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ABSTRACT

Diffusion-based molecular communication has become a promising scheme for
communication between nanoscale devices, and various modulation schemes have
recently been proposed, including type, quantity, and concentration modulation.
In this thesis, we investigate molecular communication by separating it into two
categories: coherent molecular communication and non-coherent molecular com-
munication, which are based on the adopted signaling and detection methods.
For coherent molecular communication, we study modulations that convey infor-
mation in molecular quantity or molecular type. Due to the randomness of each
molecule in the diffusion channel, problems such as the crossover effect and the
inter-symbol interference arise which undermine the system performance. This
thesis provides algorithms such as ISI cancellation and threshold-based detection
algorithm to deal with the problems. Moreover, it is shown by mathematical
derivations and computer simulations that the proposed quantity-type modula-
tion, which is designed against the bad channel effects, has reliable performance.
For non-coherent molecular communication, we construct a stochastic model to
describe the concentration magnitude sensed by the receiver. The model enables
more modulation designs since it is generalized to the case that the transmit-
ter send any continuous wave to the the receiver. It also allows better design
for detection algorithm. Amplitude modulation and pulse-position modulation in
non-coherent molecular communication are studied and compared by using the
proposed expansion-based detection as well as the widely-used sampling-based
detection. Through simulation, it is proved that the expansion-based detection

outperforms the sampling-based detection.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Nano-technology has become an important research area and is expected to
have great impact on many fields, including medicine, biology, military, and elec-
tronics. The advance in nano-technology has enabled the development of nanoma-
chines, which are devices in nanoscale that can perform sensing, computation, and
actuation. The computational capability of a single nanomachine, however, is of-
ten quite limited due to the ultra-small size and the ultra-low power capacity.
As a result, an efficient information exchange mechanism between nanomachines
is required in order to coordinate the nanomachines to accomplish complicated
tasks [1].

Unlike modern wireless communication systems in which signals are carried by
electromagnetic (EM) waves, communication in nanoscale through EM waves may
not be practical due to issues such as antenna size, power consumption, computa-
tional complexity, and signal attenuation in fluid environments [2]. Diffusion-based
molecular communication is believed to be one of the most promising solutions
for communication in nanoscale [3-7], which is composed of a transmission nano-
machine (TN), a reception nano-machine (RN), and a diffusion channel between
TN and RN. To convey information, TN releases information molecules into sur-
rounding environment. Those molecules arrive at RN through diffusion process,
RN then captures those arriving molecules and attains information. Fig. 1 shows
a picture for diffusion-based molecular communication. This thesis focuses on
designing modulation and detection schemes for TN to embed information and
RN to attain information by molecules. To discuss modulation techniques thor-

oughly, we categorize diffusion-based molecular communication into two types —
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Figure 1: Diffusion-based molecular communication.

coherent or non-coherent molecular communication — according to the signaling

and detection method used by TN and RN.

1.2 Coherent Molecular Communication

In communication based on EM wave, “coherent modulation” means receivers
can fully recover phase of received signal. Borrowing the idea, we use the term
coherent in molecular communication to mention RN can recover timing informa-
tion of each molecule. In this thesis, coherent molecular communication means
that the signaling and detection are done by counting the number of information
molecules. Both TN and RN are able to count each molecule at a single position
and time instant. Moreover, once an information molecule is captured by RN,
it is removed from the diffusion channel. Diffusion model and channel capacity
related to coherent molecular communication is first proposed in [8]. In coherent
molecular communication, the behavior of each molecule can be investigated sep-

arately, in microscopic view. More precisely, for each molecule released by TN, we
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Figure 2: Coherent molecular communication.

can describe the behavior of this molecule by using the time it requires to reach
RN, which we call the first-hitting time of a molecule. Fig. 2 shows an example
for coherent molecular communication. One major issue in coherent molecular
communication is that earlier released molecules may arrive late and later re-
leased molecules may arrive early, causing crossovers. When molecules are used
to transmit symbols, crossovers between molecules will introduce interference. In
this thesis, we investigate the problem known as inter-symbol interference (ISI) in
coherent molecular communication, and propose two approaches to mitigate the
effect. From simulation, we show that the proposed ISI cancellation algorithm
can improve the performance significantly. Moreover, both the modulation and
the detection methods have low complexity which are suitable for communication

between nanomachines.
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1.3 Non-coherent Molecular Communication

By non-coherent molecular communication, we mean the signaling and detec-
tion are done by sensing the magnitude of the molecular concentration, i.e. the
number of molecules within a small volume around them, at a time instant. Noise
model considering diffusion process and counting errors from ligand-binding im-
perfection is first proposed in [9]. In [10], information is modulated by pulses of
molecules at transmission nano-machine (TN), and RN samples the received con-
centration waveform to make detection. [11,12] study possible modulation tech-
niques in molecular communication via different messenger molecules. Most of the
existing studies take advantage of Robert’s equation to model the macroscopic be-

havior of molecules, that is, the concentration distribution, in space and time as:

U(d,t) = N(47Dt)" 2 exp (_4d_m) : (1.1)

where D is the diffusion coefficient. However, this form simply describes the expec-
tation of the molecule behavior. The fluctuation or randomness of concentration
level should be taken into account. This thesis is the first study that provides
stochastic model for diffusion channel when continuous waveform is applied at
TN. Based on the model, we also propose methods for solving a set of basis func-

tions in order to achieve orthogonal expansion for detection.

1.4 Thests Organization

The rest of the thesis is organized as follows. In Chapter 2, we provide a
one-dimensional modulation and detection scheme, under which we design an ISI
cancellation algorithm that dramatically improves the system performance. In
Chapter 3, we consider a more complicated modulation which embeds information
on both quantity and type of molecules. This modulation combats both ISI effect
and background noise simultaneously. We also provide principles to choose system
parameters to achieve good performance. In Chapter 4 of this thesis, we construct

a stochastic model for the diffusion channel starting from Brownian motion of each
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molecule. Different from the results in [10,12], this model applies to any continuous
wave transmitted by TN. We also solve a set of basis functions that can expand
the received signals into observation vectors, which enables us to design detection
criterion for different modulations. Finally, conclusions and future works are given

in Chapter 5.



CHAPTER 2

QUANTITY MODULATION

2.1 Introduction

In this chapter, we study the communication between two nano-machines with
information embedded in different molecular quantity [13]. In the rest of this
chapter, we call this kind of modulation as quantity modulation (QM). It is known
that in diffusion-based molecular communications, molecules are emitted by the
transmitter and move towards the receiver following the laws of molecule diffu-
sion. Recent studies on diffusion-based molecular communications often model
the statistical behavior of molecule diffusion as a Brownian motion [8]. Due to the
random nature of Brownian motions, molecules that released earlier by TN may
arrive late. Therefore, messages carried in current molecules may be interfered by
those delayed molecules that were transmitted earlier. This phenomenon is known
as the ISI effect in diffusion-based molecular communications. Studies about this
effect can be found in [14] and [15].

There are lots of ways to design filters to eliminate the effect of ISI in con-
ventional communication such as linear equalizer, adaptive equalizer and decision-
feedback equalizer [16]. However, both linear equalizer and adaptive equalizer do
not work well in molecular communication due to time-varying channel response.
In this chapter, we utilize the concept of decision feedback and introduce a method
to mitigate the effect of ISI.

The rest of this chapter is organized as follows: In Sec. 2.2, we introduce the
settings of a binary QM molecular communication system in details. We also
describe the characteristics and the mathematical model of a Brownian motion
channel. Sec. 2.3 focuses on deriving the decision rule for one-shot transmission

of the binary QM system and extending it to the M-ary transmission case. In
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Sec. 2.4, we consider serial transmission and take ISI effect into account. ISI
cancellation method is also described in this section. Numerical results are shown

in Sec. 2.5.

2.2 System Model

In this section, we first give a general model for transmitter, receiver, and chan-
nel in molecular communication. We then describe a QM system of M quantity
levels (M-ary modulation) bearing log, M information bits, which will be used

later to apply our ISI cancellation method.
2.2.1 Transmission Nano-machine

Fig. 3 illustrates a transmitter nano-machine TN transmitting molecules to a
receiver nano-machine RN. When TN obtains information (e.g. bit pattern) to be
transmitted, it starts storing certain number of molecules in a vesicle (container
that stores molecules) and releases these molecules simultaneously into the envi-
ronment. The number of released molecules differs according to the transmitting
information. In practical situations, molecules leaves the vesicle with random tim-
ing which is discussed in [17]. In this thesis, we simply assume that molecules exit

the vesicle simultaneously.

NTeoee® 060 ®)—| RN

Figure 3: Transmission from TN to RN through a fluid medium.

2.2.2 Reception Nano-machine

RN is located at a position d > 0 apart from TN. There are several recep-
tors capturing molecules on RN. RN counts the number of molecules it captures

and perform detection according to the number. We assume the molecules can
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be perfectly captured by the receptors and RN does not have counting errors.
Furthermore, once a molecule arrives at RN, it will be removed from the commu-

nication medium.
2.2.3 Channel

Consider a fluid medium between TN and RN with positive drift velocity v.
The molecules are all constrained to move in a one-dimensional space. We assume
that the trajectory of emitted molecules can be modeled with independent Brow-
nian motions [8]. Let X denote the random variable representing the first hitting
time of a molecule. If v > 0, it can be shown that the probability density function

(PDF) of X is given by the inverse Gaussian (IG) distribution [18]

3 2
fX(iU) _ 2mw 2u €T (2.1)
0, z <0,
d d?
= —and A\ = —
p=y 2D’

where D denotes the diffusion coefficient which is given by

kT

6mTr’

D

where kg is the Boltzmann constant, 7T, is the absolute temperature, 7 is the
viscosity of the fluid medium, and r is the radius of molecules. For simplicity, we
assume that the radii for all molecules are the same so that the diffusion coefficients

are the same.
2.2.4 QM System

Consider a time-slotted M-ary communication with signaling interval T, TN
can release M different quantities of molecules into the channel. Denote those M
quantities by L,,, where m € {0,1,2,--- (M —1)}. Assume the a priori probabil-

ity for releasing L,,, molecules to be g,,. At the starting time of each transmission
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time slot, L,, molecules are emitted simultaneously from the transmitter to indi-
cate the transmission of a symbol. We assume perfect synchronization between
the transmitter and the receiver. During each time slot, RN counts the total num-
ber of arriving molecules. An appropriate decision rule, proposed in See. 2.3, is
then applied to determine the transmitted data bit at the end of each time slot.
The molecules which fail to arrive within the corresponding time slot become a
source of interference, which will cause performance degradation to the detections
of later coming symbols. Fig. 4 is an example of QM system with M = 4 and
uniform quantity levels.

