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摘要 
 

  在奈米尺度的通訊環境下，擴散式分子通訊被視為最可行也最具潛力的方法。

近期對於擴散式分子通訊調變的研究包含利用分子種類、分子數量以及分子濃度

來承載訊息。本篇碩士論文依照承載訊息、偵測方法的差異，將擴散式分子通訊

分為兩大類：同調分子通訊以及非同調分子通訊，藉此研究並設計分子通訊系統。

對於同調分子通訊，我們研究利用分子數量以及分子種類承載訊息。由於擴散通

道的隨機性，錯位效應 (cross over effect) 以及符際干擾 (inter-symbol 

interference) 嚴重影響系統效能。本篇論文提出符際干擾消除  (ISI 

cancellation) 以及閾值偵測法 (threshold-based detection) 來消除上述對

於系統的負面效應。經由數學分析以及電腦模擬證實，本篇論文針對通道負面效

應所提出的數量-種類調變 (quantity-type modulation) 能有效提升系統效能。

對於非同調分子通訊，本論文建構了統計模型，以數學描述接收端偵測到的濃度

變化。由於此模型適用於傳送端發出任意連續波型，能設計出的調變方法會更加

豐富，同時也利於設計更好的偵測演算法。另外，本論文提出基底展開偵測法 

(expansion-based detection) 和廣泛被使用的取樣偵測法 (sample-based 

detection) 做比較，電腦模擬結果顯示基底展開偵測法在振幅調變以及脈衝位

置調變下能比取樣偵測法達到更佳的系統效能。 



ABSTRACT

Diffusion-based molecular communication has become a promising scheme for

communication between nanoscale devices, and various modulation schemes have

recently been proposed, including type, quantity, and concentration modulation.

In this thesis, we investigate molecular communication by separating it into two

categories: coherent molecular communication and non-coherent molecular com-

munication, which are based on the adopted signaling and detection methods.

For coherent molecular communication, we study modulations that convey infor-

mation in molecular quantity or molecular type. Due to the randomness of each

molecule in the diffusion channel, problems such as the crossover effect and the

inter-symbol interference arise which undermine the system performance. This

thesis provides algorithms such as ISI cancellation and threshold-based detection

algorithm to deal with the problems. Moreover, it is shown by mathematical

derivations and computer simulations that the proposed quantity-type modula-

tion, which is designed against the bad channel effects, has reliable performance.

For non-coherent molecular communication, we construct a stochastic model to

describe the concentration magnitude sensed by the receiver. The model enables

more modulation designs since it is generalized to the case that the transmit-

ter send any continuous wave to the the receiver. It also allows better design

for detection algorithm. Amplitude modulation and pulse-position modulation in

non-coherent molecular communication are studied and compared by using the

proposed expansion-based detection as well as the widely-used sampling-based

detection. Through simulation, it is proved that the expansion-based detection

outperforms the sampling-based detection.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Nano-technology has become an important research area and is expected to

have great impact on many fields, including medicine, biology, military, and elec-

tronics. The advance in nano-technology has enabled the development of nanoma-

chines, which are devices in nanoscale that can perform sensing, computation, and

actuation. The computational capability of a single nanomachine, however, is of-

ten quite limited due to the ultra-small size and the ultra-low power capacity.

As a result, an efficient information exchange mechanism between nanomachines

is required in order to coordinate the nanomachines to accomplish complicated

tasks [1].

Unlike modern wireless communication systems in which signals are carried by

electromagnetic (EM) waves, communication in nanoscale through EM waves may

not be practical due to issues such as antenna size, power consumption, computa-

tional complexity, and signal attenuation in fluid environments [2]. Diffusion-based

molecular communication is believed to be one of the most promising solutions

for communication in nanoscale [3–7], which is composed of a transmission nano-

machine (TN), a reception nano-machine (RN), and a diffusion channel between

TN and RN. To convey information, TN releases information molecules into sur-

rounding environment. Those molecules arrive at RN through diffusion process,

RN then captures those arriving molecules and attains information. Fig. 1 shows

a picture for diffusion-based molecular communication. This thesis focuses on

designing modulation and detection schemes for TN to embed information and

RN to attain information by molecules. To discuss modulation techniques thor-

oughly, we categorize diffusion-based molecular communication into two types –

1
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Transmission 
Nano-machine 

(TN) 

Reception 
Nano-machine 

(RN) 

Diffusion 
Process 

Figure 1: Diffusion-based molecular communication.

coherent or non-coherent molecular communication – according to the signaling

and detection method used by TN and RN.

1.2 Coherent Molecular Communication

In communication based on EM wave, “coherent modulation” means receivers

can fully recover phase of received signal. Borrowing the idea, we use the term

coherent in molecular communication to mention RN can recover timing informa-

tion of each molecule. In this thesis, coherent molecular communication means

that the signaling and detection are done by counting the number of information

molecules. Both TN and RN are able to count each molecule at a single position

and time instant. Moreover, once an information molecule is captured by RN,

it is removed from the diffusion channel. Diffusion model and channel capacity

related to coherent molecular communication is first proposed in [8]. In coherent

molecular communication, the behavior of each molecule can be investigated sep-

arately, in microscopic view. More precisely, for each molecule released by TN, we
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TN releases  
molecules 

time 
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RN captures  
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TN 
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First-hitting time  
of a molecule 

Figure 2: Coherent molecular communication.

can describe the behavior of this molecule by using the time it requires to reach

RN, which we call the first-hitting time of a molecule. Fig. 2 shows an example

for coherent molecular communication. One major issue in coherent molecular

communication is that earlier released molecules may arrive late and later re-

leased molecules may arrive early, causing crossovers. When molecules are used

to transmit symbols, crossovers between molecules will introduce interference. In

this thesis, we investigate the problem known as inter-symbol interference (ISI) in

coherent molecular communication, and propose two approaches to mitigate the

effect. From simulation, we show that the proposed ISI cancellation algorithm

can improve the performance significantly. Moreover, both the modulation and

the detection methods have low complexity which are suitable for communication

between nanomachines.
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1.3 Non-coherent Molecular Communication

By non-coherent molecular communication, we mean the signaling and detec-

tion are done by sensing the magnitude of the molecular concentration, i.e. the

number of molecules within a small volume around them, at a time instant. Noise

model considering diffusion process and counting errors from ligand-binding im-

perfection is first proposed in [9]. In [10], information is modulated by pulses of

molecules at transmission nano-machine (TN), and RN samples the received con-

centration waveform to make detection. [11, 12] study possible modulation tech-

niques in molecular communication via different messenger molecules. Most of the

existing studies take advantage of Robert’s equation to model the macroscopic be-

havior of molecules, that is, the concentration distribution, in space and time as:

U(d, t) = N(4πDt)−
3
2 exp

(
− d2

4Dt

)
, (1.1)

where D is the diffusion coefficient. However, this form simply describes the expec-

tation of the molecule behavior. The fluctuation or randomness of concentration

level should be taken into account. This thesis is the first study that provides

stochastic model for diffusion channel when continuous waveform is applied at

TN. Based on the model, we also propose methods for solving a set of basis func-

tions in order to achieve orthogonal expansion for detection.

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we provide a

one-dimensional modulation and detection scheme, under which we design an ISI

cancellation algorithm that dramatically improves the system performance. In

Chapter 3, we consider a more complicated modulation which embeds information

on both quantity and type of molecules. This modulation combats both ISI effect

and background noise simultaneously. We also provide principles to choose system

parameters to achieve good performance. In Chapter 4 of this thesis, we construct

a stochastic model for the diffusion channel starting from Brownian motion of each
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molecule. Different from the results in [10,12], this model applies to any continuous

wave transmitted by TN. We also solve a set of basis functions that can expand

the received signals into observation vectors, which enables us to design detection

criterion for different modulations. Finally, conclusions and future works are given

in Chapter 5.



CHAPTER 2

QUANTITY MODULATION

2.1 Introduction

In this chapter, we study the communication between two nano-machines with

information embedded in different molecular quantity [13]. In the rest of this

chapter, we call this kind of modulation as quantity modulation (QM). It is known

that in diffusion-based molecular communications, molecules are emitted by the

transmitter and move towards the receiver following the laws of molecule diffu-

sion. Recent studies on diffusion-based molecular communications often model

the statistical behavior of molecule diffusion as a Brownian motion [8]. Due to the

random nature of Brownian motions, molecules that released earlier by TN may

arrive late. Therefore, messages carried in current molecules may be interfered by

those delayed molecules that were transmitted earlier. This phenomenon is known

as the ISI effect in diffusion-based molecular communications. Studies about this

effect can be found in [14] and [15].

There are lots of ways to design filters to eliminate the effect of ISI in con-

ventional communication such as linear equalizer, adaptive equalizer and decision-

feedback equalizer [16]. However, both linear equalizer and adaptive equalizer do

not work well in molecular communication due to time-varying channel response.

In this chapter, we utilize the concept of decision feedback and introduce a method

to mitigate the effect of ISI.

The rest of this chapter is organized as follows: In Sec. 2.2, we introduce the

settings of a binary QM molecular communication system in details. We also

describe the characteristics and the mathematical model of a Brownian motion

channel. Sec. 2.3 focuses on deriving the decision rule for one-shot transmission

of the binary QM system and extending it to the M-ary transmission case. In

6
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Sec. 2.4, we consider serial transmission and take ISI effect into account. ISI

cancellation method is also described in this section. Numerical results are shown

in Sec. 2.5.

2.2 System Model

In this section, we first give a general model for transmitter, receiver, and chan-

nel in molecular communication. We then describe a QM system of M quantity

levels (M -ary modulation) bearing log2M information bits, which will be used

later to apply our ISI cancellation method.

2.2.1 Transmission Nano-machine

Fig. 3 illustrates a transmitter nano-machine TN transmitting molecules to a

receiver nano-machine RN. When TN obtains information (e.g. bit pattern) to be

transmitted, it starts storing certain number of molecules in a vesicle (container

that stores molecules) and releases these molecules simultaneously into the envi-

ronment. The number of released molecules differs according to the transmitting

information. In practical situations, molecules leaves the vesicle with random tim-

ing which is discussed in [17]. In this thesis, we simply assume that molecules exit

the vesicle simultaneously.

Figure 3: Transmission from TN to RN through a fluid medium.

2.2.2 Reception Nano-machine

RN is located at a position d > 0 apart from TN. There are several recep-

tors capturing molecules on RN. RN counts the number of molecules it captures

and perform detection according to the number. We assume the molecules can
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be perfectly captured by the receptors and RN does not have counting errors.

Furthermore, once a molecule arrives at RN, it will be removed from the commu-

nication medium.

2.2.3 Channel

Consider a fluid medium between TN and RN with positive drift velocity v.

