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ABSTRACT

Many risk factors/interventions in epidemiologic/biomedical studies are of minuscule
effects. To detect such weak associations, one needs a study with a very large sample size (the
number of subjects, n). The n of a study can of course be increased but only to an extent. In
this paper, the authors propose a novel method which hinges on increasing sample size in a

different direction—the total number of variables (p). The authors construct a p-based

‘multiple perturbation test’, and conduct theoretical power calculations and computer
simulations to show that it can achieve a very high power to detect weak associations when p
can be made very large, say, to the thousands or millions. The authors apply the method to
re-analyze a published genome-wide association study on age-related macular degeneration
and identify two novel genetic variants that are significantly associated with the disease. The

p-based method may set a stage for a new paradigm of statistical hypothesis tests.

Keywords: hypothesis testing; interaction; false discovery rate; age-related macular

degeneration; cross-omics study; data mining.

vii



[. INTRODUCTION

Many risk factors/interventions in epidemiologic/biomedical studies are of
minuscule effects.! For example, television viewing was found to increase the risks of
type 2 diabetes, cardiovascular disease and all-cause mortality, but the effects in terms
of relative risks are small: 1.20, 1.15 and 1.13,> respectively; regular supplement of
vitamin C was associated with a shortening of the duration of common colds, but with a

(3

relative risk (0.92) very near unity.” Moving into this ‘—omics’ era, for the first time
researchers are becoming able to probe into study subjects’ genome, transcriptome, and
metabolome, etc, to search for possible disease associations. However, the associations
found so far were still very weak; for example the great majority of the odds ratios of
genetic polymorphisms in genome-wide association studies were less than 1.5.*°

To detect weak associations, a very large sample size is needed. For example, in
genome-wide association studies, the sample sizes have steeply increased from a few
hundreds in the first study of age-related macular degeneration® to tens of thousands in
recent meta-analyses.”® Also, the consortium-based studies are becoming increasingly
indispensible as the single-institution studies often cannot meet the tough sample-size
requirements. For example, the Wellcome Trust Case-Control Consortium’, the United
Kingdom Biobank'® and China Kadoorie Biobank'' have recruited study subjects in the
order of hundreds of thousands. But how big is big enough for sample size? A
simulation study suggested that in some scenarios the sample size needed can easily go
up to the millions!'* Certainly, there is a limit for the total number of subjects any
research institution, any meta-analysis and any consortium can possibly assemble.

Traditionally, sample sizes are measured in terms of the total number of study

subjects (Nn). In this study, we propose a novel ‘p-based’ method which hinges on

increasing sample size in a different direction—the total number of variables ( p).We

1



construct a p-based ‘multiple perturbation test’, and conduct theoretical power
calculations and computer simulations to show that it can achieve a very high power to
detect a weak association when p can be made very large, say, to the thousands,
millions or even more. We will also apply the new method to re-analyze a published

genome-wide association study.’



II. THE TRADITIONAL METHOD

Assume that we are interested in the association between a binary factor, X (X =1
indicates a subject is exposed to the factor, X =0, otherwise) and a disease, D(D =1
indicates a subject is diseased, D =0, otherwise). The traditional n-based method tests
whether the disease risk varies with X in the study population as a whole, i.e., testing the
‘crude’ null, H{™ :Pr(D|X)=Pr(D), against the alternative, H™* : Pr(D | X) # Pr(D).

In a case-control study conducted in the study population, Appendix 1 shows that testing
the crude null amounts to testing the equality of prevalence odds of X, between the case

group (Odds$*) and the control group (Odds$™™') (or equivalently, testing whether the odds

ratio of X and D equals one: ORS ™ = Qdds$™ /Odds$™™ =1). Table 1 presents the

cell counts of a case-control study (ignore the variable, Z, for now). One may use the

following test statistic:

ncase ncontrol 2
log 1,+ —log 1,+
ncase ncontrol

0,+ 0,+

A case A control 2

Llog Oddsx —logOddsx J

z crude = A case A control - 1 1 )
Var[log Oddsx ) + Var{log Oddsx ] ) ) e

2

ca
e Ny e Ny

X is distributed asymptotically as a chi-squared distribution with one degree of freedom

(df) under the crude null.



