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We consider the steady states solutions of parabolic and hyperbolic equa-
tions such as dyu — Au = f(x,u) and Jyu — Au = f(x,u). Steady state
which means a system that has numbers of properties that are unchanged
in time. For instance, property p of the steady state system has zero partial
derivative with respect to time : 22 = 0.

In this thesis we will give a proof about the instability results about the
solutions of a general elliptic equation of the form Ly = f(z, ¢),z € R" where
L is a linear,second-order elliptic differential operator whose coefficients are
smooth and bounded. ¢ is the time-independent solution of Lu = f(x,u),x €
R™. To complete our work, we mainly consult paper[2] and [3].Also

for some basic preliminaries we consult text books|[l] and [4].

Keywords: Nonlinear heat equation; Nonlinear wave equation;

Steady states; Instability
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Chapter 1

Introduction

In this thesis we consider the parabolic equation
O+ Lu = f(z,u),xz R" (1.1)
and the more complicated hyperbolic equation
Ofu+ adyu + Lu = f(r,u),r € R" (1.2)

while the L is the linear second-order elliptic differential operator whose
coefficients are smooth and bounded. a is arbitrary real number and possibly
zero. f(x,u) is the nonlinear term. To studying many topics in PDE it’s quite
important to understanding the physical properties. When we studying the
heat equation(also known as diffusion equation), we know that it describes
the distribution of heat in a region. When studying the wave equation, it
related to the models for vibrating string(n=1), membrane(n=2) and elastic
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solid(n=3). Now we focus on time-independent solutions, which anWH aégth'é

steady states in this thesis. Our main work is to provide sufficient cb;lditioﬁs

such that we can draw nonlinear instability form linearized instability.
Before we come to the main instability result we have the following as-
sumptions about the time-independent solution ¢ and the nonlinear term

f(z,u). The assumptions are introduce in two parts, first part is meant

to conclude that the ¢ is a nonlinearly unstable solution of both (@) and

() The second part is meant to improve the conclusion of first part that

the instability occurs by blow up.

First Part:

(A1)The equation Ly = f(x,¢) has a C? solution ¢.

(A2)The adjoint linearized operator L* — f,(x, ) has a negative eigenvalue
—o and a corresponding eigenfunction y € L'(R™) N L*(R™) which is
non-negative.

(A3)The nonlinear term f(x, s) is convex in s and is C'.

(A4)Both f(z,¢) and f,(z,¢) are bounded.

Second Part:

(A5)The product ¢y is integrable, where x is the eigenfunction mentinoed
in (A2).

(A6)There exist Cy > 0 and p > 1 such that f(z,s) > Cp|s|? for all

(x,s) e R" xR
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In our assumptions, (A2) is to ensure that the presence of anl qlie!lga%i
eigenvalue. Besides, the time independent solution ¢ is not necessaﬂ.lly t0 be
bounded. In Chapter3 we are going to prove the instability by using the first
part of the assumptions and the instability by blow up by using the both
parts of the assumptions. There is a special case that when f(u) = |u|? for
some p > 1 and ¢ is bounded. We can get the instability by blow up only us

assumptions (A1) and (A2).

1.1 Literature Review

The paper [2] talks about that with arbitrary nonlinearities and more
general class of bounded states, but the assumptions they give are more
restrictive.

The paper [3] is our mainly consult. With the assumptions (A1)-(A6)
they talk about the instability in a harder way. We are going to redesign and
rearrange the statements to make the reader more readily to appreciate the

results. Besides, we use [[] and [4] to give some basics for the readers.



Chapter 2

Background

2.1 Some Inequalities

2.1.1 Convex Function
Definition 1. A function F': R” — R is convex provided that
flra+ QA =7)y) <7f(x)+ 1 —-7)f(y)

for all z,y € R" and for 0 <7 <1

If a function f is a convex function then f has the following properties
* f is concave if —f is convex

* f is strictly convex if f satisfies f(tz+(1—7)y) < 7f(z)+(1—7)f(v),

forall z,y e R"and 0 <7 <1



* (Supporting hyperplanes)Suppose f : R — R is convex: THen@frfdﬁ
each x € R"™ there exists r € R™ such that the inequality. fly) >

f(x)4+r-(y—x) holds for all y € R.

