
It can be seen that there were highly correlated bands in both visible region and the NIR
region. The absorption bands in the original spectra were located between the yellow
and orange light, as well as the combination of two C-H bonds. The absorption bands in
the 1% derivative spectra were located between the orange and red light, the 4" overtone
of C-H bond, the 3" overtone of C-H bond, the 1% overtone of C-H bond, and the
combination of two C-H bonds, whereas the absorption bands of the 2" derivative
spectra were located in the blue and red light, the 3™ overtone of N-H bond, and the
combination of two C-H bonds. Because the spectra of shoot and root showed obvious
differences in the visible region, the correlation of blue and red light to gentiopicroside
was improved, indicating that the amount of chlorophyll contained in different parts of
the grown plant also affect the performance of the specific wavelength regions. The
specific wavelength regions of both tissue culture and grown plant in the NIR region
were located in the combination of two C-H bonds and the overtones of C-H bond,
indicating the C-H bonds are the main absorption of NIR. According to the absorption

bands of the C-H bonds in the spectrum, Fig. 3.2 showed that the wavelength range of
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900 to 1300 nm, 1500 to 1800 nm, and 2200 to 2300 nm were the major absorption

bands, and these wavelengths can be used to provide a basis to select the appropriate

specific wavelength regions when conducting MPLSR analysis. As for the spectral band

400 to 650 nm, which belonged to the absorption band of blue to red light, color

information was also reflected in the spectra.
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Fig. 3.2 Correlation coefficient distributions between absorbance values of the spectra

and gentiopicroside contents of the G. scabra Bunge powder (A) tissue culture

and (B) grown plants.

3.3.3 GENTIOPICROSIDE QUANTIFICATION USING SPECIFIC

WAVELENGTH RANGES

Out of the 89 and 126 valid G. scabra Bunge tissue culture and grown plant samples,

respectively, were retained for statistical calibration and validation of the
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gentiopicroside content (Table 3.2). It was found that there was no significant difference
in the mean, standard deviation, and coefficient of variation (CV) of the effective
samples, the calibration set, and the validation set, indicating that the gentiopicroside

content distribution of the two sample groups were consistent.

Table 3.2 The gentiopicroside content of effective samples, calibration set, and

validation set in tissue culture and grown plants.

Gentiopicroside Content (%)

Sample n
Min. Max. Mean SD CcVv
Tissue Culture
Effective Samples 89 2.69 7.83 5.26 1.19 0.23
Calibration Set 60 2.69 7.83 5.26 1.22 0.23
Validation Set 29 3.12 7.35 5.26 1.14 0.22
Grown Plant
Effective Samples 126 1.34 8.77 4.01 1.51 0.38
Calibration Set 84 1.34 8.77 4.01 1.52 0.38
Validation Set 42 1.59 8.19 4.01 1.50 0.37

The MPLSR analysis results of FWR spectra (400 to 2498 nm) were shown in Table
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3.3. The best calibration model of G. scabra Bunge tissue culture was found with the 1°
derivative spectra and 6 factors, with both smoothing points and gap set at 6, using the
wavelength range of 900 to 1000 nm, 1200 to 1300 nm, and 1600 to 1700 nm, and
resulting in Rc = 0.868, SEC = 0.606%, SEV = 0.862%, bias = —0.215%, and RPD =
1.32. Due to the spectral difference between the calibration set and the validation set,
the prediction result of the validation set was a little worse than the calibration set when
using the calibration model. The best calibration model of G. scabra Bunge grown plant
was identified when using the 2" derivative spectra and 5 factors, with both smoothing
points and gap set at 3, using the wavelength range of 400 to 500 nm, 1100 to 1200 nm,
1600 to 1800 nm, and 2200 to 2300 nm. The results were Rc = 0.944, SEC = 0.502%,
SEV = 0.685%, bias = —0.162%, and RPD = 2.19. The calibration models built based on
1% derivative spectra and 2" derivative spectra were both better than those based on the
original spectra, indicating that the heterogeneous particles of G. scabra Bunge powder
really affect the spectral absorption. The calibration models of grown plant were all
better than those of the tissue culture, even with fewer spectral pretreatments, because
more grown plant samples can build more stable calibration models. The specific
wavelength regions of tissue culture and grown plant were mainly distributed in 900 to
1300 nm and 1600 to 1800 nm, and the calibration model of grown plant also

incorporated the spectral information within 400 to 500 nm and 2200 to 2300 nm,
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indicating that the NIR region contained more information about gentiopicroside. The

absorption differences between shoot and root in the visible region also qualified 400 to

500 nm employable as a specific wavelength region.
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Table 3.3 Prediction of the gentiopicroside content in tissue culture and grown plants of G. scabra Bunge by MPLSR models in the

wavelength of 400 to 2498 nm.

Wavelength Smoothing Calibration Set Validation Set
Sample Spectrum Factors
Range (nm)®  Points / Gap Re SEC (%) SEV (%) bias (%) RPD
Original 900-1000, 2
1/0 5 0.752 0.804 0.943 -0.137 121
1600-1700, 2

1% Derivative 900-1000, 2

Tissue 1200-1300, 2 6/6 6 0.868 0.606 0.862 -0.215 1.32

Culture 1600-1700, 2

2" Derivative 500-600, 2

1050-1098, 2 8/8 4 0.852 0.638 0.830 -0.123  1.37

1100-1300, 2
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1550-1750, 2

Grown

Plant

Original

1%t Derivative

2" Derivative

400-500, 2

1600-1700, 2

2200-2300, 2

400-500, 2

1100-1200, 2

1600-1700, 2

2200-2300, 2

400-500, 2

1100-1200, 2

1600-1800, 2

2200-2300, 2

1/0

2/2

3/3

7

5

5

0.881

0.919

0.944

0.717

0.597

0.502

0.775

0.726

0.685

-0.054

-0.141

-0.162

1.94

2.07

2.19
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3.34 GENTIOPICROSIDE QUANTIFICATION USING CCD CAMERA
WAVELENGTH SPECTRA

MPLSR analysis of silicon CCD sensing bands (400 to 1098 nm) was shown in Table
3.4. The best calibration model of G. scabra Bunge tissue culture was acquired when the
2" derivative spectra and 3 factors were employed, where both smoothing points and
gap were at 2, with wavelength range of 400 to 500 nm and 800 to 1000 nm, and the
results were Rc = 0.865, SEC = 0.611%, SEV = 0.772%, of bias = 0.025%, RPD = 1.47.
The best calibration model of G. scabra Bunge grown plant was found with the 1%
derivative spectra and 5 factors, smoothing points and gap at 2, with wavelength range
of 400 to 600 nm and 900 to 1098 nm, resulting in Rc = 0.904, SEC = 0.649%, SEV =
0.724%, bias = —0.089%, RPD = 2.08. Regardless of the samples being tissue culture or
grown plant, the calibration models built based on 1% derivative spectra and 2"
derivative spectra were better than those based on the original spectra, indicating that
spectral pretreatments indeed enhanced the predictability of the calibration models. The
spectral calibration models of grown plant were all better than those of the tissue culture
with fewer spectral pretreatments, which was consistent with the results shown in Table
3.3. The specific wavelength regions of tissue culture and grown plant were mainly
distributed in 400 to 600 nm (blue and red light) and 800 to 1098 nm (the 2" and 3

overtone of C-H bond). The absorption capacity of these bands was a little lower than
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the combination and the 1% overtone of C-H bond, producing a fewer spectral
absorption performances of gentiopicroside, so the predictability declined slightly when

using silicon CCD sensing band to build the calibration models.
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Table 3.4 Prediction of the gentiopicroside content in tissue culture and grown plants of G. scabra Bunge by MPLSR models in the

wavelength of 400 to 1098 nm.

