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中文摘要 

 

本論文使用獨立成分分析法為唯一之核心演算法，應用於三種生物材料之近

紅外光定量分析，包含蓮霧（Syzygium samarangense Merrill & Perry）、藥用植物

龍膽（Gentiana scabra Bunge）及白米之研究，亦對不同型態樣本（蔗糖水溶液、

蓮霧完整果、龍膽乾燥粉末及白米粒）進行分析探討。第一部分研究結合獨立成

分分析法與近紅外光光譜於蓮霧糖度之快速定量分析，結合 JADE 演算法、線性

迴歸及光譜前處理方法，分別對蓮霧與蔗糖溶液之近紅外光光譜進行分析。相較

於其他多變量分析方法，獨立成分分析法可提供更完整之蓮霧糖度資訊，其最佳

光譜檢量模式使用一次微分光譜搭配正規化處理，光譜範圍為 600～700 nm與 900

～1098 nm，Rc = 0.988，SEC = 0.243°Brix，SEV = 0.381°Brix，顯示獨立成分分析

法可快速準確地擷取蓮霧光譜中之糖度資訊，並建立具高預測能力之光譜檢量模

式，更有效地定量蓮霧糖度。第二部分研究應用獨立成分分析法於龍膽指標成分

龍膽苦苷與當藥苦苷之近紅外光分析，對 94個組織培養瓶苗與 68個植株樣本（包

含 68 個地上部與 68 個地下部）進行探討。選擇與兩種指標成分高度相關之獨立

成分後，組織培養瓶苗、植株地上部及植株地下部清楚分佈於獨立成分空間之三

個位置，可觀察龍膽苦苷與當藥苦苷含量之變化趨勢。龍膽苦苷之最佳光譜檢量

模式使用二次微分光譜，光譜範圍為 600～700 nm、1600～1700 nm及 2000～2300 

nm，其 Rc = 0.847，SEC = 0.865%，SEV = 0.909%；當藥苦苷之最佳光譜檢量模式

使用一次微分光譜，光譜範圍為 600～800 nm與 2200～2300 nm，其 Rc = 0.948，

SEC = 0.168%，SEV = 0.216%，皆具有良好之預測能力。本研究成功建立龍膽苦

苷與當藥苦苷之定性與定量關係，可針對不同生長時期之龍膽進行兩種指標成分

含量之檢測，作為快速且準確之龍膽品質評估工具。第三部分研究應用獨立成分

分析法於稻米新鮮度之快速定性與定量分析，新鮮度為決定稻米品質之重要指

標，稻米貯藏時間會影響其外觀、食味及營養價值。本研究對六個收穫時期（95



 iii 

年第一期、96年第一期、97年第一期、98年第一期、99年第一期及 99年第二期）

之白米進行探討，結果顯示不同新鮮度之白米清楚分佈於三維之獨立成分空間

中，對酸鹼度 pH值所建立之光譜檢量模式亦具有高預測能力，其 Rc = 0.939，SEC 

= 0.202，SEP = 0.233，表示結合獨立成分分析法與近紅外光光譜可有效評估稻米

之新鮮度，且 pH值與脂肪酸度較年份期別為更合適之評量指標。結合獨立成分分

析法與近紅外光光譜可快速且正確地評估生物材料之內部成分，獨立成分分析法

提供近紅外光光譜於生物材料內部成分定量分析一項快速可靠之工具，應用於評

估生物材料內部品質具有重大貢獻。 

 

關鍵詞：近紅外光光譜、獨立成分分析法、蓮霧、糖度、龍膽、龍膽苦苷、當藥

苦苷、稻米新鮮度 
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ABSTRACT 

In this study, independent component analysis (ICA) was first adopted as the sole tool 

in conducting NIR quantitative analyses of biomaterials, including wax jambu fruit 

(Syzygium samarangense Merrill & Perry), medicinal plant Gentiana scabra Bunge, 

and milled white rice, to evaluate the applicability of this method. The influence due to 

various types of samples (sucrose solution, intact fruit, dry powder of Gentiana scabra 

Bunge, and rice kernel) was also studied. In the first part, ICA was integrated with near 

infrared (NIR) spectroscopy for rapid quantification of sugar content in wax jambu. The 

JADE algorithm (Joint Approximate Diagonalization of Eigenmatrices) and linear 

regression with spectral pretreatments were incorporated to analyze the NIR spectra of 

wax jambu as well as sucrose solutions. Unlike other multivariate approaches, ICA 

enabled comprehensive quantification of sugar content in wax jambu. In the present 

study, ICA was used as the sole tool to build the NIR calibration model of internal 

quality of intact wax jambu without any other assisted multivariate analysis methods. 

The best spectral calibration model of wax jambu (600 to 700 nm and 900 to 1098 nm) 

yielded Rc = 0.988, SEC = 0.243 °Brix, and SEV = 0.381 °Brix using the normalized 

first derivative spectra. Thus, ICA can quickly identify and effectively quantify the 

sugar contents in wax jambu with calibration models achieving high predictability. In 

the second part, ICA was applied to NIR spectroscopy on the analysis of gentiopicroside 
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and swertiamarin, the two bioactive components of Gentiana scabra Bunge. 

Independent components (ICs) that are highly correlated to the two bioactive 

components were selected for the analysis of tissue cultures, shoots and roots, which 

were found to distribute in three different positions within the domain (2D and 3D) 

constructed by the ICs. This setup could be used for quantitative determination of 

respective contents of gentiopicroside and swertiamarin within the plants. For 

gentiopicroside, the spectral calibration model based on the 2nd derivative spectra 

produced the best effect in the wavelength ranges of 600 to 700 nm, 1600 to 1700 nm, 

and 2000 to 2300 nm (Rc = 0.847, SEC = 0.865 %, and SEV = 0.909 %). For 

swertiamarin, spectral calibration model based on the 1st derivative spectra gave the best 

effect in the wavelength ranges of 600 to 800 nm and 2200 to 2300 nm (Rc = 0.948, 

SEC = 0.168 %, and SEV = 0.216 %). Both models showed a satisfactory predictability. 

This study successfully established qualitative and quantitative correlations for 

gentiopicroside and swertiamarin with NIR spectra, enabling rapid and accurate 

inspection on the bioactive components of Gentiana scabra Bunge at different growth 

stages. Furthermore, determination of freshness is an important issue for rice quality. 

The storage time of rice has an enormous effect on its appearance, flavor, and quality of 

the nutrients. A total of 180 white rice samples were collected from 6 crop seasons (2nd 

crop of 2010, 1st crop of 2010, 1st crop of 2009, 1st crop of 2008, 1st crop of 2007 and 1st 
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crop of 2006) for the purpose of developing an ICA NIR based procedure for rice 

freshness as quantified by pH. Freshness of white rice could be distinguished either 

visually by a 3-dimensional diagram composed from ICs 2, 3 and 4, or statistically by a 

calibration model (Rc = 0.939, SEC = 0.202, and SEP = 0.233). The results showed that 

ICA with NIR has the potential to be a useful tool for evaluating rice freshness. 

Compared to harvest time, pH value and fat acidity were more appropriate to serve as 

indicators of rice freshness. By combining ICA with NIR spectroscopy, fast and 

accurate evaluation of constituents in biomaterials could be achieved. ICA offers a rapid 

and reliable tool for quantitative analyses of constituents in biomaterials by NIR 

spectroscopy. The obtained results contribute substantially to identify multiple 

constituents of biomaterials and evaluate their concentrations. 

 

Keywords: Near infrared spectroscopy, Independent component analysis, Wax jambu, 

Sugar content, Gentiana scabra Bunge, Gentiopicroside, Swertiamarin, 

Rice freshness 
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 INTRODUCTION 

Near infrared (NIR) spectroscopy, a nondestructive sensing method based on specific 

absorptions within a given range of wavelength corresponding to the constituents in the 

sample (McClure, 2003), has been widely applied for the evaluation of internal quality 

of agricultural products (Davey et al., 2009; Lebot et al., 2011). Since NIR spectra of a 

mixture is the linear summation of individual spectra of the constituents in the mixture, 

such a mixture spectra thus can be regarded as ‘blind sources’ (Hyvärinen et al., 2001) 

as the proportion of constituents in the samples remains unknown. Many attempts have 

been made in recent years to extract critical features from the spectra using multivariate 

analysis (Blanco and Villarroya, 2002; Burns and Ciurczak, 2008), including multiple 

linear regression (MLR) (Chang et al., 1998), principal component regression (PCR) 

(Wold, 1987), and partial least squares regression (PLSR) (Wold et al., 2001). However, 

these methods were not designed for resolving the ‘blind source’ problem and may not 

correlate well with the properties of constituents in the mixture, consequently hindering 

the applicability of the spectra for chemometric analysis of the constituents 

(Al-Mbaideen and Benaissa, 2011; Chen and Wang, 2001; Kaneko et al., 2008). 

 

A multiuse statistical approach originally used to implement ‘blind source separation’ 
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in signal processing (Herault and Jutten, 1986; Vittoz and Arreguit, 1989), independent 

component analysis (ICA) is capable of disassembling the mixture signals of Gaussian 

distribution into non-Gaussian independent constituents with only a little loss of 

information and does not require any information to be added to the source (Comon, 

1994). In practice, multiple ICA algorithms have been developed, including JADE 

algorithm (joint approximate diagonalization of eigenmatrices) (Cardoso and 

Souloumiac, 1993; Cardoso, 1999) and FastICA algorithm (Hyvärinen and Oja, 1997; 

Hyvärinen, 1999), making ICA a high-speed and reliable tool (Hyvärinen and Oja, 2000) 

for analytical chemistry (Lathauwer et al., 2000; Al-Mbaideen and Benaissa, 2011), 

biomedical signal processing, telecommunications, econometrics, audio processing, and 

image processing (Hyvärinen et al., 2001). 

 

Application of ICA for spectrum analysis has been demonstrated by Chen and Wang 

(2001) to separate the pure spectra of various constituents from the NIR spectra of the 

mixture and to build qualitative relationship between the estimated independent 

components and the constituents. Such a capability also enabled complete explanation 

of the constituents’ properties for NIR qualitative analyses (Westad and Kermit, 2003). 

In addition, ICA was used to obtain statistically independent and chemically 

interpretable latent variables (LVs) in multivariate regression (Gustafsson, 2005). It was 
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also noted that the number of independent components extracted from the spectra of 

mixtures is related to the performance of ICA (Westad, 2005). Moreover, ICA was 

employed to identify the infrared spectrum of mixtures containing two pure materials 

(Hahn and Yoon, 2006) as well as the constituents in commercial gasoline (Pasadakis 

and Kardamakis, 2006; Kardamakis et al., 2007). Equally noteworthy is that the 

calibration model built through MLR, after using ICA to extract independent 

components of aqueous solutions, gave good predictability (Kaneko et al., 2008), 

whereas NIR estimation of sucrose concentration (Chuang et al., 2010) and glucose 

concentration (Al-Mbaideen and Benaissa, 2011) were enhanced by using ICA. 

 

While application of ICA for spectral analysis appears promising, available literature 

still focuses mainly on chemical samples or non-natural products, such as (1) 

identification of constituents in the mixture, especially for chemical compounds (Chen 

and Wang, 2001; Hahn and Yoon, 2006; Pasadakis and Kardamakis, 2006; Kardamakis 

et al., 2007; Liu et al., 2008; Kaneko et al., 2008; Al-Mbaideen and Benaissa, 2011); (2) 

a preprocessing method for improving predictability of calibration model (Zou and 

Zhao, 2006); and (3) combination of ICA and other multivariate analysis methods, such 

as PCA-ICA (Pasadakis and Kardamakis, 2006), ICA-MLR (Kaneko et al., 2008; Liu et 

al., 2009), ICA-PLS (Liu et al., 2009), ICA-LS-SVM (Wu et al., 2008) and ICA-NNR 
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(Fang and Lin, 2008) to deal with linear or nonlinear problems. However, no literature 

exists by using ICA with NIR spectroscopy as the sole tool to quantify internal quality 

or constituents of biomaterials without any other assisted multivariate analysis methods. 

The applicability of ICA for quantitative inspection of biomaterials thus should be 

evaluated and studied. In this dissertation, ICA was first applied as the sole tool in 

conducting NIR quantitative analyses of biomaterials, including wax jambu fruit (see 

CHAPTER 2), medicinal plant Gentiana scabra Bunge (see CHAPTER 3 and 4), and 

milled white rice (see CHAPTER 5), to evaluate the applicability of this method. 

Influence due to various types of sample (sucrose solution, intact fruit, dry powder of 

Gentiana scabra Bunge, and cargo rice) was also studied. 

 

1.1.1 WAX JAMBU 

Wax jambu (Syzygium samarangense Merrill & Perry), an endemic fruit in Taiwan 

and parts of southeast Asia has very unique surface and texture that are easily bruised or 

damaged, hence requiring wax jambu to be handled delicately from harvest to shipping 

and distribution. To date, several researches aimed to develop a non-invasive and rapid 

detection method for the analysis of internal quality of wax jambu (You, 2002; Lin, 

2002; Chung et al., 2004). For further applications of ICA with NIR spectroscopy in the 

inspection of fruits, wax jambu is suitable to serve as an example for discussion. In the 
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present study, ICA was integrated with NIR spectral analysis to quantify the sugar 

content in intact wax jambu. The results of wax jambu were also compared with those 

of sucrose solutions –– mixtures of sucrose and de-ionized water. Spectral pretreatments 

and linear regression were then used to build spectral calibration models of sugar 

content. The analysis results of ICA were also compared with those of PLSR to assess 

the abilities in predicting sugar content in wax jambu. 

 

1.1.2 GENTIANA SCABRA BUNGE 

Medicinal plants have always been considered an important and reliable source of 

pharmacy, since they are rich in many bioactive components. The international trade 

market for medicinal plant products continues to expand and covers food, beverages, 

drugs, cosmetics, and skin care products. Gentiana scabra Bunge, a perennial 

herbaceous plant, is mainly grown in temperate regions such as Taiwan, China, Japan, 

South Korea, and Russia. Dried root and rootstock of Gentiana scabra Bunge are 

commonly used as pharmaceutical raw materials, since they are rich in many 

secoiridoid glycosides such as gentiopicroside, swertiamarin and sweroside (Kakuda et 

al., 2001). In particular, gentiopicroside has been shown to protect liver, inhibit liver 

dysfunction, and promote gastric acid secretion in addition to its antimicrobial and 

anti-inflammatory effects, making it a popular ingredient in Chinese herbal medicine 
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and health products (Kim et al., 2009). 

 

In early days, Gentiana scabra Bunge was mainly collected from the wild. As the 

demand for Gentiana scabra Bunge increases, the wild resources diminish gradually, 

thus restoration of Gentiana scabra Bunge became an important issue (Zhang et al., 

2010). Studies in recent years used tissue culture technology to cultivate of Gentiana 

scabra Bunge (Cai et al., 2009), by domesticating the tissue culture of Gentiana scabra 

Bunge, then transplanting it to the greenhouse for cultivation. In order to monitor the 

change of Gentiana scabra Bunge during the growth process, it is necessary to measure 

the bioactive components of Gentiana scabra Bunge. However, the commonly used 

methods such as micellar electrokinetic capillary chromatography (MECC) (Glatz et al., 

2000), high performance liquid chromatography (HPLC) (Szücs et al., 2002; Kikuchi et 

al., 2005; Carnat et al., 2005; Kušar et al., 2010; Hayta et al., 2011a; Hayta et al., 

2011b), liquid chromatography-mass spectrometry (LC-MS) (Aberham et al., 2007; 

Aberham et al., 2011), and ultra-performance liquid chromatography (UPLC) 

(Nastasijević et al., 2012) are all time-consuming and energy-intense, hence cannot be 

applicable for daily quality inspection of Gentiana scabra Bunge during cultivation. 

 

NIR spectroscopy has been widely used in dispensation, such as herbal component 
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analysis of Chinese herbal plants Angelicae gigantis Radix (Woo et al., 2005), Rhubarb 

(Zhang and Tang, 2005), licorice (Glycyrrhizia uralensis Fisch,) (Wang et al., 2007), 

Panax Species (Chen et al., 2011), and Lonicera japonica (Wu et al., 2012), as well as 

the content detection of active pharmaceutical ingredients (APIs) in tablets (Paris et al., 

2006; Jamrógiewicz, 2012; Porfire et al., 2012). However, it has not been employed to 

qualitatively monitor the growth of Gentiana scabra Bunge. In recent years, ICA has 

been used in medicinal tests (Fang and Lin, 2008; Wang et al., 2009; Shao et al., 2009). 

