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中文摘要 

在流行病學和生物醫學研究中，許多危險因子或介入的效應非常微小。為了偵測這

些微小的效應，研究必須要具有大樣本數，也就是研究個案要夠多。研究者當然可以增

加樣本數，但是有其限制。在這篇論文中，我們提出一個嶄新的方法，以不同方向來增

加樣本數，也就是增加變項數量(p)。我們建構一個以 p 為本的「多重擾動檢定」，並且

進行理論統計檢力計算和電腦模擬。當 p 非常大時，如數千甚至數百萬，多重擾動檢定

可以達到很高的統計檢力來偵測微弱的效應。我們還應用多重擾動檢定來重新分析一個

已經發表的老年性黃斑部病變的全基因體相關性研究。我們找出兩個和疾病相關而且新

的顯著基因。這個以 p 為本的多重擾動檢定，相信在未來，可以樹立一個新的統計上假

設檢定的典範。 

 

關鍵字：假設檢定、交互作用、錯誤發現率、老年性黃斑部病變、跨體學研究、資料探

勘 
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ABSTRACT 

Many risk factors/interventions in epidemiologic/biomedical studies are of minuscule 

effects. To detect such weak associations, one needs a study with a very large sample size (the 

number of subjects, n). The n of a study can of course be increased but only to an extent. In 

this paper, the authors propose a novel method which hinges on increasing sample size in a 

different direction—the total number of variables (p). The authors construct a p-based 

‘multiple perturbation test’, and conduct theoretical power calculations and computer 

simulations to show that it can achieve a very high power to detect weak associations when p 

can be made very large, say, to the thousands or millions. The authors apply the method to 

re-analyze a published genome-wide association study on age-related macular degeneration 

and identify two novel genetic variants that are significantly associated with the disease. The 

p-based method may set a stage for a new paradigm of statistical hypothesis tests. 

 

Keywords: hypothesis testing; interaction; false discovery rate; age-related macular 

degeneration; cross-omics study; data mining. 
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I. INTRODUCTION 

Many risk factors/interventions in epidemiologic/biomedical studies are of 

minuscule effects.1 For example, television viewing was found to increase the risks of 

type 2 diabetes, cardiovascular disease and all-cause mortality, but the effects in terms 

of relative risks are small: 1.20, 1.15 and 1.13,2 respectively; regular supplement of 

vitamin C was associated with a shortening of the duration of common colds, but with a 

relative risk (0.92) very near unity.3 Moving into this ‘–omics’ era, for the first time 

researchers are becoming able to probe into study subjects’ genome, transcriptome, and 

metabolome, etc, to search for possible disease associations. However, the associations 

found so far were still very weak; for example the great majority of the odds ratios of 

genetic polymorphisms in genome-wide association studies were less than 1.5.4,5 

To detect weak associations, a very large sample size is needed. For example, in 

genome-wide association studies, the sample sizes have steeply increased from a few 

hundreds in the first study of age-related macular degeneration6 to tens of thousands in 

recent meta-analyses.7,8 Also, the consortium-based studies are becoming increasingly 

indispensible as the single-institution studies often cannot meet the tough sample-size 

requirements. For example, the Wellcome Trust Case-Control Consortium9, the United 

Kingdom Biobank10 and China Kadoorie Biobank11 have recruited study subjects in the 

order of hundreds of thousands. But how big is big enough for sample size? A 

simulation study suggested that in some scenarios the sample size needed can easily go 

up to the millions!12 Certainly, there is a limit for the total number of subjects any 

research institution, any meta-analysis and any consortium can possibly assemble. 

Traditionally, sample sizes are measured in terms of the total number of study 

subjects ( n ). In this study, we propose a novel ‘p-based’ method which hinges on 

increasing sample size in a different direction—the total number of variables ( p ).We 
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construct a p-based ‘multiple perturbation test’, and conduct theoretical power 

calculations and computer simulations to show that it can achieve a very high power to 

detect a weak association when p  can be made very large, say, to the thousands, 

millions or even more. We will also apply the new method to re-analyze a published 

genome-wide association study.6 
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II. THE TRADITIONAL METHOD 

Assume that we are interested in the association between a binary factor, X ( 1X =  

indicates a subject is exposed to the factor, 0X = , otherwise) and a disease, D ( 1D =  

indicates a subject is diseased, 0D = , otherwise). The traditional n-based method tests 

whether the disease risk varies with X  in the study population as a whole, i.e., testing the 

