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中文ᄔा

合約橋牌是一種具有不完全資訊特性的遊戲，電腦在此遊戲中通常

無法勝過人類的橋牌專家。其中，人類橋牌玩家的叫牌決定對於電腦

程式而言特別難以模仿，這使得自動化叫牌仍然是一個具挑戰性的研

究問題。另一方面，使用不模仿人類玩家的方法進行自動化叫牌的可

能性目前尚未被充份研究，在這篇論文中，我們在無競叫叫牌問題上

首先探討使用此種方法的可能性。我們提出一個獨創的機器學習架構

以使電腦程式學習自己的叫牌決定。在這個架構下，我們將叫牌問題

轉換為機器學習問題，並精心設計一個基於成本導向分類器和信心值

上界演算法的模型以解決此問題。我們以實驗驗證所提出的模型，並

發現此模型與模仿人類玩家叫牌決定且多次贏得冠軍的電腦橋牌程式

相較具有相當的競爭力。

關ᗖӷ: 機器學習,合約橋牌,情境式拉霸問題,信心值上界,成本導向分
類器.
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Abstract

Contract bridge is an example of an incomplete information game for
which computers typically do not perform better than expert human bridge
players. In particular, the typical bidding decisions of human bridge players
are difficult to mimic with a computer program, and thus automatic bridge
bidding remains to be a challenging research problem. Currently, the possi-
bility of automatic bidding without mimicking human players has not been
fully studied. In this work, we take an initiative to study such a possibility
for the specific problem of bidding without competition. We propose a novel
learning framework to let a computer program learn its own bidding decisions.
The framework transforms the bidding problem into a learning problem, and
then solves the problem with a carefully designed model that consists of cost-
sensitive classifiers and upper-confidence-bound algorithms. We validate the
proposed model and find that it performs competitively to the champion com-
puter bridge program that mimics human bidding decisions.

Keywords: Machine Learning, Contract Bridge, Contextual Bandit Problem,
Upper-Confidence Bound, Cost-Sensitive Classification.
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Chapter 1

Introduction

Game-playing is a rich field for artificial intelligence (AI) research. The vast majority

of research has focused on full information games such as chess and Othello. Currently,

there are computer programs for some of these games that can outperform human experts.

On the other hand, a more challenging class of incomplete information games such as

poker and bridge continues to be of research interests [1]. A popular research direction

is to exploit machine learning to analyze data in an effort to find better game-playing

strategies [2–4].

Contract bridge, or simply bridge, is an example of an incomplete information game

that is played with a standard 52-card deck. The game requires four players, commonly

referred to as North, East, West, and South. Players compete on two opposing teams,

North-South and East-West, with the objective of earning the highest score in a zero-sum

scenario.

A bridge game consists of several deals, each comprising two stages—the bidding

stage and the playing stage. At the beginning of each deal, each player is dealt 13 random

cards. In the bidding stage, the two teams engage in an auction in an attempt to find the

most profitable contract for the playing stage. During the auction, each player can only

see her/his own 13 cards and not those of the other players including their teammate. The

auction proceeds around the table, with each player deciding to  or to increase the

value of the bid from an ordered set of calls {1♣, 1♢, 1♡, 1♠, 1NT, 2♣, · · · , 7NT} or by

a more sophisticated call, such as doubling the current bid. The auction proceeds until it is
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terminated by three consecutive  calls, at which time the final bid becomes the contract

of the deal. The contract consists of a number and a symbol. The symbol indicates the

trump suit and the number indicates the number of rounds that the auction-winning team

expects to win during the ensuing playing stage.

The player from the auction-winning team who first called the trump suit becomes the

declarer. The playing stage comprises 13 rounds of a card-strength competition using a

standard set of rules, commencing with the player next to the declarer playing the first

card on the table. During the playing stage, the auction-winning team attempts to make

the contract, while the auction-losing team aims block the opponent team from making

the contract. Ultimately, the scores of the teams are determined by comparing the contract

with the actual number of winning rounds.

Previous research that attempted to implement a computer bridge player using AI sug-

gested that the bidding stage is more difficult to implement than the playing stage. For

example, in 1998, the GIB program [5] attained 12th place among 35 human experts in

a par contest, which is a contest without bidding [6]. This demonstrates that computer

bridge players can compete against expert human players in the playing stage. On the

other hand, nearly all the computer bridge programs that are currently available borrow

strategies from human players directly during the bidding stage. The strategies of human

players are commonly called a bidding system, which contain human-designed rules for

communicating information between teammates. Traditional bridge AIs have attempted

to convert these rules into computer programs. However, human-designed rules often

contain ambiguities and even conflicts, which complicate the task of programming a bid-

ding system. In addition, using only human-designed rules limits the capability of the

machines.

There have been several successful efforts to improve the bidding AI. For example, a

reasoningmodel for making decisions with a rule-based bidding system has been proposed

in [7]. By first constructing a decision network from a bidding system, [8] proposes a

Monte Carlo Sampling approach to decision making in the presence of conflicting bids.