Wavelength Smoothing Calibration Set Validation Set
Sample Spectrum Factors
Range (nm)®  Points / Gap Rc SEC (%) SEV (%) bias (%) RPD
Original 550-650, 2
9/0 4 0.704 0.866 1.084 -0.047  1.05
900-1050, 2
Tissue 1% Derivative 600-700, 2
6/6 6 0.764 0.786 0.906 -0.061  1.26
Culture 900-1000, 2
2" Derivative  400-500, 2
212 3 0.865 0.611 0.772 0.025 1.47
800-1000, 2
Grown Original 400-600, 2
1/0 5 0.840 0.823 1.089 -0.015 1.38
Plant 950-1050, 2
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1% Derivative ~ 400-600, 2
900-1098, 2
2" Derivative ~ 400-650, 2
950-1098, 2

2/2

3/3

5

3

0.904

0.888

0.649

0.697

0.724

0.750

-0.089

-0.100

2.08

2.00

& Interval is 2 nm
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In addition, the SMLR analysis results of silicon CCD sensing band (400 to 1098 nm)
was shown in Table 3.5. The best calibration model of G. scabra Bunge tissue culture
was found when the 2" derivative spectra were used. Both smoothing points and gap
were at 3, with the specific wavelength of 846 nm and 932 nm, of which Rc = 0.750,
SEC = 0.806%, SEV = 0.990%, bias = 0.270%, RPD = 1.15 were achieved. The best
calibration model of grown plant was attained when the 2" derivative spectra were
employed, where both smoothing points and gap were set at 3, in the combination of the
4 wavelengths of 670 nm, 786 nm, 474 nm and 826 nm, of which Rc = 0.860, SEC =
0.775%, SEV = 0.848%, bias = —0.134%, RPD = 1.77 were achieved. The calibration
models built based on the 1% and 2" derivative spectra were all better than those based
on the original spectra, indicating that the spectral pretreatments reduced the noise
influence and made the combination of selected wavelengths more consistent when the
number of wavelengths increased. The specific wavelengths selected in Table 3.5 were
similar to those in Table 3.3 and Table 3.4, only with a small number of specific
wavelengths beyond those selected through the MPLSR analysis. Since the silicon CCD
sensing band contains fewer information of gentiopicroside, and SMLR built the
spectral calibration model based on the combination of a small number of wavelengths,
which gives less spectral information than MPLSR, so the analysis results seemed a

little worse than those in Table 3.3 and Table 3.4. Compared to the tissue culture which
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can only apply 2 wavelengths at most for inspection, grown plant can apply 4

wavelengths to build the calibration model, consequently improving its predictability.
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Table 3.5 Prediction of the gentiopicroside content in tissue culture and grown plants of G. scabra Bunge by SMLR models in the

wavelength of 400 to 1098 nm.

Specific Smoothing Calibration Set Validation Set
Sample Spectrum
Wavelength (nm)  Points / Gap Re SEC (%) SEV (%) bias (%) RPD
Original 684 0.613 0.963 1.028 -0.064 1.11
410
910, 512 0.643 0.934 0.999 0.000 1.14
Tissue
1% Derivative 612 212 0.654 0.922 1.060 -0.116 1.07
Culture
2" Derivative 848 0.632 0.946 1.016 0.376 1.12
3/3
846, 932 0.750 0.806 0.990 0.270 1.15
Original 580 0.588 1.227 1.249 -0.076 1.20
Grown
690, 480 210 0.689 1.099 1.329 -0.112 1.13
Plant
436, 690, 420 0.759 0.988 1.284 -0.154 1.17

73



966, 420, 408, 436

1%t Derivative 730

462,676

684, 780, 462

650, 780, 462, 512

2" Derivative 468

460, 634

666, 788, 474

670, 786, 474, 826

2/2

3/3

0.802

0.590

0.725

0.806

0.850

0.626

0.736

0.834

0.860

0.906

1.225

1.044

0.897

0.799

1.182

1.027

0.838

0.775

1.186

1.265

0.889

0.936

0.823

1.122

1.011

0.897

0.848

-0.178

-0.074

-0.041

0.072

0.008

0.001

-0.250

-0.144

-0.134

1.27

1.19

1.69

1.61

1.83

1.34

1.49

1.67

1.77
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3.4 CONCLUSIONS

This study applied NIR for quantitative analysis of gentiopicroside in the medicinal
plant G. scabra Bunge. It was found that the spectral pretreatments of MSC in
combination of 2" derivative reduced the spectral noise caused by the heterogeneous
particle size of G. scabra Bunge powder. The specific wavelength regions or specific
wavelengths selected based on their characteristic response to gentiopicroside could
effectively improve the predictability of the calibration models. This study successfully
built the spectral calibration models for G. scabra Bunge tissue culture and grown plant,
which enable quantitative inspection of the bioactive component gentiopicroside in G.
scabra Bunge during different growth stages. The specific wavelengths selected in
Silicon CCD sensing band can be used as the foundation to establish a nondestructive

and rapid method to assess the quality of G. scabra Bunge using multi-spectral imaging.
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CHAPTER 4. INTEGRATION OF INDEPENDENT COMPONENT ANALYSIS
WITH NEAR INFRARED SPECTROSCOPY FOR ANALYSIS
OF BIOACTIVE COMPONENTS IN A MEDICINAL PLANT
GENTIANA SCABRA BUNGE

4.1 INTRODUCTION

Medicinal plants have always been considered an important and reliable source of

pharmacy, since they are rich in many bioactive components. The international trade

market for medicinal plant products continues to expand and covers food, beverages,

drugs, cosmetics, and skin care products. Gentiana scabra Bunge, a perennial

herbaceous plant, is mainly grown in temperate regions such as Taiwan, China, Japan,

South Korea, Russia, and North America. Gentiana scabra Bunge has been proven to

achieve good effect in pharmacology, its dried root and rootstock are commonly used as

pharmaceutical raw materials, since they are rich in many secondary metabolites such as

gentiopicroside, swertiamarin and sweroside (Kakuda et al., 2001). In particular,

gentiopicroside has been shown to protect liver, inhibit liver dysfunction, and promote

gastric acid secretion in addition to its antimicrobial and anti-inflammatory effects, and

swertiamarin is anti-inflammatory, antiepileptic, analgesic, and sedative, making it a

popular ingredient in Chinese herbal medicine and health products (Kim et al., 2009).

In early days, Gentiana scabra Bunge was mainly collected in the wild. As the

demand for Gentiana scabra Bunge increases, change of natural environment and

climate, the wild resources diminish rapidly, thus restoration of Gentiana scabra Bunge
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became an important issue in order to protect and sustainably utilize rare plants (Zhang

et al., 2010). Studies in recent years used tissue culture technology to make artificial

cultivation of Gentiana scabra Bunge (Cai et al., 2009), by domesticating the tissue

culture of Gentiana scabra Bunge, then transplanting it to the greenhouse for cultivation.

In order to monitor the change of Gentiana scabra Bunge during the growth process, it

IS necessary to measure the bioactive components of Gentiana scabra Bunge. However,

the commonly used methods such as micellar electrokinetic capillary chromatography

(MECC) (Glatz et al.,, 2000), high performance liquid chromatography (HPLC)

(Kikuchi et al.,, 2005) and liquid chromatography-mass spectrometry (LC-MS)

(Aberham et al., 2011) are all time-consuming and energy-intense, hence cannot be

applicable for daily quality inspection of Gentiana scabra Bunge during cultivation.

