
國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文
Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

上下文相關的符號序列複雜度

The Complexity of Context-Sensitive Sequences

林建旻

Chien-Min Lin

指導教授：劉長遠博士

Advisor: Cheng-Yuan Liou, Ph.D.

中華民國 103年 1月
January, 2014





謝

此篇論文能夠完成，首先要感謝我的指導教授劉長遠老師，老師在

我研究期間給了許多有用的建議和可能的研究方向，使我在研究過程

中獲益良多。除此之外老師也十分關心學生的近況和未來的方向，不

時給予叮嚀與幫助，真的十分感謝。也感謝百忙之中抽空擔任口試委

員的呂育道教授、彭智楹教授和黃昭綺學姐，並且提出了寶貴的建議

及指導，讓此篇論文的內容更趨完善。

另外感謝曾聖翰學長、黃柏翔和翁正勳同學整理的資料，讓我能接

續其相關的研究內容。也感謝演算法實驗室同學、學長姐及友人們的

多所協助，不論是研究、課業或是日常生活上，受大家照顧很多。特

別感謝從大學一路互相扶持的葉士賢同學，在我整個研究所期間幫了

相當多的忙，謝謝。

最後感謝我的家人，至始至終都堅定的支持我完成學業，並給與生

活上必要的協助。感謝女友佩儀，在苦悶而緩慢的研究期間悉心照料，

讓我能消化負面情緒持續進行研究。最後感謝參與我研究生涯的每一

位親人及朋友，謝謝大家。

ii



中文 要

在此篇論文中，我們使用 L系統建模複雜度方法來計算上下文相關
文法的複雜度。由於在現有文獻中已被證明出目前並沒有一般性的演

算法用以計算上下文相關文法的複雜度，所以我們選擇了幾個常見的

上下文相關文法例子來實作，為此我們改進了先前的 L系統建模複雜
度方法，使其能夠處理任意長度的符號序列。

關鍵字：結構複雜度、樹狀結構表示法、序列、上下文相關文法、

L系統
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Abstract

This article discusses how to apply the L-system modeling complexity

method to context-sensitive sequences. Since it is proved that there exists

no general calculation method to compute the entropy of context-sensitive

languages, we choose some common context-sensitive languages and analyze

them case by case. For that purpose, we extend the capability of the modeling

complexity method in previous work. Our method can deal with arbitrary

length sequences.

Keywords: Structural complexity, Tree representation, Sequence, Context-

sensitive grammar, L-system
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Chapter 1

Introduction

It is proved that “there exists no general calculation method to compute the entropy of

the language generated by a context-sensitive grammar” by Kaminger [1]. Furthermore,

there is no procedure to decide whether the language of any context-sensitive grammar

is finite or not [2]. Thus, we choose some common context-sensitive languages and an-

alyze their complexity case by case. For that purpose, we introduce the L-system in the

following section.

1.1 The complexity of the L-system

The Lindenmayer system, or L-system for short, was introduced by the biologist Aris-

tid Lindenmayer in 1968 [3]. The L-system is a type of string-rewriting mechanism such

as Chomsky grammars. In general, rewriting is a technique used to define complex objects

by successively replacing parts of a simple initial object, using a set of rewriting rules or

productions. The L-system is defined as follows.

Definition 1.1. The L-system grammars are very similar to the Chomsky grammars, de-

fined as a tuple [4]:

G = (V, ω, P ),

where

1. V = {s1, s2, . . . , sn} is an alphabet,

1



2. ω (start, axiom, or initiator) is a string of symbols from V defining the initial state

of the system,

3. P is defined by a production map P : V → V ∗ with s → P (s) for each s in V .

The identity production s → s is assumed. These symbols are called constants or

terminals.

The following definition is given by Liou et al. [5], with this definition we can compute

the complexity of L-system.

Definition 1.2. The complexity of L-system.

The complexity of L-system is defined as

K0 = − ln R,

where R is the radius of convergence.

The radius of convergenceR can be derived from rewriting rules of L-system. We will

show how to compute R, and introduce some terms in the following section.

1.2 Preliminary

The major difference between L-system and Chomsky grammars is the technique used

to apply productions. In L-systems, rewriting rules are applied parallel and simultane-

ously, whereas in Chomsky grammars, rewriting rules are applied sequentially to replace

all the letters in a given word. Parallel production application has an essential impact on

the formal properties of rewriting systems. For example, there are languages which can be

generated by context-free L-systems, which means all the rewriting rules of the L-system

are context-free, but not by context-free Chomsky grammars. In the remainder of this

paper, whenever we say an L-system, we suppose it to be context-free.

The L-system uses some initial and rewriting rules to construct beautiful graphs. Since

it can construct a tree from rewriting rules, it can also extract rewriting rules from a tree.

For computing the complexity of a grammar, we use fixed tree presentations for the input

2



sequence generated by the grammar. For example, if the input sequence is abcd, we tranfer

each word of to an unique tree representation, i.e., a single node for “a”, a node with only

one left child for “b”, a node with only one right child for “c” and a node with both left and

right child for “d” (see Figure 1.1). After replacing every word to tree representations, we

combine each two consecutive trees to a bigger tree by creating a new node as the root of

these two subtrees. Repeat the process level by level, the input sequence will be transfer

to a text tree T (see Figure 1.2).

Figure 1.1: The tree representations of words a, b, c and d.

Figure 1.2: From tree representations to a text tree.

