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Abstract

In this thesis, there are two parts. The first part is to introduce what the
minimal model program (MMP) is and how it works, especially in positive
characteristic. Also, I illustrate some differences between characteristic zero
and positive characteristic. In the second part, I verify that the classification
Mori gave in characteristic zero for the terminal singularities in dimension 3
is mostly true in positive characteristic.

Key words : Minimal Model Program, Positive Characteristic, Terminal

Singularity.
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Chapter 1

What is MMP ?

MMP stands for minimal model program. Roughly speaking, it is a “method” to un-

derstand varieties further.

1.1 Classification

In all fields in mathematics, we usually want to understand objects fully by classifica-
tion. If the number of all objects we are interested in is finite, then classification means
to know which object is isomorphic to others. But if the number is infinite, then classifi-
cation has different meaning from the finite case. This is because the human beings can
only live for a finite time. Thus, we cannot check it case by case. So classification means
to describe some properties that use finitely many objects.

In algebraic geometry, we are interested in varieties. So the first natural problem we

may ask is
Problem 1.1.1. Classify varieties up to isomorphism.

But this problem is unrealistic even for curves because the parameter space has very

high dimension as the genus is high. So we relax us to ask
Problem 1.1.2. Classify projective varieties up to birational isomorphism.

It is then natural to study birational geometry. The purpose of MMP is to find a good

representative inside a birational equivalence class, which plays the pivotal role in the
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recent development of algebraic geometry.

1.2 What is a minimal model ?

As we said above, we want to find some “nice” objects which could describe all ob-
jects. More precisely, in our case, we want to find a good representative in any fixed
birational isomorphism classes. We call it a minimal model.

For example, there exists a unique smooth projective curve in any fixed birational
isomorphism classes. (For a proof, see [Har77, chapter 1, section 6].) So the smooth
projective curves are what we want for minimal models. However, this is a special feature

for curves. For the case of surfaces or 3-folds, we will discuss later.

1.3 Asymptotic Riemann-Roch Theorem

I give a version of Riemann-Roch Theorem which will be used later.

Theorem 1.3.1. Let X be a normal projective variety of dimension n and D, E be two
divisors. Then we have
D" D"l (Kx — 2F)

P(m) = x(mD + E) = —-m" 2(n—1)!

m" ! + ( lower order terms ).
Proof. We prove by induction on n. For n = 1, we have
1
P(m) =deg(mD + E) — g+ 1= (deg D)m — 3 deg(Kx —2F).

Now for n > 1, we choose a general ample divisor H such that H 4 D is ample. Choose
a general element G € |H + D|. Note that H and G are normal projective varieties. Then

we consider the following two exact sequences.

0 mD + FE

mD+E+H—(mD+E+H)|g—0

0O—=(m—-1)D+FE—smD+E+H—(mD+E+ H)|g—0

2



Thus, we have

P(m)—P(m—1) = x((mD+E+ H)le) —x((mD + E+ H)|x)
_ (G.Dp' H.D™!
- ((n—l)!_(n—l)!

Dn

= n—1 lower order terms ).
(= 1)!m + (low )

) m" ' + ( lower order terms )

The second term is

- (G.D”Z.(KG —2(E+H)|lg) HD" 2 (Ky—2(E+ H)|H>> 2

2(n —2)! 2(n — 2)!
L D" 2 (Kx+G).G—(Kx+ H).H)—-2D"'(E+ H) =2
B 2(n — 2)!
D(Kx —2E)+ D"\ .,
= — m
2(n —2)!
Note that if P(m) = a,m" — a,_ym™ ' + ... ,then
n—1 n(n —1) n—2
P(m)— P(m—1) =na,m"" " — — g Gn +(n—=1Da,_1 |m"=+....
Thus, we have
D" D1 (Ky —2F
a, = — and a,_; = (Kx )
n! 2(n —1)!



Chapter 2

MMP in characteristic zero

In this chapter, £ is always an algebraically closed field of characteristic zero. 1 give

an introduction on how MMP works for surfaces and 3-folds over k.

2.1 Surface case

Given that X is a projective variety over k. In 1964, Hironaka proved the following

theorem in [Hir64].

Theorem 2.1.1 (Hironaka). For a normal variety, it is possible to resolve singularities of

varieties over k by blowing up finitely many times along nonsingular subvarieties.

Therefore, given a surface X, we may replace X by its birational model. Unlike
curves, this smooth surface X is not unique since we may blow up any point further.
Moreover, blowing up a point will produce an exceptional curve C' with C? = —1. Note
also that this curve C' is isomorphic to P!. We call such curve a (—1)-curve. Thus, our
ideal minimal models will be smooth varieties without any (—1)-curves.

Using Castelnuovo’s contraction theorem (for a proof, see [Har77, Chapter 5, Theorem

3. 7)),

Theorem 2.1.2 (Castelnuovo). Given a (—1)-curve C on a smooth surface X, there exists
a smooth surface X, such that X is the blowup of X, along some points P € X, with

exceptional curve C.



we get a smooth surface without (—1)-curves, such surfaces are called relative minimal

model of original X.

Remark 2.1.3. A smooth surface is not necessary to have finitely many (—1)-curves. For
example, the blowup of IP? at 9 points in general position has infinitely many (=1)-curves.

(For more detail, see [Har77, Chapter 5, exercise 4.15].)
Proposition 2.1.4. For every surface X, there exists a relative minimal model.

Proof. This proof is essentially due to [Har77].

By Castelnuovo’s theorem, we have a sequence X = Xy — X; — Xy — ---. It
suffices to show that it must stop. Put E’ be the exceptional curve of X; — X1 and E;
be the proper transform of £’ to X. Note that we have E? = —1 forall ¢ and E;.E; = 0
fori < j. Pute; = ¢(E;) be the cohomology class of E; in H'(X,Qx). Then we have
(€i,€;) = —1 forall i and (e;, e;) = 0 for ¢ < j. Thus, {e;}i> is linearly independent in
H'(X,Qx). Since H'(X, Q) is finite dimensional, then {e; };>¢ is a finite set. Hence, it

must stop. [

Remark 2.1.5. X is a relative minimal model if and only if every birational morphism
X — X' to a smooth surface X’ is actually an isomorphism. (For detail, [Har77, Chapter
5, section 5].)
Remark 2.1.6. The relative minimal model is not unique for rational or ruled surfaces.
For example, we consider the blowup of P2 at two points. We may either blow down two
exceptional curves to get P? or blow down the proper transform of the line connecting two
points to P! x P!,

In order to generalize to higher dimensional case, Mori gives another criterion for

minimal models.

Definition 2.1.7. A smooth projective variety X is minimal if Kx is nef. Thatis, K x.C' >

0 for all curves C'in X.

Remark 2.1.8. If a surface X contains a (—1)-curve C, then by adjunction formula, (K x +
C).C =2¢g(C) —2 = —2. Thus, Kx.C' = —1 < 0. Hence, a minimal model is a relative

minimal model.



Remark 2.1.9. Note that P? and P! x P! are relative minimal models but not minimal

models.

Then what happen to P? and P! x P! ? Although they have no (—1)-curves, they still
have many curves C' that make K x not nef, that is, Kx.C' < 0.

Then we can ask whether we have a “Castelnuovo’s theorem” for such curves ? Mori
said that we have an “extremal contraction” X — X’ if Kx is not nef. (See Theo-
rem 2.2.1.) In other words, we can contract some special curves that make K x not nef.
But it is not necessary that dim X’ = dim X. In general, we have dim X’ < dim X and,

for dim X’ < dim X, we call X — X' a Mori fiber space.(Mfs)

Conjecture 2.1.10. If k(X)) = —oo, then X is birational to a Mfs. If k(X) > 0, then X

is birational to a minimal model Y .

Remark 2.1.11. It is still open in dimension > 5.

Remark 2.1.12 (Enriques-Kodaira classification of surfaces). If x(X) = —oo, then X is
rational or a P!-bundle.

If K(X) = 0, then X is birational to a K3 surface, an Enriques surface or an étale
quotient of an abelian surface.

If k(X) = 1, then X is birational to an elliptic surface.

If K(X) = 2, then X is of general type.

In the end of this section, I recall some definitions which are used later. For detail, see,

for example, [KMOS].

Definition 2.1.13. A pair (X, B) consists of a normal variety X and a Q-divisor B =
> b; B; such that Ky + B is Q-Cartier.

Definition 2.1.14. X is Q-factorial if every (Q-divisor is (Q-Cartier.

Definition 2.1.15 (discrepancy). Let f : ¥ — X is a birational morphism of normal
varieties and Ky is Q-Cartier. Let F be an irreducible exceptional divisor, e € E' is a

general point of £ and {y;} is a local coordinate at e € Y such that £ = (y; = 0). Then



near e, we have

f.(local generator of Ox (mKy)) = v *®) (unit) (dy; A ... Ady,)E™

where m € Z such that mKx is Cartier. Note that a(E, X) is independent of m and is

called the discrepancy of E with respect to X.

