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摘摘摘要要要

現今，行動裝置仍然受限於有算的運算資源。為了增進行動裝置的性能，許多研究

將行動裝置上的運算移轉到運算能力更強的電腦上，然而，大多數的方法只能將運算移

轉至CPU上。近來，GPU得到了科學界的重視，事實上，GPU出色的平行計算能力能夠為

許多不同種類的應用帶來加速。

在這篇論文中，我們為行動裝置提出了一個基於OpenCL的運算移轉框架，這個框

架能夠在使用者不知情的情況下將行動裝置上的OpenCL運算移轉到可使用且OpenCL相

容的計算設備上，我們將系統框架實作於真實的機器上，並且以矩陣計算、影像處理

及AMD的標竿分析程式來測試我們的系統。透過將運算移轉至遠端機器，程式最多可達

到50.3倍的加速。

關關關鍵鍵鍵字字字 OpenCL、GPU、GPGPU、行動雲端運算、普及運算、運算移轉
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Abstract

Nowadays, mobile devices are suffering from limited computational resource. To increase

capabilities of mobile devices, many efforts have been made to offload computation from mobile

devices to resourceful servers. However, most of the approaches are only capable of offloading

computation to CPUs. Recently, GPUs have received a lot of attention from the scientific com-

munity. Indeed, the exceptional parallel computing capabilities of GPUs can be used to accelerate

different types of applications.

In this thesis, we propose a computation offloading framework based on OpenCL – a stan-

dard for GPU computing. Our framework transparently offloads OpenCL workloads from mobile

devices to an available OpenCL compatible device. We deployed our framework on real ma-

chines and conducted evaluation experiments using various OpenCL programs including basic

matrix computations, an image processing Android app and benchmarks from AMD. The pro-

gram achieves up to 50.3X speedup by remote offloading compared to the local execution using

CPU.

Keywords OpenCL, GPU, GPGPU, Mobile Cloud Computing, Pervasive Computing, Compu-

tation Offloading
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Chapter 1

Introduction

Mobile devices such as smartphone and tablets have become increasingly popular. Recent

study [5] shows that smartphone penetration rate reached 27% in 2013, and will exceed 60% in

2019. Developers worldwide have built different types of mobile apps which enables mobile de-

vices to provide wide range of functionalities and enriches users’ mobile computing experience.

The constant evolution of mobile devices results in an increasing user expectation and a grow-

ing demand for more sophisticated apps such as 3D video gaming, real-time media processing

and augmented reality. However, most mobile devices suffer from limited resource (e.g., bat-

tery capacity, processor capability and memory size), which makes them perform poorly on some

resource-intensive applications.

To address this issue, considerable research has been conducted on methods to offload compu-

tation from mobile device to resourceful computers (e.g., cloud server or nearby computer). These

approaches increases mobile devices’ capabilities and improves the performance of mobile apps.

Nevertheless, this emerging approach faces several challenges.

Nowadays, computers equipped with graphics processing unit (GPU) are very common. How-

ever, most of the approaches [13, 14, 18, 20] are only capable of offloading computation to CPU.

GPUs are a high performance computational hardware that are originally designed for graphics

rendering. Recently, developers have used GPU to accelerate general-purpose applications such

as game physics, bioinformatics, molecular dynamics, and computational finance [19, 21]. Che

et al. [12]’s work shows the GPU program achieves 72X speedup compared with CPU imple-

mentation. In addition, manufacturers have developed programming model to assist development

of GPU program (e.g., Nvidia CUDA [4]). Amazon EC2 [11] also has begun to provide high-

performance computing (HPC) service using GPUs. As GPU technology advances, how to offload

workloads to GPU has become an important issue.

To address the issues, our work utilizes OpenCL [24] – a parallel programming standard for

writing programs that execute across heterogeneous compute devices including CPUs, GPUs, and

other processors. With OpenCL, developers can build mobile applications and accelerate them
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on GPU. Moreover, OpenCL shrinks hardware heterogeneity [22] by providing a unified pro-

gramming environment including a set of APIs to control heterogeneous compute devices and a

runtime system to execute OpenCL programs. Such unified environment enables developers to

standardize their programs and to ensure portability on any computers that supports OpenCL. Our

work utilized this “write once, run anywhere” functionality to offload workloads to computers

with different hardware architectures (e.g., smartphones, laptops, desktop PCs and workstations).

