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中文摘要  

邊值問題是許多工程及數學領域上很常見的問題，也有許多其他形式的問題

經轉換而成邊值問題，如何有效精確地求解邊值問題是工程師很重要的課題。邊

值問題當中的耦合邊值問題具有兩條或以上的方程式，方程式彼此之間交互影響，

因為方程式的相依性，增加求解的難度。本文所使用的求解兩點邊值問題的方法

為李群打靶法，其中運用的一步保群算法具有李群的封閉性、快速計算…等等的

優點，已經精確地解決了許多二階或是三階的邊值問題。本論文利用李群打靶法

的優點，將求解的問題推廣至三階與二階耦合邊值問題，推導一個新形式的李群

打靶法，並結合不同李群來做求解，驗證李群打靶法在耦合邊值問題上，仍具有

準確性。結合工程數學、廣義中值定理等等觀念，推導產生李群打靶法的步驟後，

由常用的市售程式語言之一 MATLAB 來實行，以期推廣至更複雜的邊值問題，

如高階耦合、多重耦合邊值問題…等等。 

 

關鍵字：李群、李代數、保群算法、李群打靶法、耦合邊值問題、邊界層 
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ABSTRACT 

In enginerring and mathematics, boundary value problems are common problems. 

There are many other form problems that are transformed to boundary value problems. 

How to accurately solve the boundary value problems is a very important subject for 

engineers. The coupled boundary value problem is one kind of boundary value 

problems with two or more equations, and there are interactions between equations. 

Because of the cross dependencies of equatioms, the difficulty of solving boundary 

value problems increases. In this study, the numerical solution for two-point boundary 

value problems is the Lie-group shooting method(LGSM). By using the advandtages 

of Lie-group`s closure property and quick calculation ,…etc, the one-step group 

preserving schemes has been used to accurately solve many second-order or 

third-order boundary value problems. In this paper ,the advantages of using the 

LGSM for solving the prombles will be extended to two and three-order coupled 

boundary value prombles. Developing a new form of LGSM, and combining different 

Lie-groups for solving the coupled boundary value problems. We will prove that the 

new form LGSM for solving coupled boundary value problem is accurate. After 

deducing the steps of using LGSM with engineering mathematics and Generalized 

mid-point rule…etc, we will use one of the commonly used commercial programming 

language MATLAB to implement steps. We expect LGSM to be extended to more 

complex boundary value problems, such as high-order coupled, multi-coupled 

boundary value problems…and so on. 

 

Key words: Lie-group, Lie-algebra, group preserving schemes (GPS), Lie-group 

shooting method (LGSM), coupled boundary value problems, boundary layer 
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第 一 章 緒論 

Equation Section 1 

1.1 前言 

土木工程在人類發展的各種工程中，與人類關係最為緊密，同時也是跟大自

然有著最密切關係的一類。人類在地球上謀生，不管食、衣、住、行哪方面都脫

不了與土木工程的關係及影響。至今土木工程可以改善人們生活環境，提高生活

水準，而且可以帶動其他工程的發展。不管促進交通進度、經濟發展，或是鞏固

居住、行車甚至國防安全，關係國計民生，土木工程都是一個重要的基本建設工

程。 

土木工程泛指一切關於計畫、建造與維修與水、土、文化有關的基礎建設，

道路、橋梁、建造房屋、水利、防災工程等等。由於包含的範圍廣泛，所需要接

觸的相關知識也非常多，土木工程逐漸成為一門獨立的學科。並隨著這兩三百年

工程科學的日益進步，知識的日漸累積，許多土木工程包括的範圍分分獨立成科，

如分析與設計載重作用下的建築結構的結構工程、著重於水流體的自然運動與人

工運輸即利用的水利工程、將人、車、路、環境似者統一在一個系統中並加以探

索其規律尋找最佳配合的交通工程、研究泥土構成物質的工程特性的大地工程、

改進研究度量方法的測量工程等等，而各自學科又可再加以細分來精進研究與改

進。整合合併各領域的專業來改進現有的建設與環境，增進人們福祉。 

 在研究土木工程的過程中，因為人為、因素、資源的不充足…等等因素造成

研究的困難，設計分析上常常遇到需要求解複雜的函數，並且因為涵蓋多種類因

素的影響，遇到問題中的函數可能是高維度、可能是高階的、方程式彼此之間交

互耦合的，其可能不存在閉合解、甚至是無解的情況，如何解決這些工程上的問

題，是土木工程師很重要的一門課題。 

 工程問題中，常常會需要求解方程式，常微分方程更是常見的問題之一。而

常微分方程式又分成初始值問題與邊界值問題。隨著方程式的階數的提高、方程
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式的耦合，求解變得更加困難。許多學者於不同領域各自發展了求解的方法，且

因為常遇到無閉合解的存在，數值分析便是一個求解的方式，目的不在於求出完

全符合真解的答案，而是在一個合理可接受的誤差範圍內找尋一個近似解。在這

邊的主要研究部分是邊界值問題，即是找尋一個與邊界約束條件符合的微分方程

的解，常使用級數法、打靶法等方法來解決問題。 

打靶法有著簡單、容易理解的的求解過程，將初始值不足的條件加以猜測，

積分至右端，幾乎不會恰巧與另一端邊界條件吻合，但是希望通過這次的結果，

來修正下一次的猜測值，直到最後能命中目標，是一個將邊界值問題轉換成初始

值問題的方法。李群為一個微分流形，給予一個群的構造，在局部有著代數的構

造，使其提供一個較好的演算法則，可以保有原本問題的特性。 

 

1.2 文獻回顧 

在求解邊界值問題中，很常採用使其兩端約束條件符合的迭代算法，例如有

限差分法、有限元素法、配置法(collocation method)、簡單打靶法(simple shooting 

method)及級數解法，其中打靶法為簡單也常被使用的，有許多關於打靶法的參

考書或者論文，例如 Kubicek and Hlavacek [1], Keller [2], and Ascher [3]等等。 

簡單打靶法是一種反覆測試的方法，不斷的替換猜測來找尋結果，需要大量

的計算時間，而且用於求解複雜方程式的問題時，對猜測值則非常敏感，容易產

生不穩定或是不準確的情形，也容易發生不收斂的情況。如何有效合理的選擇初

始猜值，是打靶法最必要，但也是最困難的部分，於是學者們發展出其他方式來

修正簡單打靶法，例如多重打靶法(multi shooting method) [4]、利卡提法(Riccatio 

method) [3]、修正簡單打靶法(modified simple shooting method) [5]等等。 

學者劉於 2001 年，透過積分因子的概念，將原始非線性問題增加一個維度，

成為一個擬線性(quasi-linear)的系統，符合勞倫茲群(Lorentz group)的特性。在閔

式時空(Minkowski space)內推導的保群算法(GPS) [6]，是一個新的數值積分方法，
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賦予其光錐的構造，又具有李代數與李群的性質。在 2006 年，學者劉 [7]便將

打靶法的優點以及李群的特性做結合，發展一套有效合理猜測不足條件的演算方

法，並將其用於求解二皆邊界值問題上。學者劉運用此積分方法來進行打靶求解

二階常微分方程 [8]與兩點邊界值問題 [7, 9]，並且證明此積分方法對於求解邊

界值問題具有一定的準確性。 

透過運用李群獨特的封閉性質與廣義中值定理 [10]等等概念，理解到其可

以建立一套初值與末值的關係，省略漫長的積分過程，可利用已知邊界值快速求

解未知邊界值，推出了一步保群算法(one-step GPS)的概念。學者劉 [11]用於求

解隨時間變化的熱物理問題，並探討其性質，於 2007 年用於求解熱容與熱導率

問題 [12]，在 2008 年用於研究估算未知熱應力的邊界值問題 [13]，也首次用於

求解特徵值問題，找尋二階施圖姆-劉維爾問題(Sturm-Liouville problems)的特徵

值與特徵向量 [14]，同年用於求解流體力學中具有三階微分方程的的邊界層問

題 [15, 16]，利用打靶法來計算彈力的挫曲行為 [17]，研究時變阻尼與勁度係數

的振動問題 [18]。 

2012 年學者劉發明另外一種李群打靶法，將和前面研究的觀念，運用不同

於一開始推導保群算法所用的勞倫茲群的李群，而使用另一種李群為特殊線性群，

發展一套新的李群打靶法，重新求解了二階施圖姆-劉維爾問題 [19]，求解隨著

係數不同，解的組數不固定的二階邊界值問題 [20]，拉普拉斯(Laplacian)非線性

常微分方程 [21]，同年運用以前的勞倫茲群打靶法求解奇異攝動邊界值問題 

[22]，同時求解多維度非線性的李群打靶法 [23]，以及求解達芬非線性振子問題，

找尋控制的最佳化 [24]。 

前述的文獻，發現用於各種問題上，李群打靶法能有效地找到未知邊界值來

解決問題，具有相當的可靠性。 

 



 

4 

1.3 研究動機與目的 

劉學者結合保群算法與打靶法的概念，運用李群打靶法已經解決了許多工程

上的問題，如前面文獻所簡介，通過得到高精度的數值解，驗證此法具有可行性。 

前述文獻中大多數的問題都是屬於二階或是三階的邊值問題，於是做個假設，

李群打靶法的優點運用在高階耦合邊界值問題(high-order coupled boundary value 

problems)上，是否能求解，且仍具有高精度的誤差。此假設成為我的研究動機，

證明的使用例子主要為三階與二階耦合常微分方程的邊值問題，基本形式如下 

 1

2

( , ( ), ( ), ( ), ( ), ( ), ( ), ( )) 0

( , ( ), ( ), ( ), ( ), ( ), ( ), ( )) 0

F t u t u t u t u t v t v t v t

F t u t u t u t u t v t v t v t

′ ′′ ′′′ ′ ′′ =
′ ′′ ′′′ ′ ′′ =

 (1.1) 

十個邊界值部分為已知，部分為未知。將被使用的李群為特殊線性群 ( , )SL n 

(special linear group)與正規正時勞倫茲群 0 ( ,1)SO n (proper orthochronous Lorentz 

group)。隨著方程式越高階與越複雜、高度非線性，我們在求解問題的困難度提

高是可以預知的，假如推導的新形式的李群打靶法能有效的解決此類耦合問題，

往後就可以將問題再加以推廣，如三階與三階耦合、四階與三階…等等的邊界值

問題，讓李群打靶法在工程實務上能有效且可靠地被工程師所使用。 

 

1.4 論文架構 

本文共計分成六個章節，各自的簡述如下： 

 第一章為緒論，講述工程上常遇到的邊界值問題，各個文獻中不同的邊界值

問題，以及他們求解邊界值問題的方法，並且簡介本文的核心－李群打靶法的由

來，在文獻回顧中，介紹以往的李群打靶法曾經用於解決哪些問題，並提出更能

解決更高階複雜問題的李群打靶法的假設性，期望在後面加以驗證，將李群打靶

法延伸至更廣泛的問題上做求解。 

 第二章主要介紹劉教授發展的獨特數值積分方法，為保群算法，源自於運用

光錐的特殊構造以及李群、李代數的特性來求解初始值問題，形式不同於常見的

尤拉法、RK4 法，保群算法能相當準確的映射至下一點。並且將簡略的介紹李



 

5 

群的由來，由群發展至李群與李代數，以及透過凱萊轉換、指數映射的方法，如

何推導出一套新的積分方法－保群算法，以及這方法具有那些特性，如閔氏時空

基底、光錐構造等等，都會在此章做詳細的說明。 

 第三章是論文的核心，基於第二章的保群算法的概念，以以往的李群打靶法

為基礎，將問題延伸至高階耦合邊界值問題，運用不同的李群，或是他們之間的

組合，發展兩套不同的李群打靶法，特殊線性群打靶法，以及特殊線性群與勞倫

茲群打靶法，推導過程將會在此章詳述。 

第四章是數值算例驗證，從簡單的三階至耦合方程組開始，至三階與二階耦

合邊值問題，驗證所推導的高階耦合李群打靶法能被實現，而具有準確性。 

第五章為結論與未來展望，針對數值算例的結果進行討論，歸納優缺點，以

及提出未來可以繼續研究的方向，期望能有更好的結果。 
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第 二 章 保群算法 

Equation Section 2 

2.1 群 

群這個觀念在數學及自然科學中都非常重要，它的起源源自各學者在研究多

項方程式時，高次方程式求解所遭遇的困難而發展出來的理論。 

一、二次方程式的解法很早就為人所熟悉，十八世紀末約瑟夫·拉格朗日 

(Joseph Lagrange) 把前人解三、四次代數方程的各種解法，利用方程式根的置換

觀點，給予求解四次以下的方程式一個標準的方法，此想法已蘊含了群的概念。

群由法國數學家埃瓦里斯特·伽羅(Évariste Galois)於 1830 年代開創，當年年僅十

九歲，其利用拉格朗日的觀念，發現高次方程式可以用根式解的充要條件，說明

五次以上之方程式為何沒有公式解，而四次以下有公式解，其依據給定的多項式

方程式的根的群給出對它可解性的判斷準則。 

經由約瑟夫·拉格朗日及瓦里斯特·伽羅等人的努力，解決了根式解方程式的

問題，但是求解此問題的過程中，同時發展了的群方面的理論，在得到來自其他

領域如數論和幾何學的貢獻之後，群概念在 1870 年左右形成並牢固建立。之後

學者們為了研究探索群，發展出各種的概念將群分解分類成更小範圍、更容易理

解的部分。研究群的群理論學者們從理論與計算兩種角度切入來研究如何具體的

表示一個群，至今對有限群已經發展出一套特別豐富的理論，許多的書及文章對

於群皆有詳細的介紹，如[25, 26]等等。 

群在數學中是很熱門的學科。群是一種代數結構，由一個集合與一個二元運

算組成，並且必須滿足特定條件，這些條件被稱為群公理(group axioms 也被稱作

group postulates)，其中包含封閉性、結合律、單位元素與逆元素。 

群的表示法：某個集合 G 在一個二元運算∗ 下，表示成 ,∗G  

1. 封閉性(Closure)： , ,a b a b c c∈ ∗ =  ∈G G   

假如 a、b 屬於 G，經過一個二元運算後所得的結果必然存在於 G 中。反例



 

7 

如負整數集合在乘法下，兩個負整數相乘後不屬於負整數，因此不具有封閉

性。自然數在加法與乘法下具有封閉性，反之，減跟除運算不具有。 

 

2. 結合律(Associativity)： ( ) ( ), ,a b c a b c a b c∈  ∗ ∗ = ∗ ∗G   

二元運算*必須具有結合律。如實數在加法、乘法下具有結合律，減法跟除法

不具有。              ( ) ( )3 2 -1=0 3- 2-1 =2− ≠  

 

3. 單位元素(Identity element)： , * *e a a e e a a∈  = =G  

G 裡面的任何元素與單位元素 e 做二元運算都會回到自身。例如實數在乘法

中的單位元素是 1，加法中是 0。反例，三維向量在外積(cross product)中，A

向量除了零向量或是與 A垂直的向量外，無其他向量滿足 A E A× = 。 

 

4. 逆元素(Inverses element)： 1 1 1, * *a a a a a a e− − −∈  = =G  

e 為單位元素。如自然數 a 在加法下無逆元素，有 0 為單位元素，但是0 ∉， 

且 a 的逆元素 a− ∉。 

舉一個例子來驗證群的四個公理，非零有理數在乘法下 { }0 ,− ∗ ：可以簡

單知道乘法在非 0 隨機有理數下有封閉性與結合律，有單位元素 { }1 0 ,∈ − ∗ ，

裡的任何元素都滿足

1 1

1
p q q p

q p p q

− −
   

∗ = ∗ =   
   

，所以 { }0 ,− ∗ 為一個群。 

另外在群中進行二元運算的次序是很重要的， a b b a∗ = ∗ ，滿足交換律的群

稱為交換群或阿貝爾群(Abelian Group)，以尼爾斯·阿貝爾(Niels Abel)命名，如整

數在加法或乘法下 , , ,+ ∗  具有交換律， ,a b b a a b b a+ = + ∗ = ∗ 。 

群公理中兩個重要的結論為單位元素與逆元素的唯一性，一個群中只能有一

個單位元素，群中任何元素都只恰好有一個逆元素。以下為證明： 



 

8 

1. 單位元素唯一性： 

1 2,e e G∈ ，且 1e 、 2e 都是G 的單位元素，因為 1e 為單位元素，依據單位元

 公理可知 

 1 2 2 1 2e e e e e∗ = ∗ =  (2.1) 

又因為 2e 為單位元素，同樣依據單位元素公理 

 2 1 1 2 1e e e e e∗ = ∗ =  (2.2) 