Remark 2.1.16. If f is a proper morphism and Ky is Cartier, for example smooth, then
mKy ~ f*(mKx) + Z(m ca(E;, X)) E;
Using numerical equivalence, we may divide by m and get
Ky = f*Kx + a(E;, X)E;
Definition 2.1.17.

Ky +[7'A=["(Kx+A)+ Y alB,X,A)E

E;: exceptional

Definition 2.1.18 (discrepancy).
discrep (X, A) := i%f{a(E, X, A) : E is an exceptional divisor over X}

Definition 2.1.19. Let (X, A) be a pair where X is a normal variety and A = Y a;D;.
Assume Ky + A is Q-Cartier, then we say that (X, A) is

terminal >0

canonical >0
klt if discrep(X,A) > —land [A] <0
plt > —1

lc > —1



2.2 Higher dimensional case

In this section, we will mainly discuss 3-folds. Given a projective variety X of dimen-
sion > 3, we may assume that X is nonsingular by Hironaka’s resolution theorem. Then
we ask whether K x is nef or not. If K’y is nef, then we get a minimal model. If K'x is not

nef, then we have an extremal contraction X — X;. More precisely,

Theorem 2.2.1. If K is not nef, then there exists an extremal ray R of NE(X) with

Kx.R < 0and a morphism f : X — Xy such that
1. f is not an isomorphism.
2. A curve C' in X is contracted to a point if and only if [C| € R.
3. X1 is a normal projective variety and f has connected fibers.
Such f is called an extremal contraction with respect to R.
This theorem is based on the following theorems. (For a proof, see [KMO08].)

Theorem 2.2.2 (Vanishing theorem). Let >~ d; D; be a Q-divisor and L be a line bundle.
Assume that D = L + Y d;D; is nef and big and ", D; is simple normal crossing. Then
HY(X,Kx + [D]) =0 fori > 0.

Theorem 2.2.3 (Nonvanishing theorem). Let D be a nef Cartier divisor and D' a Q-
divisor. Suppose aD + D' — Kx is Q-Cartier, nef and big for some a > 0 and (X, —D")
is kit. Then H°(X,mD + [D']) # 0 for all m >> 0.

Theorem 2.2.4 (Base point free theorem). Let (X, A) be a kit pair and A be effective. Let
D be a nef Cartier divisor such that aD — Kx — A is nef and big for some a > 0. Then

|bD| has no basepoints for b > 0.

Theorem 2.2.5 (Rationality theorem). Let (X, A) be a kit pair and A be effective such
that Kx + A is not nef. Let a(X) > 0 be an integer such that a(X)(Kx + A) is Cartier.

Let H be a nef and big Cartier divisor. We define

r=r(H)=min{t e R | H+t(Kx + A) is nef }.

8



Then r € Q and is of the form ** where 0 < v < a(X)(dim X +1).

Corollary 2.2.6. Then there exists an extremal ray R such that R.(Kx + A) < 0 and
R.(H +r(Kx +A))=0.

Theorem 2.2.7 (Cone theorem). Let (X, A) be a kit pair and A be effective. Then

1. There are (countably many) rational curves C; in X such that

0< —(Kx+A).C; <2dimX

and

NE(X) = NE(X)xx1ay>0 +Y_Rs0[C}].

2. Given any € > 0 and ample Q-divisor H, then

NE(X) = NE(X) (g +atemn>o + Y Roo[C].
finite
3. Forany F C NE(X) a (Kx + A)-negative extremal face, there exists a unique
morphism fr : X — Y with Y being projective such that (fr).(Ox) = Oy.

Moreover, for any curve C in X, fr(C) is a point if and only if [C] € F.

4. LetY and fr as above. For any line bundle L on X such that L.C' = 0 for all curves
C with [C| € F, then there exists a line bundle Ly on'Y such that L = (fr)*Ly.

Remark 2.2.8. Combining (3) in cone theorem with the corollary to rationality theorem,

we have the extremal contraction we want.

Here comes a problem, is X still smooth ? The answer is No. There is even an
example of a smooth projective 3-fold X such that Ky is not nef and, for any extremal
contraction f : X — X', X’ is a singular 3-fold. For an example, see [Mat02, Example
3-1-3].

Thus, we should go out the category of smooth varieties. In other word, we should
allow some mild singularities. Hence, we consider a category € which consists of normal

projective Q-factorial varieties with only terminal singularities.

9



Note that the notion of K x being nef still make sense since X is Q-factorial.

Next, extremal contraction holds in €. More precisely, for any object X in C, the
corresponding X; in Theorem 2.2.1 is an object in C.

Let f : X — Y be a birational extremal contraction. If codimension of exceptional set
of fis 1 (resp. > 2), then we call such f a divisorial contraction (resp. small contraction).

However, for a small contraction f : X — Y, Ky is not Q-Cartier. Indeed, if Ky
is Q-Cartier, then Kx = f*Ky since f is small. For any curve C contracted by f, 0 =
ffKy.C = Kx.C' <0, a contradiction.

So we go out the category € again. This time, the singularities of Y may too wild to
control. Nevertheless, Mori gives a solution to this problem. It is “flip”, a new operation

that make us stay in the category C.

Definition 2.2.9 (flip). Let f : X — Y be a small contraction of an extremal ray with

respect to Kx and X € C. More explicitly,
1. f is a birational morphism onto Y and X € C.
2. f is small.
3. —Kx is f-ample.
4. The relative Picard number p(X /Y) = 1.
The morphism f* : X* — Y is called a flip of f if
1. f* is a birational morphism onto Y and X+ € C.
2. fT is small.
3. Kx+ is fT-ample.
4. The relative Picard number p(X+/Y") = 1.

Example 2.2.10. Consider Z = V(xy — 2t) C A%, It has only one singularity P =
(0,0,0,0). Blowing up P, we get a birational morphism Y — Z from a smooth variety Y.

This morphism contracts one divisor E = V (zy—zt) C P3. Note that £ = P! x P! — P?

10



by Segre embedding. Then we can contract £ in two different directions given by the two

projections on P!

Note that Ky ~z 0 and Kx+ ~z 0. Then we choose an ample divisor Bt on Xt and

put B = ¢~ '(BT). Then Ky + B is negative over Z but K y+ + B is positive over Z.

Proposition 2.2.11. Let f : X — Y be the small extremal contraction with respect to K x
from a normal projective Q-factorial variety X with only terminal singularities. Then a
flip ft: XT = Y exists if and only if the canonical ring R := @50 f.Ox(mKx) is a
finitely generated Oy -algebra. Moreover, in the latter case, the flip has the description

ft :ProjR — Y. Hence, it is unique.

If flips exist, then it not only makes us come back to the category C but also makes X
closer to being nef.
Remark 2.2.12. By [BCHM10], flips always exist.

In 1986, Shokurov proved that the termination of flips in dimension 3, see [Sho86].
In 1987, Kawamata, Matsuda and Matsuki proved for dimension 4, see [KMMS87]. For
dimension > 5, it is still open.

To sum up, we have the following theorem and flowchart.
Theorem 2.2.13. Let (X, A) be a projective normal Q-factorial varieties of dimension
3 with only terminal singularities where A is an effective Q-divisor. Then there exists a

sequence of birational morphisms

(X,A) = (XO’AO)&(Xl,AIL,..E)(XS,AS)

with the following properties.

1. Each (X;,A;) is a projective normal Q-factorial varieties with only terminal sin-

gularities of dimension 3.

11



2. For each i, the relative Picard number p(X;/X;11) = 1 and (Kx, + A;).C; < 0

for all ¢;-contracted curves Ci.
3. X satisfies one of the following conditions.

(@) (Xs, As) is a minimal model, that is, Kx, + A, is nef.

(b) There is a surjective morphism ¢ : Xy — Y to a projective normal variety Y

with dimY < 3 such that ¢ : Xy — Y is a Mori fiber space.

Is Kx nef? ) ‘Xlsa
minimal model.

|

Cone theorem

Contraction theorem

Yes p: X —->Yis
a Mori fiber space.

o ‘

codim Ex(¢) =17

Yes

No

Flip conjecture
X --—--~Xtel
NS
Y

Figure 2.1: Flowchart for MMP in dimension 3 or higher.
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Chapter 3

MMP in positive characteristic

In this chapter, & is an algebraically closed field and, if I do not mention, of positive

characteristic p.

3.1 Differences with characteristic zero

In characteristic zero, there are two tools that are used frequently, resolution of singu-
larities and Kodaira vanishing.

Abhyankar proved [Abh56] that resolution of singularities hold for surfaces in all char-
acteristic. He then proved [Abh66] that this also holds for 3-folds in characteristic > 5. In
2008 and 2009, Cossart and Piltant proved [CPO08], [CP09] for 3-folds in any characteristic.
For dimension > 4, it is still open.