2.1.2 Elementary Inequalities

In this section we will introduce some basic inequality that might be used

in our thesis

I.Cauchy’s Inequality

a’ b
abSE—FE a,beR (2.1)
Proof. 0 < (a —b)* = a® — 2ab+ b? O

II.Young’s inequality Let 1 < p,q < oo.also %—i—% = 1. Then we have

the following

Ppa
<+ = ab>0 (2.2)
P g

Proof. Consider the mapping x +— e” is convex, by what we’ve mentioned
above we have

1 1
ab = eloga—f—logb — e;logal’-o-glogbq < eloga” + %elogbq — C;Tp + b9

q

D=
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IIL.Hélder’s inequality Assume that 1 < p,q < oo, 1 + 1= 1y Thén if

ue LP(U),we LI(U), we have

/U uoldz < [Jull Loy [v]| o)

Proof. By homogeneity we may assume that ||u||p» = ||v||re = 1. Then we

apply Young’s inequality, for 1 < p,q < co we have that

1 1
/ luv|dx < —/ |ulPdx + —/ [v|%dx =1 = ||u|re||v]| e
U pJu qJu

]

The previous three inequalities will be use in our thesis, the readers can
get acquaintance with these inequalities for the further reading. For more

details, readers can check reference [[Il] APPENDIX B.

2.2 Integration by Parts

One of our assumption for the main instability result contains the convex
function, hence we have a brief talk about it in the previous section. Also
integration by parts has been used in the proof of the main instability result.
The following is the integration by parts formula, which will be wildly used
in our thesis

For u = u(z), v = v(x)

/udv:uv—/vdu

6
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Chapter 3

Instability Result

In [3] has some discussion about the instability of steady states. We will
use an easier way to talk about the main instability results with the solution

of a general elliptic equation of the form
Lo = f(z,p), z € R"

For both L and ¢ are what we’ve defined in Chapter 1. L is a linear, second-
order elliptic differential operator whose coefficients are smooth and bounded.
¢ is the time-independent solution. Besides the assumptions (A1) — (A6)
mentioned in Chapter 1 will be used in our proof, we’ll not repeat them here.

First, we deal with the parabolic case which is much easier than the hy-
perbolic case. The reader can get acquaintance with the proof technique

in parabolic case, after that we will give two lemmas for hyperbolic case.
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Finally we’ll come to the most complicated part the hyperbolic case.|

3.1 Parabolic Equation

First we focus on the equation
Owu+ Lu = f(x,u), u(z,0) = @(x) + g(x)
The steady state ¢ will be an exact solution when the perturbation vy = 0.

Now we consider the case that the perturbation ¢ is small.

Theorem 1. (Parabolic Equation)
For the first part of the assumptions (A1-A4) we let g € L>®(R™) be con-

tinuous with
/ X(x)o(x)dx >0 (3.1)
Let 0 < T < 0o and let u be a solution of

Owu+ Lu = f(x,u), u(z,0) = @(x) + o(x) (3.2)

on [0,T) such that u — ¢ is continuous and bounded.
(a)If T' = oo the the norm ||u — ¢||Le(®n) must grow exponentially.

(b)Add assumptions (A5),(A6) then we can have that 7' < oo
Proof. (a)First consider the function

G(t) = / x(x) - w(z, t)de, w(z,t)=u(z,t) — @(x) (3.3)

8
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GO < Ixllzr@n - [lwl] 2 @n)

It’s quite simple for us to find that the L*™ — norm has to either grow
exponentially or blow up whenever G(t) does.
Let us first focus on part (a) and assume that w = u — ¢ is continuous on

[0,00). By distribution we have that w is a solution of

3tw+Lw:f(x,w+go)—f(x,<p) ) w(%o):%(l’)
Then in view of the convexity assumption (A3) we have

f(l',w‘i‘@)—f(l',@)
(w+¢—¢)

ow + [L — Jw >0 (3.4)

which gives that

Ow + [L — fu(x,p)w >0

Also in assumption (A2) we note that x(z) > 0 (x(z) is non-negative),
we may multiply the inequality by x(z)6(t), where 6(t) is an arbitrary non-
negative test function. Then we obtain the following inequality

dwx (2)0(t) 4 [L — fulw, 0)]Jwx()0(t) > 0

Then we integral both parts to get the following

/Ot/n (@) - B - O(7)dadr + /Ot /n[L* e () B > 0

(3.5)



To simplify the first part of the integral we note that ] = |

G'(t) = /n X(x)0ww(z, t)dz

Which is a continuous function by what we’ve defined at (@), for dyw is
continuous with values in L?(R").To simplify the second part of the integral,

by assumption (A2) we have

[L* = fulz, 0)]x = —0*x

Then the equation (@) can be reduce to
t t
/ G'(1)-60'(r)dr — 02/ G(r)-6(r)dr >0
0 0
For all non-negative test function 0(t),eigenfunction y, equivalently we have
G'(t) — c*G(t) > 0 (3.6)

Since G(0) > 0 by the assumption, the exponential growth of G(t) follows.