 由(2.1)與(2.2)式，可得 1 2e e= 。 

2. 逆元素唯一性： 

1, ,a a a G− ′∈ ， 1a− 與 a′ 皆為 a 的逆元素， 由逆元素公理可知 

 ( )1a a a e a a− ′ ′ ′∗ ∗ = ∗ =  (2.3) 

 ( )1 1 1a a a a e a− − −′∗ ∗ = ∗ =  (2.4) 

依據結合律(2.3)與(2.4)式相等，得出 1a a− ′= ，得證。 

許多的數學結構、科學都具有這些公理。有著以上這些觀念，將群運用在求

解方程式，舉一個簡單的例子，利用非零有理數乘法群 { }0 ,− ∗ 解方程式如

下： 

 3 15x∗ =  (2.5) 

1. 根據逆元素公理，存在唯一逆元素 13− ，依據封閉性： ( )1 13 3 3 15x− −∗ ∗ = ∗  

2. 依據結合律公理： ( ) ( )1 1 13 3 3 3 3 15x x− − −∗ ∗ = ∗ ∗ = ∗  

3. 依據逆元素公理：1 5x∗ =  

4. 依據單位元素公理： 5x =  

可得 x 是唯一且可求解的。此外可從此例看出，假如一個群要用來求解問題時， 

其集合必須大到所有元素經過運算子計算後還在群內，假如上例中的集合是整數

的話，其逆元素便不屬於整數，2 5x∗ = ，其解也不是屬於整數。 

子群： 
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 假設 ,∗G 為一個群，G 的一個子集合 H，在同樣的二元運算∗下，仍滿足

四個群公理定義，意思是 H 內的元素經∗運算後仍必須在 H 內，形成一個群，

則可以稱 ,∗H 為 ,∗G 的一個子群，而稱 ,∗G 為 ,∗H 的母群，可用(2.6)式來

表示 

 , ,∗ < ∗H G  (2.6) 

依照子群的定義，複數加法群 C、實數加法群 R、有理數加法群 Q 及整數加法

群 Z，則有著以下的子群關係。 

 < < <Z Q R C  (2.7) 

 

2.2 李群 

索菲斯·李(Sophus  Lie)於西元 1880 年代發現在數學結構的連續對稱性，創

造了連續對稱理論，並建立了連續變換群的基礎，在分析微分方程式的連續對稱

性上提供一個架構。連續變換群中每個變換與兩個變換的乘積都依賴著參數，而

且此依賴關係是解析的。之後被運用在數學、幾何、物理等等領域上，後人為了

紀念其貢獻，便將連續變換群以李群命名。李群的定義如下： 

1. 李群為一個群，滿足四個群公理。 

2. 李群的轉換映射都為實解析，而且為一個有限維度的光滑流形( C∞ )(微分流

形)，稱為有限維實解析流形(finite-dimensional real smooth manifold)。 

3. 群中映射的乘法運算 G G G× →  ( ) : ,f a b ab  為解析且具有封閉性

的。 

4. 群中的逆映射運算G G→  − 1a a為解析以及具有封閉性的。 

換句話說李群的集合就是由許多群元素所構成，而它的二元運算子就是群元

素之間的乘法運算，而依據不同的性質，李群定義下可以分類成不同的種類，在

這邊只列舉將會運用到的部分 
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1. 一般線性群(General linear group) 

由n n× 可逆矩陣為集合，意即其行列式值不能為零，二元運算為矩陣的

乘法運算所構成的群，驗證：兩個可逆矩陣的乘積仍是可逆矩陣，可逆矩陣

的逆元素仍是可逆矩陣，矩陣的元素可由實數或複數構成，複數集合

下一般線性群可表示成 ( , )GL n  ，實數集合下一般線性群可表示成

( , )GL n  。 

 ( )det 0≠G  (2.8) 

2. 特殊線性群(Special linear group) 

為一般線性群的子群，除了具備一般線性群的特性外，多了一個條件可

逆矩陣行列式值必須為一的條件，同樣矩陣的元素可由實數或複數構

成，複數集合下一般線性群可表示成 ( , )SL n  ，實數集合下一般線性群可表

示成 ( , )SL n  。 

 ( )det 1=G  (2.9) 

3. 特殊正交群(Special orthogonal group) 

為特殊線性群的子群，其逆矩陣與轉置矩陣相等，同樣可分成複數集合

下 ( , )SO n  ，實數集合下 ( , )SO n  ，而實數下通常可簡寫成 ( )SO n 。 

 , det( ) 1n= = = = =T T T TG IG GIG G G GG I G  (2.10) 

古希臘數學家歐幾里得(Euclid)建立的一套角與空間距離的聯繫法則，包括

處理二維物體的平面幾何，處理三維物體的立體幾何，在數學上，則將其推廣至

任何有限維度空間，這種空間稱為歐幾里得空間(Euclidean space)，可稱為歐式

空間，一般使用上通常省略前面以 n 維空間為名，其上的基底為單位矩陣 nI  

 

1 0

0 1
n

 
 =  
  

I


  


 (2.11) 

而前面提到的三個李群的元素都使用實數域的部分，意即皆屬於歐氏空間。 
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德國數學家赫爾曼·閔考斯基(Hermann Minkowski)在其學生阿爾伯特·愛因

斯坦(Albert Einstein)提出相對論後，將其與勞倫茲轉換(Lorentz transformation)重

新表述成一個 n+1 維的時空 1n+ ，稱為閔考斯基時空(Minkowski space)，又可稱

閔氏時空或是閔氏空間，其基底為閔氏空間度量(Minkowski metric)，表示成 

 1

1

0

0 1
n n

n

×

×

 
=  − 

I
g  (2.12) 

4. 正規正時勞倫茲群(proper orthochronous Lorentz group) 

勞倫茲群由荷蘭物理學家亨德里克‧勞倫茲(Hendrik Lorentz)命名，其群

元素皆屬於閔氏空間，而正規正時是指在閔氏空間與其基底下，符合特殊正

交群的特性，以 ( ,1)oSO n 表示，括號內第二個數字代表其多了一個維度。 

 , det( ) 1= = =T TG gG GgG g G  (2.13) 

 

2.3 李代數與指數映射 

李代數為一代數結構，為索菲斯·李(Sophus Lie)當初研究連續變換群引進的

概念，其概念為無窮小變換，用於研究如李群和微分流形之類的幾何對象。 

前一節所提到的李群，具有流形、代數等等性質，代表李群的局部空間具有

某些性質我們可以探討。透過尋找一個有限維度的線性空間來近似其局部空間，

通過深入研究這個線性空間，來反窺探李群的性質。李代數即是為了達到這個目

的，而產生的一個新的有限維度線性空間，或者，李代數可以視為李群的線性化，

定義如下： 

一個域 F上 n 維空間 A ，二元運算為李括號(Lie bracket) [ ], :⋅ ⋅ × →A A A ，

,a b∀ ∈F， , ,x y z ∈A，其中李括號定義為： 

 [ ],a b ab ba= −  (2.14) 

李括號有以下公理： 

1. 雙線性(bilinearity)： 
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[ ] [ ] [ ]
[ ] [ ] [ ]

, , ,

, , ,

ax by z a x z b y z

z ax by a z x b z y

+ = +

+ = +
 (2.15) 

2. 交替性(Alternating on )： 

 [ ], 0x x =  (2.16) 

3. 雅可比恆等式(The Jacobi identity)： 

 [ ] [ ] [ ], , , , , , 0x y z y z x z x y     + + =       (2.17) 

則A 稱為域F上的 n 維李代數， 

其中，假如有 ,x y∈A  根據三個公理，計算下式 

 [ ] [ ] [ ] [ ] [ ], , , , ,x y x y x x x y y x y y+ + = + + +  (2.18) 

由(2.16)式可得知 

 [ ] [ ] [ ], 0, , 0, , 0x x y y x y x y= = + + =  (2.19) 

因此推出 

 [ ] [ ], ,x y y x= −  (2.20) 

意思是在李代數中的乘法運算滿足反交換律。但是對於空間A 中所有元素用李

代數括號[ ],⋅ ⋅ 表達的乘法不一定滿足結合律，意思是下列式子不一定成立 

 [ ] [ ], , , ,x y z x y z   =     (2.21) 

因此元素的乘積必須包含李括號。 

李代數與李群之間的關係是可以將李代數視為李群上切線空間的特性，經由

指數映射(exponential map)從切線空間上映射回李群，前面提到李代數可視為李

群的線性化，指數映射便是提供一個非線性化給李代數，從而回到李群，基本公

式如下 

 e= AG  (2.22) 

G 為李群、A 為李代數，由(2.22)式的關係式，利用工程數學找尋特徵值與特徵
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向量，將 A 矩陣對角化 

 1−=A PDP  (2.23) 

其中 D 為一對角矩陣，(2.22)式可以轉換成 

 

1

2
1

0

0
n

e

e
e

e

λ

λ

λ

−

 
 
 = =
 
 
 

AG P P


 (2.24) 

於是可以推得出 

 ( )det( ) trae= AG  (2.25) 

引入 2.2 節 李群所提到的不同李群，可推知各自的李代數具有一些性質 

1. 一般線性群李代數 gl( , )n   

假如 gl( , )n∈A  ，因為 A 是矩陣，無 ( )det 0=G 的情況，所以無特別條件。 

2. 特殊線性群李代數 sl( , )n   

假如 sl( , )n∈A  ，A 矩陣的跡(trace)必須是零。 

 ( )det 1 ( ) 0tra=  =G A  (2.26) 

3. 特殊正交群李代數 so( )n  

假如 so( )n∈A ，A 為反對稱矩陣(skew-symmetric matrix)。 

 n n×= −  + =T TA A A I IA 0  (2.27) 

4. 正規正時勞倫茲群李代數 so( ,1)n  

假如 so( ,1)n∈A ，A 在閔氏空間基底下滿足 

 ( 1) ( 1)n n+ × ++ =TA g gA 0  (2.28) 

 

2.4 增廣動態系統 

假如有一 n 維的一階常微分方程式系統 
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1 1 1

2 2 2

( , )

( , )

( , )n n n

y f t y

y f t y

y f t y

=
=

=







 (2.29) 

將(2.29)式方程組以向量表示 

 ( , ), , nt t= ∈ ∈y f y y,f    (2.30) 

其中 y 為一個 n 維的向量，以下為了表示方便，除了有需要用到，省略了 ( )ty 與

( , )tf y 內的變數 t、y，定義 

 = -1y
n = y y

y
 (2.31) 

其中 y 為向量 y 的長度 

 ⋅ = Ty = y y y y  (2.32) 

n 對 t作微分 

 

( ) ( )
( ) ( )2 2

2

=

d dd

dt dt dt
= = = + −

⋅
= + −

 
= − ⋅  

 
 

− ⋅  
 

-1

-1 -2

-1 -

y y yn
n y y y y

y y
y y y y

y

y y y y

y y y y

f f
n n

y y

 




 
 (2.33) 

(2.33)式整理後得出一條向量方程式 

 
 

+ ⋅ =  
 

f f
n n n

y y
  (2.34) 

將(2.34)式引入積分因子 

 ( ) ( ) ( ) ( ) ( )( )
( )

0
,

exp
i

t

i t
I t X t t d

ξ ξ
ξ ξ

ξ

  
= = ⋅      


f y

y n
y

 (2.35) 

下標 i表示初始時的狀態，將(2.35)式對 t作微分 
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( ) ( ) ( ) ( )( )
( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( )

( ) ( ) ( )( )
( )

0

0

,
exp

, ,
exp

,

i

i

t

i t

t

i t

dX t d
t d

dt dt

t t
t d t

t

t t
X t t

t

ξ ξ
ξ ξ

ξ

ξ ξ
ξ ξ

ξ

  
= ⋅      

    
= ⋅ ⋅            

 
= ⋅  

 





f y
y n

y

f y f y
y n n

y y

f y
n

y

 (2.36) 

(2.36)式為一條增廣常微分方程式，整理後 

 
( )
( )

0

0

X t

X t
= ⋅ f

n
y


 (2.37) 

(2.37)式代入(2.34)式替換 

 
( )
( )

0

0

X t

X t
+ = f

n n
y


  (2.38) 

 ( ) ( ) ( )0 0 0X t X t X t+ = f
n n

y
  (2.39) 

(2.39)式以全微分表示 

 ( ) ( )0 0( )
d

X t X t
dt

= f
n

y
 (2.40) 

其為 n 條一階常微分方程式 

(2.36)式與(2.40)式寫成向量矩陣形式 

 
( )
( )

( )

( )
( )
( )

0 0

0 0

,

,
0

n n

t

X t X td

dt tX t X t

×

 
     =           
  

T

f y
0

yn n

f y

y

 (2.41) 

 
( )
( )

( )

( )
( )
( )0 0

,

,
0

n ns s

t

t td

dt tX t X t

×

 
     =           
  

T

f y
0

yX X

f y

y

 (2.42) 

另外(2.32)式對 t 作微分 



 

16 

 
2

2

d

dt

⋅ ⋅= = = ⋅y y y f
y n f

y y


 (2.43) 

兩邊同乘
1

y
，並利用(2.37)式 

 
( )
( )

0

0

d
X tdt
X t

⋅= =
y n f

y y


 (2.44) 

將(2.44)式dt 移至右側 

 
( )

( ) ( )
( )

0 0

0 0

1d dX t dX t
dt

X t dt X t

 
= =  
 

y

y
 (2.45) 

左右同時積分 

 ( )0ln ln X t c= +y  (2.46) 

c為一常數，利用(2.35)式當 it t= 時可知 

 ( ) ( ) ( ) ( )( )
( ) ( )0

,
exp

i

i

t

i i it
X t t d t

ξ ξ
ξ ξ

ξ

  
= ⋅ =      


f y

y n y
y

 (2.47) 

代入(2.46)式可得 0c = ，於是得到 

 ( ) ( ) ( )0 0ln ln X t X t t=  =y y  (2.48) 

(2.48)式 ( )0X t 代入替換，向量矩陣改寫成 

 

( )

( )

,

,
0

n n

t

d

dt t

×

 
 

    =        
  

T

f y
0

yy y

y yf y

y

 (2.49) 

 
d

dt

   
=   

   

y y
A

y y
 (2.50) 

由(2.49)式看出，第一條方程式為原一階常微分向量方程式(2.30)式，但是第二條

方程式的引入給予閔式構造(Minkowskian structure)一個增廣非線性系統，可以觀

察長度的變化，決定 y 為穩定或是發散，靠著這個微小的改變，(2.30)式原始的

問題變成一個新問題(2.41)式或是(2.49)式，然而在 n 下的原始 n -維動態系統
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(2.30)式可以不做改變地嵌入一個增廣 1n + -維動態系統∈  1n+ ，經由這樣的轉

換，我們可以發現 A 具有對稱性，驗證(2.50)式轉換後的 A 滿足  

 

( )

( )

( )

( )

( )

( )

( )

( )

1 1

1 1

( 1) ( 1)

, ,

0 0

0 1 0 1, ,
0 0

, ,

0
, ,

0 0

n n n n

n n n n

n n

n n n n

n n

t t

t t

t t

t t

× ×
× ×

× ×

× ×

+ × +

   
   

      + = +      − −      
      
   

−   
   = + =   
   −
      

T

T T

T T

f y f y
0 0

y yI I
A g gA

f y f y

y y

f y f y
0 0

y y

f y f y

y y

 (2.51) 

則可以知道 A 正規勞倫茲群下的李代數 ( ,1)oso n ，可以經由指數映射回到李群。 

 

2.5 光錐構造 

在愛因斯坦(Albert Einstein)的狹義相對論中，光錐(Light cone)可以看成是閔

氏空間下一束光隨時間演化的軌跡，具有勞倫茲不變性(Lorentz invariant)，意思

是光錐上某個純量如時空間距在勞倫茲變換下保持不變。 

狹義相對論裡敘述空間與時間並不是各自獨立，而是一個統一的四維時空， 

互相交互影響，勞倫茲變換基本數學形式如下 

 

2

2

2

2

2

1

1

x vt
x

v
c

y y

z z

v
t x

ct
v
c

−′ =
−

′ =
′ =

−
′ =

−

 (2.52) 

其中 x、y、z、t 分別是慣性坐標系下的座標與時間， x′ 、 y′、 z′、 t ′是慣性

坐標系 ′ 下的座標與時間，v 為慣性座標軸 ′ 在 x 軸上相對於慣性坐標系的



 

移動

 

可看

 

此為

在三

的垂

光錐

 

前面

分量

1. 

