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摘要

電子病歷中記錄了病人相關的症狀描述、看診的歷史紀錄等文字

資料，每一筆紀錄都有其對應的診斷代碼，代表著該次就醫時醫師所

下的診斷結果及其治療方案等資訊。這篇論文主要想利用醫院中這類

型的文字描述資料結合醫學上的專家知識來做診斷代碼的預測。為了

能讓模型有效利用診斷代碼的階層關係這類額外的專家知識，我們提

出了各種不同的方式去計算卷積神經網路的損失函數以此來取得同一

種類別的診斷中所共享的語義資訊。這樣的資訊不只讓模型有額外的

醫學知識作為學習方向，也幫助解決訓練資料中樣本數量不平衡的問

題。根據我們做在 MIMIC3 這份國際通用的資料集的結果顯示，我們

提出的方法確實能夠有效利用階層種類的知識並提供模型有意義的資

訊來幫助改善現階段最好的預測結果。而這樣的討論與研究也顯示了

結合額外的專家知識於機器學習的模型中是有一定的好處與重要性，

能啟發未來更多的研究方向。

關鍵字：診斷文字, 醫療診斷, 多標籤預測
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Abstract

Clinical notes are essential medical documents to record each pa-

tient’s symptoms. Each record is typically annotated with medical di-

agnostic codes, which means diagnosis and treatment. This paper fo-

cuses on predicting diagnostic codes given the descriptive present illness

in electronic health records by leveraging domain knowledge. We in-

vestigate various losses in a convolutional model to utilize hierarchical

category knowledge of diagnostic codes in order to allow the model to

share semantics across different labels under the same category. The

proposed model not only considers the external domain knowledge but

also addresses the issue about data imbalance. The MIMIC3 benchmark

experiments show that the proposed methods can effectively utilize cat-

egory knowledge and provide informative cues to improve the perfor-

mance in terms of the top-ranked diagnostic codes which is better than

the prior state-of-the-art. The investigation and discussion express the

potential of integrating the domain knowledge in the current machine

learning based models and guiding future research directions.

Keywords: clinical notes, multi-label classification, ICD prediction
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Chapter 1

Introduction

1.1 Motivation and Problem Description

Electronic health records (EHR) usually contain clinical notes, which are free-form

text generated by clinicians during patient encounters, and a set of metadata diag-

nosis codes from the International Classification of Diseases (ICD), which represent

the diagnoses and procedures in a standard way. ICD codes have a variety of usage,

ranging from billing to predictive modeling of the patient state [1]. Automatic diag-

nosis prediction has been studied since 1998 [2]. [3] pointed out the main challenges

of this task: 1) the large label space, with over 15,000 codes in the ICD-9 taxon-

omy, and over 140,000 codes in the newer ICD-10 taxonomies [4], and 2) noisy text,

including irrelevant information, misspellings and non-standard abbreviations, and

a large medical vocabulary. Several recent work attempted at solving this task by

neural models [5, 3].

However, most prior work considered the output labels independently, so that

the codes with few samples are difficult to learn [5]. Therefore, [3] proposed an

attentional model to effectively utilize the textural forms of codes to facilitate learn-

ing. In addition to textual definitions of codes, the category domain knowledge may

provide additional cues to allow the codes under same category to share parameters,

so the codes with few samples can benefit from it. To effectively utilize the category

knowledge from the ICD codes, this paper proposes several refined category losses

1
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and incorporate them into convolutional models and then evaluate the performance

on both MIMIC-3 [6] and our internal datasets. The experiments on MIMIC shows

that the proposed knowledge integration model significantly improves the previous

methods and achieves the state-of-the-art performance, and the improvement can

also be observed in our internal dataset. The idea is similar to the prior work [7],

which considered the keyword hierarchy for information extraction from medical

documents, but our work focuses on leveraging domain knowledge for clinical code

prediction.

1.2 Main Contribution

Our contributions are three-fold:

• This paper first leverages external domain knowledge for diagnostic text un-

derstanding.

• The paper investigates multiple ways for incorporating the domain knowledge

in an end-to-end manner.

