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Abstract

Contract bridge is an example of an incomplete information game for
which computers typically do not perform better than expert human bridge
players. In particular, the typical bidding decisions of human bridge players
are difficult to mimic with a computer program, and thus automatic bridge
bidding remains to be a challenging research problem. Currently, the possi-
bility of automatic bidding without mimicking human players has not been
fully studied. In this work, we take an initiative to study such a possibility
for the specific problem of bidding without competition. We propose a novel
learning framework to let a computer program learn its own bidding decisions.
The framework transforms the bidding problem into a learning problem, and
then solves the problem with a carefully designed model that consists of cost-
sensitive classifiers and upper-confidence-bound algorithms. We validate the
proposed model and find that it performs competitively to the champion com-

puter bridge program that mimics human bidding decisions.

Keywords: Machine Learning, Contract Bridge, Contextual Bandit Problem,

Upper-Confidence Bound, Cost-Sensitive Classification.
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Chapter 1

Introduction

Game-playing is a rich field for artificial intelligence (Al) research. The vast majority
of research has focused on full information games such as chess and Othello. Currently,
there are computer programs for some of these games that can outperform human experts.
On the other hand, a more challenging class of incomplete information games such as
poker and bridge continues to be of research interests [1]. A popular research direction
is to exploit machine learning to analyze data in an effort to find better game-playing
strategies [2—4].

Contract bridge, or simply bridge, is an example of an incomplete information game
that is played with a standard 52-card deck. The game requires four players, commonly
referred to as North, East, West, and South. Players compete on two opposing teams,
North-South and East-West, with the objective of earning the highest score in a zero-sum
scenario.

A bridge game consists of several deals, each comprising two stages—the bidding
stage and the playing stage. At the beginning of each deal, each player is dealt 13 random
cards. In the bidding stage, the two teams engage in an auction in an attempt to find the
most profitable contract for the playing stage. During the auction, each player can only
see her/his own 13 cards and not those of the other players including their teammate. The
auction proceeds around the table, with each player deciding to pass or to increase the
value of the bid from an ordered set of calls {1, 1, 10, 1, INT, 2, - - - , 7TNT} or by

a more sophisticated call, such as doubling the current bid. The auction proceeds until it is



terminated by three consecutive pass calls, at which time the final bid becomes.the contract
of the deal. The contract consists of a number and a symbol. The symbol indicates the
trump suit and the number indicates the number of rounds that the auction-wiﬁnﬁig team
expects to win during the ensuing playing stage.

The player from the auction-winning team who first called the trump suit becomes the
declarer. The playing stage comprises 13 rounds of a card-strength competition using a
standard set of rules, commencing with the player next to the declarer playing the first
card on the table. During the playing stage, the auction-winning team attempts to make
the contract, while the auction-losing team aims block the opponent team from making
the contract. Ultimately, the scores of the teams are determined by comparing the contract
with the actual number of winning rounds.

Previous research that attempted to implement a computer bridge player using Al sug-
gested that the bidding stage is more difficult to implement than the playing stage. For
example, in 1998, the GIB program [5] attained 12" place among 35 human experts in
a par contest, which is a contest without bidding [6]. This demonstrates that computer
bridge players can compete against expert human players in the playing stage. On the
other hand, nearly all the computer bridge programs that are currently available borrow
strategies from human players directly during the bidding stage. The strategies of human
players are commonly called a bidding system, which contain human-designed rules for
communicating information between teammates. Traditional bridge Als have attempted
to convert these rules into computer programs. However, human-designed rules often
contain ambiguities and even conflicts, which complicate the task of programming a bid-
ding system. In addition, using only human-designed rules limits the capability of the
machines.

There have been several successful efforts to improve the bidding Al. For example, a
reasoning model for making decisions with a rule-based bidding system has been proposed
in [7]. By first constructing a decision network from a bidding system, [8] proposes a
Monte Carlo Sampling approach to decision making in the presence of conflicting bids.

Further, the authors propose a decision tree based learning method for resolving conflicts.



In the work of [9], a learning method based on self-organizing maps is propesed for the
problem of learning a human bidding system from examples, rather than fromeexplicit
statement of the rules. However, each of the previous work is based on a b1dd1ng system
that is pre-designed by human experts.

In this work, we consider a completely different way for improving the bidding Al. We
take an initiative to study the possibility that the machines can learn to bid without relying
on a human-designed bidding system. In particular, we intend to lay out approaches for
the machines to “learn their own bidding system” from raw data that contain only random
deals. Our study not only opens a new route for improving the bidding Al, but also exam-
ines whether a machine-learned bidding system can be competitive to a human-designed
one.

The incomplete information properties of the bidding stage make this a difficult task.
Because each player can see only her/his 13 cards, it is difficult for the player to infer the
best contract for the team directly. Thus, the bidding stage itself is usually considered a
channel for players to exchange information. However, because the auction follows the
rule of using monotonically increasing bids, players must avoid exceeding the optimal
contract when exchanging information. Moreover, each team could interfere with the
other’s ability to exchange information. Together, these properties render the design of
machine learning approaches for automatic bidding a difficult task.