 

 

動速度，c 是

此為高速

看出，當速

為古典力學

 

三維空間中

垂直軸取為

錐上與光錐

面三個分量

量(timelike c

光錐內部所

稱為類時

是光速，在

速移動物體在

速度 v 遠小於

學中的伽利略

，光錐取通

為時間座標，

錐內的情形又

= X

量稱為向量 X

component)

所有的點滿

時(time-like)路

在相對論中光

在不同慣性

於光速 c 時

略變換(Gali

圖 2.5

通過兩條相交

將其簡單的

又可分成，

1 2X X

X 的類空分

) 

滿足 

路徑。 
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光速不變。

性坐標系之間

時，則(2.52)式

x x

y y

z z

t t

′ =
′ =
′ =
′ =

ilean transfo

5.1 四維時空

交的水平軸

的顯示成可

一個四維向

3 0X X 
T

分量(spatial 

0<TX gX

時間 

 

間進行座標

式變成 

ormation)。

空光錐 

軸取為空間座

可視化的圖形

向量 X 

[x y z=

component

標與時間變換

 

 

座標，將與

形名為光錐

]z t
T

)， 0X 稱為

空間

空間

換的基本規

(2

與兩水平軸垂

錐。而在光錐

(2

為向量 X 的類

(2

間 

規律，

2.53) 

垂直

錐外、

2.54) 

類時

2.55) 
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2. 光錐外部所有的點滿足 

 0>TX gX  (2.56) 

 稱為類空(space-like)路徑。 

3. 光錐上所有的點滿足 

 0=TX gX  (2.57) 

 稱為類光(light-like)或稱零(null)路徑。 

光錐給定現在狀態下的物體未來任何可能的演進，意思是現在的位置下，光

錐可看出其未來任何可能的位置，物體能移動的速度最快只能達到光速。 

在 2.4 節增廣動態系統中，我們將一非線性問題多增加一個維度轉換閔氏空

間下的擬線性增廣動態系統，並且(2.50)式為正規勞倫茲群下的李代數，我們將

光錐以束制條件套用在(2.58)式，並去掉 0t = 的點，得到 

 

1

1

2 2 2

( 1) ( 1)

0

0 1

0

n n

n

n n

y
y

y y

×

×

+ × +

  
 =     −   

= − = − =

T T

T

I
X gX y

y

y y y

 (2.58) 

發現其滿足某個純量具有不變性的性質，並寫在光錐上符合類光路徑，以圖形表

示如下 

 

圖 2.5.2 光錐上路徑圖 

sy = X  

sy = X  

0y X=
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由前一節可知(2.49)式，整理得到以下方程式 

 

( ) ( )

1T

1

2

2 2 2

0

0 1
n n

n

×

×

 
     =      −     

 ⋅= − = − ⋅ = ⋅ − ⋅  
 

T
T T

T

f
Iy f

X gX f f y
y

y

f y
f f f f n f f f n

y

 

 (2.59) 

因為 n 為單位方向向量，所以可得知 ≥ ⋅f f n ，代入(2.59)式可以推得出 

 0≥TX gX   (2.60) 

因此可知在無窮小變換下， 2 0dX d d= ≥TX g X 。 

 

2.6 增廣動態系統 － 凱萊轉換(Cayley Transform) 

以阿瑟·凱萊(Arthur Cayley)命名，是將X( )t 映射至X( )t t+ Δ 的一套方法， 

將 ( ) ( )it t=X X 映射到 ( ) ( )1it t t+ = + ΔX X 一般會有三種方法： 

1. 前向尤拉法(Forward Euler method) 

 
( ) ( ) ( ) ( )t t t

t t
t

+ Δ −
=

Δ
X X

A X  (2.61) 

2. 後向尤拉法(Backward Euler method) 

 
( ) ( ) ( ) ( )t t t

t t t t
t

+ Δ −
= + Δ + Δ

Δ
X X

A X  (2.62) 

3. 中央尤拉法(Middle Euler method) 

 
( ) ( ) ( ) ( ) ( ) ( )1

2

t t t
t t t t t t

t

+ Δ −
= + + Δ + Δ  Δ

X X
A X A X  (2.63) 

首先驗證這三種方法是否符合 2.5 節所提到的光錐保長構造 

1. 前向尤拉法 

由(2.61)式整理 

 ( ) ( ) ( ) ( ) ( )( ) ( )1nt t t t t t t t t++ Δ = + Δ = + ΔX X A X I A X  (2.64) 

當 0t = 時，滿足 ( ) ( ) 0t t =TX gX 。 
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當 t t t= + Δ 時 

 ( ) ( ) ( ) ( ) ( ) ( )1 1n nt t t t t t t t t t+ ++ Δ + Δ = + Δ + Δ      
TT TX gX X I A g I A X  (2.65) 

 由矩陣的結合律先計算展開中間部分 

 
( ) ( )

( ) ( ) ( ) ( )( )
1 1

2

n nt t t t

t t t t t t t

+ ++ Δ + Δ =      

+ Δ + Δ + Δ

T

T T

I A g I A

g A g A g A gA
 (2.66) 

 其中 

 ( ) ( ) ( ) ( )( ) 0t t t t t t tΔ + Δ = + Δ =T TA g A g A g A g  (2.67) 

但是 ( ) ( ) ( )2
0t t tΔ ≠TA gA ，由此看出前項尤拉法無具有保長的性質，不存

在光錐的構造。 

 ( ) ( ) 0t t t t+ Δ + Δ ≠TX gX  (2.68) 

 

2. 後向尤拉法 

由(2.62)式整理 

 
( ) ( ) ( ) ( )

( )( ) ( ) ( )1n

t t t t t t t t

t t t t t t+

+ Δ − + Δ + Δ Δ = 

+ + Δ Δ + Δ =

X A X X

I A X X
 (2.69) 

接下來依據同樣步驟，可證明也不滿足保長的性質、光錐的構造。 

 

3. 中央尤拉法 

由(2.63)式，且 ( ) ( )A t t A t+ Δ ≈  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
2

2

t
t t t t t t t t t

t
t t t t

Δ+ Δ − = + + Δ + Δ  

Δ= + + Δ  

X X A X A X

A X X

 (2.70) 

令
2

tτ Δ= 並整理 

 ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t tτ τ+ Δ − + Δ = +X A X A X X  (2.71) 
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 ( ) ( ) ( ) ( )1 1n nt t t t tτ τ+ +− + Δ = +      I A X I A X  (2.72) 

 
( ) ( ) ( ) ( )

( )

1

1 1

( )

n nt t t t t

t t

τ τ−
+ + + Δ = − +      

=

X I A I A X

G X
 (2.73) 

 我們將(2.49)與(2.50)式的 A 

 

( )

( )

,

,
0

n n

t

t

×

 
 
 =  
 
  

T

f y
0

y
A

f y

y

 (2.74) 

代入(2.73)式，其中
2=Tf f f  

 ( )1

1

n

n t

τ

τ
τ+

 − 
 − =    
− 
  

T

f
I

y
I A

f

y

 (2.75) 

( )

1

1

1

1

n

n t

τ

τ
τ

−

−
+

 − 
 − =    
− 
  

T

f
I

y
I A

f

y

 

 

2

2

2

2 22

2

2 2 2 22 2

2

2 2 2 22 2

1
=

1

1

n

n

n

n

τ

τ τ

τ

ττ

τ
τ τ

τ
τ τ

 
 
 
 

−  
  
 
 
 =
 −
 
  

 
 

− − 
=  
 
 − − 

T

T

T

T

f
I

y

f f fI
yy

f
I

yy

fy f
y

y f y
I

y f y f

f y y

y f y f

 (2.76) 
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 ( )1+

1

n

n t

τ

τ
τ+

 
 
 =    
 
  

T

f
I

y
I A

f

y

 (2.77) 

則(2.73)式中的 ( )tG 為 

( ) ( )1

1 1

2

2 2 2 22 2

2

2 2 2 22 2

2 2 22 2 2

2 2 2 2 2 2 2 22 2 2 2

2 2

2 2 2 2 2 22 2 2

( )

1

n n

n n

n

t t tτ τ

τ τ
τ τ

ττ
τ τ

τ τ τ τ τ
τ τ τ τ

τ τ τ
τ τ τ

−
+ += − +      

      − −   =          − − 

− +
+ +

− − − −
=

+ +
− − −

T

T

T

T T

G I A I A

y f y f
I I

yy f y f

ff y y
yy f y f

y f f f f y f y f
I

y f y f y f y f

y f y f y

y f y f y f

2

2 22τ

 
 
 
 
 
 − 

f

y f
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2 2 2 22 2

2 22

2 2 2 22 2

2 2
n

τ τ
τ τ

τ τ
τ τ

 
+ 

− − =  
+ 

 − − 

T

f y f
I

y f y f

y f y f

y f y f

 (2.78) 

代回(2.73)式 

 

22

2 2 2 22 2

2 22

2 2 2 22 2

2 2

( ) ( )

n

t t t

τ τ
τ τ

τ τ
τ τ

 
+ 

− − 
+ Δ =  

+ 
 − − 

T

f y f
I

y f y f
X X

y f y f

y f y f

 (2.79) 

 依據(2.41)與(2.49)式中 X 與 y 之間轉換的關係 
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2 2 2 22 2
1

2 22
1

2 2 2 22 2

2 2

( ) ( )

( ) ( )

( )
( )

( )

n

i i

i i

i

i

t t

t t

t
t

t

τ τ
τ τ

τ τ
τ τ

+

+

 
+ 

− −    
=     

+    
 − − 

 
=  

 

T

f y f
I

y f y fy y

y yy f y f

y f y f

y
G

y

 (2.80) 

上式中 ( )tG 的 ( , ( ))i i it y t= =f f f ， ( )i it= =y y y ，將(2.80)式上下拆開分別寫成
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兩條方程式 

 
22

1 2 22

2 2i i i
i i i

i i

τ τ
τ+

⋅ +
= +

−

f y y
y y f

y f
 (2.81) 

 
( )2 22

1 2 22

2 i i i i i i

i

i i

τ τ

τ+

⋅ + +
=

−

y f y y y f
y

y f
 (2.82) 

 其中 1 1( ) ( )i it t t+ += = + Δy y y ，利用上兩式可發現 

 
2 2

1 1 1 0i i i i i i+ + +⋅ − = ⋅ − =y y y y y y  (2.83) 

此代表隨著 t 迭代下，每一步仍保持光錐(cone condition)的構造，不過在數

值計算中，我們通常只需要用到(2.81)式，表示成類似尤拉法(Euler’s Method) 

的形式，其中 2h t τ= Δ =  

 1

2
i i i

i i

h

τ
+ = +

= +
y y f

y f
 (2.84) 

 將(2.81)式代與上式比較，則(2.84)式可視為調整時間步長的迭代法 

 1i i i iη+ = +y y f  (2.85) 

 其中 

 
22

2 22

2 2i i i
i

i i

τ τ
η

τ
⋅ +

=
−

f y y

y f
 (2.86) 

 為一個步長調整因子，由於 i

i

τ <
y

f
，可得 0iη > 。 

凱萊轉換是由李代數映射至李群的過程，他是下一節會提到的指數映射的二

階近似值，此節推導凱萊轉換是為了說明其增廣動態系統下具有光錐保長的

特性。 

 

2.7 增廣動態系統 － 指數映射 

接下來介紹另外一種由李代數 A 映射至李群 G 的方法，利用工程數學中求
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解線性微分方程的方法，考慮以下增廣向量方程式 

 1, n+∈X = AX X   (2.87) 

其概念為，假如在 it t= 時，令 A 為一常數矩陣，則由指數映射可得 

 ( ) exp (Δt ( ))i it t=G A  (2.88) 

由於 A 為常數矩陣，這邊為了避免混淆，改寫 X 為
0

s

X

 
 
 

X
， s =X y 表示空間分量，

0X = y 為時間分量，將X = AX 展開 

 
0

s
i

i

X=X f
y

  (2.89) 

 0
s

i

i

X
⋅= f X

y
  (2.90) 

其中 ( , ( ))i i it y t=f f 、 ( )i it=y y 、 1 1( )i it+ +=y y ，將(2.90)式對 t 微分並將(2.89)式代

入 

 
2

0 0
2

s
ii

i i

X X
⋅= =

ff X

y y

  (2.91) 

(2.91)式為一條二階常微分方程， ( )0 expX tλ= 代入求解可得 

 i

i

λ =
f

y
 (2.92) 

 ( ) ( )0
1 2cosh sinhi i

i i
i i

X C t t C t t
   

= − + −   
   

f f

y y
 (2.93) 

因為 0X 是一條純量方程，(2.90)式無法決定向量 sX ，將(2.93)式代回(2.89)式並

積分可得 

 ( ) ( )1 2 3sinh coshi is i i
i i

i i i i

C t t C t t C
   

= − + − +   
   

f ff f
X

f y f y
 (2.94) 

將(2.93)與(2.94)式代入(2.90)式 
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( ) ( )

( ) ( )

1 2

3
1 2

sinh cosh

sinh cosh

i i i i
i i

i i i i

i i i i i
i i

i i i i i

C t t C t t

C
C t t C t t

   
− + −   

   
    ⋅= − + − +   
   

f f f f

y y y y

f f f f f

y y y y y

 (2.95) 

比較(2.95)式等號左右兩側，可得 

 3 0i C⋅ =f  (2.96) 

有已知初始條件 

 
( )
( )0 0

s s
i i

i i

t

X t X

=

=

X X
 (2.97) 

將 it t= 代入(2.93)式可得 

 0
1 iC X=  (2.98) 

將(2.94)式與 if 內積，並代入 it t=  

 ( ) ( )1 2 3sinh coshi is i i i i
i i i i

i i i i

C t t C t t C
   ⋅ ⋅⋅ = − + − + ⋅   
   

f ff f f f
f X f

f y f y
 (2.99) 

 2 2

s
s i i

i i i
i

C C
⋅⋅ =  = f X

f X f
f

 (2.100) 

將 it t= 、(2.100)式中的 2C 代入(2.94)式，可得 

 
( )

2 3 3 2 2

s
i is s si i

i i i i
i i i

C C C C
⋅

= +  = − = −
f Xf f

X X X f
f f f

 (2.101) 

解出積分常數 1C 、 2C 與 3C ，即可由 it t= 計算至下一步 1i it t t t+= = + Δ 的值。 

將積分常數代回(2.93)與(2.94)式 

( ) ( ) ( ) ( )0
2 2sinh cosh
s s

i i i i ii is si
i i i i i

i i ii i

X t t t t
⋅ ⋅   

= − + − + −   
   

f X f f Xf ff
X X f

f y yf f
 (2.102) 

 ( ) ( )0 0 cosh sinh
s

i ii i
i i i

i i i

X X t t t t
   ⋅= − + −   
   

f ff X

y f y
 (2.103) 

將 1i it t t t+= = + Δ 代入(2.102)與(2.103)式 
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( ) ( ) ( )0
1 2 2sinh cosh

s s
i i i i ii is si

i i i i
i i ii i

t X t t+

⋅ ⋅   
= Δ + Δ + −   

   

f X f f Xf ff
X X f

f y yf f
 (2.104) 

 ( )0 0
1 cosh sinh

s
i ii i

i i
i i i

X t X t t+

   ⋅= Δ + Δ   
   

f ff X

y f y
 (2.105) 

令 

 cosh , sinhi i
i i

i i

a t b t
   

= Δ = Δ   
   

f f

y y
 (2.106) 

則(2.104)與(2.105)式改寫成 

 ( ) ( ) ( )0
1 2 2

s s
i i i i is si

i i i i i i
i i i

t X b a+

⋅ ⋅
= + + −

f X f f Xf
X X f

f f f
 (2.107) 

 ( )0 0
1

s
i i

i i i i
i

X t X a b+
⋅= + f X

f
 (2.108) 

寫成矩陣表示 

 
( )
( )

( )
2

1
0 0

1

1i i i
n i is s

iii i

i ii i
i

i

a b

t

X t Xb
a

+

+

 − 
+ 

    =         
  

T

T

f
I f f

ffX X

f

f

 (2.109) 

其中 s s
i i i i= ⋅Tf X f X ，

( )
( )

( )
( )

( )
( )

11
0 0 00 0

11

,
s s ss s

i i ii i

i i ii i

t t t t

X t X t t X tX X
++

++

        + Δ
= = =        + Δ        

X X XX X
 

我們透過指數映射，將(2.87)式原本的李代數 A 映射至李群 G，找到 G 的閉合解 

 ( )( ) ( )

( )
2

1

exp

i i i
n i i

ii
i i

i i
i

i

a b

t t t
b

a

 − 
+ 

 Δ = =  
 
  

T

T

f
I f f

ff
A G

f

f

 (2.110) 

並且由增廣動態系統可知 

 
0

s
ii

i
iiX

   
= =   

  

yX
X

y
 (2.111) 
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代入(2.109)式並且上下寫成兩條方程式 

 
( )

1 2

1i i i i i i
i i i

i

a b
+

− ⋅ +
= +

f y f y
y y f

f
 (2.112) 

 1
i i i i i i

i
i

a b
+

+ ⋅
=

f y f y
y

f
 (2.113) 