(b)Next we add assumptions (A5) and (A6) for part (b). Suppose that
T = oco. As we have just shown G(t) must grow exponentially fast. Using
our assumption (A4) Both f(z,¢), fu(z,¢) are bounded and (A6) There
exists Cp > 0 and p > 1 such that f(z,s) > Cy|s|P for all (z,s) € R" x R, we

have the following
atw + [L - fu(l’, (P)]w = f(l”w + @) - f(l’,go) - fu('r790)w 2
Colw + ¢fP — C1 — C1|w|

10
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Then we multiply both sides by the non-negative eigenfunction % ;@lné?i -
S\ W%

tegrating over space, we can have

G'(t) — o*G(t) > C’o/ X|w + ¢|Pdx — Cl/ xdx — Cl/ x|w|dx (3.7)

n

Then by triangular inequality we have the last integral is at most

/xlw\dxz /X\(w+<p) — ldx < /x\w+so\d:c+/x|90!d:v

We can therefore reduce equation (@) to be

G'(t) > a*C(t)+Cy / VletelPde—Cy / vdr—Ci / ylwtpldat / ylolde)
n n ]Rn

n

Since x € L' by (A2) and x¢ € L' by (A5), we then deduce that

C’l/ de—l—C'l/ Xlpldz < Cy

G'(1) > 02G(t) + CO/ x|z + plPdz — cl/ \|w + ¢ldz — Cs

n n

Since G(t) grows exponentially fast we have

G'(t) > CO/ x|lw + ¢Pdx — C’l/ x|w + plde = CoA(t) — C1B(t) (3.8)

n n

by distribution and for all large enough t.

For B(t) grows exponentially fast by the triangular inequality we have

G(t) < / xlwldz < / xlw + gldz + / Xlglde = B{t)+ C5  (3.9)

11



For A(t) grows exponentially fast by the Holder’s inequality we ha‘ilflle (|

50 = [ e elde < ([ vae) " ([ o ppar)” = G
(3.10)
This inequality gives that A(t) grows faster than B(t) i.e.
A(t) > C,PB(t)P (3.11)

Hence the equation A(t) dominate B(t). Then combining (@), (@) and

() we have the inequality
G'(t) > C5A(t) > CB(t)? > C;G(t)? (3.12)

Since G(t) is positive, we can deduce that T < oo as needed. O

3.2 Hyperbolic Equation

To complete the part(a) of Hyperbolic case, in [3] we have the following

lemma.

Lemma 1. Let a € R and b > 0. Suppose y(t) is a C' function such that
y//+ay/_by20

on some interval [0,7") in the sense of distributions. If

a-+va?+4b

: -y(0) +y/(0) > 0 (3.13)

the both y(t) and y'(f) must grow exponentially on [0,7")

12



~L I~

—aci b
| |
R

Proof. Let A\, Ay be the roots of the characteristic equation A? -7 a) FL b 0
"N | i

and set z = ¢y — Ay i.e. 2/ =y’ — \y/. Besides, the roots \; < 0 < Mo

Then
Y'+tay —by >0 —=y" — (M + )y + Ay >0

(Y —MY)+ Xy —\y) =2 — Xz >0

Using test function 6(t) we obtain the another test function e=*2!4(t), use

integration by parts it follows that

¢
—/ 2(T)e™270' (1)dr > 0
0

Choosing 6(t) to be an approximation of the characteristic function on
the interval (0,t), we can easily deduce that z(t)e 2" — 2(0) > 0 i.e. z(t) >
e*2'2(0). Thus we have y' — Ay > e*2'2(0) (for we have z = y/ — \;y), which

implies the following inequality

y(t) > eMiy(0) + CE=E1 . 2(0)

Then by what we've let at the beginning that \; < 0 < Ay, the exponential

growth of y the follows, provided that

a-+vVa?+4b

z(0) = 4'(0) — \y(0) = 4'(0) + 5

-y(0) is positive.

Then in the view of our assumption (3.13), the exponential growth of y thus

follows.