For Kodaira vanishing, it does not hold in general in positive characteristic. (even in
dimension 2, for an example, see [Ray78])

Besides these, there are some geometric difference.

Theorem 3.1.1 (Generic smoothness). Suppose char(k) = 0. Let f : X — Y bea
morphism with X being smooth. Then there exists an open subset U in 'Y such that the

fibers of f over any points in U are smooth.

Example 3.1.2 (Counterexample to generic smoothness). Consider X = (y? + 2P +t) C

A} ,andY = A} over an algebraically closed field k with positive characteristic p. Put

13



[+ X — Y be the projection. Then the fibers of f overc € Y is (g = y?>+ 2P+ ¢ =0) C
A?. Note that
99 _ 09

=0and == =2y =0ify =0
ox an dy Y ny

Then, (., 0) is a singular point of the fiber where 2 +c = 0. Hence, all fibers are singular.

This gives a counterexample to generic smoothness in positive characteristic.
Next, I give some properties and phenomenon only occur in positive characteristic.

Example 3.1.3. Suppose char(k) = p > 0. Let X =Y = Al. Consider a ring homomor-
phism k[t] — k[t] sends ¢ to tP. Then it corresponds to f : X — Y be given by a — d”.
For any a € Y, the fiber over a is given by (¢t — b)? = 0 where 0 = a. That is, we have

non-reduced fibers.

As we see above, in positive characteristic, the Frobenius map plays the most important

role.

Definition 3.1.4. Let X be a scheme over k with char(k) > 0. The (absolute) Frobenius

morphism F': X — X is an identity on points and p-th power on its sections.

Example 3.1.5 (X = SpecA). The corresponding ring homomorphismis f : A — A

which sends a to aP”.

Then we have a diagram

X . X

\
N\,
\\\ l \L
\\

Speck N Speck

where X®) = Speck Xgpeck X. The morphism X — X () is called the geometric Frobe-

nius.

14



Example 3.1.6 (X = A'). The corresponding diagram is

where ¢ : S a;it' — S alt' and ) : t — P,

The following proposition tells us that the geometry over F,, is different from other

fields.

Proposition 3.1.7. Let k be an algebraically closed field of arbitrary characteristic.
1. If k # T, then all nonzero abelian varieties over k have infinite rank.
2. If k =T, then all group schemes of finte type are torsion groups.

Proof. See [FJ74, Theorem 10.1] and [Tan12, Fact 2.4].

Corollary 3.1.8. Given X be a projective variety over F, and D be a Cartier divisor. If

D =0, then D is a torsion in Pic X.

Proof. See [Kee99, Lemma 2.16].

3.2 F-Singularities

In this section, I introduce how to define singularities via the Frobenius morphism.
Surprisingly, they have something to do with singularities defined by discrepancies. (See
Theorem 3.2.8.)

Let (X, B) be a pair with an effective Q-divisor B.

Definition 3.2.1. (X, B) is sharply F-pure at z € X if the map

(Ox)z = (FLOx([(p° = 1)B]))a

15



splits for all e € N.

Definition 3.2.2. (X, B) is strongly F'-regular at x € X if, for all effective divisors E,

there exists an integer e > 0 such that (Ox), — (FfOx([(p® — 1)B| + E)), splits.

Example 3.2.3 (X = A'). The map Ox — F,Ox corresponds to a ring homomorphism

k[t] — k[t] which sends f to f?. Note that we have a diagram

Klt] —— 55— k1]
a B
zaimz% 4%
k[t]

Note that « is a bijection and 3 splits. Then F splits and A! is sharply F-pure.

Example 3.2.4. 1If X is smooth, then we want to show that X is sharply F-pure. Fix a
closed point z € X. Put R = (Oy), and it is a regular local ring of dimension = dim X .
We have an exact sequence 0 -+ R — FfR — N — 0 where N is the cokernel of
R — FfR. Note that F°R = (FfOx), and R — F¢R splits if N is a free R-module.
Lett € R be an element of system of parameters at . Then R/(t) is a regular local

ring of dimension = dim X — 1. Consider the following diagram

0 0 0
0 {t) FL(t) (N 0
0 R F*R N 0

0— = R/{t) — FeR/{t) —> N/{{)N — =0

Note that N is finitely generated since R is a regular local ring and FYR is free. So if
N/(t)N is free, then N is a free R-module by Nakayama’s lemma. Thus, by induction
on dim X, we only need to show for dim X = 0, which is automatically true since R is a

field.

16



Before proving an important theorem 3.2.8 in this section, I show some properties for

F-singularities.
Proposition 3.2.5. If (X, B) is strongly F-regular, then it is sharply F-pure.

Proof. Fix any e € N, we may choose m € N such that all coefficients of m[(p® — 1) B]

are greater than p°. By strongly F'-regularity of (X, B), there exists ¢/ € N such that

Ox — FZOx([(p” = )BT +m[(p° = 1)B]) (3.1)

splits.
Claim. € > e.

Indeed, if ¢’ < e, then the morphism 3.1 above factors through O x — Ox(.5) for any
component S of [(p® — 1)B]. Thus, Ox — Ox(.S) splits, a contradiction.
Note that the morphism 3.1 factors through Ox — FfOx([(p® — 1)B]) since ¢’ > e.

Hence it splits. [

Proposition 3.2.6. (X, B) is strongly F-regular if and only if, for all effective divisors E,

there exists ¢ = p° such that the map Ox — F¢Ox([p°B|+ E) splits for all ¢ = p° > .

Proof (due to [HWO02]). The part ‘if” holds since the map

Ox — F{Ox([p°B] + E)

factors through F¢Ox ([(p® — 1)B] + E).
To show ‘only if”, let £ be any effective divisor and choose an effective divisor D
such that [¢B| < [(¢ — 1)B] + D for all ¢ = p°. Since (X, B) is strongly F-regular,

there exists ¢/ = p¢ such that

Ox = F*Ox([(¢ —1)B]+ E+ D+ [B])

splits. Note that this map factors through ¢ Ox ([¢'B] + E + [B]), then the map Ox —
F¢Ox([¢'B]+E+[B]) splits. On the other hand, by Proposition 3.2.5, (X, B) is sharply
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F-pure, hence X is sharply F-pure. Then the map F¢ Oy — F¢+¢ Oy splits forall e € N.
Applying @ s F¢Ox([¢B]), wehave F*Ox([¢'B]) — FOx(q[¢ B]) also split.
Thus, the map

Ox — FS™0x(q[¢ Bl + E + [B])

splits for all ¢ € N. Note that this map factors through I+ Ox([qq'B] + E). Hence, the
map Ox — F¢Ox([p°B] + E) splits for all ¢ = p©¢ > ¢'. O

Proposition 3.2.7. Suppose (X, B) is sharply F-pure (resp. strongly F-regular) with X
being normal and B being an effective Q-Cartier divisor such that K x + B is Q-Cartier.

Then the coefficients of B < 1 (resp. < 1).

Proof (due to [HWO02]). Suppose there exists a component S of B with coefficient > 1
(resp. > 1). Then there is a ¢ = p° such that the coefficient of (¢ — 1) B (resp. ¢B) in S

is at least g. So we have [(¢ — 1)B]| > ¢S (resp. [¢B]| > ¢S). Therefore, the map
Ox — FOx([(q — 1)B]) (resp. Ox — FOx([¢B]))

factors through Ox — Ox(S) — FfO0x(¢S), which does not split. Thus, by definition
(resp. Proposition 3.2.6), (X, B) is not sharply F-pure (resp. not strongly F-regular), a

contradiction. ]

In fact, sharply F'-purity and strongly F'-regularity are analogous to log canonical and
Kawamata log terminal. Moreover, they share the similar properties. One of the most

important theorem is as follows [HWO02].

Theorem 3.2.8. If (X, B) is sharply F-pure (resp. strongly F-regular), then (X, B) is

log canonical (resp. kit).

Proof. We may assume that X is affine, say Spec RR. Let f : X — X be a proper birational
morphism with X being normal. Write Kz + B = f*(Kx + B) + Y q,E;.

Step 0 We have the following duality :
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Let X be a normal variety over k with char(k) = p > 0 and D be a divisor. Then

for all e € N, we have an F7O x-isomorphism

Homg, (F{Ox(D),0x) = FLOx((1 - p°)Kx — D)

Indeed, by duality of finite morphisms, we have
Homy  (F{Ox(D),0x) = FfHom(Ox(D),wx,x)
where wy /x is the relative dualizing sheaf of F'°. Note that
wx/x = Ox(Kx — p°Kx).

So HOI’I’I(OX(D),WX/X) = OX(—D + (1 —pe)Kx).

Step 1 Fix O3(K5) — L = k(X). Then we can choose a nonzero b € R such that
b- H(X,wy') C HY(X, w)?(f) fori =0,1,...,r — 1 where r will be fixed later.