Perfect synchronization between TN and RN is assumed in this chapter, a
possible realization which is based on sending training molecular impulses are

introduced in [BoKai].

J 9 @ J
jj > ﬂ‘ﬂ 29
P 29

Figure 4: Illustration of quantity-based modulation scheme with Ly = 2, Ly = 4,
L, =6, Ly =8.

2.3 Detection tn One-shot Transmission

In this section, we discuss the detection rule of the system for one-shot trans-
mission. The main contribution of our work is that we separate the ISI cancella-
tion problem from the detection to achieve a more flexible and modularized design,

which is different from previous works [19].
2.3.1 Binary Detection

We define two hypotheses Hy and H;. Hj is the hypothesis that Ly molecules
are transmitted (indicating bit 0), and H;j is the hypothesis that L; molecules

are transmitted (indicating bit 1). Denote the conditional PDF of the number of
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received molecules in a particular time slot, given that hypothesis H,, is true, by
Pr{N = n|H,,}, m € {0,1}. Using the inverse Gaussian PDF given in (2.1), we
define the probabilities p; as:
(G+1)Ts

O (22
for j € {0,1,---}, which is the probability that the traveling time of a molecule
falls in the interval [jT5, (j+1)T%], where j is the index of the time slots. Define Y
to be the indicator random variable showing whether the k-th molecule emitted

in a one-shot transmission arrives within 7 given that H,, is true. That is,

(

1, if the k-th molecule arrives within Tj,

0, otherwise.
\

Let N be the random variable denoting the total number of molecules arriving at

the receiver within a particular time slot. We have the following relation:
Pr{N =n|H,} =Pr{Y1+ Yo+ ..+ Y., =nl|H,}. (2.4)

Given the number of the transmitted molecules, N thus follows Binomial(L,,, po).
For large L,,, we approximate the binomial distribution by a Gaussian distribution

with the knowledge of the mean and variance of N. Namely, we have

exp{ (n — Lynpo)? }

a 2L.,po(1 — po)
/27 Lypo(1 — po)

Pr{N =n|H,,} ~ (2.5)

As a special case when M = 2, the distributions of N under two hypotheses can

thus be obtained as

o {_ st <Llofoz)j)> }

Pr{N =n|Hy} ~ N (2.6)
(n — Lipo)?
expl —————
Pr{N = n|H,} ~ { 2Lypo(l = pO)} (2.7)

V2w Lipo(1 — po)
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According to the conventional hypothesis testing theory [20,21], the decision rule
can be expressed using the likelihood ratio test A(N) as

_ P(N|Hy) % g

AN = BN =

(2.8)

If we assume equal a priori probabilities ¢ = ¢; = 1/2, due to the characteristic
of Gaussian distribution shown in Fig. 5, the decision rule can be further reduced
to

Hy

NE (2.9
Hy

for some threshold 7, where 7 is the solution of the following equation:
Pr{N =n|Hy} = Pr{N =n|H,}. (2.10)
By (2.6) and (2.7), we have

L Ly — Lo)(n* — piLoL
L1 :eXp{( 1 0)(n° — pyLo 1)}‘ (2.11)
Lo 2LoL1po(1 — po)

Taking logarithms to both sides, the equation becomes

_ L1L0 hl(Ll/Lo)
" L — Ly

po(1 = po) +PiLoLn. (2.12)

In other words, if the received number of molecules is greater than the threshold

7, the receiver will determine H; as the hypothesis testing result; otherwise H

will be decided.
2.3.2 M-ary Detection

The detection rule can be extended to M-ary detection with only a few adjust-
ments. Suppose we have multiple hypotheses H,, where m € {0,1,2,--- (M —1)}
which represent the transmission of L,, molecules. The goal is to decide which m

we should choose. The maximum a priori (MAP) detection rule is:
m(N) = argmax P(N|H,,). (2.13)

Due to the properties of Gaussian distribution, the above MAP detection rule
can be simplified to pairwise comparisons between the “neighboring” conditional

probability distributions.
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f(n | Ho)

f(n|H1)

|

I
I : : ! : :T:i f
number o
Lope Lo n Lipo L molecules

Figure 5: Demonstration of the process of finding 7 in a binary QM system, where
f is the conditional PDF of N given H,, is true.

To write down the expressions explicitly, we define a set of thresholds £ =
{n; € [-o0,00] : j =0,1,2,--- M}, and let 7y = —oo and ny = oo. For

j=1,2,--- (M —1), n; can be obtained by solving the equations
Pr{N = n;|H;-1} = Pr{N = n;|H;}. (2.14)

With the thresholds determined, the detection rule for M-ary transmission can be

expressed as
M-1
Wm(N) =Y k-u[=(N = m)(N = nir)] - (2.15)
k=0
where u(-) denotes the unit step function.

2.3.3 Error Rate Analysis

After the construction of the transmission and decision rules, we then analyze
how it performs in terms of symbol or bit error rate. Consider a specific case for
M = 2 and gy = ¢ = 1/2. Denote the false alarm probability as Pr and the

missing probability as Py. The error rate can be written as
1
Pe:QOPF+Q1PM:§(PF+PM)- (2.16)

From Fig. 5 and the decision rule derived in Sec. 2.3.1, it can be shown that

Pr=Pr{N > n|Hy} = Q ( ;};(Ll‘”iopo) : (2.17)
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Py =Pr{N < y|H} = Q ( iﬁ;ﬁp@) , (2.18)

where (-) denotes the Q-function. By substituting (2.12) into equation (2.17)
and (2.18), we can evaluate the error rate P, in (2.16). Fig. 6 shows the comparison

between our analysis and numerical results.

10 ‘

A Numerical curve

-6-Theoretical curve

-8 \ \ \ \ \
10 20 30 40 50 60 70
Ll (Maximum number of molecules transmitted per symbol)

10

Figure 6: Theoretical result versus numerical result for one-shot binary quantity-
based modulation.

2.4 Sertal Transmision and ISI Cancellation

The above described QM molecular communication system seems to work al-
ready. However, in practical situations, we need to perform serial transmissions
rather than one-shot transmission. Thus the ISI effect must be taken into account.
Our results show that if we do not modify our one-shot detection rule, the system
performance will fall dramatically under serial transmission environments due to
the severe ISI effect. To solve this problem, we propose a method to mitigate the
ISI effect.

In order to mitigate the ISI effect, we first need an estimation of the number of
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the delayed molecules that come from former time slots. If we know the conditional
probability distribution of the number of ISI molecules conditioned on the current
received number, then we can estimate the ISI effect as the conditional mean.
However, the conditional distribution does not have a closed-form solution for
inverse Gaussian random variables. Here, we proposed another intuitive way to
do this estimation.

First, we define “memory-I" cancellation” to mean that the ISI effect during
the past ' time slots are taken into account when making decision. We first use
memory-1 cancellation as a demonstrative example. If the number of molecules
received during the (i—1)-th time slot is n,_; and the decided transmission quantity
level is I;_;, where [;_; € {Lo, L1, ,Ly—1}, we then subtract liy - [Fx(2T%) —
Fx(Ty)] (the a priori expected received number in the i-th time slot from the
(¢ — 1)-th time slot) from n; before making the i-th decision, where Fx(-) is the
cumulative distribution function (CDF) of the first-hitting time of molecules. In

other words, the actual number 7n; used in making decision is

~

R =n; — by - [Fx(21,) — Fx(TL)]. (2.19)

Likewise, we can perform memory-I" cancellation if we have enough buffer at the
receiver end to memorize temporarily the recently received numbers of molecules.
More explicitly, denote the probabilities that a single transmitted molecule ar-
rives during the time interval [j7, (j + 1)Ti] by p; for j € N U {0} as before.
If the decided transmission quantity level of the current time slot is i, where
e {Lo, L1, , Lyr—1}, then the received number of molecules j time slots later
should be subtracted by [ pj+1 before making decision. In other words, if the
number of molecules received in ¢-th time slot is n;, the actual number 7n; used in

making decision is
r
ﬁl‘ =n; — Z li—jpj+1- (220)
j=1
For binary QM systems, the decision rule can be written as

r
N H,

i =ni— > lLijpjs 5 uE (2.21)
=1 0
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The extension to M-ary QM systems is straightforward.

2.5 Numerical Results

In this section, we first discuss the binary and M-ary QM modulation systems
with and without performing ISI cancellation. After that, we make comparisons
of the system performance under different time slot durations.

The number of molecules is one of the main resources utilized in molecular
communications. Analogous to the “power” concept in conventional communi-
cations, we need to take this number into account when comparing the system
performances. In the following subsections, we present the results under differ-
ent maximum number of molecules allowed per symbol, and the quantity levels
are uniformly spaced. The simulation parameters are d = 0.2 cm, drift velocity
v = 0.01 ecm/sec, diffusion coefficient D = 0.05 cm?/sec , and time slot duration

T. =5 sec.
2.5.1 SER Comparison with and without ISI Cancellation

In Fig. 7, a binary transmission system with memory-1 and memory-2 cancel-
lation is considered. The SER drops from 0.04 to 0.01 when L; = 30, and drops
from 1072 to 10~* when L; = 90. The improvement grows as L; increases, which
means that by choosing L; properly, a reliable end-to-end transmission can be
achieved. We also observe that even without ISI cancellation, the error rate will
drop as L; increases. The reason is that the spacing between symbols is increased.
However, as shown in Fig. 8, it is not the case for the quaternary transmission
system. It can be seen that even though L3 becomes large, the error rate is still
high without ISI cancellation, which means we cannot rely solely on increasing the
maximum number of molecules without ISI cancellation.