In this thesis, we propose a novel framework for applying machine learning approaches
to the task of automatic bridge bidding without competition. We transform the bidding
rules to a formal learning problem along with corresponding scalable data generation
steps. Next, we evaluate the potential of machine learning approaches by designing several
baseline methods and analyzing the key challenge of solving the problem using machine
learning. Then, we propose an innovative learning model with layers of cost-sensitive
classifiers and upper-confidence-bound algorithms for solving the problem. We empiri-
cally demonstrate that the performance of the model is competitive to the contemporary
champion-winning computer bridge software that implements a human-designed bidding

system.



The remainder of this thesis is organized as follows. In Chapter 2, we introduce the

assumptions and formally define the bridge bidding problem. In Chapter 3, weillastrate
I M

the proposed learning model. Finally, we present the experimental results'in Chapter 4

and conclude our study in Chapter 5.



Chapter 2

Problem Setup

As discussed in Chapter 1, the general bidding problem allows competition between
two opposing teams. That is, each team can overcall the bid made by the opponents in
order to obtain the contract it hopes to play, and/or obstruct the opponents’ communica-
tion. Then, we can separate the general bidding problem into two sub-problems: bidding
with competition, and bidding without competition. Both problems cover considerable
amounts of deals in real-world bridge games. For the first initiative toward allowing
the machine to learn its own bidding system automatically, we use settings similar to [8]
and [9], and study the sub-problem of bidding without competition in this work.

The sub-problem can be formalized as follows. We use x to denote the cards of a
player, and a length-/ sequence b to denote the bids of that player and the bids of her/his
teammate. Each component of b is within an ordered set B = {pass, 1, 1, -+, TNT},
where b[1] is the first bid made by the team, b[2] is the second bid, etc.. For simplicity,
we can further assume that the team that is bidding sits at the North-South positions, and
by bidding without competition, the opponent team sitting at the East-West always calls
pass. The goal is to learn a bidding strategy G(x,,, X5) for predicting b given the cards x,,
of the North player and x; of the South player.

To meet the rules of bridge bidding, we further decompose G as follows. Let g(x, b*)
B be the bidding function used for predicting bids in the bidding strategy (G, where b* de-
notes the bidding sequence until the £™ bid. Then for every b = G(x,,X,), we require

b[l] = g(xh @)7 b[Z] = g(Xg,bl), e 7b[€] = g(Xfa b€_1>a such that g(XZJrla b) = PASS,



and b[1] < b[2] < --- < b[l]. The monotonicity constraint makes b[k].s# pAss. for
k > 1. Note that the x used in g(x, b*) for every pair of consecutive bids need:to|orig-
inate from different players. Then, by assuming without loss of generality that .‘l't'he, first
player is always the North player, we have x;, = x,, for odd k and x;, = % otherwise.
Under the decomposition, the bidding process ends with exactly three consecutive passes
if we consider the opponents.

To learn a good strategy GG (or a good g within), we need to provide related data to the
learning algorithm. The input (feature) part of the data is easy to generate, because all the
relevant information can be obtained from the cards of the players in a deal. The (x,,, X;)
can then carry some representation of the cards, and some feature expansion techniques
can be applied also to achieve better performance. How can we generate data that relate
to the desired output? Note that b is not directly available when allowing the machine to
learn its own bidding system. However, we can indirectly know the goodness of some b
by taking b[/] to the playing stage and obtaining the resulting score. Nevertheless, at-
tempting to play each possible contract b[/] of a deal by either computer or human agents
can be extremely time-consuming. This would prohibit us from scaling the data, which is
important for learning a better bidding strategy. To overcome this issue, we use the double
dummy analysis [10] to approximate the playing stage for evaluating the scores for each
contract.

The double dummy analysis is a technique that computes the number of tricks taken
by each team in the playing stage under perfect information and optimal playing strategy.
Whereas the best game-playing strategy with only partial information might be different
from that with perfect information, there are several advantages for using the latter to
approximate the former. First, the result is deterministic and independent from the bidding
stage. Provided that the contract and the declarer are given, the solution becomes unique.
Second, the analysis is fast. Whereas using computer agents to play every contract of a
deal once might require more than several hours, applying the double dummy analysis for
a deal requires only several minutes. Finally, the approximation is usually good. In real

bridge games, the result of a deal is usually close to that of the double dummy analysis



when players are sufficiently strong.

After the double dummy analysis, we not only obtain the score of the besteontract,
but also have the scores of all possible contracts. We can store the differences l.:a_fet\:‘iieefn the
best score and those scores as a cost vector c. Also note that during data generation, ..we
can drop the cards of the East-West team after the double dummy analysis. Then, we can
formally define our learning problem as a cost-sensitive, sequence prediction problem with
specialized constraints from bridge bidding rules. Given data D = {(xp;, X4, ¢;) }vq,
where N is the number of instances in the dataset, we want to learn the bidding strategy
G (x5, Xs) that minimizes the average cost of the predicted contracts (i.e., the final bid).