Further, the authors propose a decision tree based learning method for resolving conflicts.
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In the work of [9], a learning method based on self-organizing maps is proposed for the

problem of learning a human bidding system from examples, rather than from explicit

statement of the rules. However, each of the previous work is based on a bidding system

that is pre-designed by human experts.

In this work, we consider a completely different way for improving the bidding AI. We

take an initiative to study the possibility that the machines can learn to bid without relying

on a human-designed bidding system. In particular, we intend to lay out approaches for

the machines to “learn their own bidding system” from raw data that contain only random

deals. Our study not only opens a new route for improving the bidding AI, but also exam-

ines whether a machine-learned bidding system can be competitive to a human-designed

one.

The incomplete information properties of the bidding stage make this a difficult task.

Because each player can see only her/his 13 cards, it is difficult for the player to infer the

best contract for the team directly. Thus, the bidding stage itself is usually considered a

channel for players to exchange information. However, because the auction follows the

rule of using monotonically increasing bids, players must avoid exceeding the optimal

contract when exchanging information. Moreover, each team could interfere with the

other’s ability to exchange information. Together, these properties render the design of

machine learning approaches for automatic bidding a difficult task.

In this thesis, we propose a novel framework for applyingmachine learning approaches

to the task of automatic bridge bidding without competition. We transform the bidding

rules to a formal learning problem along with corresponding scalable data generation

steps. Next, we evaluate the potential ofmachine learning approaches by designing several

baseline methods and analyzing the key challenge of solving the problem using machine

learning. Then, we propose an innovative learning model with layers of cost-sensitive

classifiers and upper-confidence-bound algorithms for solving the problem. We empiri-

cally demonstrate that the performance of the model is competitive to the contemporary

champion-winning computer bridge software that implements a human-designed bidding

system.
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The remainder of this thesis is organized as follows. In Chapter 2, we introduce the

assumptions and formally define the bridge bidding problem. In Chapter 3, we illustrate

the proposed learning model. Finally, we present the experimental results in Chapter 4

and conclude our study in Chapter 5.
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Chapter 2

Problem Setup

As discussed in Chapter 1, the general bidding problem allows competition between

two opposing teams. That is, each team can overcall the bid made by the opponents in

order to obtain the contract it hopes to play, and/or obstruct the opponents’ communica-

tion. Then, we can separate the general bidding problem into two sub-problems: bidding

with competition, and bidding without competition. Both problems cover considerable

amounts of deals in real-world bridge games. For the first initiative toward allowing

the machine to learn its own bidding system automatically, we use settings similar to [8]

and [9], and study the sub-problem of bidding without competition in this work.

The sub-problem can be formalized as follows. We use x to denote the cards of a

player, and a length-ℓ sequence b to denote the bids of that player and the bids of her/his

teammate. Each component of b is within an ordered set B = {, 1♣, 1♢, · · · , 7NT},

where b[1] is the first bid made by the team, b[2] is the second bid, etc.. For simplicity,

we can further assume that the team that is bidding sits at the North-South positions, and

by bidding without competition, the opponent team sitting at the East-West always calls

. The goal is to learn a bidding strategy G(xn, xs) for predicting b given the cards xn

of the North player and xs of the South player.

Tomeet the rules of bridge bidding, we further decomposeG as follows. Let g(x, bk) 7→

B be the bidding function used for predicting bids in the bidding strategy G, where bk de-

notes the bidding sequence until the kth bid. Then for every b = G(xn, xs), we require

b[1] = g(x1,∅), b[2] = g(x2, b1), · · · , b[ℓ] = g(xℓ, bℓ−1), such that g(xℓ+1, b) = ,
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and b[1] < b[2] < · · · < b[ℓ]. The monotonicity constraint makes b[k] ̸=  for

k > 1. Note that the x used in g(x, bk) for every pair of consecutive bids need to orig-

inate from different players. Then, by assuming without loss of generality that the first

player is always the North player, we have xk = xn for odd k and xk = xs otherwise.

Under the decomposition, the bidding process ends with exactly three consecutive es

if we consider the opponents.

To learn a good strategy G (or a good g within), we need to provide related data to the

learning algorithm. The input (feature) part of the data is easy to generate, because all the

relevant information can be obtained from the cards of the players in a deal. The (xn, xs)

can then carry some representation of the cards, and some feature expansion techniques

can be applied also to achieve better performance. How can we generate data that relate

to the desired output? Note that b is not directly available when allowing the machine to

learn its own bidding system. However, we can indirectly know the goodness of some b

by taking b[ℓ] to the playing stage and obtaining the resulting score. Nevertheless, at-

tempting to play each possible contract b[ℓ] of a deal by either computer or human agents

can be extremely time-consuming. This would prohibit us from scaling the data, which is

important for learning a better bidding strategy. To overcome this issue, we use the double

dummy analysis [10] to approximate the playing stage for evaluating the scores for each

contract.

The double dummy analysis is a technique that computes the number of tricks taken

by each team in the playing stage under perfect information and optimal playing strategy.

Whereas the best game-playing strategy with only partial information might be different

from that with perfect information, there are several advantages for using the latter to

approximate the former. First, the result is deterministic and independent from the bidding

stage. Provided that the contract and the declarer are given, the solution becomes unique.