Step 2 Assume that (X, B) is sharply F-pure. Let ¢ : FfOx([(p®—1)B]) — Ox be the
splitting of Oy — F*Ox([(p® —1)B]). Then it induces a splitting ¢ : F°L — L of
L < F°L.PutY = X\Z where Z = Supp ((qNS(Fng) +05%)/0%). Since FYO;
is a coherent O z-module, Y is an open subset of X and is the maximal open subset

of X where ¢ induces an Oy -linear map f (@) : FEOy — Oy.
Claim. f*(¢) gives an F-splitting of Y.

Proof. Let U be an open subset of X where f 1s an isomorphism.
Note that codim(X\U, X) > 2 and U is dense in Y. Also, Oy — FfOy — Oy
determines an element of H%(Y,Oy) C H°(U,Oy) = R which is the identity on

U. Thus it is an identity on Y.
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Step 3 Apply duality on X and (X, B), we get

Homog(FfOXv, O5) = FPO0z((1 —p9)Ky)

Homo (FZOx ([(p° — 1)B1), Ox) = FrOx((1 - p°)Kx — [(p° — 1)B])
So¢ € FfOx((1 —p°)Kx — [(p° — 1)B]). Note that
frf* (Kx + B)) = f(r(Kg + B) = rY_a;E;) = r(Kx + B).

Then H(X,rf*(Kx + B)) = H(X,r(Kx + B)) is principally generated as an
R-module. Here, we require that r is divided by the index of Kx + B. Write

p¢—1=mr+iwith0 <i < r. Then

Ox((l—pe)KX — [(pe—l)B—‘) Q Ox(—mT(Kx+B)—in)

N

b HO(X, 0¢(—mrf*(Kx + B) — iK3))

C b 'HYX,05((1 - p)Kz + > mra;E;))

Step 4 Suppose a; < —1, then we choose r € N satisfying the requirements above and

a; < —1— L. Put £ be the generic point of E;. Note that

—v—mra;—q > —v+m(r+1)—mr—i+1

= m—v—i+1—00as qg— o0.

where v = vp,(b) and m = []. So we can take ¢ sufficiently large such that
—v—mra; > q. Thenat, f*(¢) € F(m105((1-p°)K5)) = THom(F;0%,0%))
where 7 is a regular parameter. Thus, £ € Y and f*(¢)(F£Oye) C 70Oy, which

contradicts to that f*(¢) gives a splitting of Y.

Step 5 Suppose (X, B) is strongly F-regular. We have known that all a; > —1 and
| B| = 0 by Proposition 3.2.7. Now we suppose that a; = —1 for some j. We

consider a Cartier divisor £ defined by ¢ € R. Then by assumption, we have a
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splitting ¢ : FfOx([(p° —1)B] 4+ E) = Ox of Ox — FfOx([(p® —1)B] + E).

Note that 1 also gives a splitting of Ox — FfOx([(p® — 1)B]). Moreover,

Y € Homo, (FfOx([(p°—1)B] + E),Ox)
= F/Ox((1—-p)Kx —[(p°—1)B] — E)

C F(bHUX,05((1 = p)Kg + > mra,E; — E))).

We can choose ¢ such that t = v, (c) > r +v. Thent — v +mr > (m +1)r > q.
Thus, at §, we have f*(¢) € FZ(m70%((1—p°)K5)) = nHom(FO%, O5)) where
m 1s a regular parameter. This leads to a contradiction as above.

]

Remark 3.2.9 ([HWO02]). The converse statement to the part of sharply F' purity does not
hold.

3.3 MMP for surfaces

Before proving that MMP works for surfaces, I recall some theorems.

Theorem 3.3.1 ([CTX13]). Given a pair (X, B) which is strongly F-regular with K x+ B
being not nef and an ample divisor A. Let t be the smallest number such that L = Kx +

B+ tAisnef Thent € Q.
Remark 3.3.2. It is analogous to rationality theorem in characteristic zero.

Theorem 3.3.3 (Cone Theorem, [Tan12]). Let X be a projective normal surface and B be
an effective Q-divisor such that K x + B is Q-Cartier. Given any ample Q-Cartier divisor

H, we have

1. NE(X)=NE(X)k, 4550 + X Rso[Cyl.

2. NE(X) = NE(X)ky+B+H>0 T Zfinite R>0[Ci]-

Remark 3.3.4. This theorem is proved by Bend-and-Break technique.
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Theorem 3.3.5 (Keel’s semi-ample theorem, [Kee99]). Let X be projective scheme over k
and L be a nef Q-divisor. Define (L) be the union of integral subschemes V' of dim > 0

and Ly is not big, then L is semi-ample < L|g(y) is semi-ample.

Proposition 3.3.6 ( [Fuj84]). Let X be a projective normal surface of arbitrary charac-

teristic and L be a nef line bundle. If k(L) = 1, then L is semi-ample.

Proof. Note that we may assume that X is nonsingular. Consider the litaka fibration
© = Qmir| : X --» C where C'is a curve. Then we have mL = E 4 ¢*O¢(1) where E

is an effective divisor. Put F' = ©*O¢c(1). We have

0<EF=(E+F)F=mLF<mL(E+F)=m’L*=0.

Then £.F = L.F = E.L = 0. Write £ = }_ r;E; be the prime decomposition. Thus,

¢« (E;) is a point and E; is the multiple of ¢*(p.(E;)). Hence, E; is semi-ample. O

Now we are ready to prove.

Theorem 3.3.7 (Contraction Theorem, [Tanl2]). Let (X, B = Y b;B;) be a projective

normal surface satisfying one of the following condition.
(QF) X is Q-factorial and 0 < b; <1 for all j.

(FP) k =T, and b; > 0 for all j.

(LC) (X, B) is log canonical.

Let R := R>([C] be a (Kx + B)-negative extremal ray. Then there exists a morphism

contg : X — X' to a projective variety X' with the following properties :
1. (contr).(Ox) = Ox.
2. For any curve C' on X, [C'] € R if and only if contg(C") is a point.
3 p(X) = p(X) — 1.

Proof. 1 skecth the proof for (QF). For detail, see [Tan12].
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Claim. If C* > 0, then p(X) = 1.

Indeed, given any curve C’, by Kodaira’s lemma, we have mC' ~ nC’ + E where
m,n € Nand F is an effective divisor. Then since R>[C] is an extremal ray, [C’] = ¢[C]
for some g € Q.

Hence, for C? > 0, X’ = {a point} is what we want.
Claim. If C? = 0, then C' is semi-ample.

Indeed, we have K x.C' < 0 from (Kx + B).C' < 0 and C* = 0. Consider a resolution
f:Y — X, wehave (f*C)? = 0 and Ky.f*C = Kx.C < 0. By asymptotic Riemann-
Roch theorem 1.3.1, we have x (Y, f*C) > 1. Since h*(Y,nf*C) = h°(Y, Ky —nf*C) =
0 for n > 0, we have (Y, f*C) > 1. Then (X, C) > 1. Since C? = 0, x(X,C) = 1.
By Proposition 3.3.6, C' is semi-ample.

Hence, ¢,,,¢ 1s the contraction we want.
Claim. If C? < 0, then C' is isomorphic to PL.

Indeed, we have C.(Kx + C) < 0 from C.(Kx + B) < 0 and C? < 0. Put r be
any positive integer such that r( Ky + C) is Cartier. Then h°(C, wx (C)"|¢) = 0 implies
h*(C,0¢) = 0 by [Tan12, Lemma 5.2].

Put A be any ample divisor and ¢ € Q> such that (A+¢C).C = 0. ThenG = A+qC
is nef and big. Note that, for any curve C’, G.C" = 0iff C" = C. Thus G|c = 0. Since

C = P!, G|¢ is free, hence semi-ample. By Keel’s Theorem 3.3.5, G is semi-ample.

Remark 3.3.8. In [Tan12], Tanaka shows that
1. When dim X' = 2, X" is still Q-factorial.
2. A normal projective surface over F,, is Q-factorial.

3. A curve C' with C? < 0 on a normal projective surface over IF, can be contracted.

This is not true in general, for an example, see [Har77, Chapter 5, Example 5.7.3].

4. Using (2) and (3), we get the contraction theorem for (FP).
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5. For the case (LC), the proof is similar to (QF). Basically, he uses Bertini’s theorem

to deal with the part where he uses Q-factoriality in the case (QF).
In summary, we get the minimal model program.
Theorem 3.3.9. Let (X, B) be a normal projective surface satisfying one of (QF), (FP)
and (LC). Then there exists a sequence of birational morphisms

d) ¢1 (135,
(X, B) = (Xo, Bo) —= (X1, B1) —= -+ — (X, B,)

with the following properties.
1. Each X; is a normal projective surface.
2. If (X}, B;) satisfies (QF) (resp. (FP) resp. (LC)), then so is (X1, Bj11).
3. Each Ex(¢;) = Cj is a proper irreducible curve such that (Kx, + B;).C; < 0.

