IEBEREERBTNZRE NIRRT
AR 435 5L =

Department of Computer Science and Information Engineering'

College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

£ AR B 84 4 IR B AR SR

The Complexity of Context-Sensitive Sequences

W
Chien-Min Lin

1 EHER Bl RrEE
Advisor: Cheng-Yuan Liou, Ph.D.

TERE 103F1A4
January, 2014

B 3L 2 8 K258 2 3
DREBEEeELE
T XA T T

The Complexity of Context-Sensitive Sequences

R XAAHRERE (£5F R98922120) AR L EEH AL LM T2
2% mﬁ&.—i’gﬁi'ﬂ‘ﬁ[X 0 73”‘?&. 102 F 11 A 27 BATFF#R
REELRBROREA » 4

EEE -1 ng /E\ é

(48 F332)

. 4
$r& &
%2 £ 1z :

£ R

WER XA TR > GRERB RN THIRE KB LH > £EE
BARPMLTHLARANERNTROAET 0 EREF R BE
YELZRS R EFELT S RZANANFRRG T G R
BRI HA R BT o RS LR B P EEEORE
By B FlH BEBRKAR RS T ERE TE EHER
RitE > BULEHRXHAEZEMTE -

ARBEERNER - A FEEHELEE TR R
EEMMOAENE - LR FELETRERS 2 RERA KA
LB RWAMR REXKALBFATE SRARRBERS - 45
BIRHMAS —BREAKFHELTERSE EREEARAAMMT T
1RE S et o A

REBRBRORA > EHEATBENIHRTAEE L6014
& L ob Z OB o BGH S RARAR 0 AP MR IR e B R R s BOH
BRAEBCEDFLFEETAR RERHSABARAE RN H—
R ARIAR > HH AR -

i

TXH R

AWERIXT > BMER L ARZEEAME AR E LT XA
SRR c MANEILA XEAT CAREAE B AT A A — AR AR
BoARUHE LT XA UK AR 0 FRARTEE T AET A
T XA RGBT REAF > ARIRET AATeY L 242
BEhk HRAEAHREEEREOFIRGT -

Mot @ &ARAME - BHRERE TR~ F7 ~ LT M sUx -
L 2%

111

Abstract

This article discusses how to apply the L-system modeling complexity
method to context-sensitive sequences. Since it is proved that there exists
no general calculation method to compute the entropy of context-sensitive
languages, we choose some common context-sensitive languages and analyze
them case by case. For that purpose, we extend the capability of the modeling
complexity method in previous work. Our method can deal with arbitrary
length sequences.

Key words: Structural complexity, Tree representation, Sequence, Context-

sensitive grammar, L-system

v

Contents

nREATERE
Bt

PR
Abstract

Contents

List of Figures
List of Tables

1 Introduction
1.1 The complexity of the L-system
1.2 Preliminary e
1.3 Other Applications

2 The Complexity of Context-Sensitive Sequences
3 Extension

4 Summary

A Code

Bibliography

ii

iii

iv

vi

ix

12

14

31

34

36

38

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

2.1
2.2
23
24

2.5

2.6
2.7

The tree representations of words a, b,candd.. 3
From tree representations to atexttree.. 3
Bracketed string representations for tree representations. 4
The bracketed string representationof 7. 4
The rewitingrulesof 7. 5
The rewiting rules for the bracketed stringof 7. 5
The rewiting rules for the bracketed string of 7" ignored all nonterminals. 7
The converge test result of the generating function V/™(z). 11
The rhythmic tree of jazz standard Blues For Alice. 12
Tree representations of nucleotide bases. 13
DNA sequence represented with texttree. 13
The text tree of Case 2.1 forn=4.. 15
The structure of minimum difficulttree. 16
The text tree of Case 2.1 for n = 4, each node is numbered in BFS order.. 17
The complexity diagram of Case 2.1 forn = 1,2, ..., 64 onall isomorphic

depths. e 19
The complexity diagram of Case 2.1 forn = 1,2,...,64 on isomorphic

depth 0 and the least square error curve of H = Inn!1™7 1. 20
The texttree of Case 2.2 forn=3.. 21
The complexity diagram of Case 2.2 forn = 1,2,...,64 on isomorphic

depth 0 and the least square error curve of H =Inn'®» +1. 22

vi

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

The complexity diagram of all sequences of Case 2.3 for n = 1 onriso-
morphicdepth 0. oL =) | 28
The complexity diagram of all sequences of Case 2.3 for n = 2 0f13 isé’- .
morphicdepth 0. e 23
The complexity diagram of all sequences of Case 2.3 for n = 3 on iso-
morphicdepth 0. 24
The complexity diagram of all sequences of Case 2.3 for n = 4 on iso-
morphicdepth 0. 24
The complexity diagram of all sequences of Case 2.3 for n = 5 on iso-
morphicdepth 0. 24
The complexity diagram of all sequences of Case 2.3 for n = 6 on iso-
morphicdepth 0. 25
The complexity diagram of all sequences of Case 2.3 for n = 7 on iso-
morphicdepth 0. 25
The complexity diagram of all sequences of Case 2.3 for n = 8 on iso-
morphicdepth 0. 25
The complexity diagram of all sequences of Case 2.3 for n = 9 on iso-
morphicdepth 0. 26
The complexity diagram of all sequences of Case 2.3 for n = 10 on iso-
morphicdepth 0. 26
The complexity diagram of all sequences of Case 2.3 forn =1,2,...,10

on isomorphic depth 0 and the least square error curve of H = Inn!'4% +1. 26
The complexity diagram of all sequences of Case 2.4 for n = 3 on iso-
morphicdepth 0. 27
The complexity diagram of all sequences of Case 2.4 for n = 3 on iso-
morphicdepth 0. 27
The complexity diagram of all sequences of Case 2.4 for n = 3 on iso-

morphicdepth 0. 28

vil

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

3.1

Al

A2

The complexity diagram of all sequences of Case 2.4 for n = 4'on iS0-
morphicdepth 0. oL =)
The complexity diagram of all sequences of Case 2.4 for n = 5 0rj1_E isé’- (|
morphicdepth 0. e
The complexity diagram of all sequences of Case 2.4 for n = 6 on iso-
morphicdepth 0.
The complexity diagram of all sequences of Case 2.4 for n = 7 on iso-
morphicdepth 0.
The complexity diagram of all sequences of Case 2.4 for n = 8 on iso-
morphicdepth 0.
The complexity diagram of all sequences of Case 2.4 for n = 9 on iso-
morphicdepth 0.
The complexity diagram of all sequences of Case 2.4 for n = 10 on iso-
morphicdepth 0.
The complexity diagram of all sequences of Case 2.4 forn =1,2,...,10

28

on isomorphic depth 0 and the least square error curve of H = Inn0%14 41, 30

The ternary text tree of Case 2.1 forn=3.

Code of previouswork.

Papercode.

viil

List of Tables

1.1
1.2
1.3

2.1
2.2

23

2.4
2.5

3.1
3.2
3.3

The rewritingrulesof 7.
Classification Based on the Similarity of Rewriting Rules of 7.