For computing the complexity of L-system, we need some rules for converting tree

to another structure. We use a stack similarly structure to represent the hierarchy of tree,

called bracketed string. The tree structure can transfer to a unique bracketed string by the

following symbols, and it can transfer back to the original tree:

1. F : the current location of tree nodes; it can be replaced by any word or be omitted;

2. + : the following string will express the right subtree;

3. − : the following string will express the left subtree;

4. [ : this symbol is pairing with ]; “[. . .]” denotes a subtree where “. . .” indicates all

the bracketed strings of its subtree;

5. ] : see [ description.

3



Following the previous symbols, Figure 1.3 shows that how to represent the tree rep-

resentations by bracketed strings. And Figure 1.4 is the bracketed string representaion of

T .

Figure 1.3: Bracketed string representations for tree representations.

Figure 1.4: The bracketed string representation of T .

Now we explain how to generate rewriting rules from tree structures. We can apply

distinct variables to each tree node. For any binary tree, for every tree node has left and

right subtrees, they can always be explained in the following format:

P → LR,

where P denotes the current node, L denotes its left subtree, and R denotes its right

subtree, respectively. Thus, we can use rewriting rules to represent T (see Figure 1.5). We

denote “ϕ” to be null.

Now, we know how to use rewriting rules to represent a tree, and we also know how

to represent a tree with a bracketed string. We can also use rewriting rules to generate

bracketed strings. In rewriting rules for tree structures, we write P → LR for a tree

having left and right subtrees. Note that we call L and R the non-terminals. Such a tree

will have a bracketed string as follows: [[−F . . .][+F . . .]]. It is clear that “[−F . . .]”

represents the left subtree, and that “[+F . . .]” represents the right subtree. Therefore, we

4



Figure 1.5: The rewiting rules of T .

can replace the rewriting rules with

P → [−FL][+FR]

L → . . .

R → . . .

where “. . .” is the rewriting rule for the bracketed string of each subtree. In this way, we

do not have to write L for a left subtree and R for a right subtree; the orientation is already

described in the bracketed string “−F ” and “+F ”. For the sake of readabiliy, we replace

the words such as “RRL
” and “RRR

” by “TRRL
” and “TRRR

” respectively. For those null

rewriting rules “ϕ”s, we simply ignore the nulls. The new rewriting rules without trivial

nulls are shown in Figure 1.6.

Figure 1.6: The rewiting rules for the bracketed string of T .

5



When tree grows up, the rewriting rules may generate identical rules. These rules can

generate exactly one bracketed string and, thus, exactly one tree structure. All these rules

form a rule set, which represents a unique tree structure. In Figure 1.6, it is clear that

TR → [−FTRL
][+FTRR

] and TRR
→ [−FTRRL

][+FTRRR
] are almost the same. The

only difference is that the subtrees of TR are TRL
and TRR

, and the subtrees of TRR
are

TRRL
and TRRR

. But they have the same structure: they both have a right subtree and do

not have a left subtree. We will define two terms to express the similarity between two

rewriting rules, and these terms can simplify complexity analysis.

Definition 1.3. Homomorphism in rewriting rules.

We define that rewriting rule R1 and rewriting rule R2 are homomorphisc if and only if

they have the same structure.

In detail, rewriting rule R1 and rewriting rule R2 in tree structure both have subtrees

in corresponding positions or both not. Ignoring all nonterminals, if rule R1 and rule R2

generate the same bracketed string, then they are homomorphic by definition.

Definition 1.4. Isomorphism on level X in rewriting rules.

We define that rewriting rule R1 and rewriting rule R2 are isomorphisc on depth X if

they are homomorphisc and their nonterminals are relatively isomorphic on depth X − 1,

denoted by IsoX(R1, R2). Isomorphic on level 0 indicates homomorphism.

By using bracketed strings, we can obtain a much clearer definition of homomorphism.

All homomorphic rewriting rules generating rules generate the same bracketed strings

when all nonterminals are ignored. We ignore all nonterminals of the rewriting rules in

Figure 1.7, we find P , TL, TR and TRR
are homomorphic to each other; they generate the

same bracketed string, [−F ][+F ]. TLR
and TRL

are not homomorphic to any of the other

rules; its bracketed strings are [−F ] and [+F ].

After we define the similarity between rules by homomorphism and isomorphism, we

can classify all the rules into different subsets based on their similarity. Now we list all the

rewriting rules of T into Table 1.1 but ignore terminal rules such as “→ ϕ” and transfer

the name of each rule to class name (or class number). After performing classification,

6



Figure 1.7: The rewiting rules for the bracketed string of T ignored all nonterminals.

we obtain not only a new rewriting rule set but also a context-free grammar, which can be

converted to automata.

P → [−FTL][+FTR]
TL → [−F ][+FTLR

]
TLR

→ [−F ]
TR → [−FTRL

][+FTRR
]

TRL
→ [+F ]

TRR
→ [−F ][+F ]

Table 1.1: The rewriting rules of T .

In Table 1.1, rulesP → [−FTL][+FTR], TL → [−F ][+FTLR
], TR → [−FTRL

][+FTRR
]

and TRR
→ [−F ][+F ] are isomorphic on depth 0 and assigned to C1. For every rule Ti,

we denote H(Ti), the height of Ti, to be the longest distance in the text tree from Ti to

the terminals derived from Ti. Since there are no isomorpic rules except terminal rules on

depth 1, the class number of each rule is set by the order from highest rule to lowest rule

and from left to right. That is, we first set the highest node P to C1, and then set the sec-

ond high rules TL and TR to C2 and C3 respectively. The class number of third high rules

TLR
, TRL

and TRR
are set C4, C5 and C6 respectively, and the terminal rules TLL

, TLRL
,

TRLR
, TRRL

and TRRR
have the largest class number C7. The complete table is shown in

Table 1.2. Now we can define the complexity of a rewriting rule set as follows:

Definition 1.5. Topological entropy of a context-free grammar.