It is worth mentioning that the ISI cancellation method can be performed not
only in such quantity-based modulation systems, but it can also be used in other

systems like on-off keying! with slight modifications.

! Transmitting zero or a single molecule.
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Figure 7: Binary quantity-based modulation with ISI cancellation.
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2.5.2 Performance Under Different Duration of Time Slot

In this subsection, we consider a binary transmission system with and without
ISI cancellation for different time slot durations. From Fig. 9, we can observe
that the SER decreases as the duration 7} increases. In other words, to improve
performance, one can increase the duration of the time slot as shown in Fig. 9.
Although the error rate is already quite acceptable, it can be further improved by
the ISI cancellation approach. The improvements is about 10 times better when
Ty = 10 sec and L; = 70. Note that when Tj is small, say Ty = 1 sec, compared to
the expected first-hitting time d/v, the error rate increases even if we increase L;
when no cancellation is performed. This is because when Tj is small, molecules
tend not to arrive in one symbol time but stay in the background, and that a
larger L; will cause a larger amount of molecules to be in the background and

hence larger interference.

10’ ‘ ‘
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Figure 9: Binary quantity-based modulation with ISI cancellation under different
T.



CHAPTER 3

QUANTITY-TYPE MODULATION

3.1 Introduction

To communicate between two nano-machines, several modulation techniques
have been proposed to bear information [10,12,22-25]. Among various kinds of
modulation, quantity [22] and type [23,24] modulation is of our interests. Based
on the design paradigms of both works, that the type of molecules could yield ad-
ditional embedded information, and that the increase in the quantity of molecules
per transmission could result in higher performance, we propose a new modula-
tion scheme called quantity-type modulation. Consider a type-based modulated
system, the transmitter releases different types of molecules representing differ-
ent information bits or symbols. When the molecules arrive at the receiver, the
receiver captures those molecules and attains information based on their types.
Nevertheless, the arrival times of the molecules at the receiver are random due to
the diffusion process. This results in the phenomenon that the molecules released
earlier may arrive late, leading to wrong information detection. A way to remedy
this is to release a group of molecules of the same type at a time to improve the
system reliability.

An intuitive method to detect the quantity-type modulated molecular commu-
nication system is using majority vote—information bits are detected according
to the type of molecules that outnumber another. However, as it is shown in this
paper, the performance of the majority vote detection algorithm is disappointing.
Hence, in this chapter, we introduce a novel detection algorithm called threshold-
based detection by exploiting the characteristics of the diffusion channel. Theo-
retical approximations of the bit error rate (BER) performance of the proposed

threshold-based detection algorithm for the quantity-type-modulated molecular

18
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communication system are derived. Both the simulation and theoretical results
confirm the significant performance improvement over the majority vote detection,

either without or with background noise.

3.2 System Model

In this section, based on the diffusion channel modeled by Brownian motion

as in 2.2, we introduce the communication scheme adopted in this chapter.
3.2.1 Quantity-type Modulation

We assume that two types of information molecules , ‘A’ and ‘B’, have the same
radius 7 and are distinguishable for both transmitter and receiver. This can be
achieved by using isomers as described in [26]. The transmission is assumed to be
time-slotted with interval Ty and the transmitter releases n molecules of one type
at the beginning of each time slot to represent an information bit, where n is an
odd number. That is, n type-A molecules represent bit ‘1’ and n type-B molecules
represent bit ‘0’. In addition, the information bits are firstly partitioned into
blocks with L bits. When nL molecules are released, the transmitter should wait
for a period of time T" before the next transmission. The receiver always gathers
molecules on arrival, that is, there is no fixed time slots at the receiver and the
asynchronous detection, i.e., majority-vote detection or threshold-based detection,
is performed. Moreover, whenever nL molecules are captured, the receiver should
also wait for a period of time T before the next detection. The waiting time
between blocks is set to avoid detection errors caused by background noise (which

will be mentioned in the next subsection) affecting the next block.
3.2.2 ISI and Noise Effect on Quantity-type Modulation

Due to the randomness of the first hitting times of transmitted molecules, a
molecule may arrive at the receiver in advance of the molecule(s) released earlier
. We use the term crossover to describe this phenomenon. Crossovers result in

intersymbol interference (ISI) and may lead to detection errors.
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Information source

1 0 1 1 0
i B B
i HOO®

(Majority vote detection)

Received pattern [AABJABAIBAAJAABIBBA]
Output 1 1 1 1 0

(Threshold-based detection (A = 1))
Received pattern A ABABABAAAABBBA

Counter A 2 3 23[1]2 3
Counter B 2 3 [1]2 3
Output 1 0 1 1 0

(Threshold-based detection (\ = 2))
Received pattern A ABABABAAAABBBA

Counter A 1[2] 3 1 [2]3 1[2] 3
Counter B 1 3 1[2]3
0

Output 1 0 1 1

Figure 10: A demonstrative example for the majority-vote detection algorithm
and the threshold-based detection algorithm with A = 1 and A = 2. The boxed
numbers represent the value stored in the counter that reaches the threshold .
In diffusion-based molecular communications, it is likely for the receiver to
capture molecules that are not released by the corresponding transmitter. Those
unintended molecules, which we call background noise in the rest of this study,
may come from the environment or other transmitters. We model the number of
arriving unintended molecules as a Poisson random process {N(t) : t > 0} and

N(t+7)— N(t) follows Poisson(cr) with noise rate a.

3.3 Detection Algorithms

In this section, we first describe the majority-vote detection algorithm and

then elaborate the proposed threshold-based detection algorithm.
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ifVi=n
reset counter

if V4= A\

type A counter threshold output bit 1
A comparison| ~

Vi classifier|
J counter threshold
type B B comparison | iy, = ,\5
output bit 0
if Vg =n

reset counter

Figure 11: Block diagram of the threshold-based detection algorithm.

3.3.1 Majority-vote Detection

An intuitive detection method of the quantity-type-modulated molecular com-
munication system is the majority vote, which counts the majority type of molecules
once n molecules are gathered. We use an example to explain the majority-vote
detection in Fig. 10. To illustrate that different types of molecules are released by
the transmitter at different time slots, we use (U, Uy, Us, -+ +) to represent that
the transmitter releases a set of molecules Uy at t = t;, molecules Uy at t = to+7Ts,
and molecules Uj at t = ty+2T;, and so on. Let us consider the example in Fig. 10,
the transmitter releases (AAA, BBB, AAA, AAA  BBB) to convey the information
sequence ‘1,0,1,1,0’. Due to the diffusion channel, the arriving molecules may be

out of order. In this example, the receiver captures the molecules in the order of
‘A,A,B,A,B,A,B,AJA,A,A B, B, B, A" (3.1)

Note that in both (3.1) and “Received pattern” in Fig. 10, we do not show the time
difference between two adjacently captured molecules, which may not be identical.

The majority-vote algorithm groups the molecules as ‘A, A, B’, ‘A, B, A’, ‘B, A,
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A’ ‘A, A, B, and ‘B, B, A’, and determines the majority type in each group as
‘A’ ‘A’ ‘A’ ‘A’ and ‘B’. Therefore, the detected bits are ‘1,1, 1,1,0’, which has

one bit error. This error results from the effect of ISI as described in Sec. 3.2.2.

3.3.2 Threshold-based Detection

To develop a detection algorithm that is suitable for operating under the diffu-
sion channel, let us first gain some insights about how the diffusion-based molec-
ular communication system is performed. Consider a case that the transmitter
releases (A, B), i.e., the transmitter releases a molecule of type A and then a
molecule of type B after a time duration Tj. It is likely that the receiver receives ‘B,
A’; which results in bit errors. However, if the transmitter releases (AAA | BBB),
i.e., the transmitter releases three molecules of type A and then three molecules
of type B after a time duration 7§, the probability that the receiver receives ‘B,
B, B, A, A, A’ is small since it requires many crossovers happening to obtain this
pattern. It is more likely that at least one type-A molecule arrives earlier than
all the type-B molecules. Therefore, a reasonable principle for designing detection
algorithm would be: once the receiver captures a type-A molecule before capturing
a type-B molecule, the receiver infers that the transmitter releases (AAA) before
(BBB). The remaining two type-A molecules that arrive later provide relatively
little information, and they may even introduce ISI to other molecules; hence the
receiver should ignore those two late-arriving molecules.

Based on the above observation, we propose the threshold-based detection al-
gorithm. Asshown in Fig. 11, the detector is composed of a classifier, two counters,
and two threshold comparators. The classifier recognizes the type of the arriv-
ing molecules. If the arriving molecule belongs to type A, the classifier generates
a signal to counter A; if the arriving molecule belongs to type B, the classifier
generates a signal to counter B. Counter A and counter B are used to count the
number of arriving molecules of type A and B, respectively. Whenever a signal
is sensed by the counter, it increases its stored value by one. The values stored

in the counters are denoted by V), and Vg respectively. When the value stored in



3.3. DETECTION ALGORITHMS 23

the counter reaches a predetermined threshold A, bit ‘1’ or ‘0’ is generated. Once
the stored value reaches n, the stored value is reset to zero. Note that when V, or
VB is in the region (A, n], no output is generated by the detector. That is, n — A
molecules with the same type are ignored by the receiver.

Fig. 10 shows a simple example that does not consider the noise effect (or
the noise rate « is negligibly small). The detection result in this example has no
bit error. An example of the threshold-based detection algorithm considering the
background noise is shown in Fig. 12. The transmitter releases three molecules
at a time and the receiver applies the threshold-based detection with threshold
A = 3. In this example, only the background noise caused by type-A molecules is
considered. The unintended molecules are equivalently inserted into the receiving
molecule pattern. The inserted molecules cause wrong increment of the value
stored in the counter, making the receiver output an erroneously detected bit.
This is termed bit insertion. When this happens, the detected bit sequence is
right-shifted compared with the actual bit sequence.