In this thesis, we propose an OpenCL computation offloading framework for mobile device.

It adopts a centralized mechanism that manages multiple OpenCL compatible devices and trans-

parently offloads computation from mobile devices to them. This mechanism relies on a dynamic

allocation method targeting to reduce the execution time of users’ programs. Also, when our

framework detects remote offloading cannot bring benefits due to insufficient network speed or

servers’ capabilities, it directly runs the workload on user’s mobile device. Additionally, our sys-

tem is implemented by transparently replacing the original OpenCL API implementation. There-

fore, developers simply use the standard OpenCL API to implement OpenCL programs that can

be executed on our framework.

The rest of the paper is organized as follows. Chapter 2 presents the related works in mo-

bile computation offloading and introduction of OpenCL. Chapter 3 gives an overview of our

framework architecture. Chapter 4 describes the details of our system implementation. Chapter 5

discusses the results of experiments. Finally, we conclude in Chapter 6.

2



Chapter 2

Related Work

In this chapter, we describe related works in mobile computation offloading research. In addi-

tion, we introduce basic knowledge of OpenCL about its platform and execution model.

2.1 Computation Offloading Research for Mobile Device

The mobile computation offloading research has been conducted for more than a decade. In

2001, Satyanarayanan proposed an remote execution approach called “cyber foraging” [23] which

dynamically augments the computing resources of a wireless mobile computer by exploiting wired

hardware infrastructure. They believe, in the foreseeable future, stationary compute server or data

staging server in public space will provide intensive computation service for mobile devices in

vicinity. We adopt a similar approach. In our framework, we have a stationary computer that

manages a set of OpenCL compute devices and allocates compute devices to users. The difference

relays in the fact that, in our framework, this stationary computer does not provide computational

service. Its function is to forward the workload to the compute devices it manages.

In recent years, the availability of high-capacity networks, low-cost computers and storage de-

vices has bred a new research area called “cloud computing”. It offers an on-demand service that

provides computing capabilities according to user’s needs. Thin or thick client platforms (e.g.,

mobile phones, tablets, and workstations) access the cloud service through network. Since cloud

computing creates new opportunities for workloads offloading , many works study offloading ap-

proaches based on cloud to augment mobile devices’ capability. These techniques are categorized

into Mobile Cloud Computing [17] .

CloneCloud [13] is a cloud-based and thread-level offloading system. It adopts the offline

static analysis on every new program binary to identify possible program partitions. Then it col-

lects the metrics data on local and cloud under different program partitions, and finds out a par-

tition to minimize the cost metric. For offloading, it clones the entire mobile platform into cloud

virtual machine, and then migrates the partitioned program to the virtual machine. In our frame-
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work, OpenCL programs don’t need prior partition analysis before offloading. We offload the

whole OpenCL program by remotely invoking the APIs written in the program and transferring

corresponding data. Moreover, their work uses virtualization techniques to create a homogeneous

execution environment for mobile devices and clouds. On the other hand, our work uses OpenCL

standard to deal with the heterogeneity among computers. Through this approach, mobile devices

only transfer required data to the cloud instead of entire platform. And the cloud uses OpenCL

runtime system in order to provide a compatible execution environment.

MAUI [14] is a cloud-based and method level offloading system aiming to reduce energy con-

sumption. It requires developers to annotate methods that should be considered for the workload

offloading. Their system decides at runtime which methods should be remotely executed. Once

an offloaded method terminates, MAUI gathers profiling information that is used to better predict

whether future invocations should be offloaded. In this approach, programmers have to use anno-

tation to inform the system whether a method can be offloaded. Therefore, existing code needs

to be modified and reorganized, and developers need to pay attention to restrictions on annotating

methods. For example, these methods should not interact with I/O that only make sense on local

(e.g., GPS). Our work transparently replaces the original OpenCL API implementation. Therefore,

existing OpenCL code works on our framework without modification. Developers simply use the

standard OpenCL API to implement OpenCL programs that can be executed on our framework.