做數值計算通常只運用(2.112)式，將其同樣寫成類似尤拉法的形式 

 1i i i iη+ = +y y f  (2.114) 

 
( )

2

1
, cosh , sinhi i i i i i i i

i i i
i ii

a b
a t b tη

   − +
= = Δ = Δ   

   

f y f y f f

y yf
 (2.115) 

iη 為步長調整因子。 

 

2.8 一步保群算法 

有了前面所提到的李群、李代數與保群算法等觀念後，接下來同樣考慮以下

向量方程式 

 , ,n n n×∈ =X = AX X A    (2.116) 

其中 A 為李代數，由 2.3 節 李代數與指數映射，我們找到相應於李代數 A 映下

的李群 G 

 ( ) exp (Δt ( ))i it t=G A  (2.117) 

而我們推導一驗證 ( )itG 是否有解的判斷式，將(2.117)式左右微分 

( ) ( )exp (Δt ( )) ( ) ( )i i i i it t t t t= = G A A A G  

 =G AG  (2.118) 

假如(2.118)式有解，便可求得李群 G。可以將(2.118)式看成是一條看指數映射後

能否有解的方程式，在後面推導李群時皆會用到。 

由 2.6 節 增廣動態系統 － 凱萊轉換(Cayley Transform)與 2.7 節 增廣動態

系統 － 指數映射推導的過程發現，經過轉換計算，可以推導出一新的數值積分
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算法 

 1( ) ( ) ( )

exp(Δt ( )) ( )
i i i

i i

t t t

t t
+

=
X = G X

A X
 (2.119) 

假如前一點 ( )itX 的值為已知，依據保群算法便可以透過李群 G 來映射至下一點

1( )it +X ，依據這樣的關係可建立許多兩點之間的轉換關係，如下所示： 

 

1 0 0 0

2 1 1 1

-1 2 2 2

1 1 1

( ) ( ) ( ) exp (Δt ( ))

( ) ( ) ( ) exp (Δt ( ))

( ) ( ) ( ) exp (Δt ( ))

( ) ( ) ( ) exp (Δt ( ))
i i i i

i i i i

t t t t

t t t t

t t t t

t t t t
− − −

− − −

=
=

=
=

X = G X A

X = G X A

X = G X A

X = G X A

  (2.120) 

將(2.120)式整理，可得出一條 0( )tX 與 ( )itX 的關係式 

 1 2 1 0 0( ) ( ) ( ) ( ) ( ) ( )i i it t t t t t− −X = G G G G X  (2.121) 

原向量微分方程(2.116)式的 A 形式、對稱性等等性質並不會隨著 t 而做改變，於

是我們可得知 0( )tA 、 1( )tA … ( )itA 都仍是李代數，而他們各自經過指數映射轉換

後的 0( )tG 、 1( )tG … ( )itG 都仍然屬於李群，而依據 2.2 節 李群所提到的性質中

的很重要的一項－李群群元素之間的群乘法滿足封閉性，可知 1 0( ) ( )t tG G 仍屬於

李群，同理， [ ]2 1 0( ) ( ) ( )t t tG G G 也仍然屬於李群，依此類推，於是我們可將

1 2 1( ) ( ) ( )i it t t− −G G G 0( )tG 整理如下，用一個 G 來表示 

 1 2 1 0 0

0

( ) ( ) ( ) ( ) ( ) ( )

( )
i i it t t t t t

t
− −

=
X = G G G G X

GX


 (2.122) 

透過指數映射，以李代數來表示則為 

 -1

0

1 2 1 0 0

0

( ) exp(Δt ( ))exp(Δt ( )) exp(Δt ( ))exp(Δt ( )) ( )

= exp( ( )) ( )
i

i i i

t

t

t t t t t t

t t

− −=

 
  

X A A A A X

A X


 (2.123) 

(2.122)與(2.123)式可看出，假如知道初始點 0( )tX 的值，我們建立一條只需要做

一次迭代的步驟，就可由點 0( )tX 映射至 ( )itX 的關係式，此即為一步保群算法，

比起之後所提到的尤拉法 (Euler’s Method)、二階與四階龍格－庫塔法

(Runge-Kutta Method)等等方法，省下了可觀的運算時間。 
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 運用李群性質下的一步保群算法雖然有著快速計算的優點，不過產生了一個

問題，因為(2.116)式中的李代數 ( )itA 不是個常數矩陣，而是個隨著時間變化的

函數矩陣，所以無法求得 G 的閉合解，在此將利用一些定理與假設來合理獲得

近似(2.122)式中原本李群 G 的解。 

 均值定理(Mean value theorem)  

均值定理在微積分上是個容易了解且結果非常重要的一個定理。 

 

圖 2.8.1 均值定理 

假如有一方程式 

 ( )y f x=  (2.124) 

( )f x 在閉區間[ ],a b 為連續函數，且在開區間 ( ),a b 為可微，則由均值定理，存在

一點 ( ),c a b∈ ，使得 

 
( ) ( )

( )
f b f a

f c
b a

−′ =
−

 (2.125) 

將(2.125)式等號左右側各自積分後，均值定理可推出一個積分形式  

 
( )

( )
( )

( ) ( ) ( )

b

a

b

a

f x dx
f c

b a

f x dx f c b a

=
−

 = −





 (2.126) 
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(2.126)式的意義是：計算在[ ],a b 區間內 ( )f x 之下的積分面積，我們可以找到一

點 ( )f c 與 ( )b a− 相乘下的矩形面積來表示。 

 廣義中值定理(Generalized mid-point rule) 

透過均值定理將積分以矩形形狀來計算後，實際上求得 c 點位置不容易，我

們將 c 點的位置都用兩點邊界值與一個參數 r 做線性組合來合理的逼近原本積分

的值，則(2.126)式轉換成以下形式 

 ( ) ( ) ( ) , (1 )
b

a
f x dx f c b a c ra r b= − = + −  (2.127) 

其中 r 為一個待定未知常數。 

 以上的兩個定理將一個原本複雜的函數積分形式，轉換成近似、較簡單的矩

形面積來逼近，依據同樣觀念，運用在(2.123)式，可以將一步保群算法 ( )itX =

0( )tGX 中的 G 轉換成一個近似的形式，在下一章推導不同李群下的李群打靶法

時， ( )tG 內的變數會有數多項，例如 ( ), ( ), ( ) ( )t u t u t v t′G   ，則此逼近方法就

有著重要的貢獻，而因為不同的李群，李代數推導至李群的 G 會有所不同，其

詳細過程細節將會在下章敘述。 

 

2.9 數值積分方法 

求解常微分方程式的初始值問題過程中，很難找到方程式其解析解，透過調

整時間間隔的數值方法來求得正確的函數值，以簡單的一階常微分方程式，如下

式： 

 0 0 0( , ) , , ( )fy f t y t t t y t y′ = ≤ ≤ =  (2.128) 

在數學中泰勒級數(Taylor series)用一無窮級數(infinite series)來表示一個函數，級

數裡相加的項由函數在某點 ix 的導數求得， 

 
( )

0

( )
( ) ( )

!

n
ni

i
n

f x
f x x x

n

∞

=

= −  (2.129) 
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( ) ( )n
if x 代表 f 在 ix 的n階導數。 

但是實際運用中，將泰勒級數於某項截斷，只取有限項來逼近函數的解析解，且

需要計算函數的微分是其最大的缺點，在工程上不一定存在 f 一次或以上之導數。

以下介紹幾種數值方法來求解，使其結果近似泰勒級數展開式，降低計算項目的

階數，並避開求解微分項所產生的問題。 

   

2.9.1 尤拉法 

尤拉法(Euler’s Method)是常微分方程式的數值解法中最簡單的一種，考慮

(2.128)式，將[ , ]o ft t 分割成 N 個等間距的區間，使得 

 
0

0

-

, 0,1, 2, ,

f

i

t t
h

N
t t ih i N

=

= + = ⋅⋅⋅
 (2.130) 

h =積分間距(step size)。假設 ( )y t 為(2.128)式的正確解，利用(2.129)式展開可得 

 2 3
1 1 1 1

( ) ( )
( ) ( ) ( )( ) ( ) ( )

2! 3!
i i

i i i i i i i i i

y t y t
y t y t y t t t t t t t+ + + +

′′ ′′′′= + − + − + − + ⋅⋅⋅  (2.131) 

將(2.128)式與(2.130)式代入(2.131)式， 

 2 3
1

( , ( )) ( , ( ))
( ) ( ) ( , ( ))

2! 3!
i i i i

i i i i

f t y t f t y t
y t y t f t y t h h h+

′ ′′
= + + + + ⋅⋅⋅  (2.132) 

省略上式中 h二次方以上的項，，即可獲得最簡單的數值方法 

 1( ) ( ) ( , ( ))i i i iy t y t hf t y t+ = +  (2.133) 

(2.133)式的方法稱為尤拉法，(2.132)式與(2.133)式中的差值代表其截斷誤差

(Truncation error)，可看出假如 h越小，(2.133)式的 1( )iy t + 值會越逼近(2.132)式的

值。 

 

2.9.2 龍格－庫塔法 

在上節提到的尤拉法中，(2.133)式代表用前一點 ( )iy t 與前一點的斜率

( , ( ))i if t y t 來計算 1( )iy t + ，但實際的問題上，幾乎都是前一點的斜率並不能代表
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跟 1( ), ( )i iy t y t + 間的斜率的情況，此差距使其積分誤差經過一步步的計算逐漸累積，

影響其結果的正確性。 

改善其缺點的一個想法，就是透過求解 ( , ( ))i if t y t 時加以適當的修正，在 it 至

1it + 中選取幾個特定點來計算它的斜率，乘上適當配重來計算 ( , ( ))i if t y t ，此種方

法就稱為龍格－庫塔法(Runge-Kutta Method)，其基本表示法如下 

 1
1

( ) ( )
n

i i j j
j

y t y t h Kω+
=

= +   (2.134) 

其中ω為配重因子， K 為 it 至 1it + 中某點的斜率 f 值，n為特定點的個數。 

當 n=1 時 1 1ω = ， 1 ( , ( ))i iK f t y t= ，(2.134)式簡化為(2.133)式，即為尤拉法，因此

可將尤拉法視為最低階的龍格－庫塔法。 

以下列出兩種比較常使用龍格－庫塔法的方程式與其權重因子，差別在於用

中間各點斜率不同的組合方法來接近 it 至 1it + 間的斜率 

1. 三階龍格－庫塔法(3th Order Runge-Kutta Method) 

 

1 1 2 3

1

2 1

3 1 2

( ) ( ) ( 4 )
6

( , ( ))

( , ( ) )
2 2

( , ( ) 2 )

i i

i i

i i

i i

h
y t y t K K K

K f t y t

h h
K f t y t K

K f t h y t hK hK

+ = + + +

=

= + +

= + − +

 (2.135) 

第一點 1K 為 it t= 時斜率，第二點 2K 為
2i

h
t t= + 時的斜率，也就是區間內中間點，

採用尤拉法以 1K 斜率來決定 ( )
2i

h
y t + 的值，第三點 3K 為 1it + 之斜率，以 1K 、 2K 來

決定 1( )iy t + 之值，三點的斜率乘上各自的權重因子組合而成。 

2. 四階龍格－庫塔法(4th Order Runge-Kutta Method) 
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1 1 2 3 4

1

2 1

3 2

4 3

( ) ( ) ( 2 2 )
6

( , ( ))

( , ( ) )
2 2

( , ( ) )
2 2

( , ( ) )

i i

i i

i i

i i

i i

h
y t y t K K K K

K f t y t

h h
K f t y t K

h h
K f t y t K

K f t h y t hK

+ = + + + +

=

= + +

= + +

= + +

 (2.136) 

第一、二點斜率與三階相同，第三點 3K 同樣為
2i

h
t t= + 之斜率，不過此點採用

尤拉法以 2K 斜率來決定 ( )
2i

h
y t + 的值，第四點 4K 斜率採用尤拉法以 3K 來決定

1( )iy t + ，四點的斜率組合成推估 it 至 1it + 之斜率。 

 其中四階龍格－庫塔法最為常見，以 RK4 作為簡稱，本文在撰寫中，RK4

法也是數值算例中主要採用的積分方法之一。 
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第 三 章 耦合邊界值問題的李群打靶法 

Equation Section 3 

3.1 打靶法 

在數值計算分析中，打靶法(shooting method)是一種將邊界值問題(boundary 

value problem)轉換成初始值問題(initial value problem)的方法，舉一個二階常微分

方程 

 ( ) ( , ( ), ( )) , o fy t f t y t y t t t t′′ ′= ≤ ≤  (3.1) 

原為邊界值問題，有著邊界 

 0 0( ) , ( )f fy t y y t y= =  (3.2) 

假如有一初始值問題形式如(3.1)式，有著初始值如下 

 0 0 0 0( ) , ( )y t y y t y′ ′= =  (3.3) 

令 ( ; )f oy t y′ 為其解，並定義函數 

 0 0( ) ( ; )f fF y y t y y′ ′= −  (3.4) 

若 0( ) 0F y′ = 有解，此解即為邊界值問題(3.1)式與(3.2)式的解。 

由前面所示，打靶法是將邊界值問題加入原本未知的初始值後，轉換成初始

值問題來計算，初始值經由數值積分後映射至另一端的終值後，與原本已知的終

值檢驗，假如不符合，便替換未知的初始值，再積分核對，重複同樣步驟一直到

積分後的數值與原邊界值的差距為可接受的範圍。 

利用轉換邊界值問題成初始值問題的打靶法，是個很有效的方法，不過函數

本身的性質會影響積分時的穩定性。越高階、複雜的函數，假如給予未知初始值

的數值與正確值差距過大，積分過程往往很容易出現某一點之後產生發散的情況，

造成數值的不穩定。如何找出合理的區間來做積分，是打靶法重要的課題，一般

的簡單打靶法並不能解決這個問題，所以只能用於較低階及簡單，或者是非線性

程度較低的邊界值問題上。而以下將第 二 章 保群算法提到的各種觀念，運用
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可發現合理的推導出一個如何找出正確未知邊界值值域區間的系統，建立一套有

效的打靶法。 

 

3.2 耦合邊值問題 

兩個以上函數與各自自身導數形成的方程式中含有彼此的變數，交互影響，

即為耦合。當方程式帶有某些被稱為邊界條件的約束條件時，就成為了邊界值問

題。在這邊主要探討三階與二階的耦合邊值問題，並求其解，其三階與二階常微

分方程組基本形式如下 

 1

2

( , ( ), ( ), ( ), ( ), ( ))

( , ( ), ( ), ( ), ( ), ( ))

u f t u t u t u t v t v t

v f t u t u t u t v t v t

′′′ ′ ′′ ′=
 ′′ ′ ′′ ′=

 (3.5) 

 

0 0

0 0

0 0

0 0

0 0

( ) , ( )

( ) , ( )

( ) , ( )

( ) , ( )

( ) , ( )

f f

f f

f f

f f

f f

u t u u t u

u t u u t u

u t u u t u

v t v v t v

v t v v t v

= =
′ ′ ′ ′= =
′′ ′′ ′′ ′′= =

= =
′ ′ ′ ′= =

 (3.6) 

具有上列十個邊界值，而在這十個當中，某部分的邊界值為已知，某部分的邊界

值未知。將利用前述觀念，來找尋未知的邊界值。以下會利用不同李群間的轉換

與其變換組合來進行打靶法作業，並做分析比較。 

 

3.3 李群 ( , )SL n  打靶法 

3.3.1 耦合方程組轉換 

由(3.5)耦合方程組，我們將 1f 、 2f 函數各自集合至 u、v 最高階項。第一條

方程式可得三條一階常微分方程式(first-order ordinary differential equations)，由

第二組方程式可得另外兩條一階常微分方程。將其各自寫成方程組的形式，如下 
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1

( ) ( )

( ) ( )

( ) ( ) ( , ( ), ( ), ( ), ( ), ( ))

d
u t u t

dt
d

u t u t
dt
d

u t u t f t u t u t u t v t v t
dt

 ′=

 ′ ′′=

 ′′ ′′′ ′ ′′ ′= =

 (3.7) 

 

2

( ) ( )

( ) ( ) ( , ( ), ( ), ( ), ( ), ( ))

d
v t v t

dt
d

v t v t f t u t u t u t v t v t
dt

 ′=

 ′ ′′ ′ ′′ ′= =


 (3.8) 

將(3.7)與(3.8)式表示成一個與 =X AX 相同、維度為五的非線性系統矩陣之形式 

 
1

2

0 1 0 0 0

( ) ( )0 0 1 0 0

( ) ( )( , ( ), , ( ))
0 0 0 0

( ) ( )( )

( ) 0 0 0 0 1 ( )