Since n molecules are released in each symbol duration, the total number of
arriving molecules at the receiver should be nL for each block. However, due to
the background noise, the total number of molecules may be greater than nL. The
proposed scheme in Sec. 3.2.1 suggests that after nL molecules are received, the
receiver ignores the late-arriving molecules for a period of . We set T' = 27} since

the probability that a molecule arrives late for more than 27; is small.

3.3.3 Trade-offs when Combating ISI and Noise Effect on Quantity-
type Modulation

ISI comes from the crossover effect of the released molecules. Intuitively, adopt-
ing a larger signaling interval Ty at the transmitter will decrease the probability
of crossovers. However, as Ty grows larger, the number of unintended molecules
captured by the receiver during each symbol detection will increase. Thus, we
expect that there should be an optimal 7 which minimizes the detection error

caused by both ISI and background noise. The optimal 7§ for threshold-based
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Noise negligible AAAAAABBB......
Counter A 123123

Counter B 123
Output 1 1 0

Noise not negligible A A[A]JA A A[AJABABBB.........
Counter A 12312312 3

Counter B 1 23
Output 1 1 11 0
| detection errors
I—)
TN : , '
" K bit insertion |:| unintended molecule

.......

Figure 12: A demonstrative example for the detection result under background
noise using the threshold-based detection algorithm. A = 3. In the example, the
crossover effect is not taken into account.

detection will be derived in Sec. 3.4.

It can be observed that detection errors occur when unintended molecules are
captured by the receiver, which causes the value stored in the counter to reach
the threshold A too early. Therefore, to combat the background noise, we may
increase the value of \. However, as will be shown later, a small \ is better for
combating ISI. Details in determining A is discussed in Sec. 3.5. Moreover, the
value of n also affects the system performance since A < n, that is, n limits the
possible choices of .

To deal with the background noise, it is also possible to modify the block size
L. The effects of background noise can be mitigated by using a smaller L since
the number of unintended molecules in a block can be reduced. Nevertheless,
when a smaller block size is used, the total throughput decreases due to the longer
duration between blocks.

In the next section, we analyze the system performance in the sense of bit
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error rate (BER). Based on the BER performance, principles of choosing the

above-mentioned system parameters will be discussed in Sec. 3.5.

3.4 BER Analysis

In this section, we mathematically compare the BER performance of the majority-
vote detection algorithm and the proposed threshold-based detection algorithm.
In the following, we first derive BER under the case that the background noise
is negligible, i.e. « approaches zero. We then analyze the case when « is not
negligible such that increasing Ty would introduce more unintended molecules at

the receiver.
3.4.1 Preliminaries

For the i-th information bit s; € {0, 1}, n molecules of type A or B are released.
By assuming that the prior probabilities Pr{s; = 0} = Pr{s; = 1} = 1/2, the BER

can be written as

—~ 1 . 1 N
Pr{s; # s;} = 5 Pr{s; =1|s; =0} + ) Pr{s; = 0|s; = 1}

where §; is the information bit detected by the receiver. Equivalently, we can

compute (3.2) by

- 1 ~ 1 N
PI‘{SZ' % Si} = Z PI'{SZ' = 0|Si,1 = 0,82' = 1,Si+1 = 0} + Z PI'{Si = 0’82;1 = O, S; = 1, Si11 = 1}
1 R 1 ~
+ ZPr{Si = O|8i71 = 1, S; — 1, Si+1 = O} + Z PY{SZ' = 0‘81;1 = 1, S; — 1>Si+1 = 1}
(3.3)

Each term in (3.3) is affected by the ISI from {s; 2, s;_3,--- } and {s;12, Sit3, - }.
Here, we assume that the errors due to crossover of molecules happening to neigh-
boring information bits are dominant compared with the error due to crossover
of molecules happening to information bits that are more than two time intervals
apart. Therefore, we compute (3.3) by considering the relations of s; i, s;, and

Si+1 only.
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Denote the first hitting time of the n molecules released for representing s; as
independent and identically distributed (i.i.d.) random samples X; (i), - -~ , X, (7).
From the theorem of order statistics, if X; (i), - , X, (i) are arranged in increasing
order as X(1)(i) < --- < X(n)(4), the PDF and the cumulative density function
(CDF) for the k-th smallest one are, respectively,

n—1

o) =} 7 ) Fx 1= e (3.4

and
n

Fxo, (1) =) (n> Fx(y)'[1 = Fx(y)]" ™, (3.5)

. J
=k
where Fx(y) is the CDF of X. Note that both (3.4) and (3.5) are defined on

y > 0.
Now we define the switching between two symbols s; and s; as the event
5; = s;,5; = s; for s; # s;. For convenience, we define the events £, and qur

respectively as

qur = {Sifl =D,S% =4q,Si+1 = 7’},
E\pqr ={5i1=p3%i=¢3in=r} (3.6)

We use the superscript to distinguish the majority-vote detection and the threshold-

based detection for §; and E,,, i.c., $MV2 and E\%XD for the majority-vote detec-

tion, and 572 and ETP()) for the threshold-based detection with threshold A.

pgr

3.4.2 Analysis when Background Noise is Negligible

Let us begin by analyzing the majority-vote detection. To calculate the BER

of the majority-vote detection, denoted by PMVP  (3.3) is rewritten as
PYVD _ pr{aMvD £ o1
= iPr{é\?/{VD =0|Eo10} + iPr{’s\?AVD = 0|Eo1 } + %LPr{@MVD = 0|E110}
+ i Pr{s}"VP = 0|E111}. (3.7)

In the first term of (3.7), given Ejy, the event 5; = 0 happens when either of the

following conditions is satisfied:
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1. Molecules representing s; cross over molecules representing s;.; and then the

FMVD
event Eg;, - happens.

2. Molecules representing s; 1 cross over molecules representing s; and then the

MVD
event 7y~ happens.

3. Molecules representing s;_1, s;, and s;11 cross over in the way that the type-
B molecules outnumber type-A molecules for all three detected symbols, and

then the event EMYD happens.

Note that the above observation is made with the assumption in Sec. 3.4.1 that
detection errors due to ISI is dominated by the crossovers of molecules from neigh-
boring information bits, namely, s;_; and s;;;. Fig. 13 shows example outcomes
given the event FEj19 which corresponds to the conditions mentioned above: the
first outcome results from two crossovers between s; and s;,1, the second outcome
results from two crossovers between s; and s;_1, and the third outcome results
from one crossover between s; and s;;; and one between s; and s;_;. The second
and third terms in (3.7) follow similar arguments. Given Eyi; or Ejjg, the event
s; = 0 is equivalent to E%YD. The final term in (3.7) equals 0 since given event

FE111, 8; = 0 is impossible. Therefore, by the assumption in Sec. 3.4.1, we have
1 ~ ~ ~ 1 ~ 1 ~
PP~ 1 Pr{Ego " U By U Ego - | Eoro} + 1 Pr{Eo | Eon} + 1 Pr{E " |Eno}-
(3.8)

To furthur compute (3.8), we need the following lemma.

Lemma. Assume that the switching other than s; and s;.1 is negligible. Under the
quantity-type modulation and majority-vote detection without background noise,
two transmitted symbols s; and s;y1 switch if and only if s; # s;v1, and the order

statistics X(nTJrl)(z') and X(nT-H)(i + 1) satisfy

2

Proof. Without loss of generality, we assume that s; = 1 and s;;; = 0. For the

“if” part, the condition (3.9) is equivalent to having the crossover between the
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”—H—th molecule in s; and the ”Tﬂ—th molecule in s;;1. Therefore, (3.9) guarantees
that there are at most “51 molecules of type A arriving earlier than X » (nf2 )('), and
there are at least "T“ molecules of type B arriving earlier than X ni )(4). Since
an + "TH = n, we conclude that for the majority-vote detection, the detection
results are 5; = 0 and 5;,1 = 1, i.e., s; and s;,1 switch.

For the “only if” part, we assume that either s; = s;11 0r X(n1(1) < X(nay (i+
1) 4+ T;, and we aim to prove s; and s;41 do not switch. The first case s; = s;41 is
trivial since no switching happens between two identical symbols. For the other
case X(nTH)(i) < X(np +1y(i + 1) + T, there are exactly 241 molecules of type A
arriving no later than X(nTJrl )(i), and there are at most ”% molecules of type
B arriving no later than X(nTH)(i). Since %t + 221 = p, for the majority-vote

detection, the detection results are 5; = 1 and s;.; = 0, i.e., s; and s;;1 do not

switch. O

After applying the lemma to (3.8), the BER under the majority-vote detection

without background noise is given in (3.10).

1
or E%XD|E010}
1 . .
1 , .
+Pr {X(%ﬂ)(z) > Xy (i +1) + T} . (3.10)

Now we analyze the threshold-based detection algorithm. Similarly, by the
assumption in Sec. 3.4.1, the BER of the threshold-based detection algorithm,

denoted by PIP()), can be derived as

PIP(X\) = Pr{s/” # s;}
1 ~ 1 1
~ Pr{ER(\) U EID (N Eoro} + - Pf{Em( Mo} + Pr{ElOl( ) E10}-

(3.11)
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Information source

Modulation @ . @

(Possible outcome in Eol‘gD
Received pattern |B B B|A B B|A A B

Detection result 0 0 1

(Possible outcome in EMYP )
Received pattern |B A A|B B A|B B B]

Detection result 1 0 0

(Possible outcome in E)VP )
Received pattern  [B B A|B A BJA B B]
Detection result 0 0 0

Figure 13: Example of the events EMYD, EMVD and EMVD given that the infor-

mation sequence ‘0, 1,0’ is transmitted.
If the threshold is A, it can be observed that when s; 1 # s;, the switching of s; 4
and s; occurs when

Xt =1) > Xpny(0) + T (3.12)

Therefore, (3.11) can be approximated by (3.13).

