

碩士論文

Department of Chemistry College of Science National Taiwan University Master Thesis

掃描穿隧顯微術研究 Cu(111)單晶表面之

鐵- 范四甲酸二酐(Fe-PTCDA)的排列與電子結構

Monolayer Structure and Electronic Properties of Fe-Perylenetetracarboxylic-dianhydride (Fe-PTCDA) on Cu(111)

蔡旭涵

Hsu-Han Tsai

指導教授:陳俊顯 博士

Advisor: Chun-hsien Chen, Ph.D.

中華民國 103 年7月

July, 2014

謝辭

值此畢業之際,回顧兩年研究所生涯。在研究工作的進行、論文的撰寫以及日常生活中的點滴,受到許多人的指教與幫助,在此一一致上謝忱。

非常感謝指導教授 陳俊顯老師的照顧。從老師身上學到的除了研究方法之外, 更重要的是重視細節的態度和思考的邏輯,相信這些會受用一生。老師也在我的進 度停滯不前時為我找到強援,使研究工作能繼續進行,最終順利畢業。

感謝各位口試委員撥冗參加我的口試並不吝教誨。 彭旭明老師對論文提出許 多寶貴建議。 林敏聰老師在研究過程中即給予諸多鼓勵,口試時的一些看法很有 啟發性。口試前與 陳祺老師的談話及參觀實驗室令我獲益良多,口試時老師提出 的問題給我很好的思考機會。

感謝我的師父 楊鈜翔學長。你不辭辛勞地往返醉月湖兩岸^並,帶領我從無到有 建立我們的 STM,提出研究方向,儀器出問題時幫我們解決,協助我解讀實驗數 據,不才能夠畢業實因歸功於你。你締造了湖畔兩岸交流的典範,使物理與化學再 成一家,縱牛頓復生見此亦必感到欣慰吧。

感謝花媽(aka 弘仁)帶給我們很多歡樂,在我還是菜鳥時教我傳送樣品,口試時幫我處理很多細節。感謝奇峰做了許多儀器日常維護和準備樣品等工作,使我能夠在最後關頭邊寫論文邊做實驗,口試時也幫了我很多。同時感謝昇隆、俊延廷、小傑哥、大曾、Tony、Alumi、TY、紹安、真姊、展哥、蔡圃、帥哥 P 和物理系的 宇軒、Chris 等學長姊;芳維和廷芸(按姓氏筆畫排列)兩位同學;大學姊、大成、 Often、晏慈、孟文、爾謙等夥伴們以及程姊和所有幫助過我的人。

最後要感謝摯愛的雙親。謝謝他們支持我就讀研究所的決定,並且在過程中給 我鼓勵。願將此拙作獻給我的父母。

註:物理與化學系館分處醉月湖兩岸。

i

中文摘要

本論文研究 Cu(111)單晶表面的范四甲酸二酐(PTCDA)與鐵-范四甲酸二酐 (Fe-PTCDA)兩種單層分子膜的排列與電子結構。Fe-PTCDA 錯合物的排列結構由 掃描穿隧顯微術(STM)加以分析; PTCDA 和 Fe-PTCDA 的電子結構以掃描穿隧能 譜(STS)進行量測。

在研究初期,儀器並未順利運作,無法在標準試片(HOPG)表面上得到原子級 解析度,也未能進行掃描穿隧能譜實驗。藉由最佳化濺射探針的參數以改善探針的 品質、改善腔體的真空度、改善儀器接地和微調防震桌水平度等方式,方得以經常 地獲得 HOPG 原子級解析度之影像,並以此為標準校正 STM 的壓電驅動器。在安 裝並設定鎖相放大器之後,先後以 HOPG、Cu(111)和 Ag(111)表面測試,可成功地 獲得 dl/dV 能譜和駐波的 dl/dV 圖。

實驗方法為先準備 Cu(111)單晶表面;經由熱阻式蒸鍍獲得 PTCDA/Cu(111)樣 品;或是同時蒸鍍鐵和 PTCDA 分子,再經最後加熱而得 Fe-PTCDA/Cu(111)樣品。 dl/dV 能譜顯示 PTCDA 的最低未占軌域(LUMO)與 Cu(111)形成混成態,STM 影像 亦確認此結果。STM 影像顯示 Fe-PTCDA 在 Cu(111)表面係由兩種位向分子(鏈型 和桄型)構成梯狀排列,且兩種分子的占有態能階相同;從 dl/dV 能譜進一步獲知 此占有態能階是由 Fe-PTCDA 的 LUMO 與 Cu(111)所形成之混成態。dl/dV 能譜同 時顯示桄型分子在未占有態具有較鏈型分子高的能態密度,代表鏈型 PTCDA 的 LUMO 被鐵原子提供的電子完全占有而桄型 PTCDA 的 LUMO 僅被部分占有。由 於鏈型分子與 4 個鐵原子配位,而桄型分子僅配位 2 個鐵原子,可知鐵與 PTCDA 間的電荷轉移與配位數有關。

關鍵詞

掃描穿隧顯微術、掃描穿隧能譜、Cu(111)、 花四甲酸二酐、金屬-有機錯合物、 電荷轉移

ii

ABSTRACT

This thesis presents the investigation of PTCDA (3,4,9,10-perylenetetracarboxylicdianhydride) and Fe-PTCDA complex on Cu(111). Monolayer structure of Fe-PTCDA was studied by scanning tunneling microscopy (STM); electronic properties of PTCDA and Fe-PTCDA were measured by scanning tunneling spectroscopy (STS). dI/dVspectra of PTCDA on Cu(111) revealed the formation of a hybrid state, indicative of a strong chemical interaction between the adsorbate and substrate. The molecular orbital involved in the hybridization was LUMO (lowest unoccupied molecular orbital), confirmed by topographic images. Topographic images of Fe-PTCDA/Cu(111) revealed a ladder-like structure, which is distinctly different from the herringbone structure of PTCDA/Cu(111). Two types of molecules were named according to their orientation in a ladder-like structure, that is, chain- and rung-PTCDA. Topographic features of chain- and rung-PTCDA resolved at the molecular level are unprecedented. The images unraveled that both types of molecules had the same occupied molecular state. However, dI/dV spectra showed that rung-PTCDA have higher density of unoccupied states compared with chain-PTCDA. This means that the LUMO of rung-PTCDA is only partially occupied with the electrons donated by Fe. Since chain-PTCDA binds to 4 Fe atoms while rung-PTCDA binds to only 2 Fe atoms, the result showed that the charge transfer from Fe to PTCDA is coordination number-related.

KEYWORDS

Scanning Tunneling Microscopy, Scanning Tunneling Spectroscopy, Cu(111), PTCDA, Metal-organic Complex, Charge Transfer

		目錄	*****
口試委員	會審定書		
謝辭			······································
中文摘要	<u>-</u>		ii
ABSTRA	СТ		iii
目錄			iv
圖目錄			vi
表目錄			viii
第1章	緒論		1
1.1.	研究動	9機	1
1.2.	掃描穿	隧顯微術原理	2
	1.2.1.	穿隧電流	
	1.2.2.	定電流模式	
	1.2.3.	雜訊	7
1.3.	掃描穿	隧能譜原理	
	1.3.1.	鎖相技術	9
	1.3.2.	dI/dV 圖	
1.4.	文獻回	顧	11
	1.4.1.	PTCDA 與分子鏡膜	11
	1.4.2.	PTCDA 在金、銀、銅表面之比較	
	1.4.3.	有關 Fe-PTCDA 的研究	
第2章	儀器介	紹	
2.1.	Load-l	ock 腔	
2.2.	準備腔		
2.3.	觀察腔	2	

		1. 港道	
2.4.	高溫均	共烤	30
2.5.	STM.		34
2.6.	鎖相方	文大器	34
第3章	Cu(11	1)表面的 PTCDA 與 Fe-PTCDA	36
3.1.	儀器交	文能	36
	3.1.1.	STM 掃描頭校正	37
	3.1.2.	鎖相放大器測試	39
3.2.	探針與	與樣品製備	40
	3.2.1.	鎢探針	40
	3.2.2.	Cu(111)單晶表面	41
	3.2.3.	蒸鍍 PTCDA 單層膜	42
	3.2.4.	蒸鍍鐵原子	43
	3.2.5.	製備 Fe-PTCDA 單層膜	43
3.3.	結果與	與討論	45
	3.3.1.	PTCDA/Cu(111)混成態	46
	3.3.2.	Fe-PTCDA 排列與電子結構	48
	3.3.3.	PTCDA 與 Fe-PTCDA 綜合比較	50
第4章	結論.		52
參考文鬳	犬		53

圖目錄

	圖目錄	**************************************
圖 1.1	PTCDA 化學結構式。	
圖 1.2	STM 架構示意圖 ¹⁷ 。	2
圖 1.3	量子力學中的穿隧效應 ¹⁸ 。	4
圖 1.4	STM 穿隧電流示意圖 ²⁰ 。	5
圖 1.5	STM 電子系統示意圖 ²³ 。	6
圖 1.6	STM 回饋電路圖 ²⁰ 。	7
圖 1.7	隔絕外來雜訊的屏蔽。	8
圖 1.8	STM 影像與 dI/dV 圖的差別 ²⁸ 。	11
圖 1.9	PTCDA/Ag(111)的 XPS 能譜 ^{29。}	
圖 1.10	三種磊晶模式 ³ 。	14
圖 1.11	1-ML PTCDA/Au(111)的 STM 影像 ³⁸ 。	15
圖 1.12	在乾淨的 Au(111)表面(虛線)、1-ML PTCDA(黑色實線)利	ヮ2-MLPTCDA(灰
	色實線)上取得的 dI/dV 能譜 ³⁸ 。	
圖 1.13	PTCDA/Ag(111)的 STM 影像 ⁴⁶ 。	17
圖 1.14	PTCDA/Ag(111)的分子軌域 ⁴⁶ 。	
圖 1.15	PTCDA/Cu(111)的 STM 影像 ⁴⁴ 。	
圖 1.16	三種 PTCDA/Cu(111)結構 ⁴⁴ 。	
圖 1.17	PTCDA 在 Au(111)、Ag(111)和 Cu(111)表面的 UPS 能言	誉 ⁴⁷ 。21
圖 1.18	PTCDA 圍繞鐵團簇生長的 STM 影像 49 。	
圖 1.19	PTCDA/Au(111)與 Fe-PTCDA/Au(111)之比較 ⁵¹ 。	23
圖 1.20	Fe-PTCDA 的 STM 影像 ⁵¹ 。	
圖 1.21	Fe-PTCDA 中各位向分子的電子結構比較 ⁵¹ 。	
圖 2.1	USM-1400 全貌。	
圖 2.2	USM-1400 另一角度。	27

圖 2.3	Load-lock 腔。
圖 2.4	離子幫浦和鈦昇華幫浦。
圖 2.5	在腔體各部位用防焊膠帶貼上熱電偶。
圖 2.6	在各傳送臂上包一層鋁箔後,纏上加熱帶。
圖 2.7	將腔體各部位包上鍍鋁布。
圖 2.8	STM 控制器和鎖相放大器。35
圖 3.1	STM 控制器電源線路配置。
圖 3.2	HOPG 的 STM 影像和 2D-FFT。
圖 3.3	Cu(111)的 STM 影像和剖面圖。
圖 3.4	3 種表面的 d <i>l</i> /dV 能譜。
圖 3.5	金屬表面的電子駐波。40
圖 3.6	鵭探針的 SEM 影像。41
圖 3.7	Cu(111)的原子級解析度影像。42
圖 3.8	PTCDA/Cu(111)的 HB 排列影像。42
圖 3.9	Fe/Cu(111)的 STM 影像和剖面圖。43
圖 3.10	Fe-PTCDA/Cu(111)加熱程度比較。44
圖 3.11	製備完成的 Fe-PTCDA/Cu(111)。45
圖 3.12	PTCDA/Cu(111)能階示意圖 ⁴⁷ 。46
圖 3.13	PTCDA/Cu(111)的占有態影像和 STS 能譜。47
圖 3.14	Fe-PTCDA/Cu(111)的二維排列。48
圖 3.15	鏈型和桄型 PTCDA 的分子軌域和 STS 能譜。49
圖 3.16	PTCDA/Cu(111)和 Fe-PTCDA/Cu(111)電子結構比較。50

第1章 緒論

1.1. 研究動機

1977 年, Shirakawa 等人發現溴化和碘化的聚乙炔(polyacetylene)具有接近金 屬的導電值¹,他們因此獲得2000 年諾貝爾化學獎²,由共價鍵形成的有機物一般 被視為絕緣體,此發現意謂有機物亦有成為導電材料的可能性。其後各種有機導電 材料陸續被發現,多數材料的導電性相當於半導體。有機半導體材料有許多傳統無 機半導體所不及的優點,如價格便宜、加工容易、具有彈性或透明度等。

范四甲酸二酐(3,4,9,10-perylenetetracarboxylic-dianhydride, PTCDA, 結構見圖 1.1)是一種有機半導體材料³⁻⁵,因其易於合成且性質穩定,被視為相關研究的代表 性分子。PTCDA 曾被做為有機發光二極體(organic light-emitting diode, OLED)^{6,7}、 有機場效電晶體(organic field-effect transistor, OFET)⁶、光電晶體(phototransistor)⁸ 和薄膜太陽能電池(thin film solar cell)⁹等電子元件的研究對象,足見其用途之廣泛。