Considering there hasn’t been any study applying NIR spectroscopy in inspection on 

internal components of Gentiana scabra Bunge currently, it is the intent of this study to 

apply ICA, which could analyze various components simultaneously, in NIR 

spectroscopy analysis on gentiopicroside and swertiamarin to discuss qualitative and 

quantitative relationships of the two bioactive components. Efforts were also made to 

build spectral calibration models with high predictability in order to evaluate the 

potentiality of NIR for quality inspection on Gentiana scabra Bunge. 

 

1.1.3 RICE 

Rice is one of the most important and popular food crops in the world, and freshness 

of rice depends on the storage conditions such as storage time, storage temperature, and 

relative humidity. Among them, the storage time of rice has an enormous effect on its 
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appearance, flavor, and quality of the nutrients (Zhou et al., 2002). Previous studies 

demonstrated that most lipids in rice hydrolyze into free fatty acids and cause the acidity 

of rice to increase with prolonged storage (Takano, 1989; Hu, 2011; Chen et al., 2011). 

Therefore, the determination of rice freshness is one of the main goals in site 

examination. There is a strong need to develop a non-invasive, rapid detection method 

for the analysis of freshness. Therefore, the objective of the current study was to inspect 

rice freshness in terms of qualitative and quantitative approaches using NIR 

spectroscopy. Rice freshness was expressed by both pH value and fat acidity. The pH 

values were determined by bromothymol blue - methyl red (BTB-MR) method (Hsu 

and Song, 1988) and fat acidity by AACC International method 02-02.02 (AACC 

International, 2000). By means of a calibration curve, a relationship between pH and fat 

acidity was established. ICA was subsequently integrated with NIR spectral analysis to 

quantify the pH in rice. Linear regression was then used to build spectral calibration 

models of pH value. 

 

1.2 GENERAL OBJECTIVE 

The objective of the dissertation was to apply ICA as the sole tool in conducting NIR 

quantitative analyses of biomaterials, including wax jambu fruit, medicinal plant 

Gentiana scabra Bunge, and milled white rice, to evaluate its applicability. Influence 
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due to various types of sample (sucrose solution, intact fruit, dry powder of Gentiana 

scabra Bunge, and cargo rice) was also studied in the dissertation. 

 

1.3 DISSERTATION ORGANIZATION 

The dissertation is written in the alternative format. The “GENERAL 

INTRODUCTION” section is followed by chapters containing manuscripts of four 

research papers: (1) Integration of independent component analysis with near infrared 

spectroscopy for rapid quantification of sugar content in wax jambu (Syzygium 

samarangense Merrill & Perry), (2) Quantification of bioactive gentiopicroside in a 

medicinal plant Gentiana scabra Bunge using near infrared spectroscopy, (3) 

Integration of independent component analysis with near infrared spectroscopy for 

analysis of bioactive components in a medicinal plant Gentiana scabra Bunge, and (4) 

Integration of independent component analysis with near infrared spectroscopy for 

evaluation of rice freshness. These are followed by “GENERAL CONCLUSIONS” 

section. 
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CHAPTER 2. INTEGRATION OF INDEPENDENT COMPONENT ANALYSIS 

WITH NEAR INFRARED SPECTROSCOPY FOR RAPID 

QUANTIFICATION OF SUGAR CONTENT IN WAX JAMBU 

2.1 INTRODUCTION 

Near infrared (NIR) spectroscopy, a nondestructive inspection method based on 

specific absorptions within a given range of wavelength corresponding to the 

constituents in the sample (McClure, 2003), has been widely applied for the evaluation 

of internal quality of agricultural products (Davey et al., 2009; Lebot et al., 2011). Since 

NIR spectra of a mixture is the linear summation of individual spectra of the 

constituents in the mixture, such a mixture spectra thus can be regarded as ‘blind 

sources’ (Hyvärinen et al., 2001) as the proportion of constituents in the samples 

remains unknown. Many attempts have been made in recent years to extract critical 

features from the spectra using multivariate analysis (Blanco and Villarroya, 2002; 

Burns and Ciurczak, 2008), including multiple linear regression (MLR) (Chang et al., 

1998), principal component regression (PCR) (Wold, 1987), and partial least squares 

regression (PLSR) (Wold et al., 2001). However, these methods were not designed for 

resolving the ‘blind source’ problem and may not correlate well with the properties of 

constituents in the mixture, consequently hindering the applicability of the spectra for 

chemometric analysis of the constituents (Al-Mbaideen and Benaissa, 2011; Chen and 

Wang, 2001; Kaneko et al., 2008). 
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A multiuse statistical approach originally used to implement ‘blind source separation’ 

in signal processing (Herault and Jutten, 1986; Vittoz and Arreguit, 1989), independent 

component analysis (ICA) is capable of disassembling the mixture signals of Gaussian 

distribution into non-Gaussian independent constituents with only a little loss of 

information and does not require any information to be added to the source (Comon, 

1994). In practice, multiple ICA algorithms have been developed, including JADE 

algorithm (joint approximate diagonalization of eigenmatrices) (Cardoso and 

Souloumiac, 1993; Cardoso, 1999) and FastICA algorithm (Hyvärinen and Oja, 1997; 

Hyvärinen, 1999), making ICA a high-speed and reliable tool (Hyvärinen and Oja, 2000) 

for analytical chemistry (Lathauwer et al., 2000; Al-Mbaideen and Benaissa, 2011), 

biomedical signal processing, telecommunications, econometrics, audio processing, and 

image processing (Hyvärinen et al., 2001). 

 

Application of ICA for spectrum analysis has been demonstrated by Chen and Wang 

(2001) to separate the pure spectra of various constituents from the NIR spectra of the 

mixture and to build relationship between the estimated independent components and 

the constituents. Such a capability also enabled complete explanation of the 

constituents’ properties for NIR qualitative analyses (Westad and Kermit, 2003). In 

addition, ICA was used to obtain statistically independent and chemically interpretable 
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latent variables (LVs) in multivariate regression (Gustafsson, 2005). It was also noted 

that the number of independent components extracted from the spectra of mixtures is 

related to the performance of ICA (Westad, 2005). Moreover, ICA was employed to 

identify the infrared spectrum of mixtures containing two pure materials (Hahn and 

Yoon, 2006) as well as the constituents in commercial gasoline (Pasadakis and 

Kardamakis, 2006; Kardamakis et al., 2007). Equally noteworthy is that the calibration 

model built through MLR, after using ICA to extract independent components of 

aqueous solutions, gave good predictability (Kaneko et al., 2008), whereas NIR 

estimation of sucrose concentration (Chuang et al., 2010) and glucose concentration 

(Al-Mbaideen and Benaissa, 2011) were enhanced by using ICA. 

 

While application of ICA for spectral analysis appeared promising, available 

literatures still focused mainly on (1) identification of constituents in the mixture, 

especially for chemical compounds (Chen and Wang, 2001; Hahn and Yoon, 2006; 

Pasadakis and Kardamakis, 2006; Kardamakis et al., 2007; Liu et al., 2008; Kaneko et 

al., 2008; Al-Mbaideen and Benaissa, 2011); (2) a preprocessing method for improving 

predictability of calibration model (Zou and Zhao, 2006); and (3) combination of ICA 

and other multivariate analysis methods, such as PCA-ICA (Pasadakis and Kardamakis, 

2006), ICA-MLR (Kaneko et al., 2008; Liu et al., 2009), ICA-PLS (Liu et al., 2009), 
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ICA-LS-SVM (Wu et al., 2008) and ICA-NNR (Fang and Lin, 2008) to deal with linear 

or nonlinear problems. However, no literature exists for ICA with NIR spectroscopy to 

be applied as the sole tool to quantify internal quality of intact fruit without any other 

multivariate analysis methods. Wax jambu (Syzygium samarangense Merrill & Perry), 

an endemic fruit in Taiwan and parts of southeast Asia (Fig. 2.1) has very unique surface 

and texture that are easily bruised or damaged, hence requiring wax jambu to be 

handled delicately from harvest to shipping and distribution. To date, several researches 

aimed to develop a non-invasive and rapid detection method for the analysis of internal 

quality of wax jambu (You, 2002; Lin, 2002; Chung et al., 2004). For further 

applications of ICA as the sole tool with NIR spectroscopy in the inspection of fruits, 

wax jambu is suitable to serve as sample for discussion. In the present study, ICA was 

integrated for NIR spectral analysis to quantify the sugar content in intact wax jambu. 

The results of wax jambu were also compared with those of sucrose solutions. Spectral 

pretreatments and linear regression were then used to build spectral calibration models 

of sugar content. The analysis results of ICA were also compared with those of PLSR to 

assess the abilities in predicting sugar content in wax jambu. 

 



 14 

2.2 MATERIALS AND METHODS 

2.2.1 SAMPLE PREPARATION 

Sucrose (C12H22O11, FW: 342.30) powder was solubilized in de-ionized water to 

prepare 78 sucrose solutions with sugar content ranging from 0.4 to 19.0 °Brix. The 

average sugar content was 9.83 °Brix, and the standard deviation was 5.48 °Brix. A total 

of 114 wax jambu (S. samarangense Merrill & Perry) samples purchased from Fangliao, 

Pingtung County in Taiwan were employed for the study. Before measuring the sugar 

content, wax jambu was first pressed to extract 15 mL juice which was centrifuged for 

15 min at 2500 rpm and 22°C to clarify the sample in centrifuge KUBOTA 2700 

(KUBOTA Corporation Co., Ltd., Osaka City, Osaka, Japan). 

 

2.2.2 NIR SPECTRA AND SUGAR CONTENT MEASUREMENT 

A NIRS 6500 spectrophotometer and sample transport (FOSS NIRSystems, Laurel, 

MD, U.S.A.) with quartz cuvette were used to measure the transmittance spectra of 

sucrose solutions. The wavelength ranged from 400 to 2498 nm with 2 nm intervals. 

The quartz cuvette (light path: 1 mm; external dimensions: length = 3.0 cm, width = 0.2 

cm, and height = 3.5 cm) was filled with sucrose solution for transmittance 

measurements. An on-line NIRS 6500 spectrophotometer (FOSS NIRSystems, Laurel, 

MD, U.S.A.) was used to measure the reflectance spectra of the wax jambu samples. 
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The wavelength range was from 400 to 2498 nm and the interval was 2 nm. As shown 

in Fig. 2.1(A), the wax jambu was examined to find an area with no defects, which was 

then selected as the location for reflectance measurements. The wax jambu was placed 

horizontally in line with the spectrophotometer in a dark compartment, and the distance 

between the light source and the top of sample was adjusted to the suggested value of 

7.62 cm, as shown in Fig. 2.1(B). The spectrophotometer was controlled by a personal 

computer to perform NIR acquisition and spectrum editing. All spectral data were 

recorded as the logarithm of reciprocal of reflectance (log 1/R), and NIR spectrum of 

each sample was the average of 32 scans. A digital refractometer (PR-101, ATAGO Co., 

Ltd., Itabashi-ku, Tokyo, Japan) was used to measure the sugar content as the reference 

values. The index ‘°Brix’ used for PR-101 refractometer is a parameter that denotes the 

total amount of soluble solids in the sample. For fruits such as wax jambu, most of 

soluble solids in the juice are sugars, mainly sucrose, fructose and glucose. Therefore, 

the value of °Brix measured from wax jambu can be regarded as the total sugar content. 
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Fig. 2.1 A wax jambu (Syzygium samarangense Merrill & Perry) sample (A) side view 

and the NIR measurement location, and (B) sample placement with suggested 

distance 7.62 cm between the light source and the top of sample in the on-line 

NIRS 6500 spectrophotometer. 

 

2.2.3 DATA ANALYSIS 

2.2.3.1 INDEPENDENT COMPONENT ANALYSIS (ICA) 

Independent component analysis (ICA) is a method used to transform the observed 

multivariate data to statistically independent components (ICs) and to present them as a 

linear combination of observation variables. The number of receptors defined by ICA 

algorithm must be more than or equal to the number of sources, and the signals emitted 

by the sources are in non-Gaussian distribution (Hyvärinen and Oja, 2000). The ICs are 

latent variables; therefore, they cannot be directly observed, indicating that the mixing 
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matrix is also unknown. The purpose of the ICA algorithm is to determine the mixing 

matrix (M) or the separating matrix (W). In order to predict the unknown source, it is 

assumed that W = M-1, 

ŝ = Wx = M-1Ms                                                   (2.1) 

where ŝ is the estimation of the sources (s) and x represents the observed spectra of 

the objects. 

 

In the present study JADE (joint approximate diagonalization of eigenmatrices) 

algorithm (Cardoso and Souloumiac, 1993; Cardoso, 1999) was employed to conduct 

ICA analysis. In general, JADE offers rapid performance for dealing with spectra data 

due to it works off-the-shelf, an improvement over other multivariate approaches like 

PCR and PLSR. Assuming that the spectra obtained through measurement of the 

unknown mixtures were the linear combination of various components’ spectra, it can 

be expressed as: 

A = MI                                                           (2.2) 

The spectra of samples were all linearly composed of m ICs. Matrix Al×n stands for l 

samples containing n values; Im×n stands for the matrix of ICs, including m independent 

components. Ml×m stands for the mixing matrix, which is related to the component 

concentration in the mixture. The linear relationship between the mixing matrix (M) and 
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the component concentration (C) can be expressed as: 

C = MB                                                          (2.3) 

Among them, B referred to the matrix of regression coefficient. In doing so, the 

concentration of each component in the mixture could be determined by the 

combination of ICA and linear regression. 

 

2.2.3.2 PARTIAL LEAST SQUARES REGRESSION (PLSR) 

Partial least squares regression (PLSR), a typical method in chemometrics (Wold et 

al., 2001), has been widely applied to chemical and engineering fields. When PLSR is 

applied to spectral analysis, the spectra can be regarded as the composition of several 

principal components (PCs), and be expressed as a ‘factor’ in the PLSR algorithm. The 

factors’ sequence is determined by their influences; the more important factor is ranked 

earlier in the order, such as factor 1 and factor 2. Since information from spectral bands 

was used in PLSR analysis, the analysis results can be improved by selecting 

appropriate number of factors and specific wavelength ranges. To avoid overfitting of 

the PLSR model’s results with too many factors, the factors were selected based on the 

following principles in this study: (1) A maximum factor limit was set at 1/10 of 

calibration set data + 2 to 3 factors; (2) new factors were not added if they caused a rise 

in the prediction error; and (3) new factors were not added if they resulted in a standard 
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error of validation (SEV) smaller than the standard error of calibration (SEC). 

 

2.2.3.3 SPECTRAL PRETREATMENTS 

The purpose of spectral pretreatments was to eliminate the spectral variation, which 

was not caused by chemical information contained in the samples (de Noord, 1994). For 

the raw NIR spectra of sucrose solutions and wax jambu, three different spectral 

pretreatments were employed in this study: (1) normalization; (2) 1st derivative with 

normalization; and (3) 2nd derivative with normalization. Normalization scaled the 

spectrum absorbance of all samples to fall within an interval of -1 to 1. For further 

applications of ICA in fast on-line inspection of fruits, the procedure of selecting best 

pretreatment parameters, including points of smoothing and gap of derivative, were not 

employed to save computational time. The gap of derivative was set at a minimal value 

of 2, so as to maintain the most wavelength values as inputs for the model. 

 

2.2.3.4 MODEL ESTABLISHMENT 

This study used the mathematic software MATLAB (The MathWorks, Inc., Natick, 

MA, U.S.A.) to write ICA programs based on JADE algorithm for establishing ICA 

spectral calibration models. The results of ICA were compared with the spectral 

calibration models of PLSR built by WinISI II (Infrasoft International, LLC., Port 
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Matilda, PA, U.S.A.) chemometric software package. The analysis procedure of both 

ICA and PLSR for wax jambu and sucrose solution samples included: (1) selecting 

calibration set and validation set, (2) spectral pretreatments, and (3) determining best 

calibration model. Since the sucrose solutions were mixtures of sucrose powder and 

water, their composition were rather simple. Therefore, the data of full wavelength 

range (400 to 2498 nm) were used for comparing the tolerance abilities of ICA and 

PLSR since spectral bands with more noises (e.g. 2200 to 2498 nm) often affect the 

analysis results. Identification of specific wavelength ranges was needed for wax jambu 

because their composition was more complicated than that in sucrose solutions, which 

required additional correlation analysis between wavelengths and sugar content. All of 

the sucrose solutions and wax jambu samples were respectively used for analysis to 

assess the tolerance abilities of ICA and PLSR. A ratio of calibration to validation 

samples of 2:1 was adopted according to the sugar content in the sample. All samples 

were ranked ascendantly according to their sugar content. Number 1 and 2 were 

assigned for calibration and 3 for validation, with subsequent numbers following the 

same alternating sequence. The same sets of calibration and validation were used for 

both ICA and PLSR analyses. 