‘crude’ null, crude
0H : Pr( | ) Pr( )D X D= , against the alternative, crude

1H : Pr( | ) Pr( ).D X D≠   

In a case-control study conducted in the study population, Appendix 1 shows that testing 

the crude null amounts to testing the equality of prevalence odds of X , between the case 

group ( caseOddsX ) and the control group ( controlOddsX ) (or equivalently, testing whether the odds 

ratio of X  and D  equals one: case-control case controlOR Odds Odds 1XD X X= = ). Table 1 presents the 

cell counts of a case-control study (ignore the variable, Z , for now). One may use the 

following test statistic: 
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crudeχ  is distributed asymptotically as a chi-squared distribution with one degree of freedom 
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4 
 

Table 1. Cell counts of a case-control study ( X : a factor of interest; Z : an auxiliary 

variable). 

 
 

Case 1=Z  0=Z    Control 1=Z  0=Z   

 1=X  case
1,1n  case

1,0n  case
1,n +    1=X control

1,1n  control
1,0n  control

1,n +  

0=X  case
0,1n  case

0,0n  case
0,n +   0=X control

0,1n  control
0,0n  control

0,n +  
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III. THE MULTIPLE PERTURBATION TEST 

Consider a binary auxiliary variable, Z ( 1=Z  or 0), which is not of direct interest to 

us, but may help discern the possible association between X  and D . Our proposed method 

is based on testing whether the disease risk varies with X  in any segment of the population 

demarcated by Z , i.e, testing the ‘sharp’ null, sharp
0H : Pr( | , ) Pr( | )D X Z D Z=  for both 

1=Z  and 0Z = , against the alternative, sharp
1H : Pr( | , ) Pr( | )D X Z D Z≠  for either 1=Z  

or 0Z = . 

In a case-control study conducted in the study population, Appendix 1 shows that testing 

the sharp null amounts to testing the equality of odds ratios of X  and Z , between the case 

group ( caseOR XZ ) and the control group ( controlOR XZ ) (or equivalently, testing whether there is an 

‘interaction’ between X  and Z  with regard to the risk of D  on a multiplicative scale: 

case controlOR OR 1XZ XZ = ). The following test statistic is proposed (see Table 1 for the cell counts): 
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which is distributed asymptotically as a df 1=  chi-squared distribution under the sharp null.  

Essentially, 2
sharpχ  is testing whether the observed 

case

OR XZ

∧
 and 

control

OR XZ

∧
 are being 

‘perturbed’ too much away from populationOR XZ  (the population odds ratio of X  and Z , and 

the expected value for both 
case

OR XZ

∧
 and 

control

OR XZ

∧
 under the sharp null) than chance alone 

would dictate. We therefore refer to it as a ‘perturbation test’. 

 One single auxiliary variable may not perturb the above odds ratios very much. But if 

one has a whole panel of auxiliary variables (the iZ  and the corresponding 2
sharp, iχ , for 
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1, 2,...,i p= ), one can construct a very powerful multiple perturbation test, by summing up 

the perturbations from the many auxiliary variables ( sZ ) in the panel:  

2
sharp, 

1

.
p

p i
i

T χ
=

=  

pT  as such is a p-based test. Its power to detect a non-null X  should increase as more sZ  

are included in the panel (as p  increases). On the other hand, a truly innocent X  should 

be able to stand the test from multiple sZ , even if p  goes to infinity. If the sZ  in the 

panel are independent of one another, pT  is asymptotically a df p=  chi-squared 

distribution under the sharp null. The critical value of pT  therefore is simply 2
1,df αχ −= p  

when the level of significance is set at α .  

In actual practice however, one often cannot assume independent sZ  and therefore has 

to rely on computer-intensive methods to simulate the null sampling distribution of pT . With 

1p = , Buzkova et al. 13 pointed out that the method of parametric bootstrap is valid but the 

method of permutation (shuffling disease status between subjects) is conservative 

(overestimating the critical value). However, we found that as p  increases, the permutation 

method remains slightly conservative but the parametric method becomes too liberal 

(underestimating the critical value). To err on the safe side, we therefore propose to use the 

permutation method to approximate the null sampling distribution of pT . 
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IV. POWER COMPARISON 

The power of the traditional n-based 2
crudeχ  is: 

2 2 2
crude df 1 df 1, 1 αPower of Pr ( ) ,χ χ λ χ= = − ≈ >   

where 2
df 1( )χ λ=  is a df 1=  noncentral chi-squared distribution with noncentrality 

parameter, 
( )

( ){ } ( ){ }

2case control

case control
0,1 0,1, ,

logOdds logOdds

1 1

E E

X X

j jj jn n

λ

∈ ∈+ +

−
=

+ 
. Note that the power of 2

crudeχ  is determined 

by the significance level: ,α  the sample size: n  (or more exactly the expected cell counts), 

and the effect size: case controllogOdds logOddsX X− . 