Near infrared (NIR) spectroscopy is a nondestructive inspection method that has been

widely used in dispensation (Zhang et al., 2005; Wang et al., 2007; Chen et al., 2011).

Generally, spectrum of a mixture is a linear combination of spectra of various

components and can be considered as the ‘blind sources’ when the components are

unknown. A fast and reliable algorithm - independent component analysis (ICA) can

deal with the issue of blind source separation (BSS) (Hyvérinen and Oja, 2000) and

identify components of a mixture effectively (Pasadakis and Kardamakis, 2006;
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Kardamakis et al., 2007). In recent years, ICA has been used in medicinal tests (Fang

and Lin, 2008; Wang et al., 2009; Shao et al., 2009). Considering there hasn’t been any

study applying NIR spectroscopy in inspection on internal components of Gentiana

scabra Bunge currently, it is the intent of this study to apply ICA, which could analyze

various components simultaneously, in NIR spectroscopy analysis on gentiopicroside

and swertiamarin to discuss qualitative and quantitative relationships of the two

bioactive components. Efforts were also made to build spectral calibration models with

high predictability in order to evaluate the potentiality of NIR for quality inspection on

Gentiana scabra Bunge.

4.2 MATERIALS AND METHODS

4.2.1 GENTIANA SCABRA BUNGE SAMPLE PREPARATION

The samples of Gentiana scabra Bunge were provided by Taiwan Sugar Research

Institute (TSRI; Tainan City, Taiwan). The total of 94 tissue culture samples and 68

grown plant samples of different cultivation time was acquired (Yang et al., 2008;

Cheng, 2009). The shoot and root of the grown plant samples were measured separately

in order to compare their differences. The Gentiana scabra Bunge samples were first

dried for 48 hours in a dryer (50°C), then milled with a high speed grinder (RT-02A,

Sun-Great Technology Co., Ltd., New Taipei City, Taiwan). The dried powder was
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filtered with 100 mesh and stored in amber sample vials to avoid light exposure that

may cause degradation of the functional ingredients in Gentiana scabra Bunge (Yang et

al., 2008; Cheng, 2009).

4.2.2 NIR SPECTRAAND HPLC MEASUREMENT

Dry powder of Gentiana scabra Bunge was gently poured into a small ring cup (i.d. 5

cm) and subjected to NIR measurement (NIRS 6500, FOSS NIRSystems, Inc., Laurel,

MD, U.S.A.). The reflectance spectra of the samples ranged from 400 to 2498 nm with

2 nm intervals, and the NIR spectrum of each sample was the average of 32 scans (Yang

et al., 2008; Cheng, 2009).

To attain the reference value of the two bioactive components, the authors measured

gentiopicroside and swertiamarin using HPLC (DX 500 ion chromatograph, Dionex

Corporation, Sunnyvale, CA, U.S.A.) equipped with a DIONEX C18 column (250 mm

x 4.6 mm i.d.). The peak of gentiopicroside and swertiamarin showed up at 250 nm

when applying methanol:water (20:80) in the mobile phase at a flow rate of 1 mL/min.

A high-precision scale was used to measure the gentiopicroside and the swertiamarin

standard powder, and diluted into 1000, 500, and 250 ppm with 70 % methanol as the

standard solutions for the three-point calibration of HPLC. A quantitative linear
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relationship was established between the standard concentration and the peak area

(YYang et al., 2008; Cheng, 2009).

4.2.3 DATAANALYSIS

After the reflectance spectra of Gentiana scabra Bunge powder and the contents of

two bioactive components of Gentiana scabra Bunge were measured, ICA was applied

to explore the relationship between them and spectral calibration models of the two

bioactive components were then built, respectively.

4.2.3.1 INDEPENDENT COMPONENT ANALYSIS (ICA)

Independent component analysis (ICA) is a method used to transform the observed

multivariate data to statistically independent components (ICs) and present them as a

linear combination of observation variables. The number of receptors defined by ICA

algorithm must be more than or equal to the number of sources, and the signals emitted

by the sources are in non-Gaussian distribution (Hyvarinen and Oja, 2000). The ICs are

latent variables; therefore, they cannot be directly observed, indicating that the mixing

matrix is also unknown. The purpose of the ICA algorithm is to determine the mixing

matrix (M) or the separating matrix (W). In order to predict the unknown source, it is

assumed that W = M1,
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§=Wx = M1Ms 4.1)
where § is the estimation of the sources (s) and x represents the observed spectra of

the objects.

In the present study JADE (joint approximate diagonalization of eigenmatrices)
algorithm (Cardoso and Souloumiac, 1993; Cardoso, 1999) was employed to conduct
ICA analysis. In general, JADE offers rapid performance for dealing with spectra data
due to it works off-the-shelf, an improvement over other multivariate approaches like
PCR and PLSR. Assuming that the spectra obtained through measurement of the
unknown mixtures were the linear combination of various components’ spectra, it can
be expressed as:

A =Ml (4.2)

The spectra of samples were all linearly composed of m ICs. Matrix Aixn Stands for |
samples containing n values; Imxn Stands for the matrix of 1Cs, including m independent
components. Mixm stands for the mixing matrix, which is related to the component
concentration in the mixture. The linear relationship between the mixing matrix (M) and
the component concentration (C) can be expressed as:

C=MB (4.3)

Among them, B referred to the matrix of regression coefficient. In doing so, the
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concentration of each component in the mixture could be determined by the

combination of ICA and linear regression.

4.2.3.2 SPECTRAL PRETREATMENTS

The purpose of spectral pretreatments was to eliminate the spectral variation not
caused by chemical information contained in the samples (de Noord, 1994; Fearn, 2001).
Since inevitable light scattering could be added into the spectra when using NIR to
measure powder samples, especially when the particle size is not uniform,
multiplicative scatter correction (MSC) was used to allow additive and multiplicative
transformation of the spectra (Eq. 4.4). It was conducted using the average spectrum of
all samples as the reference value, and calculating the parameters a and b with the least
square. After MSC treatment, the spectra of Gentiana scabra Bunge powder not only
reduced the physical impact of non-uniform particles (Helland et al., 1995; Maleki et al.,
2007), but also confirmed the linearity of the spectral information (Isaksson and N&s,
1988), which would contribute to subsequent linear regression analysis (Thennadil et al.,

2006).

X, (new) = M (4.4)

The spectra of Gentiana scabra Bunge powder post-MSC was subjected to three
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independent treatments, namely (1) smoothing; (2) smoothing with 1% derivative; and (3)
smoothing with 2" derivative, in order to choose the best pretreatment parameters,
including the smoothing points and the gap ranging from 2 to 50, with the gap being

greater than or equal to the smoothing points.