 

After the respective spectral calibration models of sucrose solution and wax jambu 
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were built, these models were then used to predict the sugar contents of the calibration 

and the validation set. The evaluation of predictability was based on the following 

statistical parameters, including coefficient of correlation of calibration set (Rc), 

standard error of calibration (SEC), coefficient of correlation of validation set (rv), 

standard error of validation (SEV), bias, and ratio of [standard error of] performance to 

[standard] deviation (RPD), as defined by: 
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RPD = SD/SEV                                                    (2.7) 

where Yc and Yv represent the estimated sugar contents of the calibration set and the 

validation set, respectively. Yr is the reference sugar content, nc and nv are the number of 

samples in the calibration set and validation set, and SD is the standard deviation of 

sugar content within the validation set. RPD is one of the indices used to evaluate the 

performance of a model. The greater the value of RPD is considered adequate for 

analytical purposes in most of NIR spectroscopy applications for agricultural products 

(Williams and Sobering, 1993). 
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2.3 RESULTS AND DISCUSSION 

2.3.1 SUCROSE SOLUTION 

The 78 sucrose solution samples were divided into 52 calibration samples and 26 

validation samples with a ratio of 2:1. The distribution of their sugar content (°Brix) is 

shown in Table 2.1. For all the samples within the calibration and validation sets, the 

difference between maximum values of two sets was 0.2 °Brix; the differences for other 

items including minimum, average, standard deviation, and coefficient of variation 

(CV), were all smaller than 0.5 °Brix. The above sets of samples were conforming to the 

consistent requirement of sugar content distributions. 

 

Table 2.1 Summary of sucrose solutions and sample sugar contents. Total samples (n = 

78), calibration set (n = 52) and validation set (n = 26) were arranged to have 

consistent distributions of sugar content. 

Sucrose Solutions 

Group n 

Sugar Content (°Brix) 

Max. Min. Mean SD CV 

Total Samples 78 19.00 0.40 9.83 5.48 0.56 

Calibration Set 52 19.00 0.40 9.72 5.52 0.57 

Validation Set 26 18.80 0.90 10.06 5.52 0.55 
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2.3.1.1 SELECTION OF THE MOST APPROPRIATE NUMBER OF ICS 

According to the definition of ICA, the observed receptor signals can be decomposed 

at most into a number of ICs (independent components) equal to the number of samples 

(Hyvärinen and Oja, 2000). This study used the data of full range of wavelength (400 to 

2498 nm) as the inputs of ICA, conducted ICA for the original spectra of 52 calibration 

samples of sucrose solution by selecting 1 to 52 ICs, and observed the prediction error 

by using the calibration model. Both situations with and without normalization were 

examined. When only one IC applied, the prediction error was high, so the results were 

only shown by applying 2 to 50 ICs. As shown in Fig. 2.2, when the number of ICs 

increased to 4, SEC of the case without normalization sharply decreased to 0.14 °Brix, 

and SEV fell to 0.21 °Brix, indicating that different numbers of ICs can influence the 

predictability of the spectral calibration model. However, application of more ICs did 

not necessarily help improve the ability of the calibration model because the sucrose 

solutions were mixtures of sucrose and water, hence only the initial 4 ICs were applied 

in the calibration model. 

 

The results of ICA with normalized spectra can be observed in Fig. 2.2. The 

prediction error greatly reduced as the number of ICs increased to 7; the SEC and SEV 
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with 7 ICs were 0.12 and 0.22 °Brix, respectively. Normalization apparently gave less 

variations of SEV compared with that of original spectra. 

 

 

Fig. 2.2 Relationship between the numbers of ICs and errors of the predicted sugar 

content for sucrose solutions. The most appropriate number of ICs for 

normalized spectra was determined by the tendency of SEC (green-short dash 

line) and SEV (blue-dash dot dot line) values. 
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2.3.1.2 SPECTRA DECOMPOSITION AND CORRELATION ANALYSIS OF 

SUGAR CONTENT 

Based on ICA analysis it is critical to examine whether these 7 ICs were statistically 

independent. To illustrate the operation, IC 1 and 4 were selected and their correlation 

was shown in Fig. 2.3, with the coefficient of determination (r2) being only 4.0 x 10-8. 

This indicated that IC 1 and 4 were independent of each other. Diagrams of every two 

ICs among the 7 ICs also showed a similar distribution to that in Fig. 2.3, with all of the 

r2 smaller than 0.243, conforming to the mutually independent characteristics of ICs 

(Hyvärinen and Oja, 2000). 
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Fig. 2.3 Distribution of calibration and validation samples of sucrose solutions in IC 

1-IC 4 space. IC 1 and IC 4 were randomly selected from the 7 ICs. 

 

Eq. 2.5 shows that the constituent information ‘sugar content’ should mainly 

correspond to a specific IC, and there should be a high correlation between the values of 

the IC in the mixing matrix and the sugar content. So a diagram was made with the 

reference sugar content and the values of each column (each IC) in the mixing matrix. 

As shown in Fig. 2.4, the correlation coefficient (r) between IC 1 and the reference 

sugar content could reach 0.977, which meant that with 7 ICs extracted, the IC 1 among 

all 7 ICs could reveal the most information resulted from the sugar content in the 
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spectra. The results were in agreement with Westad (2005). Therefore, selection of the 

numbers of ICs is important since it influences how the information is used after spectra 

decomposition. 

 

 

Fig. 2.4 Correlation between the values of IC 1 in the mixing matrix and the reference 

sugar contents of sucrose solutions. 

 

The regression coefficient matrix by the NIR spectra and the reference sugar content 

of calibration sets was shown in Table 2.2, and the values from the top to the bottom 

referred to IC 1 to 7. All values were compared in terms of absolute values. It was found 

that the value of the first row (IC 1) was the largest, closely followed by the value of IC 
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4. The results agreed with the order of correlation between each IC and the reference 

sugar content, and indicated that the importance of each IC was independent of the IC 

sequence. Each major constituent had its corresponding IC decomposed by ICA, in 

which IC contribution was clearly defined, so that all constituents of the mixtures could 

be distinguished by ICA (Chen and Wang, 2001; Hahn and Yoon, 2006; Pasadakis and 

Kardamakis, 2006; Kardamakis et al., 2007; Kaneko et al., 2008). 

 

Table 2.2 Regression coefficient matrix of sucrose solutions with 7 ICs were extracted 

from the NIR spectra of calibration sets. Correlation between the absolute 

value of each IC in regression coefficient matrix and sugar content was 

examined. 

IC # Regression Coefficient 

1 -2.1811 

2 -0.2843 

3 -0.1843 

4 1.2976 

5 0.1876 

6 -0.1334 

7 -0.1416 
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The ICs, decomposed from the spectra by ICA, reflected the spectral characteristics 

of the unknown mixture and constituted the pure materials’ spectra of this mixture under 

an ideal state (Chen and Wang, 2001; Hahn and Yoon, 2006; Pasadakis and Kardamakis, 

2006; Kardamakis et al., 2007). Since the sucrose solutions were mixtures of sucrose 

and water, and the spectra was comprised of both constituents, the ICs decomposed by 

ICA should reflect the characteristics of these two pure substances. For the original 

spectra of the normalized calibration set, among the 7 ICs applied for ICA, the order of 

the 7 ICs, according to the correlation with reference sugar content, was IC 1, 4, 2, 5, 3, 

7, and 6. The NIR original spectra of the calibration set and IC 1 were shown in Fig. 

2.5(A) and (B), and the reflectance spectrum of sucrose powder post-Detrend was 

shown in Fig. 2.5(C). The peak positions of IC 1 (964, 1090, 1436, 2100, and 2276 nm) 

matched the specific wavelength ranges of sugar content (C-H band) (Chang et al., 1998; 

Park, 2003; Hahn and Yoon, 2006), which was also consistent with the absorption bands 

seen in Fig. 2.5(C). So IC 1 can be considered to respond mainly to the sugar content, 

conforming to the above results. The other ICs had poor correlation with reference sugar 

content, and the absolute values in the regression coefficient matrix were much smaller 

than that of IC 1, so they exerted an assisting function. 
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Fig. 2.5 (A) Original NIR spectra of sucrose solutions, (B) IC 1 decomposed from 

calibration sets, and (C) the reflectance spectrum of sucrose powder 

post-Detrend. 

 

2.3.1.3 SUGAR CONTENT QUANTIFICATION BASED ON ICA AND PLSR 

Quantitative analyses of sugar content in sucrose solutions were conducted by ICA 

and PLSR using the full range of wavelength from 400 to 2498 nm. The results of 

spectral calibration models built by ICA are shown in Table 2.3. It was found that the 
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best spectral calibration model was the original spectra normalized, with 7 ICs applied. 

The results were Rc = 0.9998, SEC = 0.124 °Brix, rv = 0.9993, SEV = 0.216 °Brix, bias 

= 0.014 °Brix, and RPD = 25.54. A comparison was made in light of the result of the 

original spectra with and without normalization, and it was found that the calibration 

model yielded similar outcomes in the validation sets, whereas the SEC value was 

improved when normalization was applied. Although derivatives can improve baseline 

shift of the original spectra and amplify the signal characteristics, noise interference 

may also be enhanced at the same time, making it unsuitable for spectral bands with 

much noises. The spectrum in the range of 2200 to 2498 nm contained more noises; 

therefore, the predictability of the spectral calibration models would decrease as 

derivatives were attempted.
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Table 2.3 Regression results by ICA and PLSR analyses for sucrose solutions. 

Method Spectrum 

ICs / 

Factors 

Calibration Set (52)  Validation Set (26) 

Mean: 9.715, SD: 5.515  Mean: 10.058, SD: 5.515 

Rc 

SEC 

(°Brix) 

RSEC 

(%) 

 rv 

SEV 

(°Brix) 

RSEV 

(%) 

bias 

(°Brix) 

RPD 

ICA 

Original 4 0.9997 0.144 6.97  0.9995 0.215 3.57 0.045 25.69 

Original + Normalization 7 0.9998 0.124 4.01  0.9993 0.216 3.68 0.014 25.54 

1st Derivative + Normalization 4 0.9994 0.193 13.71  0.9984 0.331 10.34 0.028 16.66 

2nd Derivative + Normalization 5 0.9983 0.321 19.66  0.9973 0.409 16.20 -0.014 13.48 

PLSR 

Original 2 0.9995 0.181 11.41  0.9985 0.300 8.78 0.069 18.38 

Original + Normalization 4 0.9990 0.218 11.59  0.9975 0.399 8.68 0.022 13.82 

1st Derivative + Normalization 3 0.9995 0.192 11.50  0.9950 0.546 12.92 0.031 10.10 
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2nd Derivative + Normalization 2 0.9990 0.243 20.96  0.9869 0.899 34.99 0.013 6.14 
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The results of spectral calibration models built by PLSR indicated that the best 

spectral calibration model was acquired when the original spectra and 2 factors were 

employed, and the results were as follows: Rc = 0.9995, SEC = 0.181 °Brix, rv = 0.9985, 

SEV = 0.300 °Brix, bias = 0.069 °Brix, and RPD = 18.38 (Table 2.3). Moreover, with 

the SEC = 0.192 °Brix and the SEV = 0.546 °Brix for the 1st derivative with 

normalization, and the SEC = 0.243 °Brix and the SEV = 0.899 °Brix for the 2nd 

derivative with normalization, it is apparent that the SEV values of both 1st and 2nd 

derivatives were many times higher than SEC. The results showed that the PLSR 

spectral calibration models had poor predictability when applied to validation sets. 

 

Comparing the quantitative analysis results of ICA and PLSR, all ICA spectral 

calibration models had better ability than PLSR in predicting calibration and validation 

sets. This means that ICA extracts the characteristic information from the spectra more 

effectively, not only improving the expository ability of calibration models for the 

calibration sets, but also increasing the tolerance for the validation sets. Results also 

showed that ICA was preferable to PLSR due to much lower bias (Table 2.3). This 

finding became more obvious with normalization, indicating that ICA had a better 

tolerance to the influences caused by factors other than chemical characteristics of the 

constituents in the samples, which helped to build more robust spectral calibration 
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models. In summary for the sucrose solutions, ICA achieved better quantitative analysis 

of sugar content than PLSR did, while selecting a suitable number of ICs and spectral 

pretreatments could help improve the predictability of spectral calibration models. The 

results of sucrose solutions also helped establish proper procedures with useful 

information applicable when conducting ICA analysis of wax jambu. 

 

2.3.2 WAX JAMBU 

Wax jambu samples totaling 114 were used; their sugar contents ranged from 6.4 to 

14.5 °Brix. The average sugar content was 9.92 °Brix with the standard deviation of 

1.61 °Brix. All the samples were divided in a 2:1 ratio into 76 and 38 calibration and 

validation samples (Table 2.4). 
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Table 2.4 Summary of wax jambu (Syzygium samarangense Merrill & Perry) and 

sample sugar contents. Total samples (n = 114), calibration set (n = 76) and 

validation set (n = 38) were arranged to have consistent distributions of 

sugar content. 

Wax Jambu 

Group n 

Sugar Content (°Brix) 

Max. Min. Mean SD CV 

Total Samples 114 14.50 6.40 9.92 1.61 0.16 

Calibration Set 76 14.50 6.40 9.89 1.61 0.16 

Validation Set 38 14.00 7.10 9.99 1.62 0.16 

 

2.3.2.1 CORRELATION ANALYSIS OF NIR SPECTRA AND SUGAR 

CONTENT 

Fig. 2.6 showed the distribution of the correlation coefficients for the original, the 1st 

derivative and the 2nd derivative spectra of the wax jambu samples and their sugar 

contents. The main absorption wavelengths of the original spectra were 676, 968, and 

1144 nm, of which 676 nm was located within the visible region of red light, whereas 

968 and 1144 nm in the NIR region, belonging to the 2nd overtone of the C-H bond. The 

main absorption wavelengths of the 1st derivative spectra were 626, 974, 1070, and 
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1406 nm, of which 626 nm was located in the visible region of orange light, with the 

correlation up to 0.808, while the remaining wavelengths in the NIR region. The main 

absorption wavelengths of the 2nd derivative spectra were located in the visible region 

between orange light and red light, namely 594, 642, and 692 nm. Fig. 2.6 showed that 

the wavelength range of 600 to 1098 nm was the major absorption band, and the 1st 

derivative spectra were most significantly correlated to the sugar content (Chung et al., 

2004). As for the spectral band 650 to 700 nm, which belonged to the absorption band 

of red light, it was consistent with the color of wax jambu skin, indicating that color 

information was also reflected in the spectrum. 
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Fig. 2.6 Correlation coefficient distributions of the spectra and the sugar content of wax 

jambu through three different spectral pretreatments (original spectra, 1st 

derivative spectra, and 2nd derivative spectra). 

 

The NIR spectra of wax jambu samples were analyzed by taking every 100 nm as a 

band region, and full spectrum range from 400 to 2498 nm was divided into 21 band 

regions, in which they were separately analyzed. Analysis of the 76 wax jambu 

calibration samples could have been decomposed into 76 ICs; however, applying too 

many ICs could easily lead to overfitting of the model. Hence, in this study ICA was 

conducted with the limit of 30 ICs. The SEV showed no obvious trend when applying 1 

to 6 ICs, and was greatly influenced by water (O-H bond). There is a high proportion of 
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water in the wax jambu samples, so it was necessary to avoid using the spectral bands of 

1450 and 1900 nm that represent primarily water absorption. When applying 7 to 30 ICs 

(Fig. 2.7), the SEV values in the ranges of 600 to 700 nm and 800 to 1098 nm were less 

than 1 °Brix, so were the results of the 1st and the 2nd derivative spectra. All three 

spectra fitted the spectral bands of higher correlation in Fig. 2.6, so the specific 

wavelength regions for spectrum analyses of wax jambu were selected from the 

wavelength range of 600 to 700 nm and 800 to 1098 nm (Chung et al., 2004). 
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Fig. 2.7 Relationship between spectral bands and errors of the predicted sugar content 

for wax jambu when applying 7 to 30 ICs. Full spectrum range from 400 to 

2498 nm was divided into 21 band regions by taking every 100 nm as a band 

region. 

 

2.3.2.2 SUGAR CONTENT QUANTIFICATION BASED ON ICA AND PLSR 

2.3.2.2.1 ANALYSIS WITHOUT SPECTRAL PRETREATMENT 

The ICA results of the spectral calibration model for wax jambu are shown in Table 

2.5. The best spectral calibration model was found with the normalized 1st derivative 

spectra and 10 ICs, resulting in Rc = 0.956, SEC = 0.471 °Brix, rv = 0.954, SEV = 0.489 
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°Brix, bias = -0.013 °Brix, RPD = 3.32. Among the 10 ICs applied for ICA, the order of 

the initial 4 ICs, according to the correlation with reference sugar content, is IC 3, 7, 8, 

and 6, with respective correlation coefficient (r) of -0.805, 0.647, -0.612, and 0.279. IC 

3, 7, and 8 can be considered to respond mainly to the information of sugar content 

(including fructose, glucose and sucrose) (Moneruzzaman et al., 2011; Tehrani et al., 

2011) as the composition of wax jambu is rather complicated than that of sucrose 

solution alone. Since the specific wavelengths used were within the wavelength range of 

600 to 700 nm and 800 to 1098 nm, the spectra covered the 3rd overtone of C-H bond, 

conforming to the results of Fig. 2.6 and 2.7. Additionally, the spectral calibration 

models built after normalization used the characteristic information of 10 ICs, which is 

in line with the SEV trend observed in Fig. 2.7. Moreover, the small values of bias 

indicated that ICA had good tolerance to the influence caused by factors other than the 

internal chemical composition of the samples. 