For this purpose, the objective function to be minimized in the training stage can be written

as + 21w, ¢;[b;[{]], where b; = G(Xp, Xs1).



Chapter 3

Proposed Model

3.1 Baseline and Optimistic Methods

First, we consider the bidding strategies G that only predict sequences b of length one.
That is, we let g(x,, b') = pass. Thus, x, is not needed, and all the constraints are triv-
ially satisfied. Then, the objective function is reduced to minimize & 1Y, c;[b;[(]] given
Dpase = {(Xni, €;) ?;1, which is the standard formulation of the cost-sensitive classifi-
cation (CSC) problem [11], with many existing algorithms available [12, 13]. Here, we
consider two regression-based algorithms, cost-sensitive two-sided regression (CSTSR)
and cost-sensitive one-sided regression (CSOSR) [13], as our baseline methods because
of their close connections to the model that we shall propose next. The latter is one of the
state-of-the-art algorithms for CSC. Both algorithms use regression models to estimate
the cost for each bid, and predict the bid with minimum estimated cost. The difference
is that CSTSR considers the plain-vanilla squared regression objective function, whereas
CSOSR considers a more sophisticated function.

The baseline methods hint a lower bound that can be reached by machine learning.
How about an upper bound? One possibility is to “cheatingly” reveal the full information
to the learner, which simulates what is seen from the audience rather than the player. That
is, we merge x,, and x, as a feature, and use Depear = {([Xni; Xsi], ¢i) } Y, to learn a CSC
classifier. Such an optimistic method solves a relaxed (unrealistic) version of the bidding

problem. Therefore, the performance of this unrealistic classifier hints an upper bound
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that can be achieved by machine learning with the particular algorithms,

3.2 The Difficulty of Learning to Bid

Next, we use the bidding sequence for better information exchange and better per-
formance. We start by analyzing the difficulty of learning to bid. To learn the bid-
ding function g(x, b¥) + B, we ideally need to have examples that consist of the tuple
((x,b%), bk + 1], ¢), where ¢ is the cost of bidding b[k + 1] given x and b*. However,
we only have x in D, the “good” bidding sequences b are mostly missing, and the exact ¢
hides in the cost vector c.

For instance, let us consider extending the baseline method to produce sequences b
of length two. That is, g(x,, @) = b[1], g(x,, b') = b[2] and g(x,,b?) = pass. For
learning g(xs, b'), we readily have x,; in D, and we can enumerate all possible b; 2] to
get the associated ¢;. Thus, except for the missing variables b}, the learning of g(x,, b')
can be tackled by solving a CSC problem like the baseline method. So the “only” task is
to generate the missing variables b}. However, the task is quite difficult. In particular,
for learning ¢g(x,,, &), both b;[1] (the desired bids) and ¢; (the cost of bidding b;[1]) are
missing. That is, the task is an unusual unsupervised learning problem that requires clus-
tering x,,; to the possible bids b,[1] to indirectly help the teammate’s classifier g(x,, b!).
Even if we manage to successfully cluster x,,;, it would be difficult to assign a bidding
label from B to each cluster.

We can have some insight on the challenging task above by considering what two
human bridge players will do in this scenario. For simplicity, we will call g(x,,, &) as g,,
and g(x,, b') as g,. Consider two human players who are unfamiliar with each other’s
bidding strategy and decide to practice together. After the North player uses his strategy g,
to make the first bid b[1] = g,,(x,, @), the South player has no choice but to use g; on x;
and the given b[1] to make the final bid b[2]. Then, after the score ¢ of the contract is
revealed, the South player can now improve her strategy g, with ((xs, b[1]), b[2], ¢). The
very same c indicates how good g, is in helping g;. Then, the North player can improve

his strategy g,, with ((x,, &), b[1], ¢).



Nevertheless, if the North player is lousy and starts with a bad g,, (for instanee, some Tn
that always calls pass), he might never know whether some alternative bids canzhelp the
South player better. This hints to the need for him to explore other possible bld;, rather
than sticking to his own strategy. On the other hand, the North player should not mélke
exhaustive random predictions for exploration, because a uniformly random b[1] gives the
South player almost no information to further improve her strategy g,. That is, the North
player should also use g,, to exploit some “good” bids that are known to work well with g;.
By balancing exploration (for improvement) and exploitation (for maintaining the team’s
chemistry), the two players can build a better bidding system together.

Our proposed model hinges on the discussions above. We maintain two important
aspects. First, the cost of the final contract (i.e., the last bid) can be re-used to hint the cost
of intermediate bidding decisions. Second, players need to explore other bidding choices
while exploiting the known good bids. The two aspects lead us to consider the Upper
Confidence Bound (UCB) algorithms in the contextual bandit problem.

