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中中中文文文摘摘摘要要要

由 Aho 和 Corasick 所提出的演算法 (簡稱 AC 演算法) 可以很有

效率地在一段文字中搜尋多個關鍵字所在的位置，因而被廣泛地使用

於完全字串比對。然而，AC 演算法在運作時，只能一次處理一個字

元，因而其效能受限於運作時脈。本論文依據 AC 演算法，提出新穎

的具有多字元狀態轉移之字串比對架構，可以平行檢視多個字元，藉

以加倍提升字串比對的效能。首先，說明實作 AC 演算法的三種有限

自動機（finite automaton，簡稱 FA）的作法，包括確定性有限自動

機 (Deterministic Finite Automaton，簡稱 DFA)、非確定有限自動機

(Nondeterministic Finite Automaton，簡稱 NFA)、以及複合有限自動

機 (Hybrid Finite Automaton，簡稱 hybrid FA) 的作法。接著，提出

一種推導演算法，藉以將前述 FA 推導為多字元的 FA，使其能夠平

行檢視多個字元。同時，因為平行檢視多個字元所引起的對齊問題

(alignment problem)，也藉由輔助轉移函式 (assistant transition) 來解

決。所推導的多字元 FA 使用可程式元件來評估，所得到的評估結果

顯示其能有效地加倍提升字串比對的效能。其中所得到的最佳結果為

16字元 AC-NFA的實作，其可運作於 167.36MHz的時脈，換算得到的

字串比對效能為 21.4Gbps。

關關關鍵鍵鍵字字字：：：字串比對，確定性及非確定有限自動機，入侵偵測系統
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Abstract

The algorithm of Aho and Corasick (AC-algorithm) can locate multiple keywords

in a text efficiently; and thus it is widely used in the exact string matching. How-

ever, the AC-algorithm processes the text character by character with a performance

limited by the processing clock. This thesis proposes novel string-matching archi-

tectures with multiple-character state transitions based on the AC-algorithm, which

can inspect multiple characters in parallel to multiply the throughput. At first,

three finite automaton (FA) approaches including Deterministic Finite Automaton

(DFA), Nondeterministic Finite Automaton (NFA), and hybrid FA approaches are

presented to implement the AC-algorithm. Subsequently, a derivation algorithm is

proposed to derive these FAs to multi-character FAs to allow for the inspection of

multiple characters in parallel. Additionally, the alignment problem, which occurs

while multiple characters are being inspected in parallel, is solved by using assis-

tant transitions. The derived multi-character FAs are evaluated on programmable

devices and the evaluation results indicate that the throughput can be multiplied

effectively. The achievable throughput of the best result is 21.4Gbps obtained by a

16-character AC-NFA implementation operating at a 167.36MHz clock.

Keywords: String-matching, deterministic and nondeterministic finite automa-

ton, intrusion detection system
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Chapter 1

Introduction

String matching plays a major role in many applications, such as network intrusion

detection systems (NIDS) and bioinformatics. String matching generally includes

exact string matching and regular expression matching; exact string matching is

more efficient yet less flexible for searching keywords in a text than regular expression

matching. This thesis mainly focuses on developing efficient exact string matching

engines.

1.1 Exact String Matching and Motivations

Aho and Corasick have proposed an efficient algorithm (AC-algorithm) for exact

string matching that can locate all occurrences of multiple keywords in a text in

a one pass search [1]. Some applications like NIDS that need to inspect the data

stream on line usually first use exact string matching to find suspected data quickly,

then check the results further by other more complicated and slower approaches,

such as regular expression matching.

The network bandwidth has ever been increasing as the advances of communi-

cation and integrated circuit technology. The throughput of packet inspection for

NIDS must also be sped up to keep up with the network throughput otherwise the

packet inspection will become the bottleneck of the network security check. A hard-

ware string matching implementation can effectively accelerate the packet inspection

process. In early work, most hardware implementations of the string matching in-

spect the packet data character by character, and the throughput of string matching

is limited by the achievable clock rate of the hardware [2, 3]. Recently, some hard-

ware string matching approaches attempted to inspect multiple characters in a single

cycle to further improve the throughput of packet inspection [4–7].

1



Chapter 1. Introduction

Although some researches attempted to develop a string matching engine capable

of inspecting multiple characters in parallel, a systematic approach for developing

such a string matching engine has yet to be developed. Furthermore, most of the

researches developed the architecture according to the properties of keyword sets

to optimize the performance, which lack flexibility that different keyword sets can

be processed by simply updating the setting data. Therefore, this work intends to

develop an intuitive and systematic derivation approach to derive multi-character

transitions from an original finite state machine (FSM). Moreover, various archi-

tectures are proposed to implement the derived multi-character transitions. A gen-

eralized multi-character string matching architecture is also proposed, which can

process different keyword sets by simply updating the configurations.