13



M=)
| ==||

Finally for the exponential growth of y/(¢). Similarly we assume w = ilgy —SAgy

which satisfies
V' +ay —by =" —My)+ Xy — My) =w — A\w >0

As what we've done above, we have w(t) > e**w(0). Since y(t) grows expo-

nentially by above, then the equation
y'(t) = Aay(t) + eMfw(0)

force y/(t) to grow exponentially fast as well because A\; < 0 < Ay the we
complete the proof.

The result will be very useful in the proof of Theorem 2.-Hyperbolic Equa-
tion. The reader can think more carefully about the Lemma before the

further reading. O

To complete part(b) of Hyperbolic case,we need the following lemma. In
[p] has a special case which is similar to the case of the following lemma. We

give a little modification of the property in [5] to complete our proof.

Lemma 2. Let a € R, b > 0 and p > 0. Suppose y(t) is a non-negative C'!

function such that
y(T1) >0, y'(Th) >0, y"(t) +ay'(t) > by(t)?

on some interval [T}, T3) in the sense of distributions. Then Ty < 0o

14
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Proof. We'll start in an easier way. To claim that y”(t) + ay (t)'_:_>_i| \by%%)z?l
First we start form the special case y € C? and a=1. Now we COIIIS.Iidél“ the
in equality F”(t) + F'(t) > Co(t + K)*|F(¢t)|**", and ¢t > 0 with Cy > 0 such
that F'(0) > 0 and F’(0) > 0. We are going to claim that F(¢) blows up in

finite time. = Now we take the auxiliary initial value problem
Y'(t) = v(t + K)[Y (£)]*/2, F(0) > 0 (3.14)

Where v > 0 is a small number to be chosen later. Since

Y(t) _ (Y(0>]—r/2 _ 2(;}:1) [(t + K)A+1 _ KA+1]>2/r

and A>-1, the solution Y'(¢) of the above problem blows up at finite time Tj
and satisfies Y(¢) > Y (0) > 0 for 0 <t < Tj. Then we compute the second

derivative
Y'(t) = v(1 +1/2)(t + K)A[Y ()]"2Y(t) + vA(t + K)A7 Ly ()] /2

> 0?(1+7/2)(t + K)*A[Y (1)) (3.15)

where we have that A > 0 and Y satisfies (3.14). Now we add (3.14) and
(3.15) also observing that 24 > A (For we have A > 0) and [Y (#)]'*"/? <

[Y/(0)]7"/2[Y ()]**", then we have
Y'(t) +Y'(t) > 0*(1 +7/2)(t + K)*A Y ()] + o(t + K)A[Y (¢)] /2

> B(t+ K) Y ()]

15



Where B = U2(1 +17/2) + UA[Y(O)]_T/Q 181 Ii:i!

Further, we choose v so small such that

B =v2(a+1/2) +vA[Y(0)]7"/? < Cy

Y'(0) = vKAY (0)]*7/2 < F'(0)

Then we have the following inequality
Y'(t) +Y'(t) > Co(t + K)A[Y (1)) (3.16)

and the initial condition Y (0) < F(0) and Y'(0) < F'(0) . Now we show
that F'(t) > Y (t) for 0 <t < Tp, so we have F(t) also blows up at in finite
time. From F’(0) > Y’(0) we have F'(t) > Y'(t) for ¢t small enough the we

set
to=sup{t € [0,Tp)|F'(T) > Y'(1) for 0 < 7 < t}

Suppose ty < Ty, where Ty is the blow up time for Y (¢). Thus we have
F'(t) > Y'(t) for t € [0,ty) and F'(ty) = Y'(to). Since F'(t) —Y'(t) > 0,
the function F'(t) — Y (t) is strictly increasing in the interval 0 < ¢ < ty. In
particular F'(t) — Y (t) > F(0) — Y(0) = 0 for such ¢t. Note that F(ty) >
Y (t), because if F(ty) = Y (to) then the function F(t) — Y (¢) would have
zeros at 0 and tg, so the derivative will vanish between 0 and ty. Therefore,
F(ty) > Y(to) and F'(ty) = Y'(to).

On the other hand, by (3.14) to (3.16) we have the following

16



[F"(8) = Y"(8)] + [F/(t) = Y'(1)] = C(t + K)*{[F(1)+ — Mol 2o |
For 0 <t <ty. We rewrite the above inequality in the form

d t / !
SF ) - V(6] 2 0

Then we integral the above inequality over [0, %] to obtain
e"[F'(to) — Y'(to)] = F'(0) — Y'(0)

Which gives that F”(ty) — Y'(to) > 0. We come to a contradiction, thus we
have ty > Ty. Then the proof of the special case is complete.