Second, the analysis is fast. Whereas using computer agents to play every contract of a

deal once might require more than several hours, applying the double dummy analysis for

a deal requires only several minutes. Finally, the approximation is usually good. In real

bridge games, the result of a deal is usually close to that of the double dummy analysis

6



when players are sufficiently strong.

After the double dummy analysis, we not only obtain the score of the best contract,

but also have the scores of all possible contracts. We can store the differences between the

best score and those scores as a cost vector c. Also note that during data generation, we

can drop the cards of the East-West team after the double dummy analysis. Then, we can

formally define our learning problem as a cost-sensitive, sequence prediction problemwith

specialized constraints from bridge bidding rules. Given data D = {(xni, xsi, ci)}N
i=1,

where N is the number of instances in the dataset, we want to learn the bidding strategy

G(xn, xs) that minimizes the average cost of the predicted contracts (i.e., the final bid).

For this purpose, the objective function to beminimized in the training stage can be written

as 1
N

∑N
i=1 ci[bi[ℓ]], where bi = G(xni, xsi).
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Chapter 3

Proposed Model

3.1 Baseline and Optimistic Methods

First, we consider the bidding strategiesG that only predict sequences b of length one.

That is, we let g(xs, b1) = . Thus, xs is not needed, and all the constraints are triv-

ially satisfied. Then, the objective function is reduced to minimize 1
N

∑N
i=1 ci[bi[ℓ]] given

Dbase = {(xni, ci)}N
i=1, which is the standard formulation of the cost-sensitive classifi-

cation (CSC) problem [11], with many existing algorithms available [12, 13]. Here, we

consider two regression-based algorithms, cost-sensitive two-sided regression (CSTSR)

and cost-sensitive one-sided regression (CSOSR) [13], as our baseline methods because

of their close connections to the model that we shall propose next. The latter is one of the

state-of-the-art algorithms for CSC. Both algorithms use regression models to estimate

the cost for each bid, and predict the bid with minimum estimated cost. The difference

is that CSTSR considers the plain-vanilla squared regression objective function, whereas

CSOSR considers a more sophisticated function.

The baseline methods hint a lower bound that can be reached by machine learning.

How about an upper bound? One possibility is to “cheatingly” reveal the full information

to the learner, which simulates what is seen from the audience rather than the player. That

is, we merge xn and xs as a feature, and use Dcheat = {([xni, xsi], ci)}N
i=1 to learn a CSC

classifier. Such an optimistic method solves a relaxed (unrealistic) version of the bidding

problem. Therefore, the performance of this unrealistic classifier hints an upper bound
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that can be achieved by machine learning with the particular algorithms.

3.2 The Difficulty of Learning to Bid

Next, we use the bidding sequence for better information exchange and better per-

formance. We start by analyzing the difficulty of learning to bid. To learn the bid-

ding function g(x, bk) 7→ B, we ideally need to have examples that consist of the tuple

((x, bk), b[k + 1], c), where c is the cost of bidding b[k + 1] given x and bk. However,

we only have x in D, the “good” bidding sequences b are mostly missing, and the exact c

hides in the cost vector c.

For instance, let us consider extending the baseline method to produce sequences b

of length two. That is, g(xn,∅) = b[1], g(xs, b1) = b[2] and g(xn, b2) = . For

learning g(xs, b1), we readily have xsi in D, and we can enumerate all possible bi[2] to

get the associated ci. Thus, except for the missing variables b1
i , the learning of g(xs, b1)

can be tackled by solving a CSC problem like the baseline method. So the “only” task is

to generate the missing variables b1
i . However, the task is quite difficult. In particular,

for learning g(xn,∅), both bi[1] (the desired bids) and ci (the cost of bidding bi[1]) are

missing. That is, the task is an unusual unsupervised learning problem that requires clus-

tering xni to the possible bids bi[1] to indirectly help the teammate’s classifier g(xs, b1).

Even if we manage to successfully cluster xni, it would be difficult to assign a bidding

label from B to each cluster.

We can have some insight on the challenging task above by considering what two

human bridge players will do in this scenario. For simplicity, we will call g(xn,∅) as gn,

and g(xs, b1) as gs. Consider two human players who are unfamiliar with each other’s

bidding strategy and decide to practice together. After the North player uses his strategy gn

to make the first bid b[1] = gn(xn,∅), the South player has no choice but to use gs on xs

and the given b[1] to make the final bid b[2]. Then, after the score c of the contract is

revealed, the South player can now improve her strategy gs with ((xs, b[1]), b[2], c). The

very same c indicates how good gn is in helping gs. Then, the North player can improve

his strategy gn with ((xn,∅), b[1], c).

9



Nevertheless, if the North player is lousy and starts with a bad gn (for instance, some gn

that always calls ), he might never know whether some alternative bids can help the

South player better. This hints to the need for him to explore other possible bids, rather

than sticking to his own strategy. On the other hand, the North player should not make

exhaustive random predictions for exploration, because a uniformly random b[1] gives the

South player almost no information to further improve her strategy gs. That is, the North

player should also use gn to exploit some “good” bids that are known to work well with gs.