4. (X, Bs) is a minimal model or a Mori fiber space.

3.4 MMP for 3-folds

Given that (X, B) with dim X = 3. Note that MMP for 3-folds over characteristic zero
heavily relies on Kodaira vanishing theorem which is not true for positive characteristic.
Moreover, from the surface case in positive characteristic, we know that we need many
efforts to achieve our goal, that is, MMP for 3-folds. So far, Hacon and Xu prove [HX13]
the case when k& = F,, for p > 5, X is smooth and B = 0.

If we accept a more general MMP, then in [HX13], Hacon and Xu show that

Theorem 3.4.1. Let (X, B) be a Q-factorial projective three dimensional canonical pair
over an algebraically closed field k of characteristic p > 5. Assume that all coefficients
of B are in the standard set {1 — = | n € N} and N,(Kx + B) AB = 0. If Kx + Bis

pseudo-effective, then

1. There exists a minimal model X ;,, of (X, B).
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2. If k= E), then X, can be obtained by running the usual (K x + B)-MMP.

Remark 3.4.2. The minimal model in (1) for k # F,, is not obtained by running the usual
MMP. The process they give is similar to usual MMP. But their process may go out of
the category of schemes. More explicitly, Keel shows that the extremal contraction exists
in the category of algebraic spaces. In order to come back to the category of schemes,
they introduced the generalized flip which bring us back to the category of schemes. This
notion is similar to the usual flip. Also, they show the existence and the termination of the

generalized flip.
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Chapter 4

Resolution for terminal singularities

In characteristic zero, we have known that the category which consists of varieties with
terminal singularities is the smallest category that MMP could work in higher dimension.
Moreover, the development of MMP in dimension 3 heavily depends on the understanding
of terminal singularities.

In the beginning, I will introduce some results in characteristic zero for classification
of terminal singularities in 3-folds. These are due to Mori, Kollar and Shepherd-Barron.

For the rest of this chapter, I try to verify or determine whether the classification for
the terminal 3-fold singularities in characteristic zero is still terminal or not in positive
characteristic.

More explicitly, I show that

Proposition 4.0.1. Let k be of positive characteristic. We have
1. Every quotient singularity of type *(a,r — a, 1) where (r,a) = 1 is terminal.
2. Every isolated singularity of type cA, cA/r, cAx/2 or c¢D is terminal.

The methods I use are weighted blowups and (algebraic) change of variables. And the

choice of weighted blowups is essentially due to [Chel3].

26



4.1 Characteristic zero

In this section, k is an algebraically closed field of characteristic zero. We have known

that

Theorem 4.1.1 ( [Rei83], [Rei87]). Any terminal singularities in 3-folds are cyclic quo-

tient of isolated cDV singularities (may be nonsingular).
Recall that we have known
Theorem 4.1.2. Up to isomorphism, the possible du Val singularities are as follows.
I Ay +y? + 2" =0,
2. Dy +y*z+ 2" =0forn >4
3. Bg: 2> +y3+ 2t =0.
4 E;: 2+ 3 +y22 =0,
5. Bg: 2+ 3+ 25 =0.
Mori gives a list for necessary condition for being cDV singularities with quotients.

Theorem 4.1.3 ( [Mor85], [Rei87]). Let P € X = (Q € Y)/u, be a terminal hyperquo-
tient singularities where r > 1 and ) € Y is singular. Then P € X belongs to one of the

following families
L. cA/r: (zy+ f(z,u) =0) C A*/L(a,r —a,1,0)
2. cAx/2: (2 +y* + f(z,u) = 0) C A*/1(1,0,1,0)
3. cAxfd: (2 + 2 + f(z,u) = 0) € A*/1(1,3,1,2)
4. ¢D/2: (p=0) C A*/3(1,1,0,1) where ¢ is one of the following

22 +yzu +y* +u? + ¢, wherea >b>2,¢c> 3

o2+ Pz + Ayt o+ f(z,0?)
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5. ¢D/3: (¢ =0) CA'/5(0,2,1,1) where ¢ is one of the following

22+ y3 + zu(z + )
22 4+ 3 + 2u® + yg(z,u) + h(z,u),g € m*, h € m®
2 +yd + 28 +yg(z,u) + h(z,u), g € m*, h € m°
6. cE[2: (a* + 4+ yg(= u) + h(z u) = 0) C A1/1(1,0,1,1)
Then Kollar and Shepherd-Barron proved that

Theorem 4.1.4 ( [KSB88]). Every isolated singularity in the list above is terminal.

4.2 Cyclic quotient singularities in positive characteristic

From now on, k is always an algebraically closed field of positive characteristic p.
For this type of singularities, I use the language of toric varieties. The method is the

same as in characteristic zero. (For detail in characteristic zero, see [Ful93].)

4.2.1 Toric varieties

N = 7Z" is the lattice of rank n. M = NV is the dual lattice of N.

Fix any strongly convex rational polyhedral cone o in Ny, we have dual cone
0" ={u€ Mg | (u,v) >0forallv € 0} C Mg
Let S, = 0¥ N M and A, = k[S,].

Then we can construct the correspond toric variety U, = Spec A, .

Definition 4.2.1. o is said to be regular if its minimal generators form a part of a Z-basis

of N.
Lemma 4.2.2 (Gordon’s lemma). S, is a finitely generated semigroup.

The proof is characteristic-free. For detail, see [Ful93, page 12].
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Lemma 4.2.3. If o is regular, then the corresponding U, is nonsingular.

Proof. Since o is regular, we have minimal generators uq, us, . . ., u, of 0.
Then x“1, x“2, ..., x"" are algebraic independent. Indeed, if [T(x")% = [](x*)% where
a;,b; € NU{0}, then Y a;u; = 3 byu,. Since ug, ua, . . ., u, form a basis, we have a; = b,
forall j =1,...,n.

Thus, U, = Speck[x"!, x"2,...,x""] = A" O

4.2.2 Cyclic quotients

Let &, be the r-th roots of unity. Unlike in characteristic zero, &, may be 1. For exam-
ple, r = p.

Given A" with coordinates x4, ...,z,. Consider an action of y, = (Z/rZ,+) on
A" by 1 (z1,...,2,) = (£%xq,...,£%1x,). Then we can get a quotient A" /p, =

Speck[x1, ..., x,]/I where [ is an ideal generated by the relations.

Example 4.2.4. Consider i3 = $(2,1). Then

k[x,y]“‘"’ = k[37373/375€y] = k[$1,132,373]/(561$2 - :c%)

Although A™/pu, is A", we still denote Speck[z1, ..., x,)/I by A"/u, where [ is an
ideal generated by the relations for viewing &, just a symbol with {7 = 1. This is reason-

able since the language of toric varieties cares about the relation but not an actual action.
Proposition 4.2.5. A"/, is a toric variety.

Proof. For detail, see [Ful93, page 35].

In fact, every fan can be refined to a regular fan by adding finitely many rays. More-
over, adding a ray corresponds to a weighted blowup.
To sum up, we may resolve such singularities by finitely many weighted blowups.

Then computing the discrepancy, we have the following result.
Proposition 4.2.6. A%/, is a terminal singularity if and only if 1, = *(a,r — a, 1).
For detail, see [Rei87].
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4.3 cA, type singularities

From now on, I show the second part of Proposition 4.0.1.
Put char(k) = p > 0. I assume that the singularities are isolated'.

For the case of characteristic zero, cA,, type singularities are of the form
X = (zy + 2"+ tg(z,y,2,t) = 0) C A*,

Note that, by an easy change of variables, it is isomorphic to X = (22 + y* + 2" +
tg(x,y, z,t) = 0) C A* except for p = 2.
Forp = 2, 22 + % + 2" = 0 is not a du Val singularity. More explicitly, it is not

normal since the singular locus is * = y, 2 = 0, which is one dimensional.

Proposition 4.3.1. Any isolated cA,, type singularities of the form
(zy + 2"+ tg(x,y, 2,t) = 0)

with p > 0 are terminal.

For some technical reasons, I consider
X =(f=ay+2""h(2) +tg(z,y,2,t) =0) C A

where h(0) = 1.

Write g(z,y, z,t) = go + g1 + g2 + g>2 where g; is the homogeneous part of g with
weight j in z, y, z. More precisely, write go = go(t), g1 = ¢°(t)x + ¢¥(t)y + ¢°(t)z, and
92 = Yi<icj<s 97 (t) 35

For T'(t) = 3" a;t', we define

ord; T'(t) = min{i | a; # 0}, LC(T) = @orq, 7 and C;(T) = a;.

"Here I do not give an explicit definition for isolated singularities in positive characteristic. What I use
is that the point is not isolated if the singular locus through it has dimension greater than 1.
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Put m = min{ord, ¢*, ord; ¢} and ¢ = ord, ¢°.