Table 1. Cell counts of a case-control study ( X : a factor of interest; Z : an auxiliary

variable).
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1. THE MULTIPLE PERTURBATION TEST
Consider a binary auxiliary variable, Z(Z =1 or 0), which is not of direct interest to
us, but may help discern the possible association between X and D. Our proposed method

is based on testing whether the disease risk varies with X in any segment of the population
demarcated by Z, i.e, testing the ‘sharp’ null, H™" :Pr(D|X,Z)=Pr(D|Z) for both
Z=1 and Z=0, against the alternative, H™”:Pr(D|X,Z)#Pr(D|Z) for either Z =1
or Z=0.

In a case-control study conducted in the study population, Appendix 1 shows that testing

the sharp null amounts to testing the equality of odds ratios of X and Z, between the case
group (ORSS®) and the control group (ORS2"™") (or equivalently, testing whether there is an
‘interaction’ between X and Z with regard to the risk of D on a multiplicative scale:

OR% JORSI™ =1). The following test statistic is proposed (see Table 1 for the cell counts):

A case A control 2 ncase % ncase ncontrol % ncontrol 2
1 OR 1 OR 10 1,1 0,0 "1 0,0
Og Xz — Og Xz g ncase % ncase ncontrol < ncontrol
2 1,0 0,1 1,0 0,1

Z sharp - A case A control = 1 1 s
Val'(log OR XZ J + Val{log OR XZ ] Z e T Z control

case
pkelo, ) My kef01) My

which is distributed asymptotically as a df =1 chi-squared distribution under the sharp null.

case control

A A

Essentially, ;. is testing whether the observed ORxz and ORyxz  are being

population

‘perturbed’ too much away from ORYJ (the population odds ratio of X and Z, and

case control

A AN

the expected value for both ORxz and ORxz  under the sharp null) than chance alone
would dictate. We therefore refer to it as a ‘perturbation test’.

One single auxiliary variable may not perturb the above odds ratios very much. But if

one has a whole panel of auxiliary variables (the Z; and the corresponding ;.. ;. for



i=1,2,...,p), one can construct a very powerful multiple perturbation test, by summing up

the perturbations from the many auxiliary variables ( Zs ) in the panel:

T,= Z::Zszharp, i
T, assuch is a p-based test. Its power to detect a non-null X should increase as more Zs
are included in the panel (as p increases). On the other hand, a truly innocent X should
be able to stand the test from multiple Zs, even if p goes to infinity. If the Zs in the

panel are independent of one another, T_, is asymptotically a df =p chi-squared

p
distribution under the sharp null. The critical value of T, therefore is simply ){jf:p,l_a
when the level of significance is set at « .

In actual practice however, one often cannot assume independent Zs and therefore has

to rely on computer-intensive methods to simulate the null sampling distribution of T,. With

p=1, Buzkova et al. "* pointed out that the method of parametric bootstrap is valid but the

method of permutation (shuffling disease status between subjects) is conservative
(overestimating the critical value). However, we found that as p increases, the permutation
method remains slightly conservative but the parametric method becomes too liberal
(underestimating the critical value). To err on the safe side, we therefore propose to use the

permutation method to approximate the null sampling distribution of T,.



V. POWER COMPARISON

The power of the traditional n-based . . is:

Power of 2 .. = Pr [Zdzf:l (4) > ljle, I-a } >

where g, _ (A1) is a df=1 noncentral chi-squared distribution with noncentrality

(log Odds§™* —log Odds;™™ )2 , ‘
parameter, A= I I . Note that the power of y_ , 1s determined

J'E{‘“}W ’ je{o,l}W

by the significance level: «, the sample size: N (or more exactly the expected cell counts),
and the effect size: logOdds$™ —logOdds$™™ .
Assuming that a panel of independent auxiliary variables contains a certain proportion,

7 (07w <1), of perturbative Zs such that log(ORCXaZSe / ORifzr‘tr"l) follows a normal

distribution with a mean of zero and a variance of o >0, the theoretical power of the

p-based T, based on such panel is:

2
) Xdt=p-a
Power of Tp = Pr [de—p > W ,

T X0?

Z;Jrz 1

j.kepo.} B ( nTe ) i,ke{O,l}W

where 6° = . Note that in addition to o and n, the

power of T, is also determined by the total number of auxiliary variables: p, and the

‘informativeness’ of the auxiliary variables: | =zxo” (the product of perturbation
proportion and perturbation strength).