 

The PLSR results of the spectral calibration model are shown in Table 2.5, with the 

best spectral calibration model found in the normalized original spectra with 5 factors, 

yielding Rc = 0.884, SEC = 0.753 °Brix, rv = 0.867, SEV = 0.816 °Brix, and bias = 

0.238 °Brix. The specific wavelength regions used were within the wavelength range of 

600 to 700 nm and 800 to 1098 nm, consistent with the aforementioned results.
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Table 2.5 Regression results by ICA and PLSR analyses for wax jambu (without spectral pretreatment). 

Method Spectrum 

Wavelength 

Range (nm)a 

ICs / 

Factors 

Calibration Set (76)  Validation Set (38) 

Mean: 9.891, SD: 1.610  Mean: 9.990, SD: 1.624 

Rc 

SEC 

(°Brix) 

RSEC 

(%) 

 rv 

SEV 

(°Brix) 

RSEV 

(%) 

bias 

(°Brix) 

RPD 

ICA 

Original 

600-700, 2 

1000-1098, 2 

7 0.930 0.591 6.37  0.919 0.642 7.11 -0.024 2.53 

Original + 

Normalization 

600-700, 2 

800-1000, 2 

10 0.948 0.515 5.51  0.940 0.568 5.73 0.054 2.86 

1st Derivative + 

Normalization 

600-700, 2 

900-1098, 2 

10 0.956 0.471 4.88  0.954 0.489 4.98 -0.013 3.32 
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2nd Derivative + 

Normalization 

600-700, 2 

800-1000, 2 

10 0.943 0.535 5.85  0.944 0.553 5.77 -0.017 2.94 

PLSR 

Original 800-1098, 2 2 0.428 1.455 15.56  0.237 1.599 15.80 0.351 1.02 

Original + 

Normalization 

600-700, 2 

800-1098, 2 

5 0.884 0.753 8.11  0.867 0.816 8.90 0.238 1.99 

1st Derivative + 

Normalization 

600-700, 2 

800-1098, 2 

3 0.876 0.777 8.44  0.880 0.782 8.89 -0.020 2.08 

2nd Derivative + 

Normalization 

600-700, 2 

800-1000, 2 

2 0.797 0.973 11.58  0.803 0.975 10.95 0.182 1.67 

a Interval is 2 nm. 
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After comparing the results of ICA and PLSR quantitative analysis, it was found that 

the ICA calibration model performed better than PLSR, since not only did it enhance the 

predictability of the model but it also reduced the bias. The specific wavelengths used in 

ICA and PLSR showed a high degree of coincidence. When applied to wax jambu 

samples, the correlation analysis between NIR spectra and sugar content provided a 

basis to select the appropriate specific wavelength regions. 

 

2.3.2.2.2 ANALYSIS WITH SPECTRAL PRETREATMENT 

To evaluate the best predictability of ICA models for wax jambu, ICA analysis was 

further performed with pretreatment and outlier procedures. After selecting the best 

pretreatment parameters (points of smoothing and gap of derivative were both 3) and 

eliminating 1/10 outliers (11 samples) from the total of 114 samples, the best spectral 

calibration model was found, as shown in Table 2.6, with the normalized 1st derivative 

spectra and 9 ICs, resulting in Rc = 0.988, SEC = 0.243 °Brix, rv = 0.971, SEV = 0.381 

°Brix, bias = 0.001 °Brix, RPD = 4.15. The PLSR analysis results under the same 

conditions were Rc = 0.983, SEC = 0.287 °Brix, rv = 0.963, SEV = 0.426 °Brix, bias = 

-0.039 °Brix, RPD = 3.71. The ICA spectral calibration model had better results than 

PLSR results with pretreatment and outlier procedures in predicting calibration and 

validation sets.
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Table 2.6 Regression results by ICA and PLSR analyses for wax jambu (with spectral pretreatment). 

Method Spectrum 

Wavelength 

Range (nm)a 

Smoothing 

Points / Gap 

ICs / 

Factors 

Calibration Set (68)  Validation Set (35) 

Mean: 9.953, SD: 1.556  Mean: 9.953, SD: 1.580 

Rc 

SEC 

(°Brix) 

RSEC 

(%) 

 rv 

SEV 

(°Brix) 

RSEV 

(%) 

bias 

(°Brix) 

RPD 

ICA 

1st Derivative + 

Normalization 

600-700, 2 

900-1098, 2 

3, 3 9 0.988 0.243 2.46  0.971 0.381 3.91 0.001 4.15 

PLSR 

1st Derivative + 

Normalization 

600-700, 2 

800-1098, 2 

4, 4 8 0.983 0.287 2.81  0.963 0.426 4.41 -0.039 3.71 

a Interval is 2 nm. 



 46 

Compared to the previous literatures (You, 2002; Lin, 2002; Chung et al., 2004), the 

spectral calibration models built by ICA had higher predictability for wax jambu since 

the SEC values reported by You (2002), Chung et al. (2004) and Lin (2002) were 0.413 

°Brix, 0.388 °Brix and 0.252 °Brix, respectively. Among them, the SEP values reported 

by Chung et al. (2004), 0.262 °Brix, 0.207 °Brix and 0.322 °Brix, were all lower than 

its SEC value (0.388 °Brix); these MLR analysis results seemed unreasonable because 

that the prediction sets were unknown to the calibration model, thus the SEP values 

should be higher than SEC value. Even though, our ICA results listed in Table 2.6 were 

better than those reported by Chung et al. (2004) and Lin (2002) in terms of Rc, SEC, rp 

and RPD. 

 

The results of ICA sugar content quantification based on NIR spectroscopy showed 

that ICA can effectively extract the characteristic information in the spectra, and build 

the spectral calibration models with desirable abilities to evaluate the concentration of 

the constituents. It thus can be expected that integration of ICA with NIR spectroscopy 

could become a powerful tool for quantitative analysis of specific targets. 

 

2.4 CONCLUSIONS 

ICA was applied as the sole tool to integrate with NIR spectroscopy for rapid 
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quantification of sugar content in sucrose solutions and wax jambu. ICA gave a 

comprehensive approach to characterize the NIR spectra with respect to the sugar 

content in wax jambu and sucrose solutions that other multivariate analysis methods 

cannot deal with. The spectral calibration models built by ICA had high predictability 

for both wax jambu and sucrose solutions. Compared to PLSR, ICA can identify the 

sugar features in the spectra of wax jambu and then evaluate their concentrations more 

effectively. Therefore, it offers a reliable tool for quantitative analysis of sugar content 

in wax jambu by NIR spectroscopy. ICA in conjunction with NIR spectroscopy also has 

a potential to be applied to identify multiple constituents and evaluate their 

concentrations of agricultural products. 
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CHAPTER 3. QUANTIFICATION OF BIOACTIVE GENTIOPICROSIDE IN A 

MEDICINAL PLANT GENTIANA SCABRA BUNGE BY NEAR 

INFRARED SPECTROSCOPY 

3.1 INTRODUCTION 

Dried root and rootstock of Gentiana scabra Bunge are commonly used as 

pharmaceutical raw materials, since they are rich in many secoiridoid glycosides, such 

as gentiopicroside, swertiamarin and sweroside (Kakuda et al., 2001). In particular, 

gentiopicroside has been shown to protect liver, inhibit liver dysfunction, and promote 

gastric acid secretion in addition to its antimicrobial and anti-inflammatory effects, 

making it a popular ingredient in Chinese herbal medicine and health products (Kim et 

al., 2009). 

 

In early days, G. scabra Bunge was mainly collected in the wild. As the demand for G. 

scabra Bunge increases and the wild resources diminish, the restoration of G. scabra 

Bunge thus became an important issue (Zhang et al., 2010). Studies in recent years used 

tissue culture technology to artificial cultivate G. scabra Bunge (Cai et al., 2009), by 

domesticating the tissue culture of G. scabra Bunge, then transplanting it to the 

greenhouse for cultivation. In order to monitor the change of G. scabra Bunge during 

the growth process, it is necessary to measure the bioactive components of G. scabra 

Bunge. However, the commonly used methods, such as micellar electrokinetic capillary 

chromatography (MECC) (Glatz et al., 2000), high performance liquid chromatography 
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(HPLC) (Szücs et al., 2002; Kikuchi et al., 2005; Carnat et al., 2005; Kušar et al., 2010; 

Hayta et al., 2011a; Hayta et al., 2011b), liquid chromatography-mass spectrometry 

(LC-MS) (Aberham et al., 2007; Aberham et al., 2011), and ultra-performance liquid 

chromatography (UPLC) (Nastasijević et al., 2012), are all time-consuming and 

energy-intense, hence not applicable for daily quality inspection of G. scabra Bunge 

during cultivation. 

 

Near infrared (NIR) spectroscopy is a nondestructive inspection method that can 

rapidly measure the target object. Its spectrum contains characteristic spectral 

information of the internal constituents in the sample, so it has been widely used in 

dispensation, such as herbal component analysis of Chinese herbal plants Angelicae 

gigantis Radix (Woo et al., 2005), Rhubarb (Zhang and Tang, 2005), licorice 

(Glycyrrhizia uralensis Fisch,) (Wang et al., 2007), Panax species (Chen et al., 2011), 

and Lonicera japonica (Wu et al., 2012), as well as the content detection of active 

pharmaceutical ingredients (APIs) in tablets (Paris et al., 2006; Jamrógiewicz, 2012; 

Porfire et al., 2012). However, it has not been employed to qualitatively monitor the 

growth of G. scabra Bunge. 

 

The present study was aimed to explore the NIR feature of gentiopicroside, the 



 50 

bioactive component of G. scabra Bunge, in order to build the spectral calibration 

models. Moreover, the applicability of silicon CCD sensing band when using 

multi-spectral imaging technology to inspect the quality of G. scabra Bunge was 

evaluated. 

 

3.2 MATERIALS AND METHODS 

3.2.1 G. SCABRA BUNGE SAMPLE PREPARATION 

The samples of G. scabra Bunge were provided by Taiwan Sugar Research Institute 

(TSRI; Tainan, Taiwan). A total of 94 tissue culture samples and 68 grown plant samples 

of different cultivation time was acquired (Yang et al., 2008; Cheng, 2009). The shoot 

and root of the grown plant samples were measured separately in order to compare their 

differences. The G. scabra Bunge samples were first dried for 48 hours in a dryer (50 

°C), then milled with a high speed grinder (RT-02A, Sun-Great Technology Co., Ltd., 

New Taipei City, Taiwan). The dried powder was filtered with a 100 mesh sieve and 

stored in amber sample vials to avoid light exposure (Yang et al., 2008; Cheng, 2009). 

 

3.2.2 NIR SPECTRA AND HPLC MEASUREMENT 

Dry powder of G. scabra Bunge was gently poured into a small ring cup (i.d. 5 cm) 

and subjected to NIR measurement (NIRS 6500, FOSS NIRSystems, Inc., Laurel, MD, 
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U.S.A.). The reflectance spectra of the samples were collected in the range of 400 to 

2498 nm with 2 nm intervals, and the NIR spectrum of each sample was the average of 

32 scans (Yang et al., 2008; Cheng, 2009). 

 

To attain the reference value of the bioactive component, gentiopicroside was 

measured by HPLC (DX 500 ion chromatograph, Dionex Corporation, Sunnyvale, CA, 

U.S.A.) equipped with a DIONEX C18 column (250 mm × 4.6 mm i.d.). The peak of 

gentiopicroside appeared at 250 nm when methanol : water (20:80) was used as the 

mobile phase at a flow rate of 1 mL/min. A high-precision scale was used to measure 

the gentiopicroside standard powder, and diluted into 1000, 500, and 250 ppm with 70% 

methanol as the standard solutions for the three-point calibration of HPLC. A 

quantitative linear relationship was established between the standard concentration and 

the peak area (Yang et al., 2008; Cheng, 2009). 

 

3.2.3 DATA ANALYSIS 

In order to apply the specific wavelengths identified to multi-spectral imaging 

inspection of G. scabra Bunge, the spectra of the full wavelength range (400 to 2498 nm) 

and the silicon CCD sensing band (400 to 1098 nm) were analyzed. Modified partial 

least squares regression (MPLSR) and stepwise multiple linear regression (SMLR) 
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methods were employed to build the calibration models of gentiopicroside. 

 

3.2.3.1 MPLSR 

An extension of partial least squares regression (PLSR), MPLSR abides by the 

principle of normalization of the spectra and constituent values prior to PLSR, which is 

a standard tool in chemometrics and has been widely used in the pharmaceutical, 

chemical, and agricultural fields (Wold et al., 2001). When PLSR is applied to spectral 

analysis, the spectra can be regarded as the composition of several principal components 

(PCs), and be expressed as a ‘factor’ in the PLSR algorithm. The factors’ sequence is 

determined by their influences, i.e., the more important factor is ranked earlier in the 

order. Since PLSR analysis uses information from spectral bands, the analysis results 

can be improved by selecting appropriate number of factors and specific wavelength 

ranges. 

 

3.2.3.2 SMLR 

SMLR selects the specific wavelengths according to the F-test (F ≥ 3) of null 

hypothesis testing (Chang et al., 1998). To build the calibration model with numerous 

wavelengths, the SMLR algorithm chooses the most important specific wavelength 

from the major molecular bonding region of the objects, and the second most important 
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specific wavelength is usually chosen between the combination of related molecular 

bonding, or the overtone of complementary bonding, and by analogy. When adding a 

new wavelength for training, the algorithm will base on the previously selected specific 

wavelengths to continue finding the wavelength, which can allow the highest multiple 

coefficient of determination (r2) and the minimum prediction error, and determine 

whether such wavelength can replace the current specific wavelength or not. In case of 

poor competency of the newly-added wavelength for training, the algorithm will stop 

training. 

 

3.2.3.3 SPECTRAL PRETREATMENTS 

The purpose of spectral pretreatments was to eliminate the spectral variation not 

caused by chemical information contained in the samples (de Noord, 1994; Fearn, 2001). 

Since inevitable light scattering could be added into the spectra when using NIR to 

measure powder samples, especially when the particle size is not uniform, 

multiplicative scatter correction (MSC) was used to allow additive and multiplicative 

transformation of the spectra (Eq. 3.1). It was conducted using the average spectrum of 

all samples as the reference value, and calculating the parameters a and b with the least 

square. After MSC treatment, the spectra of G. scabra Bunge powder not only reduced 

the physical impact of non-uniform particles (Helland et al., 1995; Maleki et al., 2007), 
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but also confirmed the linearity of the spectral information (Isaksson and Næ s, 1988), 

which would contribute to subsequent linear regression analysis (Thennadil et al., 

2006). 

 
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The spectra of G. scabra Bunge powder post-MSC was subjected to three 

independent treatments, namely (1) smoothing; (2) smoothing with 1st derivative; and (3) 

smoothing with 2nd derivative, in order to choose the best pretreatment parameters, 

including the smoothing points and the gap ranging from 2 to 50, with the gap being 

greater than or equal to the smoothing points. 

 

3.2.3.4 MODEL ESTABLISHMENT 

The spectral calibration models of MPLSR and SMLR were built by WinISI II 

chemometric software (Infrasoft International, LLC., Port the Matilda, PA, U.S.A.). The 

MPLSR analysis procedure included: (1) spectral pretreatments; (2) selecting the 

specific wavelength regions; (3) selecting calibration set and validation set; and (4) 

determining best calibration model. In steps 1 and 2, 3-fold cross validation (CV) was 

used to enable objective selection of the parameters. A 2:1 ratio of calibration to 

validation samples was adopted according to the gentiopicroside concentration in the 
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sample. All samples were ranked ascendantly according to their gentiopicroside 

concentration, with the gentiopicroside concentration in the calibration set higher than 

the validation set, yet both sets contained similar gentiopicroside concentration 

distribution of all samples. When selecting the best calibration model, in order to avoid 

over-fitting caused by use of excessive factors, the following principles were adhered to: 

(1) the maximum number of factors is one tenth of the number of calibration sets + 2 to 

3; (2) stop if the adding of a new factor makes the SEV rise; and (3) when the SEV is 

lower than the SEC, stop adding new factor. The SMLR analysis procedure was: (1) 

selecting calibration set and validation set; (2) spectral pretreatments; and (3) 

determining best calibration model and the specific wavelengths. The same calibration 

and validation sets were used for both MPLSR and SMLR analyses. 