Assuming that a panel of independent auxiliary variables contains a certain proportion, 

 (0 1)π π≤ ≤ , of perturbative sZ  such that ( )case controllog OR ORXZ XZ  follows a normal 

distribution with a mean of zero and a variance of 2 0,σ >  the theoretical power of the 

p-based pT  based on such panel is: 

2
df ,12
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 Note that in addition to α  and n ,  the 

power of pT  is also determined by the total number of auxiliary variables: p , and the 

‘informativeness’ of the auxiliary variables: 2I π σ= ×  (the product of perturbation 

proportion and perturbation strength).  

We consider an X  that is very weakly associated with D  

( case-control case controlOR Odds Odds 1.1XD X X= = ). We also consider a panel of independent sZ . The 
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logarithm of populationOR XZ  follows a normal distribution with a mean of zero and a variance of 

0.5 (a probability of 95% that an populationOR XZ  is between 0.25 ~ 4.00). We consider four 

different values for the perturbation proportion (π = 1.0, 0.2, 0.1 and 0.05, respectively), with 

each perturbative Z  having a weak perturbation strength ( 2 0.001σ = , i.e., a probability of 

95% that the ratio, case controlOR ORXZ XZ , is between 0.94 ~ 1.06). The informativeness of sZ  is 

therefore 0.001, 0.0002, 0.0001 and 0.00005, respectively. For convenience, the prevalence of 

X  and each and every one of sZ  is set at 40% for the control group. The significance level 

is set at 05.0=α . 

Figure 1 compares the theoretical powers of pT  (the multiple perturbation test for the 

sharp null, solid lines) and 2
crudeχ  (the conventional test for the crude null, dashed lines) in 

three different sample sizes (total number of subjects, n ) of 500 (250 cases + 250 controls, 

panel A), 1000 (500 + 500, panel B) and 5000 (2500 + 2500, panel C). The four solid lines in 

each panel correspond to different perturbation proportions (from left to right: π = 1.0, 0.2, 

0.1 and 0.05, respectively). It can be seen that, indeed, the power of the n-based 2
crudeχ  

increases with n . However, the increment is marginal at best; the power gain is only 30%, 

from 8% ( 500n = , panel A) to 38% ( 5000n = , panel C). In fact, we need a very large study 

( ~ 15000n = ) to attain an adequate power of 80% for the 2
crudeχ  test (not shown in the 

figure). On the other hand, the power of the p-based pT  increases with p  in all scenarios 

that we considered and surpasses the power of 2
crudeχ  when 3000p ≈  for 1=π , 

60000p ≈  for 2.0=π , 250000p ≈  for 1.0=π  and 1000000p ≈  for 05.0=π . Under 

1=π , the power of pT  can reach nearly 100% when p  is sufficiently large 

( 1000000~>p  when 500n = ; 100000~>p  when 1000n = ; 10000~>p  when 
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5000n = ). Under 1<π , ~100% power is also possible if p  can be made even larger. 
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Figure 1. Powers of the multiple perturbation test for the sharp null (solid lines, theoretical power assuming independent auxiliary 

variables with perturbation proportion of, from left to right respectively, π = 1.0, 0.2, 0.1 and 0.05) and the conventional test 

for the crude null (dashed line), under different number of subjects (panel A: 500=n , panel B: 1000=n , panel C: 5000=n ) 

and number of auxiliary variables. 
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V. MONTE-CARLO SIMULATION 

In this section, we perform Monte-Carlo simulation to study the statistical properties of 

pT  empirically. The parameter setting is the same as the previous section. But to avoid the 

heavy computation burdens of simulating a very large panel of sZ , this time we let sZ  to 

have a perturbation proportion of 1.0 and a larger perturbation strength ( 2 0.004σ = , a 

probability of 95% that case controlOR ORXZ XZ  is between 0.88 ~ 1.13). Additionally, we also 

consider dependent sZ . Specifically, we simulate sZ  using a first-order Markov chain, in 

both the case and the control groups, assuming an odds ratio between successive sZ  of 2.0 