The contextual bandit problem has recently become a popular research topic in ma-
chine learning [14—16]. In this problem, we hope to earn the maximum total reward by
strategically pulling a bandit machine from M given ones subject to a dynamic environ-
ment context within some iterations. Since there is no additional information available
about the M given bandit machines in the beginning, balancing exploration (of other ban-
dit machines) and exploitation (of knowingly good machines) is important. The UCB
algorithms [15] are some of the most popular contextual bandit algorithms. They cleverly
use the uncertainty term to achieve balance.

We can now pose an analogy of a player’s decision to the contextual bandit problem.
The possible bids b[k + 1] correspond to the bandit machines, and the context corresponds
to the cards x on hand and the earlier bids b*. The reward can simply be considered as

the maximum possible cost minus the cost calculated from the final contract.
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3.3 The Multi-Layer Bandit Model

Whereas each player’s decision making can be modelled by the contextual bah:é.l_bft preb-
lem, recall that our goal is to obtain a bidding strategy G that produces a s'eqﬁ;cnce of de-
cisions that satisfy bridge rules. We propose to represent each player’s decision making
with layers of “bidding nodes” V. With a careful design to structure these nodes, we can
ensure that the bridge rules are all satisfied.

We define a bidding node V' as a pair (b, g), where b € B is called the bid label that V'
represents, and ¢ is the bidding function subject to x and b*. We propose to structure the
bidding nodes as a tree with £ + 1 layers, where the first layer of the tree contains a single
root node with the first bidding function g(x,, ) and b = n~iL indicating the entering
of the bidding stage. At each V, g is only allowed to predict pass or something higher
than b to satisfy the bridge rules. Every prediction of its g connects V' to a child bidding
node V' at the next layer such that the prediction equals the bid label of V. We restrict
only the lowest M predictions of g to connect to non-terminal nodes to control the model
complexity. Other nodes are designated as terminal nodes, which contain a constant g that
always predicts pass. In addition, all nodes at layer ¢ 4 1 are terminal nodes.

Since we form the nodes as a tree, each unique path from the root to V' readily rep-
resents a bidding sequence b*. Thus, the classifier g of V' only needs to consider the
cards x. We call such a structure the tree model, as illustrated in Figure 3.1(a) with £ = 3
and M = 2. A variant of the tree model can be performed by combining the non-terminal
nodes that represent the same bid label in each layer. The combination allows the nodes
to share their data to learn a better g. We call the variant the layered model, as illustrated
in Figure 3.1(b).

Given the model above, a bidding strategy G can be formed by first inputting x,, to ¢
at the root node, following the prediction of ¢ to another node that represents b[1] in the
next layer, then inputting x; to the node, and so on. The process ends when a pass call is
predicted by some g of a non-root node.

After a particular model structure is decided, the remaining task becomes learning

each g from data. We propose using CSTSR with ridge regression, which is among the

11
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(b) Layered model with £ = 3 and M = 2

Figure 3.1: Tree model and layered model, the terminal nodes are not fully drawn

baseline methods that we have studied, as the learning algorithm, because it is a core part
of the LinUCB algorithm that we adopt from the contextual bandit problem. Following
the notations that are commonly used in the contextual bandit problem, we consider the
reward 7, which is defined as the maximum possible cost minus the cost, instead of the
cost c. For each possible bid b,,, ridge regression is used to compute a weight vector w,,
for estimating the potential reward w’ x of making the bid. During prediction, CSTSR
predicts with the bid associated with the maximum potential reward. The computation
of w,, takes

W = (XZsz + )‘I)il(Xgrm)a

where r,, contains all the rewards gathered when the m-th bid b,, is made by ¢ and X,,
contains all the x associated with those rewards. A > 0 is the regularization parameter of
ridge regression and [ is the identity matrix.

Our final task is to describe the learning algorithm for the model structure with ridge

regression. As discussed, we use the cost of the final contract (i.e., the last bid) to form

12



Algorithm 1 The Proposed Learning Algorithm

Input: Data, D = { (X, Xs;, ¢;) } Y ; a pre-defined model structure with all welghts W,
within all CSTSR ridge regression classifiers initialized to 0.
Output: A bidding strategy G based on the learned w,,.
1: repeat
2 Randomly select a data instance (x,,;, Xg;, C;)
3 Set V' to the root node of the structure, and x to x,,;
4 UppaTe(V, X5, 1)
5: until enough training iterations
6: procedure UppaTeE(V, X, 7)
7 Compute the UCB reward w’ x + « - uncertainty term for each possible b,,
8 Select the bid b,,, with the maximum UCB reward
9 if b,, = pass and V' is not root then

10: Compute reward r from c; using b,,.

11: else

12: Set x to the feature of the other player, and call r = UppaTte(V’, x, 7).
13: end if

14: Update w,,, with (x, )

15: return r.