We consider an X  that is very weakly associated with D

(ORSEe™ — 0dds$™ /Odds$™™ =1.1). We also consider a panel of independent Zs. The



logarithm of ORX2*™ follows a normal distribution with a mean of zero and a variance of

0.5 (a probability of 95% that an ORZ¥"“°" is between 0.25 ~ 4.00). We consider four
different values for the perturbation proportion (7 =1.0, 0.2, 0.1 and 0.05, respectively), with
each perturbative Z having a weak perturbation strength (o> =0.001, i.e., a probability of
95% that the ratio, ORSS /ORSI™ | is between 0.94 ~ 1.06). The informativeness of Zs is

therefore 0.001, 0.0002, 0.0001 and 0.00005, respectively. For convenience, the prevalence of
X and each and every one of Zs is set at 40% for the control group. The significance level
issetat a=0.05.

Figure 1 compares the theoretical powers of T/ (the multiple perturbation test for the

sharp null, solid lines) and y_ . (the conventional test for the crude null, dashed lines) in

three different sample sizes (total number of subjects, n) of 500 (250 cases+ 250 controls,
panel A), 1000 (500+ 500, panel B) and 5000 (2500+ 2500, panel C). The four solid lines in

each panel correspond to different perturbation proportions (from left to right: 7 =1.0, 0.2,
0.1 and 0.05, respectively). It can be seen that, indeed, the power of the n-based .,

increases with n. However, the increment is marginal at best; the power gain is only 30%,

from 8% (n=500, panel A) to 38% (Nn=5000, panel C). In fact, we need a very large study

(n=~15000) to attain an adequate power of 80% for the yZ . test (not shown in the
figure). On the other hand, the power of the p-based T, increases with p in all scenarios
that we considered and surpasses the power of y. . when p=3000 for 7=1,
p=60000 for =02, p=250000 for #=0.1 and p=1000000 for 7 =0.05. Under
=1, the power of T, can reach nearly 100% when p is sufficiently large

( p>~1000000 when n=500; p>~100000 when n=1000 ; p>~10000 when



N=5000). Under z <1, ~100% power is also possible if p can be made even larger.
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Figure 1. Powers of the multiple perturbation test for the sharp null (solid lines, theoretical power assuming independent auxiliary
variables with perturbation proportion of, from left to right respectively, 7 =1.0, 0.2, 0.1 and 0.05) and the conventional test
for the crude null (dashed line), under different number of subjects (panel A: n=1500, panel B: n=1000, panel C: n=5000)

and number of auxiliary variables.
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V. MONTE-CARLO SIMULATION

In this section, we perform Monte-Carlo simulation to study the statistical properties of
T, empirically. The parameter setting is the same as the previous section. But to avoid the
heavy computation burdens of simulating a very large panel of Zs, this time we let Zs to
have a perturbation proportion of 1.0 and a larger perturbation strength (o> =0.004, a
probability of 95% that OR% /ORS™ is between 0.88 ~ 1.13). Additionally, we also
consider dependent Zs. Specifically, we simulate Zs using a first-order Markov chain, in
both the case and the control groups, assuming an odds ratio between successive Zs of 2.0
(mild dependency) and 5.0 (strong dependency), respectively. We perform a total of 1000
simulations. In each round of the simulation, we conduct 1000 permutations to obtain an
empirical P-value for T . The power of T  is then calculated as the proportion of the
simulations with a P-value < 0.05.

Figure 2 shows the empirical powers of T, for panels of independent and dependent
Zs at different number of auxiliary variables ( p) when sample size is Nn=1000. As
compared to independent Zs, at the same p the empirical power does compromise a bit
for mildly dependent Zs, and yet a bit more for strongly dependent Zs. However, the
overall trend is clear: the empirical power increases as P increases, irrespectively of using
independent, mildly or strongly dependent Zs. Thus, to make up for the power loss in using
dependent Zs, one can simply include more Zs in the panel.

The type I error rates of T, for panels of independent and dependent Zs (odds ratio
between successive Zs=5.0) are also empirically checked using Monte-Carlo simulations,
for different number of subjects (n=3500,1000,5000) and number of auxiliary variables

( p=100,1000, 5000). Here X is a sharp null, that is, X has no effect on disease in any

11



level stratified by Zs (no perturbation effect for all Zs: | =z xo” =0). Other parameters
are the same as in the previous power simulations. We perform a total of 1000 simulations,

each round with 1000 permutations. The results are shown in Table 2. We see that the T,

test can maintain quite accurate type I error rates for all scenarios considered.