Furthermore, there are studies about offloading workload to nearby mobile devices. This ap-

proach is useful in several situations. For example, when a user seeks for a cloud service to

accelerate some computations, however, is unable to access the Internet for some reasons. By

utilizing nearby mobile resources, user can still enhance their mobile devices’ capability without

accessing the cloud.

Hyrax [20] ports Hadoop [25] to the Android platform. It applies MapReduce [15] program-

ming model to process large data over multiple mobile devices. To avoid file sharing overhead,

Hyrax assumes data is constant. Therefore, it is not suitable for applications whose data frequently

changes (e.g., event-driven application). Their performance experiments show main overhead

comes from Hadoop system. They noticed that since Android has 16MB application memory

limit, Hadoop system has to swap data to disk many times in order to process the whole data,

which degrades the performance. Their work uses MapReduce to run a program. MapReduce is

designed to run programs on a cluster i.e. multiple computers works together to execute a pro-

gram. Unlike their approach, OpenCL is for single computer. We offload an OpenCL program

to single computer, so there are no cluster issues. (e.g., data transfer overhead among computing

nodes)

Huerta-Canepa et al. [18] proposes a framework to connect nearby mobile devices together as

a virtual cloud by ad hoc, and offload computation to them. Their framework intercepts a program
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at loading time and modifies code of the program to add RPC (Remote Procedure Call) support

for offloading. A program profiling is performed before offloading to determine the number of

remote devices needed to compute this program. Locations of nearby devices are traced, and are

used for peer-to-peer connection during offloading. During offloading, the partitioned application

and data is transferred to devices within virtual cloud for execution. Once completes, the result is

integrated. Similar with Hyrax, their work offloads a program to multiple devices. However, our

approach offloads a program to single one server. Additionally, their work modifies program code

to support offloading. But, in our framework, a program code does not require modification for

offloading.

In contrast to the previous works, we adopt an offloading approach focusing on general-

purpose computing on graphics processing unit (GPGPU). CUDA (Compute Unified Device Ar-

chitecture) [4] and OpenCL (Open Computing Language) [24] are two major GPU programming

models. Compared with CUDA that is only supported by Nvidia GPU, OpenCL is supported by

GPU or CPU from various manufactures such as Nvidia [9], AMD [1], and Intel [6]. As com-

puter hardware is become more and more heterogeneous, OpenCL provides better support for

heterogeneous hardware. Therefore, our framework is based on OpenCL.

2.2 OpenCL

OpenCL is a framework for parallel programming. It includes a language, a set of APIs,

and a runtime system to support applications development and execution. Developers use the

framework to accelerate program across heterogeneous hardware including CPUs, GPUs, digital

signal processors (DSPs), and field-programmable gate arrays (FPGAs).

We use the platform model and the execution model to introduce core ideas behind OpenCL.

2.2.1 Platform Model

The OpenCL platform model is depicted in Figure 2.1. The model consists of a host equipped

with one or more compute devices. A compute device includes one or more compute units each

with one or more processing elements.

The host submits commands from the host to compute device to manipulate the compute device

and execute computations on processing elements.

2.2.2 Execution Model

An OpenCL program includes the host program and kernels. A host program runs on the host

computer, and kernels runs on a compute device. The host program manages the execution of the
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Figure 2.1: The OpenCL platform model [16]

kernels by invoking OpenCL APIs. These APIs create or manipulate the OpenCL objects. Core

OpenCL objects are platform, compute device, context, program, kernel, buffer and command

queue.

A platform is the abstraction of the platform model. It’s an interface for host program to obtain

compute devices within the host. A context encapsulates required OpenCL objects (command

queue, program, kernel, buffer) to execute the kernels. A program is the source and executable

that implements the kernels. A kernel is the abstraction of kernels. It encapsulates a program,

and it’s used for setting arguments of the kernels. A buffer is the abstraction of compute device

memory. A command queue is used for host program to issue commands to compute devices.