The topological entropy K0 of a context-free grammar can be evaluated by means of the

following three procedures [6, 7]:

7



Classification of Rules Isomorphic Depth #0 Isomorphic Depth #1
Class #1 (1)C1 → C1C1 (1)C1 → C2C3

(1)C1 → C3C1
(1)C1 → C4C2
(1)C1 → C4C4

Class #2 (1)C2 → C4Cϕ (1)C2 → C7C4
Class #3 (1)C3 → CϕC4 (1)C3 → C5C6
Class #4 (5)C4 → CϕCϕ (1)C4 → C7Cϕ
Class #5 (1)C5 → CϕC7
Class #6 (1)C6 → C7C7
Class #7 (5)C7 → CϕCϕ

Table 1.2: Classification Based on the Similarity of Rewriting Rules of T .

1. For each variable Vi with productions (in Greibach form),

Vi → ti1Ui1, ti2Ui2, . . . , tiki
Uiki

,

where {ti1, ti2, . . . , tiki
} are terminals and {Ui1, Ui2, . . . , Uiki

} are non-terminals.

The formal algebraic expression for each variable is

Vi =
ki∑

j=1
tijUij

2. By replacing every terminal tij with an auxiliary variable z, one obtains the gener-

ating function

Vi(z) =
∞∑

n=1
Ni(n)zn,

where Ni(n) is the number of words of length n descending from Vi.

3. Let N(n) be the largest one of Ni(n), N(n) = max{Ni(n), over all i}.

The above summation series converges when z < R = e−K0 . The topological entropy is

given by the radius of convergence R as

K0 = − ln R.

The productions of Liou et al. [5] method have some difference from the aforemen-

tioned definitions. Therefore, they had given some slightly modifications in deriving the

complexity of the L-system, which is rewritten as follows:

8



Definition 1.6. Generating function of a conext-free grammar.

1. Assume that there are n classes of rules and that each class Ci contains ni rules. Let

Vi ∈ {C1, C2, . . . , Cn}, Uij ∈ {Rij, i = 1 ∼ n, j = 1 ∼ ni}, and aijk ∈ {x : x =

1 ∼ n}, where each Uij has the following form:

Ui1 → Vai11Vai12

Ui2 → Vai21Vai22

. . . → . . .

Uini
→ Vaini1Vaini2

2. The generating function of Vi, Vi(z), has a new form as follows:

Vi(z) =
∑ni

p=1 nipzVaip1(z)Vaip2(z)∑ni
q=1 niq

If Vi does not have any non-terminal, we set Vi(z) = 1.

After formulating the generating function Vi(z), we intend to find the largest value of

z, zmax, at which V1(zmax) converges. Note that we use V1 to denote the rule for the root

node of the text tree. After obtaining the largetst value, zmax, of V1(z), we set R = zmax,

the radius of convergence of V1(z). We define the complexity of the rhythmic tree as

K0 = − ln R.

For example, we compute the modeling complexity value of sequence “abcd” on iso-

morphic depth 0 now. According to the definition, the given values for the class param-

eters are listed in Table 1.3. There are 4 classes, so we obtain the formulas for V1(z′),

9



Classification of Rules Isomorphic Depth #0
(n = 4) Class #1 (1)C1 → C1 C1

(n1 = 4) n11 a111a112
(1)C1 → C3 C1
n12 a121a122
(1)C1 → C4 C2
n13 a131a132
(1)C1 → C4 C4
n14 a141a142

Class #2 (1)C2 → C4 Cϕ

(n2 = 1) n21 a211a212
Class #3 (1)C3 → Cϕ C4
(n3 = 1) n31 a311a312
Class #4 (5)C4 → Cϕ Cϕ

(n4 = 1) n41 a411a412

Table 1.3: The values for the class parameters of Table 1.2, on isomorphic depth 0.
.

V2(z′), V3(z′) and V4(z′). They are:

Vϕ(z′) = 1

V4(z′) = 1

V3(z′) =
∑n3

p=1 n3pz′Va3p1(z′)Va3p2(z′)∑n3
q=1 n3q

= z′ × (1 × Vϕ(z′) × V4(z′))
1

= z′

V2(z′) =
∑n2

p=1 n2pz′Va2p1(z′)Va2p2(z′)∑n2
q=1 n2q

= z′ × (1 × V4(z′) × Vϕ(z′))
1

= z′

V1(z′) =
∑n1

p=1 n1pz′Va1p1(z′)Va1p2(z′)∑n1
q=1 n1q

= z′ × (1 × V1(z′) × V1(z′) + 1 × V3(z′) × V1(z′) + 1 × V4(z′) × V2(z′) + 1 × V4(z′) × V4(z′))
4

= z′V1(z′)2 + z′2V1(z′) + z′2 + z′

4

Rearrange the previous equation for V1(z′), we obtain a quadratic function:

z′V1(z′)2 + (z′2 − 4)V1(z′) + (z′2 + z′) = 0

Solving V1(z′), we obtain the formula

V1(z′) = 4 − z′2

2z′ ± 1
2z′

√
z′4 − 4z′3 − 12z′2 + 16

Finally, the radius of convergence R, and complexity K0 = − ln R, can be obtained from

10



this formula. But, computing the zmax directly is difficult, so we use iterations and region

tests to approximate the complexity; details are as follows.