12
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Figure 2. Empirical powers of the multiple perturbation test with panels of independent and
dependent auxiliary variables (circle: empirical power for independent auxiliary
variables; triangle: empirical power for mildly dependent auxiliary variables;

square: empirical power for strongly dependent auxiliary variables).
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Table 2. Type I error rates of the multiple perturbation test with panels of independent and

dependent auxiliary variables.

Auxiliary variables Number of Number of auxiliary variables ( p)

subjects (N) 100 1000 5000
Independent 500 0.046 0.049 0.044
Dependent 500 0.049 0.043 0.057
Independent 1000 0.047 0.052 0.042
Dependent 1000 0.050 0.050 0.050
Independent 5000 0.050 0.042 0.056

Dependent 5000 0.045 0.048 0.044

14



VI. APPLICATION TO REAL DATA

The proposed multiple perturbation test is applied to a public-domain data from a
genome-wide association study of age-related macular degeneration.’ The study recruited 146
individuals (96 cases and 50 controls) and genotyped 116212 single nucleotide
polymorphisms (SNPs). A total of 6639 SNPs located in chromosome 1 (where previous
studies'*"” have identified a number of significant susceptibility genes) with call rate>95%,
minor allele frequency>5% and in Hardy-Weinberg equilibrium in the control group is
included in the analysis. At each SNP, heterozygote and variant homozygote are grouped
together.

In the analysis, each SNP takes turn to be the X, and the remaining SNPs, the Zs.
There are a total of C5*° =22034841 perturbations (interactions) to be considered. (For a
low-frequency SNP, some of the cells in Table 1 may be empty. In that case, it is totally

uninformative as a perturbation variable, because its tham statistic is zero with the

convention: 0xlog0=0.) The P-value of the multiple perturbation test for each SNP is

obtained from 500000 rounds of permutation. To adjust for multiple testing, the false
discovery rate (FDR) is controlled at 0.05 and the g-values are calculated (QVALUE
software).'® Table 3 lists the top five SNPs with smallest P-values by the multiple
perturbation tests. The multiple perturbation test detects two significant SNPs at FDR of 0.05:
1s2618034 (g-value=0.026) and rs2014029 (g-value = 0.045).

In the above analysis, for each SNP all the remaining 6638 SNPs are incorporated as
perturbation variables into the multiple perturbation test. Figure 3 shows the P-values of the
multiple perturbation test when only a certain number of perturbation SNPs are incorporated.
Each panel of the figure plots the results of three random incorporation sequences. Panels

A-C are for the 1% to the 3™ top SNPs, respectively. We see that initially the P-values

15



fluctuate a lot, when the number of perturbation SNPs incorporated is small. But beyond a
certain point, the P-values become ‘fixed’ exactly to the abscissa (P-values=0) (Panels A and
B), or almost fixed to the abscissa (P-values=0) (Panel C). By comparison, we see that the
P-values of all three purposefully chosen middle-to-bottom ranking SNPs are ‘drifting’ all the
way without showing any sign of a fixation (Panels D-F). It is worth noting that although the
3" top SNP (rs437749) is not significant by our FDR standard (Table 3), it is already
displaying a fixation pattern in our fixation/drifting analysis (Figure 3C). This suggests that if
we can incorporate more perturbation SNPs into the multiple perturbation test, SNP rs437749
may become significant.

For the two significant SNPs found in this study, it is of interest to examine whether the

significances are due primarily to the perturbations from one or a few other SNPs. We

deliberately remove the respective five largest ;(Szharp’i ’s in the multiple perturbation tests for

these two SNPs. The result for rs2618034 is still highly significant (P-value=6x107";
g-value=0.038), and that for rs2014029, marginally so (P-value= 2.8 x107"; g-value=0.090).

In fact, even if we remove the respective ten largest ;(Szharp,i ’s of the two SNPs, a clear

fixation pattern can still be seen for both (Appendix 2).
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Table 3. Top five single nucleotide polymorphisms (SNPs) with smallest P-values by the

multiple perturbation tests for the age-related macular degeneration data.’®

Rank  RefSNPs (rs) Minor P-value of g-value Odds ratio P-value of

number allele multiple Pearson
frequency perturbation chi-square
(%0) test* test
1 rs2618034 7.19 4.00x107° 0.026 0.53 0.201
2 rs2014029 5.82 1.40x10°° 0.045 2.10 0.166
3 rs437749 43.15 2.66x107* 0.357 0.94 0.865
4 rs3753298 5.82 2.74%107* 0.357 1.84 0.241
5 rs1749409 8.97 428%107 0.357 0.51 0.147