4.2.3.3 MODEL ESTABLISHMENT

This research used MATLAB version 7.5.0 (The MathWorks, Inc., Natick, MA,
U.S.A)) to edit program of ICA spectra analysis. The ICA analysis procedure included:
(1) selecting calibration set and validation set; (2) spectral pretreatments; (3) selecting
the specific wavelength regions; and (4) determining best calibration model. A 2:1 ratio
of calibration to validation samples was adopted according to the concentrations of
bioactive components in the sample. All samples were ranked ascendantly according to
their concentrations of gentiopicroside and swertiamarin, with the concentrations in the
calibration set higher than the validation set, yet both sets contained similar
concentration distributions of all samples. When selecting the best calibration model, in
order to avoid over-fitting caused by use of excessive ICs, the following principles were
adhered to: (1) the maximum number of ICs is one tenth of the number of calibration
sets + 2 to 3; (2) stop if the adding of a new IC makes the SEV rise; and (3) when the

SEV is lower than the SEC, stop adding new IC.
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After the respective spectral calibration models of gentiopicroside and swertiamarin

were built, these models were then used to predict the concentrations of the calibration

and the validation set. The predictability of the models was evaluated based on the

following statistical parameters, including coefficient of correlation of calibration set

(Rc), standard error of calibration (SEC), standard error of the validation (SEV), bias

and the ratio of the standard error of performance to the standard deviation of the

reference values (RPD), as defined below:

. 1/2
SEC = HZ(W —Yc)f} (4.5)
ci=1
10 1/2
SEV = {n— [(vr —vv) - Bias]f} (4.6)
v i=1
1
Bias = —>» (Yr - ), (4.7)
nv i=1
RPD = SD/SEV (4.8)

where Yc and Yv represent the estimated concentration of the calibration set and the

validation set, respectively. Yr is the reference concentration; nc and nv are the number

of samples in the calibration set and validation set; and SD is the standard deviation of

concentration within the validation set.
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4.3 RESULTS AND DISCUSSION

4.3.1 DISTRIBUTIONS OF THE TARGET CONSTITUENTS IN GENTIANA

SCABRA BUNGE

Table 4.1 shows the contents of bioactive components of 230 Gentiana scabra Bunge

samples including 94 tissue cultures, 68 shoots, and 68 roots. The gentiopicroside

content was found significantly higher than swertiamarin in all parts of the samples

studied, indicating the dominance of gentiopicroside as the main bioactive component

in Gentiana scabra Bunge. It is interesting to note that gentiopicroside was more

abundant in the whole grown plant (including shoot and root) than in the tissue culture,

suggesting that accumulation of gentiopicroside in the grown plant was increased after

the tissue culture was deflasked and transplanted into the greenhouse for cultivation. In

addition, the gentiopicroside content in the root was higher than in the shoot, indicating

that gentiopicroside was mainly stored in the root when the grown plant of Gentiana

scabra Bunge was cultivated in the greenhouse. On the other hand, swertiamarin in the

whole grown plant was far lower than in the tissue culture, suggesting that swertiamarin

in the grown plant was reduced significantly after the tissue culture was deflasked and

transplanted into the greenhouse for cultivation. Since the level of swertiamarin in shoot

and root were both low, it is reasonable to postulate that swertiamarin might distribute

evenly in stem node, shoot, and root when the grown plant of Gentiana scabra Bunge
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was cultivated in the greenhouse.

Table 4.1 Contents and distributions of the target constituents in Gentiana scabra

Bunge.
Gentiopicroside Content (%) Swertiamarin Content (%)

Sample #
Mean (Min. - Max.)  SD Ccv Mean (Min. - Max.)  SD CVv
Tissue Culture 94 5.35(2.69 - 8.18) 129 024 1.18 (0.60 - 2.15) 0.28 0.24

Grown Plant

Shoot 68 3.26 (1.34 - 5.90) 091 0.28 0.27 (0.10 - 0.59) 0.11 042
Root 68 4.68 (2.24 - 8.77) 162 035 0.24 (0.01 - 0.34) 0.07 0.28

432 CORRELATION BETWEEN NIR SPECTRA AND TARGET

CONSTITUENTS’ CONTENTS

After eliminating 1/10 outliers (23 samples) from 230 Gentiana scabra Bunge

samples, the remaining 207 effective samples were divided respectively into 138 and 69

calibration and validation samples in the ratio of 2:1. Statistical assessments on the

gentiopicroside and swertiamarin contents in each data set are shown in Table 4.2. The

differences of average, standard deviation, and coefficient of variation (CV) of the

effective samples in the calibration and validation set were all less than 0.05 %.
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Table 4.2 The target constituents’ contents of effective samples, calibration set, and

validation set in Gentiana scabra Bunge.

Gentiopicroside Content (%) Swertiamarin Content (%)
Sample #
Mean (Min. - Max.)  SD Ccv Mean (Min. - Max.)  SD CVv
Effective Samples 207 4.72 (1.59 - 8.77) 152 0.32 0.69 (0.12-2.15) 049 0.72
Calibration Set 138 4.73 (1.59 - 8.77) 153 0.32 0.69 (0.12-2.15) 049 0.72
Validation Set 69 4,72 (1.92 - 8.19) 151 0.32 0.68(0.12-1.72) 049 0.72

The NIR spectra of the 207 Gentiana scabra Bunge samples were acquired by using
the MSC treatment. As shown in Fig. 4.1(A), absorption peaks were found in both the
visible region of blue light (452 nm) and red light (666 nm), since the chlorophyll in
Gentiana scabra Bunge absorbs the majority of blue and red light when involved in
photosynthesis. The spectra of tissue culture and the shoot were similar, which could be
attributed to the fact that during the domestication period the tissue is mainly composed
of shoots, since the root development of Gentiana scabra Bunge is not obvious at that
time. Contrarily, the root spectra in the visible region showed a significant difference,
with high absorption occurring from green to yellow light (492 to 586 nm) and low

absorption (flat waveform) from orange to red light (606 to 700 nm). This could be due
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to lack of chlorophyll in the roots of Gentiana scabra Bunge plant, hence reducing the

absorption of blue and red light, while reflecting green light.

After MSC treatment, the spectra of Gentiana scabra Bunge were analyzed using the
following pretreatments: (1) smoothing; (2) smoothing with 1% derivative; and (3)
smoothing with 2" derivative. The best pretreatment parameters (smoothing points /
gap) of the gentiopicroside analysis were (3/0), (2/2), and (6/6), whereas the best of the
swertiamarin analysis were (1/0), (2/2), and (6/6); both the smoothing points and the
gap were less than 10, indicating that NIRS 6500 spectrophotometer was stable, and the

spectra of Gentiana scabra Bunge powder exhibited minimal noise.

The correlation between the spectra of Gentiana scabra Bunge powder and the
bioactive components were assessed at first when selecting specific wavelength regions
of spectra. As for original spectra, the 1% derivative spectra, and the 2" derivative
spectra, the correlation coefficients of gentiopicroside of effective samples were
distributed as shown in Fig. 4.1(B), and the threshold value (Jr] > 0.50) was set to
determine the degree of correlation. Because the influence of water absorption on the
spectrum of Gentiana scabra Bunge powder had been eliminated, it’s unnecessary to

avoid the O-H bond absorption band around 1450 and 1900 nm. In both the visible and
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the NIR region, there were highly correlated bands, with the original spectra located
between the orange and red light region as well as the O-H bond region. The 1%
derivative spectra were located throughout the regions of red light, the 4™ overtone of
C-H bond, the combination of 1% overtone of C-H bond, and the combination between
C-H bonds. On the other hand, the 2" derivative spectra were located in the regions of
red light, the 4™ overtone of C-H bond, the 1% overtone of C-H bond, and the

combination between N-H bond and O-H bond.