By balancing exploration (for improvement) and exploitation (for maintaining the team’s

chemistry), the two players can build a better bidding system together.

Our proposed model hinges on the discussions above. We maintain two important

aspects. First, the cost of the final contract (i.e., the last bid) can be re-used to hint the cost

of intermediate bidding decisions. Second, players need to explore other bidding choices

while exploiting the known good bids. The two aspects lead us to consider the Upper

Confidence Bound (UCB) algorithms in the contextual bandit problem.

The contextual bandit problem has recently become a popular research topic in ma-

chine learning [14–16]. In this problem, we hope to earn the maximum total reward by

strategically pulling a bandit machine from M given ones subject to a dynamic environ-

ment context within some iterations. Since there is no additional information available

about the M given bandit machines in the beginning, balancing exploration (of other ban-

dit machines) and exploitation (of knowingly good machines) is important. The UCB

algorithms [15] are some of the most popular contextual bandit algorithms. They cleverly

use the uncertainty term to achieve balance.

We can now pose an analogy of a player’s decision to the contextual bandit problem.

The possible bids b[k+1] correspond to the bandit machines, and the context corresponds

to the cards x on hand and the earlier bids bk. The reward can simply be considered as

the maximum possible cost minus the cost calculated from the final contract.
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3.3 The Multi-Layer Bandit Model

Whereas each player’s decisionmaking can bemodelled by the contextual bandit prob-

lem, recall that our goal is to obtain a bidding strategy G that produces a sequence of de-

cisions that satisfy bridge rules. We propose to represent each player’s decision making

with layers of “bidding nodes” V . With a careful design to structure these nodes, we can

ensure that the bridge rules are all satisfied.

We define a bidding node V as a pair (b, g), where b ∈ B is called the bid label that V

represents, and g is the bidding function subject to x and bk. We propose to structure the

bidding nodes as a tree with ℓ + 1 layers, where the first layer of the tree contains a single

root node with the first bidding function g(xn,∅) and b =  indicating the entering

of the bidding stage. At each V , g is only allowed to predict  or something higher

than b to satisfy the bridge rules. Every prediction of its g connects V to a child bidding

node V ′ at the next layer such that the prediction equals the bid label of V ′. We restrict

only the lowest M predictions of g to connect to non-terminal nodes to control the model

complexity. Other nodes are designated as terminal nodes, which contain a constant g that

always predicts . In addition, all nodes at layer ℓ + 1 are terminal nodes.

Since we form the nodes as a tree, each unique path from the root to V readily rep-

resents a bidding sequence bk. Thus, the classifier g of V only needs to consider the

cards x. We call such a structure the tree model, as illustrated in Figure 3.1(a) with ℓ = 3

and M = 2. A variant of the tree model can be performed by combining the non-terminal

nodes that represent the same bid label in each layer. The combination allows the nodes

to share their data to learn a better g. We call the variant the layered model, as illustrated

in Figure 3.1(b).

Given the model above, a bidding strategy G can be formed by first inputting xn to g

at the root node, following the prediction of g to another node that represents b[1] in the

next layer, then inputting xs to the node, and so on. The process ends when a  call is

predicted by some g of a non-root node.

After a particular model structure is decided, the remaining task becomes learning

each g from data. We propose using CSTSR with ridge regression, which is among the
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

1♣

1♡1♢1♢1♣ 1♠ 7NT

1♢ 7NT

1♢ 7NT 1♠ 7NT

· · ·

· · ·

· · · · · · · · ·

(a) Tree model with ℓ = 3 and M = 2



1♣

1♡1♢1♣ 1♠ 7NT

1♢ 7NT

1♢ 7NT 1♠ 7NT

· · ·

· · ·

· · · · · · · · ·

(b) Layered model with ℓ = 3 and M = 2

Figure 3.1: Tree model and layered model, the terminal nodes are not fully drawn

baseline methods that we have studied, as the learning algorithm, because it is a core part

of the LinUCB algorithm that we adopt from the contextual bandit problem. Following

the notations that are commonly used in the contextual bandit problem, we consider the

reward r, which is defined as the maximum possible cost minus the cost, instead of the

cost c. For each possible bid bm, ridge regression is used to compute a weight vector wm

for estimating the potential reward wT
mx of making the bid. During prediction, CSTSR

predicts with the bid associated with the maximum potential reward. The computation

of wm takes

wm = (XT
mXm + λI)−1(XT

mrm),

where rm contains all the rewards gathered when the m-th bid bm is made by g and Xm

contains all the x associated with those rewards. λ > 0 is the regularization parameter of

ridge regression and I is the identity matrix.