The values for the class parameters of Table 1.2, on isomorphic depth 0. .

Rewriting Rules of the text tree in Figure 2.1.
Classification Based on the Similarity of Rewriting Rules in Table 2.1.

Cesk

(The star symbols point out where the forward-referencing rules are.)
Classification Based on the Similarity of Rewriting Rules in Table 2.1 by
applying Algorithm 1. oL o
Rewriting Rules of the text tree in Figure 2.6.

Classification Based on the Similarity of Rewriting Rules in Table 2.4 by

applying Algorithm 1..,

Rewriting Rules of the ternary text tree in Figure 3.1.
Classification Based on the Similarity of Rewriting Rules in Table 3.1. . .

The values for the class parameters of Table 3.2, on isomorphic depth 0. .

X

16

31
32
32

Chapter 1

Introduction

It is proved that “there exists no general calculation method to compute the entropy of
the language generated by a context-sensitive grammar” by Kaminger [1]. Furthermore,
there is no procedure to decide whether the language of any context-sensitive grammar
is finite or not [2]. Thus, we choose some common context-sensitive languages and an-
alyze their complexity case by case. For that purpose, we introduce the L-system in the

following section.

1.1 The complexity of the L-system

The Lindenmayer system, or L-system for short, was introduced by the biologist Aris-
tid Lindenmayer in 1968 [3]. The L-system is a type of string-rewriting mechanism such
as Chomsky grammars. In general, rewriting is a technique used to define complex objects
by successively replacing parts of a simple initial object, using a set of rewriting rules or

productions. The L-system is defined as follows.

Definition 1.1. The L-system grammars are very similar to the Chomsky grammars, de-
fined as a tuple [4]:
G=(V,w,P),

where

1. V ={s1,82,...,8,} is an alphabet,

2. w (start, axiom, or initiator) is a string of symbols from V defining thednitialstate

of the system,

= :1“1 %

3. P is defined by a production map P : V. — V* with s — P(s) for eafch:_s inV;
The identity production s — s is assumed. These symbols are called constants or

terminals.

The following definition is given by Liou et al. [5], with this definition we can compute

the complexity of L-system.

Definition 1.2. The complexity of L-system.

The complexity of L-system is defined as
KO =—1In R,

where R is the radius of convergence.

The radius of convergence R can be derived from rewriting rules of L-system. We will

show how to compute R, and introduce some terms in the following section.

1.2 Preliminary

The major difference between L-system and Chomsky grammars is the technique used
to apply productions. In L-systems, rewriting rules are applied parallel and simultane-
ously, whereas in Chomsky grammars, rewriting rules are applied sequentially to replace
all the letters in a given word. Parallel production application has an essential impact on
the formal properties of rewriting systems. For example, there are languages which can be
generated by context-free L-systems, which means all the rewriting rules of the L-system
are context-free, but not by context-free Chomsky grammars. In the remainder of this
paper, whenever we say an L-system, we suppose it to be context-free.

The L-system uses some initial and rewriting rules to construct beautiful graphs. Since
it can construct a tree from rewriting rules, it can also extract rewriting rules from a tree.

For computing the complexity of a grammar, we use fixed tree presentations for the input

2

sequence generated by the grammar. For example, if the input sequence is abcdywe tranfer
each word of to an unique tree representation, i.e., a single node for “a”, a nod¢ x}_;z,ijth only
one left child for “b”, a node with only one right child for “c” and a node with bOth‘l"left and
right child for “d” (see Figure 1.1). After replacing every word to tree representations;we
combine each two consecutive trees to a bigger tree by creating a new node as the root of
these two subtrees. Repeat the process level by level, the input sequence will be transfer

to a text tree 1" (see Figure 1.2).
LN A
a b c d

Figure 1.1: The tree representations of words a, b, c and d.

St A D

Figure 1.2: From tree representations to a text tree.

For computing the complexity of L-system, we need some rules for converting tree
to another structure. We use a stack similarly structure to represent the hierarchy of tree,
called bracketed string. The tree structure can transfer to a unique bracketed string by the

following symbols, and it can transfer back to the original tree:

1. F :the current location of tree nodes; it can be replaced by any word or be omitted;

2. + : the following string will express the right subtree;
3. — : the following string will express the left subtree;
4. [: this symbol is pairing with |; “[...]” denotes a subtree where “...” indicates all

the bracketed strings of its subtree;

5.] :see [description.

Following the previous symbols, Figure 1.3 shows that how to represent the free rep-

resentations by bracketed strings. And Figure 1.4 is the bracketed string represemtaion of
A

T.
[F] [F] [F] [F]
YA WA
[-F] [+F] [-F] [+F]
[F] (F-FI] [F[+F]] [FI-FI[+FI]

Figure 1.3: Bracketed string representations for tree representations.

(FL-FI-FI+F[-FII+F[-F{+FII+F[-FI[+F]]]]

Figure 1.4: The bracketed string representation of 7'

Now we explain how to generate rewriting rules from tree structures. We can apply
distinct variables to each tree node. For any binary tree, for every tree node has left and

right subtrees, they can always be explained in the following format:

P — LR,

where P denotes the current node, L denotes its left subtree, and R denotes its right
subtree, respectively. Thus, we can use rewriting rules to represent 7" (see Figure 1.5). We
denote “¢” to be null.

Now, we know how to use rewriting rules to represent a tree, and we also know how
to represent a tree with a bracketed string. We can also use rewriting rules to generate
bracketed strings. In rewriting rules for tree structures, we write P — LR for a tree
having left and right subtrees. Note that we call L and R the non-terminals. Such a tree
will have a bracketed string as follows: [[—F'...][+F...]]. It is clear that “[—F...]”

represents the left subtree, and that “[+F .. .]” represents the right subtree. Therefore, we

4

_U
l

—
o

L — LL
L - ¢¢
Lk — Lbe
Le, — ¢¢
R — R.Rg
RL — ¢'RLR
RLR - ¢
R — RgRa.
RRL - ¢
Rg, = ¢ ¢

Figure 1.5: The rewiting rules of 7.

can replace the rewriting rules with

P — [-FL|[+FR]
L— ...

R— ...

where “...” is the rewriting rule for the bracketed string of each subtree. In this way, we
do not have to write L for a left subtree and R for a right subtree; the orientation is already
described in the bracketed string “— £ and “+ F”. For the sake of readabiliy, we replace
the words such as “Rg,” and “Rp,,” by “TRRL” and “TRRR” respectively. For those null
rewriting rules “¢”’s, we simply ignore the nulls. The new rewriting rules without trivial

nulls are shown in Figure 1.6.

P — [-FT][+FTg]

T - [-FTLL 1+ FTLR]
T, - [FFT]

Te - [FTRI[+FTg]
T, - [T

T, — [FTe I[+FTR]

Figure 1.6: The rewiting rules for the bracketed string of 7.