The correlation coefficients between the spectra of Gentiana scabra Bunge powder
and swertiamarin are shown in Fig. 4.1(C) with the threshold value (|r] > 0.75) set to
determine the degree of correlation. The original spectra were located in different
regions, including red light, the 1% overtone of C-H bond, the combination between N-H
bond and O-H bond, and the combination between C-H bond and C-C bond. The 1%
derivative spectra were located in the regions of the 4" overtone of C-H bond, the 2™
overtone of N-H bond, the 2" overtone of C-H bond, the combination of 1% overtone of
C-H bond, the 1 overtone of C-H bond, and the combination between C-H bond and
C-C bond; whereas the 2" derivative spectra were located in the red light and the 4%
overtone of C-H bond regions. As indicated by Fig. 4.1(B) and 4.1(C), the 4™ overtone

of C-H bond was the main absorption band for both gentiopicroside and swertiamarin. It
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is noteworthy that the dominance of red light in the visible region of the original spectra

could be attributed to the differences in the color of tissue culture, shoot, and root.
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Fig. 4.1 (A) The spectra of Gentiana scabra Bunge powder post-MSC; (B) correlation

coefficient distributions between the spectra and gentiopicroside; and (C)

correlation coefficient distributions between the spectra and swertiamarin.
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4.3.3 NIR SPECTRA DECOMPOSITION AND ICA ANALYSIS OF THE

TARGET CONSTITUENTS

According to the definition of ICA, the observed signal of receiver can be

decomposed into ICs of which the number is the same as that of training samples at

most (Hyvérinen and Oja, 2000). In order to avoid over-fitting of calibration model

caused by use of excessive ICs, appropriate ICs were selected under the condition that

calibration models were built only by using 1 to 17 ICs when ICA analysis was

conducted for original spectra (400 to 2498 nm) of the calibration set. The SEV of the

calibration models continued to drop and then rise when 7 ICs were applied, indicating

that incorporation of more IC will not necessarily be helpful to the analysis as it is

sufficient to decompose the spectra into 7 ICs.

After the original spectra (400 to 2498 nm) of the calibration set was decomposed

into 7 ICs, correlations between each IC and the two bioactive components were

checked. ICs 4 and 5 presented the higher correlation coefficients, followed by IC 6,

suggesting that the spectral information about gentiopicroside and swertiamarin was

typically stored in these three ICs. There were peaks for IC 4 in the wavelength of 704

nm, IC 5 in the wavelengths of 692 and 740 nm, and IC 6 in the wavelengths of 494,

1838, 1944, 2058, and 2132 nm (Fig. 4.2), which was consistent with the absorption
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bands seen in Fig. 4.1(B) and 4.1(C). This suggests that the spectral characteristics of
gentiopicroside and swertiamarin were mainly reflected in ICs 4, 5, and 6 (Chen and
Wang, 2001; Hahn and Yoon, 2006; Pasadakis and Kardamakis, 2006; Kardamakis et al.,
2007). These wavelengths will be taken as the reference for selection on specific

wavelength region of spectra when building calibration models.
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Fig. 4.2 The three ICs decomposed from the original spectra of Gentiana scabra Bunge

powder post-MSC that has higher correlation with gentiopicroside and

swertiamarin.

As shown in Eq. 4.2, the mixing matrix contained concentration information of the
two bioactive components in each sample. Since the spectral information of

gentiopicroside and swertiamarin was mainly reflected in ICs 4 and 5, the values of
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these two ICs in the mixing matrix were used to configure 2-D distributions. As can be

seen in Fig. 4.3(A) and 4.3(B), tissue culture, shoot, and root were distributed in three

distinct locations of the IC 4-1C 5 space. The values of tissue culture and shoot were

close to each other and the root presented a higher value in IC 5, showing differences

among different parts of Gentiana scabra Bunge presented in the spectra, which are

consistent with the result in Fig. 4.1(A). If the average contents of gentiopicroside and

swertiamarin were taken as the threshold values, the samples could be classified into

four groups, namely A: gentiopicroside and swertiamarin at high contents; B:

gentiopicroside at high content and swertiamarin at low content; C: gentiopicroside at

low content and swertiamarin at high content; and D: gentiopicroside and swertiamarin

at low contents. The distributions of calibration and validation sets in the IC 4-IC 5

space are shown in Fig. 4.3(C) and 4.3(D), of which the gentiopicroside contents of

most tissue cultures were higher than the mean value, suggesting that the production of

gentiopicroside of Gentiana scabra Bunge was sufficient during the domestication

period. As the grown plants of Gentiana scabra Bunge were collected at different

growth stages, their gentiopicroside content in root varied. The gentiopicroside content

in shoot was low, indicating that gentiopicroside was mainly stored in the root for

Gentiana scabra Bunge plant during greenhouse cultivation. On the other hand, the

swertiamarin content in tissue culture was higher than the mean value, but lower than

93



the mean value in shoot and root, indicating that swertiamarin in Gentiana scabra

Bunge plant was reduced during greenhouse cultivation; therefore it is preferable to

extract swertiamarin from tissue culture.
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Fig. 4.3 Scores of tissue culture, shoot, and root in IC 4-1C 5 space established with
calibration samples. (A) = calibration set, (B) = validation set. Scores of
gentiopicroside and swertiamarin in IC 4-IC 5 space established with

calibration samples. (C) = calibration set, (D) = validation set.

According to the discussion foregoing, IC 6 also contains spectral information about
gentiopicroside and swertiamarin; so the values of ICs 4, 5, and 6 in the mixing matrix

were used for 3-D plotting. As shown in Fig. 4.4(A) and 4.4(B), tissue culture, shoot,
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and root were clearly distributed in three locations of the IC 4-IC 5-IC 6 space,

indicating that even if the correlation between IC 6 and the two bioactive components

was lower than that of ICs 4 and 5, the information could still be helpful to the analysis.

If the average contents of gentiopicroside and swertiamarin were used for sample

grouping, the distributions of calibration and validation sets in the 1C 4-IC 5-I1C 6 space

could be constructed, as shown in Fig. 4.4(C) and 4.4(D). The lower the value of IC 4 is,

the higher the value of IC 6, hence the higher the gentiopicroside content. Similarly, the

lower the values of ICs 4 and 5 are, the higher the value of IC 6, thus the higher the

swertiamarin content. Fig. 4.3 and 4.4 indicate that the differences among various parts

of Gentiana scabra Bunge could be clearly identified by the change in the trend of two

bioactive components from the space of ICs, making the information useful in

qualitative and quantitative analysis of NIR spectroscopy.
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Fig. 4.4 Scores of tissue culture, shoot, and root in IC 4-1C 5-IC 6 space established

with calibration samples. (A) = calibration set, (B) = validation set. Scores of

gentiopicroside and swertiamarin in IC 4-IC 5-IC 6 space established with

calibration samples. (C) = calibration set, (D) = validation set

The ICA analysis results of the two bioactive components are shown in Table 4.3

The best spectral calibration model of gentiopicroside was attained when applying the

2"d derivative spectra, of which the smoothing points and the gap were both 6 and the

wavelength ranged 600 to 700 nm, 1600 to 1700 nm, and 2000 to 2300 nm (Rc = 0.847
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SEC = 0.865 %, rv = 0.756, SEV = 0.909 %, bias = -0.395 %, and RPD = 1.67). With
regard to swertiamarin, the best spectral calibration model was acquired with the 1%
derivative spectra, of which the smoothing points and the gap were both at 2 and the
wavelength ranged 600 to 800 nm and 2200 to 2300 nm (Rc = 0.948, SEC = 0.168 %, rv
= 0.898, SEV = 0.216 %, bias = 0.003 %, and RPD = 2.28). Satisfied outcomes were
acquired for both gentiopicroside and swertiamarin. The relationship between the
predicted and reference concentrations of both bioactive components are shown in Fig.
4.5. Since the content of gentiopicroside predicted by the calibration model was mainly
affected by bias, the predictability can be improved by eliminating the bias calculated
from a set of representative samples. As for the prediction accuracy of swertiamarin
content in the calibration model, it is clear that the error mainly came from minor outlier
samples because swertiamarin content in Gentiana scabra Bunge is relatively low,
which is also why the quantity and equitability of Gentiana scabra Bunge powder are

both important.
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Table 4.3 Prediction of the target constituents’ contents in Gentiana scabra Bunge by ICA models.