Our final task is to describe the learning algorithm for the model structure with ridge

regression. As discussed, we use the cost of the final contract (i.e., the last bid) to form
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Algorithm 1 The Proposed Learning Algorithm
Input: Data, D = {(xni, xsi, ci)}N

i=1; a pre-defined model structure with all weights wm

within all CSTSR ridge regression classifiers initialized to 0.
Output: A bidding strategy G based on the learned wm.
1: repeat
2: Randomly select a data instance (xni, xsi, ci)
3: Set V to the root node of the structure, and x to xni

4: U(V , xni, i)
5: until enough training iterations
6: procedure U(V , x, i)
7: Compute the UCB reward wT

mx + α · uncertainty term for each possible bm

8: Select the bid bm with the maximum UCB reward
9: if bm =  and V is not root then
10: Compute reward r from ci using bm.
11: else
12: Set x to the feature of the other player, and call r = U(V ′, x, i).
13: end if
14: Update wm with (x, r)
15: return r.
16: end procedure

the rewards for intermediate bidding decisions. Then, we follow the UCB algorithms

in the contextual bandit problem to update each node. The UCB algorithms assume an

online learning scenario in which each x arrives one by one. First, we discuss the LinUCB

algorithm [15] to balance between exploration and exploitation. During the training of

each node, LinUCB selects the bid that maximizes

wT
mx + α

√
xT (XT

mXm + λI)−1x,

where the first term is the potential reward on which CSTSR relies, and the second term

represents the uncertainty of x with respect to the m-th bid. The α > 0 is a parameter

that balances between exploitation (of rewarding bids) and exploration (of uncertain bids).

After LinUCB selects the bid for the root node, we follow the bid to the bidding node in

the next layer, until a  call is predicted by LinUCB. Then, we know the cost of the

bidding sequence, and all the nodes on the bidding sequence path can be updated with the

calculated rewards using ridge regression. The full algorithm is illustrated in Algorithm 1.

Another choice for the UCB algorithms is called UCB1 [17], which replaces the un-
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certainty term
√

· · · in LinUCB with
√

2 ln(T )
Tm

, where T is the number of examples used to

learn the entire g, and Tm is the number of examples used to update wm.

The full algorithm is illustrated in Algorithm 1. We randomly select an instance x per

iteration to satisfy the online nature of the UCB algorithms. Then, a bidding sequence is

generated with either a series of LinUCB or UCB1 computations. Finally, all the nodes

on the bidding sequence path are updated with the calculated rewards.

The uncertainty term is the key component for making the UCB algorithms work.

First, we initialize all wm with zeroes, and the uncertainty term is equally large for all

possible bids. Therefore, the algorithm distributes instances to different bidding sequences

somewhat randomly. Then, the uncertainty term decreases gradually after seeing more

examples, which allows the reward term wT
mx to dominate the decision process. This

allows the algorithm to focus on rewarding bidding sequences to fine-tune the bidding

decisions.

3.4 Additional Techniques

In addition to the model and the core algorithms introduced in the previous section, we

adopt several additional techniques to improve performance and computational efficiency.

The first two techniques focus on improving the performance, and the last technique aims

at improving computational efficiency.

Full Update. In the proposed model, whenever a bidding sequence b is sampled from

the UCB algorithms for an instance x, the reward r can be calculated from c[b[ℓ]], and

the example ((x, bk), b[k + 1], r) is formed to update the bidding nodes. A closer look

shows that some additional examples can be calculated easily with b. In particular, the

cost for calling  immediately after k bids can be calculated by c[b[k]], and the cost for

selecting a terminal node with a bid label b can be calculated by c[b]. Thus, we can form

additional examples by considering all the decisions of which reward can be calculated

based on the above analysis for each bidding node on the bidding sequence b, and include

those examples in updating the associated bidding nodes. Such an update scheme is called

14



F U as opposed to the original S U scheme in the proposed model.

Penetrative Update. We consider the UCB algorithms to balance the need for explo-

ration in the proposed model. In some ways, the UCB algorithms are not properly de-

signed for the multi-layer model, and thus can lead to some caveats. For example, in the

tree model, the number of instances that pass through a classifier in the top layer can be

much more than those in the bottom layer. Thus, when UCB puts the top-layer classifiers

in the exploitation stage, the bottom-layer classifiers may still be in the exploration stage.

Even worse, if the classifiers in the top layers often result in an early , the ones in

the bottom layer might not receive enough examples, which result in a worse learning

performance.

To solve this problem, we consider a probabilistic “penetrative” scheme to continue

bidding during training. That is, whenever a classifier predicts a bid that results in an early

, we select another bid and call the corresponding U with some probability p.

We require that the selected bid not on a terminal node (i.e., not resulting in an early )

and to be of the highest UCB term. In other words, with some probability, we hope to

generate longer (but good) bidding sequences b to help update the lower layers of the

model in this P U scheme. The scheme is related to the famous epsilon-

greedy algorithm for the contextual bandit problem [18].

Delayed Update. We adopt the contextual bandit algorithms in our model, which were

designed for the online scenariowhere examples arrive one by one. Evenwith the Sherman-

Morrison formula, updating the internalwm right after an example arrives requiresO(d2),

where d is the dimension of x. The updating step becomes the computational bottleneck

of the algorithms. In view of the efficiency, we consider a D U scheme that

does not update wm immediately after each example is formed, but waits until gather-

ing a pile of examples. Experimental results in Chapter 4 will show that such a scheme

substantially decreases the amount of training time without loss of performance.