When tree grows up, the rewriting rules may generate identical rules: These rules.can
generate exactly one bracketed string and, thus, exactly one tree structure. All these|rules
form a rule set, which represents a unique tree structure. In Figure 1.6,.it 1s cllt"ear_that
Tr — [-FTr,)[+FTr,| and Tr, — [—FTg,, |[+F Tk, | are almost the,same, "fhe
only difference is that the subtrees of T, are T, and T, and the subtrees of T, are
Try, and Tk, . But they have the same structure: they both have a right subtree and do

not have a left subtree. We will define two terms to express the similarity between two

rewriting rules, and these terms can simplify complexity analysis.

Definition 1.3. Homomorphism in rewriting rules.
We define that rewriting rule R, and rewriting rule Ry are homomorphisc if and only if

they have the same structure.

In detail, rewriting rule R; and rewriting rule R, in tree structure both have subtrees
in corresponding positions or both not. Ignoring all nonterminals, if rule R, and rule R,

generate the same bracketed string, then they are homomorphic by definition.

Definition 1.4. Isomorphism on level X in rewriting rules.
We define that rewriting rule R, and rewriting rule Ry are isomorphisc on depth X if
they are homomorphisc and their nonterminals are relatively isomorphic on depth X — 1,

denoted by Isox (R1, Ry). Isomorphic on level 0 indicates homomorphism.

By using bracketed strings, we can obtain a much clearer definition of homomorphism.
All homomorphic rewriting rules generating rules generate the same bracketed strings
when all nonterminals are ignored. We ignore all nonterminals of the rewriting rules in
Figure 1.7, we find P, T}, T and T, are homomorphic to each other; they generate the
same bracketed string, [—F|[+F]. Ty, and Tg, are not homomorphic to any of the other
rules; its bracketed strings are [— F] and [+ F].

After we define the similarity between rules by homomorphism and isomorphism, we
can classify all the rules into different subsets based on their similarity. Now we list all the
rewriting rules of 7" into Table 1.1 but ignore terminal rules such as “— ¢ and transfer

the name of each rule to class name (or class number). After performing classification,

P — [FI[+F Y
T R 5
T, — [18-
Te - [FI+F

T, — [+F]

Te, — [FI+F

Figure 1.7: The rewiting rules for the bracketed string of 7" ignored all nonterminals.

we obtain not only a new rewriting rule set but also a context-free grammar, which can be

converted to automata.

P — [-FT,)[+FTx)
Tr, — —F] [+FTLR]
TLR — |—

TR — _FTRL][+FTRR]
TRL — +F]

The — [=F[+F]

Table 1.1: The rewriting rules of 7.

InTable 1.1, rules P — [—FTL|[+FTg], Ty — [—F|[+FTL,],Tr = [—FTr,][+ FTr},]
and Tg,, — [—F|[+F] are isomorphic on depth 0 and assigned to C';. For every rule 7},
we denote H(T;), the height of T}, to be the longest distance in the text tree from 7 to
the terminals derived from 7;. Since there are no isomorpic rules except terminal rules on
depth 1, the class number of each rule is set by the order from highest rule to lowest rule
and from left to right. That is, we first set the highest node P to (', and then set the sec-
ond high rules 7, and T to C'5 and C5 respectively. The class number of third high rules
Ty, Tr, and Ty, are set Cy, C5 and Cj respectively, and the terminal rules 77, , TLRL,
TRLR, TRRL and TRRR have the largest class number C';. The complete table is shown in

Table 1.2. Now we can define the complexity of a rewriting rule set as follows:

Definition 1.5. Topological entropy of a context-free grammar.
The topological entropy K, of a context-free grammar can be evaluated by means of the

following three procedures [6, 7]:

Classification of Rules

Isomorphic Depth #0

Isomorphic Depth#1

Class #1 (HC, — C1C, (1)Cy — Gy05
(1)C1 — (30 | E,., |
(1)01 — 0402 'i '1 [
(1Cy = C4Cy AU D

Class #2 ()Cy — C1Cy ()Cy — CxCh

Class #3 (1)03 — C¢C4 (1)03 — C5C6

Class #4 (5)04 — C¢C¢ (1)04 — C70¢

Class #5 (1)Cs5 — CpCr

Class #6 (1)06 — 0707

Class #7 (5)C7 — CyCy

Table 1.2: Classification Based on the Similarity of Rewriting Rules of 7.

1. For each variable V; with productions (in Greibach form),
Vi = taUn, ti2Usa, - .t Ui,

where {t;1,tia, ..., tix,} are terminals and {U;1,Usa, ..., Uy, } are non-terminals.

The formal algebraic expression for each variable is

ki
Vi=> ti;Usy

J=1

2. By replacing every terminal t;j with an auxiliary variable z, one obtains the gener-

ating function
Vi(z) = >_ Ni(n)2",
n=1
where N;(n) is the number of words of length n descending from V.

3. Let N(n) be the largest one of N;(n), N(n) = max{N;(n), over all i}.

The above summation series converges when z < R = e~o. The topological entropy is

given by the radius of convergence R as
Ko=—InR.

The productions of Liou et al. [5] method have some difference from the aforemen-
tioned definitions. Therefore, they had given some slightly modifications in deriving the

complexity of the L-system, which is rewritten as follows:

8

Definition 1.6. Generating function of a conext-free grammar-
1. Assume that there are n classes of rules and that each class C; contains nl wiiles. Let

‘/i c {Cl,CQ,...,Cn},Uij E{Ri]’,ileﬂ,jleni}, andaijk E{x: T =

1 ~ n}, where each U;; has the following form:

Un — Vaill Vai12
Ui? - v(li21 Vai22
.=

Uini = Vs Vi

ainil
2. The generating function of V;, V;(2), has a new form as follows:

Z;‘ﬂ nipz‘/aip1 (Z) vaipZ (Z)
g1 Nig

Vi(z) =

If'V; does not have any non-terminal, we set V;(z) = 1.

After formulating the generating function V;(z), we intend to find the largest value of
z, 2™ at which V; (2™) converges. Note that we use V] to denote the rule for the root
node of the text tree. After obtaining the largetst value, 2™*, of V;(z), we set R = 2%,
the radius of convergence of V;(z). We define the complexity of the rhythmic tree as
Ky=—InR.

For example, we compute the modeling complexity value of sequence “abcd” on iso-
morphic depth 0 now. According to the definition, the given values for the class param-

eters are listed in Table 1.3. There are 4 classes, so we obtain the formulas for V;(2/),

Classification of Rules Isomorphic Depth #0

(n=4) Class#l (HC = C1 Gy (R
(n1 =4) n11 a111a112 [== 1]
(HCy — C3 ¢4 (&
n12 1210122 ! ;, |
(HC, — Cy Cy Y are
n13 1310132
(1)01 — C4 C4
ni4 1410142
Class #2 (HCy — Cy Cy
(ne =1) n21 2110212
Class #3 (HC3 — Cp Cy
(ns = 1) n31 3110312
Class #4 (5)Cs — Cy Cy
(ng =1) n41 4110412

Table 1.3: The values for the class parameters of Table 1.2, on isomorphic depth 0.