An OpenCL program execution flow is described as follows. To begin with, the host program

gets a platform and obtains the list of compute devices available on the platform. Then, it creates

a context and adds a command queue in the context. Next, the host program compiles the kernel

source code at runtime to create a program and a kernel. After that, the host program creates

buffers to allocate device memory, and issues the write buffer command to upload the kernel input

data. The host program then sets the arguments of the kernels and issues a command to execute the

kernels. Finally, the host program issues the read buffer command to download the kernel output

data from the compute device.
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Chapter 3

System Architecture

Figure 3.1 shows the architecture of our OpenCL computation offloading framework. The

architecture consists of a client called “OpenCL client”, a server called “OpenCL server” and a

manager called “OpenCL manager”. A client offloads an OpenCL program on a mobile device. A

server provides one or more compute devices for clients to execute OpenCL programs. A manager

is a stationary computer provides centralized service for clients in vicinity. (e.g., the manager can

be a public stationary computer in a working place.) The manager maintains compute devices

in the network. The client request a compute device from the manager to execute their OpenCL

program, and the manager decides whether the OpenCL program should run on a client’s compute

device or offload to a server’s compute device. These components communicate with each other

through a network.

Network

OpenCL Program

OpenCL API

OpenCL Client OpenCL Server

OpenCL Manager

Compute 

Device

Native OpenCL

Compute 

Device

Native OpenCL

Figure 3.1: OpenCL computation offloading framework
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3.1 System Components

3.1.1 OpenCL Client

The client is implemented by transparently replacing the original OpenCL API. When an

OpenCL program invokes the OpenCL API, the client performs corresponding procedures to of-

fload the program. These procedures includes program data collection, device query procedure,

remote offloading procedure, local offloading procedure, and read buffer procedure.

When the host program invokes the APIs to create or manipulate OpenCL objects includ-

ing program, kernel, and buffer, the client performs program data collection. This procedure

stores API arguments such as kernel source, values of kernel arguments and buffer size. The client

collects these data for two purposes. One is to send the program data to the manager for requesting

a compute device to offload. Since program data describes the content of the OpenCL program,

the manager uses it to find out the best device running the program. Another is to use these data as

arguments for invoking native OpenCL APIs to create and manipulate the native OpenCL objects.

When the host program invokes the API to issue kernel execution command, the client per-

forms device query procedure to request a compute device from the manager. If the compute

device is on the remote server, the client performs remote offloading procedure to run the OpenCL

program on the remote compute device. Otherwise, the client performs local execution procedure

to directly run the OpenCL program on the local compute device. Both procedures use collected

program data to create and manipulate the native OpenCL objects. What’s different is that, in re-

mote offloading procedure, the client has to transfer the program data to remote server. As a result,

network operations involves in the remote offloading procedure, so the network status affects this

procedure.

The offloading procedure terminates if the network or OpenCL execution fails. For example,

the server may disconnect with the client, or the compute device may fail to run the kernels. In

the case of network failures, the client performs device query procedure again, and the manager

returns another available compute device. The client then starts offloading procedure with the new

compute device. By doing so, our system is able to recover from network failures. In the case of

an OpenCL failure, a standard OpenCL error code is returned in order to help developers debug

for their OpenCL program.

Finally, when the host program invokes the API to issue read buffer command, the clients per-

forms read buffer procedure. This procedures downloads the kernel output data from the compute

device. The compute device can be on a remote server or the client itself. If it’s on a remote server,

the client downloads it from the server over the network. Otherwise, the client directly invokes the

native OpenCL API to download the output data from the client’s device.
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3.1.2 OpenCL Server

A server continuously listens network connections from clients. Once accepts a client connec-

tion, it creates a service thread to serve the client. Initially, the service thread sets up a platform

for serving this client. The purpose of this platform is to host every OpenCL programs offloaded

by the client. The service thread listens client’s offloading requests, and invokes corresponding

native OpenCL APIs to execute the OpenCL program. The service thread creates a context for

each OpenCL program. Each context encapsulates the OpenCL objects in the OpenCL program.

Therefore, the objects from different OpenCL programs are isolated.

3.1.3 OpenCL Manager

The manager publishes its IP address, so clients in vicinity and servers can connect to it.

The manager maintains a list of available servers. When a server starts, the manager adds the

server to the list. When a server stops its service or disconnects with the manager (e.g., leaving

the reachable range of the manager), the manager removes it from the list.