15



Chapter 4

Experiments

Next, we study the proposed model and compare it with the baseline and optimistic

methods. In addition, we compare themodel with awell-known computer bridge software,

Wbridge5 [19], which has won the computer bridge championship for several years. A

randomly-generated data set of 100, 000 instances (deals) is used in the experiment. We re-

serve 10, 000 instances for validation and another 10, 000 for testing, and leave the rest for

training. We study two different representations for x: binary features and condensed fea-

tures. The binary features are represented by a 52-dimensional binary vector, where each

dimension representing the existence of the corresponding card. The condensed features

contain two parts that are widely used in real-world bridge games and human-designed

bidding systems, high card points (HCP) and number of cards in each suit. The HCP is a

method for evaluating the round-winning power. It is calculated by summing up the val-

ues of cards, which is defined by Ace = 4, King = 3, Queen = 2, Jack = 1, and 0 otherwise.

For both representations, a constant dimension is added to reflect the bias term.

We obtain the cost vectors c from International Match Points (IMP). The IMP is an

integer between {0, 1, · · · , 24}, widely used for comparing the relative performance of

two teams in real-world bridge game [20]. We obtain c by comparing the best possible

contract of the deal to each contract and calculate the IMP, where higher IMP indicates

that the contract is far from the best one and should suffer from a higher cost. When

transforming the costs to the rewards in the proposed model, we take 24 minus the cost as
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Table 4.1: Results of baseline and optimistic methods

Method Dimensions Baseline Optimistic
CSOSR - binary 53 3.9659 2.5657
CSOSR - condensed 6 3.8329 1.8985
CSTSR - binary 53 3.9399 2.7270
CSTSR - condensed 6 3.9428 2.7697
CSTSR - condensed + 2nd order expansion 21 3.8465 2.1106
CSTSR - condensed + 3rd order expansion 56 3.8272 1.9228
Wbridge5 N/A 2.9550 N/A

the reward to keep the rewards non-negative. 1

4.1 Baseline and Optimistic Methods

First, we present the performance of the baseline and the optimistic methods in Ta-

ble 4.1. In CSOSR, SVM with the Gaussian kernel implemented with LIBSVM [21] is

used as the base learner. In CSTSR, ridge regression is used as the base learner. Because

SVM training is time consuming, we only sub-sample 20, 000 instances for CSOSR. For

CSTSRwith condensed features, we also extend its capability by considering simple poly-

nomial expansion of the features. For parameters, we consider C ∈ {100, 101, 102, 103}

and γ ∈ {10−3, 10−2, 10−1, 100} for CSOSR, and λ ∈ {10−6, 10−5, · · · , 103} for CSTSR.

We choose the best parameters based on the validation set and report the average test cost

in Table 4.1.

Unsurprisingly, we find that the performance of the optimistic methods to be much

better than their baseline counterparts. This justifies that the information in both players

are valuable, and it is important to properly exchange information via bidding. In addi-

tion, note that the optimistic methods can often achieve lower test cost than the Wbridge5

software. This suggests that the human-designed bidding systemwithin the computer soft-

ware may have room for improvement. Comparing over all the baseline methods, we see

that using the 2nd order expansion with the condensed features reach decent performance

by the baseline CSTSR with only 21 expanded features. Thus, we will take those features

within the proposed model in the next experiments.
1One technical detail is that the cost vector c is generated by assuming that the player who can win more

rounds for the contract is the declarer. We will discuss the effect in the end of this chapter.
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Figure 4.1: F U versus S U
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Figure 4.2: D U versus I U

4.2 Effect of Applying Techniques

In Section 3.4, three techniques are proposed to improve the model. We first compare

F U with S U. Figure 4.1 shows how the average validation cost

varies with the number of iterations on a tree model with ℓ = 4,M = 5 coupled with ridge

regression with λ = 10−3 and UCB1with α ∈ {10, 100}. We can easily observe that F

U outperforms S U, which justifies that the additional examples used

for F U capture valuable information to make the cost estimation more precise.

Thus, we adopt F U in all the next experiments.

Then, we compareD Uwith I U. Figure 4.2 shows how the

average validation cost varies with the number of iterations on the same tree model used

for Figure 4.1. For D U, we consider piles of size {10, 100, 1000} instances
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Figure 4.3: P U with different p

per update. We find that when α is small, I U or a small pile reaches the best

performance, whereas larger α could use a larger pile. Overall, I U not only

fails to reach the best performance, but is also quite inefficient, as shown in the table of

approximation training time below.

instant pile = 10 pile = 100 pile = 1000

4hours 2hours 60mins 50mins

In view of the efficiency needed for extensive parameter selection, we decide to take D-

 U with piles of size 100 in the next experiments.