1
Pr{s/P # s} ~ —Pr{X (i —1) > X(i) + Ty or X, )(i) > Xoy(i+1) 4+ i}

+ = PI"{X()\)’L—1>>X(,\) +T}—|— PI"{X(A) >X()\(Z—|—1 +T}
<=)1PI“{X(/\)Z—1)>X(>\) +T}—|— PT{XA) >X(,\)<Z+1 +T}

1
= Pr{Xo(i = 1) > X)) + T > Xy (i + 1) +2T3} . (3.13)

The equality in (3.13) (denoted by ‘(a)’) results from the property Pr{AUB} =
Pr{A} + Pr{B} — Pr{A N B}. Again, we utilize the fact that the probability of
switching happening to the information bits that are more than two intervals
apart is small. Then the negative term in (3.13) is negligible. Moreover, since the

probability that s; switches with s;,; and the probability that s; ; switches with
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s; are the same, it is given that

PP =Pr{5/" # s;}
~ Pr{X(i — 1) > X(i) + 15}

_ /_ T PH{X (i) < 1 — T X (i — 1) = u} f, (u)du

o0

= /_ FX(A) (u - TS)fX(A) (u)du

o0

_ /T " Fx,, (u— To) i, (w)du, (3.14)

which can be evaluated numerically.
To compare the majority-vote detection algorithm and the threshold-based

detection algorithm, we start from (3.8) and the lemma.

PMVP 1 Pr{Ejy > U Ejgy > U Eggy | Eoto} + 1 Pr{E | Eon} + 1 Pr{E} | Ev0}

—_

N N N 1 N
— |3 PrLERO) U EIRO) U EPIEwa) + § PrETROV o)

1 N
+ 4 PrETR VI Bua) |

_n+1
A= 2

> |3 PrERO) U B Bua} + § Pr{EMP Bua} + 1 PRV B}

+ 3 PrER O Buol 3,19

A=zl
1 ~
= [PCTD(A)} )‘:nTH + Z PI'{E%B/D‘E(H()}

> [PV jnn (3.16)

where (3.15) comes from the union bound. Therefore, we conclude that the
threshold-based detection with \ = ”T“ outperforms the majority-vote detection

due to the extra term EMYP in (3.16).
3.4.3 Analysis when Background Noise is not Negligible

To approximate the BER when background noise is not negligible, we compute
the BER resulted from the crossovers and the background noise respectively, and
then discuss their joint effect. Denote P, as the BER caused by the crossover effect

(P. = PMVD or P. = PIP) P, as the BER caused by the background noise, and
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P, as the aggregated BER. From the union bound, we have P, < P. 4+ F,. Note
that we have already calculated P, of the two algorithms in Sec. 3.4.2. The main
problem of computing P, is due to the difficulty of enumerating all the possible
patterns of the arriving molecules when background noise is taken into account.
However, we can approximate P, by computing the average number of errors in a
block and dividing it by the block size L.

Although the detection performed by the receiver is asynchronous, the receiver
would spend LT (or L time slots) on average to capture all nL molecules. For
both detection algorithms, observe that whenever an unintended molecule arrives
at the receiver, the following received molecule pattern in the block will be right-
shifted by one. When the number of unintended molecules exceeds a certain value
(which will be discussed in the following paragraphs), the molecules representing
the ¢th bit will be right shifted such that the ith detection bit will not be performed
on the corresponding molecules, and thus causes a bit insertion. An example for
noise effect on the threshold-based detection is shown in Fig. 12. We assume
the transmitter releases molecules (AAA, AAA, BBB) to convey information bits
‘1,1,0. When background noise is negligible, the received molecule pattern will
follow the order as in the example. On the other hand, when background noise
is not negligible, a bit insertion is produced when the receiver receives A\ = 3
unintended molecules. The subsequent bits will be right shifted and the detections
will become Bernoulli random trials due to the bit insertion. We denote T as
the time when the bit insertion occurs, then the average number of bits being
influenced by the bit insertion would be (LTy — T) /Ty, given T < LTj. Since the

information bits 0 or 1 are sent with equal probability, P, can be written as

L-V
2L

(LTy—T)/Ts

< LT
2L T

Py~ Pr{T < LT,}Ey {

:Pr{V<L}EV[ ’V<L},

(3.17)
where we define V' = T /T, and the “2” in the denominator comes from the fact
that detection results obtained from the shifted sequence are Bernoulli random

VMVD

trials. In the following, we use and V™ for two algorithms to represent
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the normalized time when the subsequent bit sequence becomes Bernoulli random
trials.

For the majority-vote detection, if the number of unintended molecules exceed
241 at time GMYP, there will be less than 25* intended molecules in the subsequent
bit detection, and hence the detection results will become Bernoulli random trials.
Denote {N(t) : 0 <t < LTy} and {Ng(t) : 0 <t < LT} as two random processes

which respectively represent the number of unintended molecules of type A and

type B arriving at the receiver from the beginning of the block to time ¢, we have

GMVP :inf{t : Na(t) + Np(t) > ”;1} (3.18)

In order to compute (3.17) for the majority-vote detection, we need the distribution
of VMVP in (3.18). From our system model in Sec. 3.2.2, Na(t) and Ng(t) are
Poisson processes with rate «. The inter-arrival times of unintended molecules
thus follow exponential distribution with mean f. Tt is shown in (3.18) that
the bit insertion occurs when the “sum” of the number of unintended molecules
reaches (n+1)/2, regardless of the type of the unintended molecules. Therefore, it
suffices to consider the inter-arrival time of the unintended molecules with either
type. The mean of inter-arrival time becomes i Denote the inter-arrival time of

the j-th unintended molecules as 75, j € {1,..., "T“} Then,

T+ "+ Tnt1
2

VMVD —
T

(3.19)

It is known that the summation of i.i.d. exponential random variables follows

gamma distribution, i.e., Gamma(%*, 2aTy).

(n+1)/2
%v(”—l)/%_(zan’)v, v >0,
fymvo (v) = I'(%=) (3.20)

0, v < 0.
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Therefore,

L — VMVD

PMVD =~ Pr{VMVP < [MEpuvp { 57

_ /OL (L;”) Fyanvn (0)do

1 n-+1 1 n+3
- 20T.L) — 2aT.L)|, (321
NG {7( g ¢ ) 2aT5L7( g )} (3.21)

VMVD < l;|

where (s, x) is the lower incomplete gamma function.

For the threshold-based detection, if the number of unintended molecules of
the same type exceeds \ at time GTP, a bit insertion occurs, and the subsequent
detected bits become Bernoulli random trials. An example is shown in Fig. 12 that
when the number of type A unintended molecules reaches A = 3, a bit insertion
occurs (in this example, bit 1) , and the subsequent bits (in this example, bit 0)

will be right shifted. Thus we have
G™ =inf {t: Na(t) > A} Ainf {t : Ng(t) > A}, (3.22)

where x A y means the minimum of x and y. In order to compute (3.17) for the
threshold-based detection, we need the distribution of VP in (3.22). Similarly, we
denote the inter-arrival time between the (j — 1)th and jth unintended molecules
of type A as 74 ;, j € {1,...,A}. Then,

TA71+"‘+TA,)\
T '

ViP = (3.23)

Similarly, the inter-arrival time between the (j—1)th and jth unintended molecules

of type B can be written as

o _ Tt - T B (3.24)
Therefore, both VP and VZP follows Gamma(\, aT}).
(%Ts)AU)\flef(aTs)'u v>0
frm () = fym(@)=¢ (3.25)
0, v < 0.

Since VTP = V[P A VEP from (3.22), we have

fym(v) = 2fV§D (v) — 2fVED<U)FVED(U)a (3.26)
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where Fymo(v) = ﬁv(x\, aT,v) is the cumulative distribution function of VP,
We use the method of union bound instead of directly calculating the conditional
expected value through the PDF of VP A VEP. We know that bit errors in
the threshold-based detection are caused by the number of unintended molecules
exceeding A, thus by the union bound, P, < Py + Pg, where the errors are caused

by unintended type-A, type-B molecules, respectively.

L — VTD L I —
}fWMz2HﬂfD<ME@D——;LJQD<L:i/ ! fypo(v)dv
2L 0 L
1
= oy {7(/\, aod,L) — aTsL'y()\ +1, aTSL)] : (3.27)

It can be observed that PIP depends on parameters A and aT,L. To derive
relationships between PP and those parameters, we first take derivatives with

respect to oIy L with formula

=z e ", (3.28)

gives

OP’® (A +1,aT.L)

Al ~ TOVanL)e = (3:29)

which implies PTP is monotone with the increase of aT,L. On the other hand, by

using the asymptotic behavior that

1
(s, 7) — — when z is small, (3.30)
x® S

if aT,L is small, (3.27) can be approximated as

1 [(«T L) 1 (aT,L)M'Y]  (aTiL) (3.31)
() A al,L A+1 | T(\+2) ‘

PIP())

which means that PIP becomes smaller as A\ grows larger.

To compare the two algorithms under the effect of background noise for any

MVD
Pc

odd number n, we note that PTP (%) is smaller than as discussed in Sec.

2

3.4.2, and in this section, by applying approximation similar to (3.31),

P?“)z(%HHUWHVQzQﬁfP“D(n;1>:>PPD(H;1)- (3.32)

n-+5 n
2 [ ——
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Therefore, the threshold-based detection with A = ”TH results in lower BER than
the majority-vote detection even when the background noise is considered. This
again proves that the threshold-based detection can outperform the majority-vote

detection.

3.4.4 Optimal Choice of Signaling Interval 7 for Threshold-based De-
tection

When the effect of background noise is negligibly small, we can improve the
BER simply by using a larger 7Ty since it lowers the probability of molecular
crossover. However, when the background noise is not negligible, the BER per-
formance is no longer merited from increasing T;. Although the crossover effect
is smaller when a larger 7§ is used, more unintended molecules are captured by
the receiver, which in turn increases BER. The same conclusion can be made by
observing (3.29) that a larger T, results in larger PTP. Therefore, there exists an
optimal T given A such that the BER is minimized. In the following, we compute
the approximated optimal T} (for a given \) and discuss some properties that may
help design the optimal threshold-based detection scheme.