*based on 500000 rounds of permutation

17
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Figure 3. Fixation (panels A-C, respectively for the 1* to the 3 top single nucleotide polymorphisms, SNPs) and drifting (panels D-F, for
three purposefully chosen middle-to-bottom ranking SNPs) of the P-values of the multiple perturbation test when only a certain number
of perturbation SNPs are incorporated for the age-related macular degeneration data.’ Each panel includes three lines (solid, dashed and

dotted) representing three random incorporation sequences. Each P-value is obtained from 1000000 rounds of permutation.
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VII. DISCUSSION
While confronted with high-throughput data, researchers often turn to dimension
reduction methods of sorts to ease the severe penalty associated with testing myriads of

. 17-21
variables.

For our p-based method, dimensionality is not a curse but in fact is a blessing.
In this paper, we see that the power of the multiple perturbation test actually increases as the
number of auxiliary variables increases. Such ‘the-more-the-better’ principle also applies,
when one is knowledgeable about which variables may be perturbative. In Figure 4, the initial
segment of the power curve (solid line) emulates a situation when a researcher incorporates
into the multiple perturbation test the total 100 informative variables (1 =0.02) that are
known to him/her. Since the power is only 0.59, should the researcher add more variables into

the test? We see as expected that adding more variables unselectively (dotted lines from left

to right, for 1 =0.001,0.00025 and 0.0001, respectively) into the test will only dilute the

power. However, upon more and more of these low-informativity variables being added, the
power then rises up again and surpasses the original power.

However, it should be emphasized that the above p-based approach only goes so far as
when the auxiliary variables have a non-zero informativeness (| >0, irrespectively of how
small it may be). A computer can easily generate millions and billions of random variables for
us, but all these artificial data amount to nothing (1 =0, exactly). The more such variables
being added, the more the power will be curtailed. Another caveat is that there is no use
replicate the data at hand just to make the total number of auxiliary variables appear larger;
the power simply won’t bulge with this maneuver.

Age-related macular degeneration is a progressive disease in macula of the retina in
which the pigment epithelium cells and the photoreceptor cells degenerate, causing gradual

loss of central vision.”*** With FDR controlled at 0.05, in this study we are able to identify
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two novel SNPs that are significantly associated with age-related macular degeneration. The
first SNP (rs2618034) is located in the intron region of KCND3 gene (potassium
voltage-gated channel, Shal-related subfamily, member 3) on chromosome 1p13.2, and the
second (rs2014029), the intron region of DTL gene (denticleless E3 ubiquitin protein ligase
homolog (Drosophila)) on 1q32.3. KCND3 gene encods Kv4.3 regulating neuronal
excitability.”* Mutations in KCND3 gene have been identified as a cause for cerebellar

. 2526
neurodegeneration.”™

In this regard, it is worthy to note that the retina photoreceptor cells
are a specialized type of neurons which may also degenerate with aging. Meanwhile, DTL
gene regulates p53 polyubiquitination and protein stability?” and the evidence to date suggests
that p53 is a key regulator involved in the apotosis of retinal pigment epithelium cells.”* All
these findings further support that KCND3 and DTL genes may be causally related to the
development of age-related macular degeneration.

It is worthy to note that the proposed p-based multiple perturbation test indeed is a very
powerful test. The two significant SNPs (rs2618034 and rs2014029) that we identified in this
study are only very weakly associated with age-related macular degeneration (odds
ratios=0.53 and 2.10, respectively), and the traditional n-based method (Pearson chi-square
test) comes nowhere near detecting them (P-values=0.201 and 0.166, respectively) (Table 3).
Even if we increase the total number of subjects from the present n =146 (Klein et al’s data®)
to n=25000 and n=77000 (Holliday et al’s’ and Fritsche et al’s® meta-analyses data),

the n-based method still cannot detect them. But this is not to say that the n-based method is
useless. In fact, Klein et al® themselves presented one SNP (rs380390) with an n-based
P-value of 4.1x10® (significance after Bonferroni correction), but it is undetectable with
our method. It is important to note that the p-based test proposed in this paper is not meant to