圖 1.1 PTCDA 化學結構式。

在電子元件中,「界面」(interface)決定了電子傳遞的效率。所謂界面是指有機 分子與金屬(或絕緣體)的接觸面;為了製出效率最佳的電子元件,分子在界面的排 列結構或電子結構等性質至關重要¹⁰。目前,PTCDA 在與其作用力較弱的金或銀 上的界面性質研究很多(1.4.2 小節會有回顧),在與其作用力較強的銅表面研究很 少,當中應有待探索之處。

近年來,在有機半導體研究中,開始有人在有機分子之間加入金屬或其他有機 分子,形成錯合物(complex)或超分子(supramolecular)結構¹¹。由單一分子構成的材 料僅具備特定性質,但若加入金屬形成錯合物後,其排列結構¹²、磁性¹³和催化效率¹⁴等界面性質會有大幅改變。PTCDA 與鐵形成的錯合物 Fe-PTCDA 只在金表面被研究過(1.4.3 小節會有回顧),Fe-PTCDA 在其他金屬的界面性質是值得深入探討的對象。

本論文研究工作結合掃描穿隧顯微術和掃描穿隧能譜,對 PTCDA 和 Fe-PTCDA 兩種單層分子膜在 Cu(111)單晶表面的排列結構和電子結構進行分析和討 論。

1.2. 掃描穿隧顯微術原理

掃描穿隧顯微術(scanning tunneling microscopy, STM)由 Binnig 和 Rohrer 於 1982 年發明^{15,16},是第一個能夠在實空間(real space)內,觀察樣品表面至原子級解 析度的分析技術。圖 1.2 是 STM 的大致架構¹⁷。STM 利用一隻金屬探針來掃描樣 品,探針由壓電驅動器(piezo driver)控制。壓電驅動器由錯鈦酸鉛(lead zirconate titanate,簡稱 PZT)製成,PZT 在施加電壓後會產生形變,形變量可由施加的電壓 大小來控制。因為 PZT 此一性質,STM 藉由變化施加在壓電驅動器上的電壓,可 以控制探針的運動至 0.1 Å 的精確度。

圖 1.2 STM 架構示意圖¹⁷。

進行 STM 實驗時,先將探針移動至離樣品很近的距離(小於 1 nm),此時探針 表面的電子波函數和樣品表面的電子波函數重疊。當在探針和樣品間施加一偏壓 (bias),由於量子穿隧效應(quantum tunneling effect),會有穿隧電流通過探針與樣品, 此穿隧電流的量值與探針-樣品間距有關。接著使探針在 xy 平面往復地進行逐行 掃描,過程中穿隧電流訊號經過放大為電壓訊號後會與一個設定值(setpoint)相比較。 藉由回饋(feedback)電路的作用,壓電驅動器會調整探針在 z 方向的位置以維持穿 隧電流在此設定值,探針在 z 方向位置的變化就反映出樣品表面的形貌,並由電腦 顯示出來。

要得到最佳的影像,探針的尖端必須只有某特定原子軌域進行穿隧,亦即探針 只有某特定原子軌域的電子波函數與樣品表面的電子波函數重疊,如此才能達到 原子級(atomic resolution)或分子內(submolecular)解析度。

1.2.1. 穿隧電流

在古典力學中,當一個物體的能量為 E,面對一個高度為 U 的位能障壁 (potential barrier),若 E>U,則物體能穿越障壁;若 E<U,則物體穿越障壁的機 率是零。但是同樣的情況,在量子力學中,用波函數來描述的物體,其 Schrödinger 方程式在障壁的中間或障壁之後皆有解,亦即物體有機會穿越位能障壁(圖 1.3)¹⁸, 此現象即為穿隧效應。障壁的高度越低、寬度越窄,則穿隧的機率就越大。對應到 STM,前述的「物體」即為電子;「位能障壁」的高度就是探針或樣品表面的功函 數(work function),也就是電子要脫離探針或樣品表面所需要的能量,越大的功函 數代表電子需要越大的能量才能離開表面;障壁的寬度就是探針和樣品的距離。當 電子成功穿越過探針和樣品之間,穿隧電流就產生了。由以上可知,要有穩定的穿 隧電流,探針或樣品的功函數不能太大(障壁不能太高),且探針和樣品間的距離必 須夠近(障壁夠窄);因此 STM 會使用金屬探針,樣品通常是金屬或半導體,探針 與樣品的距離通常不到 1 nm。

3

圖 1.3 量子力學中的穿隧效應¹⁸。物體的波函數在穿越位能障壁後振幅(出現機 率)變小,但頻率(能量)不變。

計算穿隧電流需要解整個探針-樣品系統的一連串 Schrödinger 方程式,這是 一個非常困難的工作。Bardeen 在 1961 年使用微擾理論(perturbation theory)來計算 穿隧電流¹⁹,只要解探針和樣品個別的 Schrödinger 方程式,大幅簡化計算過程, 其時 STM 尚未發明。使用 Bardeen 理論,在偏壓 V之下,亦即能量為 eV,STM 中 的穿隧電流可以寫成(圖 1.4)²⁰:

$$I = \frac{4\pi e}{\hbar} \int_{-\infty}^{\infty} \left[f(E_{F,S} - eV + \varepsilon) - f(E_{F,T} + \varepsilon) \right]$$

$$\times \rho_{S}(E_{F,S} - eV + \varepsilon) \rho_{T}(E_{F,T} + \varepsilon) |M|^{2} d\varepsilon$$
(1.1)

式 (1.1) 是 一 個 對 能 量 ε 的 積 分 。 其 中 E_F 是 Fermi 能 階 的 能 量; $f(E) = \{1 + \exp[(E - E_F)/k_BT]\}^{-1}$ 是 Fermi-Dirac 分布,用來描述電子在不同能量的 出現機率; $\rho s n \rho T \beta$ 別是樣品和探針的能態密度(density of states, DOS),描述不同 能量下,單位能量的能態數,亦即可填入的電子數; M 是 tunneling matrix element, 帶有能量的單位,描述樣品和探針的波函數在某任意面重疊的情況,M 可表示成 一個對此任意面 S 的積分,當此任意面 S 在 $z = z_0$ 處,如圖 1.4 中虛線所示 20 ,則:

$$M = \frac{\hbar}{2m} \int_{z=z_0} \left(\chi^* \frac{\partial \psi}{\partial z} - \psi \frac{\partial \chi^*}{\partial z} \right) dS$$
(1.2)

其中 m 是電子質量; χ和 ψ分別是樣品和探針的波函數。 |M|² 代表穿隧的機率, |M|²

越大,則穿隧機率越大。1983年, Tersoff和 Hamann 將 Bardeen 理論應用在 STM 上²¹, 簡化了計算 M 的過程,是現在被廣泛接受的方法²²。

圖 1.4 STM 穿隧電流示意圖²⁰。水平方向代表探針和樣品的距離 z, 垂直方向代 表能量ε, ρs 和ρτ分別代表樣品和探針的能態密度, 黑色陰影部分代表有 填入電子的能態。

Fermi-Dirac 分布在絕對零度時是一階梯函數(step function),電子出現機率非1 即0,以*EF*為界;但對多數金屬而言,室溫下的 Fermi-Dirac 分布就很近似於此階 梯函數,因此穿隧電流可寫成:

$$I = \frac{4\pi e}{\hbar} \int_{0}^{eV} \rho_{s} (E_{F,s} - eV + \varepsilon) \rho_{T} (E_{F,T} + \varepsilon) |M|^{2} d\varepsilon \qquad (1.3)$$

假設偏壓不大(靠近 EF),根據 Tersoff-Hamann 方法, tunneling matrix element 可視為定值,故穿隧電流可表達為:

$$I \propto \int_{0}^{e^{V}} \rho_{s} (E_{F,s} - eV + \varepsilon) \rho_{T} (E_{F,T} + \varepsilon) d\varepsilon$$
(1.4)

1.2.2. 定電流模式

STM 的掃描模式分為定高度(constant height)和定電流(constant current)兩種。 定電流模式因為解析度較高,被使用亦較多。STM 定電流模式的電子系統配置如 圖 1.5 所示²³。因為穿隧電流很小,約在 1 nA 左右,故先經由放大器將訊號放大, 並轉成電壓訊號,方便後續訊號處理。穿隧電流對探針-樣品距離約成指數遞減關 係,距離越遠,電流越小,為使穿隧電流對探針-樣品距離呈線性反應,經過放大 器後的電壓訊號再經過對數放大器。之後訊號與設定值在比較器(comparator)做比 較後得到一差值(error),回饋電路便根據這一差值調整施加在 z-壓電驅動器的電壓, 盡可能使差值消失,亦即維持固定的穿隧電流。探針會因 z-壓電驅動器電壓的變化 而上下移動,反映出樣品 z 方向的輪廓(profile),隨著探針在 xy 平面逐行掃描,整 個樣品表面的形貌就呈現出來了。

圖 1.5 STM 電子系統示意圖²³。Amp 是放大器,Log Amp 是對數放大器,中間 有斜線的圓圈是比較器。

回饋電路對 STM 的影像撷取有很大影響,若回饋良好可以得到高品質的影像; 反之影像會出現跳動,甚至無法取得。圖 1.6 是一個典型的 STM 回饋電路²⁰,第 一個增益(gain)可調的反向放大器把差值訊號放大。要得到高品質影像,會希望回 饋電路的增益越高越好,但太高的增益會使訊號不穩定,回饋電路中段的 RC 電 路,相當於一個低通濾波器(low-pass filter),具有很大的時間常數(time constant), 可以提供補償作用,避免訊號變得不穩定。較新的 STM 回饋電路中使用積分器 (integrator),或是使用 PID 控制器,其目的都是一樣的。最後經過一個高壓(±100 V 以上)的反向放大器,輸出控制 z-壓電驅動器的電壓,當差值越大,代表穿隧電流 大過設定值越多,就要輸出給 z-壓電驅動器越小的電壓,使探針後退,以維持穿隧 電流在設定值。

圖 1.6 STM 回饋電路圖²⁰。 ε是差值訊號,第一個放大器的增益由 10 kΩ可變電 阻調整,中段 RC 電路的時間常數由 100 kΩ可變電阻調整,最後高壓反 向放大器的增益有三個電阻檔位(100 kΩ、10 kΩ和 1 kΩ)可選, Vout 即為 輸出控制 z-壓電驅動器的電壓。

1.2.3. 雜訊

二項常見的雜訊會干擾 STM 實驗結果,使掃描所得的影像無法如實反映樣品 表面形貌。第一項是震動雜訊。震動會使探針-樣品距離改變,大約1Å的距離變 化就會使穿隧電流變化1 個數量級。來自建築物樓板的震動和環境中的聲響都會 傳到 STM 中造成震動雜訊,這些雜訊通常是低頻的,常見於10 到100 Hz,會造 成 STM 影像波動,影響數據判讀。各種防震動的措施包括:將 STM 安裝在樓板 的震動較小之處,例如地下室;將 STM 用彈簧懸掛起來;將 STM 安裝在防震桌 上等。

另一項是電子雜訊。例如來自電源的雜訊,這些雜訊通常是高頻的,可以透過 在儀器和電源間的電源線上加裝電源濾波器(line filter,一種低通濾波器)來濾除。 環境中的各種電磁波也會造成電子雜訊,在訊號線上加以屏蔽(shielding)可以隔絕 外來的電磁波造成的干擾,如圖 1.7。

7

圖 1.7 隔絕外來雜訊的屏蔽。使用鋁箔(圖起之處)進行前置放大器(圖中的 IVP-200)訊號接頭的屏蔽。

1.3. 掃描穿隧能譜原理

利用 STM 進行掃描穿隧能譜(scanning tunneling spectroscopy, STS)實驗的概念 首先由 Selloni 等人於 1985 年提出,他們以石墨為對象進行理論計算後,認為掃描 偏壓以觀察穿隧電流的實驗方法能夠瞭解樣品表面的電子分布²⁴。其後於 1986 年 Feenstra 等人在矽表面進行首次 STS 實驗,觀察到了矽的表面態(surface states)²⁵, 從此 STS 即成為 STM 中不可或缺的一項分析技術。

進行 STS 實驗時,會將探針定位在樣品上某定點;關掉回饋電路以使穿隧間 隙(tunneling gap)不改變,亦即使探針和樣品維持固定距離;接著掃描偏壓以得到 穿隧電流或穿隧電流對偏壓的一次微分(dI/dV)對偏壓的能譜。從式(1.4)可以看到, 穿隧電流同時來自樣品和探針的貢獻,在理想的 STS 實驗中,探針的狀態不會改 變,亦即pr是常數,式(1.4)可進一步簡化為:

$$I \propto \int_{0}^{e^{V}} \boldsymbol{\rho}_{S} (E_{F,S} - eV + \varepsilon) d\varepsilon$$
(1.5)

將式(1.5)對偏壓 V 微分可得²⁰:

$$\frac{dI}{dV} \propto \rho_s \left(E_{F,s} - eV + \varepsilon \right) \tag{1.6}$$

從式(1.6)可知 dI/dV對偏壓 V 的能譜包含了樣品表面某定點的 DOS (local density of states, LDOS)隨能量分布的資訊(參考圖 1.4)²⁰。