16: end procedure

the rewards for intermediate bidding decisions. Then, we follow the UCB algorithms
in the contextual bandit problem to update each node. The UCB algorithms assume an
online learning scenario in which each x arrives one by one. First, we discuss the LinUCB
algorithm [15] to balance between exploration and exploitation. During the training of

each node, LinUCB selects the bid that maximizes

WX + ay/xT (XL X,, + M)~

where the first term is the potential reward on which CSTSR relies, and the second term
represents the uncertainty of x with respect to the m-th bid. The @ > 0 is a parameter
that balances between exploitation (of rewarding bids) and exploration (of uncertain bids).
After LinUCB selects the bid for the root node, we follow the bid to the bidding node in
the next layer, until a pass call is predicted by LinUCB. Then, we know the cost of the
bidding sequence, and all the nodes on the bidding sequence path can be updated with the
calculated rewards using ridge regression. The full algorithm is illustrated in Algorithm 1.

Another choice for the UCB algorithms is called UCB1 [17], which replaces the un-

13



certainty term /- - - in LinUCB with W , where 7" is the number of examples used to
learn the entire g, and 7}, is the number of examples used to update w,. —“—,

The full algorithm is illustrated in Algorithm 1. We randomly select an inétaﬁée X per
iteration to satisfy the online nature of the UCB algorithms. Then, a bidding:sequence 1s
generated with either a series of LinUCB or UCB1 computations. Finally, all the nodes
on the bidding sequence path are updated with the calculated rewards.

The uncertainty term is the key component for making the UCB algorithms work.
First, we initialize all w,, with zeroes, and the uncertainty term is equally large for all
possible bids. Therefore, the algorithm distributes instances to different bidding sequences
somewhat randomly. Then, the uncertainty term decreases gradually after seeing more
examples, which allows the reward term w’ x to dominate the decision process. This

allows the algorithm to focus on rewarding bidding sequences to fine-tune the bidding

decisions.

3.4 Additional Techniques

In addition to the model and the core algorithms introduced in the previous section, we
adopt several additional techniques to improve performance and computational efficiency.
The first two techniques focus on improving the performance, and the last technique aims

at improving computational efficiency.

Full Update. In the proposed model, whenever a bidding sequence b is sampled from
the UCB algorithms for an instance x, the reward r can be calculated from c[b[/]], and
the example ((x,b"), b[k + 1],7) is formed to update the bidding nodes. A closer look
shows that some additional examples can be calculated easily with b. In particular, the
cost for calling pass immediately after & bids can be calculated by c[b[k]], and the cost for
selecting a terminal node with a bid label b can be calculated by c[b]. Thus, we can form
additional examples by considering all the decisions of which reward can be calculated
based on the above analysis for each bidding node on the bidding sequence b, and include

those examples in updating the associated bidding nodes. Such an update scheme is called

14



FuLL UppATE as opposed to the original SINGLE UPDATE scheme in the proposed model.

—

Penetrative Update. We consider the UCB algorithms to balance theneed fg"r‘explo-
ration in the proposed model. In some ways, the UCB algorithms are nét ﬁroperly de-
signed for the multi-layer model, and thus can lead to some caveats. For example, in the
tree model, the number of instances that pass through a classifier in the top layer can be
much more than those in the bottom layer. Thus, when UCB puts the top-layer classifiers
in the exploitation stage, the bottom-layer classifiers may still be in the exploration stage.
Even worse, if the classifiers in the top layers often result in an early pass, the ones in
the bottom layer might not receive enough examples, which result in a worse learning
performance.

To solve this problem, we consider a probabilistic “penetrative” scheme to continue
bidding during training. That is, whenever a classifier predicts a bid that results in an early
pass, we select another bid and call the corresponding UppaTE with some probability p.
We require that the selected bid not on a terminal node (i.e., not resulting in an early pass)
and to be of the highest UCB term. In other words, with some probability, we hope to
generate longer (but good) bidding sequences b to help update the lower layers of the
model in this PENETRATIVE UPDATE scheme. The scheme is related to the famous epsilon-

greedy algorithm for the contextual bandit problem [18].

Delayed Update. We adopt the contextual bandit algorithms in our model, which were
designed for the online scenario where examples arrive one by one. Even with the Sherman-
Morrison formula, updating the internal w,, right after an example arrives requires O(d?),
where d is the dimension of x. The updating step becomes the computational bottleneck
of the algorithms. In view of the efficiency, we consider a DELAYED UPDATE scheme that
does not update w,,, immediately after each example is formed, but waits until gather-
ing a pile of examples. Experimental results in Chapter 4 will show that such a scheme

substantially decreases the amount of training time without loss of performance.
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Chapter 4

Experiments

Next, we study the proposed model and compare it with the baseline and optimistic
methods. In addition, we compare the model with a well-known computer bridge software,
Whbridge5 [19], which has won the computer bridge championship for several years. A
randomly-generated data set of 100, 000 instances (deals) is used in the experiment. We re-
serve 10, 000 instances for validation and another 10, 000 for testing, and leave the rest for
training. We study two different representations for x: binary features and condensed fea-
tures. The binary features are represented by a 52-dimensional binary vector, where each
dimension representing the existence of the corresponding card. The condensed features
contain two parts that are widely used in real-world bridge games and human-designed
bidding systems, high card points (HCP) and number of cards in each suit. The HCP is a
method for evaluating the round-winning power. It is calculated by summing up the val-
ues of cards, which is defined by Ace =4, King = 3, Queen =2, Jack = 1, and 0 otherwise.
For both representations, a constant dimension is added to reflect the bias term.