The molecules are all constrained to move in a one-dimensional space. We assume

that the trajectory of emitted molecules can be modeled with independent Brow-

nian motions [8]. Let X denote the random variable representing the first hitting

time of a molecule. If v > 0, it can be shown that the probability density function

(PDF) of X is given by the inverse Gaussian (IG) distribution [18]

fX(x) =


√

λ

2πx3
exp

{
−λ(x− µ)2

2µ2x

}
, x > 0,

0, x ≤ 0,

(2.1)

µ =
d

v
and λ =

d2

2D
,

where D denotes the diffusion coefficient which is given by

D =
kBT

6πτr
,

where kB is the Boltzmann constant, Ta is the absolute temperature, τ is the

viscosity of the fluid medium, and r is the radius of molecules. For simplicity, we

assume that the radii for all molecules are the same so that the diffusion coefficients

are the same.

2.2.4 QM System

Consider a time-slotted M -ary communication with signaling interval TB, TN

can release M different quantities of molecules into the channel. Denote those M

quantities by Lm, where m ∈ {0, 1, 2, · · · , (M−1)}. Assume the a priori probabil-

ity for releasing Lm molecules to be qm. At the starting time of each transmission
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time slot, Lm molecules are emitted simultaneously from the transmitter to indi-

cate the transmission of a symbol. We assume perfect synchronization between

the transmitter and the receiver. During each time slot, RN counts the total num-

ber of arriving molecules. An appropriate decision rule, proposed in Sec. 2.3, is

then applied to determine the transmitted data bit at the end of each time slot.

The molecules which fail to arrive within the corresponding time slot become a

source of interference, which will cause performance degradation to the detections

of later coming symbols. Fig. 4 is an example of QM system with M = 4 and

uniform quantity levels.

Perfect synchronization between TN and RN is assumed in this chapter, a

possible realization which is based on sending training molecular impulses are

introduced in [BoKai].

Figure 4: Illustration of quantity-based modulation scheme with L0 = 2, L1 = 4,
L2 = 6, L3 = 8.

2.3 Detection in One-shot Transmission

In this section, we discuss the detection rule of the system for one-shot trans-

mission. The main contribution of our work is that we separate the ISI cancella-

tion problem from the detection to achieve a more flexible and modularized design,

which is different from previous works [19].

2.3.1 Binary Detection

We define two hypotheses H0 and H1. H0 is the hypothesis that L0 molecules

are transmitted (indicating bit 0), and H1 is the hypothesis that L1 molecules

are transmitted (indicating bit 1). Denote the conditional PDF of the number of
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received molecules in a particular time slot, given that hypothesis Hm is true, by

Pr{N = n|Hm}, m ∈ {0, 1}. Using the inverse Gaussian PDF given in (2.1), we

define the probabilities pj as:

pj =

∫ (j+1)Ts

jTs

fX(x)dx (2.2)

for j ∈ {0, 1, · · · }, which is the probability that the traveling time of a molecule

falls in the interval [jTs, (j+1)Ts], where j is the index of the time slots. Define Yk

to be the indicator random variable showing whether the k-th molecule emitted

in a one-shot transmission arrives within Ts given that Hm is true. That is,

Yk =


1, if the k-th molecule arrives within Ts,

0, otherwise.

(2.3)

Let N be the random variable denoting the total number of molecules arriving at

the receiver within a particular time slot. We have the following relation:

Pr{N = n|Hm} = Pr{Y1 + Y2 + ...+ YLm = n|Hm}. (2.4)

Given the number of the transmitted molecules, N thus follows Binomial(Lm, p0).

For large Lm, we approximate the binomial distribution by a Gaussian distribution

with the knowledge of the mean and variance of N . Namely, we have

Pr{N = n|Hm} ≈
exp

{
− (n− Lmp0)2

2Lmp0(1− p0)

}
√

2πLmp0(1− p0)
. (2.5)

As a special case when M = 2, the distributions of N under two hypotheses can

thus be obtained as

Pr{N = n|H0} ≈
exp

{
− (n− L0p0)2

2L0p0(1− p0)

}
√

2πL0p0(1− p0)
, (2.6)

Pr{N = n|H1} ≈
exp

{
− (n− L1p0)2

2L1p0(1− p0)

}
√

2πL1p0(1− p0)
. (2.7)
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According to the conventional hypothesis testing theory [20,21], the decision rule

can be expressed using the likelihood ratio test Λ(N) as

Λ(N) =
P (N |H1)

P (N |H0)

H1

≷
H0

q0

q1

. (2.8)

If we assume equal a priori probabilities q0 = q1 = 1/2, due to the characteristic

of Gaussian distribution shown in Fig. 5, the decision rule can be further reduced

to

N
H1

≷
H0

η (2.9)

for some threshold η, where η is the solution of the following equation:

Pr{N = η|H0} = Pr{N = η|H1}. (2.10)

By (2.6) and (2.7), we have√
L1

L0

= exp

{
(L1 − L0)(η2 − p2

0L0L1)

2L0L1p0(1− p0)

}
. (2.11)

Taking logarithms to both sides, the equation becomes

η =

√
L1L0 ln(L1/L0)

L1 − L0

p0(1− p0) + p2
0L0L1. (2.12)

In other words, if the received number of molecules is greater than the threshold

η, the receiver will determine H1 as the hypothesis testing result; otherwise H0

will be decided.

2.3.2 M-ary Detection

The detection rule can be extended to M -ary detection with only a few adjust-

ments. Suppose we have multiple hypotheses Hm where m ∈ {0, 1, 2, · · · , (M−1)}

which represent the transmission of Lm molecules. The goal is to decide which m̂

we should choose. The maximum a priori (MAP) detection rule is:

m̂(N) = argmax
m

P (N |Hm). (2.13)

Due to the properties of Gaussian distribution, the above MAP detection rule

can be simplified to pairwise comparisons between the “neighboring” conditional

probability distributions.
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Figure 5: Demonstration of the process of finding η in a binary QM system, where
f is the conditional PDF of N given Hm is true.

To write down the expressions explicitly, we define a set of thresholds E =

{ηj ∈ [−∞,∞] : j = 0, 1, 2, · · · ,M}, and let η0 = −∞ and ηM = ∞. For

j = 1, 2, · · · , (M − 1), ηj can be obtained by solving the equations

Pr{N = ηj|Hj−1} = Pr{N = ηj|Hj}. (2.14)

With the thresholds determined, the detection rule for M -ary transmission can be

expressed as

m̂(N) =
M−1∑
k=0

k · u [−(N − ηk)(N − ηk+1)] . (2.15)

where u(·) denotes the unit step function.

2.3.3 Error Rate Analysis

After the construction of the transmission and decision rules, we then analyze

how it performs in terms of symbol or bit error rate. Consider a specific case for

M = 2 and q0 = q1 = 1/2. Denote the false alarm probability as PF and the

missing probability as PM. The error rate can be written as

Pe = q0PF + q1PM =
1

2
(PF + PM). (2.16)

From Fig. 5 and the decision rule derived in Sec. 2.3.1, it can be shown that

PF = Pr{N > η|H0} = Q

(
η − L0p0√
L0p0(1− p0)

)
, (2.17)
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PM = Pr{N < η|H1} = Q

(
L1p0 − η√
L1p0(1− p0)

)
, (2.18)

where Q(·) denotes the Q-function. By substituting (2.12) into equation (2.17)

and (2.18), we can evaluate the error rate Pe in (2.16). Fig. 6 shows the comparison

between our analysis and numerical results.
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Figure 6: Theoretical result versus numerical result for one-shot binary quantity-
based modulation.

2.4 Serial Transmision and ISI Cancellation

The above described QM molecular communication system seems to work al-

ready. However, in practical situations, we need to perform serial transmissions

rather than one-shot transmission. Thus the ISI effect must be taken into account.

Our results show that if we do not modify our one-shot detection rule, the system

performance will fall dramatically under serial transmission environments due to

the severe ISI effect. To solve this problem, we propose a method to mitigate the

ISI effect.

In order to mitigate the ISI effect, we first need an estimation of the number of
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the delayed molecules that come from former time slots. If we know the conditional

probability distribution of the number of ISI molecules conditioned on the current

received number, then we can estimate the ISI effect as the conditional mean.

However, the conditional distribution does not have a closed-form solution for

inverse Gaussian random variables. Here, we proposed another intuitive way to

do this estimation.

First, we define “memory-Γ cancellation” to mean that the ISI effect during

the past Γ time slots are taken into account when making decision. We first use

memory-1 cancellation as a demonstrative example. If the number of molecules

received during the (i−1)-th time slot is ni−1 and the decided transmission quantity

level is l̂i−1, where l̂i−1 ∈ {L0, L1, · · · , LM−1}, we then subtract l̂i−1 · [FX(2Ts) −

FX(Ts)] (the a priori expected received number in the i-th time slot from the

(i − 1)-th time slot) from ni before making the i-th decision, where FX(·) is the

cumulative distribution function (CDF) of the first-hitting time of molecules. In

other words, the actual number ñi used in making decision is

ñi = ni − l̂i−1 · [FX(2Ts)− FX(Ts)]. (2.19)

Likewise, we can perform memory-Γ cancellation if we have enough buffer at the

receiver end to memorize temporarily the recently received numbers of molecules.

More explicitly, denote the probabilities that a single transmitted molecule ar-

rives during the time interval [jTs, (j + 1)Ts] by pj for j ∈ N ∪ {0} as before.

If the decided transmission quantity level of the current time slot is l̂, where

l̂ ∈ {L0, L1, · · · , LM−1}, then the received number of molecules j time slots later

should be subtracted by l̂ · pj+1 before making decision. In other words, if the

number of molecules received in i-th time slot is ni, the actual number ñi used in

making decision is

ñi = ni −
Γ∑
j=1

l̂i−jpj+1. (2.20)

For binary QM systems, the decision rule can be written as

ñi = ni −
Γ∑
j=1

l̂i−jpj+1

H1

≷
H0

η. (2.21)
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The extension to M-ary QM systems is straightforward.

2.5 Numerical Results

In this section, we first discuss the binary and M -ary QM modulation systems

with and without performing ISI cancellation. After that, we make comparisons

of the system performance under different time slot durations.

The number of molecules is one of the main resources utilized in molecular

communications. Analogous to the “power” concept in conventional communi-

cations, we need to take this number into account when comparing the system

performances. In the following subsections, we present the results under differ-

ent maximum number of molecules allowed per symbol, and the quantity levels

are uniformly spaced. The simulation parameters are d = 0.2 cm, drift velocity

v = 0.01 cm/sec, diffusion coefficient D = 0.05 cm2/sec , and time slot duration

Ts = 5 sec.

2.5.1 SER Comparison with and without ISI Cancellation

In Fig. 7, a binary transmission system with memory-1 and memory-2 cancel-

lation is considered. The SER drops from 0.04 to 0.01 when L1 = 30, and drops

from 10−2 to 10−4 when L1 = 90. The improvement grows as L1 increases, which

means that by choosing L1 properly, a reliable end-to-end transmission can be

achieved. We also observe that even without ISI cancellation, the error rate will

drop as L1 increases. The reason is that the spacing between symbols is increased.