( ) ( , ( ), , ( )) ( )
0 0 0 0

( )

u t u t

u t u tf t u t v t
d

u t u tu t
dt

v t v t

v t f t u t v t v t

v t

 
        ′ ′′     ′′ ′′   =             ′ ′ ′    
  





 (3.9) 

或者，也可以將(3.9)式中的 ( )u t 與 ( )v t 拆開各自形成三階與二階向量微分方程式 

 

1

( ) 0 1 0 ( )

( ) 0 0 1 ( )

( ) ( , ( ), ( ), ( ), ( ), ( )) ( )
0 0

( )

u t u t
d

u t u t
dt

u t f t u t u t u t v t v t u t

u t

 
        ′ ′=      ′′ ′ ′′ ′ ′′       
  

 (3.10) 

 
2

0 1
( ) ( )

( , ( ), ( ), ( ), ( ), ( ))
0( ) ( )

( )

v t v td
f t u t u t u t v t v t

v t v tdt
v t

 
    = ′ ′′ ′    ′ ′     

 (3.11) 

將(3.10)與(3.11)式中的矩陣用 1A 、 2A 來表示 

 1

( ) ( )

( ) ( , ( ), ( ), ( ), ( ), ( )) ( )

( ) ( )

u t u t
d

u t t u t u t u t v t v t u t
dt

u t u t

   
   ′ ′ ′′ ′ ′=   

′′ ′′      

A  (3.12) 

 2

( ) ( )
( , ( ), ( ), ( ), ( ), ( ))

( ) ( )

v t v td
t u t u t u t v t v t

v t v tdt

   ′ ′′ ′=   ′ ′   
A  (3.13) 

(3.9)式的係數矩陣雖然是滿足李群 (5, )SL  的李代數，但是要產生相應的李群元
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素 (5, )SL∈  是相當複雜的，所以在本研究不予採用。 

 

3.3.2 李群 ( , )SL n  一步保群算法 

經過驗證，可發現(3.12)式與(3.13)式的 1A 、 2A 滿足李代數的三個性質，而

且兩個矩陣的跡(trace)都為零 

 1 2( ( )) ( ( )) 0i itra t tra t= =A A  (3.14) 

推得 1A 、 2A 分別是特殊線性群 (3, )SL  、 (2, )SL  下的李代數，意即兩個李代

數各自在經過指數映射後的李群 G 滿足 

 1 2det( ( )) det( ( )) 1i it t= =G G  (3.15) 

也就是 

 1

2

( ) (3, )

( ) (2, )
i

i

t SL

t SL

∈
∈

G

G




 (3.16) 

經由 1G 、 2G ，可由 iX 映射至下一步 1i+X  

 

i+1 i

i+1 1 i

i+1 i

1
2

1

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

i

i i
i

i i

u t u t

u t t u t

u t u t

v t v t
t

v t v t
+

+

   
   ′ ′=   
   ′′ ′′   
   

=   ′ ′   

G

G

 (3.17) 

根據李群的封閉性 

 1 0 1 1 1 1 1 0

2 0 2 1 2 1 2 0

( ) , ( ) (3, ) ( ) ( ) (3, )

( ) , ( ) (2, ) ( ) ( ) (2, )

t t SL t t SL

t t SL t t SL

∈  ∈
∈  ∈

G G G G

G G G G

 
 

 (3.18) 

群元素經由群乘法下經驗證後 

 
[ ] [ ]
[ ] [ ]

1 1 1 0 1 1 1 0 1 1 1 0

2 1 2 0 2 1 2 0 1 1 1 0

det ( ) ( ) det ( )det ( ) det ( ) ( ) 1

det ( ) ( ) det ( )det ( ) det ( ) ( ) 1

t t t t t t

t t t t t t

=  =

=  =

G G G G G G

G G G G G G
 (3.19) 

所以 1( ), 0,1, ,it i n=G  與 2 ( ), 0,1, ,it i n=G  各自都是特殊線性群 (3, )SL  、

(2, )SL  的元素，依據封閉性，我們可以將其統整各自用 1( )tG 、 2 ( )tG 來表示 
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 1 1 1 1 0 1

2 2 1 2 0 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
i

i

t t t t

t t t t

=
=

G G G G

G G G G




 (3.20) 

其中 t 代表統整合至 it 。將(3.17)式與(3.20)式結合，則可建立一條由 ot 映射至 t

的關係式 

 
1 1 1 1 0 1

2 2 1 2 0 2

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( )

o o

i o o

o o

o o
i

o o

u t u tu t

u t t t t u t t u t

u t u t u t

v t v tv t
t t t t

v t v t v t

    
    ′ ′ ′= =    
   ′′  ′′ ′′     
    

= =    ′ ′ ′     

G G G G

G G G G





 (3.21) 

將(3.20)式用李代數 A 經由指數映射表示，可得 

 1 1( ) exp ( )
o

t

t

t dξ ξ
 

=  
  
G A  (3.22) 

 2 2( ) exp ( )
o

t

t

t dξ ξ
 

=  
  
G A  (3.23) 

由(3.22)式及(3.23)式可知矩陣 1A 、 2A 不是常數矩陣，會隨著 t做改變，因此 1( )tG 、

2 ( )tG 無法求得其閉合解。引進 2.8 節 一步保群算法所提到的兩個定理，將(3.12)

與(3.13)式中的 1( , ( ), ( ), ( ), ( ), ( ))t u t u t u t v t v t′ ′′ ′A 與 2 ( , ( ), ( ), ( ), ( ), ( ))t u t u t u t v t v t′ ′′ ′A 基於

同樣的觀念轉換成 

1

1

0 1 0
ˆ ˆ ˆ ˆ ˆ ˆ( , ( ), ( ), ( ), ( ), ( )) 0 0 1

ˆ ˆ ˆ ˆ ˆ ˆ( , ( ), ( ), ( ), ( ), ( ))
0 0

ˆ( )

t u t u t u t v t v t

f t u t u t u t v t v t

u t

 
 
 

′ ′′ ′  =
 ′ ′′ ′ 
  

A  

1

0 1 0

= 0 0 1

0 0c

 
 
 
  

 (3.24) 
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2 2

2

0 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ( ), ( ), ( ), ( ), ( )) ˆ ˆ ˆ ˆ ˆ( , ( ), ( ), ( ), ( ), ( ))

0
ˆ( )

0 1
=

0

t u t u t u t v t v t f t u t u t u t v t v t

v t

c

 
 ′ ′′ ′ = ′ ′′ ′ 
  
 
 
 

A

 (3.25) 

其中 1c 、 2c 為一常數， t̂ 、 ˆ( )u t 、 ˆ ( )u t′ 、 ˆ ( )u t′′ 、 ˆ( )v t 、 ˆ ( )v t′ 分別為各自兩點邊界

值與 r 的線性組合 

 

0

0

0

0

0

0

ˆ (1 )

ˆ (1 )

ˆ (1 )

ˆ (1 )

ˆ (1 )

ˆ (1 )

f

f

f

f

f

f

t rt r t

u ru r u

u ru r u

u ru r u

v rv r v

v rv r v

= + −

= + −
′ ′ ′= + −
′′ ′′ ′′= + −

= + −
′ ′ ′= + −

 (3.26) 

將(3.24)式、(3.25)代入(3.7)式、(3.8)式中三條常微分方程式、兩條常微分方程式  

 

1
1

( ) ( )

( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( , ( ), ( ), ( ), ( ), ( ))
( ) ( ) ( ) ( )

ˆ( )

d
u t u t

dt
d

u t u t
dt

f t u t u t u t v t v td
u t u t u t c u t

dt u t


′=


 ′ ′′=

 ′ ′′ ′′′ ′′′= = =


 (3.27) 

 
2

2

( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( , ( ), ( ), ( ), ( ), ( ))
( ) ( ) ( ) ( )

ˆ( )

d
v t v t

dt
f t u t u t u t v t v td

v t v t v t c v t
dt v t

 ′=
 ′ ′′ ′ ′ ′′= = =


 (3.28) 

由(3.27)式第三條可得 

 1( ) ( ) 0u t c u t′′′ − =  (3.29) 

( ) tu t eλ= 代入求解三階常微分方程 

 
3

1

3
1

0c

c

λ
λ

− =

=
 (3.30) 

令 3
1 1 cκ = ，可解出 
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 1 1 1

1 3 1 3
, ( ), ( )

2 2 2 2
i iλ κ κ κ= − + − −  (3.31) 

代入得出 ( )u t 的通解 

 

1 1
1

1 1
1

1
1

1 3 1 3
( ) ( )

2 2 2 2
1 2 3

1 1

2 2
1 1 1 2 1 1 3

1

2
1 2 1 1 2 1 3

( )

3 3 3 3
[cos( ) sin( )] [cos( ) sin( )]

2 2 2 2

3 3
[( ) cos( ) ( )sin( )]

2 2

i t i t t

t t t

t t

u t R e R e R e

R e t i t R e t i t R e

e R R t i R R t R e

κ κ κ

κ κ κ

κ κ

κ κ κ κ

κ κ

− + − −

− −

−

= + +

= + + − +

= + + − +

 (3.32) 

令 1 1 2 2 1 2 3 3( )C R R C i R R C R= + = − = ，(3.32)式變成 

 

1
1

1 1
1

1

2
1 1 2 1 3

1 1

2 2
1 1 2 1 3

3 3
( ) [ cos( ) sin( )]

2 2

3 3
cos( ) sin( )

2 2

t t

t t t

u t e C t C t C e

C e t C e t C e

κ κ

κ κ κ

κ κ

κ κ

−

− −

= + +

= + +
 (3.33) 

(3.33)式對 t做一次跟二次微分可得 ( )u t′ 與 ( )u t′′ 的通解 

 

1 1

1 1

1

1 1

2 2
1 1 1 1 1

1 1

2 2
2 1 1 1 1

3 1

1 3 3 3
( ) [ cos( ) sin( )]

2 2 2 2

3 3 1 3
[ cos( ) sin( )]

2 2 2 2

t t

t t

t

u t C e t e t

C e t e t

C e

κ κ

κ κ

κ

κ κ κ κ

κ κ κ κ

κ

− −

− −

′ = − − +

− +  (3.34) 

 

1 1

1 1

1

1 1
2 22 2

1 1 1 1 1

1 1
2 22 2

2 1 1 1 1

2
3 1

1 3 3 3
( ) [ cos( ) sin( )]

2 2 2 2

3 3 1 3
[ cos( ) sin( )]

2 2 2 2

t t

t t

t

u t C e t e t

C e t e t

C e

κ κ

κ κ

κ

κ κ κ κ

κ κ κ κ

κ

− −

− −

′′ = − + +

− − +  (3.35) 

(3.33)至(3.35)式可寫成一矩陣形式 

 
1

2

3

( )

( ) ( )

( )

Cu t

u t t C

u t C

  
  ′ =   
 ′′    

H  (3.36) 

其中 
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1

1

1

1

1

2

3

2
1 1

3

2
1 1 1 1 1 1 1 1 1

3
2 2 2 2 2 2

1 1 1 1 1 1 1 1 1

( )

3 3
cos( ) sin( )

2 2

1 3 3 3 3 3 1 3
cos( ) sin( ) cos( ) sin( )

2 2 2 2 2 2 2 2

1 3 3 3 3 3 1 3
cos( ) sin( ) cos( ) sin( )

2 2 2 2 2 2 2 2

t

t

t

t

t e

t t e

t t t t k e

t t t t e

κ

κ

κ

κ

κ κ

κ κ κ κ κ κ κ κ

κ κ κ κ κ κ κ κ κ

−
= ×

 
 
 
 

− − − 
 
 
− + − − 
  

H

 (3.37) 

將 0 0t t= = 代入(3.37)式 

 

0 0 1

0 0 2

30 0

1

1 1 1 2

3
2 2 2

1 1 1

( )

( ) (0)

( )

1 0 1

1 3

2 2

1 3

2 2

u t u C

u t u C

Cu t u

C

C

C

κ κ κ

κ κ κ

     
     ′ ′= =     
     ′′ ′′     

 
 

  
  = −   
    

 − −  

H

 (3.38) 

(3.38)式等號左右側各乘上 (0)H 的反矩陣，可得 1C 、 2C 、 3C  

01

1
2 0

3 0

1

0

1 1 1 0

0
2 2 2

1 1 1

(0)

1 0 1

1 3

2 2

1 3

2 2

uC

C u

C u

u

u

u

κ κ κ

κ κ κ

−

−

  
   ′=   
   ′′   

 
 

  
   ′= −   
   ′′ 

 − −  

H

 

 

2
1 1

0

02
1 1

0

2
1 1

2 1 1

3 3 3

1 1
0

3 3

1 1 1

3 3 3

u

u

u

κ κ

κ κ

κ κ

 
− − 

   
   ′= −   
   ′′  
 −
  

 (3.39) 

(3.39)式代回(3.36)替換 1C 、 2C 、 3C ，則(3.36)式變成 
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0

1
0

0

( )

( ) ( ) (0)

( )

uu t

u t t u

u t u

−

  
  ′ ′=   
 ′′  ′′   

H H  (3.40) 

令 1
1( ) ( ) (0)t t −=G H H  

 
0

1 0

0

( )

( ) ( )

( )

uu t

u t t u

u t u

  
  ′ ′=   
 ′′  ′′   

G  (3.41) 

(3.41)式為(3.10)式從 0t 至 t的三階一步李群算法。 

同理，求求解(3.28)式，由方程組(3.28)式第二條可得 

 2( ) ( ) 0v t c v t′′ − =  (3.42) 

依據 2c 之值可分為兩種情況 

1. 2 0c <  

令 2 2cκ = −  

2
2 2c κ= − 代入(3.42)式 

 2
2( ) ( ) 0v t v tκ′′ + =  (3.43) 

(3.43)式 ( )v t 的通解為 

 1 2 2 2( ) cos( ) sin( )v t C t C tκ κ= +  (3.44) 

( )v t 的一次微分為 

 1 2 2 2 2 2( ) sin( ) cos( )v t C t C tκ κ κ κ′ = − +  (3.45) 

寫成矩陣系統形式 

 12 2

2 2 2 2 2

cos( ) sin( )( )

sin( ) cos( )( )

Ct tv t

t tv t C

κ κ
κ κ κ κ

   
=    ′ −     

 (3.46) 

0ot t= = 代入(3.46)式 

 0 0 1

20 0 2

( ) 1 0

0( )

v t v C

v t v Cκ
      

= =      ′ ′       
 (3.47) 
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1

0 01

22 0 0
2

1 0
1 0

1
00

v vC

C v vκ
κ

−  
        = =        ′ ′        

 (3.48) 

(3.48)式代回(3.46)式替換 1C 、 2C 可得 

 

02 2

2 2 2 2 0
2

2 2 0
2

0
2 2 2

1 0
cos( ) sin( )( )

1
0sin( ) cos( )( )

1
cos( ) sin( )

=

sin( ) cos( )

vt tv t

t tv t v

t t v

v
t t

κ κ
κ κ κ κ

κ

κ κ
κ

κ κ κ

 
     =      ′ ′−       

 
  
   ′ −  

 (3.49) 

2. 2 0c >  

令 2 2cκ =  

2
2 2c κ= − 代入(3.42)式 

 2
2( ) ( ) 0v t v tκ′′ − =  (3.50) 

(3.50)式 ( )v t 的通解為 

 1 2 2 2( ) cosh( ) sinh( )v t C t C tκ κ= +  (3.51) 

( )v t 的一次微分為 

 1 2 2 2 2 2( ) sinh( ) cosh( )v t C t C tκ κ κ κ′ = +  (3.52) 

寫成矩陣系統形式 

 12 2

2 2 2 2 2

cosh( ) sinh( )( )

sinh( ) cosh( )( )

Ct tv t

t tv t C

κ κ
κ κ κ κ

   
=    ′     

 (3.53) 

0ot t= = 代入(3.53)式 

 0 0 1

20 0 2

( ) 1 0

0( )

v t v C

v t v Cκ
      

= =      ′ ′       
 (3.54) 

 
1

0 01

22 0 0
2

1 0
1 0

1
00

v vC

C v vκ
κ

−  
        = =        ′ ′        

 (3.55) 

(3.55)式代回(3.53)式替換 1C 、 2C 可得 
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02 2

2 2 2 2 0
2

2 2 0
2

0
2 2 2

1 0
cosh( ) sinh( )( )

1
0sinh( ) cosh( )( )

1
cosh( ) sinh( )

=

sinh( ) cosh( )

vt tv t

t tv t v

t t v

v
t t

κ κ
κ κ κ κ

κ

κ κ
κ

κ κ κ

 
     =      ′ ′       

 
  
   ′   

 (3.56) 

(3.49)式與(3.56)式為(3.11)從 ot 至 t 的二階一步李群算法，表示成 

 0
2

0

( )
( )

( )

vv t
t

v t v

  
=   ′ ′   

G  (3.57) 