Finally, Figure 4.3 shows the average validation cost when varying different penetra-

tion probability p on tree models withM = 5 coupled with ridge regression with λ = 10−3

and UCB1 with α ∈ {10, 50, 100}. We can see that a non-zero p (actual P U-

) works well for small α and large ℓ. However, the benefit of P U

is less obvious when α is large. This is because when a larger α is used, the UCB term

readily allows more instances to go to the next layer through exploring different bids, and

therefore P U does not have many early  calls to avoid. Overall, we

cannot find a fixed penetration probability p to work with different α and ℓ values. Thus,

we decide to fine-tune p along with α and ℓ in the next experiments.
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Table 4.2: Average Cost Using Different Model Structures

model UCB train validation test

Tree/Layered, ℓ = 2 UCB1 3.1197 ± 0.0177 3.1981 ± 0.0268 3.0755 ± 0.0173
LinUCB 3.1242 ± 0.0089 3.2190 ± 0.0121 3.0933 ± 0.0112

Tree, ℓ = 4 UCB1 2.9013 ± 0.0079 3.0769 ± 0.0118 2.9672 ± 0.0096
LinUCB 3.0918 ± 0.0344 3.1804 ± 0.0298 3.0672 ± 0.0379

Tree, ℓ = 6 UCB1 2.9025 ± 0.0210 3.0484 ± 0.0226 2.9616 ± 0.0234
LinUCB 3.0124 ± 0.0249 3.1301 ± 0.0264 3.0477 ± 0.0243

Layered, ℓ = 4 UCB1 3.0779 ± 0.0179 3.1656 ± 0.0198 3.0561 ± 0.0230
LinUCB 3.0492 ± 0.0214 3.1325 ± 0.0218 3.0290 ± 0.0252

Layered, ℓ = 6 UCB1 3.1366 ± 0.0176 3.2451 ± 0.0208 3.1214 ± 0.0168
LinUCB 3.0825 ± 0.0209 3.1781 ± 0.0268 3.0660 ± 0.0224

Wbridge5 N/A N/A 3.0527 2.9550

4.3 Comparison on Different Model Structures

Next, we compare the performance of different model structures to the Wbridge5 soft-

ware. We consider the tree model and the layered model with ℓ ∈ {2, 4, 6}, fix M = 5,

and equip them with either UCB1 or LinUCB. For each model/algorithm combination, we

take grid search on (p, α) with the validation set to choose the penetration probability pa-

rameter p ∈ {0, 0.25, 0.5, 0.75, 1}, and the UCB parameter α ∈ {20, 22, 24, 26, 28}. Note

that the tree model and the layered model are equivalent when ℓ = 2.

Table 4.2 lists the average training/validation/test cost on all the model/algorithm com-

binations. The results suggest that the tree model with ℓ = 4 or 6 coupled with UCB1 per-

forms the best among all models. Furthermore, those best performance are competitive

to the result reached by the Wbridge5 software. This marks a successful initiative toward

learning to bid without relying on a human-designed bidding system.

Several additional observations can also be found from Table 4.2. First, all the pro-

posed models in Table 4.2 perform better than the baseline methods in Table 4.1. The

results justify that the proposed models successfully make use of the bidding sequence for

information exchanging between teammates. Second, the model structure can affect the

choice of the UCB algorithm. The tree model generally works better with UCB1, while

the layered model matches LinUCB better. This suggests a future research direction using

other UCB algorithms to improve the performance. Third, the tree model, with its higher

model complexity, generally performs better than the layered model. Nevertheless, simi-

lar to what is discussed during P U, for models with higher complexity
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Table 4.3: Comparison with Wbridge5 by the type of contract

(a) By contracts from the proposed model

Type Difference Number of Deals
 1205 1907

 1506 5900
 -1878 2131
 -164 61

  11 1

(b) By contracts from Wbridge5

Type Difference Number of Deals
 -12 2116

 4205 4779
 -1607 2670
 -1612 406

  -294 29

(such as a tree model or models with larger ℓ), it can be difficult for some nodes to ob-

tain sufficient data for learning. Designing complex models while providing each node

sufficient data is yet another future research direction.

4.4 Comparison with Wbridge5

Table 4.2 readily lists the competitive performance of the proposedmodel toWbridge5.

Next, we make a more detailed comparison to understand the strengths and weaknesses

of the proposed model. In real-world bridge games, a contract can roughly be divided

into five categories based on its raw score from low to high, namely , , ,

, and  . Because categories  and beyond result in really high scores,

human players (and hence human bidding systems) often prefer bidding towards those.

Table 4.3 show the total cost of Wbridge5 minus the total cost of the proposed model in

each category. We see that the proposed model performs much better than Wbridge5 in

 contracts, which contribute to the majority of the deals. This shows that the pro-

posed model is indeed guided by data (the majority of the deals) rather than human design

(that prefers  and beyond). On the other hand, a human-played bridge game often

contains competition when the best possible contract is . Thus, the strength of the

proposed model on  contracts will need to be compensated with future studies on

automatic bidding with competition. Lastly, the weakness of the proposed model on 

and beyond may be due to the fact that there is insufficient data to warrant decent learning

performance in those categories. Some sampling techniques can be applied in the future

to focus on those categories of contracts.
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Table 4.4: Effect of Using Real Declarer

With assumed declarer With real declarer
Best bidding model 2.8870 2.9435

Wbridge5 2.9550 3.0314

4.5 Effect of Using Real Declarer

In the previous experiments, we assume for simplicity that the player who can win

more rounds for the contract is the declarer when we generate the cost vector c. This is

different from the setting of a real bridge game, where the player from the bid-winning

team who called the trump suit first become the declarer. Table 4.4 shows the average

cost per deal of the best proposed model and the Wbridge5 software when we use the real

declarer. We can observe that the performance of the proposed model and the Wbridge5

software decrease about the same amount. This shows that the effect of the declarer is

minor under our problem setting.