However, as shown in Fig. 8, it is not the case for the quaternary transmission

system. It can be seen that even though L3 becomes large, the error rate is still

high without ISI cancellation, which means we cannot rely solely on increasing the

maximum number of molecules without ISI cancellation.

It is worth mentioning that the ISI cancellation method can be performed not

only in such quantity-based modulation systems, but it can also be used in other

systems like on-off keying1 with slight modifications.

1Transmitting zero or a single molecule.
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Figure 7: Binary quantity-based modulation with ISI cancellation.
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Figure 8: Quaternary quantity-based modulation with ISI cancellation.
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2.5.2 Performance Under Different Duration of Time Slot

In this subsection, we consider a binary transmission system with and without

ISI cancellation for different time slot durations. From Fig. 9, we can observe

that the SER decreases as the duration Ts increases. In other words, to improve

performance, one can increase the duration of the time slot as shown in Fig. 9.

Although the error rate is already quite acceptable, it can be further improved by

the ISI cancellation approach. The improvements is about 10 times better when

Ts = 10 sec and L1 = 70. Note that when Ts is small, say Ts = 1 sec, compared to

the expected first-hitting time d/v, the error rate increases even if we increase L1

when no cancellation is performed. This is because when Ts is small, molecules

tend not to arrive in one symbol time but stay in the background, and that a

larger L1 will cause a larger amount of molecules to be in the background and

hence larger interference.
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Figure 9: Binary quantity-based modulation with ISI cancellation under different
Ts.



CHAPTER 3

QUANTITY-TYPE MODULATION

3.1 Introduction

To communicate between two nano-machines, several modulation techniques

have been proposed to bear information [10, 12, 22–25]. Among various kinds of

modulation, quantity [22] and type [23, 24] modulation is of our interests. Based

on the design paradigms of both works, that the type of molecules could yield ad-

ditional embedded information, and that the increase in the quantity of molecules

per transmission could result in higher performance, we propose a new modula-

tion scheme called quantity-type modulation. Consider a type-based modulated

system, the transmitter releases different types of molecules representing differ-

ent information bits or symbols. When the molecules arrive at the receiver, the

receiver captures those molecules and attains information based on their types.

Nevertheless, the arrival times of the molecules at the receiver are random due to

the diffusion process. This results in the phenomenon that the molecules released

earlier may arrive late, leading to wrong information detection. A way to remedy

this is to release a group of molecules of the same type at a time to improve the

system reliability.

An intuitive method to detect the quantity-type modulated molecular commu-

nication system is using majority vote—information bits are detected according

to the type of molecules that outnumber another. However, as it is shown in this

paper, the performance of the majority vote detection algorithm is disappointing.

Hence, in this chapter, we introduce a novel detection algorithm called threshold-

based detection by exploiting the characteristics of the diffusion channel. Theo-

retical approximations of the bit error rate (BER) performance of the proposed

threshold-based detection algorithm for the quantity-type-modulated molecular

18
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communication system are derived. Both the simulation and theoretical results

confirm the significant performance improvement over the majority vote detection,

either without or with background noise.

3.2 System Model

In this section, based on the diffusion channel modeled by Brownian motion

as in 2.2, we introduce the communication scheme adopted in this chapter.

3.2.1 Quantity-type Modulation

We assume that two types of information molecules , ‘A’ and ‘B’, have the same

radius r and are distinguishable for both transmitter and receiver. This can be

achieved by using isomers as described in [26]. The transmission is assumed to be

time-slotted with interval Ts and the transmitter releases n molecules of one type

at the beginning of each time slot to represent an information bit, where n is an

odd number. That is, n type-A molecules represent bit ‘1’ and n type-B molecules

represent bit ‘0’. In addition, the information bits are firstly partitioned into

blocks with L bits. When nL molecules are released, the transmitter should wait

for a period of time T before the next transmission. The receiver always gathers

molecules on arrival, that is, there is no fixed time slots at the receiver and the

asynchronous detection, i.e., majority-vote detection or threshold-based detection,

is performed. Moreover, whenever nL molecules are captured, the receiver should

also wait for a period of time T before the next detection. The waiting time

between blocks is set to avoid detection errors caused by background noise (which

will be mentioned in the next subsection) affecting the next block.

3.2.2 ISI and Noise Effect on Quantity-type Modulation

Due to the randomness of the first hitting times of transmitted molecules, a

molecule may arrive at the receiver in advance of the molecule(s) released earlier

. We use the term crossover to describe this phenomenon. Crossovers result in

intersymbol interference (ISI) and may lead to detection errors.
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Figure 10: A demonstrative example for the majority-vote detection algorithm
and the threshold-based detection algorithm with λ = 1 and λ = 2. The boxed
numbers represent the value stored in the counter that reaches the threshold λ.

In diffusion-based molecular communications, it is likely for the receiver to

capture molecules that are not released by the corresponding transmitter. Those

unintended molecules, which we call background noise in the rest of this study,

may come from the environment or other transmitters. We model the number of

arriving unintended molecules as a Poisson random process {N(t) : t ≥ 0} and

N(t+ τ)−N(t) follows Poisson(ατ) with noise rate α.

3.3 Detection Algorithms

In this section, we first describe the majority-vote detection algorithm and

then elaborate the proposed threshold-based detection algorithm.
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Figure 11: Block diagram of the threshold-based detection algorithm.

3.3.1 Majority-vote Detection

An intuitive detection method of the quantity-type-modulated molecular com-

munication system is the majority vote, which counts the majority type of molecules

once n molecules are gathered. We use an example to explain the majority-vote

detection in Fig. 10. To illustrate that different types of molecules are released by

the transmitter at different time slots, we use (U1,U2,U3, · · · ) to represent that

the transmitter releases a set of molecules U1 at t = t0, molecules U2 at t = t0+Ts,

and molecules U3 at t = t0+2Ts, and so on. Let us consider the example in Fig. 10,

the transmitter releases (AAA,BBB,AAA,AAA,BBB) to convey the information

sequence ‘1, 0, 1, 1, 0’. Due to the diffusion channel, the arriving molecules may be

out of order. In this example, the receiver captures the molecules in the order of

‘A, A, B, A, B, A, B, A, A, A, A, B, B, B, A’. (3.1)

Note that in both (3.1) and “Received pattern” in Fig. 10, we do not show the time

difference between two adjacently captured molecules, which may not be identical.

The majority-vote algorithm groups the molecules as ‘A, A, B’, ‘A, B, A’, ‘B, A,
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A’, ‘A, A, B’, and ‘B, B, A’, and determines the majority type in each group as

‘A’, ‘A’, ‘A’, ‘A’, and ‘B’. Therefore, the detected bits are ‘1, 1, 1, 1, 0’, which has

one bit error. This error results from the effect of ISI as described in Sec. 3.2.2.

3.3.2 Threshold-based Detection

To develop a detection algorithm that is suitable for operating under the diffu-

sion channel, let us first gain some insights about how the diffusion-based molec-

ular communication system is performed. Consider a case that the transmitter

releases (A, B), i.e., the transmitter releases a molecule of type A and then a

molecule of type B after a time duration Ts. It is likely that the receiver receives ‘B,

A’, which results in bit errors. However, if the transmitter releases (AAA , BBB),

i.e., the transmitter releases three molecules of type A and then three molecules

of type B after a time duration Ts, the probability that the receiver receives ‘B,

B, B, A, A, A’ is small since it requires many crossovers happening to obtain this

pattern. It is more likely that at least one type-A molecule arrives earlier than

all the type-B molecules. Therefore, a reasonable principle for designing detection

algorithm would be: once the receiver captures a type-A molecule before capturing

a type-B molecule, the receiver infers that the transmitter releases (AAA) before

(BBB). The remaining two type-A molecules that arrive later provide relatively

little information, and they may even introduce ISI to other molecules; hence the

receiver should ignore those two late-arriving molecules.

Based on the above observation, we propose the threshold-based detection al-

gorithm. As shown in Fig. 11, the detector is composed of a classifier, two counters,

and two threshold comparators. The classifier recognizes the type of the arriv-

ing molecules. If the arriving molecule belongs to type A, the classifier generates

a signal to counter A; if the arriving molecule belongs to type B, the classifier

generates a signal to counter B. Counter A and counter B are used to count the

number of arriving molecules of type A and B, respectively. Whenever a signal

is sensed by the counter, it increases its stored value by one. The values stored

in the counters are denoted by VA and VB respectively. When the value stored in
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the counter reaches a predetermined threshold λ, bit ‘1’ or ‘0’ is generated. Once

the stored value reaches n, the stored value is reset to zero. Note that when VA or

VB is in the region (λ, n], no output is generated by the detector. That is, n − λ

molecules with the same type are ignored by the receiver.

Fig. 10 shows a simple example that does not consider the noise effect (or

the noise rate α is negligibly small). The detection result in this example has no

bit error. An example of the threshold-based detection algorithm considering the

background noise is shown in Fig. 12. The transmitter releases three molecules

at a time and the receiver applies the threshold-based detection with threshold

λ = 3. In this example, only the background noise caused by type-A molecules is

considered. The unintended molecules are equivalently inserted into the receiving

molecule pattern. The inserted molecules cause wrong increment of the value

stored in the counter, making the receiver output an erroneously detected bit.

This is termed bit insertion. When this happens, the detected bit sequence is

right-shifted compared with the actual bit sequence.

Since n molecules are released in each symbol duration, the total number of

arriving molecules at the receiver should be nL for each block. However, due to

the background noise, the total number of molecules may be greater than nL. The

proposed scheme in Sec. 3.2.1 suggests that after nL molecules are received, the

receiver ignores the late-arriving molecules for a period of T . We set T = 2Ts since

the probability that a molecule arrives late for more than 2Ts is small.

3.3.3 Trade-offs when Combating ISI and Noise Effect on Quantity-
type Modulation

ISI comes from the crossover effect of the released molecules. Intuitively, adopt-

ing a larger signaling interval Ts at the transmitter will decrease the probability

of crossovers. However, as Ts grows larger, the number of unintended molecules

captured by the receiver during each symbol detection will increase. Thus, we

expect that there should be an optimal Ts which minimizes the detection error

caused by both ISI and background noise. The optimal Ts for threshold-based
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Figure 12: A demonstrative example for the detection result under background
noise using the threshold-based detection algorithm. λ = 3. In the example, the
crossover effect is not taken into account.

detection will be derived in Sec. 3.4.

It can be observed that detection errors occur when unintended molecules are

captured by the receiver, which causes the value stored in the counter to reach

the threshold λ too early. Therefore, to combat the background noise, we may

increase the value of λ. However, as will be shown later, a small λ is better for

combating ISI. Details in determining λ is discussed in Sec. 3.5. Moreover, the

value of n also affects the system performance since λ ≤ n, that is, n limits the

possible choices of λ.

To deal with the background noise, it is also possible to modify the block size

L. The effects of background noise can be mitigated by using a smaller L since

the number of unintended molecules in a block can be reduced. Nevertheless,

when a smaller block size is used, the total throughput decreases due to the longer

duration between blocks.