 

3.3.3 李群打靶法 

有了(3.41)式與(3.57)式兩條一步保群方程式後，我們便可以建立一初始值與

末值的關係式，用已知的邊界值來求得未知的邊界值。 

 
11 12 13

11 12
1 21 22 23 2

21 22
31 32 33

( ) , ( )

G G G
I I

t G G G t
I I

G G G

 
  = =       

G G  (3.58) 

我們假設(3.26)式的十個邊界值中 

 0 0 0 0 0 0( ) , ( ) , ( ) , ( ) , ( )f f f fu t u u t u u t u v t v v t v′ ′ ′ ′= = = = =  (3.59) 

為已知，我們便可以透過一步保群方程式得出所有未知的初始值 

 

21 0 22 0
0

23

11 0 12 0 13 0

31 0 32 0 33 0

f

f

f

u G u G u
u

G

u G u G u G u

u G u G u G u

′ ′− −
′′ =

′ ′′= + +
′′ ′ ′′= + +

 (3.60) 

 
11 0

0
12

21 0 22 0

f

f

v I v
v

I

v I v I v

−
′ =

′ ′= +
 (3.61) 

在(3.24)式與(3.25)式利用均值定理與廣義中值定理時，假如 1f 、 2f 包含變數

( ), ( ), ( ), ( ), ( )u t u t u t v t v t′ ′′ ′ ，則我們必須知道兩邊的邊界值才能做轉換，這很明顯與
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題目(3.5)式相互矛盾，假如知道全部的邊界值，也就不需要求解。 

解決方法，對於需要輸入函數內的未知邊界值，先給予一組猜值，代入一步

保群關係式後 1( )tG 、 2 ( )tG ，再經方程式(3.60)式與(3.61)式計算得出新的一組邊

界值，與原本輸入計算 1( )tG 、 2 ( )tG 的猜值做比較，假如差距過大，邊將新的一

組當作猜值代入 1( )tG 、 2 ( )tG 計算，得出另外一組邊界值，再與前一組猜值做比

較，重複同樣步驟值到收斂為止。 

 
[ ]

[ ]

2 22

0 0

22

0 0

( 1) ( ) ( 1) ( ) ( 1) ( )

( 1) ( ) ( 1) ( )

f f f f

f f

u k u k u k u k u k u k

v k v k v k v k ε

′′ ′′ ′′ ′′   + − + + − + + −   

′ ′ ′ ′ + − + + − ≤ 


 (3.62) 

括號內的 k 代表各自邊界值在第 k 次迭代所得的值。 

經過前述計算後，我們得知所有的初始值，經由 2.9 節 數值積分方法提到

的數值積分方法積分至末值，與已知的末值 fu′ 、 fv 做打靶，經由 r 的替換，找

尋差距最小的值，由於打靶目標有數個，這邊使用平方相加開根號的方法來找尋

最小值 

 ( ) ( )2 2
min r r

f f f fu u v v′ ′− + −  (3.63) 

上標 r 代表其為積分後得到的數值解。 

 前面所推導迭代找尋邊界值的(3.62)式與進行打靶目標的(3.63)式取決於

(3.59)式給定的五個已知邊界條件。實際上依據題目(3.5)式給定的邊界條件，尋

找邊界值的(3.60)式、(3.61)式，以及打靶的目標(3.63)式會有所不同，隨著求解

的問題將會做變換。 

 

3.4 李群 (3, )SL  與李群 (2,1)oSO 打靶法 

3.4.1 耦合方程中三階方程式換與李群 (3, )SL  一步保群算法 

由(3.5)耦合方程組，如同 3.3 節 李群 ( , )SL n  第一條耦合方程式函數轉換，

一樣將 1f 函數集合至 u 的最高階項，第一條方程式可得三條一階常微分方程同
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(3.7)式，將其轉換成符合李群 (3, )SL  下的李代數形式並推導一步保群算法，推

導過程與前一節相同，詳細推導內容從(3.14)式開始至(3.41)式，在此就只列出結

果 

 
0

1 0

0

( )

( ) ( )

( )

uu t

u t t u

u t u

  
  ′ ′=   
 ′′  ′′   

G  (3.64) 

其中 1
1( ) ( ) (0)t t −=G H H ，參考(3.40)與(3.41)式。 

耦合方程組的第二條方程式則轉換成符合正規勞倫茲群的形式下來做打靶，

不同於特殊線性群打靶法會出現需要迭代的情況，在詳細說明之前，先推導二階

正規勞倫茲群 (2,1)oSO 的打靶法。 

我們一樣假設十個邊界值中的五個邊界值為已知，如同(3.59)式 

 0 0 0 0 0 0( ) , ( ) , ( ) , ( ) , ( )f f f fu t u u t u u t u v t v v t v′ ′ ′ ′= = = = =  (3.65) 

 

3.4.2 李群 (2,1)oSO 一步保群算法 － 廣義中值定理 

耦合方程組第二條方程式 

 2 ( , ( ), ( ), ( ), ( ), ( ))v f t u t u t u t v t v t′′ ′ ′′ ′=  (3.66) 

將 ( )v t 做以下轉換 

 

( )

( )= ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

t a b a x

y x v t x c

y x b a v t

y x b a v t

α β α
α β

= + −
+ − + −

′ ′= − + −
′′ ′′= −

 (3.67) 

其中 

 0 0, , ( ) , ( )f fa t b t v t v tα β= = = =  (3.68) 

經由這樣的轉換我們將 ( )v t 兩點邊界值轉換成 

 
0( ) (0)

( ) (1)f

v t y c

v t y c

α
β

=  =
=  =

 (3.69) 
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原方程式(3.66)式由(3.67)式轉換後，得到 

2

( ) ( )
( ) ( ) ( ( ) , ( ), ( ), ( ), ( ) ( ) , )

( )

y x
y x b a f a b a x u t u t u t y x x c

b a

α βα β α ′ − −′′ ′ ′′= − + − − − − +
−

 

     ( , ( ), ( ), ( ), ( ), ( ))f x u t u t u t y x y x′ ′′ ′=                      (3.70) 

將(3.70)式寫成一個向量微分方程形式 

 

( , )

( , ( ), ( ), ( ), ( ), ( ))

t

y

y

y

f x u t u t u t y x y x

=

 =  ′ 
′ =  ′ ′′ ′ 

y f y

y

f

 (3.71) 

將上式套用至增廣動態系統，如同(2.49)式 

 

( )

( )

,

,
0

n n

t

d

dt t

×

 
 

    =        
  

T

f y
0

yy y

y yf y

y

 (3.72) 

並且由前一章的內容可知道，可以將李群 0SO ( ,1)n 運用至這樣微分方程上，這樣

的轉換屬於李代數 so( ,1)n 、滿足光錐的條件，指數映射後屬於李群 0SO ( ,1)n 。 

 

0

0

, det( ) 1

+ =
=
= =

T

T

T

A g gA

X gX

G gG g G

 (3.73) 

 
=  
 

y
X

y
，根據前一章保群算法可知道每個 iX 都在光錐上，並且有著以下的關

係 

 1i i i+ =X G X  (3.74) 

其中 iG 屬於李群SO (2,1)o 。利用(3.74)式，可以整理成一條 oX 與 fX 的關係式 

 1 2 1 0f f f −=X G G G G X  (3.75) 

依據李群群乘法封閉性 
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 0f =X GX  (3.76) 

其中 G 運用 A 指數映射而來，函數內的變數利用廣義中點定理，由一個待定常

數 r 與兩點邊界值組合做決定。則由 2.7 節 增廣動態系統 － 指數映射，可知 G

有一閉合解如下 

 

2 2

ˆ1 ˆˆ
ˆˆ

ˆ

ˆ

a b

b
a

 −+ 
 

=  
 
 
  

T

T

f
I ff

ff
G

f

f

 (3.77) 

其中 

 ( ) ( )0 0

ˆ ˆ
cosh 1 , sinh 1

ˆ ˆ
a t b t

   
   = − = −
   
   

f f

y y
 (3.78) 

 

( ) ( )( )
( ) ( )( )

( )

( )

0 0 0

0

ˆ (1 )

,

1 , 1

ˆ 1

ˆ (1 )

ˆ (1 )

ˆ (1 )

ˆ ˆ ˆ ˆ ˆ ˆ, , , ,

o f

f

f

o f

o f

o f

t rt r t

y t y t

y y

r r

u ru r u

u ru r u

u ru r u

t u u u

= + −

′=

′=

= + −

= + −
′ ′ ′= + −
′′ ′′ ′′= + −

′ ′′=

y

y

y y y

f f y

 (3.79) 

(3.77)式也可以看成是(2.118)式的解。以上的過程利用廣義中點法來求得 G 的近

似解，此運算結果形成有一個參數 r 的李群 G，我們將這邊的 G 以 ( )rG 表示，

代表其跟變數 r 式相關的。 

 ( )r=G G  (3.80) 

在下一個小節會推導另外一個與 r 無關的李群元素。 

 

3.4.3 李群 (2,1)oSO 一步保群算法 － 光錐上兩點的李群映射 

我們定義一個新向量 
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ˆ

ˆ
= f

F
y

 (3.81) 

代入後，則(3.77)式與(3.78)式可以重新表示成 

 

2 2

1a b

b
a

− + 
 =  
 
  

T

T

F
I FF

FF
G

F

F

 (3.82) 

 ( ) ( )0 0cosh 1 , sinh 1a t b t=  −  =  −    F F  (3.83) 

將(3.82)式與(3.83)式代入(3.76)式 

 0f η= +y y F  (3.84) 

 0
0f a b

⋅= + F y
y y

F
 (3.85) 

其中 

 
( ) 0 0

2

1a b
η

− ⋅ +
=

F y y F

F
 (3.86) 

將(3.84)式做轉換，可得 

 ( )0

1
fη

= −F y y  (3.87) 

(3.87)式代入(3.85)式替換 F 

 

( )

( )

0 0

0

0

0 0

0 0 0

f

f

f

f f

f

a b

a b

− ⋅
= +

−

− ⋅
 = +

−

y y y
y y

y y

y y y y

y y y y

 (3.88) 

其中 a、b 中的 F 同樣用(3.87)式代入替換 

 
( ) ( )0 0 0 01 1

cosh , sinh
f ft t

a b
η η

   − − − −
   = =
   
   

y y y y
 (3.89) 

運用內積的觀念定義  
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( )
( )

0 0 0 0

0 0

0 0

cos

cos

f f

f

f

θ

θ

− ⋅ = −

− ⋅
 =

−

y y y y y y

y y y

y y y

 (3.90) 

令 

 ( )0 01 fS t= − −y y  (3.91) 

(3.91)式代入(3.89)式，然後與(3.90)式再替換至(3.88)式中 

 
0

cosh cos sinh
f S Sθ

η η
   = +   
   

y

y
 (3.92) 

定義 

 exp
S

Z
η
 =  
 

 (3.93) 

則可以將(3.92)式轉換成 

( ) ( )
0

ln ln ln ln

cosh ln cos sinh ln

cos
2 2

f

Z Z Z Z

Z Z

e e e e

θ

θ
− −

= +

+ −= + 

y

y  

 
0

1 1
2 cos

f
Z Z

Z Z
θ  = + + − 
 

y

y
 (3.94) 

經整理可獲得一條二元一次方程式 

 ( ) 2

0

2
0 1 cos 1 cos

f
Z Zθ θ= + − + −

y

y
 (3.95) 

上式的解為 

 

2

2

0 0

1 cos

1 cos

f f

Z

θ

θ

 
 + − +
 
 =

+

y y

y y
 (3.96) 

並將(3.91)式與(3.93)式整理 
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( )0 01

ln
ftS

Z
η η

− −
= =

y y
 (3.97) 

 
( )0 01

ln
ft

Z
η

− −
=

y y
 (3.98) 

經過這些推導，光錐上兩點 ( )0 0,y y 和 ( ),f fy y ，我們將其由 ( )0 0,y y 映射至

( ),f fy y 的一步保群算法(3.77)式轉換成 

 0

0

f

f

   
=   

    

y y
G

yy
 (3.99) 

如同(3.82)式、(3.83)式、(3.87)式與(3.98)式 

 

2 2

1a b

b
a

− + 
 =  
 
  

T

T

F
I FF

FF
G

F

F

 (3.100) 

 

( )
( )

( )
( )

0

0

0

0 0

cosh 1

sinh 1

1

1

ln

f

f

a t

b t

t

Z

η

η

=  −  
=  −  

= −

− −
=

F

F

F y y

y y

 (3.101) 

由上面可看出，G 內的變數 F 與η都只跟 0y 、 fy 有關，我們將 G 轉換成只有跟

初始值與末值有關，我們將其表示成 ( )0 , fG y y ，凸顯出代表裡面只有兩個變數

會影響 G，透過推導過程中，消去了前面的未定參數 r， ( )0 , fG y y 與 r 線性無關。 

 ( )0 , f=G G y y  (3.102) 

我們將(3.102)式與(3.80)式做比較，(3.80)式的 G 與 f̂、r、 0y 、 fy 有關，而(3.102)

式只有與 0y 、 fy 有關，與 r 無關，原本的微分方程 f 也不影響結果，而這兩種形
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式的李群 G 在皆會運用於推導李群 (2,1)oSO 打靶法上。 

 

3.4.4 李群 (2,1)oSO 打靶法 

回憶(3.71)式 

 

( , )

,
( , ( ), ( ), ( ), ( ), ( ))

t

y y

y f x u t u t u t y x y x

=
′   

= =   ′ ′ ′′ ′   

y f y

y f
 (3.103) 

其中 ( )y x 與 ( )y x′ 的邊界條件為 

 

0

0 0

0
0

( ) , (1)

( ) , (1)

,

f

f
f

y t c y c

y t y y y

cc

yy

= =


′ ′ ′ ′= =

  
= =    ′′   

y y

 (3.104) 

c 為一給定的定值，依據邊界條件， 0y′與 fy′ 為未知常數。將邊界條件(3.104)式代

入(3.87)式 

 
0

01

fy yη
 

=  ′ ′− 
F  (3.105) 

F 與邊界值代入(3.98)式、(3.96)式與(3.90)式 

 
( ) ( )2

0 01

ln

ft y y

Z
η

′ ′− −
=  (3.106) 

 

2 2 2 2
2

2 22 2
00

1 cos

1 cos

f f
c y c y

c yc y
Z

θ

θ

′+ ′+
+ − +

′+′+
=

+
 (3.107) 

 
( )

( )
0 0

2 2 2
0 0

cos
f

f

y y y

y y c y
θ

′ ′ ′−
=

′ ′ ′− +
 (3.108) 

(3.105)式與(3.81)式相等 

 
0

ˆ ˆ01 1
ˆˆ ˆf

y

y y fη
′  

= = =   ′ ′−   

f
F

y y
 (3.109) 
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並且 

 
0

ˆ (1 )

ˆ (1 )f

y rc r c c

y ry r y

= + − =
′ ′ ′= + −

 (3.110) 

由(3.109)式可獲得兩條方程式，並將 0ˆ (1 )fy ry r y′ ′ ′= + − 代入 

 
0

0

ˆ (1 ) 0

(1 )

f

f

y ry r y

r
y y

r

′ ′ ′= + − = 

− −′ ′=
 (3.111) 

 0 22
0

ˆ 0
(1 )

f

f

y y f
c ry r y

η′ ′− + =
′ ′ + + − 

 (3.112) 

(3.111)式代入(3.112)式、f、(3.106)式與(3.108)式 

 

0

0 0

0

ˆ 0

1 ˆ 0

ˆ 0

fy y f
c

r
y y f

r c

y c f

η

η

η

′ ′− + = 

−′ ′+ + = 

′ + =

 (3.113) 

 ( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) , , , , , , , , , ,0f r f t u u u y y f t u u u c′ ′′ ′ ′ ′′= =  (3.114) 

 
2

0

2 2
0

cos
y

c y
θ

′−
=

′+
 (3.115) 

 
( ) 2

0 01

ln

t y

Z
η

′−
=  (3.116) 

將(3.115)式代入(3.107)式 

 
2 2 2

2 2 2
0 0

f fc y y
Z

c y y

′ ′+ +
=

′ ′+ −
 (3.117) 

以上的推導基於(3.81)式與(3.87)式是相等的，意思是前兩節推導的李群元素，

(3.80)式與(3.102)式的G是相等的，而透過(3.113)式我們可以求解未知邊界值 0y′，

而以下會分成 0 0y′ > 與 0 0y′ < 兩種情況來做推導。 

1. 0 0y′ >  
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假如 0 0y′ > ，則 2
0 0y y′ ′= ，我們將(3.116)式代入(3.113)式 

 

( )

( )

2
0 0

0

0

1 ˆ 0
ln

ˆ1
ln

t y
y c f

Z

t f
Z

c

′−
′ + = 

− −
=

 (3.118) 