Vo(2'), V3(2') and V4 (2'). They are:

V¢<Z’) =1
Vi(2') =1
Vg(Z/) _ Zil n3PZ/‘/;L3p1 (Z/)V(l3p2 (Z/> _ 2 X (1 X vtb(Z/) X ‘/4(2/)) —
Egil N3q 1
VQ(Z/) _ Zil n2pZ/Vazp1 (Z/)‘/a2;72(zl> _ 2 x (1 X V4<Z/) X V¢>(Z/)) —
EZil Nagq 1
Vl(Z/) _ Zél nlpZ/‘/;llpl (Z/)‘/alm (zl>
Z’Jil Nig
X (Ix V() X VA(2) + 1 x Va(2) x Va(2) + 1 x Va(#) x Va(2') + 1 x Va(2') x Vi(2))
a 4

Z’Vl(zl)z + Z/QVI(Z/) 4224
4

Rearrange the previous equation for V;(z’), we obtain a quadratic function:

VI (P =DV + (%4 2) =0

Solving Vi (2'), we obtain the formula

Vi(2') = 1= NN S Y R T
22 22
Finally, the radius of convergence R, and complexity Ky = — In R, can be obtained from

10

this formula. But, computing the 2" directly is difficult, so we use iterations and fegibn__

tests to approximate the complexity; details are as follows. }g\'
\ |
1. Rewrite the generating function as

S nip? Var () Var 1 (21)

Qip2
.
quzl niq

V() =

()

V) =1

2. The value from V(%) to V/"(z'). When V;""1(2') = V(') for all rules, we say

max

that V;(2’) reach the convergence, but 2’ is not the 2™** we want. Here, we set

m = 1000 for each iteration.

3. Now we can test whether V(2’) is convergent or divergent at a number 2. We use
binary search to every real number between 0 and 1; in every test, when V(')
converges, we set bigger 2z’ next time, but when V(') diverges, we set smaller 2’
next time. Running more iterations will obtain more precise radius. Here, we set

the iteration for 8 times.

The converge test result of generating function V;™(z’) is shown in Figure 1.8. The
generating function V;™(z) diverges when 2z’ > 0.369109, that is, 2"™** = 0.369109 and
the complexity value is Ky = —In(R) = —In(z"™*) = 0.996663.

0.6
0.5 £
0.4 /
0.3

0.2 /

0.1 /

0 01 02 03 04 05 06 07 08 09 1

Iso #O

Figure 1.8: The converge test result of the generating function V/"'(z).

11

1.3 Other Applications

With Definition 1.6, Liou et al. gave a new idea in modeling complexity% f;(];;‘::fhusic
rhythms [5] and DNA sequences [8]. The former paper applies L-system to construct
rhythmic trees, and analyzes the hierarchical characteristics of rhythm from the tree struc-
ture. A rhythmic tree is a tree of which each subtree is also a rhythmic tree. Each tree
node represents the total beat duration that is equal to the sum of all those of its descen-
dants. Given a rhythm, the direct way to represent it with an L-system is to construct
rewriting rules that replace longer metrical units with shorter ones. An example is shown
in Figure 1.9. Similarly, the latter paper applies L-system to construct DNA trees, and
determines the dissimilarity between two given DNA sequences. A DNA tree is a binary
tree of which each subtree is also a DNA tree. Every tree node is either a terminal node
or a node with two children. There are four fixed tree representations for nucleotide bases
A, C, T and G (see Figure 1.10). When transfering a sequence to DNA tree, we replace
every word to the corresponding tree presentations, and two consecutive trees can com-
bine to a bigger tree. Following the previous steps, a DNA tree will be constructed (see
Figure 1.11). With some slightly modifications, transfer text sequences to binary strings,

this technique can be applied to literary works, even Chinese word sequences [9].

- o
e _~ » il * e
)4 te Sioie Lo
_ﬁ i — —
J - - —

Figure 1.9: The rhythmic tree of jazz standard Blues For Alice.

12

i

Figure 1.10: Tree representations of nucleotide bases.

A A G T C T G

Figure 1.11: DNA sequence represented with text tree.

13

Chapter 2

The Complexity of Context-Sensitive

Sequences

In this chapter, we apply the L-system modeling complexity method to some context-
sensitive language cases. Different from the previous work we mentioned above, our
method can deal with arbitrary length sequences. Basically, we have almost the same
procedure with those previous work but the classification part. We made some modifi-
cations to the classifition part for avoiding forward-referencing rules, and we will show
that in the following case. Note that for every cases in this chapter, we use the same tree

representation for each word “a”, “b”, “c” and “d”, as Figure 1.1 shows.

Case 2.1. Given a context-sensitive grammar G and the language generated by G is
L(Gy) = {a™b"c"|n > 1}.

The language generated by Gy isaa...abb. . .bcc. .. c where the number of a, b and ¢
are the same. For example, we start at the sequence for n = 4, i.e., aaaabbbbccec. To apply
the L-system method, first, we tranfer each word of input sequence to corresponding tree
representations, and combine all the tree representations to the text tree 7 (4) of L(G1)
for n = 4 (see Figure 2.1). Since we have the text tree, we can list all the rewriting rules
of Figure 2.1 into Table 2.1 but terminal rules, and transfer the name of each rule to class

numbers for listing the classification Table 2.2.

14

W

Figure 2.1: The text tree of Case 2.1 for n = 4.

P — [=FTL][+FTg]

Ty, — [~ FT;,][+ F1r,] Tp — [~ FTg,]

TLL — [_FTLLL][+FTLLR] TRL - [_FTRLL][+FTRLR]
TLLL - [_F] [+F] TRLL - [_FTRLLL][+FTRLLR]
Ty, - [~F|[+F] Tr, — [+F]

T — [_FTLRL][+FTLRR] TRLLR - [+F]

TLRL - [_FTLRLL][+FTLRLR] TRLR - [_FTRLRL][—FFTRLRR}
Ty —[-F Tey: = [+F)

TLRLR - [_F] TRLRR - [+F]

TLRR - [_FTLRRL][+FTLRRR]

TLRRL - [_F]

TLRRR - [_F]

Table 2.1: Rewriting Rules of the text tree in Figure 2.1.

Unfortunately, in this case, we can not apply the L-system method to compute the
complexity directly since there are forward-referencing rules “Cy — C,C,” and “Cs —
C5Cy” in the classification Table 2.2. By the formula of definition 1.6, we know V;(z) can
be computed by V;(z) only if i < j. The original classification method causes forward-
referencing rules only if the text tree is a difficult tree. We define a four-nodes tree stucture
where the root s has left child ¢ only and ¢ has both left child v and right child v to be a min-
imum difficult tree and t to be a stopper (see Figure 2.2). A difficult tree is a tree contains
at least one minimum difficult tree as its subtree. Note that stoppers, or minimum difficult
trees, only appear on the path from root to the rightmost leaf. Also, tree representations
should not be difficult trees. By traveling all nodes on the path, we can downwardly find
all of the stoppers 1,5, ...,t,. Also, we give every node z of the text tree a priority

value, denoted by P(z), initially set to 0. For each stoppers ¢; we set P(¢;) = i and set