In the next section, we analyze the system performance in the sense of bit



3.4. BER ANALYSIS 25

error rate (BER). Based on the BER performance, principles of choosing the

above-mentioned system parameters will be discussed in Sec. 3.5.

3.4 BER Analysis

In this section, we mathematically compare the BER performance of the majority-

vote detection algorithm and the proposed threshold-based detection algorithm.

In the following, we first derive BER under the case that the background noise

is negligible, i.e. α approaches zero. We then analyze the case when α is not

negligible such that increasing Ts would introduce more unintended molecules at

the receiver.

3.4.1 Preliminaries

For the i-th information bit si ∈ {0, 1}, n molecules of type A or B are released.

By assuming that the prior probabilities Pr{si = 0} = Pr{si = 1} = 1/2, the BER

can be written as

Pr{ŝi 6= si} =
1

2
Pr{ŝi = 1|si = 0}+

1

2
Pr{ŝi = 0|si = 1}

= Pr{ŝi = 0|si = 1}, (3.2)

where ŝi is the information bit detected by the receiver. Equivalently, we can

compute (3.2) by

Pr{ŝi 6= si} =
1

4
Pr{ŝi = 0|si−1 = 0, si = 1, si+1 = 0}+

1

4
Pr{ŝi = 0|si−1 = 0, si = 1, si+1 = 1}

+
1

4
Pr{ŝi = 0|si−1 = 1, si = 1, si+1 = 0}+

1

4
Pr{ŝi = 0|si−1 = 1, si = 1, si+1 = 1}.

(3.3)

Each term in (3.3) is affected by the ISI from {si−2, si−3, · · · } and {si+2, si+3, · · · }.

Here, we assume that the errors due to crossover of molecules happening to neigh-

boring information bits are dominant compared with the error due to crossover

of molecules happening to information bits that are more than two time intervals

apart. Therefore, we compute (3.3) by considering the relations of si−1, si, and

si+1 only.
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Denote the first hitting time of the n molecules released for representing si as

independent and identically distributed (i.i.d.) random samples X1(i), · · · , Xn(i).

From the theorem of order statistics, if X1(i), · · · , Xn(i) are arranged in increasing

order as X(1)(i) ≤ · · · ≤ X(n)(i), the PDF and the cumulative density function

(CDF) for the k-th smallest one are, respectively,

fX(k)
(y) = n

(
n− 1

k − 1

)
FX(y)k−1[1− FX(y)]n−kfX(y), (3.4)

and

FX(k)
(y) =

n∑
j=k

(
n

j

)
FX(y)j[1− FX(y)]n−j, (3.5)

where FX(y) is the CDF of X. Note that both (3.4) and (3.5) are defined on

y > 0.

Now we define the switching between two symbols si and sj as the event

ŝi = sj, ŝj = si for si 6= sj. For convenience, we define the events Epqr and Êpqr

respectively as

Epqr = {si−1 = p, si = q, si+1 = r},

Êpqr = {ŝi−1 = p, ŝi = q, ŝi+1 = r}. (3.6)

We use the superscript to distinguish the majority-vote detection and the threshold-

based detection for ŝi and Êpqr, i.e., ŝMVD
i and ÊMVD

pqr for the majority-vote detec-

tion, and ŝTD
i and ÊTD

pqr (λ) for the threshold-based detection with threshold λ.

3.4.2 Analysis when Background Noise is Negligible

Let us begin by analyzing the majority-vote detection. To calculate the BER

of the majority-vote detection, denoted by PMVD
c , (3.3) is rewritten as

PMVD
c = Pr{ŝMVD

i 6= si}

=
1

4
Pr{ŝMVD

i = 0|E010}+
1

4
Pr{ŝMVD

i = 0|E011}+
1

4
Pr{ŝMVD

i = 0|E110}

+
1

4
Pr{ŝMVD

i = 0|E111}. (3.7)

In the first term of (3.7), given E010, the event ŝi = 0 happens when either of the

following conditions is satisfied:
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1. Molecules representing si cross over molecules representing si+1 and then the

event ÊMVD
001 happens.

2. Molecules representing si−1 cross over molecules representing si and then the

event ÊMVD
100 happens.

3. Molecules representing si−1, si, and si+1 cross over in the way that the type-

B molecules outnumber type-A molecules for all three detected symbols, and

then the event ÊMVD
000 happens.

Note that the above observation is made with the assumption in Sec. 3.4.1 that

detection errors due to ISI is dominated by the crossovers of molecules from neigh-

boring information bits, namely, si−1 and si+1. Fig. 13 shows example outcomes

given the event E010 which corresponds to the conditions mentioned above: the

first outcome results from two crossovers between si and si+1, the second outcome

results from two crossovers between si and si−1, and the third outcome results

from one crossover between si and si+1 and one between si and si−1. The second

and third terms in (3.7) follow similar arguments. Given E011 or E110, the event

ŝi = 0 is equivalent to ÊMVD
101 . The final term in (3.7) equals 0 since given event

E111, ŝi = 0 is impossible. Therefore, by the assumption in Sec. 3.4.1, we have

PMVD
c ≈ 1

4
Pr{ÊMVD

001 ∪ ÊMVD
100 ∪ ÊMVD

000 |E010}+
1

4
Pr{ÊMVD

101 |E011}+
1

4
Pr{ÊMVD

101 |E110}.

(3.8)

To furthur compute (3.8), we need the following lemma.

Lemma. Assume that the switching other than si and si+1 is negligible. Under the

quantity-type modulation and majority-vote detection without background noise,

two transmitted symbols si and si+1 switch if and only if si 6= si+1, and the order

statistics X(n+1
2

)(i) and X(n+1
2

)(i+ 1) satisfy

X(n+1
2

)(i) > X(n+1
2

)(i+ 1) + Ts. (3.9)

Proof. Without loss of generality, we assume that si = 1 and si+1 = 0. For the

“if” part, the condition (3.9) is equivalent to having the crossover between the
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n+1
2

-th molecule in si and the n+1
2

-th molecule in si+1. Therefore, (3.9) guarantees

that there are at most n−1
2

molecules of type A arriving earlier than X(n+1
2

)(i), and

there are at least n+1
2

molecules of type B arriving earlier than X(n+1
2

)(i). Since

n−1
2

+ n+1
2

= n, we conclude that for the majority-vote detection, the detection

results are ŝi = 0 and ŝi+1 = 1, i.e., si and si+1 switch.

For the “only if” part, we assume that either si = si+1 or X(n+1
2

)(i) < X(n+1
2

)(i+

1) + Ts, and we aim to prove si and si+1 do not switch. The first case si = si+1 is

trivial since no switching happens between two identical symbols. For the other

case X(n+1
2

)(i) < X(n+1
2

)(i + 1) + Ts, there are exactly n+1
2

molecules of type A

arriving no later than X(n+1
2

)(i), and there are at most n−1
2

molecules of type

B arriving no later than X(n+1
2

)(i). Since n+1
2

+ n−1
2

= n, for the majority-vote

detection, the detection results are ŝi = 1 and ŝi+1 = 0, i.e., si and si+1 do not

switch.

After applying the lemma to (3.8), the BER under the majority-vote detection

without background noise is given in (3.10).

Pr{ŝMVD
i 6= si} ≈

1

4
Pr
{
X(n+1

2
)(i− 1) > X(n+1

2
)(i) + Ts or X(n+1

2
)(i) > X(n+1

2
)(i+ 1) + Ts

or ÊMVD
000 |E010

}
+

1

4
Pr
{
X(n+1

2
)(i− 1) > X(n+1

2
)(i) + Ts

}
+

1

4
Pr
{
X(n+1

2
)(i) > X(n+1

2
)(i+ 1) + Ts

}
. (3.10)

Now we analyze the threshold-based detection algorithm. Similarly, by the

assumption in Sec. 3.4.1, the BER of the threshold-based detection algorithm,

denoted by PTD
c (λ), can be derived as

PTD
c (λ) = Pr{ŝTD

i 6= si}

≈ 1

4
Pr{ÊTD

001(λ) ∪ ÊTD
100(λ)|E010}+

1

4
Pr{ÊTD

101(λ)|E011}+
1

4
Pr{ÊTD

101(λ)|E110}.

(3.11)
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Figure 13: Example of the events ÊMVD
001 , ÊMVD

100 , and ÊMVD
000 given that the infor-

mation sequence ‘0, 1, 0’ is transmitted.

If the threshold is λ, it can be observed that when si−1 6= si, the switching of si−1

and si occurs when

X(λ)(i− 1) > X(λ)(i) + Ts. (3.12)

Therefore, (3.11) can be approximated by (3.13).

Pr{ŝTD
i 6= si} ≈

1

4
Pr
{
X(λ)(i− 1) > X(λ)(i) + Ts or X(λ)(i) > X(λ)(i+ 1) + Ts

}
+

1

4
Pr
{
X(λ)(i− 1) > X(λ)(i) + Ts

}
+

1

4
Pr
{
X(λ)(i) > X(λ)(i+ 1) + Ts

}
(a)
=

1

2
Pr
{
X(λ)(i− 1) > X(λ)(i) + Ts

}
+

1

2
Pr
{
X(λ)(i) > X(λ)(i+ 1) + Ts

}
− 1

4
Pr
{
X(λ)(i− 1) > X(λ)(i) + Ts > X(λ)(i+ 1) + 2Ts

}
. (3.13)

The equality in (3.13) (denoted by ‘(a)’) results from the property Pr{A∪B} =

Pr{A} + Pr{B} − Pr{A ∩ B}. Again, we utilize the fact that the probability of

switching happening to the information bits that are more than two intervals

apart is small. Then the negative term in (3.13) is negligible. Moreover, since the

probability that si switches with si+1 and the probability that si−1 switches with
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si are the same, it is given that

PTD
c = Pr{ŝTD

i 6= si}

≈ Pr{X(λ)(i− 1) > X(λ)(i) + Ts}

=

∫ ∞
−∞

Pr{X(λ)(i) < u− Ts|X(λ)(i− 1) = u}fX(λ)
(u)du

=

∫ ∞
−∞

FX(λ)
(u− Ts)fX(λ)

(u)du

=

∫ ∞
Ts

FX(λ)
(u− Ts)fX(λ)

(u)du, (3.14)

which can be evaluated numerically.

To compare the majority-vote detection algorithm and the threshold-based

detection algorithm, we start from (3.8) and the lemma.