定義 

 
( )0

1

ˆ1
exp

t f
g

c

 − −
=   

 
 (3.119) 

代入(3.117)式替換 Z 

 
2 2 2

12 2 2
0 0

f fc y y
g

c y y

′ ′+ +
=

′ ′+ −
 (3.120) 

整理 

 2 2 2 2
1 0 1 0f fg y y g c y c y′ ′ ′ ′− = + − +  (3.121) 

因為 0 0y′ > ，由(3.111)式可知 0fy′ < ，將(3.121)式等號左右側平方並去除掉同項 

 2 2 2 2 2 2
1 0 1 1 02 (1 ) 2f fg c y c y g c g y y′ ′ ′ ′+ + = + +  (3.122) 

再左右平方一次，則我們可獲得 

 2 2 2 2 2 2 2
1 0 1 1 0 14 ( ) 4 (1 ) (1 )f fg y y g g y y g c′ ′ ′ ′+ − + = −  (3.123) 

0 / (1 )fy ry r′ ′= − − 代入，並整理 

 2 2 2 2 2 2 21
1 1 1 0 12

4
(1 ) (1 ) (1 )

(1 )

g
g r g r g y g c

r
′ − − + − + = − −

 (3.124) 

以上滿足假設條件取決於 

 2 2 2
1 1 1 1( ) (1 ) (1 ) 0D r g r g r g= − − + − + >  (3.125) 

則我們可獲得一正值的初始值 0y′  

 
2 2 2

1
0

1 1

(1 ) (1 )

4

r g c
y

D g

− −′ =  (3.126) 
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1( )D r 是個開口向下的拋物線，而且 

 1 1 1(0) (1)D D g= =  (3.127) 

存在著兩點使得 1( ) 0D r =  

 ( ) ( )
1 1

1 2
1 1

1 11 1
,

2 2 1 2 2 1

g g
r r

g g

+ += − = +
− −

 (3.128) 

依據與 x 軸的交點，可以透過(3.125)式與(3.128)式可用來檢核 r 的範圍，避免解

出虛數的情況。 

 1 2r r r< <  (3.129) 

以下給予可能的 r 與 1( )D r 關係圖，用來簡單說明如何檢核 r。 

 

 

圖 3.4.1 1D 曲線圖 

 

2. 0 0y′ <  

假如 0 0y′ < ，則
2

0 0y y′ ′= − ，我們將(3.116)式代入(3.113)式 

 

( )

( )

2
0 0

0

0

1 ˆ 0
ln

ˆ1
ln

t y
y c f

Z

t f
Z

c

′−
′ + = 

−
=

 (3.130) 

定義 

r 

(1, 1g ) (0, 1g ) 

( 2r ,0) ( 1r ,0) 

1D  
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( )0

2

ˆ1
exp

t f
g

c

 −
=   

 
 (3.131) 

代入(3.117)式替換 Z 

 
2 2 2

22 2 2
0 0

f fc y y
g

c y y

′ ′+ +
=

′ ′+ −
 (3.132) 

整理 

 2 2 2 2
2 0 2 0f fg y y c y g c y′ ′ ′ ′− = + − +  (3.133) 

因為 0 0y′ < ，由(3.111)式可知 0fy′ > ，將(3.133)式等號左右側平方並且去除掉

同項 

 2 2 2 2 2 2
2 0 2 2 02 (1 ) 2f fg c y c y g c g y y′ ′ ′ ′+ + = + +  (3.134) 

再左右平方一次，則我們可獲得 

 2 2 2 2 2 2 2
2 0 2 2 0 24 ( ) 4 (1 ) (1 )f fg y y g g y y g c′ ′ ′ ′+ − + = −  (3.135) 

0 / (1 )fy ry r′ ′= − − 代入，並整理 

 2 2 2 2 2 2 22
2 2 2 0 22

4
(1 ) (1 ) (1 )

(1 )

g
g r g r g y g c

r
′ − − + − + = − −

 (3.136) 

以上滿足假設條件取決於 

 2 2 2
2 2 2 2( ) (1 ) (1 ) 0D r g r g r g= − − + − + >  (3.137) 

則我們可獲得一個負值的初始值 0y′  

 
2 2 2

2
0

2 2

(1 ) (1 )

4

r g c
y

D g

− −′ = −  (3.138) 

2 ( )D r 是個開口向下的拋物線，而且 

 2 2 2(0) (1)D D g= =  (3.139) 

存在著兩點使得 2 ( ) 0D r =  

 
( ) ( )

2 2
1 2

2 2

1 11 1
,

2 2 1 2 2 1

g g
r r

g g

+ += − = +
− −

 (3.140) 
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避免解出虛數的情況，(3.137)式與(3.140)式可用來檢核 r 的範圍。 

 1 2r r r< <  (3.141) 

 

 

 

圖 3.4.2 2D 曲線圖 

 

經過前面的推導，依據 0y′正負的情況，可分別由(3.126)式與(3.138)式中求得斜率，

利用(3.67)式的轉換關係式，可將求解出的初始值 0y′ 轉換回 0v′，我們可以找到一

次微分的 ( )v t′ 初始值 0 0( )v t v′ ′= 。 

 

3.4.5 李群打靶法 

利用(3.64)式李群 (3, )SL  一步保群算法，利用三條方程式，可解出 ( )u t 、 ( )u t′ 、

( )u t′′ 中未知的三個邊界值 

 
11 12 13

1 21 22 23

31 32 33

( )

G G G

t G G G

G G G

 
 =  
  

G  (3.142) 

 

21 0 22 0
0

31

11 0 12 0 13 0

31 0 32 0 33 0

f

f

f

u G u G u
u

G

u G u G u G u

u G u G u G u

′ ′− −
′′ =

′ ′′= + +
′′ ′ ′′= + +

 (3.143) 

r 

2D  

(1, 2g ) (0, 2g ) 

( 2r ,0) ( 1r ,0) 
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與前一節李群 (3, )SL  打靶法相同，在計算過程中，假如遇到 1f 中的變數出現需

要代入未知邊界值的情況時，需要用到的部分，一樣先給一組猜值，經由一步保

群計算後得出新的一組，與原先的猜值做比較，差距過大則把新的一組當作猜值

再進入一步保群算法做計算，得出另外一組新的邊界值，再做比較，直到差距小

到給定的收斂條件為止。 

 [ ] 2 22

0 0( 1) ( ) ( 1) ( ) ( 1) ( )f f f fu k u k u k u k u k u k ε′′ ′′ ′′ ′′   + − + + − + + − ≤     (3.144) 

 以上經過李群 (3, )SL  打靶過後，我們即可知道 ( )u t 、 ( )u t′ 、 ( )u t′′ 的兩端邊

界值，將其代入 3.4.4 節 李群 (2,1)oSO ，便可求得 ( )v t′ 的初始值 0v′。 

到此，全部的初始值已經找到，運用 2.9 節 數值積分方法來積分至末值，

與已知的末值 fu′ 、 fv 做打靶，經由 r 的替換，找尋差距最小的值，一樣以平方

相加開根號的方式來尋找最小值 

 ( ) ( )2 2
min r r

f f f fu u v v′ ′− + −  (3.145) 

上標 r 代表其為積分後得到的數值解。 

同樣地，找尋未知邊界值的(3.143)式與李群 (3, )SL  打靶目標的(3.144)式會

隨著題目給定邊界值的不同而有所變換。 

 

3.5 李群打靶法流程 

我們將前面所提到的種種觀念與不同李群下的打靶法步驟加以整理，可以歸

類出以下幾個步驟： 

1. 將常微分方程組轉換成 =X AX 的形式，A 各自符合所用到李群下的李代

數。 

2. A 經由指數映射，並代入 r 與邊界值，求解李群 G。假如函數內包含未知邊

界值，則先假設，之後再求證。 

3. 利用一步保群方程式 0f =X GX 求解初始值。假如前面有假設未知邊界值，
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在這步做比較審核。李群 (2,1)oSO 打靶法則依公式找尋初始值。 

4. 初始值利用數值積分方法，如 RK4、保群算法…等，積分至右端末值，與

已知末值做比較。 

5. 經由 r 的替換，找尋與已知末值誤差最小的 r，即為打到靶。 

 

 

圖 3.5.1 積分示意圖 

 

我們將上述步驟以一個簡單流程表示圖如下： 

 李群 ( , )SL n  打靶法 

 

圖 3.5.2 李群 ( , )SL n  打靶法流程 
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 李群 (3, )SL  與李群 0 (2,1)SO 打靶法 

 

圖 3.5.3 李群 (3, )SL  與李群 0 (2,1)SO 打靶法流程 
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第 四 章 數值算例 

Equation Section (Next) 

4.1 方程式平移轉換 

在李群打靶法時，假如邊界值具有特殊情況，如很多為零的值或是對稱，則

會使利用一步保群算法找尋邊界值時，有時候讓方程式產生無解、無限多組解，

或是無意義的解的情況。 

舉例，耦合方程組第一條三階一步保群方程式(3.41)式 

 
011 12 13

21 22 23 0

31 32 33 0

f

f

f

u uG G G

u G G G u

G G G uu

    
    ′ ′=    
     ′′′′     

 (4.1) 

假如邊界值為 

 0 0( ) 0 , ( ) 0 , ( ) 0fu t u t u t′ ′= = =  (4.2) 

則經由一步保群方程式 

 

21 0 22 0
0

31

11 0 12 0 13 0

31 0 32 0 33 0

0

0

0

f

f

f

u G u G u
u

G

u G u G u G u

u G u G u G u

′ ′− −
′′ = =

′ ′′= + + =
′′ ′ ′′= + + =

 (4.3) 

不管輸入的 r 值為何，G 的改變都不會影響(4.3)式的結果，其產生的邊界值恆為

零。所以在之後計算時，會將方程式加上某些項來做平移轉換，使得邊界值為非

零的值，待求出解後再反轉換回原本的方程式，而這些轉換參數是我們可以控制

的。 

 

4.2 一步保群算法的區間長度 

我們在這邊的例子，邊界值範圍都是介於0 ~ ∞，而在數值計算中，不可能

積分至無限遠，通常只做到與步長 tΔ 某個夠大的倍數為止就好，而前面推導的
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1( )

f

f

f

t

 
 ′ = 
 ′′ 

G

關係式，也就
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間的長度 t，
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邊界值問題，

由 Falkner 與

le laminar b

因次變數轉換

界值，成為

dt   

0

0

0

u

u

u

 
′ 
′′ 
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，意即(4.4)
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而且沒有閉合解的存在。劉教授 [16]曾經於 2008 年運用勞倫茲群推導出的李群

打靶法來求解，此次將使用前一章所提到的部份李群 (3, )SL  打靶法來計算，方

程式的形式如下： 

 2( ) ( ) ( ) 1 ( ) 0f t f t f t f tβ′′′ ′′ ′ + + − =   (4.5) 

有著邊界條件 

 
(0) 0 ,

(0) 0  ,  ( ) 1

f

f f

=
′ ′= ∞ =

 (4.6) 

f ：無因次的流函數(nondimensional stream function) 

β ：壓力梯度參數(the pressure gradient parameter) 

如 4.1 節 方程式平移轉換所說，我們將方程式(4.5)式做轉換 

 

1 2

2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

u t f t c c t

u t f t c

u t f t

u t f t

= + +
′ ′= +
′′ ′′=
′′′ ′′′=

 (4.7) 

代入原方程式(4.5)式 

 [ ][ ] [ ]{ }2

1 2 2( ) ( ) ( ) 1 ( ) 0u t u t c c t u t u t cβ′′′ ′′ ′+ − − + − − =  (4.8) 

邊界區間從0 ~ ∞設成0 ~ 10，邊界條件(4.6)式轉換成 

 1

2 2

(0) ,

(0)  ,  (10) 1

u c

u c u c

=
′ ′= = +

 (4.9) 

依據前一章李群 (3, )SL  打靶法三階常微分方程部分的步驟 

 
[ ][ ] [ ]{ }2

1 2 3 2( ) ( ) ( ) 2 1 ( )

( , ( ), ( ), ( ))

u t u t c c t u t c u t c

F t u t u t u t

β′′′ ′′ ′= − − − − − − −

′ ′′=
 (4.10) 

於是有以下向量方程 

 

( ) 0 1 0 ( )

( ) 0 0 1 ( )

( ) ( , ( ), ( ), ( )) ( )
0 0

( )

u t u t
d

u t u t
dt

u t F t u t u t u t u t

u t

 
        ′ ′=      ′′ ′ ′′ ′′       
  

 (4.11) 

給予其參數，出自於 [16]內的表格，取 0.1β = ，而可控制的參數設定為 1 5c = − 、
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2 0.0000999c = ，t 的積分步長 35 10t −Δ = × ，一步保群長度 2dt = ， [0,1.3]r ∈ 內做

李群打靶法計算，迭代收斂條件 710ε −= ，迭代上限為 500 步，因為函數 F 包含

了u 、u′ 、u′′函數，我們給予未知的邊界猜值如下 

 (10) 5 , (0) 0.4  , (10) 0.1u u u′′ ′′= = =  (4.12) 

由圖 4.6.2 看出，除了 r 前面區間的部分有不收斂的情形，其他約 50 步就可以

收斂找到初始值，圖 4.6.1 中打靶誤差在 1r = 後急速下降，我們在 1.015r = 有著

最小值，即為打到靶。不過可以看出圖有出現不連續的情況，那是源自於某些 r

無法求得初始值，一步保群求出的值是無限大或是
0

0
無意義的解。 

積分後與目標邊界值 ( ) 1f ′ ∞ = 誤差為 92.55393 10−× ，找到的初始值如下 

 (0) 0.58704f ′′ =  (4.13) 

t 與 f 、 f ′、 f ′′的圖分別為圖 4.6.3、圖 4.6.4 與圖 4.6.5。發現圖形滿足我們所

有已知的邊界條件，驗證推導的李群 (3, )SL  對於求解三階邊界值問題，能求出

具有非常高精度的結果。 

 

4.4 數值算例二 

在前述的邊界層問題中，只考量流體本身的黏性產生邊界值造成流體流速的

分布變化，流體的溫度並不隨著時間、位置有所變化，換句話說沒有熱量上的傳

遞。然而實際上流經不同物質表面時，溫度的差異勢必造成熱量上的轉移，於是

有了另外一個由熱傳衍伸的方程式，學者們透過許多方法推導出不同條件下的方

程式。學者 F. K. Tsou、E. M. Sparrow 與 R. J. Goldstein 推導在連續不斷變動表面

上的流體邊界層與熱傳邊界層方程式 [27]，形式如下： 

 

1
( ) ( ) ( ) 0

2
1

( ) Pr ( ) ( ) 0
2

f t f t f t

S t f t S t

′′′ ′′+ =

′′ ′+ =
 (4.14) 

邊界條件是 
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(0) 0 ,

(0) 0  ,  ( ) 1

(0) 1  ,  S( ) 0

f

f f

S

=
′ ′= ∞ =

= ∞ =
 (4.15) 

f ：無因次的流函數 

S ：無因次的熱含量函數(nondimensional enthalpy function) 

Pr：普蘭特數(Prandtl number)，為流體力學一個無因次的係數，為動量傳遞與熱 

    量傳遞效果的比值。 

同樣將方程式轉換 

 

1 2
3

2

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

u t f t c c t
v t S t c

u t f t c
v t S t

u t f t
v t S t

u t f t

= + + = + ′ ′= +  ′ ′= ′′ ′′=  ′′ ′′= ′′′ ′′′=

 (4.16) 

原方程式(4.14)式變為 

 
( )( )

( )

1 2

1 2

1
( ) ( ) ( ) 0

2
1

( ) Pr ( ) ( ) 0
2

u t u t c c t u t

v t u t c c t v t

′′′ ′′+ − − =

′′ ′+ − − =
 (4.17) 

邊界區間從0 ~ ∞設成0 ~ 10，邊界條件(4.15)式轉換成 

 
1

2 2

3 3

(0) ,

(0)  ,  (10) 1

(0) 1   ,  (10) 0

u c

u c u c

v c v c

=
′ ′= = +

= + = +
 (4.18) 

使用 3.3 節 李群 ( , )SL n  打靶法的觀念 

 
( )( )1 2

1

1
( ) ( ) ( )

2
( , ( ), ( ), ( ), ( ), ( ))

u t u t c c t u t

f t u t u t u t v t v t

′′′ ′′= − − −

′ ′′ ′=
 (4.19) 

 
( )1 2

2

1
( ) Pr ( ) ( )

2
( , ( ), ( ), ( ), ( ), ( ))

v t u t c c t S t

f t u t u t u t v t v t

′′ ′= − − −

′ ′′ ′=
 (4.20) 