(mild dependency) and 5.0 (strong dependency), respectively. We perform a total of 1000 

simulations. In each round of the simulation, we conduct 1000 permutations to obtain an 

empirical P-value for pT . The power of pT  is then calculated as the proportion of the 

simulations with a P-value 0.05.<  

Figure 2 shows the empirical powers of pT  for panels of independent and dependent 

sZ  at different number of auxiliary variables ( p ) when sample size is 1000.n =  As 

compared to independent sZ , at the same p  the empirical power does compromise a bit 

for mildly dependent sZ , and yet a bit more for strongly dependent sZ . However, the 

overall trend is clear: the empirical power increases as p  increases, irrespectively of using 

independent, mildly or strongly dependent sZ . Thus, to make up for the power loss in using 

dependent sZ , one can simply include more sZ  in the panel. 

The type I error rates of pT  for panels of independent and dependent sZ  (odds ratio 

between successive s 5.0Z = ) are also empirically checked using Monte-Carlo simulations, 

for different number of subjects ( 5000,1000,500=n ) and number of auxiliary variables 

( 5000,1000,100=p ). Here X  is a sharp null, that is, X  has no effect on disease in any 
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level stratified by sZ  (no perturbation effect for all s:Z  2 0I π σ= × = ). Other parameters 

are the same as in the previous power simulations. We perform a total of 1000 simulations, 

each round with 1000 permutations. The results are shown in Table 2. We see that the pT  

test can maintain quite accurate type I error rates for all scenarios considered. 
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Figure 2. Empirical powers of the multiple perturbation test with panels of independent and 

dependent auxiliary variables (circle: empirical power for independent auxiliary 

variables; triangle: empirical power for mildly dependent auxiliary variables; 

square: empirical power for strongly dependent auxiliary variables). 
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Table 2. Type I error rates of the multiple perturbation test with panels of independent and 

dependent auxiliary variables. 

 
Auxiliary variables Number of auxiliary variables ( p ) 

 

Number of 
subjects ( n ) 100 1000 5000 

Independent  500 0.046 0.049 0.044 
Dependent  500 0.049 0.043 0.057 
     
Independent 1000 0.047 0.052 0.042 
Dependent 1000 0.050 0.050 0.050 
     
Independent 5000 0.050 0.042 0.056 
Dependent 5000 0.045 0.048 0.044 
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VI. APPLICATION TO REAL DATA 

The proposed multiple perturbation test is applied to a public-domain data from a 

genome-wide association study of age-related macular degeneration.6 The study recruited 146 

individuals (96 cases and 50 controls) and genotyped 116212 single nucleotide 

polymorphisms (SNPs). A total of 6639 SNPs located in chromosome 1 (where previous 

studies14,15 have identified a number of significant susceptibility genes) with call rate>95%, 

minor allele frequency>5% and in Hardy-Weinberg equilibrium in the control group is 

included in the analysis. At each SNP, heterozygote and variant homozygote are grouped 

together. 

In the analysis, each SNP takes turn to be the X , and the remaining SNPs, the s.Z  

There are a total of 22034841C6639
2 =  perturbations (interactions) to be considered. (For a 

low-frequency SNP, some of the cells in Table 1 may be empty. In that case, it is totally 

uninformative as a perturbation variable, because its 2
sharpχ  statistic is zero with the 

convention: 0 log0 0× = .) The P-value of the multiple perturbation test for each SNP is 

obtained from 500000 rounds of permutation. To adjust for multiple testing, the false 

discovery rate (FDR) is controlled at 0.05 and the q-values are calculated (QVALUE 

software).16 Table 3 lists the top five SNPs with smallest P-values by the multiple 

perturbation tests. The multiple perturbation test detects two significant SNPs at FDR of 0.05: 

rs2618034 (q-value = 0.026) and rs2014029 (q-value = 0.045).  

In the above analysis, for each SNP all the remaining 6638 SNPs are incorporated as 

perturbation variables into the multiple perturbation test. Figure 3 shows the P-values of the 

multiple perturbation test when only a certain number of perturbation SNPs are incorporated. 