15

Classification Isomorphic Isomorphic Isomorphic
of Rules Depth #0 Depth #1 Depth #2,3,4 .
Class #1 (4)01 — C1C1 (1)C1 — CQCg (1)01 -z Cng | E,.,
(2)01 — 0102 -i i |1 4
(2)C1 — 20, Al &
(2)Cy — C3C5 '
(D — CyCy
Class #2 *(I)CQ — ClC¢ (1)02 — CQCQ (1)02 — 0604
(4)02 — C4C¢ (1)02 — 0404
(1)Cy — C5C5
()2 — CsCs
Class #3 (4)03 — C¢C4 *(1)03 — CQC¢ (1)03 — C5C¢
Class #4 (12)04 — C’¢C¢ (2)04 — C7C (1)04 — C7Cr
Class #5 (2)05 — 0808 (1)05 — 0808
Class #6 (2)06 — CQCQ (1)06 — CgCg
Class #7 (4)07 — CQC¢ (2)07 — 010010
Class #8 (4)08 — C¢Og (2)08 — 011011
Class #9 (12)09 — C¢C¢ (2)09 — 012012
Class #10 (4)010 — Clgc¢
Class #11 (4)011 — C, 012
Class #12 (12)012 — ¢C¢

Table 2.2: Classification Based on the Similarity of Rewriting Rules in Table 2.1. (The
star symbols “*” point out where the forward-referencing rules are.)
the priority value for every descendant of ¢; to P(t;), fori = 1,2, ..., m. That makes the

desendants of lower stoppers have larger priority value.

Figure 2.2: The structure of minimum difficult tree.

For example, we name each node of 77 (4) by a number increasly in breadth-first search
order (BFS for short, see Figure 2.3). First, we search for stoppers on the path from
node #0 to node #31. In this case, there are only one stopper #5 in 77(4) and we set

P(#5) = 1. Also, the priority value of all the descendants of node #5 are set to be

P(#5).

16

= 1“.!.

1 2
3/\4 /
5
6/\7 8/\9 10/\11

NN N N N N
12 13 14 15 16 17 18 19 20 21 22 23
S/ 7/ / N N N\ \
24 25 26 27 28 29 30 31

Figure 2.3: The text tree of Case 2.1 for n = 4, each node is numbered in BFS order.

Algorithm 1 New classification algorithm.
1: let £ be the isomorphic depth
2: let ¢ = 1 be current class number
3: for P = 0 — largest priority value do

4: for each node x of 7" in BFS order do

5 if H(x) > kand C, = 0 and P(x) = P then
6: C,=c

7 c=c+1

8 for each node y > = of 7" in BFS order do
9: if H(y) > kand Cy, = 0 and P(y) = P and Isox(z,y) then
10: Cy, =0,

11: end if

12: end for

13: end if

14: end for

15: end for

16: for{ =k — 0 do
17: for each node x of T in BFS order do
18: if H(xz) = and C, = 0 then

19: C,=c

20: c=c+1

21: for each node y > x of T in BFS order do
22: if C;, = 0 and Iso;(x,y) then

23: c,=0C,

24: end if

25: end for

26: end if

27: end for

28: end for

Now we introduce the new classification method Algorithm 1. Applying it on difficult

trees ensures no forward-referencing rules appear. The basic idea of this algorithm is

17

dividing the classification into two parts. Let k be the isomorphic depth. "The first part
deal with each node x of the text tree where H(z) > k, in BFS order. When \wesclassify
these nodes, we have to make sure that for any z,y of the text tree, €. <; C’; “only if
P(z) < P(y). That ensures the upper text tree nodes classified properly;-because ..the
lower stoppers and their descendants will always have larger class number. The detail of
the first part is shown in line 3 to line 15 of Algorithm 1. The second part deal with each
node z of the text tree where H (z) < k, in BFS order. When we classify these nodes, we
have to make sure that for any xz, y of the text tree, C,, < C, only if H(x) > H(y). That
ensures the lower text tree nodes classified properly, and basically it is the classification
method of those previous work. The detail of the second part is shown in line 16 to line
28 of Algorithm 1. Note that for each node x of the text tree, C,, = 0 initailly.

Now we show how Algorithm 1 works on 77 (4), on isomorphic depth 1. The first part
classify the nodes with height more than 1 in BFS order, i.e., #0, #1, #2, #3, #4, #5,
#8, #9, #10 and #11. Start from the nodes with lower priority value, #0, #1, #2, #3,
#4, #8 and #9 are classified to be C'y, Cs, C5, Cy, Cs, Cy and C respectively. Then the
nodes with higher priority value, #5, #10 and #11, are classified to be C5, Cs and Cy
respectively. The second part classify the rest of nodes. Start from the nodes with height
equal to 1 in BFS order, #6, #7, #16, #17, #18, #19, #20, #21, #22 and #23 are set
to be C7, C7, Cg, Cs, Cy, Cg, Cy, Cy, Cy and Cy respectively. Then the nodes with height
less than 1, terminal nodes, are classified to be C',.

By applying this algorithm on all isomorphic depths 0, 1, 2, 3 and 4, we have the new
classification Table 2.3. With this new table, now we can apply the modeling complexity
method. We show the result of L-system modeling complexity computations of Case 2.1
forn = 1,2,...,64, on all isomorphic depths in Figure 2.4. The maximum isomorphic
depth of each sequence of L(G1) is H(T}(n))— 1. For example, the maximum isomorphic

depth of L(G,) forn =4is H(T1(4)) — 1 = 4.

18

iy

Classification Isomorphic Isomorphic Isomorphic; 4
of Rules Depth #0 Depth #1 Depth #2535, 4 F‘\ A
Class #1 (3)01 — C1C4 (1)01 — CyC5 (1)C1 ot CQCF 5-—,.: |||
(2)Cr — C1Cs flg
(2)Cy — 20, h
(HC — C5C5
Class #2 (1)02 — C3C¢ (1)02 — CQCQ (1)02 — CGC4
(4)02 — C5C¢ (1)C2 — 0404
(HCy — C7C7
Class #3 (1)03 — 0303 (1)03 — C5C¢ (1)03 — C5C¢
(2)C5 — CyCy
Class #4 (4)04 — C¢C5 (2)04 — CsCy (1)04 — C7Cr
Class #5 (12)05 — O¢C¢ (1)05 — 0606 (1)05 — 0808
Class #6 (2)06 — CgCg (1)C6 — CgCg
Class #7 (2)07 — 010010 (2)07 — 010010
Class #8 (4)08 — CmC’¢ (2)08 — 011011
Class #9 (4)09 — C¢C10 (2)09 — C1QC12
Class #10 (12)010 — C¢C¢ (4)010 — 0120¢
Class #11 (4)011 — C, 012
Class #12 (12)012 — ¢C¢

Table 2.3: Classification Based on the Similarity of Rewriting Rules in Table 2.1 by ap-
plying Algorithm 1.

In Figure 2.4 we can see, for those short sequences generated by (G, the modeling com-
plexity method does not work properly on high isomorphic depths. The short sequences
have no self-referencing rules (like C; — ') on high isomorphic depths, which means
the generating function of short sequences on high isomorphic depths never diverge when
0 < z < 1. In other word, the modeling complexity method works properly on isomor-
phic depth 0 even for very short sequences. For this reason,

we only list the results on

isomorphic depth 0 for all the following cases.