After the case a = 1, The case a > 0 and a < 0 is similar and much easier.
If y is merely C*, we can apply the same test function of the previous Lemma

to complete our proof. The reader can have more details in [5]

]

By the preceding lemmas we will come to the hardest part of this thesis-the

hyperbolic equation. For hyperbolic case we focus on the following equation.
Otutadu+Lu = f(x,u), u(z,0) = p(x)+o(x), dwu(z,0)=(z). (3.17)

As what we’ve mentioned in 3.1 the steady state ¢ will be the exact solution
when the perturbations ¢y = 1y = 0, also we concerned with the case that

the perturbation (v, ;) is small.

17



Theorem 2. (Hyperbolic Equation) \{
Let a € R. As what we’ve done in section 3.1, we consider the first part .
of the assumptions at the beginning and let (1, 1;) € H'(R") x L*(R™) be

such that

a+ \/a; + 402 /n X (@) Yo(r)dz + /n x(2)¢1(z)dx > 0 (3.18)

Let 0 < T < oo and let u be a solution of (3.13) on [0,7) such that
u — ¢ is continuous in t with values in the energy space and f(z,u) is locally
integrable.

(a)If T' = oo, then the energy norm

u(®) = ¢lle = [fule, ) = @()llmr@n + [[0ule, )] 2@n) (3.19)

must grow exponentially.

(b)Add assumptions (A5),(A6). Then we can have that 7' < co
Proof. (a)As what we’'ve done in Theoreml. consider the function
G(t) = /n X(x) - w(z, t)de, w(x,t)=u(x,t)— @(x)
By the assumption(A2) we have the following
GO < [l - @l < Cllu @]l

For we know that y € L*(R™) N L*(R") i.e. ||x||r2n) is finite. By the in-
equality we can easily have that the G(t) is well-defined and bounded as long

18
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as the energy norm of w is bounded; also the energy norm grows eﬁ)oﬁen'%
"5 | i)

tially provided that G(t) does and the energy norm goes infinite \.V.Ihe'nevér
G(t) does.

Fist we focus on part (a). Assume that w = u — ¢ is continuous on [0, c0)
with values in energy space. Then by distribution we have that w is a solution

of the following equation
02 + adyw + Lw = f(x,w + @) — f(z,¥)

Then with the assumption (A3) the convexity of f(z,s) we have
O + adw + [L — Fy(z,¢)]w > 0

As what we’ve done in Parabolic case. We consider an arbitrary non-negative
test function 6(t), and by assumption (A2) that x(z) is also non-negative.

Multiply the inequality by x(z)0(t) we obtain
OPwx(z)0(t) + adywx ()0(t) + [L — fu(z,0)]w >0

Be careful that for the Hyperbolic case we should deal with the second

order partial derivative of t i.e. the 97 part. Now we integral both parts

/Ot - 7w - x(2)0(7)dzdr + /Ot /n (@) - adyw - O(r)dzdr
+/Ot /JL* ~ fulw, D) () - w - 8(7)dxdr > 0

19
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Use integration by parts we can simplify the first integral to get” ¥ ||

_ /Ot/n x(z) - 0w - 0 (1)dxdT + /Ot/n x(x) - adyw - 9(7)d5€d7. .I -(.3.20)

t
[ ] = feplnte) wo(dndr > 0
0 n
Now the first and the second integral has 0, element, to simplify them we

use the same technique as what we've done at Parabolic case. Note that

G'(t) = /n X(z) - Qyw(x, t)dx

G'(t) is a continuous function by our definition of G(t). For we know that
dyw is continuous with values in L?(R™). To simplify the third part of the

integral, by the assumption (A2) we have

[L* — fulz,)lx = —0°X

Then the equation (3.17) can be reduced to

- /t G'(t) - ' (1)dr + a/t G'(t) - O(r)dr — o /Ot G(r)-0(r)dr =0

0 0

6(t) is the non-negative test function and apply integration by parts we have
G"(t) + aG'(t) — o*G(t) > 0

Then by our assumption (3.15) note that

a+ Va2 + 402

> G(0) + G'(0) > 0

Now we apply the Lemmal. Both G(t) and G'(t) must grow exponentially
fast. Then we finish the part (a).