take the place of the traditional n-based test. It is better that they can work side by side,
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complementing each other. Finally, we wish to point out that by incorporating @ priori
knowledge into analyzing Klein et al’s data,’ Lin and Lee® previously were able to identify
four more significant SNPs in chromosome 1 (rs800292, rs2019727, rs1329428 and
rs1853882) using the traditional n-based test. The same principle can also be applied to the
p-based multiple perturbation test in this paper to facilitate the detection of even more genes.
In this paper, we have successfully applied the multiple perturbation test to a
genome-wide association study where thousands of genomic markers serve the roles of the
auxiliary/perturbation variables. The method should have broad applications to other

high-dimension (large p) -omics studies, such as epigenomic, transcriptomic, proteomic,

metabolomic, and exposomic studies, etc. It would be even better to have a cross-omics study,
and/or with all its study subjects further linked to existing government or private-sector
databases, such as, data of health insurances, traffic violations, internet usages, etc. A

researcher conducting such a data-mining study has the potentials to push the p (the

number of auxiliary/perturbation variables) to the millions, billions or even trillions, and be
rewarded with a very high power for detecting a weak association. Such a p-based method

may set a stage for a new paradigm of statistical hypothesis tests.
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APPENDIX 1
Let R=1 indicate a subject is recruited in a study, R=0, otherwise. In a case-control
study, the recruitment process depends only on the disease status of a subject, that is,

Pr(R=1|Z,X,D)=Pr(R=1|X,D)=Pr(R=1|D). Under the crude null of Pr(D|X)=Pr(D),

we have

_ Pr(X,D,R=1)

Pr(D,R=1)

Pr(X)xPr(D|X)xPr(R=1|X,D)
Pr(D)xPr(R=1|D)

_ Pr(X)xPr(D)xPr(R=1|D)
Pr(D)xPr(R=1|D)

= Pr(X),

Pr(X|D,R=1)

and therefore,

Pr(X =1|D=1,R=1)
Pr(X =0|D=1,R=1)
_Pr(X =1)

Pr(X =0)
=0dd S];(opulation
Pr(X =1|D=0,R=1)
Pr(X =0|D=0,R=1)
OddsS™™.

Oddss™ =

Under the sharp null of Pr(D

Z,X)=Pr(D|Z), we have

Pr(X,Z,D,R=1)
Pr(X,D,R=1)
Pr(X)xPr(Z|X)xPr(D|Z, X)xPr(R=1|Z, X, D)
Pr(X)xPr(D|X)xPr(R=1|X,D)

Pr(X)xPr(Z|X)xPr(D|Z)xPr(R=1|D)
~ Pr(X)xPr(D|X)xPr(R=1|D)
Pr(Z|X)xPr(D|Z)
~ Pr(D[X)

Pr(Z|X,D,R=1)=

b
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and therefore,

Pr(Z=1|X=1,D=1,R=1)/Pr(Z=0|X =1,D=1,R=1)

ORSS =

 Pr(Z=1|X=0,D=1,R=1)/Pr(Z=0|X =0,D=1R=1)

{Pr(Z:l|X =1)xPr(D=1Z=1) |

| Pr(Z=0|X =1)xPr(D=1|Z =0)}

Pr(D=1|X =1) /L Pr(D=1|X=1)
- Pr(Z=1|X=0)xPr(D=1{Z=1)| /[ Pr(Z=0|X =0)xPr(D =1|Z =0)
Pr(D=1|X =0) | Pr(D =1|X =0)

_ Pr(Z=1]X=1)/Pr(Z=0|X =1)
 Pr(Z=1|X=0)/Pr(Z=0|X =0)

_ population
=O0R%;

{Pr(Z =1|X =1)xPr(D=0[Z=1) |

| Pr(Z=0|X =1)xPr(D=0[Z :0)}

Pr(D=0|X =1) /L Pr(D=0|X =1)
[ Pr(z=1]X=0)xPr(D=0|Z=1)| /[ Pr(Z=0|X =0)xPr(D=0|Z =0)
Pr(D=0|X =0) Pr(D =0[|X =0)

_ Pr(Z=1]X :I,D:O,R:I)/Pr(Z=O|)_( =1,D=0,R=1)

 Pr(Z=1/X=0,D=0,R=1)/Pr(Z=0|X =0,D=0,R=1)

_ control
= ORZ™,
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APPENDIX 2

Fixations of the P-values of the two significant SNPs (rs2618034 and rs2014029) found in

this study, even with the respective ten largest ;(Szharp, . ’s being removed:

rs2618034 rs2014029

E
7
o
:
W
. \
100 1000 6628 1 10 100 1000 6628
Number of Perturbation SNPs Number of Perturbation SNPs
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