掃描 STS 能譜對於探針的要求與掃描影像有所不同。在 1.2 節曾提及要達到 原子級解析度的探針必須只有某特定原子軌域進行穿隧,這樣的探針其 DOS 會隨 探針和樣品間的偏壓而改變。若要滿足 STS 實驗的要求,探針的 DOS 必須是常 數,然而具備這樣特質的探針通常無法得到高解析度的影像。

STS 常應用於觀察金屬或半導體的表面態,因為在表面態的能量下,金屬或半 導體的 DOS 會較其他能量高,從 STS 能譜上就能看到一波峰出現。或是應用於觀 察有機分子軌域的能量,若有一分子軌域位於某特定能量,則該能量的 DOS 會較 周圍能量高,從 STS 能譜上也能看到波峰。

1.3.1. 鎖相技術

鎖相技術(lock-in technique)被應用於測量極微弱的訊號,或是被極大的雜訊所 覆蓋的訊號。那些訊號即便用很高增益的放大器加上具有很大Q因子(quality factor, Q factor)的帶通濾波器(band pass filter)也難以測量²⁶。運用鎖相技術的測量儀器稱 為鎖相放大器(lock-in amplifier),其核心為相位檢測器(phase-sensitive detector, PSD), 兩者皆因其工作原理而得名。

考慮一個直流訊號,在此訊號加上一頻率為 ω_m 的正弦波調變(modulation)後成為 $V_{sigSin}(\omega_mt + \phi_{sig})$,其中 V_{sig} 是加上調變後的訊號振幅, ϕ_{sig} 是訊號相角。將此一 調變後的訊號與一PSD 產生的參考訊號 $V_{refSin}(\omega_{reft} + \phi_{ref})$ (其中 V_{ref} 是參考訊號振幅, ω_{ref} 是參考訊號頻率, ϕ_{sig} 是參考訊號相角)相乘後可得到:

$$V_{PSD} = \frac{1}{2} V_{sig} V_{ref} \cos\left[\left(\omega_m - \omega_{ref}\right)t + \phi_{sig} - \phi_{ref}\right] -\frac{1}{2} V_{sig} V_{ref} \cos\left[\left(\omega_m + \omega_{ref}\right)t + \phi_{sig} + \phi_{ref}\right]$$
(1.7)

此 V_{PSD} 包含兩個交流訊號,頻率分別是 $\omega_m - \omega_{ref} + \omega_{nef} \circ PSD$ 會鎖定頻率使得 $\omega_{ref} = \omega_m$,因此式(1.7)右側第一項會成為一直流訊號。將 V_{PSD} 通過一低通濾波器 後,交流訊號會被濾除,所以會得到:

$$V_{out} = \frac{1}{2} V_{sig} V_{ref} \cos(\phi_{sig} - \phi_{ref})$$

PSD 亦會鎖定相角使 Øsig – Øref 為定值,因此 Vout 為一正比於原訊號 Vsig 的直流訊號, 也是鎖相放大器最後輸出的訊號。藉由鎖相技術,所有頻率遠離 Øref 的雜訊都將被 低通濾波器濾除;頻率接近 Øref 的雜訊會衰減,衰減幅度由低通濾波器的時間常數 而定。只有頻率等於 Øref 的訊號,也就是所要量測的訊號會被完整留下²⁶。

將鎖相技術應用至 STS 的優點除了大幅提高訊雜比之外,就是能夠直接量測 dI/dV 訊號。將偏壓 V 加上一振幅為 Vm,頻率為 am 的調變後,穿隧電流將會從式 (1.5)變成:

$$I \propto \int_{0}^{eV + eV_{m}\sin(\omega_{m}t)} \rho_{s} (E_{F,S} - eV + \varepsilon) d\varepsilon$$
(1.9)

將式(1.9)寫成以 eV 為中心的泰勒展開式²⁷:

$$I \propto \int_{0}^{eV} \boldsymbol{\rho}_{s} \left(E_{F,s} - eV + \varepsilon \right) d\varepsilon + \frac{dI}{dV} eV_{m} \sin(\omega_{m}t) + \frac{d^{2}I}{dV^{2}} \frac{e^{2}V_{m}^{2}}{2} \sin^{2}(\omega_{m}t) + \dots \quad (1.10)$$

由式(1.10)可知,若 $\omega_{ref} = \omega_m$,鎖相放大器輸出的訊號將正比於 dI/dV。

1.3.2. d*I*/dV 圖

STS 的另一種應用是將其與影像掃描結合,稱為 dI/dV 圖(dI/dV map)或是 dI/dV 影像(dI/dV image)。一張 dI/dV 圖記錄了該掃描偏壓(能量)下每一個取樣點[像素 (pixel)]的 LDOS。相較之下,STM 影像記錄的是一個能量範圍(從 Fermi 能階至該 掃描偏壓)LDOS 的積分(圖 1.8)²⁸;STS 圖譜記錄的是 LDOS 隨能量分布的資訊。 dI/dV 圖補足了 STM 影像和 STS 圖譜缺少的資訊,以圖 1.8 為例,藉由 dI/dV 圖可 以獲知鎬(dysprosium, Dy)原子在 C82 籠中的位置 ²⁸,這是從 STM 影像無法得到的。

掃描 dI/dV 圖與掃描 STM 影像同時進行。鎖相放大器在每個取樣點記錄該點的 dI/dV 訊號,以相同於 STM 影像的方式,亦即以不同明暗的色階呈現 dI/dV 圖。

圖 1.8 STM 影像與 dI/dV 圖的差別²⁸。圖中所示為一個鏑原子在 C82 籠中。(a)左 側表示樣品的 DOS,右側表示各個能量「視窗」,亦即極微小的能量區間。 (b)為 STM 影像,記錄從 Fermi 能階至該掃描偏壓的所有能量視窗積分的 資訊。(c)-(e)分別是圖 a 中箭頭標示的能量下的 dI/dV 圖,只記錄該能量 視窗的 LDOS 隨位置變化的資訊。

1.4. 文獻回顧

1.4.1. PTCDA 與分子鍍膜

Umbach 於 1991 年首次在真空下將 PTCDA 鍍在金屬[Ag(111)]表面上,並用 X 射線光電子能譜(X-ray photoelectron spectroscopy, XPS)進行分析²⁹。圖 1.9 中²⁹, 285 eV 處的 C 1s 峰源於范(perylene)環, 288.7 eV 和 290.2 eV 的小峰來自酸酐的貢 獻。531.7 eV 和 533.6 eV 的 O 1s 峰源自 PTCDA 的 6 個氧原子。

圖 1.9 PTCDA/Ag(111)的 XPS 能譜²⁹。左邊為Cls 能譜,右邊為Ols 能譜。(a)
 1/2 層 PTCDA 分子。(b) 12 層 PTCDA 分子。(c)先鍍上 12 層 PTCDA 分子
 子,再加熱至 900 K。(d)先鍍上 1/2 層 PTCDA 分子,再加熱至 650 K。

從圖 1.9 可知²⁹,不論是蒸鍍 1/2 層或 12 層的樣品,其每一個單層(monolayer, ML)的平均訊號強度幾乎都相同,顯示即使蒸鍍至多層的厚度,過程中 PTCDA 分 子也不會從基材上脫附。另一方面,C1s和O1s的訊號在 12 層皆具有較 1/2 層高 的束縛能(binding energy), Umbach 等人認為是因為 PTCDA 和 Ag(111)表面的化學 作用所致。

本論文研究工作是在超高真空下將 PTCDA 蒸鍍在 Cu(111)表面上,這種鍍膜 方法稱為有機分子束沉積法(organic molecular beam deposition, OMBD)或有機分子 束磊晶法(organic molecular beam epitaxy, OMBE), Forrest 於 1997 年對此種方法做 了詳盡回顧³。他認為有機分子鍍膜技術在過去 10 年(亦即 1980 年代末至 1990 年 代初)得有長足進展,超高真空(ultrahigh vacuum, UHV)技術應居首功 ³⁰。OMBD 能 精準控制有機分子膜的厚度,並確保蒸鍍環境和基材的高度清潔。OMBD 通常在 10⁻⁷到 10⁻¹¹ mbar 的壓力下進行,有機分子置於坩堝(crucible)中,加熱後蒸鍍至距 其 10 到 20 cm 遠的基材上。有機分子的通量(flux)由坩堝溫度和機械式的遮板 (shutter)來控制;常見的鍍率從 0.001 到 100 Å/s 不等,由於單層有機分子膜厚度約 在 3 到 5 Å,此鍍率約相當於 0.7 到 30 ML/s。鍍膜時基材溫度通常在 80 到 400 K 之間,基材溫度越低越有可能吸附雜質,特別是蒸鍍環境的壓力不佳(> 10⁻⁸ mbar) 時。絕大多數的情況下,鍍膜時有機分子的溫度遠大於基材溫度,因此有機分子的 黏附係數(sticking coefficient)被假設為 1,亦即每個到達基材的分子皆會吸附在基 材上。OMBD 的重要優點是後續研究工作所需的許多表面分析工具可以直接應用 於超高真空環境,因此可組裝於同一實驗系統中,例如本論文研究工作所使用的 STM ³¹。

有機分子以 OMBD 生長在基材表面的方式有磊晶和似磊晶(quasiepitaxy, QE) 雨種。磊晶是指分子與基材形成相稱(commensurate)結構,亦即分子的位置與基材 的原子晶格具有一對一的對應關係,因此分子與基材形成的超結構(superstructure) 可以一個單位晶格表示,以此單位晶格在表面上無限延伸即可構成一個 ML。與磊 晶相反的似磊晶則是指分子與基材形成不相稱(incommensurate)結構。磊晶又可分 為典型磊晶(conventional epitaxy)和 van der Waals 磊晶(vdWE),前者分子是以化學 吸附方式吸附在基材上³²;後者則是以 vdW 作用力為主的物理吸附 ³³。

當有機分子磊晶超過單層厚度時,其層跟層之間的生長模式跟分子-分子和分子-基材作用力有關,有三種生長模式(圖 1.10)³: Frank-van der Merwe 型(層接層型)、Stranski-Krastanov 型(層加島型)和 Volmer-Weber 型(島狀生長型)³⁴。其中 Stranski-Krastanov 型是最常見的一種,如 PTCDA 在貴金屬表面即為此種類型。

13

圖 1.10 三種磊晶模式³。(a) Frank-van der Merwe 型(層接層型)屬於二維生長模式, 分子長滿一整層後才開始長下一層。(b) Stranski-Krastanov 型(層加島型) 屬於二維加三維生長模式,分子長滿一整層後,有些會聚集成島狀,有些 開始長下一層。(c) Volmer-Weber 型(島狀生長型)屬於三維生長模式,分 子會聚集成島狀,而不會長滿一整層。

1.4.2. PTCDA 在金、銀、銅表面之比較

有關 PTCDA 吸附在金、銀、銅等貴金屬(noble metal)表面的研究相當多,研究目標主要有兩類:一是幾何結構方面的研究,例如分子的二維排列、分子吸附的幾何構型(adsorption geometry)等;二是電子結構方面的研究,例如分子與金屬基材的能階匹配(energy level alignment)、分子與金屬間的電荷轉移(charge transfer)等。這些研究使用的工具涵蓋前文提過的 XPS、紫外光電子能譜(ultraviolet photoelectron spectroscopy, UPS)、X 射線駐波(X-ray standing wave, XSW)技術和本論文研究工作所用的 STM 等。Tautz 在 2007 年對 PTCDA 在貴金屬表面研究的文獻做了詳盡回顧³⁵,當中以銀表面的文獻著墨最多。以 STM 為工具的研究,在Au(111)³⁶⁻³⁸、Au(100)^{39,40}、Ag(111)^{41,42}、Ag(110)^{41,43}、Cu(111)⁴⁴和 Cu(110)⁴⁵等皆曾報導過。

Nicoara 等人於 2006 年發表了結合 STM 和 STS 的 PTCDA/Au(111)研究³⁸,透 過 STM 觀察 PTCDA 的「人」字形排列(herringbone, HB)及分子最高占有軌域(highest occupied molecular orbital, HOMO)和最低未占軌域(lowest unoccupied molecular orbital, LUMO)的影像(圖 1.11);藉由 STS 找出分子 HOMO 和 LUMO 的能量位置 (圖 1.12)³⁸。

圖 1.11 1-ML PTCDA/Au(111)的 STM 影像³⁸。(a, c)分別是偏壓為+1.0 V 和-1.8 V 的影像,掃描範圍 4.2 × 4.2 nm²。(b, d)上方分別是理論計算所得 PTCDA 自由分子的 HOMO 和 LUMO 形狀;下方分別是(a, c)中畫線處的剖面圖, 可看出 PTCDA 在占有態和未占有態的影像直接對應到 HOMO 和 LUMO。 理論計算圖中亦畫線標示做為對照。

若分子與基材作用力很弱,從 STM 影像可直接觀察到分子軌域的形狀,不會 被來自基材的訊號所影響。圖 1.11 是 1 ML 的 PTCDA 在 Au(111)表面的 STM 影 像 ³⁸。大部份文獻中,偏壓皆是指樣品相對於探針而言(稱為 sample bias),本文亦 採此用法。在負偏壓下,樣品處於低電位,電子由樣品進入探針,看到的影像來自 樣品的占有態(occupied states),如同圖 1.4 的情況。相反地,正偏壓下,看到的影 像則來自未占有態(unoccupied states)。在+1.0 V 的偏壓下,可看到 PTCDA 的 LUMO 影像,與自由分子的 LUMO 幾乎相同;同樣地在-1.8 V 偏壓下也可看到與自由分 子幾乎相同的 HOMO 影像。這顯示 PTCDA 與金的作用力很弱,屬於物理吸附, 分子與基材間沒有電荷轉移的情形。從圖 1.12 的 dl/dV 能譜中可看到在-1.9 eV 和 +1.0 eV 出現波峰 ³⁸,分別來自 PTCDA 的 HOMO 和 LUMO 的貢獻。