20



M= )

11 .“l-;_.:" 11
Finally we turn to the part (b). Now we add assumptions (A5) anH (%6)1
Suppose that 7' = co. For we’ve known that both G(¢) and G'(T) Ir.u.lst'grow .

exponentially fast by the proof of part (a). Now consider the assumptions

(A4) and (A6) we have the following

afw —f‘aatw + [L - fu(xa @)]w = f(m,w + 90) - f(m,go) - fu(x,ap)w Z

Co‘w + SO‘p — 01 — Cllw]

Then we multiply both sides by the non-negative eigenfunction y and inte-

grating over space to obtain the following equation

G"(t) + aG'(t) — c*G(t) > / x|w + pPdx — Cl/ xdx — 01/ X|w|dz

(3.21)

n

What’s more difficult than the Parabolic case (3.7), we should deal with the

second derivative of G(t). As what we have done in Theorem1 we have

n n

G"(t) + aG'(t) > o*G(t) + Co/ x|w + pPdx — Cy / x|z + pldx — Cy

By using the triangular inequality and the assumptions (A2)y € L', (A5)The
product Y is integrable i.e. Yo € L.

Since G(t) grows exponentially fast, the previous inequality gives that

G"(t)+aG'(t) > C’o/ X\w+<p\pdx—01/ X|w + pldx = CyA(t) — C1 B(t)

n n

(3.22)
by distribution and for large enough t.
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For B(t), consider the triangular inequality

G(t)g/ X|w|dm§/ X|w+g0|dx—|—/ loldz = Bt) + C5  (3.93)

Hence we have that B(t) grows exponentially fast.

A(t) grows exponentially fast by Hélder’s inequality we have

p=1 1
B(t) = / x|w + pldx < (/ qu:) ’ (/ Xlw + @‘Pd:c) f = C4A(t)%
(3.24)
This inequality gives that A(t) grows faster than B(t) i.e.
A(t) > C,PB(t)? (3.25)

Hence the value of A(t) dominate B(t). Then we combining the equation

(3.19),(3.20) and (3.22) by distribution we have the following

G"(t) + aG'(t) > C5A(t) > CsB(t)? > C;G(t)P (3.26)

Besides both G(t) and G’(t) are positive by above. Now we apply Lemma?2
for we have G"(t) + aG'(t) > C7G(t)? the we have the contradiction that

T < oo. Hence the proof of part (b) is completed. ]

After reading these Theorems and Lemmas readers can get a closer look
about instability of steady states in an easier way. For some applications we

will give some examples in the next chapter.
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Chapter 4

The Special Case f(u) = |ulP

In chapter 3 of [3] gives an example of convexity nonlinearity with poten-
tial term. Now we are going to introduce a special case for the convexity

nonlinearity. For the original problem is
—Ap+V(x)-p=flp) z€R” (4.1)

Now we suppose that the non-linear term f(¢) = |p[? for p > 1 and ¢ is
bounded. Under these condition we only need assumptions (Al) and (A2)
the we can still get the conclusion that the instability by blow up. In [3] only
talks about this fact with few words. We are going to show this fact in the
following proof. To claim the statement holds true, we are going to check
that whether the assumptions (A3)-(A6) holds for f(y) = |¢|P for p > 1 and

@ is bounded
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Proof. In this proof we are going to check that under the special case : f (

g

|ul? and p > 1, ¢ the assumptions (A3)-(A6) still holds.

(A3)The non-linear term f(z,s) is convex in s and is C':
For f(x,u) = f(u) in our case, f(u) = |ul’ by the convex function
properties given in Chpater 2 we can easily have that f(u) = |ulP is
convex in u. Also it’s clear that f(u) is C'. Hence we have the assump-
tion (A3) holds.

(A4)Both f(z,¢) and f,(x,¢) are bounded :
For f(¢) = |¢[? and ¢ is bounded we can easily get the assumption
(A4) holds.

(A5)The product ¢y is integrable: (y is the eigenfunction in (A2))
For ¢ is bounded we have the product ¢y must integrable.

(A6)There exist Cy > 0 and p > 1 such that f(z,s) > Cy|s|? for all
(z,s) e R" xR:
It’s quite simple that for f(u) = |u[’ we can find Cy > 0 and p > 1 such
that f(s) > Cyls/F.

For we have the assumptions (A1)-(A6) all holds in this special case f(u) =
|u|P. Therefore we can improve the example in [3] that instability by blow

up by using the Theorem 1 and Theorem 2 in Chapter 3.
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