Wavelength Calibration Set (138) Validation Set (69)
Smoothing
Constituent Spectrum Ranges (nm), ICs
Points / Gap Rc SEC (%) rv SEV (%) Bias(%) RPD
Interval
Gentiopicroside 2" Derivative 600 - 700, 2
6/6 1600-1700,2 16 0.847 0.865 0.756 0.909 -0.395 1.67
2000 - 2300, 2
Swertiamarin 1% Derivative
600 - 800, 2
212 17 0.948 0.168 0.898 0.216 0.003 2.28
2200 - 2300, 2
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rc = 0.847 rc = 0.948

SEC =0.865% SEC=0.168 %
#=138
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Fig. 4.5 Relationship between the estimated contents and the reference contents of (A)

gentiopicroside; and (B) swertiamarin in Gentiana scabra Bunge.

4.4 CONCLUSIONS

This study applied ICA in NIR spectroscopy analysis on gentiopicroside and
swertiamarin - bioactive components of Gentiana scabra Bunge and discussed relevant
tissue culture and grown plant (including shoot and root). By selecting ICs that were
highly correlated to the bioactive components, the space of ICs could clearly show the
distribution of gentiopicroside and swertiamarin in different parts of Gentiana scabra
Bunge. Additionally, the predictability of the spectral calibration models on the two
bioactive components was adequate for establishing qualitative and quantitative
correlations. Therefore, by combining ICA with NIR spectroscopy, fast and accurate

inspection of gentiopicroside and swertiamarin in Gentiana scabra Bunge at different
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growth stages could be achieved. This technology could contribute substantially to the

quality management of Gentiana scabra Bunge during and post cultivation.
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CHAPTER 5. INTEGRATION OF INDEPENDENT COMPONENT ANALYSIS
WITH NEAR INFRARED SPECTROSCOPY FOR
EVALUATION OF RICE FRESHNESS

5.1 INTRODUCTION

Near infrared (NIR) spectroscopy, a rapid nondestructive inspection method based on

specific absorptions within a given range of wavelength corresponding to the

constituents in the sample, has been widely applied for evaluation of internal quality of

agricultural products (Delwiche, 1998; Delwiche and Graybosch, 2002; Bao et al., 2007,

Chen and Huang, 2010; Salgd and Gergely, 2012). Because an NIR spectrum of a

mixture on first approximation is the linear addition of individual spectra of the

constituents in the mixture, such a spectrum thus can be regarded as an assembly of

‘blind sources’ as the proportion of constituents in the samples remains unknown

(Hyvérinen et al., 2001). A multiuse statistical approach originally used to implement

‘blind source separation’ in signal processing (Herault and Jutten, 1986; Vittoz and

Arreguit, 1989), known as independent component analysis (ICA), is capable of

disassembling the mixture’s signals from a Gaussian distribution into non-Gaussian

independent constituents with only a small loss of information and does not require any

additional information from the source (Comon, 1994).

Application of ICA for spectrum analysis has been demonstrated by Chen and Wang

(2001) in separating the pure spectra of various constituents from the NIR spectra of the
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mixtures, whereupon relationships were established between the estimated independent

components and the constituents. Such a capability also enabled complete explanation

of the constituents’ properties for NIR qualitative analyses (Westad and Kermit, 2003).

In addition, ICA was used to obtain statistically independent and chemically

interpretable latent variables (LVs) in multivariate regression (Gustafsson, 2005). It was

also noted that the number of independent components extracted from the spectra of

mixtures is related to the performance of ICA (Westad, 2005). Moreover, ICA was

employed to identify the infrared spectra of mixtures containing two pure materials

(Hahn and Yoon, 2006) as well as the constituents in commercial gasoline (Pasadakis

and Kardamakis, 2006; Kardamakis et al., 2007). Equally noteworthy is the observation

that the calibration model built through multiple linear regression (MLR), after using

ICA to extract independent components of aqueous solutions, gave good predictability

(Kaneko et al., 2008). In other work, the accuracy of the NIR estimation of sucrose

concentration (Chuang et al., 2010) and glucose concentration (Al-Mbaideen and

Benaissa, 2011) were enhanced by using ICA.

While application of ICA for spectral analysis appears promising, available literature

still focuses mainly on chemical samples or non-natural products. To date, ICA has not

been applied to NIR quantitative analysis of the internal quality of rice. The storage
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time of rice has an enormous effect on its appearance, flavor, and quality of the nutrients

(Zhou et al., 2002). A previous study demonstrated that most lipids in rice hydrolyze

into free fatty acids and cause the acidity of rice to increase with prolonged storage

(Takano, 1989; Hu, 2011; Chen et al., 2011). Therefore, the determination of rice

freshness is one of the main goals in site examination. There is a strong need to develop

a non-invasive, rapid detection method for the analysis of freshness. Therefore, the

objective of the current study was to examine rice freshness in terms of qualitative and

quantitative approaches using NIR spectroscopy. Rice freshness was expressed by both

pH value and fat acidity (Hu, 2011; Chen et al., 2011). The pH values were determined

by bromothymol blue - methyl red (BTB-MR) method (Hsu and Song, 1988) and fat

acidity by AACC International method 02-02.02 (AACC International, 2000). By means

of a calibration curve, a relationship between pH and fat acidity was established (Hu,

2011; Chen et al., 2011). ICA was subsequently integrated with NIR spectral analysis to

quantify the pH in rice. Linear regression was then used to build spectral calibration

models of pH value.

5.2 MATERIALS AND METHODS

5.2.1 SAMPLE PREPARATION

A total of 180 (= 6 cargo lots x 30 draws per lot) Tainan 11 (TN-11) paddy rice
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samples stored at 10-15°C were provided by the Erlin Farmers’ Association, Changhua
County (a central-west coastal county in Taiwan) and Agricultural Research and
Extension Station, Taichung in Taiwan, including 6 crop seasons (1 lot per season): 2"
crop of 2010, 1% crop of 2010, 1% crop of 2009, 1% crop of 2008, 1% crop of 2007 and 1%
crop of 2006. All samples were collected at one time and then dehulled and milled soon

thereafter (Hu, 2011; Chen et al., 2011).

5.2.2 NIR SPECTRAAND PH VALUE MEASUREMENT

A NIRS 6500 spectrophotometer and sample transport module (FOSS NIRSystems,
Laurel, MD, U.S.A.) with coarse granular sample cell was used to measure rice
reflectance spectra (Hu, 2011; Chen et al., 2011). The wavelength ranged from 400 to
2498 nm in 2 nm intervals. The NIR spectrum of each sample was the average of 32

Scans.

Two chemical methods, AACC method 02-02.02 and the BTB-MR method, were
used to evaluate rice freshness (Hu, 2011; Chen et al., 2011). Natural fats are mixtures
of esters of fatty acids with glycerol and are essentially neutral. However, partial
hydrolysis of the glycerides may be caused by unfavorable storage conditions. The

resultant free fatty acids increase the acidity, which is an indication of deterioration in
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quality. AACC method 02-02.02 determines total fatty acids in small grains by a

titrimetric procedure (AACC International, 2000) and was thus adopted for

quantification of total fat acidity (FA) content of rice in this study (Hu, 2011; Chen et al.,

2011).