We obtain the cost vectors ¢ from International Match Points (IMP). The IMP is an
integer between {0, 1,--- ,24}, widely used for comparing the relative performance of
two teams in real-world bridge game [20]. We obtain c by comparing the best possible
contract of the deal to each contract and calculate the IMP, where higher IMP indicates
that the contract is far from the best one and should suffer from a higher cost. When

transforming the costs to the rewards in the proposed model, we take 24 minus the cost as
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Table 4.1: Results of baseline and optimistic methods

Method Dimensions Baseline  Optimisticy-
CSOSR - binary 53 3.9659 25657
CSOSR - condensed 6 3.8329 18985 |
CSTSR - binary 53 3.9399 2:7270
CSTSR - condensed 6 3.9428 2.7697
CSTSR - condensed + 2nd order expansion 21 3.8465 2.1106
CSTSR - condensed + 3rd order expansion 56 3.8272 1.9228
Whbridge5 N/A 2.9550 N/A

the reward to keep the rewards non-negative. !

4.1 Baseline and Optimistic Methods

First, we present the performance of the baseline and the optimistic methods in Ta-
ble 4.1. In CSOSR, SVM with the Gaussian kernel implemented with LIBSVM [21] is
used as the base learner. In CSTSR, ridge regression is used as the base learner. Because
SVM training is time consuming, we only sub-sample 20, 000 instances for CSOSR. For
CSTSR with condensed features, we also extend its capability by considering simple poly-
nomial expansion of the features. For parameters, we consider C' € {10°,10', 102, 103}
andvy € {1073,107%,10~*,10°} for CSOSR, and A € {1075,107°,--- , 103} for CSTSR.
We choose the best parameters based on the validation set and report the average test cost
in Table 4.1.

Unsurprisingly, we find that the performance of the optimistic methods to be much
better than their baseline counterparts. This justifies that the information in both players
are valuable, and it is important to properly exchange information via bidding. In addi-
tion, note that the optimistic methods can often achieve lower test cost than the Wbridge5
software. This suggests that the human-designed bidding system within the computer soft-
ware may have room for improvement. Comparing over all the baseline methods, we see
that using the 2nd order expansion with the condensed features reach decent performance
by the baseline CSTSR with only 21 expanded features. Thus, we will take those features

within the proposed model in the next experiments.

!One technical detail is that the cost vector c is generated by assuming that the player who can win more
rounds for the contract is the declarer. We will discuss the effect in the end of this chapter.
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Figure 4.2: DELAYED UPDATE versus INSTANT UPDATE
4.2 [Effect of Applying Techniques

In Section 3.4, three techniques are proposed to improve the model. We first compare
FurLL UppaTe with SINGLE UppATE. Figure 4.1 shows how the average validation cost
varies with the number of iterations on a tree model with ¢ = 4, M = 5 coupled with ridge
regression with A = 1072 and UCB1 with o € {10, 100}. We can easily observe that FurLL
UppaTE outperforms SINGLE UpDATE, which justifies that the additional examples used
for FuLL UppATE capture valuable information to make the cost estimation more precise.
Thus, we adopt FuLL UpPDATE in all the next experiments.

Then, we compare DELAYED UPDATE with INsTANT UpPDATE. Figure 4.2 shows how the
average validation cost varies with the number of iterations on the same tree model used

for Figure 4.1. For DELaYED UpDATE, we consider piles of size {10, 100, 1000} instances
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per update. We find that when « is small, INSTANT UPDATE or a small pile reaches the best
performance, whereas larger o could use a larger pile. Overall, INSTANT UPDATE not only
fails to reach the best performance, but is also quite inefficient, as shown in the table of

approximation training time below.

instant | pile =10 | pile =100 | pile = 1000

4hours 2hours 60mins 50mins

In view of the efficiency needed for extensive parameter selection, we decide to take De-
LAYED UpDATE with piles of size 100 in the next experiments.

Finally, Figure 4.3 shows the average validation cost when varying different penetra-
tion probability p on tree models with M = 5 coupled with ridge regression with A = 1073
and UCBI with a € {10, 50, 100}. We can see that a non-zero p (actual PENETRATIVE Up-
pATE) works well for small « and large /. However, the benefit of PENETRATIVE UPDATE
is less obvious when « is large. This is because when a larger « is used, the UCB term
readily allows more instances to go to the next layer through exploring different bids, and
therefore PENETRATIVE UPDATE does not have many early pass calls to avoid. Overall, we
cannot find a fixed penetration probability p to work with different o and ¢ values. Thus,

we decide to fine-tune p along with o and ¢ in the next experiments.
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Table 4.2: Average Cost Using Different Model Structures