 

After the respective spectral calibration models of MPLSR and SMLR were built, 

these models were then used to predict the gentiopicroside concentration of the 

calibration and the validation set. The predictability of the models was evaluated based 

on the following statistical parameters, including coefficient of correlation of calibration 

set (Rc), standard error of calibration (SEC), standard error of validation (SEV), bias 

and the ratio of the standard error of performance to the standard deviation of the 

reference values (RPD), as defined below: 
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(3.4) 

RPD = SD/SEV                                                    (3.5) 

where Yc and Yv represent the estimated gentiopicroside concentration of the 

calibration set and the validation set, respectively. Yr is the reference gentiopicroside 

concentration; nc and nv are the number of samples in the calibration set and validation 

set, respectively; SD is the standard deviation of gentiopicroside concentration within 

the validation set. 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 GENTIOPICROSIDE CONCENTRATION AND DISTRIBUTION IN G. 

SCABRA BUNGE 

The gentiopicroside contents in different parts (94 tissue culture, 68 shoot and 68 root 

samples) of G. scabra Bunge samples are shown in Table 3.1. It can be seen that the 

gentiopicroside content in G. scabra Bunge whole grown plant (including shoot and root) 

increased after G. scabra Bunge tissue culture was transplanted into the greenhouse for 

cultivation. Within the grown plant itself, the gentiopicroside content was significantly 
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higher in root than in shoot, indicating that during greenhouse cultivation, the 

gentiopicroside was mainly stored in the root. 

 

Table 3.1 The gentiopicroside content in tissue culture and grown plants of G. scabra 

Bunge. 

Sample n 

Gentiopicroside Content (%) 

Min. Max. Mean SD CV 

Tissue Culture 94 2.69 8.18 5.35 1.29 0.24 

Grown Plant       

    Shoot 68 1.34 5.90 3.26 0.91 0.28 

    Root 68 2.24 8.77 4.68 1.62 0.35 

 

3.3.2 CORRELATION BETWEEN NIR SPECTRA AND GENTIOPICROSIDE 

CONTENT 

The NIR spectra of the 94 G. scabra Bunge tissue culture samples and the 136 grown 

plant samples (68 shoot and 68 root) were acquired using the MSC treatment. As shown 

in Fig. 3.1(A) and 3.1(B), there were absorption peaks in both visible region of blue 

light (452 nm) and red light (666 nm) because the chlorophyll in G. scabra Bunge 

would absorb the majority of blue and red light during photosynthesis. The spectra of 
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tissue culture and shoot were similar, which could be attributed to the fact that, during 

the domestication period, the tissue is mainly composed of shoots, while the root 

development of G. scabra Bunge is not obvious at that time. The root spectra in the 

visible region showed a significant difference, with high absorption from green to 

yellow light (492 to 586 nm) and low absorption (flat waveform) from orange to red 

light (606 to 700 nm). This could be due to lack of chlorophyll in the roots of G. scabra 

Bunge plant, which reduces absorption of blue and red light, and reflects green light. 

 

 

(A)                                (B) 

Fig. 3.1 The spectra of G. scabra Bunge powder post-MSC (A) tissue culture and (B) 

grown plants. 

 

After MSC treatment, the spectra of G. scabra Bunge tissue culture and grown plant 

were analyzed using the following pretreatments: (1) smoothing; (2) smoothing with 1st 

derivative; and (3) smoothing with 2nd derivative. The best pretreatment parameters of 
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the tissue culture spectra (smoothing points / gap) were (1/0), (6/6) and (8/8), whereas 

the best ones of the grown plant spectra were (1/0), (2/2) and (3/3); both the smoothing 

points and the gap were less than 10, indicating that NIRS 6500 spectrophotometer is 

stable, and the spectra of G. scabra Bunge powder exhibits minimal noise. 

 

The correlation between the spectra and gentiopicroside of G. scabra Bunge powder 

was analyzed before selecting the specific wavelength regions. The gentiopicroside 

correlation coefficient distribution of G. scabra Bunge tissue culture samples and grown 

plant samples were compared using the original spectra, 1st derivative spectra, and 2nd 

derivative spectra, and the threshold value (|r| > 0.55) was set to determine the degree of 

correlation. It is unnecessary to avoid the O-H bond absorption band around 1450 nm 

and 1900 nm because the influence of water absorption on the spectra of G. scabra 

Bunge powder has been eliminated. Fig. 3.2(A) shows that the bands of high correlation 

between the spectra and gentiopicroside of tissue culture were mainly distributed in the 

NIR region, with only a few in the visible region. The absorption bands of the original 

spectra were located in the 1st overtone of the C-H bond and C-C bond, whereas the 

absorption bands of the 1st derivative spectra were located in the orange light and the 

combination of the 1st overtone of C-H bond. Moreover, the absorption bands of the 2nd 

derivative spectra were found to locate in the 2nd overtone of C=O bond stretch. 
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The correlation coefficient distributions between absorbance values of the spectra and 

gentiopicroside contents of the G. scabra Bunge grown plants were also compared using 

the original spectra, the 1st derivative spectra, and the 2nd derivative spectra (Fig. 3.2(B)). 

It can be seen that there were highly correlated bands in both visible region and the NIR 

region. The absorption bands in the original spectra were located between the yellow 

and orange light, as well as the combination of two C-H bonds. The absorption bands in 

the 1st derivative spectra were located between the orange and red light, the 4th overtone 

of C-H bond, the 3rd overtone of C-H bond, the 1st overtone of C-H bond, and the 

combination of two C-H bonds, whereas the absorption bands of the 2nd derivative 

spectra were located in the blue and red light, the 3rd overtone of N-H bond, and the 

combination of two C-H bonds. Because the spectra of shoot and root showed obvious 

differences in the visible region, the correlation of blue and red light to gentiopicroside 

was improved, indicating that the amount of chlorophyll contained in different parts of 

the grown plant also affect the performance of the specific wavelength regions. The 

specific wavelength regions of both tissue culture and grown plant in the NIR region 

were located in the combination of two C-H bonds and the overtones of C-H bond, 

indicating the C-H bonds are the main absorption of NIR. According to the absorption 

bands of the C-H bonds in the spectrum, Fig. 3.2 showed that the wavelength range of 
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900 to 1300 nm, 1500 to 1800 nm, and 2200 to 2300 nm were the major absorption 

bands, and these wavelengths can be used to provide a basis to select the appropriate 

specific wavelength regions when conducting MPLSR analysis. As for the spectral band 

400 to 650 nm, which belonged to the absorption band of blue to red light, color 

information was also reflected in the spectra. 

 

 

(A)                                (B) 

Fig. 3.2 Correlation coefficient distributions between absorbance values of the spectra 

and gentiopicroside contents of the G. scabra Bunge powder (A) tissue culture 

and (B) grown plants. 

 

3.3.3 GENTIOPICROSIDE QUANTIFICATION USING SPECIFIC 

WAVELENGTH RANGES 

Out of the 89 and 126 valid G. scabra Bunge tissue culture and grown plant samples, 

respectively, were retained for statistical calibration and validation of the 
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gentiopicroside content (Table 3.2). It was found that there was no significant difference 

in the mean, standard deviation, and coefficient of variation (CV) of the effective 

samples, the calibration set, and the validation set, indicating that the gentiopicroside 

content distribution of the two sample groups were consistent. 

 

Table 3.2 The gentiopicroside content of effective samples, calibration set, and 

validation set in tissue culture and grown plants. 

Sample n 

Gentiopicroside Content (%) 

Min. Max. Mean SD CV 

Tissue Culture       

 Effective Samples 89 2.69 7.83 5.26 1.19 0.23 

 Calibration Set 60 2.69 7.83 5.26 1.22 0.23 

 Validation Set 29 3.12 7.35 5.26 1.14 0.22 

Grown Plant       

 Effective Samples 126 1.34 8.77 4.01 1.51 0.38 

 Calibration Set 84 1.34 8.77 4.01 1.52 0.38 

 Validation Set 42 1.59 8.19 4.01 1.50 0.37 

 

The MPLSR analysis results of FWR spectra (400 to 2498 nm) were shown in Table 
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3.3. The best calibration model of G. scabra Bunge tissue culture was found with the 1st 

derivative spectra and 6 factors, with both smoothing points and gap set at 6, using the 

wavelength range of 900 to 1000 nm, 1200 to 1300 nm, and 1600 to 1700 nm, and 

resulting in Rc = 0.868, SEC = 0.606%, SEV = 0.862%, bias = –0.215%, and RPD = 

1.32. Due to the spectral difference between the calibration set and the validation set, 

the prediction result of the validation set was a little worse than the calibration set when 

using the calibration model. The best calibration model of G. scabra Bunge grown plant 

was identified when using the 2nd derivative spectra and 5 factors, with both smoothing 

points and gap set at 3, using the wavelength range of 400 to 500 nm, 1100 to 1200 nm, 

1600 to 1800 nm, and 2200 to 2300 nm. The results were Rc = 0.944, SEC = 0.502%, 

SEV = 0.685%, bias = –0.162%, and RPD = 2.19. The calibration models built based on 

1st derivative spectra and 2nd derivative spectra were both better than those based on the 

original spectra, indicating that the heterogeneous particles of G. scabra Bunge powder 

really affect the spectral absorption. The calibration models of grown plant were all 

better than those of the tissue culture, even with fewer spectral pretreatments, because 

more grown plant samples can build more stable calibration models. The specific 

wavelength regions of tissue culture and grown plant were mainly distributed in 900 to 

1300 nm and 1600 to 1800 nm, and the calibration model of grown plant also 

incorporated the spectral information within 400 to 500 nm and 2200 to 2300 nm, 
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indicating that the NIR region contained more information about gentiopicroside. The 

absorption differences between shoot and root in the visible region also qualified 400 to 

500 nm employable as a specific wavelength region.
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Table 3.3 Prediction of the gentiopicroside content in tissue culture and grown plants of G. scabra Bunge by MPLSR models in the 

wavelength of 400 to 2498 nm. 

Sample Spectrum 

Wavelength 

Range (nm)a 

Smoothing 

Points / Gap 

Factors 

Calibration Set Validation Set 

Rc SEC (%) SEV (%) bias (%) RPD 

Tissue 

Culture 

Original 900-1000, 2 

1600-1700, 2 

1 / 0 5 0.752 0.804 0.943 -0.137 1.21 

1st Derivative 900-1000, 2 

1200-1300, 2 

1600-1700, 2 

6 / 6 6 0.868 0.606 0.862 -0.215 1.32 

2nd Derivative 500-600, 2 

1050-1098, 2 

1100-1300, 2 

8 / 8 4 0.852 0.638 0.830 -0.123 1.37 
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1550-1750, 2 

Grown 

Plant 

Original 400-500, 2 

1600-1700, 2 

2200-2300, 2 

1 / 0 7 0.881 0.717 0.775 -0.054 1.94 

1st Derivative 400-500, 2 

1100-1200, 2 

1600-1700, 2 

2200-2300, 2 

2 / 2 5 0.919 0.597 0.726 -0.141 2.07 

2nd Derivative 400-500, 2 

1100-1200, 2 

1600-1800, 2 

2200-2300, 2 

3 / 3 5 0.944 0.502 0.685 -0.162 2.19 
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3.3.4 GENTIOPICROSIDE QUANTIFICATION USING CCD CAMERA 

WAVELENGTH SPECTRA 

MPLSR analysis of silicon CCD sensing bands (400 to 1098 nm) was shown in Table 

3.4. The best calibration model of G. scabra Bunge tissue culture was acquired when the 

2nd derivative spectra and 3 factors were employed, where both smoothing points and 

gap were at 2, with wavelength range of 400 to 500 nm and 800 to 1000 nm, and the 

results were Rc = 0.865, SEC = 0.611%, SEV = 0.772%, of bias = 0.025%, RPD = 1.47. 

The best calibration model of G. scabra Bunge grown plant was found with the 1st 

derivative spectra and 5 factors, smoothing points and gap at 2, with wavelength range 

of 400 to 600 nm and 900 to 1098 nm, resulting in Rc = 0.904, SEC = 0.649%, SEV = 

0.724%, bias = –0.089%, RPD = 2.08. Regardless of the samples being tissue culture or 

grown plant, the calibration models built based on 1st derivative spectra and 2nd 

derivative spectra were better than those based on the original spectra, indicating that 

spectral pretreatments indeed enhanced the predictability of the calibration models. The 

spectral calibration models of grown plant were all better than those of the tissue culture 

with fewer spectral pretreatments, which was consistent with the results shown in Table 

3.3. The specific wavelength regions of tissue culture and grown plant were mainly 

distributed in 400 to 600 nm (blue and red light) and 800 to 1098 nm (the 2nd and 3rd 

overtone of C-H bond). The absorption capacity of these bands was a little lower than 
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the combination and the 1st overtone of C-H bond, producing a fewer spectral 

absorption performances of gentiopicroside, so the predictability declined slightly when 

using silicon CCD sensing band to build the calibration models.
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Table 3.4 Prediction of the gentiopicroside content in tissue culture and grown plants of G. scabra Bunge by MPLSR models in the 

wavelength of 400 to 1098 nm. 

Sample Spectrum 

Wavelength 

Range (nm)a 

Smoothing 

Points / Gap 

Factors 

Calibration Set Validation Set 

Rc SEC (%) SEV (%) bias (%) RPD 

Tissue 

Culture 

Original 550-650, 2 

900-1050, 2 

9 / 0 4 0.704 0.866 1.084 -0.047 1.05 

1st Derivative 600-700, 2 

900-1000, 2 

6 / 6 6 0.764 0.786 0.906 -0.061 1.26 

2nd Derivative 400-500, 2 

800-1000, 2 

2 / 2 3 0.865 0.611 0.772 0.025 1.47 

Grown 

Plant 

Original 400-600, 2 

950-1050, 2 

1 / 0 5 0.840 0.823 1.089 -0.015 1.38 
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1st Derivative 400-600, 2 

900-1098, 2 

2 / 2 5 0.904 0.649 0.724 -0.089 2.08 

2nd Derivative 400-650, 2 

950-1098, 2 

3 / 3 3 0.888 0.697 0.750 -0.100 2.00 

a Interval is 2 nm 
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In addition, the SMLR analysis results of silicon CCD sensing band (400 to 1098 nm) 

was shown in Table 3.5. The best calibration model of G. scabra Bunge tissue culture 

was found when the 2nd derivative spectra were used. Both smoothing points and gap 

were at 3, with the specific wavelength of 846 nm and 932 nm, of which Rc = 0.750, 

SEC = 0.806%, SEV = 0.990%, bias = 0.270%, RPD = 1.15 were achieved. The best 

calibration model of grown plant was attained when the 2nd derivative spectra were 

employed, where both smoothing points and gap were set at 3, in the combination of the 

4 wavelengths of 670 nm, 786 nm, 474 nm and 826 nm, of which Rc = 0.860, SEC = 

0.775%, SEV = 0.848%, bias = –0.134%, RPD = 1.77 were achieved. The calibration 

models built based on the 1st and 2nd derivative spectra were all better than those based 

on the original spectra, indicating that the spectral pretreatments reduced the noise 

influence and made the combination of selected wavelengths more consistent when the 

number of wavelengths increased. The specific wavelengths selected in Table 3.5 were 

similar to those in Table 3.3 and Table 3.4, only with a small number of specific 

wavelengths beyond those selected through the MPLSR analysis. Since the silicon CCD 

sensing band contains fewer information of gentiopicroside, and SMLR built the 

spectral calibration model based on the combination of a small number of wavelengths, 

which gives less spectral information than MPLSR, so the analysis results seemed a 

little worse than those in Table 3.3 and Table 3.4. Compared to the tissue culture which 
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can only apply 2 wavelengths at most for inspection, grown plant can apply 4 

wavelengths to build the calibration model, consequently improving its predictability.
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Table 3.5 Prediction of the gentiopicroside content in tissue culture and grown plants of G. scabra Bunge by SMLR models in the 

wavelength of 400 to 1098 nm. 