圖 1.12 在乾淨的 Au(111)表面(虛線)、1-ML PTCDA(黑色實線)和 2-ML PTCDA(灰 色實線)上取得的 dI/dV 能譜³⁸。乾淨的 Au(111)表面譜線可看到金的表面 態波峰在約-0.4 eV 處。1-ML PTCDA 譜線可看到分子的 HOMO 與 LUMO 的能量位置。2-ML PTCDA 則顯示出半導體特性,有一能帶間隙存在。

有關 PTCDA 在 Ag(111)表面的研究文獻,是所有貴金屬表面最多的³⁵。雖然 早在 1998 年就已知 PTCDA 在 Ag(111)表面形成相稱結構⁴¹,但要用 STM 同時觀 察到原子排列及分子排列非常困難。原因是兩者的掃描條件差距極大:掃描原子排 列時,為了有較強的訊號,通常探針離表面較近,亦即用較小的偏壓和(或)較大的 穿隧電流;掃描分子排列時,為了不使探針與分子有太大的作用力致使分子排列改 變,通常會使探針離表面較遠。

Kraft 等人於 2006 年利用 STM 直接解出 PTCDA 在 Ag(111)表面的超結構⁴⁶。 他們在一張影像的掃描過程中,先掃描過 Ag(111)表面並得到原子級解析度,在探 針進入 PTCDA 上方前即時變化偏壓,由-10 mV 提高為-1.5 V,使探針遠離表面, 接著得到 PTCDA 的分子內解析度(圖 1.13)⁴⁶。如此一來,將影像中的 Ag(111)晶格 結構延伸至 PTCDA 下方即可得到 PTCDA/Ag(111)超結構。他們將兩種排列位向 的分子稱為 A 和 B, A 平行於 Ag(111)的 [10ī] 方向; B 則和 [0ī1] 呈 18°(±2°)夾角。

解出排列結構之後,他們接著分析 A、B 兩類分子的電子結構。圖 1.14a 的 dl/dV 能譜顯示有一波峰(L1)在約-1.7 eV 處,另一較寬的波峰(L2)在約-0.3 eV(跨 越 EF);及數個連續的波峰(L3)在大於 EF 的能量 ⁴⁶。與圖 1.14c 和 d 比較後可發現, L1 來自 PTCDA 的 HOMO 的貢獻;從 L1 波峰較尖的形狀也可看出,分子的 HOMO 與基材的作用較弱 ⁴⁶。由 LUMO 貢獻的 L2 橫跨很寬的能量區間,顯示 LUMO 是 PTCDA 與 Ag(111)作用的主要軌域;LUMO 接收 Ag(111)提供的電子而被占有 (occupied),因此形成一個如 L2 般較寬的混成態(hybrid state)。L3 則來自 PTCDA 接近簡併(degenerate)的 LUMO+1/LUMO+2 軌域的貢獻。

圖 1.14 PTCDA/Ag(111)的分子軌域⁴⁶。(a)理論模擬(上圖)和實驗所得(下圖)之 d//dV 能譜,(b)實驗獲得之 STM 影像,(c) d//dV 圖,(d)理論計算所得 PTCDA 自由分子的 HOMO。圖 a 左下方陰影處為使用特殊處理的探針所 取得之能譜。下圖綠色能譜取自 Ag(111)表面,可看到銀的表面態。圖 c 之 d//dV 圖以 L1 峰左側偏壓(小於-1.7 V)取得,可呈現 A(紅色實線橢圓)、 B(藍色虛線)兩類分子。

PTCDA/Cu(111)的 STM 相關文獻較少,侷限於解析單層膜結構,尚無 STS 相 關報導,這是驅動本論文研究工作的原因之一。Wagner 等人於 2007 年發表首篇 PTCDA/Cu(111)的 STM 研究,著重在排列結構的分析上⁴⁴。圖 1.15 是相反偏壓下 的 STM 影像,可看出 PTCDA 在 Cu(111)表面形成 HB 排列⁴⁴。在正偏壓下(圖 a, 該文定義之偏壓方向與本論文相反,為求本論文的一致性,此處依本文之定義報導, 惟圖中偏壓的正負符號仍與該文獻相同,見圖說明),分子形狀較細長;負偏壓下, 分子形狀較圓,且有 moiré 波紋出現。圖 1.15 中的白色長方形標示一個包含4×5 單位晶格在內的超晶格(supercell)⁴⁴,以此代表「moiré 波紋的單位晶格」。

他們依照實驗所得的 STM 影像提出三種可能的 PTCDA/Cu(111)超結構,圖 1.16a 為「一致」(inline)結構⁴⁴,可以如下矩陣方程式表示:

$$\begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix} = \begin{pmatrix} 0 & 5 \\ 10 & 5 \end{pmatrix} \cdot \begin{pmatrix} \vec{a}_{Cu} \\ \vec{b}_{Cu} \end{pmatrix}$$

此結構的 PTCDA 單位晶格呈長方形,且與 Cu(111)單位晶格向量具整數關係。圖 b和 c 是互為鏡像的相同結構,表示如下:

$\left(\bar{a}\right)_{-}$	$\left(1\frac{1}{4}\right)$	$5\frac{3}{4}$	(\bar{a}_{Cu})
$\left(\overline{b}\right)^{=}$	$9\frac{4}{5}$	$3\frac{2}{5}$	$\left(\vec{b}_{Cu} \right)$

(a.) $U_{bias} = -1.1 \text{ V}$

圖 1.15 PTCDA/Cu(111)的 STM 影像⁴⁴。此文獻之偏壓方向定義與本文用法相反, 乃指施加於探針(相對於樣品)的電壓。(a,b)為同一區域相反偏壓下的影像, 掃描範圍 27 × 27 nm²。圖中標示出一4×5 單位晶格所組成之超晶格。

圖 1.16 三種 PTCDA/Cu(111)結構⁴⁴。(a)「一致」結構(inline)。(b, c)同一種結構, 僅排列方向不同,兩者成鏡像關係。

Duhm 等人在 2008 年利用 UPS 觀察 PTCDA 在 Au(111)、Ag(111)和 Cu(111)表 面的束縛能,藉此研究 PTCDA 與金屬基材間的電荷轉移現象⁴⁷。比較三種基材的 束縛能之能譜(圖 1.17 第二列)⁴⁷, Ag(111)與 Cu(111)於鍍膜前後的能譜有顯著變化, PTCDA/Au(111)則無,可知 PTCDA 對金的作用力較弱,屬於物理吸附,與先前文 獻的報導一致^{38,48}。他們所觀察到的 HOMO 能量位置在 *E_F* 以下 1.80 eV,與 Nicoara 等人用 STS 觀察到的-1.90 eV 相當吻合³⁸。從 PTCDA/Ag(111)的 UPS 能譜可看 出,PTCDA 對銀作用力較強,屬於化學吸附,有兩個由分子貢獻的波峰,H'和 L', 分別來自 HOMO 和 LUMO。L'是因 PTCDA 的 LUMO 被 Ag(111)部分占有所形成 的混成軌域,符合 Kraft 等人的 STS 實驗結果⁴⁶。至於 PTCDA/Cu(111),UPS 能譜 顯示 PTCDA 與銅之間屬於化學吸附,分子所貢獻波峰標示為 H"和 L"。與 PTCDA/Ag(111)不同之處在於,L"的能量比 L'低很多,代表 PTCDA 的 LUMO 被 Cu(111)占有更多,也代表 PTCDA 對 Cu(111)的作用力比 Ag(111)更強。目前未有 PTCDA/Cu(111)的 STS 文獻,本論文將介紹這方面的研究成果。

圖 1.17 PTCDA 在 Au(111)、Ag(111)和 Cu(111)表面的 UPS 能譜⁴⁷。θ為鍍膜厚度 (0 到 48 Å)。第一列每欄左圖是二次電子阻斷(secondary electron cut-off, SECO)能譜,用來量測樣品的功函數和游離能。第一列每欄右圖是大範圍 UPS 能譜,H表示 PTCDA 的 HOMO。第二列是第一列能譜靠近 EF部分 的放大圖。H'和 L'指 PTCDA/Ag(111)的 HOMO 和 LUMO;同理,H"和 L"用於 PTCDA/Cu(111)。(本圖係將原圖重新編輯、放大字體以助辨讀, 未改變圖譜曲線等實質內容。)

1.4.3. 有關 Fe-PTCDA 的研究

Méndez 等人於 2006 年提出新的製備 PTCDA 單層膜的方法,他們在 Au(111) 表面利用鐵做為連接點(linker),將 PTCDA 連接起來,形成一個與 HB 完全不同的 排列方式⁴⁹,稱為 Fe-PTCDA 錯合物(complex)。他們先將鐵鍍在 Au(111)上,再鍍 上 PTCDA,接著掃描 STM 影像。圖 1.18a 是大範圍影像,可發現 PTCDA 會圍繞 在鐵的團簇(cluster)旁邊生長,有兩種排列結構:鏈狀和梯狀⁴⁹。此兩種排列皆未 曾在金或其他金屬表面發現過。圖 1.18b 和 d 分別是鏈狀和梯狀排列的放大圖⁴⁹。 於 2010 年該團隊又報導了不同溫度下,Fe-PTCDA 排列方式的比較⁵⁰。

圖 1.18 PTCDA 圍繞鐵團簇生長的 STM 影像 ⁴⁹。(a)約 0.08-ML Fe 和 0.04-ML PTCDA/Au(111),掃描範圍 120 × 120 nm²,圖中排列較均勻的圓點是鐵 團簇,圍繞在旁邊的 PTCDA 呈鏈狀或梯狀排列。(b)鏈狀排列,掃描範圍 18×16 nm²,鐵團簇為圖中較亮的部分。(c)鏈狀排列模型圖,分子間接了 兩個鐵原子。(d)梯狀排列,掃描範圍 13×11 nm²。

2013年,本校物理系林敏聰教授團隊利用 STM 和 STS 報導 Fe-PTCDA/Au(111) 的高解析影像與穿隧能譜,研究重點在於金屬-分子的電荷轉移 ⁵¹。圖 1.19b 顯示 Fe-PTCDA/Au(111)鏈狀排列的占有態影像 ⁵¹,原本不應觀察到的 LUMO 影像卻出 現於此,表示原本在 Au(111)上未被占有的 LUMO 此時已經被占有,也因此在插 圖中的未占有態影像已經看不到分子軌域的形狀。圖 1.19d 的 dl/dV 能譜中 ⁵¹, PTCDA 的譜線與文獻一致 ³⁸。Fe-PTCDA 譜線則不見未占有態的波峰,而是在占 有態出現波峰,顯示 LUMO 被占有且其能量位移至 *EF* 之下。在 PTCDA 譜線出現 的 Au(111)表面態波峰亦不見於 Fe-PTCDA 譜線。他們由理論計算得到 Fe-PTCDA 的幾何構形並確認 Fe 與 PTCDA 及 Au(111)間有電荷轉移:每個鐵原子提供 0.97 個電子給周遭環境,每單位晶格的分子接受 1.11 個電子;每單位晶格的金接受 0.83 個電子。由於此電荷轉移使 PTCDA 的 LUMO 被占有且能量位移至 *EF* 之下。

圖 1.19 PTCDA/Au(111)與 Fe-PTCDA/Au(111)之比較 ⁵¹。(a) PTCDA 分子結構。 (b) Fe-PTCDA 鏈狀排列的占有態 STM 影像,偏壓為-0.5 V,掃描範圍 4 ×4 nm²。插圖為同一區域的未占有態影像,偏壓為+1.8 V。(c) PTCDA 的 LUMO 形狀。(d)在 Au(111)表面(黑線)、PTCDA(紅線)和鏈狀 Fe-PTCDA 中的 PTCDA(藍線)上取得的 dI/dV 能譜。(e) 1-ML PTCDA 的未占有態影 像,可看出分子的 LUMO,偏壓為+1.0 V,掃描範圍 4×4 nm²。 他們與 Méndez 等人一樣,觀察到 Fe-PTCDA/Au(111)有兩種排列方式:鏈狀 (圖 1.20a)和梯狀(圖 1.20b)⁵¹。他們為梯狀排列中兩種位向的分子分別命名為鏈型 (chain-PTCDA)和桄型(rung-PTCDA),見圖 c。從圖 d 和 e 可見,PTCDA 的 LUMO 軌域分別在鏈型的占有態(偏壓為-0.5 V)和桄型的未占有態出現(偏壓為+0.5 V)。 顯示在梯狀排列中,這兩種分子的電子結構有所不同。

圖 1.20 Fe-PTCDA 的 STM 影像 ⁵¹。(a)鏈狀排列和(b)梯狀排列影像,掃描範圍皆為 30×30 nm²。(c)梯狀排列模型圖。(d)梯狀排列的占有態影像,偏壓為 -0.5 V,掃描範圍 5.7×5.7 nm²,可看到鏈型分子的 LUMO。黑色箭頭指 出兩個互繞對方旋轉的分子。(e)梯狀排列的未占有態影像,偏壓為+0.5 V, 掃描範圍 5.7×5.7 nm²,可看到桄型分子的 LUMO。