model UCB train validation test=
Tree/Layered, ( = 2 UCBl 3.1197 £0.0177 3.1981 + 0.0268 3.0795 i__O."Ql"?S
’ LinUCB | 3.1242 + 0.0089 3.2190 £ 0.0121 3.0933 +£/0.0112
Tree. { — 4 UCB] 2.9013 +0.0079 | 3.0769 £ 0.0118 | 2.96720:0096
’ LinUCB | 3.0918 £ 0.0344 3.1804 + 0.0298 3.0672.:4-0.0379
Tree. { — 6 UCBI 2.9025 +0.0210 | 3.0484 +0.0226 | 2.9616 + 0.0234
’ LinUCB | 3.0124 £ 0.0249 3.1301 £ 0.0264 3.0477 £ 0.0243
Layered, £ = 4 UCBI 3.0779 £ 0.0179 3.1656 + 0.0198 3.0561 + 0.0230
’ LinUCB | 3.0492 £0.0214 3.1325 £ 0.0218 3.0290 + 0.0252
Layered, ¢ = 6 QCBl 3.1366 + 0.0176 3.2451 £+ 0.0208 3.1214 £ 0.0168
’ LinUCB | 3.0825 £ 0.0209 3.1781 + 0.0268 3.0660 + 0.0224
Whbridge5 N/A N/A 3.0527 2.9550

4.3 Comparison on Different Model Structures

Next, we compare the performance of different model structures to the Wbridge5 soft-
ware. We consider the tree model and the layered model with ¢ € {2,4,6}, fix M = 5,
and equip them with either UCB1 or LinUCB. For each model/algorithm combination, we
take grid search on (p, a) with the validation set to choose the penetration probability pa-
rameter p € {0,0.25,0.5,0.75,1}, and the UCB parameter o € {2°,22 2% 26 28} Note
that the tree model and the layered model are equivalent when ¢ = 2.

Table 4.2 lists the average training/validation/test cost on all the model/algorithm com-
binations. The results suggest that the tree model with ¢ = 4 or 6 coupled with UCBI1 per-
forms the best among all models. Furthermore, those best performance are competitive
to the result reached by the Wbridge5 software. This marks a successful initiative toward
learning to bid without relying on a human-designed bidding system.

Several additional observations can also be found from Table 4.2. First, all the pro-
posed models in Table 4.2 perform better than the baseline methods in Table 4.1. The
results justify that the proposed models successfully make use of the bidding sequence for
information exchanging between teammates. Second, the model structure can affect the
choice of the UCB algorithm. The tree model generally works better with UCB1, while
the layered model matches LinUCB better. This suggests a future research direction using
other UCB algorithms to improve the performance. Third, the tree model, with its higher
model complexity, generally performs better than the layered model. Nevertheless, simi-

lar to what is discussed during PENETRATIVE UPDATE, for models with higher complexity
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Table 4.3: Comparison with Wbridge5 by the type of contract

(a) By contracts from the proposed model

(b) By contracts from Wbridges: .

Type Difference | Number of Deals Type Difference | Numbér of Deals
PASS 1205 1907 PASS -12 2116
PARTIAL 1506 5900 PARTIAL 4205 4779
GAME -1878 2131 GAME -1607 2670
SLAM -164 61 SLAM -1612 406
GRAND SLAM 11 1 GRAND SLAM -294 29

(such as a tree model or models with larger /), it can be difficult for some nodes to ob-
tain sufficient data for learning. Designing complex models while providing each node

sufficient data is yet another future research direction.

4.4 Comparison with WbridgeS

Table 4.2 readily lists the competitive performance of the proposed model to Wbridges.
Next, we make a more detailed comparison to understand the strengths and weaknesses
of the proposed model. In real-world bridge games, a contract can roughly be divided
into five categories based on its raw score from low to high, namely PASS, PARTIAL, GAME,
sLAM, and GRAND sLAM. Because categories GaAME and beyond result in really high scores,
human players (and hence human bidding systems) often prefer bidding towards those.
Table 4.3 show the total cost of Wbridge5 minus the total cost of the proposed model in
each category. We see that the proposed model performs much better than Wbridge5 in
PARTIAL contracts, which contribute to the majority of the deals. This shows that the pro-
posed model is indeed guided by data (the majority of the deals) rather than human design
(that prefers camME and beyond). On the other hand, a human-played bridge game often
contains competition when the best possible contract is pARTIAL. Thus, the strength of the
proposed model on PARTIAL contracts will need to be compensated with future studies on
automatic bidding with competition. Lastly, the weakness of the proposed model on GAME
and beyond may be due to the fact that there is insufficient data to warrant decent learning
performance in those categories. Some sampling techniques can be applied in the future

to focus on those categories of contracts.
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Table 4.4: Effect of Using Real Declarer

With assumed declarer | With real declarer b
Best bidding model 2.8870 2.9435
Whbridge5 2.9550 3.0314

4.5 Effect of Using Real Declarer

In the previous experiments, we assume for simplicity that the player who can win
more rounds for the contract is the declarer when we generate the cost vector c. This is
different from the setting of a real bridge game, where the player from the bid-winning
team who called the trump suit first become the declarer. Table 4.4 shows the average
cost per deal of the best proposed model and the Wbridge5 software when we use the real
declarer. We can observe that the performance of the proposed model and the Wbridge5
software decrease about the same amount. This shows that the effect of the declarer is
minor under our problem setting.