輸入參數，與 [27]內的數值例題相同，Pr 7= 、 1 -0.48473c = 、 2 0.5c = 、 3 0.5c = − ，

t 的積分步長 35 10t −Δ = × ，一步保群長度 2dt = ，迭代收斂條件 710ε −= ，迭代上

限為 300 步，因為函數 1f 、 2f 包含了u 、u′′、 v′函數，我們給予未知的邊界猜
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值如下 

 
(10) 5 , (0) 0.4  , (10) 0.1

(0) 0.5 , (10) 0.1

u u u

v v

′′ ′′= = =
′ ′= =

 (4.21) 

[1.0,1.3]r ∈ 內做李群打靶法計算，圖 4.6.7 顯示此區間內的迭代收斂次數都約為

26 步左右，r 與誤差的關係為圖 4.6.6，在 1.32242485r = 有著最小誤差， 與兩

個已知邊界值 ( ) 1f ′ ∞ = 、 ( ) 0S ∞ = 的誤差分別為 51.97065 10−× 與 65.61446 10−× ，

找出的未知邊界值為 

 ,(0) 0.58703522 (0) -2.00860259f S′′ ′= =  (4.22) 

積分後的 t 與 f 、 f ′、 f ′′的圖分別為圖 4.6.8、圖 4.6.9 與圖 4.6.10，以及 t 與 S 、

S′的圖為圖 4.6.11 圖 4.6.12。可發現第二條方程式的出現後，誤差上升了步長

的一次左右，不過仍可達到 510− 、 610− 的精確度。 

 

4.5 數值算例三 

考慮一個可壓縮邊界層方程式(compressible boundary-layer equations) [28]，

為學者 C. L. NARAYANA 與 P. RAMAMOORTH 於 1972 年所推導出 

 
2( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) 0

f t f t f t S t f t

S t f t S t

β′′′ ′′ ′ + + − = 
′′ ′+ =

 (4.23) 

有著以下五個已知邊界條件 

 

(0) 0 ,

(0) 0  ,  ( ) 1 ,

(0) ,   ( ) 1w

f

f f

S S S

=
′ ′= ∞ =

= ∞ =
 (4.24) 

f ：無因次的流函數 

S ：無因次的熱含量函數 

β ：壓力梯度參數 

下標w代表牆壁或表面。 
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4.5.1 李群 ( , )SL n  打靶法 

運用 4.1 節 方程式平移轉換，我們將 ( )f t 與 ( )S t 做平移轉換，令 

 1

2

( ) ( )

( ) ( )

u t f t c

v t S t c

= +
= +

 (4.25) 

可得 

 

1
2

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

u t f t c
v t S t c

u t f t
v t S t

u t f t
v t S t

u t f t

= + = + ′ ′=  ′ ′= ′′ ′′=  ′′ ′′= ′′′ ′′′=

 (4.26) 

將(4.26)轉換方程代入(4.23)，原方程式轉換成 

 
[ ] [ ]{ }
[ ]

2
1 2

1

( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) 0

u t u t c u t v t c u t

v t u t c v t

β′′′ ′′ ′+ − + − − =

′′ ′+ − =
 (4.27) 

邊界區間從0 ~ ∞設成0 ~ 6 ，邊界條件(4.24)式轉換成 

 
1

2 2

(0) ,  

(0) 0 ,   (6) 1 ,

(0) ,   (6) 1w

u c

u u

v S c v c

=
′ ′= =

= + = +
 (4.28) 

使用 3.3 節 李群 ( , )SL n  打靶法的觀念 

 
[ ] [ ]{ }2

1 2

1

( ) ( ) ( ) ( ) ( )

( , ( ), ( ), ( ), ( ), ( ))

u t u t c u t v t c u t

f t u t u t u t v t v t

β′′′ ′′ ′= − − − − −

′ ′′ ′=
 (4.29) 

 
[ ]1

2

( ) ( ) ( )

( , ( ), ( ), ( ), ( ), ( ))

v t u t c v t

f t u t u t u t v t v t

′′ ′= − −
′ ′′ ′=

 (4.30) 

給予其參數，依 [28]原題內的表格，取 0.2wS = 、 1.5β = 、 1 2c = − 、 2 2.5c = ，t

的積分步長 35 10t −Δ = × ，一步保群長度 2dt = ， [0.85,1.0]r ∈ 內做李群打靶法計算，

尋找未知邊界值的迭代收斂條件設為 710ε −= ，迭代上限為 300 步，給予未知邊

界猜值 
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(6) 5 , (0) 0.4  , (6) 0.1

(0) 0.5 , (6) 0.1

u u u

v v

′′ ′′= = =
′ ′= =

 (4.31) 

圖 4.6.14 發現此區間內的 r 迭代次數約 15 步以內即可達到收斂條件，圖 4.6.13

中誤差從 0.85r = 開始下降，最小值出現在 0.94998493r = 時，即為打到靶，找出

兩個未知邊界條件 

 ,(0) 0.87068726 (0) 0.4282376f S′′ ′= =  (4.32) 

用此初始條件經由數值積分後，圖形分別為圖 4.6.15、圖 4.6.16 與圖 4.6.17，

以及圖 4.6.18 與圖 4.6.19，其值與真解 ( ) 1f ′ ∞ = 、 ( ) 1S ∞ = 的誤差分別為

62.08764 10−× 與 32.496 10−× ，相較於第二個例子，第二個靶誤差又上升了步長的

一次方，誤差達到步長的一次方左右。 

 

4.5.2 李群 (3, )SL  與李群 (2,1)oSO 打靶法 

將第一條方程式同樣做轉換 

 

2
1 2 3

2 3

3

( ) ( )

( ) ( ) 2

( ) ( ) 2

( ) ( )

u t f t c c t c t

u t f t c c t

u t f t c

u t f t

= + + +
′ ′= + +
′′ ′′= +
′′′ ′′′=

 (4.33) 

邊界區間從0 ~ ∞設成0 ~ 6 ，邊界條件(4.6)式轉換成 

 1

2 2 3

(0) ,

(0)  ,  (6) 12

f c

f c f c c

=
′ ′= = +

 (4.34) 

並且之後步驟與前小節相同，寫成與(4.27)式第一條方程式與(4.29)式相同的形式，

而第二條方程式依據 3.4.4 節 李群 (2,1)oSO 打靶法，轉換成 

 
4

6

( )= ( ) ( 1)

( ) 6 ( ) ( 1)

( ) 6 ( )

w w

w

t x

y x v t S x c S

y x v t S

y x v t

=
+ − + −

′ ′= + −
′′ ′′=

 (4.35) 

邊界條件 
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 4

4

(0)

(1)

y c

y c

=
=

 (4.36) 

原先的二階常微分方程(4.30)式轉換成 

 2 4

( ) ( 1)
( ) 6 (6 , ( ), ( ), ( ), ( ) ( 1) , )

6
( , ( ), ( ), ( ), ( ), ( ))

w
w w

y x S
y x f x u t u t u t y x S x c S

F x u t u t u t y x y x

′ − −′′ ′ ′′= − − − +

′ ′′ ′=
 (4.37) 

F 為一個新的函數形式，給予其參數，取 0.2wS = 、 1.5β = 、 1 0.05c = − 、 2 0.05c = − 、

3 0.1c = − 、 4 0.05c = − ，t 的積分步長 35 10t −Δ = × ，一步保群長度 5dt = ，迭代上

限為 300 步，迭代收斂條件設為 710ε −= ， [0.8,0.9]r ∈ 進行李群打靶法，以下為

初始猜值 

 (6) 5 , (0) 0.4  , (6) 0.1u u u′′ ′′= = =  (4.38) 

圖 4.6.21 此區間內的 r 迭代收斂次數約 15 步，圖 4.6.20 中 r 在0.81998190 有誤

差最小值即為打到靶，兩個未知邊界條件為 

 ,(0) 0.50560432 (0) 0.16807052f S′′ ′= =  (4.39) 

與真解 ( ) 1f ′ ∞ = 、 ( ) 1S ∞ = 的誤差分別為 55.54925 10−− × 與 41.84555 10−× ，用初始

條件經由數值積分後，圖形分別為圖 4.6.22、圖 4.6.23 與圖 4.6.24，以及圖 

4.6.25 與圖 4.6.26。可以很明顯發現到，此圖形並不滿足一開始物理條件的邊界

值，只是剛好是邊界值 (6) 1f ′ = 與 (6) 1S = 下的數值解，在物理上不存在，但是

數學上的解，與另一種李群打靶法比較，可以有效地縮小誤差，而且找到了第二

組解，雖然在物理意義上它不存在。 
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4.6 圖 

 

圖 4.6.1 數值算例一 r 與打靶目標誤差關係圖 

 

圖 4.6.2 數值算例一 r 與迭代次數關係圖 
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圖 4.6.3 數值算例一 t 與 f 關係圖 

 

 

圖 4.6.4 數值算例一 t 與 f ′關係圖 
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圖 4.6.5 數值算例一 t 與 f ′′關係圖 

 

 

圖 4.6.6 數值算例二 r 與打靶目標誤差關係圖 
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圖 4.6.7 數值算例二 r 與迭代次數關係圖 

 

 

圖 4.6.8 數值算例二 t 與 f 關係圖 
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圖 4.6.9 數值算例二 t 與 f ′關係圖 

 

 

圖 4.6.10 數值算例二 t 與 f ′′關係圖 
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圖 4.6.11 數值算例二 t 與 S 關係圖 

 

 

圖 4.6.12 數值算例二 t 與 S ′關係圖 
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圖 4.6.13 數值算例三 方法一, r 與打靶目標誤差關係圖 

 

 

圖 4.6.14 數值算例三 方法一, r 與迭代次數關係圖 
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圖 4.6.15 數值算例三 方法一, t 與 f 關係圖 

 

 

圖 4.6.16 數值算例三 方法一, t 與 f ′關係圖 
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圖 4.6.17 數值算例三 方法一, t 與 f ′′關係圖 

 

 

圖 4.6.18 數值算例三 方法一, t 與 S 關係圖 
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圖 4.6.19 數值算例三 方法一, t 與 S ′關係圖 

 

 

圖 4.6.20 數值算例三 方法二, r 與打靶目標誤差關係圖 
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圖 4.6.21 數值算例三 方法二, r 與迭代次數關係圖 

 

 

圖 4.6.22 數值算例三 方法二, t 與 f 關係圖 
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圖 4.6.23 數值算例三 方法二, t 與 f ′關係圖 

 

 

圖 4.6.24 數值算例三 方法二, t 與 f ′′關係圖 
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圖 4.6.25 數值算例三 方法二, t 與 S 關係圖 

 

 

圖 4.6.26 數值算例三 方法二, t 與 S ′關係圖 
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第 五 章 結論與未來工作 

前面的章節完整了介紹李群打靶法的理論基礎，包括了保群算法，李群、李

代數、光錐等等構造，然後經由幾個數值算例，以不同的方法進行驗證後的結果

具有相當的精確性，能解決所遇到的三階與二階耦合邊值問題。本篇論文是首先

將李群打靶法運用於求解偶合邊值問題上，然而在求解的過程中，與前面文獻提

到的其他問題來相比，遇到了許多的問題及體會。 

基於李群 ( , )SL n R 推導的打靶法，將函數全部集中至最高項的向量方程，是

個簡單的步驟，且容易求得指數映射後李群的形式，只需要運用工程數學上求解

n 階方程式的知識即可。相比於李群 ( ,1)oSO n 打靶法導出未知邊界值方程式的過

程，形式上看來較為簡單，且用於求解像數值算例一中的三階邊界值問題，具有

相當高的準確性，可以到 910− 次方，步長的三次方左右的精度，有效地重新解決

了流體力學上的 The Falkner-Skan equation。耦合方程組中第二條由熱傳遞產生

的方程式的出現，如數值算例二與數值算例三，發現誤差上升，數值算例二中的

第一條方程式影響著第二條，誤差為 5 610 ~ 10− − 次方，上升了步長的一次方左右，

數值算例三中耦合方程組的出現，兩條方程式交互影響，誤差上升為 310− ，仍然

有步長一次方以上的精準度，算是相當的精確，我們研判誤差上升的因素是：隨

著方程式越來越複雜，耦合的程度越高，我們發展的李群 ( , )SL n R 打靶法集中至

最高次使其為一個線性方程的過程，忽略了少許非線性的影響，才使得誤差稍微

上升，但是對於數值算例來說， 310− 是具有相當高的精確性。但是想說是否能透

過不同李群下的李群打靶法的組合，來提高精度，使結果更精確，好還要再更好。

而本文中使用的數值算例都對初始值相當敏感，相差過大，積分過程就會出現發

散的情況，無法打至右端的靶。另外一個問題，在求解時，我們找尋目標誤差最

小的 r 來做打靶法計算，先給一個大個間隔 rΔ ，找出圖形中最小值出現的區間，

將此區間當作打靶區間並且將 rΔ 調小重新打靶，找到此區域最小值出現區間，

再調小 rΔ ，一直重覆到找到誤差最小的 r 為止。但是在做耦合邊界值問題時，
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在某個 r 區間內，我們發現第 k 步與 k+1 步的 kr 與 1kr + 找出的初始值都會出現無

法收斂的情況，但實際上我們將區間間隔 rΔ 變小，發現在比較小的區間內是可

以收斂的，但是間隔 rΔ 必須要非常小，收斂的區域才會出現，過大的 rΔ 會造成

數值急劇變化，這造成計算時間上的耗費，抵銷了一步保群計算快速的優點。 

 

圖 5.1 rΔ 與收斂示意圖 

除了未知邊界值會具有大到會出現無法收斂的誤差外，在給予初始邊界猜值

經迭代找尋初始值的步驟中，出現了兩組邊界值互相映射的情形，也就是迭代到

某步產生的未知邊界值，代入下一次的一步保群計算後得出第二組未知邊界值，

這第二組代入下一次的計算，產生的解會回到第一組的邊界值，此兩組無限地互

相交換。另外一種情況是一步保群方程式求解邊界值時，至某次迭代解出的值出

現了無限大或是零分之零無意義的情形。我們利用可控制的係數，例如一步保群

長度 dt 、方程式轉換係數 1c 、 2c …等等，能有效地降低降低找尋初始值產生不收

斂情況的發生機率，也能降低打靶的誤差。數值算例一、二與數值算例三皆能降

低誤差，依據前面所說，嘗試著想說利用不同的方法，是不是能將誤差再縮小，

於是才想出第二種將兩種李群結合的李群打靶法法，嘗試能否降低誤差，與減少

參與一步保群跌代的未知邊界值數目，只有第一條三階常微分方程的邊界值需要

給予猜值，第二條二階常微分方程由轉換後經由打靶法公式，即可解出未知邊界

值。實際上第二條方程式並不是都是零階邊界值為已知，在這邊的數值算例剛好
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都是此種情況，四個邊界值情況各有各自的轉換模式，簡單地利用轉成兩點相同

與圖形對稱的觀念後仍可套用打靶法公式，在這邊就不加以說明，可以參考文獻

中其他篇關於李群打靶法的說明。而結果可清楚發現，經由第二種打靶法，誤差

降低至 410− ，達到我們降低誤差的目的，使結果的更加精確。此解是另外一個數

學上的解，在物理上為不存在的，不過也如文獻內所提到的重點，驗證了邊界值

問題可能有多組解的情況，透過李群打靶法的變換，我們找出其他可能的解。 

另外以往的文獻中 r 都是出現在 0 與 1 之間，但是我所運用的數值算例的邊界都

是由0 ~ ∞，在數值積分時不可能積分至無限遠，通常只積分到一個與步長相差

夠大的倍數即可，於是 r 的範圍改變，在數值算例中，甚至出現了 1.3 多的值，

是一個很有趣的情況。 

 運用李群封閉性特點延伸出來的李群打靶法，有著能建立一條兩端邊界的方

程式，這是李群的獨特性，是其他的轉換所不能達到的。然而透過廣義中點法來

作為簡化，對於高階或是函數隨階數急劇變化的問題來說，其準確性有待改進與

加強，將來會嘗試找尋有沒有其他定理可以合理地判斷函數中最能代表積分面積

的點，以及如何建立一個判定 r 間隔 rΔ 是何值下為最有效率的判斷準則，也是

未來需要研究的方向。 

本篇論文中運用了單一特殊線性群或是與勞倫茲群的組合的打靶法，實際上

如第二章所述，李群的涵蓋範圍非常的廣，除了這兩個群外，仍有一般線性群，

特殊正交群…等等，將原本的問題轉換成不同形式的李代數，試著推導出其他李

群的李群打靶法，或是不同李群之間組合下的李群打靶法，套用在同樣的例子上

進行比較分析，看是否能將誤差再縮小，改進現有的缺點，以期李群打靶法能更

有效廣泛地解決更多、更複雜的邊界值問題。 
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