By using following change of variables

r—x—tg¥
y—y—tg*

zZ—Z

t—1

we may assume that m > 1.
Before proving the proposition, I give a flowchart for my proof.

Y

[ May assume m > /. }

[ May assume ord; gy < 2m. }

Yes

~

quaxmm}

v= (Lo —-1,1,1).

quotient
singularity

Figure 4.1: Flowchart for cA,,.
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431 n=1

Claim. We may assume that ord; gy < 2m.

Proof. 1f ord; go > 2m + 1, then we consider the change of variables

r—x—1gY

y—y—tg*

2 — z — ct™T!

t—1
Then we have zy + 2°h(z) 4+ t(go + g1 + g2 + g>2) = 0 where
50 =gy — tg:tgy T 02t2m+1h<_ctm+1> _ Cthrlgz
+ t29x2 (gy)Q + t2gy2 (g;x)z + 62t2m+2gz2

4 thxygxgy 4 Ctm+2gngy + Ctm+2gyzgm

+ (terms with order > 3m + 3)

G = —2tg"¢¥ —tg™g" — ct™ ' g"* + (terms with order > 2m + 2)
§Y = =2V ¢" —tg™g¥ — ™ g% + (terms with order > 2m + 2)
§Z — gz - QCtmh(—tm+1) + 62t2m+1hl(_tm+l)

—20tm+1gz2 —tg™g¥ — tg”*g* + (terms with order > 2m + 2).

Without loss of generality, we may assume that m = ord, ¢* < ord, ¢*.

Note that m > m + 1.

e Iford; g* < m, then by choosing ¢ # 0, we have

ord; o <2m+1<2(m—1)+1 < 2m.
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e Iford; g > m, then by choosing c such that

Com41(90) — LC(g") Cn(g”) + ¢ — cCr(g®) #£0

wehaveord; go =2m+1<2(m—1)+ 1 < 2m.

e If go(0) # 0, then it is smooth.

e If not, then we consider wBl, : Y — X with weightv = (1,1,1,1). Y is smooth

on? U; U U, U Us. Also, the discrepancy > 1. On Uy, we have

Qo(t)
t

Ty + zzﬁ(z, t)+ +g"r+ gy +g°z+tH(z,y,2,t) =0 for some H.

On® Uy N E, we have xy + 2%h(0) + ¢'(0) + g*(0)z = 0.

— If ¢'(0) # 0.
« If 1(0)2% + g°(0)z + ¢’(0) is not a perfect square, then Y is smooth.

« If it is a perfect square, then, after change of variables, Y has only cA;

type singularities. The termination will be proved later.
— If not.

x If ord; gy < 2ord, g7, then induction*on ord; go.

x If ord; g9 > 2ord; g%, then after taking some blowups, we may assume
that g*(0) # 0 and go(0) = 0. In this case, by taking a blowup further, we

have zy + 22h(0) + ¢%(0)z = 0 on E N Uy. Clearly, Y is smooth.

432 n>2

Claim. May assume that m > {

2From now on, {U;}}_, is always an open affine covering of Y and Q); is the origin on U;.
3From now on, F is always the exceptional divisor of wBl: Y — X,
#Note that we have ord; gy < 2m.
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Proof. It m </

Consider the change of variables

r—x—tg¥

y—y—tg*

z— z—ctg®

t—1

Then we have xy + 2" h(z) + t(go + g1 + g2 + g>2) = 0 where

=90 + —tg"g"+ " (g")"h(—ctg?)
+ g7 (¢") + 19" (6) + g7 (¢°)
g+ g g g + et g g
+ (terms with order > 3m + 3)
" = —2t¢" ¢¥ — tg™g® — ctg™ ¢ + (terms with order > 2m + 2)
G = —2gV ¢" —tg™g¥ — ctg"*¢* + (terms with order > 2m + 2)

= g+ (o D) (g h(—etg?) + 1 (—eg ) (~ctg?)

—2ctg” gF — tg"g¥ — tgV g + (terms with order > 2m + 2)

We may choose ¢ # 1 such that ord; g° < /. Note that m > m + 1. Thus, after finitely

many times, we are done. ]

Define ¢/ = min{i; + i3 + 14 + 1 | 212"t € g} and 0 = min{o’,n + 1}. We may

assume that all monomials " 2%3t% with i, + i5 + i, + 1 = ¢’ have i; = 0.

e If o’ =1, then X is smooth.

e If2 < ¢’ < n+ 1, then may assume that ' € g. By taking wBI, : Y — X with
weightv = (1,0’ — 1,1, 1), Y is smooth on U;. On Uy, the only singularity is at (),

which is a terminal quotient singularity of index ¢’ — 1. Also, the discrepancy > 1.

34



On UsNE, we have zy+¢g(t) = 0 wheredeg, g(t) < n+1. Write g(t) = [T(t—a;)"™
where 0 < > r; < n. Then Y has only cA,, type singularities with m < n. Thus,

by induction on n, we are done.

On U, N E, we have zy + g(z) = 0 where deg, g(z) < n + 1. Similarto Us, we

are done.

e If 0’ > n + 1, then we take wBI, : Y — X with weight v = (1,n,1,1). Write
24 S = T](2 — aut)"i where 2t € tg(x,y, z,t)and i+ =n+1= 31,
It is similar as above, Y is smooth on U; and has a terminal quotient singularity at

(2. Note that all remaining singularities are covered by Uy.

On U, N E, we have zy + [(z — ;)" = 0.

— Ifnot all «; are the same, then we are done.
— Ifall ; = &
« if « = 0, then o’ will decrease and we back to the first step.

« If o # 0, then after doing a change of variables (this may increase ¢”), we

back to the first step.

Then we must to show that it is impossible that, in each step, we always have o’ > n+1

and same «;. In other words, the process will terminate.

4.3.3 Termination

Now I assume that we have infinite steps.

Remark 4.3.2. For any given N, we may assume that ord; ¢*'¥*** > N fori; > 1 or
12 > 1. Since I use finitely many identities and relations to get a contradiction, I could

pick an N which is large enough to have the following arguments.
Note that, after finitely many steps, the original gy, g, . .., g° will disappear.

Let S = {jl¢”’ 2 € gand j > n + 1}.

e If S = (), then the singular locus of X = (zy+2"*! = 0) passing through the origin

has dimension > 1, a contradiction.
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o If |S| > 1. Write 7 =X, #Va for j € S. Doing z — z + agt, we have’

zy+ 2" Z ZD,,.;( )aé_iOtN””iOz"D where 5;7;,{ &| ks

JES k=11ip=0

Taking a blowup, we get

o + Zn-i—l + Z Z Z fzo m( )ag—ioth-i-j—n—lzio‘

j€S k=1149=0

Then doing a change of variables 2 — 2 + a4t and taking a blow up, we get

xy+zn+1 +Z Z Z Z 5207 < )( )ao 100/0 llth+] 2(n+1)+10211'
41

7€8 k=1141=010=11

By induction, we have

ey + 2+ Y 25107 (L 0, - - - ’W._l) i Ve Hi—(EHD) (n+ D)+ i

JES k= 1SJ 0117"-728

where®

) =A(ie,--i0) € Z | 0 <ip gy <0 g <}

jv Z.Oa"'aif—l o j 7:O Z.f—l
105 U1y« -y be o) \11 ig
i J—t0  i0—i1 Tg_1—%¢
a — ao Oél R O{Z .

Igilzi0+i1+“'+’l’@71.

We may assume that §; ,, # 0 for the largest j, x and for all <.

For 7, = 0, we have

N4+j—(l+1)(n+1)=n+1 (4.1)

SThe expression is not complete. I only write down the terms that I want to keep track of.
%We make a convention that 0 = 1.
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Then N] +j = ((+2)(n+1).

Next, for g =41 = --- =14y = joand ip,y = - - - = 1 = 0 where jy will be chosen
later, we have

N +j—('+1D(n+1)+jl =n+1.

Then

0= wg

n+1
Again, forig =i, = -+ =i, = joand ip41 = - -- = iy = 0, we have
N4 j— "+ 1D(n+1)+jol' =n+1.

Then

Y/ B Jo

=0 n+1
Inductively, we get

() — p(r=1) o

(=1 — fr=2) 41

Then

o) gr-1) ( Jo )Tg
n+1

0 = €<1+ Jo +~~+< J0 >>
n+1 n+1

— If n + 11 4, then we choose jo = j. Thus, we have /(") ¢ N for some r € N,

a contradiction.
-~ Ifn+1]j.

« If p 1 j, then we choose jo = 1, we get a contradiction as above.