• The proposed mechanisms improve all prior models and achieves the state-of-

the-art performance on the benchmark MIMIC dataset.

1.3 Thesis Structure

In the following chapters, we elaborate the proposed models in Chapter 2 and shows

the experiments and analysis in Chapter 3. Finally, the thesis will be concluded in

Chapter 4.

2
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Chapter 2

Proposed Approach

Given each clinical record in EHR, the goal is to predict the corresponding diagnostic

codes with the external hierarchical category information. This task is framed as

a multi-label classification problem. The proposed mechanism is built on the top

of various convolutional models to further combine with the category knowledge.

Below we introduce the previously proposed convolutional models and detail the

mechanism that leverages hierarchical knowledge.

2.1 Convolutional Models

2.1.1 TextCNN

Let xi ∈ IRk be the k-dimensional word embedding corresponding to the i-th word

in the document, represented by the matrix X = [x1, x2, ..., xN ], where N is the

length of the document. TextCNN [8] applies both convolution and max-pooling

operations in one dimension along the document length. For instance, a feature

ci is generated from a window of words xi, xi+1, ..., xi+h, where h is the kernel size

of the filters. The pooling operation is then applied over c = [c1, c2, ..., cn−h+1] to

pick the maximum value ĉ = max(c) as the feature corresponding to this filter. We

implement the model with kernel size = 3,4,5, considering different window sizes of

words.

3
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2.1.2 Convolutional Attention Model (CAML)

Because the number of samples of each code is highly unbalanced, it is difficult to

train each label with very few samples. To resolve this issue, the CAML model

utilizes the descriptive definition of diagnosis codes, which additionally applies a

per-label attention mechanism, where the additional benefit is that it selects the

n-grams from the text that are most relevant to each predicted label [3].

2.2 Knowledge Integration Mechanism

Considering the hierarchical property of ICD codes, we assume that using the higher

level labels could learn more general concepts and thus improve the performance.

For instance, the definitions of ICD-9 codes 301.2 and 307.1 are “Schizoid personality

disorder” and “Anorexia nervosa” respectively. If we only use the labels given by

the dataset, they are seen as two independent labels; however, in the ICD structure,

both 301.2 and 307.1 belong to the same high-level category “mental disorders”. The

external knowledge shows that category knowledge provides additional cues to know

code relatedness. Therefore, we propose four types of mechanisms that incorporate

hierarchy category knowledge to improve the ICD prediction below.

2.2.1 Cluster Penalty

Motivated by [9], we compute two constraints to share the parameters of the ICD

codes under the same categories. The between-cluster constraint, Ωbetween, indicates

the total distance of parameters between mean of all ICD codes and the mean of

each category.

Ωbetween =
K∑
k=1

∥∥θ̄k − θ̄
∥∥2

, (2.1)

where θ̄ is the mean vectors of all ICD codes, θ̄k is the mean vector of the k-

th category. The within-cluster constraint, Ωwithin, is the distance of parameters

4
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between the mean of each category and its low-level codes.

Ωwithin =
K∑
k=1

∑
i∈J (k)

∥∥θi − θ̄k
∥∥2

, (2.2)

where J (k) is a set of labels that belong to the k-th category. Ωbetween and Ωwithin

are formulated as additional losses to enable the model to share parameters across

codes with the same categories.

2.2.2 Multi-Task Learning

Considering that the high-level category can be treated as another task, we apply

a multi-task learning approach to leverage the external knowledge. This model

focuses on predicting the low-level codes, ylow, as well as its high-level category,

yhigh, individually illustrated in Figure 2.1.

yhigh = Whigh · h+ bhigh (2.3)

where Whigh ∈ IRNhigh×d, Nhigh means the number of high-level categories, and d is

the dimension of hidden vectors derived from CNN.