PMVD
c ≈ 1

4
Pr{ÊMVD

001 ∪ ÊMVD
100 ∪ ÊMVD

000 |E010}+
1

4
Pr{ÊMVD

101 |E011}+
1

4
Pr{ÊMVD

101 |E110}

=

[
1

4
Pr{ÊTD

001(λ) ∪ ÊTD
100(λ) ∪ ÊMVD

000 |E010}+
1

4
Pr{ÊTD

101(λ)|E011}

+
1

4
Pr{ÊTD

101(λ)|E110}
]
λ=n+1

2

≥
[

1

4
Pr{ÊTD

001(λ) ∪ ÊTD
100(λ)|E010}+

1

4
Pr{ÊMVD

000 |E010}+
1

4
Pr{ÊTD

101(λ)|E011}

+
1

4
Pr{ÊTD

101(λ)|E110}
]
λ=n+1

2

(3.15)

=
[
PTD

c (λ)
]
λ=n+1

2

+
1

4
Pr{ÊMVD

000 |E010}

>
[
PTD

c (λ)
]
λ=n+1

2

, (3.16)

where (3.15) comes from the union bound. Therefore, we conclude that the

threshold-based detection with λ = n+1
2

outperforms the majority-vote detection

due to the extra term ÊMVD
000 in (3.16).

3.4.3 Analysis when Background Noise is not Negligible

To approximate the BER when background noise is not negligible, we compute

the BER resulted from the crossovers and the background noise respectively, and

then discuss their joint effect. Denote Pc as the BER caused by the crossover effect

(Pc = PMVD
c or Pc = PTD

c ), Pn as the BER caused by the background noise, and
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Pe as the aggregated BER. From the union bound, we have Pe ≤ Pc + Pn. Note

that we have already calculated Pc of the two algorithms in Sec. 3.4.2. The main

problem of computing Pn is due to the difficulty of enumerating all the possible

patterns of the arriving molecules when background noise is taken into account.

However, we can approximate Pn by computing the average number of errors in a

block and dividing it by the block size L.

Although the detection performed by the receiver is asynchronous, the receiver

would spend LTs (or L time slots) on average to capture all nL molecules. For

both detection algorithms, observe that whenever an unintended molecule arrives

at the receiver, the following received molecule pattern in the block will be right-

shifted by one. When the number of unintended molecules exceeds a certain value

(which will be discussed in the following paragraphs), the molecules representing

the ith bit will be right shifted such that the ith detection bit will not be performed

on the corresponding molecules, and thus causes a bit insertion. An example for

noise effect on the threshold-based detection is shown in Fig. 12. We assume

the transmitter releases molecules (AAA, AAA, BBB) to convey information bits

‘1, 1, 0’. When background noise is negligible, the received molecule pattern will

follow the order as in the example. On the other hand, when background noise

is not negligible, a bit insertion is produced when the receiver receives λ = 3

unintended molecules. The subsequent bits will be right shifted and the detections

will become Bernoulli random trials due to the bit insertion. We denote T as

the time when the bit insertion occurs, then the average number of bits being

influenced by the bit insertion would be (LTs − T )/Ts, given T < LTs. Since the

information bits 0 or 1 are sent with equal probability, Pn can be written as

Pn ≈ Pr{T < LTs}EV
[

(LTs − T )/Ts

2L

∣∣∣∣T < LTs

]
= Pr{V < L}EV

[
L− V

2L

∣∣∣∣V < L

]
,

(3.17)

where we define V = T /Ts and the “2” in the denominator comes from the fact

that detection results obtained from the shifted sequence are Bernoulli random

trials. In the following, we use V MVD and V TD for two algorithms to represent
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the normalized time when the subsequent bit sequence becomes Bernoulli random

trials.

For the majority-vote detection, if the number of unintended molecules exceed

n+1
2

at time GMVD, there will be less than n−1
2

intended molecules in the subsequent

bit detection, and hence the detection results will become Bernoulli random trials.

Denote {NA(t) : 0 ≤ t < LTs} and {NB(t) : 0 ≤ t < LTs} as two random processes

which respectively represent the number of unintended molecules of type A and

type B arriving at the receiver from the beginning of the block to time t, we have

GMVD = inf

{
t : NA(t) +NB(t) ≥ n+ 1

2

}
. (3.18)

In order to compute (3.17) for the majority-vote detection, we need the distribution

of V MVD in (3.18). From our system model in Sec. 3.2.2, NA(t) and NB(t) are

Poisson processes with rate α. The inter-arrival times of unintended molecules

thus follow exponential distribution with mean 1
α

. It is shown in (3.18) that

the bit insertion occurs when the “sum” of the number of unintended molecules

reaches (n+1)/2, regardless of the type of the unintended molecules. Therefore, it

suffices to consider the inter-arrival time of the unintended molecules with either

type. The mean of inter-arrival time becomes 1
2α

. Denote the inter-arrival time of

the j-th unintended molecules as τj, j ∈ {1, . . . , n+1
2
}. Then,

V MVD =
τ1 + · · ·+ τn+1

2

Ts
. (3.19)

It is known that the summation of i.i.d. exponential random variables follows

gamma distribution, i.e., Gamma(n+1
2
, 2αTs).

fVMVD(v) =


(2αTs)

(n+1)/2

Γ(n+1
2

)
v(n−1)/2e−(2αTs)v, v > 0,

0, v ≤ 0.

(3.20)
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Therefore,

PMVD
n ≈ Pr{V MVD < L}EVMVD

[
L− V MVD

2L

∣∣∣∣V MVD < L

]
=

∫ L

0

(
L− v
L

)
fVMVD(v)dv

=
1

2Γ(n+1
2

)

[
γ

(
n+ 1

2
, 2αTsL

)
− 1

2αTsL
γ

(
n+ 3

2
, 2αTsL

)]
, (3.21)

where γ(s, x) is the lower incomplete gamma function.

For the threshold-based detection, if the number of unintended molecules of

the same type exceeds λ at time GTD, a bit insertion occurs, and the subsequent

detected bits become Bernoulli random trials. An example is shown in Fig. 12 that

when the number of type A unintended molecules reaches λ = 3, a bit insertion

occurs (in this example, bit 1) , and the subsequent bits (in this example, bit 0)

will be right shifted. Thus we have

GTD = inf {t : NA(t) ≥ λ} ∧ inf {t : NB(t) ≥ λ} , (3.22)

where x ∧ y means the minimum of x and y. In order to compute (3.17) for the

threshold-based detection, we need the distribution of V TD in (3.22). Similarly, we

denote the inter-arrival time between the (j − 1)th and jth unintended molecules

of type A as τA,j, j ∈ {1, . . . , λ}. Then,

V TD
A =

τA,1 + · · ·+ τA,λ

Ts
. (3.23)

Similarly, the inter-arrival time between the (j−1)th and jth unintended molecules

of type B can be written as

V TD
B =

τB,1 + · · ·+ τB,λ

Ts
. (3.24)

Therefore, both V TD
A and V TD

B follows Gamma(λ, αTs).

fV TD
A

(v) = fV TD
B

(v) =


(αTs)λ

Γ(λ)
vλ−1e−(αTs)v, v > 0,

0, v ≤ 0.

(3.25)

Since V TD = V TD
A ∧ V TD

B from (3.22), we have

fV TD(v) = 2fV TD
A

(v)− 2fV TD
A

(v)FV TD
A

(v), (3.26)
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where FV TD
A

(v) = 1
Γ(λ)

γ(λ, αTsv) is the cumulative distribution function of V TD.

We use the method of union bound instead of directly calculating the conditional

expected value through the PDF of V TD
A ∧ V TD

B . We know that bit errors in

the threshold-based detection are caused by the number of unintended molecules

exceeding λ, thus by the union bound, Pn ≤ PA +PB, where the errors are caused

by unintended type-A, type-B molecules, respectively.

PTD
n (λ) ≈ 2 Pr{V TD

A < L}EV TD
A

[
L− V TD

A

2L

∣∣∣∣V TD
A < L

]
=

∫ L

0

(
L− v
L

)
fV TD

A
(v)dv

=
1

Γ(λ)

[
γ(λ, αTsL)− 1

αTsL
γ(λ+ 1, αTsL)

]
. (3.27)

It can be observed that PTD
n depends on parameters λ and αTsL. To derive

relationships between PTD
n and those parameters, we first take derivatives with

respect to αTsL with formula

∂γ(s, x)

∂x
= xs−1e−x, (3.28)

gives

∂PTD
n

∂(αTsL)
≈ γ(λ+ 1, αTsL)

Γ(λ)(αTsL)2
> 0, (3.29)

which implies PTD
n is monotone with the increase of αTsL. On the other hand, by

using the asymptotic behavior that

γ(s, x)

xs
→ 1

s
when x is small, (3.30)

if αTsL is small, (3.27) can be approximated as

PTD
n (λ) ≈ 1

Γ(λ)

[
(αTsL)λ

λ
− 1

αTsL

(αTsL)λ+1

λ+ 1

]
=

(αTsL)λ

Γ(λ+ 2)
, (3.31)

which means that PTD
n becomes smaller as λ grows larger.

To compare the two algorithms under the effect of background noise for any

odd number n, we note that PTD
c (n+1

2
) is smaller than PMVD

c as discussed in Sec.

3.4.2, and in this section, by applying approximation similar to (3.31),

PMVD
n ≈ (2αTsL)(n+1)/2

2Γ

(
n+ 5

2

) ≈ 2
n−1
2 PTD

n

(
n+ 1

2

)
> PTD

n

(
n+ 1

2

)
. (3.32)
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Therefore, the threshold-based detection with λ = n+1
2

results in lower BER than

the majority-vote detection even when the background noise is considered. This

again proves that the threshold-based detection can outperform the majority-vote

detection.

3.4.4 Optimal Choice of Signaling Interval Ts for Threshold-based De-
tection

When the effect of background noise is negligibly small, we can improve the

BER simply by using a larger Ts since it lowers the probability of molecular

crossover. However, when the background noise is not negligible, the BER per-

formance is no longer merited from increasing Ts. Although the crossover effect

is smaller when a larger Ts is used, more unintended molecules are captured by

the receiver, which in turn increases BER. The same conclusion can be made by

observing (3.29) that a larger Ts results in larger PTD
n . Therefore, there exists an

optimal Ts given λ such that the BER is minimized. In the following, we compute

the approximated optimal Ts (for a given λ) and discuss some properties that may

help design the optimal threshold-based detection scheme.

To find the optimal Ts, we solve the equation

∂Pe

∂Ts

= 0. (3.33)

Here we assume that the union bound applied in the previous subsection is tight

such that Pe ≈ PTD
c + PTD

n for the threshold-based detection and solve

∂PTD
c

∂Ts

+
∂PTD

n

∂Ts

= 0. (3.34)

Let us define

g(t) =

∫ ∞
t

fX(λ)
(u− t)fX(λ)

(u)du. (3.35)
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Then

∂PTD
c

∂Ts

≈ −
∫ ∞
Ts

fX(λ)
(u− Ts)fX(λ)

(u)du

= −
∫ ∞

0

fX(λ)
(u)fX(λ)

(u+ Ts)du

= −g(t = Ts). (3.36)

Note that g(t) is the PDF of X(λ)(i−1)−X(λ)(i), or equivalently, the difference of

two samples generated i.i.d. from the order statistics X(λ). We can also calculate

that

∂PTD
n

∂Ts

≈ γ(λ+ 1, αTsL)

Γ(λ)αLT 2
s

≈ λ(αL)λT λ−1
s

Γ(λ+ 2)
, (3.37)

where the second approximation uses (3.30) given αTsL small. After combining

(3.34), (3.36), and (3.37), we obtain

∂PTD
c

∂Ts

+
∂PTD

n

∂Ts

≈ λ(αL)λT λ−1
s

Γ(λ+ 2)
− g(t = Ts) = 0. (3.38)

This means that the optimal Ts can be computed by solving

g(t)

tλ−1

∣∣∣∣
t=Ts

=
λ(αL)λ

Γ(λ+ 2)
. (3.39)

3.5 Numerical Results

In this section, we first compare the performances of the majority-vote detec-

tion and the threshold-based detection with different number of simultaneously

released molecules and various threshold values λ when no background molecules

are involved. The accuracy of the theoretical BER approximation is also shown.