The manager allocates compute devices to clients according the time spent on network oper-

ations and the time spent on executing the offloaded program. We define the following function

to help illustrate our allocation method. Suppose a client offloads an OpenCL program p to a

compute device d. Tnetwork(p, d) is the time spent on network operations to transfer p’s data to

and from d. And Texe(p, d) is the time spent to execute p on d. Ttotal(p, d) is the total execution

time for data transferring and executing p on d. It’s the sum of Tnetwork(p, d) and Texe(p, d), as in

Equation 3.1.

Ttotal(p, d) = Tnetwork(p, d) + Texe(p, d) (3.1)

When a client request a compute device from the manager to offload an OpenCL program p,

the manager’s objective is to select a compute device with minimum Ttotal(p, d). To achieve this,

for each compute device d, the manager estimates its Tnetwork(p, d) and Texe(p, d), and sums them

up to get the estimated Ttotal(p, d). Then the manager returns to the client the compute device with

minimum estimated Ttotal(p, d).

In our approach, the estimated Tnetwork(p, d) is the kernel data transfer time to and from the

compute device d. Because data other than kernel data are usually smaller than 1 KB which take

very short time to transfer under normal network speed (over 1 MB/s) [8], therefore, we assume

overhead of transferring data other than kernel data are negligible. (e.g., we ignores time spent

on transferring kernel source). Furthermore, if the compute device d is located in the client itself,

the estimated Tnetwork(p, d) is 0 because the client does not have to transmit or receive the kernel

data through the network. The manager monitors the network receive and transmit speed of each
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server. This network speed is used to calculate the data transfer time. For example, the input

and output data size of the kernels are 8 MB and 4 MB respectively, and the network receive and

transmit speed of a server are both 4 MB per second. In this case, the server will spend 2 seconds

to receive the kernel input data and 1 second to transmit the kernel output data. Therefore, the

estimated Tnetwork(p, d) is 3 seconds.

In our approach, the estimated Texe(p, d) is the average time of executing p on d. We assume

that OpenCL programs will be offloaded in the same network environment multiple times. We also

assume the control flow of OpenCL programs is independent of program data. To achieve this, we

relies on historical performance records. Each compute device has historical performance records.

Each historical performance record stores data. We show an example of historical performance

record in Table 3.1. In this example, the device owns the record has executed an OpenCL program

for 22 times (values in Count) with the given kernel name and source and the data size. The

average execution time of the OpenCL program is 387 ms. If the p and d are the case in the

example, the estimated Texe(p, d) is 387 ms.

Table 3.1: The historical performance record

Kernel
Name

Kernel
Source

Kernel Input
Data Size (MB)

Kernel Output
Data Size (MB)

Average
Execution Time
(ms)

Count

vecAdd reference to Listing 3.1 8 4 387 22

Listing 3.1: The vecAdd kernel source
1 __kernel void vecAdd(__global int *A,
2 __global int *B,
3 __global int *C,
4 const unsigned int size)
5 {
6 int id = get_global_id(0);
7 if(id < size)
8 C[id] = A[id] + B[id];
9 }

In order to collect historical performance records of each compute device, whenever a compute

device finishes an OpenCL program, the manager receives the performance record from the client

or the server depending the location of the compute device. This performance record includes the

kernel name and the kernel source of the OpenCL program, the input and output data size of the

kernels, and the OpenCL program execution time. The manager uses this performance record to

find out the corresponding historical performance record and update its Average Execution Time

and Count.
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3.2 System Flow

Figure 3.2 depicts the system flow of our framework. At the beginning, an OpenCL program

starts executing on a mobile device. The client collects the program data. Then it sends required

program data to the manager to request a compute device. The manager selects a compute device

and returns it to the client. Next, if the device is on the client itself, the client directly execute the

OpenCL program using native OpenCL. If the device is on a remote server, the client connects to

the server, and transfer the program data over the network. The server then execute the OpenCL

program. After that, the client request kernel output data from the server, and the server sends back

the data to the client. Finally, the client or the server sends performance record of their compute

device to the manager. The manager then updates the historical performance records.