1. Rewrite the generating function as

V m
i (z′) =

∑ni
p=1 nipz′V m−1

aip1
(z′)V m−1

aip2
(z′)∑ni

q=1 niq

V 0
i (z′) = 1

2. The value from V 0
i (z′) to V m

i (z′). When V m−1
i (z′) = V m

i (z′) for all rules, we say

that V m
i (z′) reach the convergence, but z′ is not the zmax we want. Here, we set

m = 1000 for each iteration.

3. Now we can test whether V m
i (z′) is convergent or divergent at a number z′. We use

binary search to every real number between 0 and 1; in every test, when V m
i (z′)

converges, we set bigger z′ next time, but when V m
i (z′) diverges, we set smaller z′

next time. Running more iterations will obtain more precise radius. Here, we set

the iteration for 8 times.

The converge test result of generating function V m
1 (z′) is shown in Figure 1.8. The

generating function V m
1 (z′) diverges when z′ > 0.369109, that is, z′max = 0.369109 and

the complexity value is K0 = −ln(R) = −ln(z′max) = 0.996663.

Figure 1.8: The converge test result of the generating function V m
1 (z).
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1.3 Other Applications

With Definition 1.6, Liou et al. gave a new idea in modeling complexity for music

rhythms [5] and DNA sequences [8]. The former paper applies L-system to construct

rhythmic trees, and analyzes the hierarchical characteristics of rhythm from the tree struc-

ture. A rhythmic tree is a tree of which each subtree is also a rhythmic tree. Each tree

node represents the total beat duration that is equal to the sum of all those of its descen-

dants. Given a rhythm, the direct way to represent it with an L-system is to construct

rewriting rules that replace longer metrical units with shorter ones. An example is shown

in Figure 1.9. Similarly, the latter paper applies L-system to construct DNA trees, and

determines the dissimilarity between two given DNA sequences. A DNA tree is a binary

tree of which each subtree is also a DNA tree. Every tree node is either a terminal node

or a node with two children. There are four fixed tree representations for nucleotide bases

A, C, T and G (see Figure 1.10). When transfering a sequence to DNA tree, we replace

every word to the corresponding tree presentations, and two consecutive trees can com-

bine to a bigger tree. Following the previous steps, a DNA tree will be constructed (see

Figure 1.11). With some slightly modifications, transfer text sequences to binary strings,

this technique can be applied to literary works, even Chinese word sequences [9].

Figure 1.9: The rhythmic tree of jazz standard Blues For Alice.
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Figure 1.10: Tree representations of nucleotide bases.

Figure 1.11: DNA sequence represented with text tree.
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Chapter 2

The Complexity of Context-Sensitive

Sequences

In this chapter, we apply the L-system modeling complexity method to some context-

sensitive language cases. Different from the previous work we mentioned above, our

method can deal with arbitrary length sequences. Basically, we have almost the same

procedure with those previous work but the classification part. We made some modifi-

cations to the classifition part for avoiding forward-referencing rules, and we will show

that in the following case. Note that for every cases in this chapter, we use the same tree

representation for each word “a”, “b”, “c” and “d”, as Figure 1.1 shows.

Case 2.1. Given a context-sensitive grammar G1 and the language generated by G1 is

L(G1) = {anbncn|n ≥ 1}.

The language generated by G1 is aa . . . abb . . . bcc . . . c where the number of a, b and c

are the same. For example, we start at the sequence for n = 4, i.e., aaaabbbbcccc. To apply

the L-system method, first, we tranfer each word of input sequence to corresponding tree

representations, and combine all the tree representations to the text tree T1(4) of L(G1)

for n = 4 (see Figure 2.1). Since we have the text tree, we can list all the rewriting rules

of Figure 2.1 into Table 2.1 but terminal rules, and transfer the name of each rule to class

numbers for listing the classification Table 2.2.

14



Figure 2.1: The text tree of Case 2.1 for n = 4.

P → [−FTL][+FTR]
TL → [−FTLL

][+FTLR
] TR → [−FTRL

]
TLL

→ [−FTLLL
][+FTLLR

] TRL
→ [−FTRLL

][+FTRLR
]

TLLL
→ [−F ][+F ] TRLL

→ [−FTRLLL
][+FTRLLR

]
TLLR

→ [−F ][+F ] TRLLL
→ [+F ]

TLR
→ [−FTLRL

][+FTLRR
] TRLLR

→ [+F ]
TLRL

→ [−FTLRLL
][+FTLRLR

] TRLR
→ [−FTRLRL

][+FTRLRR
]

TLRLL
→ [−F ] TRLRL

→ [+F ]
TLRLR

→ [−F ] TRLRR
→ [+F ]

TLRR
→ [−FTLRRL

][+FTLRRR
]

TLRRL
→ [−F ]

TLRRR
→ [−F ]

Table 2.1: Rewriting Rules of the text tree in Figure 2.1.