To find the optimal T}, we solve the equation

0P,
0Ty

= 0. (3.33)

Here we assume that the union bound applied in the previous subsection is tight

such that P, ~ PP + PP for the threshold-based detection and solve

P> §prD
T il (3.34)

Let us define

o(t) = / " (1 — 1) i, () (3.35)
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Then

oPIP o
T, R /TS fX()\) (u - Ts)fX(A)<u>du

= — /0 fX()\) (u)fxw ('LL + Ts)du

= g(t=T). (3.36)

Note that g(t) is the PDF of X(5)(i — 1) — X (Z), or equivalently, the difference of
two samples generated i.i.d. from the order statistics X (). We can also calculate

that
OPP (A +1,0T,L) _ MaL) T}
T, ~ T(NaLT?2 ~ T(A+2)

(3.37)

where the second approximation uses (3.30) given o7yL small. After combining

(3.34), (3.36), and (3.37), we obtain

OPI®  9PIP  \(aL) T}

o T an T Tovry =T =0 (3.38)

This means that the optimal 7 can be computed by solving

g |  _ Ael)

Py T T+ 2) (3:39)

3.5 Numerical Results

In this section, we first compare the performances of the majority-vote detec-
tion and the threshold-based detection with different number of simultaneously
released molecules and various threshold values A when no background molecules
are involved. The accuracy of the theoretical BER approximation is also shown.
After that, we compare the performances of the threshold-based detection with
different number of simultaneously released molecules, various threshold values,
and different block sizes in the presence of background noise. The accuracy of the
derived approximated optimal T} is also confirmed.

In the simulations, information bits are sent randomly with equal probability
and the background noise is assumed to be Poisson distributed. The simulation

parameters are d = 100 pm, drift velocity v = 1 um/s, diffusion constant D =
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2.44038 x 107! m?/s [27]. Unless otherwise specified, the block size L = 40 bits,

and the rate of Poisson distribution is @ = 2 x 107 s71.

3.5.1 Performance when Background Noise is Negligible

In Fig. 14 and Fig. 15, we compare the performance of the majority-vote de-
tection algorithm and the proposed threshold-based detection algorithm when no
background noise is presented for n = 3 and n = 5 quantity-type-modulated
systems, respectively, with various values of A\. The threshold-based detection al-
gorithm yields better performance than the majority-vote detection algorithm if a
proper threshold value is chosen. We also compare the theoretical BER approxima-
tions (3.14) with the simulation results of the threshold-based detection algorithm,
and show that the theoretical results match the simulation results well, especially
for large T. From the figures, the threshold-based detection with A = (n+1)/2 is
shown to outperform the majority-vote detection, as proved in Sec. 3.4.2. More-
over, for the threshold-based detection, a smaller A leads to better performance,
and choosing A = 1 yields the lowest BER. This is because a symbol will be error-
free if less than n — A crossovers occur. Therefore, the value n — A\ can represent
the ISI-resisting capability, and a larger n — A value improves the system perfor-
mance. As shown in the figures, for a fixed n, choosing a smaller A\, and hence a
larger n — A, yields better performance. Thus, by applying the threshold-based
detection with A < (n + 1)/2, it can always achieve better performance than the
majority-vote detection.

Fig. 16 summarizes the performance comparison of the majority-vote detec-
tion algorithm and the threshold-based detection algorithm when no background
noise is presented. The system with type modulation, which is equivalent to the
quantity-type-modulated system with n = 1, is also shown. It can be seen that
the performance of the n = 3 quantity-type-modulated system with the majority-
vote detection is worse than the type-modulated system when 7j is large. This
shows that using a detection algorithm not tailored for the diffusion channel would

nullify the benefits getting from releasing n molecules at a time. By applying the
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Figure 14: Performance comparison between the majority-vote detection and the
proposed threshold-based detection for the n = 3 quantity-type-modulated system
without background noise. The theoretical analysis and the simulation results are
also compared.

threshold-based detection, the BER reaches 10~® with less than a half of 7 com-

pared with using the majority-vote detection. A better performance is achieved if

more molecules are released at a time, i.e., with a larger n.
3.5.2 Performance when Background Noise is not Negligible

From Fig. 17 to Fig. 20, we evaluate the performance of majority-vote detection
and threshold-based detection algorithms with various threshold values and block
sizes under the influence of background noise. Fig. 21 further shows how the
number of simultaneously released molecules affects the system performance.

In Fig. 17 and Fig. 18, we compare the performances of majority-vote detec-
tion and threshold-based detection algorithms in n = 3 and n = 5 quantity-type-
modulated systems, respectively, under background noise. It can be observed that

when Tj is small, a smaller A\ is preferred since the BER caused by crossovers
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Figure 15: Performance comparison between the majority-vote detection and the
proposed threshold-based detection for the n = 5 quantity-type-modulated system
without background noise. The theoretical analysis and the simulation results are
also compared.

is dominant. However, when 7j is large, systems with larger A\ have better per-
formance since they are more robust to the background noise, which is supported
by (3.31). The figures also show that when A\ = (n+1)/2, the BER of the threshold-
based detection is lower than that of the majority-vote detection for any given T,
which is proved in Sec. 3.4.3. This guarantees the performance of the threshold-
based detection, and note that further improvements can be achieved by choosing
a proper A\ and T;. The optimal 7}’s derived from (3.39) with respect to \ are also
shown in the figures, which match the simulation results very well.

Fig. 19 and Fig. 20 show the BER performances of the n = 3 and n = 5
quantity-type-modulated systems under different block sizes. It can be observed
that the block size affects the BER significantly for both the majority-vote detec-
tion and the threshold-based detection. The performance is better with smaller L
since the ISI is mitigated by a time separation of 27 between blocks. Smaller L

also reduces the amount of unintended molecules being captured by the receiver.
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Figure 16: Performance comparison of quantity-type-modulated systems without
background noise with different n (the number of molecules released at a time)
and different detection algorithms. The case of n = 1 corresponds to the type-
modulated system. A =1 for the threshold-based detection algorithm.

The benefits brought from smaller L can be observed from (3.29). To conclude,
both the ISI effect and the background noise are small when L is small.

In Fig. 21, we summarize the performance comparison between the majority-
vote detection algorithm and the threshold-based detection algorithm when the
background noise is considered. Performance of the type-modulated system is also
shown. It is observed that the BER of the quantity-type-modulated system with
the majority-vote detection is lower than that of the type-modulated system, but

is still larger than 1072, In the case of using the threshold-based detection, by

choosing a proper A and a large n, the BER is improved to 1074
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Figure 17: Performance comparison between the majority-vote detection and the
proposed threshold-based detection for the n = 3 quantity-type-modulated system
with background noise. The theoretical analysis and the simulation results are also
compared.
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Figure 18: Performance comparison between the majority-vote detection and the
proposed threshold-based detection for the n = 5 quantity-type-modulated system
with background noise. The theoretical analysis and the simulation results are also
compared.
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Figure 19: Performance comparison between the majority-vote detection and the
proposed threshold-based detection for the n = 3 quantity-type-modulated system
with background noise under different block sizes. The theoretical analysis and
the simulation results are also compared. \ = 3.
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Figure 20: Performance comparison between the majority-vote detection and the
proposed threshold-based detection for the n = 5 quantity-type-modulated system
with background noise under different block sizes. The theoretical analysis and
the simulation results are also compared. A\ = 5.
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Figure 21: Performance comparison of quantity-type-modulated systems with
different n using different detection algorithms in the presence of background

noise.

The case of n = 1 corresponds to the type-modulated system. A = 3

for the n = 3 quantity-type-modulated system and A\ = 5 for the n = 5 quantity-
type-modulated system. L = 40 bits.



CHAPTER 4

WAVEFORM MODULATION

4.1 Introduction

The last two chapters mainly discussed communications schemes in coherent
molecular communication, which assumes the receiver RN to be able to capture
molecules one by one. Under the assumption, the channel model can be simpli-
fied by only describing the distribution of the molecule first-hitting time when a
molecule arrives at RN. Practically, however, nano-machines may only sense the
concentration level within a small volume around them, and hence RN may lose the
information about the arriving of a single molecule. Moreover, coherent molecular
communication limits possible methods to transmit bit information. Therefore, a
new stochastic model is needed in order to diversify possible modulation schemes.
In this chapter, we will discuss how to mathematically model the diffusion channel
when continuous waveform (rather than impulse) is used to convey information.
Since the work is still in its early stage, we focus waveform modulation mainly
on two kinds of well-known modulation: amplitude modulation and pulse-position

modulation.

4.2 System Model
4.2.1 Transmitter and Receiver Modeling

We consider two nanomachines, one transmitter nanomachine (TN) and one
receiver nanomachine (RN), located in a three-dimensional Euclidean space filled
with fluid medium. TN is located at 0 and RN is located at r. We assume TN
and RN have very small sizes compared with the distance between them. RN can
sense the concentration level in the sensing region S = {x : |[r — x| < p}. For

simplicity, we denote r = |r| to be the distance between TN and RN; V' = m(S)

44
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to be the measure (or volume in Euclidean space) of the sensing region.

4.2.2 Diffusion Channel Modeling

According to Fick’s second law, the concentration level U(r,t) can be charac-

terized by
ou
ot

where D is the diffusion coefficient depending on the fluid medium. The results

= DV?U, (4.1)

from [Jiun-Ting and Yun-Feng], which take into account the random effect of
diffusion process, show that if N molecules are released simultaneously by TN at
t = 0, the sensed concentration level at RN, denoted by Q(u, N,t) in this thesis,

is a Gaussian process with mean function %p(t), where

p(t) = / mexp (-LX—;) dx, (4.2)

The variance function is 25p(t)(1 — p(t)), and the covariance function is given by

Cov(Q(u, N,t1),Q(i, N, t3))
WU/ (47 Dty — 1)~ (47 D(ty — 7))

X exp —M exp —ﬁ dxqdxy — p(t; — 7)p(te — 7)
4D(t2 —tl) 4D(t1 —T)

(4.3)

Nl

Since the volume V' is only a scaling factor, it is set to be V' =1 in the following.

In order to make the communication system physically realizable, we cannot
only consider the case that TN releases some molecules at a time instant since it
requires infinite emission rate. In this study, we consider TN releases molecules
with finite rate s(t) in time interval [0, 7;). The received number of molecules at
RN is denoted by 7(p,t). The structure of the diffusion model is given in Fig. 22.