An OpenCL program

starts

The client collects 

program data

The client requests a 

compute device from 

the manager

Compute 

device 

location

The client runs the program locally

The manager updates 

the historical 

performance record  

On serverOn client

The client transfers data to the server

The server runs the program

The client downloads output data

The server sends the performance 

record to the manager

The client sends the performance 

record to the manager

Figure 3.2: System flow
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Chapter 4

Implementation

We implemented a prototype of our framework with C/C++. The components in the proto-

type use Berkeley sockets library to communicate with each other. The communication and data

transferring use TCP/IP protocol to provide reliable delivery of packets. The prototype uses JSON

data-interchange format [7] for OpenCL data serialization.

Our current prototype has a limitation caused by the abstracted nature of OpenCL. In our

framework, we have to identifies different compute devices on a computer, so as to assign pro-

grams to a specific compute device. However, in standard OpenCL, a compute device does not

have a unique identifier. In our prototype, we simply use the device type (CPU or GPU) and the

device name obtained by clGetDeviceInfo for device identification.

In our framework, the user needs to set up the manager IP address beforehand to starts the

OpenCL client or the OpenCL server. In our prototype, a client or a server owns a file which

stores the manager IP address. When a client or a server starts, it read this file in disk so as to

connect with the manager.

4.1 OpenCL Client

We implemented the client prototype on Android OS 4.1 branch. OpenCL is a standard with

C/C++ interface. Most OpenCL programs on Android use Java Native Interface (JNI) and are built

with Android Native Development Kit (Android NDK) [3] to use the native C/C++ OpenCL inter-

face. Thus, we modified this native C/C++ OpenCL interface, replacing original implementation

with our OpenCL client functions.

In the prototype, the clCreateProgramWithSource, clCreateKernel, clCreateBuffer, clEnqueueWrite-

Buffer and clSetKernelArg store the API arguments as program data including name and source

of kernels, flag, size and data of each buffer, and values of each kernel arguments. Additionally,

several feature specific to our framework have been added:
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First, we need to specify whether a buffer is an input or an output buffer. Thereby we defined

a Boolean attribute isInput for a buffer object to specify whether a buffer is an input or an output

buffer. Standard OpenCL programs invoke clEnqueueWriteBuffer to write the data to the input

buffer before executing kernels. Therefore, in our prototype, the value of isInput is false initially. If

a buffer is accessed by the clEnqueueWriteBuffer before executing the kernels, we set the buffer’s

isInput to true.

Furthermore, our framework is based on the use of multiple buffers; that imply the need for

the servers of identifying each of these buffers. Thus when a buffer is created by clCreateBuffer,

a bufferID is given to the buffer. The bufferID is used as an identifier for a client and a remote

server. At the beginning, an OpenCL program creates a buffer with a bufferID, and the client

offloads the OpenCL program to a remote server. When the program finishes, the client wants to

read the result in the buffer. It then sends the bufferID to request the data from the server. The

server uses the bufferID to find out which buffer the client refers to, and returns the data of that

buffer.

Then our framework needs to perform remote and local kernels execution. However, the stan-

dard clEnqueueNDRangeKernel OpenCL interface can proceed only locally. To solve this issue,

the original implementation of this API has been replaced by our OpenCL client functions. When

clEnqueueNDRangeKernel is invoked, the client first performs device query procedure to request

a compute device from the manager. This procedure sends kernel name, kernel source, and isInput

and size of each buffer to the manager. The manager selects the compute device and returns a mes-

sage including and a device type, a device name and an IP address for network connection to the

client. After that the client checks whether IP address is the same as itself. If it’s the same, then

the clients performs local execution procedure to execute the OpenCL program on client itself.

Otherwise, it performs remote offloading procedure to execute the program on the remote server.

In our prototype, the remote offloading procedure including three stages. First stage is to

complete building the OpenCL objects including compute device, context, program, kernel and

command queue on a remote server. Second stage is to complete building all buffers on a remote

server. Third stage is to complete issuing the kernels execution command on a remote server.

In each stage, a client transfers required program data to a remote server. The server returns

whether the stage was successfully perform. If this is the case, the client proceed to the next stage.

If an OpenCL error happens on the server side, the server returns the standard OpenCL error

code, so developers can debug for the OpenCL program. If a network error happens, Berkeley

sockets library will return error. The client then terminates offloading procedure with the server.