« If p | jand p  n + 1, then we write j = p™u where p 1 u. Choose

Jo = p™. Note that p { (pzn) and frl ¢ Z. Thus, we get a contradiction

as above.

x Ifp | jand p | n+ 1, then N7 must be divisible by p because of the equa-
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tion 4.1. Then we consider the second maximal N7,. If the corresponding
o = 0,then N/ + j —a(n+1) = N/, +j — (n+1). Thenp | N,. If
€. # 0, then we also have N7, +j — (¢ +1)(n + 1) = n + 1. Thus, we
still have p | N7,.

Next, I consider the second maximal element j; in S if exists. Note that
p | jo since p | n + 1. Otherwise, it will produce t°z for some b and
it cannot be eliminated by “2"*!”, contradiction to infinite steps. Then

p | N72. Inductively, we get

X = (zy+ (G(z,y,2,t))P + H(x,y, z,t) = 0)

where every term in H(z,y, z,t) must be divisible by x or y and degree
in each variable is not divisible by p. If all terms in H(x,y, z,t) can be
divided by 2, zy or 2, then the singular locus through of X has dimesion
> 1, a contraction. But if we have the term only divided by x, then we can
do a change of coordinate x — x + at” and z — z + bt" for some suitable
a, b and a large r to make tgo(t) not the p-th power of some polynomials.

Then we are done.

4.4 cA/r type singularities

Put char(k) = p > 0 and r > 2. I assume that the singularities are isolated. For

characteristic zero, cA/r type singularities are of the form

1
X = (Qp =7y + Zn+1 +t9<$,ya Z7t) = 0) C A4/7(S7T - S, 1,7").
r

Proposition 4.4.1. Any isolated cA/r type singularities of the form above with p > 0 are

terminal.

I consider a more general form X = (p = zy + 2""h(z) + tg(z,y,2,t) = 0) C

A*/L(s,r — s,1,r) where h(0) = 1 and (r,s) = 1. Note that r | n + 1. Write f =
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2"+ tg(w,y, 2, t).

Put

k" = min{m | t™ € f}
. S, 1. ] L
k= min{—i; + —izg+iy | 2" 2"t" € f}
r r
kY= min{ i+ —ig iy | 20200 € fi > 1)
r r

Note that 1 < k < k*, k < K" < 0.
Claim. We may assume that k # K*.

Proof. For any monomial cz" 2t" € f with 24y + %2'3 +44 = kand ¢; > 1. Consider
a change of variables y — y — ca~12%¢% then we can eliminate this monomial and it
may increase x and k*, but not x”*. It is because such monomial should be zt* which is

not fixed by %(s, r — s,1,7). Thus, after finitely many times, we are done. [
e If k¥ = k = 1, then it is a terminal quotient singularity.

o If i 4+ k > 2, then we take wBI, : Y — X with weight v = (s, k1 — s, 1,7).
On U; (resp. U,), the only singularity is the origin and it is a terminal quotient

singularity with index s (resp. xkr — s).’

On Us, we have ¢ = zy + 2% f (225", yz5r=3)/7 217 2t). On Us N E, we have
xy + f(t) = 0 where f(t) is not a zero polynomial. Then there are only finitely

many singularities. And the singularities are at worst of cA type.

On U,;N E, we have zy + f(z) = 0 where f(z) is not a zero polynomial. Except for

the origin, the possible singularities are of cA type. For the origin, it is of cA/r type

#

singularity with #* = k¥ — k. Note that the discrepancy > 0. Hence, by induction

on k", we are done.

"It is nonsingular if s = 1 (resp. xkr — s = 1).
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4.5 cAz/2 and cD type singularities

Before proving, I give flowcharts for my proof. See Figure 4.2 and 4.3. In Figure 4.3,
the dashed line means that some cases will go to cAx /2 type with 7 = p® + 1. Note that

we do induction on both cAx /2 type and ¢D type at the same time.

cAx/2
Yes = No
wBI,, with
v=1(1,2,1,1)
Yes No
wBl with v = wBl with
+2,;+1,1,1 v_ 2,2+1,1,1)

=) S

@ 1s a quotlent Q2 is a quotlent cD type
singularity singularity w1th uh <

Figure 4.2: Flowchart for cAz /2.

4.5.1 Settings

Put char(k) = p > 0. I assume that the singularities are isolated. For cAz/2 type

singularity, it is, in characteristic zero, of the form
(¢ =2 497+ tg(e,, 2, 1) = 0) C AYL(1,0,1,1)
I consider a more general form
(o =2® +9y* 4+ 2" h(2) +tg(x,y, 2,t) = 0) C AA‘/;(L 0,1,1)
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where h(0) = 0 if and only if h = 0. For p = 2, (2% + y* + 2""'h(z) = 0) is not normal,
hence it is not a du Val singularity. Note that we may assume that = ¢ g.

Define 7 = min{i + j | 2t € ¢}. Note that 2 | 7.

Now we may assume that deg, g% >n+1and deg, g¥" > n+1fori e N (resp.

i € Zxp) and j € Z>o (resp. j € N) if 7 is odd (resp. even).

cD,,

(W' —1,2,1) v=(£011)

VT@ U: } [52 } {wBlvwithv:}{ wBl, with J

wBIl, with wBI,, with wBIl, with
v=1(2,1,1,1) v=(1,1,1,1) v=1(2,2,1,1)

terminal cD type
quotient with smaller cA/r type \fvﬁi/ 3 iypeb
singularities ™ orn > =1

Figure 4.3: Flowchart for cD,,.
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For ¢D,, type singularity with n > 4, it is, in characteristic zero, of the form
X =(p=2+y22+ 2"+ tg(x,y,2t) = 0) C AL,
Now I consider a more general form
X =(p=a2"+y*2+ 2" 'h(z) +tg(z,y,2,t) = 0) C A*
where h(z) = 0if h(0) = 0. I redefine g and write
p=a" +y'z+ 2" h(z) +yt’ + tg(x,y, 2, 1)

where yt¢ is the monomial with smallest £ among such form in the original tg(z, y, z, t).
(¢ may be infinite.)

For p = 2, we note that (% + y*z + 2"~ 'h(z) = 0) is not normal since the singular
locus has a component of codimension 1. Thus it is not a du Val singularity.

Put

p = min{2 +j | 2't) € ¢}
= min{p, 20— 2}

™ = min{i+j |z € pandi=0,1}.

Now we may assume that deg, ¢ > 2n — 2 and deg, ¢¥*"" > 2n — 2 for all integer

i with 0 <7 < n — 1. Moreover, we may assume that f, = > g, ;_, 2t/ = t".

4.5.2 The base case

Proposition 4.5.1. Any isolated cAx/2 type singularities of the form above with p > 0

and T = 2 are terminal.
Proof. We have two cases.

o 22 +y?+ 22 +tg = 0. In this case, we may assume further that 2z ¢ g and go(t) Z 0.
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Then taking wBl, : Y — X with weight v = 1(1,2,1, 1), we get that it is smooth

on Uy U Uy U Us. On Uy, it is of cA type singularity.

o 22+ 9%+ 2" +tg = 0 with n > 1. From assumption, at least one of ¢ or z is in
g. Taking wBI, : Y — X with weight v = $(1,2,1, 1), we get that it is smooth on

Uy U Uy U Uy. On Us, it is smooth or of cA type singularity.

Proposition 4.5.2. Any isolated cD,, type singularities of the form above with p > 0 and

ub < 3 are terminal.

We may assume that go(0) = 0.
To prove the proposition, I divide it into three cases with respect to /.
e (= 1. Take wBI, : Y — X with weight v = (1,1,1,1). Y is smooth on U; U Uj.
On U, N E, we have 22 + ¢ + (g4 (0)t + g°(0)z) = 0.
— If g*(0) # 0, then only possible singularity is (0,0, —1/¢*(0),0). And then
we do a change of variables, it’s not hard to see that it is at worst of cA; type.
— If ¢*(0) = 0, then it is smooth.

On U3 N E, we have 22 + yt + (g} (0)t + ¢g*(0)) = 0. The only possible singularity

is (0, —g*(0),0,0) and it is at worst of cA; type.

e / > 3. So we have ;1 < 3 from the assumption p® < 3. Thus, at least one of
t, 12, z, 2t,t3 is in .
— If't € ¢, then it is smooth.
— From the form of ¢, we have z ¢ .

— If zt € p, then blow up with weight (1, 1,1, 1). It is smooth on Uy, U3 and Uy.
On U, N E, the only possible singularity is the origin. And it is at worst of cA;

type.
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— If 2t ¢ pandt? € ¢, thenwetake wBIl, : Y — X withweightv = (1,1,1,1).
It is smooth on U; U Uy. On U, and Us, there are isolated singularities which

are at worst of cA,,-like singularities.®
— Ift> € pand t?, 2t ¢ ¢, then we take wBI, : ¥ — X with weight v =
(2,1,1,1). Write
Z cijzitj = H(O&Zt — ﬁlz)”

i+j=3
where > r; = 3. By y — y + [t for some suitable 5, we may assume that

r; < 2 for all 7.