為了瞭解梯狀排列的電子結構,該研究將分子的位向與其和鐵原子的配位情況分為四類(A 到 D)並分析其 dl/dV 能譜。圖 1.21 的分子 A 僅鍵結一個鐵原子並接受 2N/6 個電子 ⁵¹,其 LUMO 未被占有,能量在+1.23 eV。分子 B、B'和 B"的電子結構相同,皆接受 4N/6 個電子,LUMO 能量因此位移至+0.48 eV。分子 C 接受 5N/6 個電子,LUMO 能量位移至+0.22 eV。有趣的是,分子 D、D'和 D"分別接受 8N/6、9N/6 和 10N/6 個電子,但似乎只見能量在-0.38 eV 的 Au(111)表面態波峰。 更有甚者,鏈狀排列的分子接受了 12N/6 個電子,其結果亦相近,只有-0.38 eV 波 峰出現。圖 1.21a 的分子 B 紅色譜線邊有兩張插圖 ⁵¹, 右方插圖是未占有態影像, 正中間為分子 B, 可看出為 LUMO; 左方插圖是占有態影像, 正中間的分子 B 沒 有軌域特徵出現。表示對分子 B 而言, LUMO 能量確實在+0.48 eV。分子 D 插圖 情況與分子 B 相反,代表對分子 D 而言, LUMO 確實位移至-0.38 eV, 亦即 Au(111) 的表面態能量。鏈狀排列分子亦然。他們認為此時 PTCDA 的 LUMO 已完全被占 有,與 Au(111)形成一個混成軌域,使 LUMO 能量被釘(pin)在 Au(111)表面態能量 處。

圖 1.21 Fe-PTCDA 中各位向分子的電子結構比較⁵¹。(a)各位向分子的 dI/dV 能譜。 隨著分子與鐵的配位數越高,LUMO 越往低能量位移,直到 LUMO 完全 被占有,此時 LUMO 會被釘在 Au(111)表面態的能量。插圖是其所標示 的能量下的 STM 影像。(b)各位向分子的模型示意圖。每個鐵原子提供 N 個電子給與之鍵結的分子(2 或 3 個),因此每個與之鍵結的分子得到 N/2 或 N/3 個電子。

第2章 儀器介紹

本論文研究工作使用的儀器是日本 Unisoku 的超高真空-低温-STM,型號是 USM-1400,如圖 2.1 及圖 2.2,配備有一個高真空腔體(load-lock 腔)和兩個超高真 空腔體(準備腔和觀察腔)。所有腔體皆安裝在日本明立精機製造(Meiritz Seiki)的 ADF-1108Y5 防震桌上。STM 使用美國 RHK 製造的 SPM-100 電子系統控制器和 PMC-100 壓電馬達控制器。STS 實驗使用美國 SIGNAL RECOVERY Model 7265 鎖 相放大器。

圖 2.1 USM-1400 全貌。由左至右依序為(1) load-lock 腔、(2)準備腔及(3)觀察腔。

圖 2.2 USM-1400 另一角度。圖左為(1)觀察腔,右為(2)準備腔。

2.1. Load-lock 腔

Load-lock 腔(圖 2.3)是正常使用下唯一會接觸大氣的腔體,作為探針和樣品進出之用。

Load-lock 腔中有 2 傳送臂(transfer rod),其一為與準備腔間傳送探針或樣品之 用;另一傳送臂上有 8 個探針座及 4 個樣品槽,為探針和樣品的停放之處。為了方 便探針和樣品進出,腔體使用美國 MDC 的快開閥,可以快速開關閥門,以減少腔 體內部接觸大氣的時間,避免汙染腔體。腔體與準備腔由一瑞士 VAT 的閘閥(gate valve)相連接。

Load-lock 腔配備有一美國 Varian(現為 Agilent)的機械幫浦及 Varian VG-81 渦輪分子幫浦,正常使用下,抽氣 12 小時後壓力可低於 3×10⁻⁸ mbar;烘烤(baking) 過後,壓力可達到 3×10⁻⁹ mbar。

圖 2.3 Load-lock 腔。(1 和 2)兩傳送臂、(3)快開閥及(4)渦輪分子幫浦。

2.2. 準備腔

所有探針和樣品在實驗前的準備工作都在準備腔中進行。

準備腔中有 2 傳送臂,其一為與觀察腔間傳送探針或樣品之用。另一傳送臂 上有 8 個探針座和 4 個樣品槽,作為探針和樣品停放之處;除此之外還有準備用 探針座及準備用樣品槽各一,分別用來準備探針及樣品之用。

以下條列出準備腔上配備的各儀器及其功能。

- ◆ 離子槍及氫氣鋼瓶:清潔探針及樣品之用,由 Unisoku 製造。將存在鋼瓶中的 氫氣經由可變漏閥(variable leak valve)灌入腔體中,離子槍會將氫氣離子化後 把 Ar⁺加速濺射(sputter)探針或樣品,達到清潔的功能。
- ◆ 電子束加熱器:加熱退火(annealing)樣品之用,由 Unisoku 製造。將電子加速 轟擊樣品背面,可以加熱樣品至 2200 K 以上。
- ◆ 有機分子鍍槍:蒸鍍有機分子之用,由本校物理系林敏聰老師實驗室製造。有機分子置於不銹鋼坩堝中,坩堝繞有鎬絲線圈,線圈通電後使坩堝加熱,將分子蒸鍍至樣品表面。坩堝接有熱電偶(thermocouple)可經由 BNC 饋通 (feedthrough)量測坩堝溫度。

- ◆ 金屬鍍槍:蒸鍍金屬之用,由 Unisoku 製造。金屬鍍源(source)置於坩堝中, 將繞在坩堝外的線圈通電使坩堝加熱,把金屬蒸鍍至樣品表面。由於蒸鍍金屬 所需溫度較高(通常在 1000 K 以上),坩堝為耐高溫的陶瓷材質,且鍍槍需要 有冷卻水迴流以避免過熱。
- ◆殘餘氣體分析儀:真空測漏之用,由美國 Stanford Research Systems (SRS)製造。其內建一具小型四極式(quadrupole)質譜儀,可以量測腔體中殘餘氣體的壓力。有多種用途,最重要的是測試真空腔體有無漏氣,測漏時,在腔體外用氦氣對各接縫處吹氣,觀察有無氦氣訊號即可得知有無漏氣。另外也可用來分析濺射用氫氣的純度。

準備腔配備有一 Varian 離子幫浦及一 Varian 鈦昇華幫浦(圖 2.4),正常使用下 壓力約在 5×10⁻¹¹ mbar,烘烤過後可達到 2×10⁻¹¹ mbar。

圖 2.4 離子幫浦和鈦昇華幫浦。圖中為(1 和 2)觀察腔和準備腔的離子幫浦、(3 和 4)觀察腔和準備腔的鈦昇華幫浦。另外還有(5)觀察腔的低溫槽。

2.3. 觀察腔

觀察腔是 STM 安裝之處,所有 STM 及 STS 實驗皆在這裡進行

觀察腔中有2傳送臂,其一上有2探針座及2樣品槽,另一傳送臂是用來將 探針或樣品放入或拿出STM平台(stage)之用。STM平台由4條彈簧懸掛在腔體之 中,以達到避震的效果;並包覆在絕熱層內,以確保降溫效果良好。在STM平台 下方是一個稱為1-K盆(pot)的容器,裡面會充滿液氮或液氦,達到將STM降溫的 作用。1-K盆之下是兩個低溫槽(cryogenic tank,圖2.4),分為外層與內層,外層填 充液氮,作為內層保溫之用;內層可填充液氮或液氦,並與1-K盆相通,透過抽氣 幫浦在外抽氣,可將內層中的液氮或液氦抽至1-K盆中。

觀察腔配備有一 Varian 離子幫浦及一 Varian 鈦昇華幫浦(圖 2.4),室溫下壓力約在 1×10⁻¹⁰ mbar;降溫後(約 78 K)進行實驗時,壓力可低於 5×10⁻¹¹ mbar。

2.4. 高温烘烤

對真空腔體而言,在沒有漏氣的情況下,限制其真空度的最主要因素是釋氣 (outgassing)。所謂釋氣是指腔體內部緩慢地有氣體放出,這些氣體分子可能原先吸 附於腔壁之上,或是存在腔體的接縫處。當幫浦的抽氣速率與腔體的釋氣速率達平 衡時,即為腔體最終能達到的真空度。要把釋氣降到最低,腔體需要經過高溫烘烤, 使腔體內部吸附的氣體,最常見的如 H2、H2O、CH4等,在烘烤過程中脫附,經由 幫浦抽掉。

烘烤過程中,最重要的是溫度高低和溫度的均勻程度。溫度過高可能會使傳送 臂變形,或是腔體內部的電路受損;過低則達不到某些氣體的束縛能,以致某些氣 體未能脫附。溫度不均勻會使溫度較低之處成為某些氣體吸附的死角,俟烘烤結束 後脫附而出,破壞腔體的真空度。

通常烘烤的時機有二。一是為了進行腔體維修或安裝新儀器於腔體時,需要打 開腔體(破真空),當維修或安裝工作完成後,即需進行烘烤。二是因為腔體使用一 段時間後,真空度會漸漸變差,大約半年一次的例行保養時,進行烘烤。 以下介紹本實驗室的烘烤流程。

- 一、在各腔體、各離子幫浦及各傳送臂上,用防焊膠帶貼上熱電偶(圖 2.5),以備 烘烤時量測溫度之用。
- 二、在各傳送臂上包一層鋁箔後,纏上加熱帶(圖 2.6)。包鋁箔是為了避免加熱帶 直接與傳送臂接觸,導致傳送臂過熱變形。腔體上因已繞有加熱電線,故無需 再纏加熱帶。離子幫浦因內建加熱功能,亦不必纏加熱帶。
- 三、將各腔體、離子幫浦、鈦昇華幫浦及各傳送臂包上鍍鋁布(圖 2.7),並將露出 來的縫隙用鋁箔塞滿,務求所有部位皆不接觸到空氣,以達最佳保溫效果。
- 四、接上各加熱器、加熱帶電源,開始烘烤。此時要注意配電:腔體的加熱電線的 電流是5A,加熱帶的電流是2A,離子幫浦內建加熱器的電流是5A;不可 超過實驗室內各電源回路的電流上限以免跳電。
- 五、烘烤過程通常歷時48至60小時,在過程中,以表格方式定時記錄各部位溫度及腔體壓力,若溫度太高或太低則需加以調整。所謂溫度太高,是指Loadlock 腔和準備腔溫度高於175°C,觀察腔溫度高於150°C,離子幫浦溫度高於200°C,或傳送臂溫度高於150°C;溫度太低是指各部位溫度低於120°C。
- 六、烘烤結束後,進行除氣(degassing)。因為腔體內有許多線圈,在烘烤過程中, 這些線圈相對於腔壁溫度較低,會有從腔壁脫附的氣體吸附其上,要趁烘烤完 腔體還未冷卻時把線圈通電加熱,使吸附其上的氣體脫附,經由幫浦抽掉,以 免日後使用這些線圈時影響腔體的真空度。

圖 2.5 在腔體各部位用防焊膠帶貼上熱電偶。(a)觀察腔。(b)觀察腔的離子幫浦。 (c)左側和右側分別為觀察腔和準備腔上垂直地面的傳送臂。

圖 2.6 在各傳送臂上包一層鋁箔後,纏上加熱帶。(a)左側和右側分別為觀察腔和 準備腔上垂直地面的傳送臂。(b)上方為 load-lock 腔靠準備腔一側的傳送 臂(已包上鍍鋁布);下方為準備腔上平行地面的傳送臂。

圖 2.7 將腔體各部位包上鍍鋁布。(a)左側和右側分別為觀察腔和準備腔。(b)左 側和右側分別為準備腔和觀察腔。(c)左側為觀察腔的低溫槽和離子幫浦; 右側為準備腔的離子幫浦。

2.5. STM

STM 使用 RHK 的 SPM 100 電子系統控制器搭配 PMC 100 壓電馬達控制器 (圖 2.8)。

SPM 100 藉由 PMC 100 在掃描頭(scan head)的壓電驅動器上施加 xyz 方向的電壓,以控制掃描位置和掃描範圍,以及掃描時探針的運動。每個方向施加的電壓範圍是±130 V。

STM 的前置放大器(preamplifier)分為2階段,第一階段,RHK UHV-100安裝 在腔體內靠近探針之處;第二階段在腔體外,使用 RHK 的 IVP-PGA 搭配 IVP-200, 增益值可在 10⁸、10⁹或 10¹⁰ V/A 間調整。

SPM 100 的回饋電路由比較器和積分器兩階段組成。比較器會比較量測到的 穿隧電流和設定值的差值,之後送往積分器。比較器的增益可在0到2之間調整, 積分器的時間常數可在0到20ms間調整。

2.6. 鎖相放大器

STS 實驗使用的是 Signal Recovery Model 7265 DSP (digital signal processor,數 位訊號處理器)鎖相放大器(圖 2.8),乘法器和低通濾波器皆是數位設計。

Model 7265 內建石英晶體震盪器(quartz crystal oscillator), 震盪器是數位式, 可輸出精準及穩定的頻率,範圍是 0.001 Hz 到 250 kHz。全域靈敏度(full-scale sensitivity)為 2 nV 到 1 V。相雜訊(phase noise) < 0.0001° rms。時間常數為 10 µs 至 100 ks。