Each panel of the figure plots the results of three random incorporation sequences. Panels 

A-C are for the 1st to the 3rd top SNPs, respectively. We see that initially the P-values 
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fluctuate a lot, when the number of perturbation SNPs incorporated is small. But beyond a 

certain point, the P-values become ‘fixed’ exactly to the abscissa (P-values = 0) (Panels A and 

B), or almost fixed to the abscissa (P-values ≈0) (Panel C). By comparison, we see that the 

P-values of all three purposefully chosen middle-to-bottom ranking SNPs are ‘drifting’ all the 

way without showing any sign of a fixation (Panels D-F). It is worth noting that although the 

3rd top SNP (rs437749) is not significant by our FDR standard (Table 3), it is already 

displaying a fixation pattern in our fixation/drifting analysis (Figure 3C). This suggests that if 

we can incorporate more perturbation SNPs into the multiple perturbation test, SNP rs437749 

may become significant. 

For the two significant SNPs found in this study, it is of interest to examine whether the 

significances are due primarily to the perturbations from one or a few other SNPs. We 

deliberately remove the respective five largest 2
sharp, iχ ’s in the multiple perturbation tests for 

these two SNPs. The result for rs2618034 is still highly significant (P-value = 6106 −× ; 

q-value = 0.038), and that for rs2014029, marginally so (P-value = 5108.2 −× ; q-value = 0.090). 

In fact, even if we remove the respective ten largest 2
sharp, iχ ’s of the two SNPs, a clear 

fixation pattern can still be seen for both (Appendix 2).  
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Table 3. Top five single nucleotide polymorphisms (SNPs) with smallest P-values by the 

multiple perturbation tests for the age-related macular degeneration data.6 

 
Rank RefSNPs (rs) 

number 
Minor 
allele 

frequency
(%) 

P-value of 
multiple 

perturbation 
test* 

q-value Odds ratio P-value of 
Pearson 

chi-square 
test 

1 rs2618034  7.19 61000.4 −×  0.026 0.53 0.201 

2 rs2014029  5.82 51040.1 −×  0.045 2.10 0.166 

3 rs437749 43.15 41066.2 −×  0.357 0.94 0.865 

4 rs3753298  5.82 41074.2 −×  0.357 1.84 0.241 

5 rs1749409  8.97 41028.4 −×  0.357 0.51 0.147 

*based on 500000 rounds of permutation 
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Figure 3. Fixation (panels A-C, respectively for the 1st to the 3rd top single nucleotide polymorphisms, SNPs) and drifting (panels D-F, for 

three purposefully chosen middle-to-bottom ranking SNPs) of the P-values of the multiple perturbation test when only a certain number 

of perturbation SNPs are incorporated for the age-related macular degeneration data.6 Each panel includes three lines (solid, dashed and 

dotted) representing three random incorporation sequences. Each P-value is obtained from 1000000 rounds of permutation. 
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VII. DISCUSSION 

While confronted with high-throughput data, researchers often turn to dimension 

reduction methods of sorts to ease the severe penalty associated with testing myriads of 

variables.17-21 For our p-based method, dimensionality is not a curse but in fact is a blessing. 

In this paper, we see that the power of the multiple perturbation test actually increases as the 

number of auxiliary variables increases. Such ‘the-more-the-better’ principle also applies, 

when one is knowledgeable about which variables may be perturbative. In Figure 4, the initial 

segment of the power curve (solid line) emulates a situation when a researcher incorporates 

into the multiple perturbation test the total 100 informative variables ( 02.0=I ) that are 

known to him/her. Since the power is only 0.59, should the researcher add more variables into 

the test? We see as expected that adding more variables unselectively (dotted lines from left 

to right, for 0.0001  and  0.00025 0.001,=I , respectively) into the test will only dilute the 

power. However, upon more and more of these low-informativity variables being added, the 

power then rises up again and surpasses the original power.  

However, it should be emphasized that the above p-based approach only goes so far as 

when the auxiliary variables have a non-zero informativeness ( 0>I , irrespectively of how 

small it may be). A computer can easily generate millions and billions of random variables for 

us, but all these artificial data amount to nothing ( 0=I , exactly). The more such variables 

being added, the more the power will be curtailed. Another caveat is that there is no use 

replicate the data at hand just to make the total number of auxiliary variables appear larger; 

the power simply won’t bulge with this maneuver.  