The BTB-MR method, a rapid method compared to AACC method 02-02.02,

determines the pH value of rice by distinguishing the color of a solution of rice in which

standardized color solutions and pH have been established (Hsu and Song, 1988; Hu,

2011; Chen et al., 2011). The BTB-MR method has also been adopted as a standard

method for the examination of rice freshness by Agriculture and Food Agency, Council

of Agriculture, Executive Yuan in Taiwan. A 200 mL standard solution was first made

by mixing 0.1 g methyl red (MR), 0.3 g bromothymol blue (BTB), 150 mL ethyl alcohol,

and distilled water. The standard solution was subsequently diluted by volume ratio 1:50

with distilled water. After mixing 10 mL of the diluted solution and 5 g of white rice, a

shaker was employed to evenly disperse the rice in solution. The relationship between

colors of rice solutions and pH values was established by standard color checks of

known pH. Upon establishing the relationship between the AACC and BTB-MR

methods, the latter, because of its ease of use and good precision, served as the standard

method for assessing rice freshness in this study (Hu, 2011; Chen et al., 2011).
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5.2.3 DATAANALYSIS
5.2.3.1 INDEPENDENT COMPONENT ANALYSIS (ICA)

Independent component analysis (ICA) is a method used to transform the observed
multivariate data to statistically independent components (ICs) and present them as a
linear combination of observation variables. The number of receptors defined by the
ICA algorithm must be more than or equal to the number of sources, and the signals
emitted by the sources are in non-Gaussian distributions (Comon, 1994; Hyvarinen and
Oja, 2000). ICA supposes that all components (sources) are statistically independent.
The ICs are latent variables; therefore, they cannot be directly observed. This indicates
that the mixing matrix, the intensity of the sources among the observed signals, is also
unknown. The purpose of the ICA algorithm is to determine the mixing matrix (M) or
its inverse, the separating matrix (W). The unknown source, s, is approximated as
§=Wx = M1Ms (5.1)

where § is the estimation of the sources (s) and x represents the observed spectra of

the objects.

In the present study, a JADE (joint approximate diagonalization of eigenmatrices)

algorithm (Cardoso and Souloumiac, 1993; Cardoso, 1999) was employed to conduct
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ICA. In general, the JADE approach offers rapid performance when dealing with

spectral data compared to other multivariate approaches like principal component

regression (PCR) and partial least squares regression (PLSR). Assuming that the spectra

obtained through measurement of the unknown mixtures were the linear combination of

the spectra of various components, these can be expressed as

A= Ml (5.2)

The spectra of samples were all linearly composed of m ICs. Matrix Aixn Stands for |

samples containing n values; Imxn stands for the matrix of ICs, including m independent

components. Mixm stands for the mixing matrix, which is related to the component

concentration in the mixture. The linear relationship between the mixing matrix (M) and

the component concentration (C) can be expressed as:

C=MB (5.3)

where B refers to the regression coefficient matrix. In doing so, the concentration of

each component in the mixture can be determined by the combination of ICA and linear

regression.

5.2.3.2 MODEL ESTABLISHMENT

The ICA algorithm was coded in MATLAB (The MathWorks, Inc., Natick, MA,
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U.S.A.), which produced the spectral calibration equations. The 180 rice samples were
divided into 120 calibration samples (2" crop of 2010, 1% crop of 2009, 1% crop of 2008,
and 1% crop of 2006) and 60 prediction samples (1% crop of 2010 and 1% crop of 2007).
After the respective spectral calibration equations for rice were built, these equations
were then used to predict the pH values in the calibration and the prediction sets. The
evaluation of predictability was based on the following statistical parameters:
multivariate coefficient of determination of the calibration (R?), standard error of
calibration (SEC), standard error of prediction (SEP), bias, and the ratio of the standard

error of performance to the standard deviation of the reference values (RPD).

5.3 RESULTS AND DISCUSSION
5.3.1 RELATIONSHIP BETWEEN FAT ACIDITY AND PH VALUE

In the present study the BTB-MR method served as a standard method for assessing
rice freshness due to its rapidness and convenience compared to AACC method
02-02.02 (Hu, 2011; Chen et al., 2011). The pH measurement procedure was performed
on each of the 180 samples, with values ranging from 5.20 to 6.96. The average pH
from a total of 180 samples was 5.90, and the standard deviation was 0.53. To establish
the relationship between fat acidity and pH value, a total of 18 (= 6 crop seasons x 3

samples per season) rice samples were randomly selected to receive AACC method
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02-02.02 (Hu, 2011; Chen et al., 2011). A calibration curve of fat acidity versus pH

value from the selected samples is shown in Fig. 5.1, with the coefficient of

determination (r?) being 0.924 according to the linear regression equation (Hu, 2011;

Chen et al., 2011).

FA (KOH mg/100g) = -1.6213 x pH + 44.141 (5.4)
The fat acidity of the other samples thus can be accurately calculated by the

calibration curve, however, for the remainder of this study just the BTB-MR pH value is

used.
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Fig. 5.1 Relationship between fat acidity and pH value established by the 18 selected

rice samples (Hu, 2011; Chen et al., 2011).
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5.3.2 DISTRIBUTIONS OF THE PH VALUE IN RICE

The distribution of pH values of six crop season samples is shown in Fig. 5.2. It can
be clearly found that pH value of rice decreases with increasing storage time. For the six
crop season samples, four groups can be identified according to their pH values, with
group 1 (6.5-7.0 pH, n = 31) containing the 2" crop of 2010, group 2 (6.0-6.5 pH, n =
30) containing the 1% crop of 2010, group 3 (5.5-6.0 pH, n = 63) containing the 1% crop
of 2009 and 1% crop of 2008, and finally group 4 (5.0-5.5 pH, n = 56) containing the 1%
crop of 2007 and 1% crop of 2006. The average pH levels of the calibration and
prediction sets are 5.93 and 5.86, and their standard deviations are 0.58 and 0.41,

respectively.
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Fig. 5.2 Distributions of pH values for six crop seasons of white rice samples.
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5.3.3 NIR SPECTRA DECOMPOSITION AND ICA ANALYSIS OF THE PH

VALUE

The full visible through near infrared wavelength range (400 to 2498 nm) was used as

the inputs of ICA. According to the definition of ICA, the observed receptor signals can

be decomposed at most into a number of ICs (independent components) equal to the

number of samples (Hyvarinen and Oja, 2000). Therefore, the calibration samples could

have been decomposed into 120 ICs; however, applying too many ICs could easily lead

to over fitting of the model as well as be time-consuming. Hence, ICA was conducted

for the original spectra by selecting 1 to 15 ICs, and observing the prediction error of

the calibration samples. As shown in Fig. 5.3, when the number of ICs increased to 5,

SEC decreased to 0.202, and SEP fell to 0.233, indicating that different numbers of ICs

can influence the predictability of the calibration model. However, application of more

ICs did not necessarily improve the ability of the calibration model; hence, only the

initial 5 1Cs were applied.
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Fig. 5.3 Relationship between the numbers of independent components and the model

standard errors for pH value.