On U, N E, we have y?z + [[(ait — B:z)" + cyzt = 0. For z = t = 0, we have
y = 0 and %ﬂy:z:tzo = 1. Then the origin is a terminal quotient singularity.
Other singularities are on Us U Uj.

On U;NE, we have z+[[(a;t — B;2)" 4+ czt = 0. For t = 0, then it is smooth.
On Uy N E, we have y?z + [[(a; — Biz)" + cyz = 0. Since t3 € ¢, we have
z # 0. That is, the singularities are on Us.

On Us N E, we have y* + [[(a;t — 3;)" + cyt = 0. We could show that it has

only finitely many singularities. Each is of the form
22+ 9% (ay + b) + cyz + dat + 2°t + ytg = 0.
where a and d are not zero. Taking wBl, : Z — Y withweightv = (1,1,1, 1),

we could show that the singularities of Z are at worst of cA; type.

o /= 2. I divide it into two cases. As above, we write

fa= > ¢zt = [[(out — Biz)"

i+j=3
where > r; = 3.

— f3 # 0. We may assume that f5 is not cubic.

8Here, the form is difference from the origin cA,, type singularity. But the method for cA,, can be applied
to this case. Moreover, it has at worst of cA,, type singularities after taking a weighted blowup.
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We consider wBl, : Y — X with weight v = (2,1, 1, 1). Note that the origin
on U; is a terminal quotient singularity.

On U, N E, we have 2 + t* + f3(2,t) + czt = 0. The origin is smooth. Other
singularities are on Us U Uj.

On U,NE, wehave y22+y+f3(2, 1)+cyz = 0. Thenwe have 2yz+1+cz = 0.
This tells us that the singularities are on Us.

On U3 N E, we have y* + yt* + f3(1,t) + cyt = 0. We could show that it has

only finitely many singularities. Each is of the form

drz + 222 4+ 3> + yt> + t*(at +b) + Iyt + ytg = 0.

where d is not zero. Taking wBl, : Z — Y with weightv = (1,1,1,1), we
could show that the singularities of Z are at worst of cA; type.

~ f3 = 0. Note that at*> ¢ . Write f; = >, ;_4 2t). We consider wBlI, :
Y — X with weightv = (2,2, 1,1).
On U, N E, we have 1 + yt? + f4(z,t) = 0. Then the only singularity is the
origin which is a terminal quotient singularity.
On Uy N E, we have 2° + y + f4(z, 1) = 0. Then it is smooth.
On U3 N E, we have 2 + yt* + f4(1,¢) = 0. The only possible singularity is
the origin and it is of the form 22 + y?z + yt? + tg = 0. By induction on 77,
we are done.
On U,N E, we have 22+t + f4(z,t) = 0. The only possible singularity is the
origin and it is of the form (2% +yz+t2+ f4(z, t)+ytg = 0) C A*/1(0,1,1,1).
Taking wBl, : Z — Y with weight v = (1,1,1,1), we get only terminal

quotient singularities.

4.5.3 Inductive step

Proposition 4.5.3. Given any isolated cAx/2 type singularities P withp > 0 and 1y :=

7(P) > 4. Suppose that cD type and cAx /2 type isolated singularities with 1i® < 1 and
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T < 19 are terminal. Then P is terminal.
Proof. Write [, =, i, ¢i;z't) =T1(ajz + B;t)". I divide it into two cases.

o If f,, = t™. Without loss of generality, we study the case that 7/2 is odd. Doing
a change of variables, we have 22 + 22t™/2 + y% + f>. .o = 0. We consider

wBl, : Y — X with weight v = 1(79/2 + 2,79/2 + 1,1, 1).
On U, N E, we have 2z + y* + f,42(2,1) = 0. Then Y is smooth.

On Us N E, we have 22t™/2 + ¢ 4 f, 15(1,t) = 0. Theny = 0,t = 0. And z = 0

from % . Thus, )5 is the only singularity which is of the form
Yz + 2yt 4 0?4 2O () - f (1) +t§ = 0.

It is of ¢D type with z° < 2(79/2) — 2 < 70.

On U, N E, we have 1 4 22t™/2 + f, ., = 0. We may consider z = ¢ = 0, then it

is smooth except for (), which is a terminal quotient singularity.
On U; N E, we have y? + 2t™/2 + f_ ., = 0. Note that we only need to consider
the origin, which is a terminal quotient singularity.
e For f,, isnot ¢™.
We consider wBI, : Y — X with weight v = $(70/2,70/2 4+ 1,1,1).
On U, N E, we have 1 + f, (z,t) = 0.

Clearly, the only possible singularities are on Us and U,. (In fact, it is smooth since

the singularities on Us U U, have x = 0.)

On U, N E, we have 22 + f,,(2,t) = 0. We have = 0. And the origin is a terminal

quotient singularity. Others singularities are on Us U U,.

On UsN E, we have 2% + f,,(1,t) = 0. Clearly, we have finitely many singularities

and x = 0. We make f,, > have t™*? in advance. I divide it into two cases.

— Ify # 0, then the singularities are of the form 2%+ 2"¢(2) +cyz+tg = 0 where
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r>2,y € gand x ¢ g. Taking wBl, : Z — Y with weight v = (1,1,1, 1),

we get that Z is smooth on’ V; UV;. and has cA; type singularities on V3 U V.

— If y = 0, then the only possible singularity is the origin since ™2 € f, .».
And it is of the form 22 + y2z + h(z) + t"£(t) + t§ = 0 where 7 > 2 and

£(0) # 0. Note that it is of cD type with u® < r < 7 since f,, is not ™.

On U, N E, we have 2> + fr(2,1) = 0. The origin is smooth since to+2 ¢ frota-
The remaining is y # 0 and z = z = 0. It is of the form z* + 2"¢(z) +tg = 0
where y € gand x ¢ §. Taking wBl, : Z — Y with weight v = (1, 1,1, 1), we get

that Z is smooth on V; U V}; and has at worst of cA; type singularities on V5 U V3.

Proposition 4.5.4. Given any isolated cD type singularities P with p > 0 and g := p® >
4. Suppose that cD type and cAx /2 type isolated singularities with 11> < pg and T < g

are terminal. Then P is terminal.

Proof. Define /' = [ ]. We consider wBl, : Y — X with weightv = (¢/, 1/ — 1,2,1).

I divide it into several cases.

e / =ocand2u = pyg.

Y is smooth except for ()1, () and Q). For @)1 and ()5, they are terminal quotient

singularities. For ()3, it is of the form
1
(2% + 9% + 2" HOn(2) 110 £ tg = 0) C A4/§(1, 0,1,1).

Note that it is of cAx /2 type singularity with 7 < py.

e (=ocand 2y + 1 = py.

This case is similar to above. There is one difference. For ()3, the form is

1
(22 4 4% + 2" HOh(2) + 2P + 1§ = 0) C A4/§(1, 0,1,1).

From now on, {V;}}_, is always an open affine covering of Z.
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It is of cAx/2 type singularity with 7 < pg + 1. If 7 < p, then we are done. If
T = o + 1, then we still apply the previous proposition. Note that there is only one
possibility to come back to cD type singularities with i = 9. And in this case, it

has smaller n. Thus, by induction on n, we are done.

A#0and 20 — 2 = p = pu(P).

On U, N E, we have 22 + z + t* + t* = 0. Then we get that the only singularity is

(22, which is a terminal quotient singularity.

On U, N E, we have 1 + 12z + yt* +t* = 0. Now we only need to consider y = 0.
Then t = 0 from %“5 |e=0. So it is smooth except for ()1 which is a terminal quotient

singularity.

On Uz N E, we have 22 + y? + yt* + t* = 0. The only possible singularity is Q3.
It is of the form (z% + y? + 22"~ 27#h(z) + tg = 0) C A*/1(1,0,1,1) which is of

cAx /2 type singularity with 7 < pu = po.

It is clear that U, is smooth.

A#0and 20 — 2 > p.

It is the same as the case ¢ = oo.

A#0Oand 20 — 2 < p.
In this case, we consider wBl, : Y — X with weight v = (¢, ¢, 1, 1) instead.
On U, N E, we have z2 + y + %, = 0, then Uy is smooth.

On U, N E, we have 1 4 yt* + ob,t" = 0. Then U is smooth except for ); which

is a terminal quotient singularity.

On U, N E, we have 12 + t + 04,t* = 0. Now we only need to consider z = t = 0.
From % |,—0, we get that z = 0. Then the only possible singularity is (). It is of
the form (zy + 22 4+ ¢tg = 0) C A*/4(1,—1,¢,1). Use the method for cA/r, we

could resolve this singularity and get that it is a terminal singularity.
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On Us;, we only need to consider the origin. It is of the form

2?4tz + 22 () + gt +tg = 0.

Then by induction on n, we are done.
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