5

45

4 /__,_.
35

Iso #0

Iso #1

/_J_’
ﬁ

e | SO #2
3 .

NN
. // ——ls0 #5

) I ,/ 50 #6
os I

Iso #7
. I
1

—50 #3

Iso #4

Ty

T~

e

Iso #8

L L e
7 10131619222528313437404346495255586164

J:-'-...__

Figure 2.4: The complexity diagram of Case 2.1 forn = 1,2,...,
depths.

64 on all isomorphic

On the other hand, we can use a single value « to represent the grammar complexity

19

of any context-sensitive grammar. By the method of least squares, we can find a Blést-.ﬁt_
curve H = Inn® 4 1 of all the modeling complexity values. For those fastléiffgn':;d‘bving"

| J \ .
generating functions, they have larger grammar complexity. With this value, \)v can H[om- '

pare the complexity of different context-sensitive grammars easily. We show the result n

Figure 2.5 and the grammar complexity of GGy is a; = 1.17967.

) /
3 // Iso #0

/ e = n(n"(1.17967)+1)
N
1
0 1............................

1 5 9 13172125293337414549535761

Figure 2.5: The complexity diagram of Case 2.1 forn = 1,2, ..., 64 on isomorphic depth
0 and the least square error curve of H = Inn!1767 41,

Case 2.2. Given a context-sensitive grammar G and the language generated by G is

L(Gy) = {a™b"c"d"|In > 1}.

Similar to Case 2.1, the language generated by G is aa...abb...bcc...cdd...d
where the number of a, b, ¢ and d are the same. With more complicated grammars can
be used to parse other languages with even more letters. For example, we start at the se-
quence for n = 3. With the similar processes, we have the tree representations trasfered
from each word of the input sequence, and the text tree 75(3) is shown in Figure 2.6.
Then, we list all the rewriting rules from 75(3) into Table 2.4, and the classification Ta-
ble 2.5. The result of L-system modeling complexity computations and the best-fit curve
for Case 2.2 for n = 1,2,...,64, on isomorphic depth 0 are shown in Figure 2.7. The

grammar complexity of Gs is ap = 1.25.

20

Figure 2.6: The text tree of Case 2.2 for n = 3.

P — [-FTL][+FTg]
Ty, — [_FTLL][_'_FTLR]
TLL — [_FTLLL][+FTLLR]

TLLL — [—FH+F]
TLLR — [_F] [+FTLLR]
Ty, — [~F] "

TLR — [_FTLRL][+FTLRR]
TLRL — [_FTLRLL][+FTLRLR]
T, —I[—F]

Trp, — [=F]

TLRR — [_FTLRRL][+FTLRRR]
Ty, — [+F]

T, — [+F]

Rr,

RRr

RRR

TR — [_FTRL]
TRL - [_FTRLL][+FTRLR]
TR — [_FTRLLL][+FTRLLR]

TRLE — [+F]

Tr,, — [—F][+F)

TRLR - [_FTRLR][+FTRLR }
Ty, — [=FI+F] ’
TRLR; s [~ F|[+F]

Table 2.4: Rewriting Rules of the text tree in Figure 2.6.

21

Classification Isomorphic Y
of Rules Depth #0 AN n
\ ~ |
Class #1 3)Cy — C1Cy , |' ;—;Es |||
(HCy — €10, . n '1|\
(HCy — C2Cs h \
(1)C1 — C3C3
(HC1 — CC < . B
(H)C1 — CCp
Class #2 (Cy — C4Cy
(3)02 — CGC¢
Class #3 (2)C3 = CyCs
Class #4 (2)04 — 0404
(1)Cy — C5Cy
(3)Cy — CsCs
Class #5 (HC5 — C¢CG
Class #6 (15)Cs — CyCy

Table 2.5: Classification Based on the Similarity of Rewriting Rules in Table 2.4 by ap-
plying Algorithm 1.

5 ~L=

4 Y o L
3 /\y" — 50 #0

ry —H = In(A(1.25)+1)
2

1 5 9 13172125293337414548535761

Figure 2.7: The complexity diagram of Case 2.2 forn = 1,2, ..., 64 on isomorphic depth
0 and the least square error curve of H = Inn'?® + 1.

Case 2.3. Given a context-sensitive grammar G3 and the language generated by G is

L(G3) = {ww|w € {a,d}",n > 0}.

Case 2.3 is known as copy language or duplicate language. Copy language is also a
typical type of context-sensitive language. In this case, we list all sequences in L(G3) of
length n x 2, i.e., for n = 3 we list aaaaaa, daadaa, adaada, ddadda, aadaad, daddad,
addadd, dddddd. We apply L-system modeling complexity method to all sequences for

n = 1,2,...,10, all diagram are shown in Figure 2.8 to 2.17. For every n, we compute

22

Figure 2.8: The complexity diagram of all sequences of Case 2.3 for n = 1 on isomorphic
depth 0.

Figure 2.9: The complexity diagram of all sequences of Case 2.3 for n = 2 on isomorphic
depth 0.

1.2

0.8

0.6

0.4

0.2

Iso #0

2.5

1.5

0.5

__—

e

Iso #0

23

2.5

N AN

Iso #0

0.5

Figure 2.10: The complexity diagram of all sequences of Case 2.3 for n = 3 on isomorphic
depth 0.

2.5 W
2

15

—lso #0

05

0 L e e e e e B LS R s
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Figure 2.11: The complexity diagram of all sequences of Case 2.3 for n = 4 on isomorphic
depth 0.

S5 " A A Av,—/

1.5

Iso #0

05

0] N N

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Figure 2.12: The complexity diagram of all sequences of Case 2.3 for n = 5 on isomorphic
depth 0.

24

1.5

Iso #0

05

0 T T T T T T T T T T

1 4 710131619222528313437404346495255586164

Figure 2.13: The complexity diagram of all sequences of Case 2.3 for n = 6 on isomorphic
depth 0.

35
3 LA e
2.5 ¥
2
15 —|s0 #0
1
0.5
0,
= 00 N N W MmO M~ S S 00NN W MmO
L B o I o R o T R T B ¥ BN B e "~ I =2 T =2 B = T R o B o
(S R

Figure 2.14: The complexity diagram of all sequences of Case 2.3 for n = 7 on isomorphic
depth 0.

4
3.5
3wmmwﬂmm
2.5
2
Iso #0
1.5
1
0.5
0
A~ O MW O N W S SO MW N Wm0
= NS N O SO0 A M s N~ O M st
o e B B B B B e B R B o B o B

Figure 2.15: The complexity diagram of all sequences of Case 2.3 for n = 8 on isomorphic
depth 0.

25

05

51

76
101
126
151
176
201
226
251
276
301
326
351
376
401
426
451
476
501

Figure 2.16: The complexity diagram of all sequences of Case 2.3 for n = 9 on isomorphic
depth 0.

a

35

et

2.5

2

—lso #0

1.5

1

0.5

148
197
246
295
344
393
442
491
540
589
638
687
736
785
834
883
932
981

Figure 2.17: The complexity diagram of all sequences of Case 2.3 for n = 10 on isomor-
phic depth 0.