Unfortunately, in this case, we can not apply the L-system method to compute the

complexity directly since there are forward-referencing rules “C2 → C1Cϕ” and “C3 →

C2Cϕ” in the classification Table 2.2. By the formula of definition 1.6, we know Vi(z) can

be computed by Vj(z) only if i ≤ j. The original classification method causes forward-

referencing rules only if the text tree is a difficult tree. We define a four-nodes tree stucture

where the root s has left child t only and t has both left child u and right child v to be amin-

imum difficult tree and t to be a stopper (see Figure 2.2). A difficult tree is a tree contains

at least one minimum difficult tree as its subtree. Note that stoppers, or minimum difficult

trees, only appear on the path from root to the rightmost leaf. Also, tree representations

should not be difficult trees. By traveling all nodes on the path, we can downwardly find

all of the stoppers t1, t2, . . . , tm. Also, we give every node x of the text tree a priority

value, denoted by P (x), initially set to 0. For each stoppers ti we set P (ti) = i and set
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Classification Isomorphic Isomorphic Isomorphic
of Rules Depth #0 Depth #1 Depth #2, 3, 4
Class #1 (4)C1 → C1C1 (1)C1 → C2C3 (1)C1 → C2C3

(2)C1 → C1C2
(2)C1 → C2C2
(2)C1 → C3C3
(1)C1 → C4C4

Class #2 *(1)C2 → C1Cϕ (1)C2 → C2C2 (1)C2 → C6C4
(4)C2 → C4Cϕ (1)C2 → C4C4

(1)C2 → C5C5
(1)C2 → C6C6

Class #3 (4)C3 → CϕC4 *(1)C3 → C2Cϕ (1)C3 → C5Cϕ
Class #4 (12)C4 → CϕCϕ (2)C4 → C7C7 (1)C4 → C7C7
Class #5 (2)C5 → C8C8 (1)C5 → C8C8
Class #6 (2)C6 → C9C9 (1)C6 → C9C9
Class #7 (4)C7 → C9Cϕ (2)C7 → C10C10
Class #8 (4)C8 → CϕC9 (2)C8 → C11C11
Class #9 (12)C9 → CϕCϕ (2)C9 → C12C12
Class #10 (4)C10 → C12Cϕ
Class #11 (4)C11 → CϕC12
Class #12 (12)C12 → CϕCϕ

Table 2.2: Classification Based on the Similarity of Rewriting Rules in Table 2.1. (The
star symbols “*” point out where the forward-referencing rules are.)

the priority value for every descendant of ti to P (ti), for i = 1, 2, . . . , m. That makes the

desendants of lower stoppers have larger priority value.

Figure 2.2: The structure of minimum difficult tree.

For example, we name each node of T1(4) by a number increasly in breadth-first search

order (BFS for short, see Figure 2.3). First, we search for stoppers on the path from

node #0 to node #31. In this case, there are only one stopper #5 in T1(4) and we set

P (#5) = 1. Also, the priority value of all the descendants of node #5 are set to be

P (#5).
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Figure 2.3: The text tree of Case 2.1 for n = 4, each node is numbered in BFS order.

Algorithm 1 New classification algorithm.
1: let k be the isomorphic depth
2: let c = 1 be current class number
3: for P = 0 → largest priority value do
4: for each node x of T in BFS order do
5: if H(x) > k and Cx = 0 and P (x) = P then
6: Cx = c
7: c = c + 1
8: for each node y > x of T in BFS order do
9: if H(y) > k and Cy = 0 and P (y) = P and Isok(x, y) then
10: Cy = Cx

11: end if
12: end for
13: end if
14: end for
15: end for
16: for l = k → 0 do
17: for each node x of T in BFS order do
18: if H(x) = l and Cx = 0 then
19: Cx = c
20: c = c + 1
21: for each node y > x of T in BFS order do
22: if Cy = 0 and Isok(x, y) then
23: Cy = Cx

24: end if
25: end for
26: end if
27: end for
28: end for

Nowwe introduce the new classification method Algorithm 1. Applying it on difficult

trees ensures no forward-referencing rules appear. The basic idea of this algorithm is
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dividing the classification into two parts. Let k be the isomorphic depth. The first part

deal with each node x of the text tree where H(x) > k, in BFS order. When we classify

these nodes, we have to make sure that for any x, y of the text tree, Cx < Cy only if

P (x) < P (y). That ensures the upper text tree nodes classified properly, because the

lower stoppers and their descendants will always have larger class number. The detail of

the first part is shown in line 3 to line 15 of Algorithm 1. The second part deal with each

node x of the text tree where H(x) ≤ k, in BFS order. When we classify these nodes, we

have to make sure that for any x, y of the text tree, Cx < Cy only if H(x) > H(y). That

ensures the lower text tree nodes classified properly, and basically it is the classification

method of those previous work. The detail of the second part is shown in line 16 to line

28 of Algorithm 1. Note that for each node x of the text tree, Cx = 0 initailly.

Now we show how Algorithm 1 works on T1(4), on isomorphic depth 1. The first part

classify the nodes with height more than 1 in BFS order, i.e., #0, #1, #2, #3, #4, #5,

#8, #9, #10 and #11. Start from the nodes with lower priority value, #0, #1, #2, #3,

#4, #8 and #9 are classified to be C1, C2, C3, C2, C2, C4 and C4 respectively. Then the

nodes with higher priority value, #5, #10 and #11, are classified to be C5, C6 and C6

respectively. The second part classify the rest of nodes. Start from the nodes with height

equal to 1 in BFS order, #6, #7, #16, #17, #18, #19, #20, #21, #22 and #23 are set

to be C7, C7, C8, C8, C8, C8, C9, C9, C9 and C9 respectively. Then the nodes with height

less than 1, terminal nodes, are classified to be C10.