Sample Spectrum 

Specific 

Wavelength (nm) 

Smoothing 

Points / Gap 

Calibration Set Validation Set 

Rc SEC (%) SEV (%) bias (%) RPD 

Tissue 

Culture 

Original 684 

4 / 0 

0.613 0.963 1.028 -0.064 1.11 

910, 512 0.643 0.934 0.999 0.000 1.14 

1st Derivative 612 2 / 2 0.654 0.922 1.060 -0.116 1.07 

2nd Derivative 848 

3 / 3 

0.632 0.946 1.016 0.376 1.12 

846, 932 0.750 0.806 0.990 0.270 1.15 

Grown 

Plant 

Original 580 

2 / 0 

0.588 1.227 1.249 -0.076 1.20 

690, 480 0.689 1.099 1.329 -0.112 1.13 

436, 690, 420 0.759 0.988 1.284 -0.154 1.17 
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966, 420, 408, 436 0.802 0.906 1.186 -0.178 1.27 

1st Derivative 730 

2 / 2 

0.590 1.225 1.265 -0.074 1.19 

462, 676 0.725 1.044 0.889 -0.041 1.69 

684, 780, 462 0.806 0.897 0.936 0.072 1.61 

650, 780, 462, 512 0.850 0.799 0.823 0.008 1.83 

2nd Derivative 468 

3 / 3 

0.626 1.182 1.122 0.001 1.34 

460, 634 0.736 1.027 1.011 -0.250 1.49 

666, 788, 474 0.834 0.838 0.897 -0.144 1.67 

670, 786, 474, 826 0.860 0.775 0.848 -0.134 1.77 
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3.4 CONCLUSIONS 

This study applied NIR for quantitative analysis of gentiopicroside in the medicinal 

plant G. scabra Bunge. It was found that the spectral pretreatments of MSC in 

combination of 2nd derivative reduced the spectral noise caused by the heterogeneous 

particle size of G. scabra Bunge powder. The specific wavelength regions or specific 

wavelengths selected based on their characteristic response to gentiopicroside could 

effectively improve the predictability of the calibration models. This study successfully 

built the spectral calibration models for G. scabra Bunge tissue culture and grown plant, 

which enable quantitative inspection of the bioactive component gentiopicroside in G. 

scabra Bunge during different growth stages. The specific wavelengths selected in 

Silicon CCD sensing band can be used as the foundation to establish a nondestructive 

and rapid method to assess the quality of G. scabra Bunge using multi-spectral imaging. 
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CHAPTER 4. INTEGRATION OF INDEPENDENT COMPONENT ANALYSIS 

WITH NEAR INFRARED SPECTROSCOPY FOR ANALYSIS 

OF BIOACTIVE COMPONENTS IN A MEDICINAL PLANT 

GENTIANA SCABRA BUNGE 

4.1 INTRODUCTION 

Medicinal plants have always been considered an important and reliable source of 

pharmacy, since they are rich in many bioactive components. The international trade 

market for medicinal plant products continues to expand and covers food, beverages, 

drugs, cosmetics, and skin care products. Gentiana scabra Bunge, a perennial 

herbaceous plant, is mainly grown in temperate regions such as Taiwan, China, Japan, 

South Korea, Russia, and North America. Gentiana scabra Bunge has been proven to 

achieve good effect in pharmacology, its dried root and rootstock are commonly used as 

pharmaceutical raw materials, since they are rich in many secondary metabolites such as 

gentiopicroside, swertiamarin and sweroside (Kakuda et al., 2001). In particular, 

gentiopicroside has been shown to protect liver, inhibit liver dysfunction, and promote 

gastric acid secretion in addition to its antimicrobial and anti-inflammatory effects, and 

swertiamarin is anti-inflammatory, antiepileptic, analgesic, and sedative, making it a 

popular ingredient in Chinese herbal medicine and health products (Kim et al., 2009). 

 

In early days, Gentiana scabra Bunge was mainly collected in the wild. As the 

demand for Gentiana scabra Bunge increases, change of natural environment and 

climate, the wild resources diminish rapidly, thus restoration of Gentiana scabra Bunge 
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became an important issue in order to protect and sustainably utilize rare plants (Zhang 

et al., 2010). Studies in recent years used tissue culture technology to make artificial 

cultivation of Gentiana scabra Bunge (Cai et al., 2009), by domesticating the tissue 

culture of Gentiana scabra Bunge, then transplanting it to the greenhouse for cultivation. 

In order to monitor the change of Gentiana scabra Bunge during the growth process, it 

is necessary to measure the bioactive components of Gentiana scabra Bunge. However, 

the commonly used methods such as micellar electrokinetic capillary chromatography 

(MECC) (Glatz et al., 2000), high performance liquid chromatography (HPLC) 

(Kikuchi et al., 2005) and liquid chromatography-mass spectrometry (LC-MS) 

(Aberham et al., 2011) are all time-consuming and energy-intense, hence cannot be 

applicable for daily quality inspection of Gentiana scabra Bunge during cultivation. 

 

Near infrared (NIR) spectroscopy is a nondestructive inspection method that has been 

widely used in dispensation (Zhang et al., 2005; Wang et al., 2007; Chen et al., 2011). 

Generally, spectrum of a mixture is a linear combination of spectra of various 

components and can be considered as the ‘blind sources’ when the components are 

unknown. A fast and reliable algorithm - independent component analysis (ICA) can 

deal with the issue of blind source separation (BSS) (Hyvärinen and Oja, 2000) and 

identify components of a mixture effectively (Pasadakis and Kardamakis, 2006; 
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Kardamakis et al., 2007). In recent years, ICA has been used in medicinal tests (Fang 

and Lin, 2008; Wang et al., 2009; Shao et al., 2009). Considering there hasn’t been any 

study applying NIR spectroscopy in inspection on internal components of Gentiana 

scabra Bunge currently, it is the intent of this study to apply ICA, which could analyze 

various components simultaneously, in NIR spectroscopy analysis on gentiopicroside 

and swertiamarin to discuss qualitative and quantitative relationships of the two 

bioactive components. Efforts were also made to build spectral calibration models with 

high predictability in order to evaluate the potentiality of NIR for quality inspection on 

Gentiana scabra Bunge. 

 

4.2 MATERIALS AND METHODS 

4.2.1 GENTIANA SCABRA BUNGE SAMPLE PREPARATION 

The samples of Gentiana scabra Bunge were provided by Taiwan Sugar Research 

Institute (TSRI; Tainan City, Taiwan). The total of 94 tissue culture samples and 68 

grown plant samples of different cultivation time was acquired (Yang et al., 2008; 

Cheng, 2009). The shoot and root of the grown plant samples were measured separately 

in order to compare their differences. The Gentiana scabra Bunge samples were first 

dried for 48 hours in a dryer (50°C), then milled with a high speed grinder (RT-02A, 

Sun-Great Technology Co., Ltd., New Taipei City, Taiwan). The dried powder was 
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filtered with 100 mesh and stored in amber sample vials to avoid light exposure that 

may cause degradation of the functional ingredients in Gentiana scabra Bunge (Yang et 

al., 2008; Cheng, 2009). 

 

4.2.2 NIR SPECTRA AND HPLC MEASUREMENT 

Dry powder of Gentiana scabra Bunge was gently poured into a small ring cup (i.d. 5 

cm) and subjected to NIR measurement (NIRS 6500, FOSS NIRSystems, Inc., Laurel, 

MD, U.S.A.). The reflectance spectra of the samples ranged from 400 to 2498 nm with 

2 nm intervals, and the NIR spectrum of each sample was the average of 32 scans (Yang 

et al., 2008; Cheng, 2009). 

 

To attain the reference value of the two bioactive components, the authors measured 

gentiopicroside and swertiamarin using HPLC (DX 500 ion chromatograph, Dionex 

Corporation, Sunnyvale, CA, U.S.A.) equipped with a DIONEX C18 column (250 mm 

× 4.6 mm i.d.). The peak of gentiopicroside and swertiamarin showed up at 250 nm 

when applying methanol:water (20:80) in the mobile phase at a flow rate of 1 mL/min. 

A high-precision scale was used to measure the gentiopicroside and the swertiamarin 

standard powder, and diluted into 1000, 500, and 250 ppm with 70 % methanol as the 

standard solutions for the three-point calibration of HPLC. A quantitative linear 
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relationship was established between the standard concentration and the peak area 

(Yang et al., 2008; Cheng, 2009). 

 

4.2.3 DATA ANALYSIS 

After the reflectance spectra of Gentiana scabra Bunge powder and the contents of 

two bioactive components of Gentiana scabra Bunge were measured, ICA was applied 

to explore the relationship between them and spectral calibration models of the two 

bioactive components were then built, respectively. 

 

4.2.3.1 INDEPENDENT COMPONENT ANALYSIS (ICA) 

Independent component analysis (ICA) is a method used to transform the observed 

multivariate data to statistically independent components (ICs) and present them as a 

linear combination of observation variables. The number of receptors defined by ICA 

algorithm must be more than or equal to the number of sources, and the signals emitted 

by the sources are in non-Gaussian distribution (Hyvärinen and Oja, 2000). The ICs are 

latent variables; therefore, they cannot be directly observed, indicating that the mixing 

matrix is also unknown. The purpose of the ICA algorithm is to determine the mixing 

matrix (M) or the separating matrix (W). In order to predict the unknown source, it is 

assumed that W = M-1, 
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ŝ = Wx = M-1Ms                                                   (4.1) 

where ŝ is the estimation of the sources (s) and x represents the observed spectra of 

the objects. 

 

In the present study JADE (joint approximate diagonalization of eigenmatrices) 

algorithm (Cardoso and Souloumiac, 1993; Cardoso, 1999) was employed to conduct 

ICA analysis. In general, JADE offers rapid performance for dealing with spectra data 

due to it works off-the-shelf, an improvement over other multivariate approaches like 

PCR and PLSR. Assuming that the spectra obtained through measurement of the 

unknown mixtures were the linear combination of various components’ spectra, it can 

be expressed as: 

A = MI                                                           (4.2) 

The spectra of samples were all linearly composed of m ICs. Matrix Al×n stands for l 

samples containing n values; Im×n stands for the matrix of ICs, including m independent 

components. Ml×m stands for the mixing matrix, which is related to the component 

concentration in the mixture. The linear relationship between the mixing matrix (M) and 

the component concentration (C) can be expressed as: 

C = MB                                                          (4.3) 

Among them, B referred to the matrix of regression coefficient. In doing so, the 
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concentration of each component in the mixture could be determined by the 

combination of ICA and linear regression. 

 

4.2.3.2 SPECTRAL PRETREATMENTS 

The purpose of spectral pretreatments was to eliminate the spectral variation not 

caused by chemical information contained in the samples (de Noord, 1994; Fearn, 2001). 

Since inevitable light scattering could be added into the spectra when using NIR to 

measure powder samples, especially when the particle size is not uniform, 

multiplicative scatter correction (MSC) was used to allow additive and multiplicative 

transformation of the spectra (Eq. 4.4). It was conducted using the average spectrum of 

all samples as the reference value, and calculating the parameters a and b with the least 

square. After MSC treatment, the spectra of Gentiana scabra Bunge powder not only 

reduced the physical impact of non-uniform particles (Helland et al., 1995; Maleki et al., 

2007), but also confirmed the linearity of the spectral information (Isaksson and Næ s, 

1988), which would contribute to subsequent linear regression analysis (Thennadil et al., 

2006). 
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The spectra of Gentiana scabra Bunge powder post-MSC was subjected to three 
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independent treatments, namely (1) smoothing; (2) smoothing with 1st derivative; and (3) 

smoothing with 2nd derivative, in order to choose the best pretreatment parameters, 

including the smoothing points and the gap ranging from 2 to 50, with the gap being 

greater than or equal to the smoothing points. 

 

4.2.3.3 MODEL ESTABLISHMENT 

This research used MATLAB version 7.5.0 (The MathWorks, Inc., Natick, MA, 

U.S.A.) to edit program of ICA spectra analysis. The ICA analysis procedure included: 

(1) selecting calibration set and validation set; (2) spectral pretreatments; (3) selecting 

the specific wavelength regions; and (4) determining best calibration model. A 2:1 ratio 

of calibration to validation samples was adopted according to the concentrations of 

bioactive components in the sample. All samples were ranked ascendantly according to 

their concentrations of gentiopicroside and swertiamarin, with the concentrations in the 

calibration set higher than the validation set, yet both sets contained similar 

concentration distributions of all samples. When selecting the best calibration model, in 

order to avoid over-fitting caused by use of excessive ICs, the following principles were 

adhered to: (1) the maximum number of ICs is one tenth of the number of calibration 

sets + 2 to 3; (2) stop if the adding of a new IC makes the SEV rise; and (3) when the 

SEV is lower than the SEC, stop adding new IC. 
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After the respective spectral calibration models of gentiopicroside and swertiamarin 

were built, these models were then used to predict the concentrations of the calibration 

and the validation set. The predictability of the models was evaluated based on the 

following statistical parameters, including coefficient of correlation of calibration set 

(Rc), standard error of calibration (SEC), standard error of the validation (SEV), bias 

and the ratio of the standard error of performance to the standard deviation of the 

reference values (RPD), as defined below: 
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RPD = SD/SEV                                                    (4.8) 

where Yc and Yv represent the estimated concentration of the calibration set and the 

validation set, respectively. Yr is the reference concentration; nc and nv are the number 

of samples in the calibration set and validation set; and SD is the standard deviation of 

concentration within the validation set. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 DISTRIBUTIONS OF THE TARGET CONSTITUENTS IN GENTIANA 

SCABRA BUNGE 

Table 4.1 shows the contents of bioactive components of 230 Gentiana scabra Bunge 

samples including 94 tissue cultures, 68 shoots, and 68 roots. The gentiopicroside 

content was found significantly higher than swertiamarin in all parts of the samples 

studied, indicating the dominance of gentiopicroside as the main bioactive component 

in Gentiana scabra Bunge. It is interesting to note that gentiopicroside was more 

abundant in the whole grown plant (including shoot and root) than in the tissue culture, 

suggesting that accumulation of gentiopicroside in the grown plant was increased after 

the tissue culture was deflasked and transplanted into the greenhouse for cultivation. In 

addition, the gentiopicroside content in the root was higher than in the shoot, indicating 

that gentiopicroside was mainly stored in the root when the grown plant of Gentiana 

scabra Bunge was cultivated in the greenhouse. On the other hand, swertiamarin in the 

whole grown plant was far lower than in the tissue culture, suggesting that swertiamarin 

in the grown plant was reduced significantly after the tissue culture was deflasked and 

transplanted into the greenhouse for cultivation. Since the level of swertiamarin in shoot 

and root were both low, it is reasonable to postulate that swertiamarin might distribute 

evenly in stem node, shoot, and root when the grown plant of Gentiana scabra Bunge 
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was cultivated in the greenhouse. 

 

Table 4.1 Contents and distributions of the target constituents in Gentiana scabra 

Bunge. 

Sample # 

Gentiopicroside Content (%)  Swertiamarin Content (%) 

Mean (Min. - Max.) SD CV  Mean (Min. - Max.) SD CV 

Tissue Culture 94 5.35 (2.69 - 8.18) 1.29 0.24  1.18 (0.60 - 2.15) 0.28 0.24 

Grown Plant         

Shoot 68 3.26 (1.34 - 5.90) 0.91 0.28  0.27 (0.10 - 0.59) 0.11 0.42 

Root 68 4.68 (2.24 - 8.77) 1.62 0.35  0.24 (0.01 - 0.34) 0.07 0.28 

 

4.3.2 CORRELATION BETWEEN NIR SPECTRA AND TARGET 

CONSTITUENTS’ CONTENTS 

After eliminating 1/10 outliers (23 samples) from 230 Gentiana scabra Bunge 

samples, the remaining 207 effective samples were divided respectively into 138 and 69 

calibration and validation samples in the ratio of 2:1. Statistical assessments on the 

gentiopicroside and swertiamarin contents in each data set are shown in Table 4.2. The 

differences of average, standard deviation, and coefficient of variation (CV) of the 

effective samples in the calibration and validation set were all less than 0.05 %. 
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Table 4.2 The target constituents’ contents of effective samples, calibration set, and 

validation set in Gentiana scabra Bunge. 

Sample # 

Gentiopicroside Content (%)  Swertiamarin Content (%) 

Mean (Min. - Max.) SD CV  Mean (Min. - Max.) SD CV 

Effective Samples 207 4.72 (1.59 - 8.77) 1.52 0.32  0.69 (0.12 - 2.15) 0.49 0.72 

Calibration Set 138 4.73 (1.59 - 8.77) 1.53 0.32  0.69 (0.12 - 2.15) 0.49 0.72 

Validation Set 69 4.72 (1.92 - 8.19) 1.51 0.32  0.68 (0.12 - 1.72) 0.49 0.72 

 

The NIR spectra of the 207 Gentiana scabra Bunge samples were acquired by using 

the MSC treatment. As shown in Fig. 4.1(A), absorption peaks were found in both the 

visible region of blue light (452 nm) and red light (666 nm), since the chlorophyll in 

Gentiana scabra Bunge absorbs the majority of blue and red light when involved in 

photosynthesis. The spectra of tissue culture and the shoot were similar, which could be 

attributed to the fact that during the domestication period the tissue is mainly composed 

of shoots, since the root development of Gentiana scabra Bunge is not obvious at that 

time. Contrarily, the root spectra in the visible region showed a significant difference, 

with high absorption occurring from green to yellow light (492 to 586 nm) and low 

absorption (flat waveform) from orange to red light (606 to 700 nm). This could be due 
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to lack of chlorophyll in the roots of Gentiana scabra Bunge plant, hence reducing the 

absorption of blue and red light, while reflecting green light. 