34

圖 2.8 STM 控制器和鎖相放大器。由上而下依序是鎖相放大器、電子系統控制 器及壓電馬達控制器。

第3章 Cu(111)表面的 PTCDA 與 Fe-PTCDA

3.1. 儀器效能

本論文研究工作使用本實驗室的新儀器,研究工作之初儀器並未順利運作。當時腔體的真空度不佳,使單晶樣品無法準備至良好的狀態,亦即表面不夠乾淨、平整;也會使探針或樣品在 STM 中無法長時間保持乾淨。也缺乏一些重要儀器,如: 分子鍍槍、殘餘氣體分析儀和金屬鍍槍的冷卻水幫浦等。此外,STM 的雜訊太大, 無法獲得原子級解析度,也無法進行 STS 實驗。

其後,改善真空度是優先目標,從高溫烘烤流程開始,確保烘烤過程中溫度適 當且腔體各處的溫度均勻(見 2.4 節);另外,將實驗室保持恆溫以減少腔壁上氣體 分子的吸、脫附。之後安裝殘餘氣體分析儀,若日後真空度異常時可以及時測漏並 加以處理。經過改善後,腔體的真空度已經達到理想的狀態(見第 2 章各節所述)。

降低STM 雜訊的工作並不單純,因為造成雜訊的原因不只一種(見1.2.3 小節)。 首先重新進行接地的線路配置,確保所有儀器接到同一個大地電位,並且避免接地 迴路(ground loop)的產生。STM 電子系統控制器和壓電馬達控制器的電源線加裝電 源濾波器,以濾除高頻雜訊;同時接到不斷電系統(uninterruptable power supply, UPS) 上,以提供穩壓效果,並避免跳電時對儀器造成損傷(圖 3.1)。防震桌的桌腳及感 測器也經過調整,使其在充氣浮起前後皆保持水平狀態。最後是探針濺射參數的調 整,使探針達到良好狀態(見 3.2 節)。

經過以上種種措施,儀器終於能順利運作,STM 能獲得原子級解析度;安裝 並設定鎖相放大器之後,也能進行 STS 實驗,研究工作因此得以開展。

36

圖 3.1 STM 控制器電源線路配置。

3.1.1. STM 掃描頭校正

掃描 STM 影像時探針在 xyz 方向的運動由掃描頭控制,掃描頭的壓電驅動器 在施加同樣電壓時,其形變量受溫度影響很大,越低的溫度下形變量越小。在改善 儀器效能期間,STM 是在室溫運作;研究工作開始後,實驗皆在 78K 低溫下進行, 因此需要做 78K 下的掃描頭校正。

HOPG (highly oriented pyrolytic graphite)是 STM 的標準試片,因為其準備容易, 表面活性低且非常平整。圖 3.2a 是 HOPG 在 78 K 下校正後的原子級解析度影像。 二維快速 Fourier 轉換(2D-fast Fourier transform, 2D-FFT)可將真實空間的 STM 影 像轉為倒數空間(reciprocal space)的繞射訊號。若真實空間影像具週期性,其繞射 訊號可用以計算週期性的大小,如原子間距離。將計算出的距離與已知值比較,即 可校正 STM 掃描頭的 xy 方向。圖 3.2b 是圖 a 的 2D-FFT, 3 個原子軸方向的繞射 點與倒數空間原點距離分別是 0.469 Å⁻¹、0.462 Å⁻¹和 0.453 Å⁻¹,此距離的倒數即 為真實空間中兩原子的距離,分別是 2.13 Å、2.16 Å和 2.21 Å,但並非 HOPG 的 原子間最小距離。圖 a 的單位晶格中,銳角夾角是 60°,可知要計算 HOPG 原子間 最小距離,需將前述距離乘上√3/2,亦即 2.46 Å、2.49 Å 和 2.55 Å,已知值是 2.46 Å,校正結果良好。

圖 3.2 HOPG 的 STM 影像和 2D-FFT。(a)原子級解析度的 HOPG 影像,掃描範 圍 5×5 nm², E_{bias}(偏壓) = +0.1 V, *i*tunneling(穿隧電流) = 1.0 nA。圖中箭 頭標示 3 個原子軸,菱形標示單位晶格。(b)圖 a 的 2D-FFT,可看到 3 個 原子軸方向的繞射點共 6 個。中心處橫向的繞射訊號來自 STM 影像中的 雜訊。

STM 掃描頭 z 方向的校正需要已知高度的物體,常用到的是單晶表面的單原 子台階(single-atomic step)。圖 3.3 是 Cu(111)單晶表面和其中一個單原子台階的剖 面圖,台階高度 2.04 Å 與已知值 2.00 Å 相當吻合,可知 z 方向校正亦沒有問題。

3.1.2. 鎖相放大器测試

鎖相放大器對進行 STS 實驗至關重要,1.3 節介紹了 STS 實驗和鎖相技術; 2.6 節介紹了本論文研究工作使用的鎖相放大器。測試工作分為 dl/dV 能譜和 dl/dV 圖兩部分。圖 3.4 是分別在 3 種基材表面取得之 dl/dV 能譜。HOPG 是一種半金屬 (semimetal),其價帶(valence band)和傳導帶(conduction band)僅有部分重疊,因此其 導電性不若金屬,但又不像半導體般有能帶間隙(band gap);大致上,其導電性質 介於金屬和半導體之間。圖 3.4a 是 HOPG 的 dl/dV 能譜,在 *EF* 附近的 DOS 較小, 隨著能量越大而 DOS 越大;而且沒有能帶間隙,正是半金屬的特性。貴金屬材料 的特性是其表面態,不同金屬其表面態能量有所差異。圖 b 在 Ag(111)表面取得, 可看到在約-63 meV 處的表面態波峰 ⁵² 及其台階狀的譜線特性。圖 c 則可清楚看 到 Cu(111)在約-0.44 eV 處的表面態波峰。

圖 3.4 3 種表面的 dI/dV 能譜。(a)掃描條件 $E_{\text{bias}} = +0.5 \text{ V}$, $i_{\text{tunneling}} = 0.54 \text{ nA}$; f(調 變頻率) = 500 Hz, $\Delta E($ 方均根調變振幅) = 20 mV。(b)掃描條件 $E_{\text{bias}} = -0.4 \text{ V}$, $i_{\text{tunneling}} = 2.0 \text{ nA}$; f = 2 kHz, $\Delta E = 10 \text{ mV}$ 。(c)掃描條件 $E_{\text{bias}} = +0.5 \text{ V}$, $i_{\text{tunneling}} = 0.7 \text{ nA}$; f = 3 kHz, $\Delta E = 30 \text{ mV}$ 。

dI/dV圖的測試藉由掃描金屬表面的電子駐波(electron standing waves, ESW)來 進行。Crommie 等人於 1993 年首次觀察到電子駐波是在 Cu(111)表面上 ⁵³; 同年 稍後 Hasegawa 等人在 Au(111)表面亦觀察到此現象 ⁵⁴。這是因為近似於自由電子 的表面態電子(波函數)在金屬表面上遇到能障(例如台階或是缺陷)後發生反彈, 行 進波與反彈波疊加後即形成駐波。圖 3.5a 顯示了 Ag(111)表面的電子駐波。圖 3.5b 是 Cu(111)表面的電子駐波,其波長較長,可較清楚觀察波紋;圖中台階處(箭頭所 指之處)波紋呈現長條狀,常見於水岸邊;金屬表面缺陷處(左上一處,右下兩處)附 近波紋呈同心圓狀,一如水面上的漣漪。

 圖 3.5 金屬表面的電子駐波。(a) Ag(111)表面的 dI/dV 圖。掃描範圍 60×60 nm², *E*_{bias} = +0.1 V, *i*_{tunneling} = 1.0 nA; *f* = 2 kHz, Δ*E* = 20 mV。(b) Cu(111)表面 的 dI/dV 圖。掃描範圍 60×60 nm², *E*_{bias} = -158 mV, *i*_{tunneling} = 1.5 nA; *f* = 7 kHz, Δ*E* = 30 mV。圖中箭頭標示台階處。

3.2. 探針與樣品製備

3.2.1. 鎢探針

本研究工作的所有實驗皆使用鎢探針。直徑 0.5 mm 的鎢線(台灣大永真空)經 電化學蝕刻後先以去離子水和酒精沖洗,接著浸泡於濃度約 0.1 M 的氫氟酸(HF)水 溶液 1 分鐘以去除鎢的氧化物 ⁵⁵。圖 3.6 為一支典型鎢探針的掃描電子顯微鏡 (scanning electron microscope, SEM)影像。送入腔體後,探針經 Ar⁺濺射(能量 2 keV, 離子電流 10 μA) 10 分鐘以清潔探針表面,才會送入觀察腔進行實驗。

圖 3.6 鎢探針的 SEM 影像。圖中白色比例尺長為 100 μm。

3.2.2. Cu(111)單晶表面

本研究工作使用 Cu(111)單晶(德國 MaTeck)做為基材。Cu(111)單晶送入腔體 前先浸泡於酒精中以超音波震洗 10 分鐘;再於準備腔中以 Ar⁺濺射(能量 1 keV, 離子電流 15µA)清潔。濺射時氫離子束與基材法線成正或負 30°夾角,依次變換, 每次濺射時間 1 小時。若基材是從大氣下送入腔體、或腔體剛經過高溫烘烤,則需 要濺射 6 到 8 次以達清潔效果;一般準備情況下,2 次即已足夠。在濺射過程中, 雖然能達到清潔表面的效果,卻會破壞單晶表面,因此濺射完後,要經過退火程序, 使其長成平整的表面。所謂退火,即是用(低於金屬熔點的)高溫加熱金屬,使其表 面原子得到足夠的動能;之後讓金屬緩慢冷卻,在這過程中,金屬表面會進行重構 (reconstruction),讓表面恢復平整。退火時,會將 Cu(111)加熱至約 900 K,維持 30 分鐘,之後慢慢降回室溫。因實驗過程會在 Cu(111)表面蒸鍍鐵,為避免有殘留的 鐵在退火過程中與銅形成合金,故使用長達 1 小時的濺射時間。

圖 3.3a 是典型準備完成的 Cu(111)單晶表面,台階寬度有 100 nm 左右。圖 3.7a 為 Cu(111)原子影像,由於金屬原子的訊號較弱,所以訊雜比較低,但在插圖中仍 可見清楚的 6 個繞射點,計算後的原子間最近距離 2.51 Å 亦接近已知值 2.55 Å。 影像經過 2D-FFT 的處理後,可以進行過濾(filter),將影像中的雜訊濾除,以提高 訊雜比。圖 b 為過濾後的圖 a 影像,可以清楚看到原子排列。

圖 3.7 Cu(111)的原子級解析度影像。(a) Cu(111)的 STM 影像,掃描範圍 5 × 5 nm², *E*_{bias} = +30 mV, *i*_{tunneling} = 4.0 nA。右上角插圖為其 2D-FFT。(b)經過 2D-FFT 過濾後的圖 a 影像。

3.2.3. 蒸鍍 PTCDA 單層膜

PTCDA 單層膜使用 OMBD 技術製備,OMBD 在 1.4.1 小節曾介紹。蒸鍍前, 先準備好 Cu(111),之後讓基材維持在室溫;有機分子鍍槍(見 2.2 節介紹)將 PTCDA 分子(日本 TCI)加熱至約 630 K 後,打開遮板,PTCDA 會鍍至距其約 25 cm 的 Cu(111)表面上。蒸鍍溫度的設定以大約 10 分鐘鍍滿 1 ML 為考量。蒸鍍時的準備 腔壓力約在 7 × 10⁻¹⁰ mbar; 鍍率約在 1.25 × 10⁻³ ML/s。圖 3.8 是依上述方法所得 之 PTCDA/Cu(111)的 STM 影像,與圖 1.15a 比較⁴⁴,在相近的掃描範圍、未占有 態影像可看到分子呈現 HB 排列,且分子形狀相同。顯示此 PTCDA/Cu(111)樣品與 文獻(Wagner 等人)報導⁴⁴應無二致。

圖 3.8 PTCDA/Cu(111)的 HB 排列影像。掃描範圍 23 × 23 nm², *E*_{bias} = +0.5 V, *i*_{tunneling} = 0.3 nA。

3.2.4. 蒸鍍鐵原子

鐵原子由金屬鍍槍蒸鍍(見 2.2 節);將鐵鍍源(source,美國 Alfa Aesar)加熱至約 1280 K後,打開遮板,鍍至距其約 20 cm 的 Cu(111)表面上。蒸鍍溫度以大約 10 分鐘鍍滿 1 ML 為考量。蒸鍍時的準備腔壓力約在 1×10⁻⁹ mbar;鍍率約在 1.67×10⁻³ ML/s。圖 3.9a 是一準備好的 Fe/Cu(111)樣品,可見鐵傾向於吸附在台階邊緣 形成團簇,多餘的鐵才會吸附在平坦處。與文獻(Brodde 等人)⁵⁶ 對照後,判斷覆蓋率(coverage)約在 0.2 ML。Brodde 等人提到鐵在 Cu(111)表面的單層高度約 2.0 到 2.2 Å ⁵⁶,圖 3.9b 的鐵團簇剖面圖是 1-ML Fe,可能在蒸鍍過程中吸附到雜質,以 致高度較高。圖 c 是 2-ML Fe,可看到有一團簇較其他為高,應是吸附雜質所致, 其餘團簇高度皆符合文獻報導 ⁵⁶。