By applying this algorithm on all isomorphic depths 0, 1, 2, 3 and 4, we have the new

classification Table 2.3. With this new table, now we can apply the modeling complexity

method. We show the result of L-system modeling complexity computations of Case 2.1

for n = 1, 2, . . . , 64, on all isomorphic depths in Figure 2.4. The maximum isomorphic

depth of each sequence ofL(G1) isH(T1(n))−1. For example, the maximum isomorphic

depth of L(G1) for n = 4 is H(T1(4)) − 1 = 4.
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Classification Isomorphic Isomorphic Isomorphic
of Rules Depth #0 Depth #1 Depth #2, 3, 4
Class #1 (3)C1 → C1C1 (1)C1 → C2C3 (1)C1 → C2C3

(2)C1 → C1C2
(2)C1 → C2C2
(1)C1 → C5C5

Class #2 (1)C2 → C3Cϕ (1)C2 → C2C2 (1)C2 → C6C4
(4)C2 → C5Cϕ (1)C2 → C4C4

(1)C2 → C7C7

Class #3 (1)C3 → C3C3 (1)C3 → C5Cϕ (1)C3 → C5Cϕ
(2)C3 → C4C4

Class #4 (4)C4 → CϕC5 (2)C4 → C8C8 (1)C4 → C7C7
Class #5 (12)C5 → CϕCϕ (1)C5 → C6C6 (1)C5 → C8C8
Class #6 (2)C6 → C9C9 (1)C6 → C9C9
Class #7 (2)C7 → C10C10 (2)C7 → C10C10
Class #8 (4)C8 → C10Cϕ (2)C8 → C11C11
Class #9 (4)C9 → CϕC10 (2)C9 → C12C12
Class #10 (12)C10 → CϕCϕ (4)C10 → C12Cϕ
Class #11 (4)C11 → CϕC12
Class #12 (12)C12 → CϕCϕ

Table 2.3: Classification Based on the Similarity of Rewriting Rules in Table 2.1 by ap-
plying Algorithm 1.

In Figure 2.4 we can see, for those short sequences generated byG1, themodeling com-

plexity method does not work properly on high isomorphic depths. The short sequences

have no self-referencing rules (likeC1 → C1C1) on high isomorphic depths, which means

the generating function of short sequences on high isomorphic depths never diverge when

0 < z < 1. In other word, the modeling complexity method works properly on isomor-

phic depth 0 even for very short sequences. For this reason, we only list the results on

isomorphic depth 0 for all the following cases.

Figure 2.4: The complexity diagram of Case 2.1 for n = 1, 2, . . . , 64 on all isomorphic
depths.

On the other hand, we can use a single value α to represent the grammar complexity
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of any context-sensitive grammar. By the method of least squares, we can find a best-fit

curve H = ln nα + 1 of all the modeling complexity values. For those faster growing

generating functions, they have larger grammar complexity. With this value, we can com-

pare the complexity of different context-sensitive grammars easily. We show the result in

Figure 2.5 and the grammar complexity of G1 is α1 = 1.17967.

Figure 2.5: The complexity diagram of Case 2.1 for n = 1, 2, . . . , 64 on isomorphic depth
0 and the least square error curve of H = ln n1.17967 + 1.

Case 2.2. Given a context-sensitive grammar G2 and the language generated by G2 is

L(G2) = {anbncndn|n ≥ 1}.

Similar to Case 2.1, the language generated by G2 is aa . . . abb . . . bcc . . . cdd . . . d

where the number of a, b, c and d are the same. With more complicated grammars can

be used to parse other languages with even more letters. For example, we start at the se-

quence for n = 3. With the similar processes, we have the tree representations trasfered

from each word of the input sequence, and the text tree T2(3) is shown in Figure 2.6.

Then, we list all the rewriting rules from T2(3) into Table 2.4, and the classification Ta-

ble 2.5. The result of L-system modeling complexity computations and the best-fit curve

for Case 2.2 for n = 1, 2, . . . , 64, on isomorphic depth 0 are shown in Figure 2.7. The

grammar complexity of G2 is α2 = 1.25.
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Figure 2.6: The text tree of Case 2.2 for n = 3.

P → [−FTL][+FTR]
TL → [−FTLL

][+FTLR
] TR → [−FTRL

]
TLL

→ [−FTLLL
][+FTLLR

] TRL
→ [−FTRLL

][+FTRLR
]

TLLL
→ [−F ][+F ] TRLL

→ [−FTRLLL
][+FTRLLR

]
TLLR

→ [−F ][+FTLLRR
] TRLLL

→ [+F ]
TLLRR

→ [−F ] TRLLR
→ [−F ][+F ]

TLR
→ [−FTLRL

][+FTLRR
] TRLR

→ [−FTRLRL
][+FTRLRR

]
TLRL

→ [−FTLRLL
][+FTLRLR

] TRLRL
→ [−F ][+F ]

TLRLL
→ [−F ] TRLRR

→ [−F ][+F ]
TLRLR

→ [−F ]
TLRR

→ [−FTLRRL
][+FTLRRR

]
TLRRL

→ [+F ]
TLRRR

→ [+F ]

Table 2.4: Rewriting Rules of the text tree in Figure 2.6.
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Classification Isomorphic
of Rules Depth #0
Class #1 (3)C1 → C1C1

(1)C1 → C1C2
(1)C1 → C2C2
(1)C1 → C3C3
(1)C1 → C6C2
(1)C1 → C6C6

Class #2 (1)C2 → C4Cϕ
(3)C2 → C6Cϕ

Class #3 (2)C3 → CϕC6

Class #4 (2)C4 → C4C4
(1)C4 → C5C4
(3)C4 → C6C6

Class #5 (1)C5 → CϕC6

Class #6 (15)C6 → CϕCϕ

Table 2.5: Classification Based on the Similarity of Rewriting Rules in Table 2.4 by ap-
plying Algorithm 1.

Figure 2.7: The complexity diagram of Case 2.2 for n = 1, 2, . . . , 64 on isomorphic depth
0 and the least square error curve of H = ln n1.25 + 1.