2.2.3 Hierarchical Learning

We build a dictionary for mapping our low-level labels to the corresponding high-

level categories illustrated in Figure 2.1. To estimate the weights for high-level

categories, yhigh, two mechanisms are proposed:

• Average meta-label: The probability of the k-th high-level category can be

approximated by the averaged weights for low-level codes that belong to the

k-th category.

yhigh =
1

k

∑
yklow (2.4)

• At-least-one meta-label: Motivated by [9], meta labels are created by examin-

ing whether any disease label for the k-th category has been marked as tagged,

5
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Multi-Task Learning
High-Level Category

Clinic TextNo dizziness No fever … 

Conv Layer

Max Pooling

Fully-Connected

Embedding Layer

Low-Level Code

Hierarchical Learning

Low-Level Code

High-Level Category

Category Knowledge Integration Mechanism

Clinic TextNo dizziness No fever … 

Conv Layer

Max Pooling

Fully-Connected

Embedding Layer

301.2 
Schizoid personality disorder

307.1 
Anorexia nervosa

mental disorders

Figure 2.1: The architecture with the proposed category knowledge integration.

where the high-level probability is derived from the low-level probability of dis-

ease labels.

yhigh = 1−
∏
k

(1− yklow) (2.5)

2.3 Training

The proposed hierarchy category knowledge integration mechanisms are built on

top of the multi-label convolutional models, which treat each ICD label as a binary

classification. The predicted values for high-level categories come from the proposed

mechanisms. Considering that learning low-level labels directly is difficult due to

the highly imbalanced label distribution, we add a loss term indicating the high-level

category in order to learn the general concepts in addition to the low-level labels,

and train the model in an end-to-end fashion. Note that the high-level loss is set

as losshigh = Ωbetween + Ωwithin for cluster penalty and the binary log loss for other

methods.

loss = losslow + λ · losshigh, (2.6)

where λ is the parameter to control the influence of the knowledge category.

6
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Chapter 3

Evaluation

3.1 Experimental Setup

We evaluate our model on two datasets, one is the benchmark MIMIC-3 data and

another is our internal dataset. MIMIC-3 [6] is a benchmark dataset, where the text

and structured records from a hospital ICU. We use the same setting as the prior

work [3], where 47,724 discharge summaries is for training, with 1,632 summaries and

3,372 summaries for validation and testing, respectively. Another medical dataset

is obtained from an internal hospital, where each record includes narrative notes

describing a patient’s stay and associated diagnostic ICD-9 codes. There are total

1,495 ICD-9 codes in the data, and the distribution is highly imbalanced. Our data

is noisy due to typos and different writing styles, where the OOV rate is 0.373 based

on the large vocabulary obtained from PubMed and PMC. As shown in Table 3.1,

our data is more challenging due to much shorter text inputs and higher OOV rate

compared with the benchmark MIMIC-3 dataset. We split the whole set of 25,375

records into 17,762 as training, 2,537 as validation, and 5,076 as testing.

All models use skipgram word embeddings trained on PubMed1 and PMC2 [10].

We evaluate the model performance using metrics for the multi-label classification

task, including precision at K, mean average precision (MAP), and micro-averaged,

1https://www.ncbi.nlm.nih.gov/pubmed
2https://www.ncbi.nlm.nih.gov/pmc
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MIMIC-3 Internal
Full 50 200

# training documents 47,424 8,067 17,762
mean length of texts 1,485 1,530 50.35
vocabulary size 51,917 51,917 25,654
OOV rate 0.137 0.137 0.373
# labels 8,922 50 200
mean number of labels 15.9 5.7 1.7

Table 3.1: Dataset comparison and statistics. From the full set of the internal data
(1495 labels) to 200, only 6.0% of data points are discarded.

macro-averaged F1 and AUC.

3.2 Results

The baseline and the results of adding the proposed mechanisms are shown in Ta-

ble 3.3. For MIMIC3-50, all proposed mechanisms achieve the improvement for

almost all metrics, and the best one is from the hierarchical learning with average

meta-label. The consistent improvement indicates that category knowledge provides

informative cues for sharing parameters across low-level codes under the same cat-

egories. For MIMIC3-Full, our proposed mechanisms still outperform the baseline

CNN model, and the best performance comes from the one with multi-task learning.