We think that there are two reasons for making declarer less important. First, since the
declarer only influence the player who play the first card, most deals in the data are declarer
independent. That is, the North and the South players usually win the same number of
rounds for most of the contracts in a deal. Second, whereas the information revealed to
the opponent team varies for different declarers in a real bridge game, the double dummy

analysis is based on perfect information and thus not influenced.
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Chapter 5

Conclusions and Future Works

We formally defined the problem of bridge bidding without competition by learning,
and proposed an innovative model for undertaking this problem. The model predicts a
bidding sequence with layers of classifier (bidding) nodes, and trains each classifier with
the aid of UCB algorithms for contextual bandit. The UCB algorithms allow the machines
to learn their own bidding system by balancing the exploration for less-considered bids and
the exploitation of well-learned bids. We show in experiments that the proposed model can
achieve a performance similar to the champion-winning program in the computer bridge.
Our initiative justifies the possibility that machine learning may be able to do better than
human-designed bidding systems on bridge bidding problem.

As an initiative of bidding by learning, the proposed model has reached promising
performance. One possible direction on improving the model is to use more data to train
a deeper model, which hopefully improve the performance of the model towards valuable
contracts such as the GRAND sLaM. The ultimate challenge is the other sub-problem: bid-
ding with competition by learning. Such a challenge may call for a mixture of the proposed
model (collaboration between teammates) and well-studied models for competition-based

games such as Chess.
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Appendix A

Table of Opening Bids

Table A.1 compare the opening bids of the best tree model with ¢/ = 4 and ¢ = 6 with
the SAYC bidding system [22], which is widely used by human players. The opening bids
of the proposed model is generated by enumerating and predicting for all the combinations
of features. As the prediction of the proposed model is made by CSC classifiers, there is
no explicit rule for each opening bid. Instead, an approximate rule is provided in the table.

Several observations can be made from Table A.1. First, the opening rules of the
proposed model is very different from the SAYC bidding system. This shows that the
bidding methods learned by computer may be dissimilar to a human designed one. Second,
whereas the terminal opening bids ({ INT, - - - }) of the two tree models are similar, the non-
terminal opening bids ({pass, - - - , 18}) are completely different. This shows a property
of the proposed model. For terminal bids, a deterministic estimation of the reward can be
generated from the cost vector c, thus the corresponding CSC classifiers learned each time
are similar. On the other hand, there is a randomness in the learning process of the non-
terminal bids, thus the CSC classifiers learned each time could be very different. Third, the
“Not used” bids in the proposed model show that the bidding process is not fully utilized
in the proposed model. There is still a room for improvement if we can further enhance

the information exchanging process.
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Table A.1: Table of Opening Bids

Bid Tree model, £ = 4 Tree model, £ = 6 SAYC

PASS 0-11 HCP 0-12 HCP 0-11 HCP

1% 10-19 HCP, no many © 9-19 HCP, 4-6 © 12+ HCP, 3+é&
1$ Not Used 8-18 HCP, short & and 4-6 & 12+ HCP, 3+<$
10 9-19 HCP, 4-6 © 12-23 HCP, w/o long suit 12+ HCP, 5+Q
14 16-23 HCP, near balanced 10-19 HCP, 4-6 & 12+ HCP, 5+&
INT Not used Not used 15-17 HCP, Balanced
2& 0-17 HCP, long & 0-17 HCP, long & 22+ HCP

2 0-17 HCP, long ¢ 0-17 HCP, long < 5-11 HCP, 6+<$
20 0-13 HCP, long © 0-13 HCP, long © 5-11 HCP, 6+Q
24 0-13 HCP, long & 0-13 HCP, long & 5-11 HCP, 6+&
2NT Not used Not used 20-21 HCP, balanced
3% 14-19 HCP, long & 15-19 HCP, long & 5-11 HCP, 7+&
35 14-19 HCP, long <> 15-19 HCP, long <> 5-11 HCP, 7+
30 Not used Not used 5-11 HCP, 7+©
3k Not used Not used 5-11 HCP, 7+&
3NT 19-29 HCP, w/o a long suit ~ 19-29 HCP, w/o a long suit ~ 25-27 HCP, balanced
4% Not used Not used 5-11 HCP, 8+&
4<$ Not used Not used 5-11 HCP, 8+<>
40 10-29 HCP, long © 11-29 HCP, long © 8+Q

44 10-29 HCP, long & 11-29 HCP, long & 8+

4NT  27-29 HCP, near balanced 27-29 HCP, near balanced Not used

S5 16-27 HCP, long & 16-27 HCP, long & very long &

5 17-25 HCP, long 17-25 HCP, long <> very long $
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