3.5

3 /
25

Iso #0

/ ——H=In(n"(1.404)+1)

Figure 2.18: The complexity diagram of all sequences of Case 2.3 forn =1,2,...,100on
isomorphic depth 0 and the least square error curve of H = Inn4% 4 1.

26

Case 2.4. Given a context-sensitive grammar G, and the language gengr&fé@by G’wég)

different tree representations, the text tree combined from them is different too. Thus,
the complexity derived from text tree is also dfferent. In this case, we list all sequences
in L(G,) of length n x 2, i.e., for n = 3 we list bbbbbb, cbbcbb, bebbeb, ccbecb, bbebbe,
cbecbe, beecbee, cccecce. We apply L-system modeling complexity method to all sequences
forn =1,2,...,10, all diagram are shown in Figure 2.19 to 2.28. With similar processes,

we have the best-fit curve for Case 2.4 and the grammar complexity of G4 is ay = 1.05514.

Figure 2.19: The complexity diagram of all sequences of Case 2.4 for n = 3 on isomorphic

depth 0.

Figure 2.20: The complexity diagram of all sequences of Case 2.4 for n = 3 on isomorphic

depth 0.

L(G4) = {ww|w € {b,c}",n > 0}.

0.9
0.8
0.7
0.6
05
0.4
03
0.2
0.1

Iso #0

14

12

0.8

0.6

0.4

02

— |50 HO

27

3

Fa)

o) Ve 24
|- |l !

The only difference between of Case 2.3 and Case 2.4 is the words they genéreité. With

1.6

1.4

0.8

Iso #0
0.6

0.4

0.2

Figure 2.21: The complexity diagram of all sequences of Case 2.4 for n = 3 on isomorphic
depth 0.

25
ZW
1.5
Iso #0

1
0.5
o4+ 17—

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2.22: The complexity diagram of all sequences of Case 2.4 for n = 4 on isomorphic
depth 0.

2.5

1.5

Iso #0

05

0 L s s s s s e e e |

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Figure 2.23: The complexity diagram of all sequences of Case 2.4 for n = 5 on isomorphic
depth 0.

28

2.2

2.1

1 I
\I\AI\ Naa Na AN

NHY L*J'L/\./\.I SUVAVAVATAVAY)s

1.7

1.6

1.5 T I T rr il

14 710131619222528313437404346495255586164

Figure 2.24: The complexity diagram of all sequences of Case 2.4 for n = 6 on isomorphic
depth 0.

2.6
25
2.4 A
23 1 h
22 Iso #0O
21
2
19 -
= 00 N N WO MmO M~ S 0N WY MmO
o B o T o N T~ R T B ¥ B Vs B e " I =2 T =2 B = T B o B o}
= =~ o

Figure 2.25: The complexity diagram of all sequences of Case 2.4 for n = 7 on isomorphic
depth 0.

2.8
2.7 I
2.6 1 'l IIIJ
25 - | |
= |50 #0
2.4
23
2.2
A~ O MW O N W S SO MY O N Wm0
= NS N WO SO0 A M s NS00 M s
o e B e B B I e B A R I

Figure 2.26: The complexity diagram of all sequences of Case 2.4 for n = 8 on isomorphic
depth 0.

29

2.9

2.4

Iso #0O

2.3

26
51

76
101
126
151
176
201
226
251
276
301
326
351
376

401

426
451
476
501

Figure 2.27: The complexity diagram of all sequences of Case 2.4 for n = 9 on isomorphic

depth 0.

2.9

2.8

2.7

2.6

2.4

Iso #0

2.3

22

50
99

148
197
246
295
344
393
442
491
540
589
638
687
736

785
834
883
932
981

Figure 2.28: The complexity diagram of all sequences of Case 2.4 for n = 10 on isomor-

phic depth 0.

2.5

/

15

05

— 50 #0

m——H = In(n"(1.05514)+1)

Figure 2.29: The complexity diagram of all sequences of Case 2.4 forn = 1,2,...,10 on

isomorphic depth 0 and the least square error curve of H = Inn

30

1.05514 + 1.

4. :1“1 %

Chapter 3

Extension

In previous work, the text trees are binarily constructed. In fact, the modeling com-
plexity method can be applied to ternary text trees cases. Here we take Case 2.1 forn =3
as an example below.

With the similar processes but build the text tree ternarily, we have the text tree 77 (3)
shown in Figure 3.1. Then, we list all the rewriting rules from 77(3) into Table 3.1. Here
we use “M” and “=" to denote the middle subtree rule. The classification is shown in

Table 3.2.

Figure 3.1: The ternary text tree of Case 2.1 for n = 3.

P — [=FT.][= FTy][+FTg

1, — [_FTLL][: FTLM][_'_FTLR] T — [_FTRL][: FTRNI][+FTRR]
Ty — {_FTML][: FTMM][—FFTMR] TRL — [+FTRLR]

TML - [_FT]\/[LL] TRM - [+FTRM]

TMM — [_FTMM] TRR — [+FTRRR

TMR — [_FTMRL

Table 3.1: Rewriting Rules of the ternary text tree in Figure 3.1.

31

Isomarphic

Classification Isomorphic Isomorphic
of Rules Depth #0 Depth #1 Depth#2
Class #1 (HC, — C1CL1CY (HC, — CoC3C, (DG 0.2_05@1'.'
(DC1 — C2C2Cy ." |
(Cy — C3C5C3 AU
(1)01 — C4C4Cy &y : A
Class #2 (3)02 — C4C¢C¢ (1)02 — 050505 (1)02 — 050505
Class #3 (3)03 — C¢C¢C4 (1)03 — CGCGCG (1)03 — 060606
Class #4 (9)04 — C¢C¢C¢ (1)04 — 070707 (1)04 — 070707
Class #5 (HC5 — C7C¢C¢ (HCs5 — C7C¢C¢
Class #6 (2)06 — C¢C¢C7 (2)06 — C¢C¢C7
Class #7 (2)07 — C¢C¢C¢ (2)07 — C¢O¢C¢

Table 3.2: Classification Based on the Similarity of Rewriting Rules in Table 3.1.

By slightly modifications, the complexity formula can be applied to ternary cases:

Zzlzl nipzv;lipl (Z>Vaip2 (2)‘/;11'173 (Z>

22;1 Niq

Vi(z) =

For example, we compute the ternary modeling complexity value of sequence “aaabbbccc”
on isomorphic depth 0 now. According to the definition, the given values for the class

parameters are listed in Table 3.3.

Classification of Rules Isomorphic Depth #0
(TL = 7) Class #1 (1)01 — Cl Cl Cl
(n1=1) ni1 11101120113
(HCy = Cy Cy Oy

ni2 112101220123

(HCy — C3 C3 C3

nis 11310132133

(HCy = Cy C4 Cy

nia 114101420143

Class #2 (3)Cy — Cy Cy Cy
(ne =1) na1 (21102120213
Class #3 (3)03 — C¢ C¢ Cy
(n3 = 1) n31 31103120313
Class #4 9Cy — C¢ C¢ C¢)
(ng=1) N4 (141104120413

Table 3.3: The values for the class parameters of Table 3.2, on isomorphic depth 0.