After that, we compare the performances of the threshold-based detection with

different number of simultaneously released molecules, various threshold values,

and different block sizes in the presence of background noise. The accuracy of the

derived approximated optimal Ts is also confirmed.

In the simulations, information bits are sent randomly with equal probability

and the background noise is assumed to be Poisson distributed. The simulation

parameters are d = 100 µm, drift velocity v = 1 µm/s, diffusion constant D =
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2.44038× 10−11 m2/s [27]. Unless otherwise specified, the block size L = 40 bits,

and the rate of Poisson distribution is α = 2× 10−5 s−1.

3.5.1 Performance when Background Noise is Negligible

In Fig. 14 and Fig. 15, we compare the performance of the majority-vote de-

tection algorithm and the proposed threshold-based detection algorithm when no

background noise is presented for n = 3 and n = 5 quantity-type-modulated

systems, respectively, with various values of λ. The threshold-based detection al-

gorithm yields better performance than the majority-vote detection algorithm if a

proper threshold value is chosen. We also compare the theoretical BER approxima-

tions (3.14) with the simulation results of the threshold-based detection algorithm,

and show that the theoretical results match the simulation results well, especially

for large Ts. From the figures, the threshold-based detection with λ = (n+ 1)/2 is

shown to outperform the majority-vote detection, as proved in Sec. 3.4.2. More-

over, for the threshold-based detection, a smaller λ leads to better performance,

and choosing λ = 1 yields the lowest BER. This is because a symbol will be error-

free if less than n− λ crossovers occur. Therefore, the value n− λ can represent

the ISI-resisting capability, and a larger n − λ value improves the system perfor-

mance. As shown in the figures, for a fixed n, choosing a smaller λ, and hence a

larger n − λ, yields better performance. Thus, by applying the threshold-based

detection with λ ≤ (n + 1)/2, it can always achieve better performance than the

majority-vote detection.

Fig. 16 summarizes the performance comparison of the majority-vote detec-

tion algorithm and the threshold-based detection algorithm when no background

noise is presented. The system with type modulation, which is equivalent to the

quantity-type-modulated system with n = 1, is also shown. It can be seen that

the performance of the n = 3 quantity-type-modulated system with the majority-

vote detection is worse than the type-modulated system when Ts is large. This

shows that using a detection algorithm not tailored for the diffusion channel would

nullify the benefits getting from releasing n molecules at a time. By applying the
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Figure 14: Performance comparison between the majority-vote detection and the
proposed threshold-based detection for the n = 3 quantity-type-modulated system
without background noise. The theoretical analysis and the simulation results are
also compared.

threshold-based detection, the BER reaches 10−5 with less than a half of Ts com-

pared with using the majority-vote detection. A better performance is achieved if

more molecules are released at a time, i.e., with a larger n.

3.5.2 Performance when Background Noise is not Negligible

From Fig. 17 to Fig. 20, we evaluate the performance of majority-vote detection

and threshold-based detection algorithms with various threshold values and block

sizes under the influence of background noise. Fig. 21 further shows how the

number of simultaneously released molecules affects the system performance.

In Fig. 17 and Fig. 18, we compare the performances of majority-vote detec-

tion and threshold-based detection algorithms in n = 3 and n = 5 quantity-type-

modulated systems, respectively, under background noise. It can be observed that

when Ts is small, a smaller λ is preferred since the BER caused by crossovers
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Figure 15: Performance comparison between the majority-vote detection and the
proposed threshold-based detection for the n = 5 quantity-type-modulated system
without background noise. The theoretical analysis and the simulation results are
also compared.

is dominant. However, when Ts is large, systems with larger λ have better per-

formance since they are more robust to the background noise, which is supported

by (3.31). The figures also show that when λ = (n+1)/2, the BER of the threshold-

based detection is lower than that of the majority-vote detection for any given Ts,

which is proved in Sec. 3.4.3. This guarantees the performance of the threshold-

based detection, and note that further improvements can be achieved by choosing

a proper λ and Ts. The optimal Ts’s derived from (3.39) with respect to λ are also

shown in the figures, which match the simulation results very well.

Fig. 19 and Fig. 20 show the BER performances of the n = 3 and n = 5

quantity-type-modulated systems under different block sizes. It can be observed

that the block size affects the BER significantly for both the majority-vote detec-

tion and the threshold-based detection. The performance is better with smaller L

since the ISI is mitigated by a time separation of 2Ts between blocks. Smaller L

also reduces the amount of unintended molecules being captured by the receiver.
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Figure 16: Performance comparison of quantity-type-modulated systems without
background noise with different n (the number of molecules released at a time)
and different detection algorithms. The case of n = 1 corresponds to the type-
modulated system. λ = 1 for the threshold-based detection algorithm.

The benefits brought from smaller L can be observed from (3.29). To conclude,

both the ISI effect and the background noise are small when L is small.

In Fig. 21, we summarize the performance comparison between the majority-

vote detection algorithm and the threshold-based detection algorithm when the

background noise is considered. Performance of the type-modulated system is also

shown. It is observed that the BER of the quantity-type-modulated system with

the majority-vote detection is lower than that of the type-modulated system, but

is still larger than 10−2. In the case of using the threshold-based detection, by

choosing a proper λ and a large n, the BER is improved to 10−4.
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Figure 17: Performance comparison between the majority-vote detection and the
proposed threshold-based detection for the n = 3 quantity-type-modulated system
with background noise. The theoretical analysis and the simulation results are also
compared.
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Figure 18: Performance comparison between the majority-vote detection and the
proposed threshold-based detection for the n = 5 quantity-type-modulated system
with background noise. The theoretical analysis and the simulation results are also
compared.
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Figure 19: Performance comparison between the majority-vote detection and the
proposed threshold-based detection for the n = 3 quantity-type-modulated system
with background noise under different block sizes. The theoretical analysis and
the simulation results are also compared. λ = 3.
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Figure 20: Performance comparison between the majority-vote detection and the
proposed threshold-based detection for the n = 5 quantity-type-modulated system
with background noise under different block sizes. The theoretical analysis and
the simulation results are also compared. λ = 5.
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Figure 21: Performance comparison of quantity-type-modulated systems with
different n using different detection algorithms in the presence of background
noise. The case of n = 1 corresponds to the type-modulated system. λ = 3
for the n = 3 quantity-type-modulated system and λ = 5 for the n = 5 quantity-
type-modulated system. L = 40 bits.



CHAPTER 4

WAVEFORM MODULATION

4.1 Introduction

The last two chapters mainly discussed communications schemes in coherent

molecular communication, which assumes the receiver RN to be able to capture

molecules one by one. Under the assumption, the channel model can be simpli-

fied by only describing the distribution of the molecule first-hitting time when a

molecule arrives at RN. Practically, however, nano-machines may only sense the

concentration level within a small volume around them, and hence RN may lose the

information about the arriving of a single molecule. Moreover, coherent molecular

communication limits possible methods to transmit bit information. Therefore, a

new stochastic model is needed in order to diversify possible modulation schemes.

In this chapter, we will discuss how to mathematically model the diffusion channel

when continuous waveform (rather than impulse) is used to convey information.

Since the work is still in its early stage, we focus waveform modulation mainly

on two kinds of well-known modulation: amplitude modulation and pulse-position

modulation.

4.2 System Model

4.2.1 Transmitter and Receiver Modeling

We consider two nanomachines, one transmitter nanomachine (TN) and one

receiver nanomachine (RN), located in a three-dimensional Euclidean space filled

with fluid medium. TN is located at 0 and RN is located at r. We assume TN

and RN have very small sizes compared with the distance between them. RN can

sense the concentration level in the sensing region S = {x : |r − x| ≤ ρ}. For

simplicity, we denote r = |r| to be the distance between TN and RN; V = m(S)

44
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to be the measure (or volume in Euclidean space) of the sensing region.

4.2.2 Diffusion Channel Modeling

According to Fick’s second law, the concentration level U(r, t) can be charac-

terized by

∂U

∂t
= D∇2U, (4.1)

where D is the diffusion coefficient depending on the fluid medium. The results

from [Jiun-Ting and Yun-Feng], which take into account the random effect of

diffusion process, show that if N molecules are released simultaneously by TN at

t = 0, the sensed concentration level at RN, denoted by Q(µ,N, t) in this thesis,

is a Gaussian process with mean function N
V
p(t), where

p(t) =

∫
S

1

(4πDt)
3
2

exp

(
− |x|

2

4Dt

)
dx, (4.2)

The variance function is N
V 2p(t)(1− p(t)), and the covariance function is given by

Cov(Q(µ,N, t1), Q(µ,N, t2))

=
N

V 2

[ ∫
S

∫
S

(4πD(t2 − t1))−
3
2 (4πD(t1 − τ))−

3
2

× exp

(
− |x2 − x1|2

4D(t2 − t1)

)
exp

(
− |x1|2

4D(t1 − τ)

)
dx2dx1 − p(t1 − τ)p(t2 − τ)

]
(4.3)

Since the volume V is only a scaling factor, it is set to be V = 1 in the following.

In order to make the communication system physically realizable, we cannot

only consider the case that TN releases some molecules at a time instant since it

requires infinite emission rate. In this study, we consider TN releases molecules

with finite rate s(t) in time interval [0, Ts). The received number of molecules at

RN is denoted by r(µ, t). The structure of the diffusion model is given in Fig. 22.

In the following, we aims at deriving the form of r(µ, t). As shown in Fig. 23,

during an infinitesimal time duration [τ, τ + ∆τ), s(τ)∆τ molecules are released

by TN. By the above results, the received number of molecules at time t is the

sum of i.i.d. Gaussian random variables given by

r(µ, t) = lim
∆τ→0

∑
τ

Q(µ, s(τ)∆τ, t− τ). (4.4)
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Figure 22: Proposed diffusion model for molecular communication in a fluid
medium.

Figure 23: Channel response results from an infinitesimal duration of transmitted
signal s(t).