 

After MSC treatment, the spectra of Gentiana scabra Bunge were analyzed using the 

following pretreatments: (1) smoothing; (2) smoothing with 1st derivative; and (3) 

smoothing with 2nd derivative. The best pretreatment parameters (smoothing points / 

gap) of the gentiopicroside analysis were (3/0), (2/2), and (6/6), whereas the best of the 

swertiamarin analysis were (1/0), (2/2), and (6/6); both the smoothing points and the 

gap were less than 10, indicating that NIRS 6500 spectrophotometer was stable, and the 

spectra of Gentiana scabra Bunge powder exhibited minimal noise. 

 

The correlation between the spectra of Gentiana scabra Bunge powder and the 

bioactive components were assessed at first when selecting specific wavelength regions 

of spectra. As for original spectra, the 1st derivative spectra, and the 2nd derivative 

spectra, the correlation coefficients of gentiopicroside of effective samples were 

distributed as shown in Fig. 4.1(B), and the threshold value (|r| > 0.50) was set to 

determine the degree of correlation. Because the influence of water absorption on the 

spectrum of Gentiana scabra Bunge powder had been eliminated, it’s unnecessary to 

avoid the O-H bond absorption band around 1450 and 1900 nm. In both the visible and 
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the NIR region, there were highly correlated bands, with the original spectra located 

between the orange and red light region as well as the O-H bond region. The 1st 

derivative spectra were located throughout the regions of red light, the 4th overtone of 

C-H bond, the combination of 1st overtone of C-H bond, and the combination between 

C-H bonds. On the other hand, the 2nd derivative spectra were located in the regions of 

red light, the 4th overtone of C-H bond, the 1st overtone of C-H bond, and the 

combination between N-H bond and O-H bond. 

 

The correlation coefficients between the spectra of Gentiana scabra Bunge powder 

and swertiamarin are shown in Fig. 4.1(C) with the threshold value (|r| > 0.75) set to 

determine the degree of correlation. The original spectra were located in different 

regions, including red light, the 1st overtone of C-H bond, the combination between N-H 

bond and O-H bond, and the combination between C-H bond and C-C bond. The 1st 

derivative spectra were located in the regions of the 4th overtone of C-H bond, the 2nd 

overtone of N-H bond, the 2nd overtone of C-H bond, the combination of 1st overtone of 

C-H bond, the 1st overtone of C-H bond, and the combination between C-H bond and 

C-C bond; whereas the 2nd derivative spectra were located in the red light and the 4th 

overtone of C-H bond regions. As indicated by Fig. 4.1(B) and 4.1(C), the 4th overtone 

of C-H bond was the main absorption band for both gentiopicroside and swertiamarin. It 
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is noteworthy that the dominance of red light in the visible region of the original spectra 

could be attributed to the differences in the color of tissue culture, shoot, and root. 

 

 

Fig. 4.1 (A) The spectra of Gentiana scabra Bunge powder post-MSC; (B) correlation 

coefficient distributions between the spectra and gentiopicroside; and (C) 

correlation coefficient distributions between the spectra and swertiamarin. 
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4.3.3 NIR SPECTRA DECOMPOSITION AND ICA ANALYSIS OF THE 

TARGET CONSTITUENTS 

According to the definition of ICA, the observed signal of receiver can be 

decomposed into ICs of which the number is the same as that of training samples at 

most (Hyvärinen and Oja, 2000). In order to avoid over-fitting of calibration model 

caused by use of excessive ICs, appropriate ICs were selected under the condition that 

calibration models were built only by using 1 to 17 ICs when ICA analysis was 

conducted for original spectra (400 to 2498 nm) of the calibration set. The SEV of the 

calibration models continued to drop and then rise when 7 ICs were applied, indicating 

that incorporation of more IC will not necessarily be helpful to the analysis as it is 

sufficient to decompose the spectra into 7 ICs. 

 

After the original spectra (400 to 2498 nm) of the calibration set was decomposed 

into 7 ICs, correlations between each IC and the two bioactive components were 

checked. ICs 4 and 5 presented the higher correlation coefficients, followed by IC 6, 

suggesting that the spectral information about gentiopicroside and swertiamarin was 

typically stored in these three ICs. There were peaks for IC 4 in the wavelength of 704 

nm, IC 5 in the wavelengths of 692 and 740 nm, and IC 6 in the wavelengths of 494, 

1838, 1944, 2058, and 2132 nm (Fig. 4.2), which was consistent with the absorption 
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bands seen in Fig. 4.1(B) and 4.1(C). This suggests that the spectral characteristics of 

gentiopicroside and swertiamarin were mainly reflected in ICs 4, 5, and 6 (Chen and 

Wang, 2001; Hahn and Yoon, 2006; Pasadakis and Kardamakis, 2006; Kardamakis et al., 

2007). These wavelengths will be taken as the reference for selection on specific 

wavelength region of spectra when building calibration models. 

 

 

Fig. 4.2 The three ICs decomposed from the original spectra of Gentiana scabra Bunge 

powder post-MSC that has higher correlation with gentiopicroside and 

swertiamarin. 

 

As shown in Eq. 4.2, the mixing matrix contained concentration information of the 

two bioactive components in each sample. Since the spectral information of 

gentiopicroside and swertiamarin was mainly reflected in ICs 4 and 5, the values of 



 93 

these two ICs in the mixing matrix were used to configure 2-D distributions. As can be 

seen in Fig. 4.3(A) and 4.3(B), tissue culture, shoot, and root were distributed in three 

distinct locations of the IC 4-IC 5 space. The values of tissue culture and shoot were 

close to each other and the root presented a higher value in IC 5, showing differences 

among different parts of Gentiana scabra Bunge presented in the spectra, which are 

consistent with the result in Fig. 4.1(A). If the average contents of gentiopicroside and 

swertiamarin were taken as the threshold values, the samples could be classified into 

four groups, namely A: gentiopicroside and swertiamarin at high contents; B: 

gentiopicroside at high content and swertiamarin at low content; C: gentiopicroside at 

low content and swertiamarin at high content; and D: gentiopicroside and swertiamarin 

at low contents. The distributions of calibration and validation sets in the IC 4-IC 5 

space are shown in Fig. 4.3(C) and 4.3(D), of which the gentiopicroside contents of 

most tissue cultures were higher than the mean value, suggesting that the production of 

gentiopicroside of Gentiana scabra Bunge was sufficient during the domestication 

period. As the grown plants of Gentiana scabra Bunge were collected at different 

growth stages, their gentiopicroside content in root varied. The gentiopicroside content 

in shoot was low, indicating that gentiopicroside was mainly stored in the root for 

Gentiana scabra Bunge plant during greenhouse cultivation. On the other hand, the 

swertiamarin content in tissue culture was higher than the mean value, but lower than 
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the mean value in shoot and root, indicating that swertiamarin in Gentiana scabra 

Bunge plant was reduced during greenhouse cultivation; therefore it is preferable to 

extract swertiamarin from tissue culture. 

 

 

Fig. 4.3 Scores of tissue culture, shoot, and root in IC 4-IC 5 space established with 

calibration samples. (A) = calibration set, (B) = validation set. Scores of 

gentiopicroside and swertiamarin in IC 4-IC 5 space established with 

calibration samples. (C) = calibration set, (D) = validation set. 

 

According to the discussion foregoing, IC 6 also contains spectral information about 

gentiopicroside and swertiamarin; so the values of ICs 4, 5, and 6 in the mixing matrix 

were used for 3-D plotting. As shown in Fig. 4.4(A) and 4.4(B), tissue culture, shoot, 
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and root were clearly distributed in three locations of the IC 4-IC 5-IC 6 space, 

indicating that even if the correlation between IC 6 and the two bioactive components 

was lower than that of ICs 4 and 5, the information could still be helpful to the analysis. 

If the average contents of gentiopicroside and swertiamarin were used for sample 

grouping, the distributions of calibration and validation sets in the IC 4-IC 5-IC 6 space 

could be constructed, as shown in Fig. 4.4(C) and 4.4(D). The lower the value of IC 4 is, 

the higher the value of IC 6, hence the higher the gentiopicroside content. Similarly, the 

lower the values of ICs 4 and 5 are, the higher the value of IC 6, thus the higher the 

swertiamarin content. Fig. 4.3 and 4.4 indicate that the differences among various parts 

of Gentiana scabra Bunge could be clearly identified by the change in the trend of two 

bioactive components from the space of ICs, making the information useful in 

qualitative and quantitative analysis of NIR spectroscopy. 
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Fig. 4.4 Scores of tissue culture, shoot, and root in IC 4-IC 5-IC 6 space established 

with calibration samples. (A) = calibration set, (B) = validation set. Scores of 

gentiopicroside and swertiamarin in IC 4-IC 5-IC 6 space established with 

calibration samples. (C) = calibration set, (D) = validation set. 

 

The ICA analysis results of the two bioactive components are shown in Table 4.3. 

The best spectral calibration model of gentiopicroside was attained when applying the 

2nd derivative spectra, of which the smoothing points and the gap were both 6 and the 

wavelength ranged 600 to 700 nm, 1600 to 1700 nm, and 2000 to 2300 nm (Rc = 0.847, 
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SEC = 0.865 %, rv = 0.756, SEV = 0.909 %, bias = -0.395 %, and RPD = 1.67). With 

regard to swertiamarin, the best spectral calibration model was acquired with the 1st 

derivative spectra, of which the smoothing points and the gap were both at 2 and the 

wavelength ranged 600 to 800 nm and 2200 to 2300 nm (Rc = 0.948, SEC = 0.168 %, rv 

= 0.898, SEV = 0.216 %, bias = 0.003 %, and RPD = 2.28). Satisfied outcomes were 

acquired for both gentiopicroside and swertiamarin. The relationship between the 

predicted and reference concentrations of both bioactive components are shown in Fig. 

4.5. Since the content of gentiopicroside predicted by the calibration model was mainly 

affected by bias, the predictability can be improved by eliminating the bias calculated 

from a set of representative samples. As for the prediction accuracy of swertiamarin 

content in the calibration model, it is clear that the error mainly came from minor outlier 

samples because swertiamarin content in Gentiana scabra Bunge is relatively low, 

which is also why the quantity and equitability of Gentiana scabra Bunge powder are 

both important.
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Table 4.3 Prediction of the target constituents’ contents in Gentiana scabra Bunge by ICA models. 

Constituent Spectrum 

Smoothing 

Points / Gap 

Wavelength 

Ranges (nm), 

Interval 

ICs 

Calibration Set (138)  Validation Set (69) 

Rc SEC (%)  rv SEV (%) Bias (%) RPD 

Gentiopicroside 

 

 

2nd Derivative 

 

 

6 / 6 

600 - 700, 2 

1600 - 1700, 2 

2000 - 2300, 2 

16 0.847 0.865  0.756 0.909 -0.395 1.67 

Swertiamarin 

 

 

1st Derivative 

 

 

2 / 2 

600 - 800, 2 

2200 - 2300, 2 

17 0.948 0.168  0.898 0.216 0.003 2.28 
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Fig. 4.5 Relationship between the estimated contents and the reference contents of (A) 

gentiopicroside; and (B) swertiamarin in Gentiana scabra Bunge. 

 

4.4 CONCLUSIONS 

This study applied ICA in NIR spectroscopy analysis on gentiopicroside and 

swertiamarin - bioactive components of Gentiana scabra Bunge and discussed relevant 

tissue culture and grown plant (including shoot and root). By selecting ICs that were 

highly correlated to the bioactive components, the space of ICs could clearly show the 

distribution of gentiopicroside and swertiamarin in different parts of Gentiana scabra 

Bunge. Additionally, the predictability of the spectral calibration models on the two 

bioactive components was adequate for establishing qualitative and quantitative 

correlations. Therefore, by combining ICA with NIR spectroscopy, fast and accurate 

inspection of gentiopicroside and swertiamarin in Gentiana scabra Bunge at different 
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growth stages could be achieved. This technology could contribute substantially to the 

quality management of Gentiana scabra Bunge during and post cultivation. 
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CHAPTER 5. INTEGRATION OF INDEPENDENT COMPONENT ANALYSIS 

WITH NEAR INFRARED SPECTROSCOPY FOR 

EVALUATION OF RICE FRESHNESS 

5.1 INTRODUCTION 

Near infrared (NIR) spectroscopy, a rapid nondestructive inspection method based on 

specific absorptions within a given range of wavelength corresponding to the 

constituents in the sample, has been widely applied for evaluation of internal quality of 

agricultural products (Delwiche, 1998; Delwiche and Graybosch, 2002; Bao et al., 2007; 

Chen and Huang, 2010; Salgó and Gergely, 2012). Because an NIR spectrum of a 

mixture on first approximation is the linear addition of individual spectra of the 

constituents in the mixture, such a spectrum thus can be regarded as an assembly of 

‘blind sources’ as the proportion of constituents in the samples remains unknown 

(Hyvärinen et al., 2001). A multiuse statistical approach originally used to implement 

‘blind source separation’ in signal processing (Herault and Jutten, 1986; Vittoz and 

Arreguit, 1989), known as independent component analysis (ICA), is capable of 

disassembling the mixture’s signals from a Gaussian distribution into non-Gaussian 

independent constituents with only a small loss of information and does not require any 

additional information from the source (Comon, 1994). 

 

Application of ICA for spectrum analysis has been demonstrated by Chen and Wang 

(2001) in separating the pure spectra of various constituents from the NIR spectra of the 
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mixtures, whereupon relationships were established between the estimated independent 

components and the constituents. Such a capability also enabled complete explanation 

of the constituents’ properties for NIR qualitative analyses (Westad and Kermit, 2003). 

In addition, ICA was used to obtain statistically independent and chemically 

interpretable latent variables (LVs) in multivariate regression (Gustafsson, 2005). It was 

also noted that the number of independent components extracted from the spectra of 

mixtures is related to the performance of ICA (Westad, 2005). Moreover, ICA was 

employed to identify the infrared spectra of mixtures containing two pure materials 

(Hahn and Yoon, 2006) as well as the constituents in commercial gasoline (Pasadakis 

and Kardamakis, 2006; Kardamakis et al., 2007). Equally noteworthy is the observation 

that the calibration model built through multiple linear regression (MLR), after using 

ICA to extract independent components of aqueous solutions, gave good predictability 

(Kaneko et al., 2008). In other work, the accuracy of the NIR estimation of sucrose 

concentration (Chuang et al., 2010) and glucose concentration (Al-Mbaideen and 

Benaissa, 2011) were enhanced by using ICA. 

 

While application of ICA for spectral analysis appears promising, available literature 

still focuses mainly on chemical samples or non-natural products. To date, ICA has not 

been applied to NIR quantitative analysis of the internal quality of rice. The storage 
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time of rice has an enormous effect on its appearance, flavor, and quality of the nutrients 

(Zhou et al., 2002). A previous study demonstrated that most lipids in rice hydrolyze 

into free fatty acids and cause the acidity of rice to increase with prolonged storage 

(Takano, 1989; Hu, 2011; Chen et al., 2011). Therefore, the determination of rice 

freshness is one of the main goals in site examination. There is a strong need to develop 

a non-invasive, rapid detection method for the analysis of freshness. Therefore, the 

objective of the current study was to examine rice freshness in terms of qualitative and 

quantitative approaches using NIR spectroscopy. Rice freshness was expressed by both 

pH value and fat acidity (Hu, 2011; Chen et al., 2011). The pH values were determined 

by bromothymol blue - methyl red (BTB-MR) method (Hsu and Song, 1988) and fat 

acidity by AACC International method 02-02.02 (AACC International, 2000). By means 

of a calibration curve, a relationship between pH and fat acidity was established (Hu, 

2011; Chen et al., 2011). ICA was subsequently integrated with NIR spectral analysis to 

quantify the pH in rice. Linear regression was then used to build spectral calibration 

models of pH value. 

 

5.2 MATERIALS AND METHODS 

5.2.1 SAMPLE PREPARATION 

A total of 180 (= 6 cargo lots × 30 draws per lot) Tainan 11 (TN-11) paddy rice 
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samples stored at 10-15°C were provided by the Erlin Farmers’ Association, Changhua 

County (a central-west coastal county in Taiwan) and Agricultural Research and 

Extension Station, Taichung in Taiwan, including 6 crop seasons (1 lot per season): 2nd 

crop of 2010, 1st crop of 2010, 1st crop of 2009, 1st crop of 2008, 1st crop of 2007 and 1st 

crop of 2006. All samples were collected at one time and then dehulled and milled soon 

thereafter (Hu, 2011; Chen et al., 2011). 