Case 2.3. Given a context-sensitive grammar G3 and the language generated by G3 is

L(G3) = {ww|w ∈ {a, d}n, n > 0}.

Case 2.3 is known as copy language or duplicate language. Copy language is also a

typical type of context-sensitive language. In this case, we list all sequences in L(G3) of

length n × 2, i.e., for n = 3 we list aaaaaa, daadaa, adaada, ddadda, aadaad, daddad,

addadd, dddddd. We apply L-system modeling complexity method to all sequences for

n = 1, 2, . . . , 10, all diagram are shown in Figure 2.8 to 2.17. For every n, we compute
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their mean complexity value of all enumerated sequences. Then, we have the best-fit curve

for Case 2.3 and the grammar complexity of G3 is α3 = 1.404.

Figure 2.8: The complexity diagram of all sequences of Case 2.3 for n = 1 on isomorphic
depth 0.

Figure 2.9: The complexity diagram of all sequences of Case 2.3 for n = 2 on isomorphic
depth 0.
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Figure 2.10: The complexity diagram of all sequences of Case 2.3 for n = 3 on isomorphic
depth 0.

Figure 2.11: The complexity diagram of all sequences of Case 2.3 for n = 4 on isomorphic
depth 0.

Figure 2.12: The complexity diagram of all sequences of Case 2.3 for n = 5 on isomorphic
depth 0.
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Figure 2.13: The complexity diagram of all sequences of Case 2.3 for n = 6 on isomorphic
depth 0.

Figure 2.14: The complexity diagram of all sequences of Case 2.3 for n = 7 on isomorphic
depth 0.

Figure 2.15: The complexity diagram of all sequences of Case 2.3 for n = 8 on isomorphic
depth 0.
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Figure 2.16: The complexity diagram of all sequences of Case 2.3 for n = 9 on isomorphic
depth 0.

Figure 2.17: The complexity diagram of all sequences of Case 2.3 for n = 10 on isomor-
phic depth 0.

Figure 2.18: The complexity diagram of all sequences of Case 2.3 for n = 1, 2, . . . , 10 on
isomorphic depth 0 and the least square error curve of H = ln n1.404 + 1.
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Case 2.4. Given a context-sensitive grammar G4 and the language generated by G4 is

L(G4) = {ww|w ∈ {b, c}n, n > 0}.

The only difference between of Case 2.3 and Case 2.4 is the words they generate. With

different tree representations, the text tree combined from them is different too. Thus,

the complexity derived from text tree is also dfferent. In this case, we list all sequences

in L(G4) of length n × 2, i.e., for n = 3 we list bbbbbb, cbbcbb, bcbbcb, ccbccb, bbcbbc,

cbccbc, bccbcc, cccccc. We apply L-system modeling complexity method to all sequences

for n = 1, 2, . . . , 10, all diagram are shown in Figure 2.19 to 2.28. With similar processes,

we have the best-fit curve for Case 2.4 and the grammar complexity ofG4 isα4 = 1.05514.

Figure 2.19: The complexity diagram of all sequences of Case 2.4 for n = 3 on isomorphic
depth 0.

Figure 2.20: The complexity diagram of all sequences of Case 2.4 for n = 3 on isomorphic
depth 0.
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Figure 2.21: The complexity diagram of all sequences of Case 2.4 for n = 3 on isomorphic
depth 0.

Figure 2.22: The complexity diagram of all sequences of Case 2.4 for n = 4 on isomorphic
depth 0.

Figure 2.23: The complexity diagram of all sequences of Case 2.4 for n = 5 on isomorphic
depth 0.
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Figure 2.24: The complexity diagram of all sequences of Case 2.4 for n = 6 on isomorphic
depth 0.

Figure 2.25: The complexity diagram of all sequences of Case 2.4 for n = 7 on isomorphic
depth 0.

Figure 2.26: The complexity diagram of all sequences of Case 2.4 for n = 8 on isomorphic
depth 0.
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Figure 2.27: The complexity diagram of all sequences of Case 2.4 for n = 9 on isomorphic
depth 0.

Figure 2.28: The complexity diagram of all sequences of Case 2.4 for n = 10 on isomor-
phic depth 0.

Figure 2.29: The complexity diagram of all sequences of Case 2.4 for n = 1, 2, . . . , 10 on
isomorphic depth 0 and the least square error curve of H = ln n1.05514 + 1.

30



Chapter 3

Extension

In previous work, the text trees are binarily constructed. In fact, the modeling com-

plexity method can be applied to ternary text trees cases. Here we take Case 2.1 for n = 3

as an example below.

With the similar processes but build the text tree ternarily, we have the text tree T ′
1(3)

shown in Figure 3.1. Then, we list all the rewriting rules from T ′
1(3) into Table 3.1. Here

we use “M” and “=” to denote the middle subtree rule. The classification is shown in

Table 3.2.

Figure 3.1: The ternary text tree of Case 2.1 for n = 3.