We think that there are two reasons for making declarer less important. First, since the

declarer only influence the player who play the first card, most deals in the data are declarer

independent. That is, the North and the South players usually win the same number of

rounds for most of the contracts in a deal. Second, whereas the information revealed to

the opponent team varies for different declarers in a real bridge game, the double dummy

analysis is based on perfect information and thus not influenced.
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Chapter 5

Conclusions and Future Works

We formally defined the problem of bridge bidding without competition by learning,

and proposed an innovative model for undertaking this problem. The model predicts a

bidding sequence with layers of classifier (bidding) nodes, and trains each classifier with

the aid of UCB algorithms for contextual bandit. The UCB algorithms allow the machines

to learn their own bidding system by balancing the exploration for less-considered bids and

the exploitation of well-learned bids. We show in experiments that the proposedmodel can

achieve a performance similar to the champion-winning program in the computer bridge.

Our initiative justifies the possibility that machine learning may be able to do better than

human-designed bidding systems on bridge bidding problem.

As an initiative of bidding by learning, the proposed model has reached promising

performance. One possible direction on improving the model is to use more data to train

a deeper model, which hopefully improve the performance of the model towards valuable

contracts such as the  . The ultimate challenge is the other sub-problem: bid-

ding with competition by learning. Such a challengemay call for a mixture of the proposed

model (collaboration between teammates) and well-studied models for competition-based

games such as Chess.
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Appendix A

Table of Opening Bids

Table A.1 compare the opening bids of the best tree model with ℓ = 4 and ℓ = 6 with

the SAYC bidding system [22], which is widely used by human players. The opening bids

of the proposed model is generated by enumerating and predicting for all the combinations

of features. As the prediction of the proposed model is made by CSC classifiers, there is

no explicit rule for each opening bid. Instead, an approximate rule is provided in the table.

Several observations can be made from Table A.1. First, the opening rules of the

proposed model is very different from the SAYC bidding system. This shows that the

biddingmethods learned by computer may be dissimilar to a human designed one. Second,

whereas the terminal opening bids ({1NT, · · · }) of the two treemodels are similar, the non-

terminal opening bids ({, · · · , 1♠}) are completely different. This shows a property

of the proposed model. For terminal bids, a deterministic estimation of the reward can be

generated from the cost vector c, thus the corresponding CSC classifiers learned each time

are similar. On the other hand, there is a randomness in the learning process of the non-

terminal bids, thus the CSC classifiers learned each time could be very different. Third, the

“Not used” bids in the proposed model show that the bidding process is not fully utilized

in the proposed model. There is still a room for improvement if we can further enhance

the information exchanging process.
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Table A.1: Table of Opening Bids

Bid Tree model, ℓ = 4 Tree model, ℓ = 6 SAYC
 0-11 HCP 0-12 HCP 0-11 HCP
1♣ 10-19 HCP, no many ♡ 9-19 HCP, 4-6 ♡ 12+ HCP, 3+♣
1♢ Not Used 8-18 HCP, short ♠ and 4-6 ♣ 12+ HCP, 3+♢
1♡ 9-19 HCP, 4-6 ♡ 12-23 HCP, w/o long suit 12+ HCP, 5+♡
1♠ 16-23 HCP, near balanced 10-19 HCP, 4-6 ♠ 12+ HCP, 5+♠
1NT Not used Not used 15-17 HCP, Balanced
2♣ 0-17 HCP, long ♣ 0-17 HCP, long ♣ 22+ HCP
2♢ 0-17 HCP, long ♢ 0-17 HCP, long ♢ 5-11 HCP, 6+♢
2♡ 0-13 HCP, long ♡ 0-13 HCP, long ♡ 5-11 HCP, 6+♡
2♠ 0-13 HCP, long ♠ 0-13 HCP, long ♠ 5-11 HCP, 6+♠
2NT Not used Not used 20-21 HCP, balanced
3♣ 14-19 HCP, long ♣ 15-19 HCP, long ♣ 5-11 HCP, 7+♣
3♢ 14-19 HCP, long ♢ 15-19 HCP, long ♢ 5-11 HCP, 7+♢
3♡ Not used Not used 5-11 HCP, 7+♡
3♠ Not used Not used 5-11 HCP, 7+♠
3NT 19-29 HCP, w/o a long suit 19-29 HCP, w/o a long suit 25-27 HCP, balanced
4♣ Not used Not used 5-11 HCP, 8+♣
4♢ Not used Not used 5-11 HCP, 8+♢
4♡ 10-29 HCP, long ♡ 11-29 HCP, long ♡ 8+♡
4♠ 10-29 HCP, long ♠ 11-29 HCP, long ♠ 8+♠
4NT 27-29 HCP, near balanced 27-29 HCP, near balanced Not used
5♣ 16-27 HCP, long ♣ 16-27 HCP, long ♣ very long ♣
5♢ 17-25 HCP, long ♢ 17-25 HCP, long ♢ very long ♢
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