Therefore, r(µ, t) has Gaussian distribution and has mean

E[r(µ, t)] = lim
∆τ→0

∑
τ

E[Q(µ, s(τ)∆τ, t− τ)]

= lim
∆τ→0

∑
τ

s(τ)∆τp(t− τ) =

∫ Ts

0

p(t− τ)s(τ)dτ = s(t) ? p(t). (4.5)
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and variance

Var(r(µ, t)) = lim
∆τ→0

∑
τ

Var(Q(µ, s(τ)∆τ, t− τ))

= lim
∆τ→0

∑
τ

s(τ)∆τp(t− τ)(1− p(t− τ))

=

∫ Ts

0

s(τ)p(t− τ)(1− p(t− τ))dτ

= s(t) ? [p(t)(1− p(t))]. (4.6)

As a consequence, the received signal r(µ, t) at RN can be viewed as the sum of

two responses: c(t) from a linear part and nB(µ, t) from a random part of the

channel, i.e.

r(µ, t) = c(t) + nB(µ, t), (4.7)

where

c(t) = s(t) ? p(t), (4.8)

and nB(µ, t) is a zero mean Gaussian process with variance function

Var(nB(µ, t)) = s(t) ? [p(t)(1− p(t))]. (4.9)

Intuitively speaking, c(t) is the mean concentration sensed by RN, and nB(µ, t) is

the noise results from Brownian motion.

In order to obtain reliable detection, sometimes we need the covariance of the

received signal at two time instants t1 and t2.

Cov(r(µ, t1), r(µ, t2)) = Cov

(∑
τ1

Q(µ, s(τ1)∆τ1, t1 − τ1),
∑
τ2

Q(µ, s(τ2)∆τ2, t2 − τ2)

)
=
∑
τ

Cov(Q(µ, s(τ)∆τ, t1 − τ), Q(µ, s(τ)∆τ, t2 − τ))

=

∫ Ts

0

s(τ)

[ ∫
S

∫
S

(4πD(t2 − t1))−
3
2 (4πD(t1 − τ))−

3
2

× exp

(
− |x2 − x1|2

4D(t2 − t1)

)
exp

(
− |x1|2

4D(t1 − τ)

)
dx2dx1

− p(t1 − τ)p(t2 − τ)

]
dτ. (4.10)
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The above equation can also be interpreted as the autocorrelation function of

the noise nB(µ, t). We apply the following theorem to check the consistency be-

tween (4.9) and (4.10).

Theorem 1. In Rd space, Kt with the form

Kt(x) =
1

(4πt)d/2
exp

(
−|x|

2

4t

)
, (4.11)

is an approximation to the identity. Therefore, for any given ϕ ∈ L1(Rd), we have

Kt ? ϕ(x)→ ϕ(x) for a.e. x ∈ Rd. (4.12)

Theorem 2. For any given measurable set S ⊂ Rd and ϕ ∈ L1(Rd),∫
S

Kt(x2 − x1)ϕ(x1)dx1 → ϕ(x2) for a.e. x2 ∈ S. (4.13)

Proof. It is clear that ϕ1S ∈ L1(Rd). Apply Theorem 1, we have∫
S

Kt(x2 − x1)ϕ(x1)dx1

=

∫
Rd
Kt(x2 − x1)ϕ(x1)1S(x1)dx1

= Kt ? (ϕ1S)(x2)

→ ϕ · 1S(x2) for a.e. x2 ∈ Rd. (4.14)

For x2 ∈ S, ϕ · 1S(x2) = ϕ(x2), and hence completed the proof.

By setting d = 3 and

KD(t2−t1)(x) = (4πD(t2 − t1))−
3
2 exp

(
− |x|2

4D(t2 − t1)

)
, (4.15)

and under the case that t2 → t+1 , (4.10) becomes

lim
t2→t+1

Cov(r(µ, t1), r(µ, t2)) =

∫ Ts

0

s(τ)p(t1 − τ)[1− p(t1 − τ)]dτ, (4.16)

which in turn shows the consistency. Moreover, it is shown that nB(µ, t) is a non-

white process. In the following, we denote the autocorrelation function of nB by

RnB
(t1, t2).
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4.3 Signal Modulation and Detection

Assume a signal set {si(t)}1
i=0 ⊂ L2([0, Ts)) is used to transmit binary infor-

mation ‘0’ and ‘1’. s0(t) and s1(t), which represent molecule releasing rate of TN

at time t, are transmitted with equal probability. After the signal si(t) passes

through the diffusion channel, the received waveform r(µ, t) at RN is defined on

[0,∞). Since it is not practical and not possible to detect a single bit by observing

an infinite duration of time, the observation duration is assumed to be constrained

in a bounded interval [0, T ) in this study. In the following, we aim at designing

detection schemes at RN. One major problem comes from the observation that

the statistical behaviors of the noise, which are characterized in (4.9) and (4.10),

are determined by the transmitted signal si(t). Details about the problem will

be presented in the following paragraph. For convenience, we use RnB,i(t1, t2), to

denote the autocorrelation function of nB,i(µ, t), where i ∈ {0, 1} represents the

transmitted bit.

Common approach to solve detection problems is to apply likelihood ratio

test based on a finite-length observation vector obtained from the received signal.

In order to apply classical likelihood ratio test, we first transform the received

continuous waveform in (4.7) to a finite sequence of random variables, which is

denoted as

r = [r1 · · · rK ]>. (4.17)

The observation vector r can be obtained by either sampling the original wave-

form or expanding the waveform onto a set of orthonormal basis. Although when

K → ∞, both approaches contain sufficient information about the received con-

tinuous process, it is not the case for a finite K. For a finite valued K, correlated

random variables are obtained by sampling the original waveform while uncorre-

lated random variables can be obtained by orthogonal expansion, e.g., Karhunen-

Loève (KL) expansion. Intuitively, K random variables should be uncorrelated;

otherwise, the effective number of observation would be less than K. Therefore,

orthogonal expansion is of our main focus in this study, and the sample-based
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approach is served as a benchmark design method.

From KL expansion, each element in r is represented by

rk(µ) =

∫ T

0

r(µ, t)φk(t)dt, k = 1, 2, · · · , K, (4.18)

where each φk ∈ L2
(
[0, T )

)
is a solution to the integral equation∫ T

0

RnB,i(t, s)φk(s)ds = λkφk(t). (4.19)

One major problem is that the set of solutions {φk(t)}Kk=1 should satisfy (4.19) for

both i = 0 and i = 1. In [28], the author showed that it is possible to solve for

a set of basis functions which enables simultaneous orthogonal expansion. How-

ever, the examples provided in [28] were on special autocorrelation functions, and

the method is mathematically hard to generalize. In this study, instead of solv-

ing (4.19) for all RnB,i ∈ L2, we limit possible RnB,i by using special modulations,

i.e., amplitude modulation and pulse position modulation.

By amplitude modulation, we mean that for t ∈ [0, Ts),

s0(t)

s1(t)
= C, (4.20)

where C is a constant. From (4.10), for (t1, t2) ∈ [0,∞)× [0,∞) we have

RnB,0(t1, t2)

RnB,1(t1, t2)
= C. (4.21)

Therefore, if the set of solutions {φk(t)}Kk=1 satisfies (4.19) for i = 1 in the way∫ T

0

RnB,1(t, s)φk(s)ds = λkφk(t), (4.22)

the equation also holds for∫ T

0

RnB,0(t, s)φk(s)ds = Cλkφk(t). (4.23)

To form a likelihood ratio test, it can be shown that

r|s0(t) ∼ N (c0,Σ0), (4.24)

r|s1(t) ∼ N (c1,Σ1), (4.25)
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where c0 and c1 are obtained by expanding c0(t) and c1(t) onto {φk(t)}Kk=1. More-

over,

Σ0 = C · diag{λ1, · · · , λK}, (4.26)

Σ1 = diag{λ1, · · · , λK}. (4.27)

By pulse position modulation, we mean s0(t) and s1(t) occupy disjoint sub-

spaces in time domain to bear information, i.e.,

supp(s0) ∩ supp(s1) = ∅. (4.28)

Specifically, we choose s0(t) to occupy [0, Ts/2) and s1(t) to occupy [Ts/2, Ts),

hoping c0(t) and c1(t) could have disjoint supports [0, Ts/2) and [Ts/2, Ts), such

that c0(t) and c1(t) also occupy disjoint subspaces. According to the results in [29],

when signals occupy disjoint subspaces, simultaneous orthogonal expansion can be

achieved. However, since the channel response p(t) is IIR,

supp(c0) ∩ supp(c1) 6= ∅, (4.29)

which means the requirement to apply [29] is not satisfied. More precisely, when

s0(t) is transmitted, c0(t) sensed by RN has components [Ts/2, Ts), which is occu-

pied by c1(t). On the other hand, when s1(t) is transmitted, c1(t) do not have any

component lying on [0, Ts/2). In this study, we use K/2 basis functions {φ0
k}

K/2
k=1

to expand the received waveform in [0, Ts/2) and {φ1
k}

K/2
k=1 are used to expand the

received waveform in [Ts/2, Ts). Combining the two sets of basis functions results

in

{φ0
1, · · · , φ0

K
2
, φ1

1, · · · , φ1
K
2
}, (4.30)

which is used to obtain totally K observations. When either s0(t) or s1(t) is

transmitted, K observations can be obtained by RN and at least K/2 of them are

uncorrelated. To form a likelihood ratio test, it can be shown that

r|s0(t) ∼ N (c0,Σ0), (4.31)

r|s1(t) ∼ N (c1,Σ1). (4.32)
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Moreover,

Σ0 =

 Λ0 ∆01

∆10 ∆11

 , (4.33)

Σ1 =

 0 0

0 Λ1

 , (4.34)

where Λi = diag{λi1, · · · , λiK/2}, i ∈ {0, 1} consists of eigenvalues solved from∫ T
2

0

RnB,0(t, s)φ0
k(s)ds = λ0

kφ
0
k(t), (4.35)

∫ T

T
2

RnB,1(t, s)φ1
k(s)ds = λ1

kφ
1
k(t). (4.36)

∆ij is given by

[∆ij]mn =

∫ ∫
RnB,0(t, s)φim(t)φjn(s)dtds. (4.37)

Finally, the decision rule for amplitude modulation and pulse-position modulation

derived from likelihood ratio test is given by

(r− c1)>Σ−1
1 (r− c1)− (r− c0)>Σ−1

0 (r− c0)
H0

≷
H1

ln
|Σ0|
|Σ1|

. (4.38)

In the following, we aim at solving (4.19) on [TI, TF). For amplitude modulation,

[TI, TF) = [0, T ). For pulse-position modulation, [TI, TF) = [0, Ts/2) for i = 0 and

[TI, TF) = [Ts/2, Ts) for i = 1. To simplify the notation, we drop the subscript

of RnB,i(t1, t2) and the total number of basis functions is denoted by N . For

amplitude modulation, N = K, and for pulse-position modulation, N = K/2.

The form for R(t1, t2) is given in (4.10), which is mathematically hard to use. We

apply the following theorem to approximate R(t1, t2) by a separable function.