P → [−FTL][= FTM ][+FTR]
TL → [−FTLL

][= FTLM
][+FTLR

] TR → [−FTRL
][= FTRM

][+FTRR
]

TM → [−FTML
][= FTMM

][+FTMR
] TRL

→ [+FTRLR
]

TML
→ [−FTMLL

] TRM
→ [+FTRMR

]
TMM

→ [−FTMML
] TRR

→ [+FTRRR
]

TMR
→ [−FTMRL

]

Table 3.1: Rewriting Rules of the ternary text tree in Figure 3.1.
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Classification Isomorphic Isomorphic Isomorphic
of Rules Depth #0 Depth #1 Depth #2
Class #1 (1)C1 → C1C1C1 (1)C1 → C2C3C4 (1)C1 → C2C3C4

(1)C1 → C2C2C2
(1)C1 → C3C3C3
(1)C1 → C4C4C4

Class #2 (3)C2 → C4CϕCϕ (1)C2 → C5C5C5 (1)C2 → C5C5C5
Class #3 (3)C3 → CϕCϕC4 (1)C3 → C6C6C6 (1)C3 → C6C6C6
Class #4 (9)C4 → CϕCϕCϕ (1)C4 → C7C7C7 (1)C4 → C7C7C7
Class #5 (1)C5 → C7CϕCϕ (1)C5 → C7CϕCϕ
Class #6 (2)C6 → CϕCϕC7 (2)C6 → CϕCϕC7
Class #7 (2)C7 → CϕCϕCϕ (2)C7 → CϕCϕCϕ

Table 3.2: Classification Based on the Similarity of Rewriting Rules in Table 3.1.

By slightly modifications, the complexity formula can be applied to ternary cases:

Vi(z) =
∑ni

p=1 nipzVaip1(z)Vaip2(z)Vaip3(z)∑ni
q=1 niq

For example, we compute the ternarymodeling complexity value of sequence “aaabbbccc”

on isomorphic depth 0 now. According to the definition, the given values for the class

parameters are listed in Table 3.3.

Classification of Rules Isomorphic Depth #0
(n = 7) Class #1 (1)C1 → C1 C1 C1

(n1 = 1) n11 a111a112a113
(1)C1 → C2 C2 C2
n12 a121a122a123
(1)C1 → C3 C3 C3
n13 a131a132a133
(1)C1 → C4 C4 C4
n14 a141a142a143

Class #2 (3)C2 → C4 Cϕ Cϕ

(n2 = 1) n21 a211a212a213
Class #3 (3)C3 → Cϕ Cϕ C4
(n3 = 1) n31 a311a312a313
Class #4 (9)C4 → Cϕ Cϕ Cϕ

(n4 = 1) n41 a411a412a413

Table 3.3: The values for the class parameters of Table 3.2, on isomorphic depth 0.
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There are 4 classes, so we obtain the formulas for V1(z′), V2(z′), V3(z′) and V4(z′).

They are:

Vϕ(z′) = 1

V4(z′) = 1

V3(z′) =
∑n3

p=1 n3pz′Va3p1(z′)Va3p2(z′)Va3p3(z′)∑n3
q=1 n3q

= z′ × (1 × Vϕ(z′) × Vϕ(z′) × V4(z′))
1

= z′

V2(z′) =
∑n2

p=1 n2pz′Va2p1(z′)Va2p2(z′)Va2p3(z′)∑n2
q=1 n2q

= z′ × (1 × V4(z′) × Vϕ(z′) × Vϕ(z′))
1

= z′

V1(z′) =
∑n1

p=1 n1pz′Va1p1(z′)Va1p2(z′)Va1p3(z′)∑n1
q=1 n1q

= z′ × (1 × V1(z′)3 + 1 × V2(z′)3 + 1 × V3(z′)3 + 1 × V4(z′)3)
4

= z′V1(z′)3 + 2z′4 + z′

4

Solving V m
1 (z′), m = 1000, the radius of convergence R, and complexity K0 =

− ln R, can be obtained from this formula.

Also, the difficult tree causes forward-referencing rules in classification as well. Simi-

lar to binary text tree cases, the stoppers only appear on the path from root to the rightmost

leaf. Generally, finding stoppers, are finding the nodes who have more children than its

parent has. With this concept, we can classify the rewriting rules properly on arbitrary

ternary text tree, or even on n-ary tree cases for arbitrary positive integer n.
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Chapter 4

Summary

In this artical, we deal with arbitrary length context-sensitive languages and compute

their L-system modeling complexity. Different from previous work, our input sequence

is not divided into fixed length shorter sequences but whole. For any given grammar G,

longer language L(G) generated by G has larger modeling complexity value. That is be-

cause in longer sequences, the generating functions grow much faster than shorter ones.

After computing modeling complexity values of many ns, we can use a single value α to

represent grammar complexity by finding the best-fit curve H = ln nα. Generating func-

tions on high isomorphic depth never diverge, so we use isomorphic depth 0 for all cases.

Also that is why modeling complexity results on higher isomorphic depth are smaller. For

any sequnece, using different tree representations also derives different L-system model-

ing complexity values. There are many possible combinations between input sequences

and tree representations to build an identical text tree. If combination of distinct input

sequences and distinct tree presentations derives the same text tree, then they have the

same L-system modeling complexity values. That is, for the tree representations shown

in Figure 1.1, sequence “aaaaaaaa” and sequence “dddd” have the same text tree and

complexity.

We may also use the extension formula in Chapter 3 to compute the L-system com-

plexity of penrose tiling [10]. A Penrose tiling is a non-periodic tiling generated by an

aperiodic set of prototiles. Penrose tilings are named after mathematician and physicist

Roger Penrose who investigated these sets in the 1970s. L-system can implement penrose
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tiling properly and Malsys.cz [11] is a website to demostrate it.

Acknowledgements
本論文取材自國科會計畫 NSC 100-2221-E-002-234-MY3，題目解答為指導教授所

授，全文為類神經網路實驗室學長與同學協力完成。

35



Appendix A

Code

Figure A.1: Code of previous work.
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Figure A.2: Paper code.
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