It performs device query procedure again to request another compute device, and starts offloading

procedure with the new device.

Some OpenCL programs repeatedly invoke clEnqueueNDRangeKernel to execute kernels
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multiple times. For example, an image filter kernels run multiple times to enhance the effect

of the filter. In this case, the first clEnqueueNDRangeKernel operates like normal one to request

a compute device from the manager, send program data to a server if the compute device is on

the server and issue kernels execution command. After that, the second and later clEnqueueN-

DRangeKernel simply issues kernels execution command. This is to avoid repeatedly querying a

device from manager and sending the same data set over network.

Lastly, we replaced the clEnqueuReadBuffer. This API originally downloads the data from

the device memory. In our prototype, when a client executes an OpenCL program locally, the

client invokes native clEnqueuReadBuffer directly. If a client offloads an OpenCL program to

remote server’s compute device, the client sends a read buffer request with buffer’s bufferID to the

server. The server then invoke clEnqueuReadBuffer to read the data from its compute device, and

transfers the data to the client.

4.2 OpenCL Server

In the prototype, the server is implemented as a daemon process running in background. Thus,

it won’t interfere with any other processes. The server prototype uses Berkeley sockets to listen

connection and requests from clients. A client’s offloading request consists of a request name

and corresponding program data. These requests including buildKernel, buildBuffer, executeKer-

nel and readBuffer. In buildKernel, the server creates OpenCL objects including compute device,

context, program, kernel and command queue. In buildBuffer, the server creates all buffers, re-

ceives kernel input data and writes data to these buffers. In executeKernel, the server issues kernel

execution command to the compute device. In readBuffer, the server issues read buffer command

to download the kernel output data from the compute device, and transmits the data to the client.

The server records the OpenCL program execution time that includes time spent on every

native OpenCL API. When the client receives all the kernel output data, it disconnects with the

server. The server then sends kernel name, kernel source, input data size, output data size, and

OpenCL program execution time as performance record to the manager.

When the server transmits or receives the kernel data, it calculates the network transmit and

receive speed. The network speed is sent with performance record, so that the manager knows the

network speed of the server.

4.3 OpenCL Manager

The manager prototype maintains an IP address list of available severs.

In the prototype, when the manager starts, it loads the historical performance records from
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files. Each record includes an IP address, a device name, a device type, a kernel name, a kernel

source, an input data size, an output data size, an average execution time, and a count.

When the manager receives the device query request from a client, it selects the best device

and returns device’s IP address, device’s type, and device’s name to the client. When it receive the

performance record from a server, it updates corresponding historical performance records. When

the manager stops, it stores the historical performance records into files for future usage.
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Chapter 5

Experiments

5.1 Experimental Environment

Our hardware setup includes a client, a manager and two servers. The OpenCL client was

tested on a smartphone, Sony Xperia ZL with Quad-core 1.5 GHz CPU and 2 GB RAM running

with Android 4.1.2. we set up the OpenCL manager on a desktop PC with Intel i5-2400 Quad-core

3.1 GHz CPU and 8 GB RAM running with Ubuntu 12.04. We tested the OpenCL server on an

Android smartphone, Sony Xperia ZU and another desktop PC running with Ubuntu 12.04. Each

provides different OpenCL compute devices as shown in Table 5.1.

Table 5.1: Server setup

OpenCL Server Compute Device Device Type # of Cores Clock Rate Memory

Smartphone
(Sony Xperia ZU)

Adreno 330 GPU 128 450 MHz 900MB

Desktop PC
Intel i7-4930K CPU 6 3.9 GHz 16 GB
AMD HD 7990 GPU 4096 1 GHz 6 GB

We conducted the experiments on a LAN (Local area network). Table 5.2 shows the network’s

average bandwidth and RTT (round trip time) between client and other components.