The reason may be that multi-task learning has more flexible constraints compared

with hierarchical learning, and it is more suitable for this more challenging scenario

due to data imbalance. In addition, the proposed knowledge integration mechanisms

using multi-task learning or hierarchical learning with average meta-label are able

to improve the prior state-of-the-art model, CAML [3], demonstrating the superior

capability and the importance of domain knowledge.

To further investigate the model effectiveness, we perform the experiments on

the internal dataset in Table 3.2. Due to shorter clinical notes and higher OOV rate,

this dataset is more challenging and the results are lower than the ones in MIMIC-

3. Nevertheless, the proposed methods still improve the performance by integrating

category knowledge using multi-task learning or hierarchical learning with average

meta-label. In sum, our proposed category knowledge integration mechanisms are

8
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Data-200 Macro-F1 Micro-F1
CNN 7.6 39.8
+ Multi-Task 11.7† 41.6†
+ Hierarchical (avg) 9.2† 44.1†
CAML 6.2 42.6
+ Multi-Task 14.5† 44.7†
+ Hierarchical (avg) 18.4† 45.7†

Table 3.2: The results on internal data.
MIMIC3-50 P@1 P@3 P@5 MAP Macro-F Micro-F Macro-AUC Micro-AUC
CNN [5] 82.8 71.2 61.4 72.4 57.9 63.0 88.2 91.2
+ Cluster Penalty 83.5† 71.9† 62.4† 73.1† 58.3† 63.7† 88.5† 91.3†
+ Multi-Task 83.5† 71.3† 61.9† 72.5† 57.6 62.8 88.1 91.1
+ Hierarchical avg 84.5† 72.1† 62.4† 73.5† 58.6† 64.3† 88.9† 91.4†

at-least-one 83.4† 72.1† 62.4† 73.4† 58.5† 63.8† 88.4† 91.3†
MIMIC3-Full P@1 P@3 P@8 P@15 Macro-F Micro-F Macro-AUC Micro-AUC
CNN [5] 80.5 73.6 59.6 45.4 3.8 42.9 81.8 97.1
+ Cluster Penalty 80.9† 74.0† 59.5 45.2 3.3 40.5 82.1† 97.0
+ Multi-Task 82.8† 75.8† 61.5† 46.6† 3.6 43.9† 83.3† 97.3†
+ Hierarchical avg 79.0 73.1 59.2 45.2 4.3† 42.7 83.0† 97.1

at-least-one 82.1† 74.3† 59.7† 44.9 2.6 42.0 80.3 96.7
CAML [3] 89.6 83.4 69.5 54.6 6.1 51.7 88.4 98.4
+ Cluster Penalty 88.4 82.4 68.8 54.0 5.4 51.2 87.5 98.3
+ Multi-Task 89.7† 83.4 69.7† 54.8 6.9† 52.3† 88.8† 98.5†
+ Hierarchical avg 89.6 83.5† 70.9† 56.1† 8.2† 53.9† 89.5† 98.6†

at-least-one 89.4 83.3 69.5 54.8† 6.2† 51.7 88.3 98.4

Table 3.3: The results on MIMIC-3 data (%). † indicates the improvement over
the baseline.

capable of improving the text understanding performance by combining the domain

knowledge with neural models and achieve the state-of-the-art results.

3.3 Qualitative Analysis

From our prediction results, we find that our proposed mechanisms tend to predict

more labels than the baseline models for both CNN and CAML. Specifically, our

methods can assist models to consider more categories from shared information in

the hierarchy. The additional codes often contain the right answers and sometimes

are in the correct categories but not exactly matched. Moreover, our mechanisms

have the capability of correcting the wrong codes to the correct ones which are under

the same category. The appendix provides some examples for reference.