圖 3.9 Fe/Cu(111)的 STM 影像和剖面圖。(a)約 0.2-ML Fe 在 Cu(111)表面的 STM 影像,掃描範圍 200 × 200 nm², *E*_{bias} = +0.5 V, *i*_{tunneling} = 0.6 nA。圖中綠 線和紅線分別標示圖 b 和 c 中剖面圖位置。(b) Cu(111)台階處的鐵團簇剖 面圖,相當於 1-ML Fe。(c) Cu(111)平坦處的鐵團簇剖面圖,相當於 2-ML Fe。

3.2.5. 製備 Fe-PTCDA 單層膜

同時蒸鍍鐵原子與 PTCDA 分子在 Cu(111)上即可形成 Fe-PTCDA 單層膜,鐵和 PTCDA 的蒸鍍條件與前 2 小節所述相同。蒸鍍 Fe-PTCDA 時的準備腔壓力約

在 1×10⁻⁹ mbar。不同於 PTCDA 單層膜能自組裝(self-assemble)形成大片分子島 (molecular island);在 Fe-PTCDA 單層膜中,由於鐵會先吸附在台階邊緣形成團簇 (見前一小節所述),分子又會鍵結在鐵團簇旁邊形成錯合物,使得 Fe-PTCDA 的分 子島會分散在台階邊緣。因為較大片的分子島比較容易藉由 STM 來分析錯合物的 排列結構,所以長出大片分子島是製備 Fe-PTCDA 單層膜的首要課題。

解決上述問題的方法便是進行最後加熱(final annealing):在蒸鍍完畢後給予Fe 和 PTCDA 足夠動能,使其在表面上移動並重新排列。圖 3.10 是不同加熱程度的 比較,圖 a 是未經最後加熱的 Fe-PTCDA,可看到分子島分散於台階邊緣,且形狀 不規則,圖中較亮物體是鐵團簇。圖 b 則是過度加熱的結果,使 PTCDA 從 Cu(111) 表面脫附,因此看不到分子的蹤跡。由於 Fe 和 Cu 同屬第一列過渡金屬,原子大 小相近,許多文獻皆指出 Fe 和 Cu 易於形成合金 ⁵⁷⁻⁵⁹。圖 3.10b 很可能就是 Fe 和 Cu 混合的結果,可看到鐵似乎「沉」到銅之中,造成表面上出現一些凹痕。圖 c 是 加熱溫度不足的情況,由於分子還是得到一些動能,利於在表面移動,但又不足以 移動太遠;使得分子只是往兩旁散開,結果就如圖中所見,分子島比未經加熱更小。

圖 3.11 是最後加熱溫度適中的 Fe-PTCDA STM 影像,圖 a 和 b 的 Fe-PTCDA 覆蓋率相同,可看到 Fe-PTCDA 已經長成大片的分子島,形狀也更完整。但是圖 a 和 b 仍有大塊的鐵團簇在島中,不利 STM 結構分析;因此在圖 c 中,鐵的覆蓋率 減半,PTCDA 覆蓋率略為增加,結果分子島更大,同時也減少了島中的鐵團簇。 之後研究工作中的 Fe-PTCDA 單層膜皆以圖 c 條件製備而成。

圖 3.11 製備完成的 Fe-PTCDA/Cu(111)。(a)鐵覆蓋率約 0.3 ML, PTCDA 覆蓋率 約 0.4 ML, 掃描範圍 100×100 nm², *E*_{bias} = +0.5 V, *i*_{tunneling} = 0.3 nA。(b) 覆蓋率同圖 a, 掃描範圍 100×100 nm², *E*_{bias} = +0.5 V, *i*_{tunneling} = 0.2 nA。 (c)鐵覆蓋率約 0.15 ML, PTCDA 覆蓋率約 0.45 ML, 掃描範圍 100×100 nm², *E*_{bias} = +0.5 V, *i*_{tunneling} = 0.5 nA。

3.3. 結果與討論

本論文研究工作分為兩個對象: PTCDA/Cu(111)和 Fe-PTCDA/Cu(111)。 PTCDA/Cu(111)已有研究二維排列的文獻⁴⁴(見 1.4.2 小節),因此本工作將著重於 電子結構方面:藉高解析度影像觀察其混成態的分子軌域,由 dI/dV 能譜分析其軌 域能量。Fe-PTCDA/Cu(111)雖未有相關文獻,如前所述,林敏聰教授團隊對 Fe-PTCDA/Au(111)有深入的研究⁵¹(見 1.4.3 小節),包括二維排列暨分子軌域影像和 電子結構。本工作將以該研究成果為基礎,對 Fe-PTCDA/Cu(111)的排列和電子結 構進行分析。

3.3.1. PTCDA/Cu(111)混成態

PTCDA 與 Cu(111)表面有很強作用力,形成化學吸附的單層膜,在許多文獻 中,例如 Duhm 等人和 Kawabe 等人利用 UPS、Romaner 等人利用理論計算方式皆 曾加以證實 ^{47,60,61}。惟至今尚無以 STS 為工具的相關研究。

圖 3.13a 是 PTCDA/Cu(111)占有態影像,對照左上角插圖可知是 PTCDA 的 LUMO⁴⁸,表示 PTCDA 吸附到 Cu(111)上後 LUMO 被占有而變成占有態。圖 a 可 見 2 種位向分子,A 和 B,兩者分子軸夾約 90°;圖 b 為此兩種分子的放大圖。

圖 3.13c 中 PTCDA 的 dl/dV 能譜分別在分子 A 和 B 中心取得(綠線和灰線), 雨者波峰位置幾乎相同,意謂兩者分子能階一致。PTCDA 譜線中,約-1.24 eV 至 +0.13 eV 的寬廣波峰是分子 LUMO 與 Cu(111)形成的混成態。其中 Cu(111)表面態 能量約在-0.52 eV;相較之下,在基材表面測到的表面態波峰(黑線)約在-0.32 eV。 LUMO 能量約在-0.92 eV,相當符合 Duhm 等人的 UPS 結果(-0.80 eV)⁴⁷。上述能 階變化可由圖 3.12 表示⁴⁷。此結果亦可解釋 STM 影像:由於 LUMO 和 Cu(111)的 混成態跨越很大的能量區間,偏壓設定在-0.5 V 的占有態影像同時具有來自 LUMO 和 Cu(111)的貢獻,因此可看到 LUMO 的形狀。位於 PTCDA 譜線約+0.74 eV 至 +0.85 eV 處的波峰來自接近簡併的 LUMO+1/LUMO+2 能階。

圖 3.12 PTCDA/Cu(111)能階示意圖 ⁴⁷。左方斜線方塊是 Cu(111)價帶,虛線標示 EF。右方是 PTCDA 自由分子能階,L表 LUMO, 白色表示未占有態;H 表 HOMO, 灰色表示占有態。中間是吸附到 Cu(111)後的 PTCDA 能階, 此時 LUMO 被占有成為 L"。右方標示對應至 STM 的偏壓極性(本論文中 偏壓皆指樣品相對於探針)。

 圖 3.13 PTCDA/Cu(111)的占有態影像和 STS 能譜。(a)占有態影像,掃描範圍 12×12 nm², E_{bias} = -0.5 V, *i*tunneling = 0.7 nA;可看出 2 種位向分子。插圖為 理論計算所得 PTCDA 的 LUMO ⁴⁸。(b) 2 種位向分子 A 和 B 放大圖,掃 描範圍 1.7×1.7 nm², E_{bias} = -0.5 V, *i*tunneling = 0.7 nA。(c)在基材 Cu(111) 表面(黑線)、分子 A(綠線)和分子 B(灰線)上取得之 dI/dV 能譜。掃描條件 E_{bias} = -0.5 V, *i*tunneling = 0.5 nA; f = 3151 Hz, ΔE = 30 mV。

3.3.2. Fe-PTCDA 排列與電子結構

Fe-PTCDA 錯合物於 Cu(111)表面形成類似於 Au(111)表面的梯狀結構(圖 1.18d 和圖 1.20b)^{49,51}。圖 3.14a 為 Fe-PTCDA/Cu(111)的分子島,圖中有一 Cu(111)台階 (圖下方約五分之一處),台階邊緣較亮物體為鐵團簇。仔細觀察後發現這個梯狀排 列並不十分整齊,常有錯位情形發生,不似在 Au(111)上排列較為整齊。推測原因 是鐵和 PTCDA 與銅的作用力較強,在 Cu(111)上的移動受阻,故在最後加熱時無 法形成整齊的排列。

圖 3.14b 是一處梯狀排列的放大圖,當中模型圖參考林教授團隊理論計算的 Fe-PTCDA/Au(111)排列(圖 1.20c)⁵¹,由於 Fe-PTCDA 在 Cu(111)和 Au(111)上的排 列方式接近,此模型圖應屬合理。圖 b 仿照圖 1.20 方式將 Fe-PTCDA 中 2 種位向 分子分別標示為鏈型(chain)和桄型(rung);鏈型分子配位 4 個鐵原子,桄型分子配 位 2 個鐵原子 ⁵¹。

圖 3.14 Fe-PTCDA/Cu(111)的二維排列。(a)分子島影像,可見與 Fe-PTCDA/Au(111) 相似的梯狀排列,掃描範圍 30×30 nm², E_{bias}=+0.5 V, *i*tunneling=286 pA。 (b)梯狀排列放大圖,掃描範圍 6×6 nm², E_{bias}=-0.4V, *i*tunneling=0.3 nA。 圖中分子模型參考文獻的排列模型 ⁵¹,並標示鏈型(chain)和桄型(rung)分 子。 Fe-PTCDA 的占有態影像(圖 3.15a)顯示鏈型和桄型 PTCDA 的軌域形狀相同, 意謂兩者的占有態分子能階一致。分析其穿隧能譜後(圖 3.15c)可知此軌域是一個 Fe-PTCDA 錯合物和 Cu(111)的混成態,由 LUMO 形成。由於此處所用探針與用於 掃描 PTCDA/Cu(111)樣品之探針不同,占有態軌域形狀與自由分子 LUMO(圖 3.13a 插圖 ⁴⁸)及 PTCDA/Cu(111)中的占有態軌域(圖 3.13a)不盡相同。圖 b 的未占有態影 像不具分子內解析度,無法從中得到未占有態軌域的資訊。

穿隧能譜指出鏈型和桄型 PTCDA 在未占有態的電子結構確有不同。比較圖 3.15c 兩種分子的 dl/dV 能譜,桄型分子在約+0.25 eV 處有一小波峰,鏈型分子則 無。這是因為 PTCDA 與鐵形成錯合物時,其 LUMO 接受鐵的電子而被占有,桄 型分子配位數較低,LUMO 未完全被占有,故在未占有態仍可見波峰;鏈型分子 的 LUMO 則完全被占有後位移至接近 Cu(111)表面態能量位置。

圖 3.15 建型和桄型 PTCDA 的分子軌域和 STS 能譜。(a) Fe-PTCDA 占有態影像, 掃描範圍 5×5 nm², $E_{\text{bias}} = -0.5 \text{ V}$, $i_{\text{tunneling}} = 0.3 \text{ nA}$ 。鏈型 PTCDA 和桄型 PTCDA 的軌域形狀相同,但皆與自由分子軌域不盡相同。(b)未占有態影像,掃描範圍 5×5 nm², $E_{\text{bias}} = +0.5 \text{ V}$, $i_{\text{tunneling}} = 250 \text{ pA}$ 。(c)分別在 Cu(111)表面(黑線)、Fe-PTCDA 中的鏈型 PTCDA(藍線)和桄型 PTCDA(紅線)上取得之 dI/dV能譜。掃描條件 $E_{\text{bias}} = -0.5 \text{ V}$, $i_{\text{tunneling}} = 0.5 \text{ nA}$; f = 3 kHz, $\Delta E = 30 \text{ mV}$ 。

PTCDA 和 Fe-PTCDA 的電子結構比較見圖 3.16,圖中能譜即為圖 3.13c 和圖 3.15c 中分子 A 和鏈型分子之譜線。PTCDA 譜線顯示 LUMO 與 Cu(111)表面態形

成混成軌域,因此可見一個寬廣的混成態波峰,此波峰主要在占有態(約-1.24 eV 至+0.13 eV)。Fe-PTCDA的LUMO和Cu(111)也形成混成軌域,故亦有一寬廣的混 成態波峰,但此波峰橫跨占有態至未占有態,約-0.77 eV至+0.49 eV。PTCDA的 LUMO+1/LUMO+2 能 階 在 約 +0.35 eV 至 +1.17 eV; Fe-PTCDA 的 LUMO+1/LUMO+2 能階則橫跨+0.56 eV 至+1.50 eV,波峰最高處能量在約+1.02 eV。

圖 3.16 PTCDA/Cu(111)和 Fe-PTCDA/Cu(111)電子結構比較。圖為分別在 PTCDA 的分子 A(綠線)和 Fe-PTCDA 的鏈型分子(藍線)上取得之 dI/dV 能譜。 PTCDA 掃描條件 $E_{\text{bias}} = -0.5 \text{ V}$, $i_{\text{tunneling}} = 0.5 \text{ nA}$; f = 3151 Hz, $\Delta E = 30 \text{ mV}$ 。Fe-PTCDA 掃描條件 $E_{\text{bias}} = -0.5 \text{ V}$, $i_{\text{tunneling}} = 0.5 \text{ nA}$; f = 3 kHz, $\Delta E = 30 \text{ mV}$ 。