Theorem 3. Let H1 and H2 be Hilbert spaces and let A be a compact operator

from H1 into H2. Then

A =
∞∑
n=1

λ̃n(fn ⊗ gn), (4.39)

with

1. {λ̃2
n} the non-zero eigenvalues of A∗A and AA∗,
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2. {gn} orthonormal eigenfunctions of A∗A,

3. {fn} orthonormal eigenfunctions of AA∗ satisfying Agn = λ̃nfn.

The above is known as the singular value expansion (SVE) of A. In [30], the

author proposed how to compute approximation to SVE of compact operators by

universal methods. Let {ψn(t)}Nn=1, TI ≤ t < TF be the set of basis functions.

Define matrix A = [anm],

anm =

∫ TF

TI

∫ TF

TI

R(s, t)ψn(s)ψm(t)dsdt. (4.40)

A is symmetric since

amn =

∫ TF

TI

∫ TF

TI

R(s, t)ψm(s)ψn(t)dsdt

=

∫ TF

TI

∫ TF

TI

R(t, s)ψn(t)ψm(s)dtds

= anm. (4.41)

Therefore, the singular value decomposition (SVD) of A can be written as

A = UΛ̃U> =
N∑
n=1

λ̃nunu
>
n , (4.42)

we can approximate R(t1, t2) confined in [TI, TF)× [TI, TF) by SVE as

R(t1, t2) ≈ R̂(t1, t2) =
N∑
n=1

λ̃nfn(t1)fn(t2), (4.43)

where

fn(t) =
N∑
m=1

umnψm(t), (4.44)

We then apply the approximation in (4.43) to solve the alternative form of (4.19):∫ TF

TI

R̂(t, s)φk(s)ds = λkφk(t), (4.45)

which gives

λkφk(t) =

∫ TF

TI

[
N∑
n=1

λ̃nfn(t)fn(s)

]
φk(s)ds

=
N∑
n=1

λ̃nfn(t)

[∫ TF

TI

fn(s)φk(s)ds

]
. (4.46)
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Writing

cn =

∫ TF

TI

fn(y)φk(s)ds, (4.47)

φk is of the form

φk(t) =
1

λk

N∑
n=1

cnλ̃nfn(x). (4.48)

By letting matrix B = [bnm] with

bnm =

∫ TF

TI

λ̃mfm(x)fn(x)dx = λ̃mu>mun = λ̃mδmn, (4.49)

and vector c = [c1 · · · cN ]>, we can solve non-zero c from

(B− λkI) c = 0. (4.50)

The solution pairs (λk, c) to (4.50) are given by {(λ̃n, en)}Nn=1. By substituting

the solutions into (4.48), it is shown that the set of orthonormal basis functions is

{φk(t)}Nk=1 = {fn(t)}Nn=1. (4.51)

Since the set of basis functions is derived from (4.45) but not (4.19), it is re-

quired to check whether the components of the observation vector are uncorrelated

in order to guarantee N effective observations. When the received signal r(t) is

expanded to r by (4.51), the correlation between components is given by

Cov([r]n, [r]m) =

∫ TF

TI

∫ TF

TI

R(s, t)fn(s)fm(t)dsdt

=
∑
i,j

uinujm

∫ TF

TI

∫ TF

TI

R(s, t)ψn(s)ψm(t)dsdt

=
∑
i,j

uinujmaij

= λnδnm, (4.52)

which shows the components of r are mutually uncorrelated.

4.4 Numerical Results

In this section, we compare the BER performance for the two detection meth-

ods: sampling-based detection and expansion-based detection performed on am-

plitude modulation and pulse-position modulation. The set of universal basis
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functions used in (4.40) is chosen to be

ψn(t) =
1√
∆t
· 1{(n−1)∆t≤t<n∆t)}(t). (4.53)

with

∆t =
TF − TI

N
. (4.54)

being the width of each function.

In the simulations, information bits ‘0’ and ‘1’ are sent with equal probability.

One-shot transmission is assumed since we focus on the efficiency of observations

made by sample-based detection and expansion-based detection. Unless otherwise

specified, the parameters are set to r = 3 µm, d = 100 µm, D = 104 µm2/sec, and

Ts = 10 sec.

For both modulation schemes, the BER performance is greatly influenced by

the received pattern of c0(t) and c1(t). In this section, s0(t) is set to be a pulse

which represents RN releases 1000 molecules per second. It starts at t = 0 and

with pulse width w = 5 sec. In Fig. 24, different patterns of c0(t) are presented for

different values of distance d and diffusion coefficient D. It can be observed that

longer distance d results in lower concentration level, and also suppress components

of c0(t) that lies in [Ts/2, Ts), i.e., in supp(c0)∩supp(c1). In Fig. 25, c0(t) are plotted

under different values of symbol interval Ts. When Ts is larger, components of c0(t)

that lies in [Ts/2, Ts) also become small. From (4.8) and (4.9), we define the signal

to noise ratio (SNR) to be

SNR =
c2(t)

Var(nB(µ, t))
≈ c(t), (4.55)

when p(t) << 1.

4.4.1 Amplitude Modulation

For amplitude modulation, s0(t) is set to represents RN releases 1000 molecules

per second which starts at t = 0 and with pulse width w = 5 sec. The number of

observations is K = 10. The relation between s0(t) and s1(t) is given in (4.20) with

C = 0.1. In Fig. 26, BER performance is compared between the sample-based
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Figure 24: Patterns of the waveform c0(t) under different distance d and diffusion
coefficient D. The time t is normalized with respect to Ts.
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Figure 25: Patterns of the waveform c0(t) under different symbol duration Ts.
The time t is normalized with respect to Ts.
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Figure 26: Comparison between the sample-based detection and the expansion-
based detection for the amplitude modulation under different values of diffusion
coefficient D.

detection and the expansion-based detection. The result shows that the BER

increases when the diffusion coefficient D and the distance d between TN and RN

become larger. This may due to the larger SNR according to Fig. 24. Moreover,

since c0(t) and c1(t) are multiple of each other for the amplitude modulation,

BER performance can be roughly compared through the SNR. The figure also

shows that when the distance between TN and RN is small, the expansion-based

detection outperforms the sample-based detection very much. However, when the

distance becomes larger, BER increases and the difference between two detection

methods is not obvious. In Fig. 27, two detection methods are compared by

different numbers of observations. The result quite matches the intuition that

better performance can be achieved by having more observations on the received

waveform, which is not only because more information about the waveform is

available, but also the approximation in (4.43) is more accurate.
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Figure 27: Comparison between the sample-based detection and the expamsion-
based detection for amplitude modulation under different number of observations
K.

4.4.2 Pulse-position Modulation

For pulse-position modulation, the results of both detections are greatly in-

fluenced by how c0(t) and c1(t) occupies the time domain. In this part, s1(t) is

obtained by right-shifting s0(t) for Ts/2, and hence it occupies [Ts/2, Ts). Note

that transmitting s1(t) in pulse-position modulation do not produce any error for

one-shot transmission since RN can detect bit ‘1’ whenever a non-zero compo-

nent is sensed in [Ts/2, Ts). In this case, we only consider transmitting s0(t) and

evaluate BER in terms of false-alarm probability, i.e., the probability that given

TN transmitted bit ‘0’ but RN detects bit ‘1’. Fig. 28 compares two detection

methods for pulse-position modulation by different values of diffusion coefficient.

Unlike the amplitude modulation, BER performance of the pulse-position mod-

ulation becomes better for longer distance. And the relation between BER and

diffusion coefficient D is not as straightforward as for the amplitude modulation.

When d is small, a smaller value of D may perform worse than a larger value of
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Figure 28: Comparison between the sample-based detection and the expansion-
based detection for pulse-position modulation under different values of diffusion
coefficient D.

D since components of c0(t) in the interval [Ts/2, Ts) causes larger interference.

Fig. 29 compares BER for both detection methods under different numbers

of observations K. For a fixed K, the expansion-based detection outperforms

the sample-based detection. In Fig. 30, we vary the pulse width w of s0(t) and

the result shows that larger values of Ts/w is beneficial to decrease the BER. As

shown in Fig. 25, larger Ts/w indicates smaller interference from c0(t) to c1(t),

which reduces the probability for false alarms to occur.
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Figure 29: Comparison between the sample-based detection and the expansion-
based detection for pulse-position modulation under different numbers of observa-
tions K.
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Figure 30: Comparison between the sample-based detection and the expansion-
based detection for pulse-position modulation under different values of pulse width
w.



CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

In this thesis, two categories of molecular communication: coherent molecu-

lar communication and non-coherent molecular communication have been investi-

gated. For coherent molecular communication, the channel behavior was described

in a microscopic view, and the system design mainly focused on mitigating prob-

lems such as the crossover effect and the inter-symbol interference result from

the random movements of molecules. Solutions to the problems were provided in

Chapter 2 and Chapter 3. For non-coherent molecular communication, instead

of treating each molecule independently, we tried to model the macroscopic be-

havior, that is, concentration level, for a large amount of molecules. Based on

the model, signals could be modulated by different continuous waveforms at TN,

and detected with low error rate at RN. The main achievements were discussed

in previous chapters. In the following, we briefly summarize the contents of each

chapter.

In Chapter 2, a quantity-modulated molecular communication system have

been proposed. Based on the likelihood ratio test and Bayesian criterion, we ob-

tained a low-complexity detection method. Moreover, we have explored series

transmission with ISI. Numerical results have shown that by performing the pro-

posed ISI cancellation, the performance improves significantly and the improve-

ments becomes greater when more molecules are allowed to transmit a symbol.

In Chapter 3, a threshold-based detection algorithm have been proposed for the

quantity-type-modulated system, and was proven to have good BER performance.

Theoretical approximations have been derived for the BER performance of the

threshold-based detection algorithm, and they match the simulation results well.

61
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Finally, principles in choosing proper symbol duration, block length, and detection

threshold were also presented, which enables a reliable molecular communication

design.

In Chapter 4, a generalized stochastic model of the diffusion channel has been

derived, which could be used to obtain the channel response when a continuous

wave was transmitted. The proposed model enabled modulating information in

different waveform of molecule releasing rate. Based on mathematical analyses,

the expansion-based detection was proposed for amplitude modulation and pulse-

position modulation. Simulation results have shown that the expansion-based de-

tection out-performs the widely-used sampling-based detection. Moreover, from

the simulation results, we concluded that the pulse-position modulation is pre-

ferred over amplitude modulation when the transmission distance is long.

5.2 Future Works

In this thesis, we consider one-dimensional environment for coherent molecular

communication due to the fact that the distribution of the molecule first-hitting

time in higher dimensional space is hard to evaluate. However, detection methods

in three dimensional environment is still required in order to let the system phys-

ically realizable. It is served as our future work that the detection algorithm can

be based on statistic of molecules, e.g. moments of the first-hitting time, without

knowing the distribution of the first-hitting time.

For non-coherent molecular communication, we have found amplitude mod-

ulation and pulse-position modulation that can achieve simultaneous orthogonal

expansion. It is of our interests to find either (1) a mathematically generalizable

method to solve a set of basis functions for arbitrary continuous waveform or (2)

other types of continuous waveform which can achieve simultaneous orthogonal

expansion.
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