In the following, we aims at deriving the form of r(u,t). As shown in Fig. 23,
during an infinitesimal time duration [7, 7 + A7), s(7)A7 molecules are released
by TN. By the above results, the received number of molecules at time ¢ is the

sum of i.i.d. Gaussian random variables given by

r(p,t) = hm ZQ W, S(T)AT, t — 7). (4.4)
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Figure 22: Proposed diffusion model for molecular communication in a fluid
medium.
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Figure 23: Channel response results from an infinitesimal duration of transmitted
signal s(t).

Therefore, r(u,t) has Gaussian distribution and has mean

Blr(s )] = Jim 3 E[Q(u, s(r) A7, t — 7)

= lim Z s(T)Arp(t — 1) = /0 Sp(t —71)s(1)dr = s(t) *p(t). (4.5)

AT—0
-
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and variance

Var(r(p,t)) = lim ZV&F(Q(M,S(T)AT,t — 7))

= lim s(T)Arp(t —7)(1 — p(t — 7))

Ts
— [ s(owle = 1= ol - r)ar
0
= s() * [p(t)(1 = p(t))]- (4.6)
As a consequence, the received signal r(u,t) at RN can be viewed as the sum of

two responses: ¢(t) from a linear part and ng(p,t) from a random part of the

channel, i.e.
T(M, t) = C(t> + nB(:U’J t)? (47)
where

c(t) = s(t) x p(t), (4.8)

and ng(u,t) is a zero mean Gaussian process with variance function

Var(ng (1, t)) = s(t) x [p(t)(1 — p(t))]. (4.9)

Intuitively speaking, ¢(t) is the mean concentration sensed by RN, and ng(u,t) is
the noise results from Brownian motion.
In order to obtain reliable detection, sometimes we need the covariance of the

received signal at two time instants ¢; and 5.

Cov(r(u,t1),r(p, ta)) = COV(Z Q. s(T) ATt —71), > Q. 8(72) Ao, by — Tz>>

T1

= Z Cov(Q(u, s(T)AT, t1 — 7), Q(u, s(T) ATty — 7))

4D(t2 — tl) 4D(t1 — 7_) 2 !

= plts — T)plts — ﬂ] i (4.10)
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The above equation can also be interpreted as the autocorrelation function of
the noise ng(u,t). We apply the following theorem to check the consistency be-
tween (4.9) and (4.10).

Theorem 1. In R? space, K; with the form
Ki(x) = WeXp (—%) : (4.11)
is an approximation to the identity. Therefore, for any given ¢ € L*(RY), we have
K x¢(x) = o(x) for a.e. x € R%. (4.12)
Theorem 2. For any given measurable set S C R and ¢ € LY(RY),
/5 Ko(x — %1 )(x1)dxy — o(x3) for a.c. X3 € S. (4.13)
Proof. Tt is clear that ¢l1g € L'(R?). Apply Theorem 1, we have

/SKt(X2 — X1)ip(x1)dx1

= | Ki(x2 —x1)p(x1)ls(x1)dx1

Ra
= K+ (plg)(x2)
— - 1g(xz) for a.e. xo € R% (4.14)
For x5 € S, ¢ - 15(x2) = ¢(x2), and hence completed the proof. O
By setting d = 3 and
Kot () = (47D (t, — 1)) X (4.15)
i (x) = — —_— :
D(tz tl) /s 2 1 eXp 4D(t2 _ tl) 9
and under the case that to — ], (4.10) becomes
Ts
lim Cov(r(p,ty),r(p,t2)) = / s(T)p(ty — 7)[1 — p(t; — 7)]dT, (4.16)
to—t] 0

which in turn shows the consistency. Moreover, it is shown that ng(u,t) is a non-
white process. In the following, we denote the autocorrelation function of ng by

RnB (t17 tQ) .
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4.3 Signal Modulation and Detection

Assume a signal set {s;(t)}l_, C L*([0,T})) is used to transmit binary infor-
mation ‘0" and ‘1", so(¢) and s;(t), which represent molecule releasing rate of TN
at time ¢, are transmitted with equal probability. After the signal s;(¢) passes
through the diffusion channel, the received waveform r(u,t) at RN is defined on
[0,00). Since it is not practical and not possible to detect a single bit by observing
an infinite duration of time, the observation duration is assumed to be constrained
in a bounded interval [0, 7)) in this study. In the following, we aim at designing
detection schemes at RN. One major problem comes from the observation that
the statistical behaviors of the noise, which are characterized in (4.9) and (4.10),
are determined by the transmitted signal s;(¢). Details about the problem will
be presented in the following paragraph. For convenience, we use R, ;(t1,t2), to
denote the autocorrelation function of np;(u,t), where i € {0,1} represents the
transmitted bit.

Common approach to solve detection problems is to apply likelihood ratio
test based on a finite-length observation vector obtained from the received signal.
In order to apply classical likelihood ratio test, we first transform the received
continuous waveform in (4.7) to a finite sequence of random variables, which is
denoted as

r=[r g (4.17)

The observation vector r can be obtained by either sampling the original wave-
form or expanding the waveform onto a set of orthonormal basis. Although when
K — o0, both approaches contain sufficient information about the received con-
tinuous process, it is not the case for a finite K. For a finite valued K, correlated
random variables are obtained by sampling the original waveform while uncorre-
lated random variables can be obtained by orthogonal expansion, e.g., Karhunen-
Loeve (KL) expansion. Intuitively, K random variables should be uncorrelated;
otherwise, the effective number of observation would be less than K. Therefore,

orthogonal expansion is of our main focus in this study, and the sample-based
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approach is served as a benchmark design method.

From KL expansion, each element in r is represented by

ri(p) = /0 r(p, t)or(t)dt, k=1,2,--- | K, (4.18)

where each ¢ € Lz([O, T)) is a solution to the integral equation

/o Ry i(t, 8)or(s)ds = Mg (t). (4.19)

One major problem is that the set of solutions {¢x(t)}X_, should satisfy (4.19) for
both i« = 0 and ¢ = 1. In [28], the author showed that it is possible to solve for
a set of basis functions which enables simultaneous orthogonal expansion. How-
ever, the examples provided in [28] were on special autocorrelation functions, and
the method is mathematically hard to generalize. In this study, instead of solv-
ing (4.19) for all R, ; € L?, we limit possible R, ; by using special modulations,
i.e., amplitude modulation and pulse position modulation.

By amplitude modulation, we mean that for ¢ € [0, T),

—C, (4.20)

where C'is a constant. From (4.10), for (¢1,t2) € [0,00) X [0,00) we have

Ry o(ti,t2)

=C. 4.21
Rya(ty,t2) ( )

Therefore, if the set of solutions {¢x(t)}5_, satisfies (4.19) for i = 1 in the way
T
/ R (L, 8)dr(s)ds = A (t), (4.22)
0
the equation also holds for
T
/ Rygo(t, s)dr(s)ds = CApgy(t). (4.23)
0
To form a likelihood ratio test, it can be shown that
r|so(t) ~ N (co, X), (4.24)

rlsi(t) ~ N(ei, Xn), (4.25)
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where ¢ and ¢; are obtained by expanding co(t) and ¢;(t) onto {¢x(t)}5_ ;. More-
over,

EO = Odlag{Ah 7)‘K}7 (426)
21 = diag{/\l, tee ,)\K} (427)

By pulse position modulation, we mean so(t) and s;(t) occupy disjoint sub-

spaces in time domain to bear information, i.e.,

supp(sp) Nsupp(s;) = . (4.28)

Specifically, we choose sy(t) to occupy [0,75/2) and s;(t) to occupy [13/2,Ty),
hoping ¢y(t) and ¢;(t) could have disjoint supports [0,7;/2) and [71/2,T), such
that ¢o(t) and ¢, (¢) also occupy disjoint subspaces. According to the results in [29],
when signals occupy disjoint subspaces, simultaneous orthogonal expansion can be

achieved. However, since the channel response p(t) is IR,

supp(co) N supp(c1) # 9, (4.29)

which means the requirement to apply [29] is not satisfied. More precisely, when
so(t) is transmitted, ¢o(t) sensed by RN has components [T;/2, Ty), which is occu-
pied by ¢;(t). On the other hand, when s;(t) is transmitted, ¢;(¢) do not have any
component lying on [0,7;/2). In this study, we use K/2 basis functions {¢? ,I::/ :
to expand the received waveform in [0,7;/2) and {qb,i}kK:/ 2 are used to expand the
received waveform in [T}/2, 7). Combining the two sets of basis functions results
in

{00 ook o), (430)
which is used to obtain totally K observations. When either sg(t) or s;(t) is

transmitted, K observations can be obtained by RN and at least K/2 of them are

uncorrelated. To form a likelihood ratio test, it can be shown that
r|so(t) ~ N (co, X), (4.31)

I‘|51(t) NN(Cl,El). (432)
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Moreover,
Ay Ap
3 = , (4.33)
Ay Ap
0 0
3, = , (4.34)
0 A
where A; = diag{\}, -+, N\ so}: @ € {0,1} consists of eigenvalues solved from
%
| Runalt, éh(o)ds = oko), (4.3)
0
T
[ Banalt s)ok(s)s = Aoko) (4:36)

A,;; is given by
[Aijlmn = //RnB,o(t, 8) @) ()65, (5)dtds. (4.37)
Finally, the decision rule for amplitude modulation and pulse-position modulation

derived from likelihood ratio test is given by

||

(r—c)'ZiMr—c) —(r—co) Zp (r — co) 2 =il =

(4.38)

In the following, we aim at solving (4.19) on [T7,TF). For amplitude modulation,
[T1,Ty) = [0,T). For pulse-position modulation, [1, T¥) = [0,7;/2) for i = 0 and
11, Tr) = [13/2,T5) for i = 1. To simplify the notation, we drop the subscript
of R,,.i(t1,t2) and the total number of basis functions is denoted by N. For
amplitude modulation, N = K, and for pulse-position modulation, N = K/2.
The form for R(t1,t2) is given in (4.10), which is mathematically hard to use. We

apply the following theorem to approximate R(t;,t3) by a separable function.