Selection of the numbers of ICs influences how the information is used after spectral

decomposition. The ICs reflected the spectral characteristics of the unknown mixture

and constituted the pure materials’ spectra of this mixture under an ideal state (Chen and

Wang, 2001; Hahn and Yoon, 2006; Pasadakis and Kardamakis, 2006; Kardamakis et al.,

2007). Since white rice is a mixture of carbohydrates, lipids, storage proteins, enzymes,

nucleic acids and other macro molecules, and the spectra inherently represent these

constituents, the ICs decomposed by ICA should reflect, among other components, the
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characteristics of the lipids. For the original spectra of the calibration set, among the 5

ICs used, the order of the 5 ICs, according to the correlation with reference pH values,

was IC 4, 3, 2, 5 and 1. ICs 4, 3 and 2, have higher correlation than others and can be

considered to respond mainly to the information of lipids, as the composition of lipids in

white rice is complicated. Distributions of calibration and prediction sets of white rice

in IC-2 IC-3 1C-4 space are shown in Fig. 5.4. Calibration samples are clearly separated

into 3 groups, as are the prediction samples. The results are consistent with the groups

seen in Table 5.1. Among calibration set, samples of 2010 gathered very close,

indicating that the quality of new rice was consistent and uniform. Samples of 2009 and

2008 were interspersed, which means that the degrees of deterioration of them were

very similar. Some samples of 2008 spread widely due to their quality decaying

gradually. The variation trend for the samples in 1C-2 IC-3 IC-4 space can be readily

observed. The longer storage time of rice is, the lower the values of ICs 2 and 3 are, and

the higher the value of IC 4 is. Hence, this is consistent with the direct relationship

between acidity (low pH) and level of deterioration. It is interesting to note that samples

of 2007 spread widely, suggesting that they underwent continuous quality decaying.

Samples of 2006 clustered together but out of the variation tendency by reason of too

long storage time. This indicates that white rice with different pH levels can be

distinguished by ICA.
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Fig. 5.4 Scores of white rice with 6 crop seasons in the vector space of independent

components 2, 3, and 4 established with calibration samples. a = calibration set,

b = validation set.

Table 5.1 Regression results by ICA analyses for white rice.

Calibration Set (120) Prediction Set (60)
Mean: 5.93, Std Deviation: 0.58 Mean: 5.86, Std Deviation: 0.41
ICs R? SEC SEP bias RPD
5 0.882 0.20 0.23 0.068 1.75

Quantitative analyses of pH value in white rice were conducted by ICA using the full

wavelength range of 400 to 2498 nm. The calibration model built by ICA is shown in

Table 5.1 with 5 ICs applied. In Fig. 5.5, a scatter plot is made with the reference pH
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value and the predicted pH value of each sample in the calibration set and prediction set.
The results are R? = 0.882, and in units of pH, SEC = 0.20, SEP = 0.23, and bias =
0.068. This produced an RPD = 1.75. Hence, ICA achieved pH value quantitative
analysis results at a level suitable for screening. Moreover, the small value for bias
indicated that ICA had a high level of tolerance from the influence caused by factors
other than the internal chemical composition of the samples. Satisfactory outcomes

were achieved in modeling pH in stored rice.
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Fig. 5.5 Scatter plot of the reference pH values and the predicted pH values by

independent component analysis of the NIR spectra.

5.4 CONCLUSIONS

ICA was integrated with NIR spectral analysis to quantify the internal quality of rice.
A quantitative model was developed using ICA factors to predict the pH value of
ground white rice in solution as a proxy for rice freshness. The results show that ICA

guantitative analysis methods with near infrared spectroscopy can successfully
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distinguish rice freshness and can serve as a nondestructive rapid analytical screening

tool.
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CHAPTER 6. GENERAL CONCLUSIONS

6.1 GENERAL DISCUSSION

In the dissertation, independent component analysis (ICA) was first adopted as the

sole tool for NIR quantitative analyses of biomaterials, including wax jambu fruit

(Chuang et al., 2010; Chuang et al., 2012c), medicinal plant Gentiana scabra Bunge

(Chen et al., 2010; Chuang et al., 2012b; Chuang et al., 2013), and milled white rice

(Chuang et al., 2012a), to evaluate the applicability of this method. Influence due to

various format types of samples (sucrose solution, intact fruit, dry powder of Gentiana

scabra Bunge, and rice kernel) was also studied.

In the first part, ICA was applied as the sole tool to integrate with NIR spectroscopy

for rapid quantification of sugar content in sucrose solutions and wax jambu. ICA gave

a comprehensive approach to characterize the NIR spectra with respect to the sugar

content in wax jambu and sucrose solutions that other multivariate analysis methods

cannot deal with. The spectral calibration models built by ICA had high predictability

for both wax jambu and sucrose solutions. Compared to PLSR, ICA can identify the

sugar features in the spectra of wax jambu and then evaluate their concentrations more

effectively. Therefore, it offers a reliable tool for quantitative analysis of sugar content

in wax jambu by NIR spectroscopy. ICA in conjunction with NIR spectroscopy also has
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a potential to be applied to identify multiple constituents and evaluate their

concentrations of agricultural products.

Regarding medicinal plants, NIR was applied for quantitative analysis of
gentiopicroside which was one of the bioactive components in the medicinal plant
Gentiana scabra Bunge. It was found that the spectral pretreatments of MSC in
combination of 2" derivative reduced the spectral noise caused by the nonuniform
particle sizes of Gentiana scabra Bunge powder. The specific wavelength regions or
specific wavelengths selected based on their characteristic response to gentiopicroside
could effectively improve the predictability of the calibration models. This study
successfully built the spectral calibration models for Gentiana scabra Bunge tissue
culture and grown plant, which enable quantitative inspection of the bioactive
component gentiopicroside in Gentiana scabra Bunge during different growth stages.
The specific wavelengths selected in Silicon CCD sensing band can be used as the
foundation to establish a nondestructive and rapid method to assess the quality of

Gentiana scabra Bunge using multi-spectral imaging.

For further evaluation, this study applied ICA in NIR spectroscopy analysis on

gentiopicroside and swertiamarin - bioactive components of Gentiana scabra Bunge
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and discussed relevant tissue culture and grown plant (including shoot and root). By

selecting ICs that were highly correlated to the bioactive components, the space of ICs

could clearly show the distribution of gentiopicroside and swertiamarin in different

parts of Gentiana scabra Bunge. Additionally, the predictability of the spectral

calibration models on the two bioactive components was adequate for establishing

qualitative and quantitative correlations. Therefore, by combining ICA with NIR

spectroscopy, fast and accurate inspection of gentiopicroside and swertiamarin in

Gentiana scabra Bunge at different growth stages could be achieved. This technology

could contribute substantially to the quality management of Gentiana scabra Bunge or

other medicinal plants (e.g. Herba Saussureae Involucratae) during and post cultivation.

On the other hand, ICA was integrated with NIR spectral analysis to quantify the

internal quality of rice. A quantitative model was developed using ICA factors to predict

the pH value of ground white rice in solution as a proxy for rice freshness. The results

show that ICA quantitative analysis methods with near infrared spectroscopy can

successfully distinguish rice freshness and can serve as a hondestructive rapid analytical

screening tool.

In conclusion, by combining ICA with NIR spectroscopy, fast and accurate evaluation
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of constituents in biomaterials could be achieved. ICA offers a rapid and reliable tool

for quantitative analysis of constituents in biomaterials by NIR spectroscopy. This

technology could contribute substantially to identify multiple constituents of

biomaterials and evaluate their concentrations.

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH

There are several ways for the application of ICA for future research. First, ICA can

be applied to deal with more research topics according to their needs or requirements.

The analysis results of ICA by conducting JADE algorithm can also be assessed by

comparing to other algorithms like FastiICA and kernel ICA. Second, the combination of

ICA and other multivariate analysis methods such as ICA-ANN, ICA-LS-SVM, and

ICA-SVM may be available to deal with nonlinear problems instead of using ICA.

Third, ICA can be integrated with spectral imaging or fluorescence imaging technology

for inspection of biomaterials and food products in food safety and quality assurance

issues. Finally, the relationship between the values of CV and the ICA calibration

models could be explored for further research.
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