9
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(a) Clinical notes
admission date discharge date date of birth sex m service surgery allergies no drug allergy
information on file attending first name3 lf chief complaint fall from bike major surgical or
invasive procedure n a history of present illness 71m who was brought to the hospital1 ed
after a fall from his bike past medical history seizure disorder bph spinal stenosis sleep apnea
social history n a family history n a physical exam no brainstem reflexes pertinent results n
a brief hospital course mr known lastname was admitted after a fall from his bicycle he was
seen getting up from the accident and then collapsed shortly thereafter he then was noted to
be in asystole when ems arrived the total amount of time the patient was in asystole is not
known upon arrival to the ed he had regained a pulse a neuro exam was performed and he had
no brainstem reflexes an mri confirmed a c2 level spinal cord injury and changes consistent
with an anoxic brain injury the neob was contact name ni but due to unknown circumstances
surrounding his cardiac arrest he did not meet donation criteria the family elected to withdraw
care he was extubated and expired shortly thereafter medications on admission n a discharge
medications n a discharge disposition expired discharge diagnosis odontoid fracture spinal
cord injury respiratory failure discharge condition n a discharge instructions n a followup
instructions n a
Baseline: 327.23 345.90 348.1 518.81 E826.1
Proposed: 327.23 33.24 345.90 348.1 401.9 518.81 600.00 780.39 780.57 806.01 96.04 96.6 96.71
96.72 E826.1
Ground truth: 288.50 345.90 348.1 356.9 427.5 518.81 600.00 780.57 806.01 807.01 96.04 96.71
E826.1
(b) Clinical notes
admission date discharge date date of birth sex f service neurosurgery allergies wellbutrin
lipitor flagyl levaquin attending first name3 lf chief complaint decline in mental status major
surgical or invasive procedure angiogram with embolization of aneurysm history of present
illness 63f who began to have mental staus decline dysarthria at home brought to needhan
hospital1 where had head ct showing large l parietal hemorrhage was transferred to hospital1
for further treatment upon arrival there was concern for airway safety and she was intubated
was reportedly moving all extremities prior to intubation past medical history ccy multiple
ercp for biliary strictures benign breast tumor l aneurysm clip no deficit chronic autoimmune
hepatitis on steroids osteoporosis social history married she smokes to cigarettes a day does not
drink any alcohol she is a retired hospital3 manager she watches her grandson a couple times a
week participates in book clubs walks and traveling family history thyroid disease is positive in
the family as is rheumatoid arthritis her sister died at years of age of liver disease of unknown
cause it is not known whether that also was autoimmune hepatitis there is also cirrhosis in
the family physical exam hunt and doctor last name doctor last name gcs 6t e v 1t motor o
t afeb bp hr r16 o2sats intubated sedated examined in ed just after intubated heent pupils
4mm reactive neck supple extrem warm and well perfused no c c e neuro no eye opening all to
nox pertinent results cta redemonstrated ip ic sah worsened mass effect with 10mm rightward
mls and effacement of the basal cisterns there is downward herniation aneurysms ruptured left
mca partially calcified right m1 origin aneurysm the latter is amenable to coiling possible third
small left mca trifurcation aneurysm await reformations brief hospital course pt was admitted
to the icu for close neurological observation in the afternoon of admission the patient s mental
status declined including loss of cough and gag brain test testing was initiated by the icu and
concluded that she was brain dead preparations were made for organ donation per the families
request medications on admission all flagyl levaquin statins wellbutrin discharge medications n
a discharge disposition expired discharge diagnosis n a discharge condition deceased discharge
instructions n a followup instructions n a name6 md name8 md md md number completed by
Baseline: 571.5 733.00 96.04 96.72
Proposed: 305.1 38.91 38.93 39.72 401.9 431 518.81 571.42 571.5 733.00 733.09 88.41 96.04
96.6 96.72
Ground truth: 276.3 276.8 348.4 348.89 38.93 39.72 430 571.42 733.00 88.41 96.04 96.71 V49.86
V58.65

Table 3.4: The case study from MIMIC3-Full using CAML with and without average
meta-labels.

10
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Chapter 4

Conclusion

This paper proposes multiple mechanisms using the refined losses to leverage hierar-

chical category knowledge and share semantics of the labels under the same category,

so the the model can better understand the clinical texts even if the training sam-

ples are limited. The experiments demonstrate the effectiveness of the proposed

knowledge integration mechanisms given the achieved state-of-the-art performance

and show the great generalization capability for multiple datasets.

11
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