 

5.2.2 NIR SPECTRA AND PH VALUE MEASUREMENT 

A NIRS 6500 spectrophotometer and sample transport module (FOSS NIRSystems, 

Laurel, MD, U.S.A.) with coarse granular sample cell was used to measure rice 

reflectance spectra (Hu, 2011; Chen et al., 2011). The wavelength ranged from 400 to 

2498 nm in 2 nm intervals. The NIR spectrum of each sample was the average of 32 

scans. 

 

Two chemical methods, AACC method 02-02.02 and the BTB-MR method, were 

used to evaluate rice freshness (Hu, 2011; Chen et al., 2011). Natural fats are mixtures 

of esters of fatty acids with glycerol and are essentially neutral. However, partial 

hydrolysis of the glycerides may be caused by unfavorable storage conditions. The 

resultant free fatty acids increase the acidity, which is an indication of deterioration in 
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quality. AACC method 02-02.02 determines total fatty acids in small grains by a 

titrimetric procedure (AACC International, 2000) and was thus adopted for 

quantification of total fat acidity (FA) content of rice in this study (Hu, 2011; Chen et al., 

2011). 

 

The BTB-MR method, a rapid method compared to AACC method 02-02.02, 

determines the pH value of rice by distinguishing the color of a solution of rice in which 

standardized color solutions and pH have been established (Hsu and Song, 1988; Hu, 

2011; Chen et al., 2011). The BTB-MR method has also been adopted as a standard 

method for the examination of rice freshness by Agriculture and Food Agency, Council 

of Agriculture, Executive Yuan in Taiwan. A 200 mL standard solution was first made 

by mixing 0.1 g methyl red (MR), 0.3 g bromothymol blue (BTB), 150 mL ethyl alcohol, 

and distilled water. The standard solution was subsequently diluted by volume ratio 1:50 

with distilled water. After mixing 10 mL of the diluted solution and 5 g of white rice, a 

shaker was employed to evenly disperse the rice in solution. The relationship between 

colors of rice solutions and pH values was established by standard color checks of 

known pH. Upon establishing the relationship between the AACC and BTB-MR 

methods, the latter, because of its ease of use and good precision, served as the standard 

method for assessing rice freshness in this study (Hu, 2011; Chen et al., 2011). 
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5.2.3 DATA ANALYSIS 

5.2.3.1 INDEPENDENT COMPONENT ANALYSIS (ICA) 

Independent component analysis (ICA) is a method used to transform the observed 

multivariate data to statistically independent components (ICs) and present them as a 

linear combination of observation variables. The number of receptors defined by the 

ICA algorithm must be more than or equal to the number of sources, and the signals 

emitted by the sources are in non-Gaussian distributions (Comon, 1994; Hyvärinen and 

Oja, 2000). ICA supposes that all components (sources) are statistically independent. 

The ICs are latent variables; therefore, they cannot be directly observed. This indicates 

that the mixing matrix, the intensity of the sources among the observed signals, is also 

unknown. The purpose of the ICA algorithm is to determine the mixing matrix (M) or 

its inverse, the separating matrix (W). The unknown source, s, is approximated as 

ŝ = Wx = M-1Ms                                                   (5.1) 

where ŝ is the estimation of the sources (s) and x represents the observed spectra of 

the objects. 

 

In the present study, a JADE (joint approximate diagonalization of eigenmatrices) 

algorithm (Cardoso and Souloumiac, 1993; Cardoso, 1999) was employed to conduct 
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ICA. In general, the JADE approach offers rapid performance when dealing with 

spectral data compared to other multivariate approaches like principal component 

regression (PCR) and partial least squares regression (PLSR). Assuming that the spectra 

obtained through measurement of the unknown mixtures were the linear combination of 

the spectra of various components, these can be expressed as 

A = MI                                                           (5.2) 

 

The spectra of samples were all linearly composed of m ICs. Matrix Al×n stands for l 

samples containing n values; Im×n stands for the matrix of ICs, including m independent 

components. Ml×m stands for the mixing matrix, which is related to the component 

concentration in the mixture. The linear relationship between the mixing matrix (M) and 

the component concentration (C) can be expressed as: 

C = MB                                                          (5.3) 

where B refers to the regression coefficient matrix. In doing so, the concentration of 

each component in the mixture can be determined by the combination of ICA and linear 

regression. 

 

5.2.3.2 MODEL ESTABLISHMENT 

The ICA algorithm was coded in MATLAB (The MathWorks, Inc., Natick, MA, 
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U.S.A.), which produced the spectral calibration equations. The 180 rice samples were 

divided into 120 calibration samples (2nd crop of 2010, 1st crop of 2009, 1st crop of 2008, 

and 1st crop of 2006) and 60 prediction samples (1st crop of 2010 and 1st crop of 2007). 

After the respective spectral calibration equations for rice were built, these equations 

were then used to predict the pH values in the calibration and the prediction sets. The 

evaluation of predictability was based on the following statistical parameters: 

multivariate coefficient of determination of the calibration (R2), standard error of 

calibration (SEC), standard error of prediction (SEP), bias, and the ratio of the standard 

error of performance to the standard deviation of the reference values (RPD). 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 RELATIONSHIP BETWEEN FAT ACIDITY AND PH VALUE 

In the present study the BTB-MR method served as a standard method for assessing 

rice freshness due to its rapidness and convenience compared to AACC method 

02-02.02 (Hu, 2011; Chen et al., 2011). The pH measurement procedure was performed 

on each of the 180 samples, with values ranging from 5.20 to 6.96. The average pH 

from a total of 180 samples was 5.90, and the standard deviation was 0.53. To establish 

the relationship between fat acidity and pH value, a total of 18 (= 6 crop seasons × 3 

samples per season) rice samples were randomly selected to receive AACC method 
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02-02.02 (Hu, 2011; Chen et al., 2011). A calibration curve of fat acidity versus pH 

value from the selected samples is shown in Fig. 5.1, with the coefficient of 

determination (r2) being 0.924 according to the linear regression equation (Hu, 2011; 

Chen et al., 2011). 

FA (KOH mg/100g) = -1.6213 × pH + 44.141                              (5.4) 

The fat acidity of the other samples thus can be accurately calculated by the 

calibration curve, however, for the remainder of this study just the BTB-MR pH value is 

used. 

 

 

Fig. 5.1 Relationship between fat acidity and pH value established by the 18 selected 

rice samples (Hu, 2011; Chen et al., 2011). 
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5.3.2 DISTRIBUTIONS OF THE PH VALUE IN RICE 

The distribution of pH values of six crop season samples is shown in Fig. 5.2. It can 

be clearly found that pH value of rice decreases with increasing storage time. For the six 

crop season samples, four groups can be identified according to their pH values, with 

group 1 (6.5-7.0 pH, n = 31) containing the 2nd crop of 2010, group 2 (6.0-6.5 pH, n = 

30) containing the 1st crop of 2010, group 3 (5.5-6.0 pH, n = 63) containing the 1st crop 

of 2009 and 1st crop of 2008, and finally group 4 (5.0-5.5 pH, n = 56) containing the 1st 

crop of 2007 and 1st crop of 2006. The average pH levels of the calibration and 

prediction sets are 5.93 and 5.86, and their standard deviations are 0.58 and 0.41, 

respectively. 
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Fig. 5.2 Distributions of pH values for six crop seasons of white rice samples. 
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5.3.3 NIR SPECTRA DECOMPOSITION AND ICA ANALYSIS OF THE PH 

VALUE 

The full visible through near infrared wavelength range (400 to 2498 nm) was used as 

the inputs of ICA. According to the definition of ICA, the observed receptor signals can 

be decomposed at most into a number of ICs (independent components) equal to the 

number of samples (Hyvärinen and Oja, 2000). Therefore, the calibration samples could 

have been decomposed into 120 ICs; however, applying too many ICs could easily lead 

to over fitting of the model as well as be time-consuming. Hence, ICA was conducted 

for the original spectra by selecting 1 to 15 ICs, and observing the prediction error of 

the calibration samples. As shown in Fig. 5.3, when the number of ICs increased to 5, 

SEC decreased to 0.202, and SEP fell to 0.233, indicating that different numbers of ICs 

can influence the predictability of the calibration model. However, application of more 

ICs did not necessarily improve the ability of the calibration model; hence, only the 

initial 5 ICs were applied. 
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Fig. 5.3 Relationship between the numbers of independent components and the model 

standard errors for pH value. 

 

Selection of the numbers of ICs influences how the information is used after spectral 

decomposition. The ICs reflected the spectral characteristics of the unknown mixture 

and constituted the pure materials’ spectra of this mixture under an ideal state (Chen and 

Wang, 2001; Hahn and Yoon, 2006; Pasadakis and Kardamakis, 2006; Kardamakis et al., 

2007). Since white rice is a mixture of carbohydrates, lipids, storage proteins, enzymes, 

nucleic acids and other macro molecules, and the spectra inherently represent these 

constituents, the ICs decomposed by ICA should reflect, among other components, the 
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characteristics of the lipids. For the original spectra of the calibration set, among the 5 

ICs used, the order of the 5 ICs, according to the correlation with reference pH values, 

was IC 4, 3, 2, 5 and 1. ICs 4, 3 and 2, have higher correlation than others and can be 

considered to respond mainly to the information of lipids, as the composition of lipids in 

white rice is complicated. Distributions of calibration and prediction sets of white rice 

in IC-2 IC-3 IC-4 space are shown in Fig. 5.4. Calibration samples are clearly separated 

into 3 groups, as are the prediction samples. The results are consistent with the groups 

seen in Table 5.1. Among calibration set, samples of 2010 gathered very close, 

indicating that the quality of new rice was consistent and uniform. Samples of 2009 and 

2008 were interspersed, which means that the degrees of deterioration of them were 

very similar. Some samples of 2008 spread widely due to their quality decaying 

gradually. The variation trend for the samples in IC-2 IC-3 IC-4 space can be readily 

observed. The longer storage time of rice is, the lower the values of ICs 2 and 3 are, and 

the higher the value of IC 4 is. Hence, this is consistent with the direct relationship 

between acidity (low pH) and level of deterioration. It is interesting to note that samples 

of 2007 spread widely, suggesting that they underwent continuous quality decaying. 

Samples of 2006 clustered together but out of the variation tendency by reason of too 

long storage time. This indicates that white rice with different pH levels can be 

distinguished by ICA. 
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Fig. 5.4 Scores of white rice with 6 crop seasons in the vector space of independent 

components 2, 3, and 4 established with calibration samples. a = calibration set, 

b = validation set. 

 

Table 5.1 Regression results by ICA analyses for white rice. 

Calibration Set (120)  Prediction Set (60) 

Mean: 5.93, Std Deviation: 0.58  Mean: 5.86, Std Deviation: 0.41 

ICs R2 SEC  SEP bias RPD 

5 0.882 0.20  0.23 0.068 1.75 

 

Quantitative analyses of pH value in white rice were conducted by ICA using the full 

wavelength range of 400 to 2498 nm. The calibration model built by ICA is shown in 

Table 5.1 with 5 ICs applied. In Fig. 5.5, a scatter plot is made with the reference pH 
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value and the predicted pH value of each sample in the calibration set and prediction set. 

The results are R2 = 0.882, and in units of pH, SEC = 0.20, SEP = 0.23, and bias = 

0.068. This produced an RPD = 1.75. Hence, ICA achieved pH value quantitative 

analysis results at a level suitable for screening. Moreover, the small value for bias 

indicated that ICA had a high level of tolerance from the influence caused by factors 

other than the internal chemical composition of the samples. Satisfactory outcomes 

were achieved in modeling pH in stored rice. 
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Fig. 5.5 Scatter plot of the reference pH values and the predicted pH values by 

independent component analysis of the NIR spectra. 

 

5.4 CONCLUSIONS 

ICA was integrated with NIR spectral analysis to quantify the internal quality of rice. 

A quantitative model was developed using ICA factors to predict the pH value of 

ground white rice in solution as a proxy for rice freshness. The results show that ICA 

quantitative analysis methods with near infrared spectroscopy can successfully 
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distinguish rice freshness and can serve as a nondestructive rapid analytical screening 

tool. 
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CHAPTER 6. GENERAL CONCLUSIONS 

6.1 GENERAL DISCUSSION 

In the dissertation, independent component analysis (ICA) was first adopted as the 

sole tool for NIR quantitative analyses of biomaterials, including wax jambu fruit 

(Chuang et al., 2010; Chuang et al., 2012c), medicinal plant Gentiana scabra Bunge 

(Chen et al., 2010; Chuang et al., 2012b; Chuang et al., 2013), and milled white rice 

(Chuang et al., 2012a), to evaluate the applicability of this method. Influence due to 

various format types of samples (sucrose solution, intact fruit, dry powder of Gentiana 

scabra Bunge, and rice kernel) was also studied. 

 

In the first part, ICA was applied as the sole tool to integrate with NIR spectroscopy 

for rapid quantification of sugar content in sucrose solutions and wax jambu. ICA gave 

a comprehensive approach to characterize the NIR spectra with respect to the sugar 

content in wax jambu and sucrose solutions that other multivariate analysis methods 

cannot deal with. The spectral calibration models built by ICA had high predictability 

for both wax jambu and sucrose solutions. Compared to PLSR, ICA can identify the 

sugar features in the spectra of wax jambu and then evaluate their concentrations more 

effectively. Therefore, it offers a reliable tool for quantitative analysis of sugar content 

in wax jambu by NIR spectroscopy. ICA in conjunction with NIR spectroscopy also has 
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a potential to be applied to identify multiple constituents and evaluate their 

concentrations of agricultural products. 

 

Regarding medicinal plants, NIR was applied for quantitative analysis of 

gentiopicroside which was one of the bioactive components in the medicinal plant 

Gentiana scabra Bunge. It was found that the spectral pretreatments of MSC in 

combination of 2nd derivative reduced the spectral noise caused by the nonuniform 

particle sizes of Gentiana scabra Bunge powder. The specific wavelength regions or 

specific wavelengths selected based on their characteristic response to gentiopicroside 

could effectively improve the predictability of the calibration models. This study 

successfully built the spectral calibration models for Gentiana scabra Bunge tissue 

culture and grown plant, which enable quantitative inspection of the bioactive 

component gentiopicroside in Gentiana scabra Bunge during different growth stages. 

The specific wavelengths selected in Silicon CCD sensing band can be used as the 

foundation to establish a nondestructive and rapid method to assess the quality of 

Gentiana scabra Bunge using multi-spectral imaging. 

 

For further evaluation, this study applied ICA in NIR spectroscopy analysis on 

gentiopicroside and swertiamarin - bioactive components of Gentiana scabra Bunge 
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and discussed relevant tissue culture and grown plant (including shoot and root). By 

selecting ICs that were highly correlated to the bioactive components, the space of ICs 

could clearly show the distribution of gentiopicroside and swertiamarin in different 

parts of Gentiana scabra Bunge. Additionally, the predictability of the spectral 

calibration models on the two bioactive components was adequate for establishing 

qualitative and quantitative correlations. Therefore, by combining ICA with NIR 

spectroscopy, fast and accurate inspection of gentiopicroside and swertiamarin in 

Gentiana scabra Bunge at different growth stages could be achieved. This technology 

could contribute substantially to the quality management of Gentiana scabra Bunge or 

other medicinal plants (e.g. Herba Saussureae Involucratae) during and post cultivation. 

 

On the other hand, ICA was integrated with NIR spectral analysis to quantify the 

internal quality of rice. A quantitative model was developed using ICA factors to predict 

the pH value of ground white rice in solution as a proxy for rice freshness. The results 

show that ICA quantitative analysis methods with near infrared spectroscopy can 

successfully distinguish rice freshness and can serve as a nondestructive rapid analytical 

screening tool. 

 

In conclusion, by combining ICA with NIR spectroscopy, fast and accurate evaluation 
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of constituents in biomaterials could be achieved. ICA offers a rapid and reliable tool 

for quantitative analysis of constituents in biomaterials by NIR spectroscopy. This 

technology could contribute substantially to identify multiple constituents of 

biomaterials and evaluate their concentrations. 

 

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

There are several ways for the application of ICA for future research. First, ICA can 

be applied to deal with more research topics according to their needs or requirements. 

The analysis results of ICA by conducting JADE algorithm can also be assessed by 

comparing to other algorithms like FastICA and kernel ICA. Second, the combination of 

ICA and other multivariate analysis methods such as ICA-ANN, ICA-LS-SVM, and 

ICA-SVM may be available to deal with nonlinear problems instead of using ICA. 

Third, ICA can be integrated with spectral imaging or fluorescence imaging technology 

for inspection of biomaterials and food products in food safety and quality assurance 

issues. Finally, the relationship between the values of CV and the ICA calibration 

models could be explored for further research. 
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