Table 5.2: Network status

Avg. bandwidth (MB/s) Avg. RTT (ms)

client and desktop PC server 4.86 8
client and smartphone server 2.44 115

client and manager 4.61 8

We used five OpenCL programs to evaluate our framework. We selected the matrix multiplica-

tion and the matrix transpose which are common and basic computations in mathematics, physics

and engineering. We also utilized an Android sample app, bilateral filter from Sony [10] which

takes an image as input and reduces noise in the image. Furthermore, we used Black-Scholes
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and bitonic sort provided by AMD APPSDK [2]. Black-Scholes is a mathematical model for fi-

nancial market. It determines an estimate price for a call or a put option based on underlying stock

volatility, time to expiration, and others. Bitonic sort sorts an arbitrary sequence of numbers with

the bitonic sorting algorithm.

5.2 Experiment Result

The terms shown in the experiment results are defined as follows. Mobile GPU denotes the

smartphone server’s GPU. PC GPU denotes the desktop PC server’s GPU. PC CPU denotes the

desktop PC server’s CPU. The Computation is the OpenCL program execution time which in-

cludes time spent on executing every OpenCL function call. The Kernel Data Transmission is

the kernel data transfer time including sending input data to the server and receiving output data

from the server. The Others is the time other than computation or kernel data transmission. It

includes operations such as creating network connection and exchanging messages between the

system components.

We evaluate our framework using five OpenCL programs. For each program, we compare the

program execution time on the local CPU and remote servers using different input data size.

Figure 5.1 shows the experiment result of the matrix multiplication. In most of the cases, the

servers’ execution time are faster than the local CPU since the computation time significantly re-

duces on these servers. In fact, the matrix multiplication can be effectively improved by offloading

it from the local CPU to remote GPUs because the GPU provides better capabilities to process ma-

trix elements in parallel. However, for matrix size 512*512, the local CPU is slightly faster than

mobile GPU. The reason is, in our setup, the smartphone server has lower network speed and takes

longer time to create network connection than the PC server. Consequently, for mobile GPU, the

performance gain in the computation time is eliminated by the network overhead.
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Figure 5.1: Matrix multiplication execution time

In the case of the matrix transpose, local execution is always faster than remote servers as

shown in Figure 5.2. This is because the matrix transpose is not a resource-intensive program. It’s

able to run efficiently enough on the local CPU. Hence, the computation time only reduces very

slightly when offloading the program to servers. Such little performance gain in computation is

offset by the network overhead.
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Figure 5.2: Matrix transpose execution time

For bilateral filter, in all cases, remote offloading is much faster than local execution as shown

in Figure 5.3. The bilateral filter performs a heavy computation on each pixel of an input image.

Since the program benefits from processing all pixels in parallel, when the program is offloaded

from the local CPU to remote GPUs, the performance significantly improves. Our result shows

50.3X speedup on the PC server’s GPU in image size 2048*2048.
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Figure 5.3: Bilateral filter execution time

Figure 5.4 shows the result of the Black-Scholes. For this program, remote servers are slower

than local execution in all the cases. The Black-Scholes have obvious performance gain in com-

putation on all servers. However, the data transmission overhead offset this performance gain.
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Figure 5.4: Black scholes execution time

Our experiment result for the bitonic sort is shown in Figure 5.5. This program runs faster on

remote servers in most of the cases. Same as matrix multiplication and bilateral filter, bitonic sort

is well-suited for parallel architectures, so it benefits from offloading to remote GPUs. In fact, the

bitonic sort requires executing kernels multiple times to complete sorting the array. For example,

in array with one million length, the program executes kernels 210 times. This situation results

in more message transmission from the client to the server, so the bitonic sort has relatively more

overhead in Others compared with other OpenCL programs. However, our result shows that, in
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most of the cases, this overhead does not offset the performance gain in servers expect for mobile

GPU in 256K array length.
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Figure 5.5: Bitonic sort execution time
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Chapter 6

Conclusion

In this thesis, we propose an OpenCL computation offloading framework for mobile device.

It adopts a centralized mechanism that manages multiple OpenCL compatible devices and trans-

parently offloads computation from mobile devices to them. This mechanism relies on a dynamic

allocation method targeting to reduce the execution time of users’ programs being aware of the

data transfer overhead and historical program execution data. We evaluated our framework on real

hardware with various OpenCL programs. We showed that several programs can be speed up by

offloading. For the bilateral filter, offloading shows up to 50.3X speedup.
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