Theorem 3. Let Hi and Hs be Hilbert spaces and let A be a compact operator
from H;y into Hy. Then

Z (fn ® gn), (4.39)

with

1. {X2} the non-zero eigenvalues of A*A and AA*,
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2. {gn} orthonormal eigenfunctions of A*A
3. {fa} orthonormal eigenfunctions of AA* satisfying Ag, = ann

The above is known as the singular value expansion (SVE) of A. In [30], the
author proposed how to compute approximation to SVE of compact operators by
universal methods. Let {1, (t)})_,,T1 < t < T be the set of basis functions.

Define matrix A = [ann],

/ / R(s, 1)t (8) o (t)dsdt. (4.40)

A is symmetric since

/ / (5, £)m ()0 (£)dst
/ / R(t, $)n(t)m(s)dtds

= Gy (4.41)
Therefore, the singular value decomposition (SVD) of A can be written as
o~ N ~
A=UAU" =) M\u,u,, (4.42)

we can approximate R(t1,ty) confined in [T1,TF) x [T1,TF) by SVE as

R(t1,t2) = R(t1, 1) = Z/\ fa(t1) fa(t2), (4.43)

where

N
= Ut (t), (4.44)
m=1
We then apply the approximation in (4.43) to solve the alternative form of (4.19):
Te
11

which gives

A (1) /[ZAhﬁlem

=Z%MﬂT%mmw% (4.46)
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Writing
TR
Cn = fn(y)¢k(s)d8’ (447)
11
¢y, is of the form
1 ~
on(t) =+ > cadnfal2). (4.48)
n=1
By letting matrix B = [b,,,] with
Te _
by — / N fon (@) fa ()T = Ko = Koo, (4.49)
11

and vector ¢ = [c; -+ - ey] ', we can solve non-zero ¢ from
(B - \I)c=0. (4.50)

The solution pairs (A, ¢) to (4.50) are given by {(A.,e,)}Y_;. By substituting

the solutions into (4.48), it is shown that the set of orthonormal basis functions is

{ou() 1ty = {0 (4.51)

Since the set of basis functions is derived from (4.45) but not (4.19), it is re-
quired to check whether the components of the observation vector are uncorrelated
in order to guarantee N effective observations. When the received signal r(t) is

expanded to r by (4.51), the correlation between components is given by

Cov([r / / R(5,t) fu(3) frm(t)dsdlt

= Zumu]m / R (8, 1) (8) b (t)dsdt

= A\Onm, (4.52)
which shows the components of r are mutually uncorrelated.
4.4 Numerical Results

In this section, we compare the BER performance for the two detection meth-
ods: sampling-based detection and expansion-based detection performed on am-

plitude modulation and pulse-position modulation. The set of universal basis
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functions used in (4.40) is chosen to be

1
VY (t) = N Li(n—1)at<t<nan}(t). (4.53)
with
Tr — T
At = ) 4.54
N (4.54)

being the width of each function.

In the simulations, information bits ‘0’ and ‘1’ are sent with equal probability.
One-shot transmission is assumed since we focus on the efficiency of observations
made by sample-based detection and expansion-based detection. Unless otherwise
specified, the parameters are set to r = 3 ym, d = 100 pm, D = 10* um? /sec, and
Ty = 10 sec.

For both modulation schemes, the BER performance is greatly influenced by
the received pattern of ¢y(t) and c¢;(¢). In this section, sq(t) is set to be a pulse
which represents RN releases 1000 molecules per second. It starts at ¢ = 0 and
with pulse width w = 5 sec. In Fig. 24, different patterns of ¢y(t) are presented for
different values of distance d and diffusion coefficient D. It can be observed that
longer distance d results in lower concentration level, and also suppress components
of ¢y(t) that lies in [T /2, T), i.e., in supp(co)Nsupp(cy ). In Fig. 25, ¢o(t) are plotted
under different values of symbol interval T;. When Tj is larger, components of ¢ (t)
that lies in [75/2, T;) also become small. From (4.8) and (4.9), we define the signal
to noise ratio (SNR) to be

c*(t)

SR = Cartn (1. 0)

~ c(t), (4.55)
when p(t) << 1.

4.4.1 Amplitude Modulation

For amplitude modulation, sq(t) is set to represents RN releases 1000 molecules
per second which starts at ¢t = 0 and with pulse width w = 5 sec. The number of
observations is K = 10. The relation between so(t) and s (t) is given in (4.20) with

C = 0.1. In Fig. 26, BER performance is compared between the sample-based
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Figure 24: Patterns of the waveform ¢((t) under different distance d and diffusion

coefficient D. The time ¢ is normalized with respect to 7.
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Figure 25: Patterns of the waveform co(t
The time ¢ is normalized with respect to Tj

) under different symbol duration 7.
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Figure 26: Comparison between the sample-based detection and the expansion-
based detection for the amplitude modulation under different values of diffusion
coefficient D.

detection and the expansion-based detection. The result shows that the BER
increases when the diffusion coefficient D and the distance d between TN and RN
become larger. This may due to the larger SNR according to Fig. 24. Moreover,
since ¢o(t) and ci(t) are multiple of each other for the amplitude modulation,
BER performance can be roughly compared through the SNR. The figure also
shows that when the distance between TN and RN is small, the expansion-based
detection outperforms the sample-based detection very much. However, when the
distance becomes larger, BER increases and the difference between two detection
methods is not obvious. In Fig. 27, two detection methods are compared by
different numbers of observations. The result quite matches the intuition that
better performance can be achieved by having more observations on the received
waveform, which is not only because more information about the waveform is

available, but also the approximation in (4.43) is more accurate.
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Figure 27: Comparison between the sample-based detection and the expamsion-
based detection for amplitude modulation under different number of observations

K.
4.4.2 Pulse-position Modulation

For pulse-position modulation, the results of both detections are greatly in-
fluenced by how c¢y(t) and c¢;(t) occupies the time domain. In this part, s;(t) is
obtained by right-shifting s¢(t) for T,/2, and hence it occupies [T;/2,T;). Note
that transmitting s;(¢) in pulse-position modulation do not produce any error for
one-shot transmission since RN can detect bit ‘1’ whenever a non-zero compo-
nent is sensed in [Ty/2,T;). In this case, we only consider transmitting sq(¢) and
evaluate BER in terms of false-alarm probability, i.e., the probability that given
TN transmitted bit ‘0’ but RN detects bit ‘1. Fig. 28 compares two detection
methods for pulse-position modulation by different values of diffusion coefficient.
Unlike the amplitude modulation, BER performance of the pulse-position mod-
ulation becomes better for longer distance. And the relation between BER and
diffusion coefficient D is not as straightforward as for the amplitude modulation.

When d is small, a smaller value of D may perform worse than a larger value of
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Figure 28: Comparison between the sample-based detection and the expansion-
based detection for pulse-position modulation under different values of diffusion
coefficient D.

D since components of ¢y(t) in the interval [T;/2, T;) causes larger interference.

Fig. 29 compares BER for both detection methods under different numbers

of observations K. For a fixed K, the expansion-based detection outperforms

the sample-based detection. In Fig. 30, we vary the pulse width w of sq(t) and

the result shows that larger values of T;/w is beneficial to decrease the BER. As

shown in Fig. 25, larger T,/w indicates smaller interference from cy(t) to ¢ (t),

which reduces the probability for false alarms to occur.
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Figure 29: Comparison between the sample-based detection and the expansion-
based detection for pulse-position modulation under different numbers of observa-
tions K.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

In this thesis, two categories of molecular communication: coherent molecu-
lar communication and non-coherent molecular communication have been investi-
gated. For coherent molecular communication, the channel behavior was described
in a microscopic view, and the system design mainly focused on mitigating prob-
lems such as the crossover effect and the inter-symbol interference result from
the random movements of molecules. Solutions to the problems were provided in
Chapter 2 and Chapter 3. For non-coherent molecular communication, instead
of treating each molecule independently, we tried to model the macroscopic be-
havior, that is, concentration level, for a large amount of molecules. Based on
the model, signals could be modulated by different continuous waveforms at TN,
and detected with low error rate at RN. The main achievements were discussed
in previous chapters. In the following, we briefly summarize the contents of each
chapter.

In Chapter 2, a quantity-modulated molecular communication system have
been proposed. Based on the likelihood ratio test and Bayesian criterion, we ob-
tained a low-complexity detection method. Moreover, we have explored series
transmission with ISI. Numerical results have shown that by performing the pro-
posed ISI cancellation, the performance improves significantly and the improve-
ments becomes greater when more molecules are allowed to transmit a symbol.

In Chapter 3, a threshold-based detection algorithm have been proposed for the
quantity-type-modulated system, and was proven to have good BER performance.
Theoretical approximations have been derived for the BER performance of the

threshold-based detection algorithm, and they match the simulation results well.
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Finally, principles in choosing proper symbol duration, block length, and detection
threshold were also presented, which enables a reliable molecular communication
design.

In Chapter 4, a generalized stochastic model of the diffusion channel has been
derived, which could be used to obtain the channel response when a continuous
wave was transmitted. The proposed model enabled modulating information in
different waveform of molecule releasing rate. Based on mathematical analyses,
the expansion-based detection was proposed for amplitude modulation and pulse-
position modulation. Simulation results have shown that the expansion-based de-
tection out-performs the widely-used sampling-based detection. Moreover, from
the simulation results, we concluded that the pulse-position modulation is pre-

ferred over amplitude modulation when the transmission distance is long.

5.2 Future Works

In this thesis, we consider one-dimensional environment for coherent molecular
communication due to the fact that the distribution of the molecule first-hitting
time in higher dimensional space is hard to evaluate. However, detection methods
in three dimensional environment is still required in order to let the system phys-
ically realizable. It is served as our future work that the detection algorithm can
be based on statistic of molecules, e.g. moments of the first-hitting time, without
knowing the distribution of the first-hitting time.

For non-coherent molecular communication, we have found amplitude mod-
ulation and pulse-position modulation that can achieve simultaneous orthogonal
expansion. It is of our interests to find either (1) a mathematically generalizable
method to solve a set of basis functions for arbitrary continuous waveform or (2)
other types of continuous waveform which can achieve simultaneous orthogonal

expansion.
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