Age-related macular degeneration is a progressive disease in macula of the retina in 

which the pigment epithelium cells and the photoreceptor cells degenerate, causing gradual 

loss of central vision.22,23 With FDR controlled at 0.05, in this study we are able to identify 
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two novel SNPs that are significantly associated with age-related macular degeneration. The 

first SNP (rs2618034) is located in the intron region of KCND3 gene (potassium 

voltage-gated channel, Shal-related subfamily, member 3) on chromosome 1p13.2, and the 

second (rs2014029), the intron region of DTL gene (denticleless E3 ubiquitin protein ligase 

homolog (Drosophila)) on 1q32.3. KCND3 gene encods Kv4.3 regulating neuronal 

excitability.24 Mutations in KCND3 gene have been identified as a cause for cerebellar 

neurodegeneration.25,26 In this regard, it is worthy to note that the retina photoreceptor cells 

are a specialized type of neurons which may also degenerate with aging. Meanwhile, DTL 

gene regulates p53 polyubiquitination and protein stability27 and the evidence to date suggests 

that p53 is a key regulator involved in the apotosis of retinal pigment epithelium cells.28 All 

these findings further support that KCND3 and DTL genes may be causally related to the 

development of age-related macular degeneration. 

It is worthy to note that the proposed p-based multiple perturbation test indeed is a very 

powerful test. The two significant SNPs (rs2618034 and rs2014029) that we identified in this 

study are only very weakly associated with age-related macular degeneration (odds 

ratios = 0.53 and 2.10, respectively), and the traditional n-based method (Pearson chi-square 

test) comes nowhere near detecting them (P-values = 0.201 and 0.166, respectively) (Table 3). 

Even if we increase the total number of subjects from the present 146n = (Klein et al’s data6) 

to 25000≈n  and 77000≈n  (Holliday et al’s7 and Fritsche et al’s8 meta-analyses data), 

the n-based method still cannot detect them. But this is not to say that the n-based method is 

useless. In fact, Klein et al6 themselves presented one SNP (rs380390) with an n-based 

P-value of -84.1 10×  (significance after Bonferroni correction), but it is undetectable with 

our method. It is important to note that the p-based test proposed in this paper is not meant to 

take the place of the traditional n-based test. It is better that they can work side by side, 
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complementing each other. Finally, we wish to point out that by incorporating a priori 

knowledge into analyzing Klein et al’s data,6 Lin and Lee29 previously were able to identify 

four more significant SNPs in chromosome 1 (rs800292, rs2019727, rs1329428 and 

rs1853882) using the traditional n-based test. The same principle can also be applied to the 

p-based multiple perturbation test in this paper to facilitate the detection of even more genes. 

In this paper, we have successfully applied the multiple perturbation test to a 

genome-wide association study where thousands of genomic markers serve the roles of the 

auxiliary/perturbation variables. The method should have broad applications to other 

high-dimension (large p ) -omics studies, such as epigenomic, transcriptomic, proteomic, 

metabolomic, and exposomic studies, etc. It would be even better to have a cross-omics study, 

and/or with all its study subjects further linked to existing government or private-sector 

databases, such as, data of health insurances, traffic violations, internet usages, etc. A 

researcher conducting such a data-mining study has the potentials to push the p  (the 

number of auxiliary/perturbation variables) to the millions, billions or even trillions, and be 

rewarded with a very high power for detecting a weak association. Such a p-based method 

may set a stage for a new paradigm of statistical hypothesis tests.  
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Figure 4. Power curve when a researcher includes the 100 informative variables ( 02.0=I ) known to him/her and then other 

low-informativity variables (dotted lines from left to right, for 0.0001  and  0.00025 0.001,=I , respectively) unselectively 

into the multiple perturbation test. 
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APPENDIX 1 

Let 1R =  indicate a subject is recruited in a study, 0R = , otherwise. In a case-control 

study, the recruitment process depends only on the disease status of a subject, that is, 

Pr( 1 , , ) Pr( 1 , ) Pr( 1 ).R Z X D R X D R D= = = = =  Under the crude null of Pr( | ) Pr( )D X D= , 

we have  
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Under the sharp null of Pr( , ) Pr( )D Z X D Z= , we have 
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and therefore, 

case Pr( 1 1, 1, 1) Pr( 0 1, 1, 1)
OR
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APPENDIX 2 
 

Fixations of the P-values of the two significant SNPs (rs2618034 and rs2014029) found in 

this study, even with the respective ten largest 2
sharp, iχ ’s being removed: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