3.3.3. PTCDA 與 Fe-PTCDA 綜合比較

表 3.1 是 PTCDA 在 Au(111)、Ag(111)和 Cu(111)三種貴金屬表面的性質比較。 排列結構皆屬於 HB (herringbone)排列,僅單位晶格有所差異(詳見 1.4.2 小節)。電 子結構可從 PTCDA 吸附在金屬表面的 LUMO 能量來做比較,當 PTCDA 與金屬 表面作用力越強,LUMO 會被占有越多、能量越低。從表 3.1 可看出,三種金屬與 PTCDA 的作用力為 Cu(111) > Ag(111) > Au(111)。

表 3.1 PTCDA 在	Au(111)、Ag(111)和	Cu(111)表面的性質比	·較。
性質	Au(111)	Ag(111)	Cu(111)
排列結構	HB	HB	HB
LUMO 能量(eV)	+1.0	-0.3	-0.92

Fe-PTCDA 在 Au(111)和 Cu(111)表面的性質比較如表 3.2。鏈狀排列結構僅出 現於 Au(111)表面;梯狀排列在兩種表面皆有,但 Cu(111)表面的梯狀排列較不整 齊。在 Au(111)上,桄型 PTCDA(圖 1.21 中的分子 B⁵¹)的 LUMO 屬未占有態; 鏈型 PTCDA(圖 1.21 中的分子 D⁵¹)的 LUMO 則被完全占有。Cu(111)上桄型 PTCDA 的 LUMO 雖未被完全占有(圖 3.15c),但因占有態影像已可觀察到 LUMO,故定其 LUMO 能量與鏈型分子相同。

表 3.2 Fe-PTCDA 在 Au(111)和 Cu(111)表面的性質比較。

性質	Au(111)	Cu(111)
排列結構	鏈狀、梯狀	梯狀(較不整齊)
鏈型/桄型 LUMO 能量(eV)	-0.38/+0.48	-0.18/-0.18(未完全占有)

第4章 結論

PTCDA 與 Cu(111)表面屬於作用力較強的化學吸附。PTCDA 的 LUMO 與 Cu(111)表面發生電荷轉移,使 LUMO 被占有成為占有態;因此,在負偏壓的占有 態影像可以觀察到分子的 LUMO。dI/dV 能譜顯示 PTCDA 的 LUMO 和 Cu(111)的 表面態形成混成軌域,STM 影像確認了此軌域是由 LUMO 形成。

Fe-PTCDA 在 Cu(111)表面形成錯位較多的梯狀排列,推測是與 PTCDA 在銅 表面上移動受限有關。鏈型和桄型 PTCDA 的占有態影像顯示兩者具有相同的能 階,此能階是由 Fe-PTCDA 的 LUMO 和 Cu(111)表面態形成的混成態; dl/dV 能譜 亦可見兩者的占有態譜線形狀相當接近。從未占有態影像無法分辨鏈型和桄型 PTCDA 的能階差異,但未占有態 dl/dV 能譜中,桄型 PTCDA 在+0.25 eV 附近的 DOS 大於鏈型 PTCDA,表示桄型分子的 LUMO 未完全被占有。可知 Fe-PTCDA 的 LUMO 被占有的程度與配位數有關:配位數越高,被占有越多。

參考文獻

- (1) Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. *Chem. Soc., Chem. Commun.* **1977**, 578-580.
- (2) The Nobel Prize in Chemistry 2000. <u>http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/index.html</u> (accessed Jun 9, 2014).
- (3) Forrest, S. R. Chem. Rev. 1997, 97, 1793-1896.
- (4) Witte, G.; Wöll, C. J. Mater. Res. 2004, 19, 1889-1916.
- (5) Soylu, M.; Yakuphanoglu, F.; Yahia, I. S. *Microelectron. Reliab.* **2012**, *52*, 1355-1361.
- (6) Ostrick, J. R.; Dodabalapur, A.; Torsi, L.; Lovinger, A. J.; Kwock, E. W.; Miller, T. M.; Galvin, M.; Berggren, M.; Katz, H. E. J. Appl. Phys. 1997, 81, 6804-6808.
- (7) Shen, Z. L.; Burrows, P. E.; Bulovic, V.; Forrest, S. R.; Thompson, M. E. Science 1997, 276, 2009-2011.
- (8) Nguyen, L. N.; Pradhan, S. K.; Yen, C. N.; Lin, M. C.; Chen, C. H.; Wu, C. S.; Chang-Liao, K. S.; Lin, M. T.; Chen, C. D. *Appl. Phys. Lett.* **2013**, *103*, 5.
- (9) Oku, T.; Nomura, K.; Suzuki, A.; Kikuchi, K. *Thin Solid Films* **2012**, *520*, 2545-2548.
- (10) Eremtchenko, M.; Schaefer, J. A.; Tautz, F. S. Nature 2003, 425, 602-605.
- (11) Barth, J. V. Annu. Rev. Phys. Chem. 2007, 58, 375-407.
- (12) Čechal, J.; Kley, C. S.; Kumagai, T.; Schramm, F.; Ruben, M.; Stepanow, S.; Kern, K. J. Phys. Chem. C 2013, 117, 8871-8877.
- (13) Gambardella, P.; Stepanow, S.; Dmitriev, A.; Honolka, J.; de Groot, F. M. F.; Lingenfelder, M.; Sen Gupta, S.; Sarma, D. D.; Bencok, P.; Stanescu, S.; Clair, S.; Pons, S.; Lin, N.; Seitsonen, A. P.; Brune, H.; Barth, J. V.; Kern, K. *Nature Mater.* 2009, *8*, 189-193.
- (14) Grumelli, D.; Wurster, B.; Stepanow, S.; Kern, K. Nat. Commun. 2013, 4, 2904.
- (15) Binnig, G.; Rohrer, H. Helv. Phys. Acta 1982, 55, 726-735.
- (16) Binning, G.; Rohrer, H.; Gerber, C.; Weibel, E. Phys. Rev. Lett. 1982, 49, 57-61.
- (17) Bruker Blog. Guide to SPM & AFM Modes. Scanning Tunneling Microscopy-STM. <u>http://blog.brukerafmprobes.com/2011/06/scanning-tunneling-microscopy-</u> <u>stm/</u> (accessed Jan 6, 2014).
- (18) Georgia State University. HyperPhysics. Barrier Penetration.
 <u>http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/barr.html</u> (accessed Jan 7, 2014).
- (19) Bardeen, J. Phys. Rev. Lett. 1961, 6, 57-59.
- (20) Chen, C. J. Introduction to Scanning Tunneling Microscopy; Oxford University

Press: New York, 1993.

- (21) Tersoff, J.; Hamann, D. R. Phys. Rev. Lett. 1983, 50, 1998-2001.
- (22) Gottlieb, A. D.; Wesoloski, L. Nanotechnology 2006, 17, 57-65.
- (23) Nie, H.-Y. The University of Western Ontario. Surface Science Western. Scanning Probe Techniques. <u>http://publish.uwo.ca/~hnie/spmman.html</u> (accessed Jan 8, 2014).
- (24) Selloni, A.; Carnevali, P.; Tosatti, E.; Chen, C. D. *Phys. Rev. B* **1985**, *31*, 2602-2605.
- (25) Stroscio, J. A.; Feenstra, R. M.; Fein, A. P. Phys. Rev. Lett. 1986, 57, 2579-2582.
- (26) About Lock-In Amplifiers. <u>http://www.thinksrs.com/downloads/PDFs/ApplicationNotes/AboutLIAs.pdf</u> (accessed Jan 3, 2014).
- (27) Ternes, M. Scanning Tunneling Spectroscopy at the Single Atom Scale Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, 2006.
- (28) Zhao, A.; Tan, S.; Li, B.; Wang, B.; Yang, J.; Hou, J. G. *Phys. Chem. Chem. Phys.* 2013, 15, 12428-12441.
- (29) Umbach, E. Prog. Surf. Sci. 1991, 35, 113-127.
- (30) Forrest, S. R.; Burrows, P. E.; Haskal, E. I.; So, F. F. Phys. Rev. B 1994, 49, 11309.
- (31) Kendrick, C.; Kahn, A.; Forrest, S. R. Appl. Surf. Sci. 1996, 104/105, 586.
- (32) Mobus, M.; Karl, N.; Kobayashi, T. J. Cryst. Growth 1992, 116, 495-504.
- (33) Burrows, P. E.; Zhang, Y.; Haskal, E. I.; Forrest, S. R. *Appl. Phys. Lett.* **1992**, *61*, 2417.
- (34) Venables, J. A.; Spiller, G. D. T.; Hanbucken, M. Rep. Prog. Phys. **1984**, 47, 399-459.
- (35) Tautz, F. S. Prog. Surf. Sci. 2007, 82, 479-520.
- (36) Schmitz-Hübsch, T.; Fritz, T.; Sellam, F.; Staub, R.; Leo, K. *Phys. Rev. B* **1997**, *55*, 7972-7976.
- (37) Chizhov, I.; Kahn, A.; Scoles, G. J. Cryst. Growth 2000, 208, 449-458.
- (38) Nicoara, N.; Román, E.; Gómez-Rodríguez, J. M.; Martín-Gago, J. A.; Méndez, J. *Org. Electron.* **2006**, *7*, 287-294.
- (39) Schmitz-Hübsch, T.; Fritz, T.; Staub, R.; Back, A.; Armstrong, N. R.; Leo, K. *Surf. Sci.* **1999**, *437*, 163-172.
- (40) Toerker, M.; Fritz, T.; Proehl, H.; Sellam, F.; Leo, K. Surf. Sci. 2001, 491, 255-264.
- (41) Glockler, K.; Seidel, C.; Soukopp, A.; Sokolowski, M.; Umbach, E.; Bohringer, M.; Berndt, R.; Schneider, W. D. *Surf. Sci.* 1998, 405, 1-20.
- (42) Strohmaier, R.; Petersen, J.; Gompf, B.; Eisenmenger, W. Surf. Sci. **1998**, 418, 91-104.
- (43) Seidel, C.; Awater, C.; Liu, X. D.; Ellerbrake, R.; Fuchs, H. Surf. Sci. 1997, 371,

123-130.

- (44) Wagner, T.; Bannani, A.; Bobisch, C.; Karacuban, H.; Moller, R. J. Phys.: Condens. Matter 2007, 19, 056009.
- (45) Gabriel, M.; Stohr, M.; Moller, R. Appl. Phys. A 2002, 74, 303-305.
- (46) Kraft, A.; Temirov, R.; Henze, S. K. M.; Soubatch, S.; Rohlfing, M.; Tautz, F. S. *Phys. Rev. B* 2006, 74, 041402.
- (47) Duhm, S.; Gerlach, A.; Salzmann, I.; Broker, B.; Johnson, R. L.; Schreiber, F.; Koch, N. Org. Electron. 2008, 9, 111-118.
- (48) Eremtchenko, M.; Bauer, D.; Schaefer, J. A.; Tautz, F. S. New J. Phys. 2004, 6, 4.
- (49) Méndez, J.; Caillard, R.; Otero, G.; Nicoara, N.; Martín-Gago, J. A. *Adv. Mater.* **2006**, *18*, 2048-2052.
- (50) Álvarez, L.; Peláez, S.; Caillard, R.; Serena, P. A.; Martín-Gago, J. A.; Méndez, J. *Nanotechnology* **2010**, *21*, 305703.
- (51) Yang, H. H.; Chu, Y. H.; Lu, C. I.; Yang, T. H.; Yang, K. J.; Kaun, C. C.; Hoffmann, G.; Lin, M. T. *ACS Nano* **2013**, *7*, 2814-2819.
- (52) Reinert, F.; Nicolay, G.; Schmidt, S.; Ehm, D.; Hüfner, S. *Phys. Rev. B* **2001**, *63*, 115415.
- (53) Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Nature 1993, 363, 524-527.
- (54) Hasegawa, Y.; Avouris, P. Phys. Rev. Lett. 1993, 71, 1071-1074.
- (55) Hackett, L. A.; Creager, S. E. Rev. Sci. Instrum. 1992, 64, 263-264.
- (56) Brodde, A.; Dreps, K.; Binder, J.; Lunau, C.; Neddermeyer, H. *Phys. Rev. B* **1993**, *47*, 6609-6616.
- (57) Chien, C. L.; Liou, S. H.; Kofalt, D.; Yu, W.; Egami, T.; McGuire, T. R. *Phys. Rev. B* **1986**, *33*, 3247-3250.
- (58) Eckert, J.; Holzer, J. C.; Johnson, W. L. J. Appl. Phys. 1993, 73, 131-141.
- (59) Eckert, J.; Holzer, J. C.; Krill, C. E.; Johnson, W. L. *J. Appl. Phys.* **1993**, *73*, 2794-2802.
- (60) Kawabe, E.; Yamane, H.; Sumii, R.; Koizumi, K.; Ouchi, Y.; Seki, K.; Kanai, K. *Org. Electron.* **2008**, *9*, 783-789.
- (61) Romaner, L.; Nabok, D.; Puschnig, P.; Zojer, E.; Ambrosch-Draxl, C. New J. Phys. 2009, 11, 053010.