32

There are 4 classes, so we obtain the formulas for Vi (2'), Va(2'), Va(2f)e@nd Tﬁ(z’).

They are:

i
V¢(Z/) =1
V(<) =
T 15 Vage ()Vaga (Ve () # X (1x Vo) X Vel&) X Vi(2)
‘[3<’2) - ns - =z
Zq:l n3q 1
n et M2p% Vg (F)Vagy (7)) Vagye (2) 2/ x (I x Vi(2') x V(&) x Vg(2')
‘/2<Z) - ng - ==z
Zq:l n2q 1
%(Z,) _ Z;gl nlpzl‘/mpl (Z/)‘/alpZ(zl)Valpii(z/)
22;1 Niq
LY (I V()P + 1 x Va(#)? + 1 x Va(2) + 1 x Vi()?)
N 4

Z/%(Z/)3+22/4+Z/
4

Solving V/™(z'), m = 1000, the radius of convergence R, and complexity K, =
— In R, can be obtained from this formula.

Also, the difficult tree causes forward-referencing rules in classification as well. Simi-
lar to binary text tree cases, the stoppers only appear on the path from root to the rightmost
leaf. Generally, finding stoppers, are finding the nodes who have more children than its
parent has. With this concept, we can classify the rewriting rules properly on arbitrary

ternary text tree, or even on n-ary tree cases for arbitrary positive integer n.

33

Chapter 4

Summary

In this artical, we deal with arbitrary length context-sensitive languages and compute
their L-system modeling complexity. Different from previous work, our input sequence
is not divided into fixed length shorter sequences but whole. For any given grammar G,
longer language L(G) generated by G has larger modeling complexity value. That is be-
cause in longer sequences, the generating functions grow much faster than shorter ones.
After computing modeling complexity values of many ns, we can use a single value « to
represent grammar complexity by finding the best-fit curve H = Inn®. Generating func-
tions on high isomorphic depth never diverge, so we use isomorphic depth 0 for all cases.
Also that is why modeling complexity results on higher isomorphic depth are smaller. For
any sequnece, using different tree representations also derives different L-system model-
ing complexity values. There are many possible combinations between input sequences
and tree representations to build an identical text tree. If combination of distinct input
sequences and distinct tree presentations derives the same text tree, then they have the
same L-system modeling complexity values. That is, for the tree representations shown
in Figure 1.1, sequence “aaaaaaaa” and sequence “dddd” have the same text tree and
complexity.

We may also use the extension formula in Chapter 3 to compute the L-system com-
plexity of penrose tiling [10]. A Penrose tiling is a non-periodic tiling generated by an
aperiodic set of prototiles. Penrose tilings are named after mathematician and physicist

Roger Penrose who investigated these sets in the 1970s. L-system can implement penrose

34

tiling properly and Malsys.cz [11] is a website to demostrate it.

Acknowledgements
WCEAM B B A €3 & NSC 100-2221-E-002-234-MY3 > #8 B M4 & 45 F 3% PR

W EXABHEHEBETRESRARZWH TR -

35

Appendix A

Code

void iteration(RRULESET *rset, double *comp, double wvalue)
{
int 1i;
int count;
double tmp:
double sicwa;
RRULE *ptr;

@)

for (i=0; i<rset->count; i++|
{

sigma = 0.0
count = 0;
ptr = rset->rules[i]:

while (ptr)
{
COUNt += PLr->Countf
pLr = pLr->next;

ptr = rset-rrules[i];

while (ptr)

ifiptr->lrule)
twp = | [eormp [ptr—>lrule—>id]‘ *valuth (double) ptr->lrule->count))

if (ptr->rrule]
twp *= |(comp [pt.rf>rrulef>id]‘ fvaluEHt (double) ptr->rrule->count)) 11
I

sigma += (tmp/ | (double) ptr->count) | ;
ptr = ptE->next;
}

= sigma/] (double] count) ;

Figure A.1: Code of previous work.

36

roid iteration(RRULEZET *rset, double *comp, double wvalue)

{

int i:

int count;
double tmp;
double sicma;
RRULE *ptr;

for (i=0;i<rset-rcount; i++)

{

Z;;] 71?"}921/;5-5;)1 (Z)Vaa‘p2 (Z)

sicms = 0.0; ‘/I(Z)

count = 0;
ptr = rset-x>rules[i]:

while(ptr)

{
count += ptr->count;
ptr = ptr-rnext;

ptr = rset-x>rules[i]:

while (ptr)
{
emp——se tmp=value* ((double) ptr->count)
if (ptr->1lrule)
tmp *= (comp[ptr->lrule->id]®

lusil (doublelntra- 1l Py

if iptr->rrule)

twp *= (comp[ptr->rrule->id] twalue*{ (donbhlelptr—crrule—soount)]):

sigma += (twmp/ -t ey
ptr = pLr->next;

HEE

comp[i] = sigma/ [(double)count);

Figure A.2: Paper code.

37

Zg?zl Niq

Bibliography

[1] F. P. Kaminger. The noncomputability of the channel capacity of context-sensitive

languages. Information and Control, 17(175), 1970.

[2] P. Landweber. Decision problems on phrase structure grammars. /EEE Trans. Elec-

tron. Comput., 13(354), 1964.

[3] Aristid Lindenmayer. Mathematical models for cellular interactions in development.

Part I and II. Journal of Theoretical Biology, 18(3):280-315, 1968.

[4] Wikipedia. L-system — Wikipedia, the free encyclopedia, 2012. (http:/

en.wikipedia.org/wiki/L-system).

[5] Cheng-Yuan Liou, Tai-Hei Wu, and Chia-Ying Lee. Modeling complexity in musical
rhythm. Complexity, 15(4):19-30, 2010.

[6] R. Badii and A. Politi. Complexity: Hierarchical structures and scaling in physics,

volume 6. Cambridge University Press, 1999.

[71 Werner Kuich. On the entropy of context-free languages. Information and Control,

16(2):173-200, 1970.

[8] Cheng-Yuan Liou, Shen-Han Tseng, Wei-Chen Cheng, and Huai-Ying Tsai. Struc-

tural complexity of dna sequence. Comp. Math. Methods in Medicine, 2013.

[9] Cheng-Yuan Liou, Daw-Ran Liou, Alex A. Simak, and Bo-Shiang Huang. Syntactic
sensitive complexity for symbol-free sequence. IScIDE Bejing, LNCS, 8261:15-22,
2013.

38

[10] Roger Penrose. Pentaplexity a class of non-periodic tilings of the planesThe Maiih-
ematical Intelligencer, 2:32-37, 1979.

";,"-.,_
M

[11] Marek Fiser. Marek’s 1-systems, 2014. (http://malsys.cz).

39

	口試委員會審定書
	致謝
	中文摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	The complexity of the L-system
	Preliminary
	Other Applications

	The Complexity of Context-Sensitive Sequences
	Extension
	Summary
	Code
	Bibliography