AC-algorithm

(AC-trie)

AC-DFA AC-NFA
Hybrid

AC-FA

Concatenating

Operation

Multi-Character 

Matching Engine

AC-DFA AC-NFA
Hybrid

AC-FA

Figure 1.1: Overview of the proposed work

1.2 Approach Overview

This thesis presents approaches based on the AC-algorithm to enhance the perfor-

mance of exact string matching. The overview of this research can be illustrated

as Fig. 1.1. A prefix-tree created according to the AC-algorithm is known as an

AC-trie, which consists of goto functions and failure functions. All the occurrences

of keywords can be located in a one pass search through the goto functions and

the failure functions in the matching process. However, the failure functions in an

AC-trie causing multiple state transitions in a matching cycle make it inconvenient

to implement the AC-algorithm in a deterministic hardware circuit. A general ap-

proach is converting an AC-trie to a Deterministic Finite Automaton (DFA), called

2



1.2. Approach Overview

AC-DFA, or a Nondeterministic Finite Automaton (NFA), called AC-NFA, to elim-

inate the failure functions and then implementing the derived AC-DFA or AC-NFA

in a hardware circuit. The advantage of the AC-DFA approach is that it can be

implemented as a general architecture, while its disadvantage is space expensive. In

contrast, the advantage of the AC-NFA approach is space efficient, while its disad-

vantage is that the hardware implementation is dependent on the keyword set. This

thesis proposes a hybrid finite automaton, called hybrid AC-FA, that combine the

AC-DFA and AC-NFA to combine both the advantages of DFA and NFA.

However, the string matching engine inspects a text character by character with

a performance limited by the achievable maximum operating clock; therefore it

needs to inspect multiple characters in parallel to further increase the performance.

While multiple characters are being inspected in parallel, besides the complexity

is increased, a common problem has to be considered is the alignment problem of

starting and ending characters. The alignment problem includes two cases: a pattern

does not begin at the first character of the inspecting characters, and a pattern does

not end at the last character of the inspecting characters. Consider the inspecting

characters ‘they’ as an example, in which the pattern ‘he’ begins at the second

character and ends at the third character. In this scenario, neither the beginning

of the pattern aligns with the first character of the inspecting characters nor the

ending of the pattern aligns with the last character of the inspecting characters.

This thesis develops an intuitive algorithm to derive multi-character transitions

from an AC-DFA, an AC-NFA, or a hybrid AC-FA, where each transition can match

multiple characters at a time. This derivation algorithm also includes using assistant

transitions and a pseudo state to resolve the alignment problem. This thesis also

proposes architectures to implement the derived multi-character AC-DFA, AC-NFA,

and hybrid FA. Moreover, a multi-stage architecture with configurable scheme is

also proposed to provide flexibility in the number of characters inspected in parallel

and in the changing of keyword sets. Evaluations are performed for the proposed

architectures, respectively, to show their effectiveness. The main contributions of

this work can be summarized as follows.

– A systematic approach that performs concatenation operations iteratively is

devised to derive multi-character transitions from the transitions of the AC-

algorithm, in which assistant transitions are introduced to solve the alignment

problem.

– Several architectures are proposed to implement the derived multi-character

3



Chapter 1. Introduction

transitions. The features of the AC-algorithm that provide a matching output

in every matching cycle are preserved by introducing priority multiplexers to

determine the corresponding matching output for all inspected characters in

every matching cycle in the proposed multi-character string matching engines.

– The space required for implementing a derived k-character AC-NFA is O(k).

The proposed multi-character hybrid AC-FA approach has the feature that

the number of transitions grow nearly linearly with respect to the number of

characters under inspection in parallel.

– A configurable architecture is devised from the proposed multi-stage architec-

ture that can process different keyword sets by simply updating the configu-

ration data.

1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 introduces related string-

matching literature. Chapter 3 first describes the AC-algorithm briefly and then

presents approaches for implementing the AC-algorithm. Next, Chapter 4 proposes

the derivation algorithm for multi-character FA and Chapter 5 describes the im-

plementations of the derived multi-character FAs. Chapter 6 proposes configurable

architectures for multi-character string matching. Chapter 7 compares the proposed

approaches with related works. Conclusions are finally drawn in Chapter 8.

4



Chapter 2

Related Work

Among the string-matching algorithms, the algorithms of Aho-Corasick [1] and

Bloom [8] are used in many applications for filtering out specific data efficiently.

The Bloom algorithm accelerates the string matching by allowing for a small num-

ber of falsely matched patterns; however, a further exact verification is required for

confirming whether the result is false positive. The Bloom algorithm can be imple-

mented in hardware with high space efficiency [9]. In contrast, the AC-algorithm

is an exact string-matching algorithm that can locate multiple patterns in a text

with linear time complexity. Since the proposed approaches in this thesis are mainly

based on the AC-algorithm, the following discussion of related work focuses on the

AC-algorithm.

2.1 Optimization in Hardware

Due to the progress and flexibility of the programmable devices such as FPGA, de-

velopers can design and evaluate variant architectures according to the features

of the AC-algorithm. Nevertheless, the resources of programmable devices are

limited, with some works attempting to increase the hardware efficiency. To im-

prove the memory efficiency, Tuck et al. [2] developed a bitmap-compression and

path-compression approach for the AC-algorithm, capable of reducing the required

memory and improving the performance on hardware implementation. Zha and

Sahni [3] improved the bitmap-compression and path-compression approach by re-

quiring considerably less memory. Alternatively, Alicherry et al. [4] implemented

the AC-algorithm by integrating a Ternary Content Addressable Memory (TCAM)

and a Static Random-Access Memory (SRAM) that utilizes ternary matching of

TCAM to achieve the matching of characters expressed in negation expressions,

5



Chapter 2. Related Work

subsequently reducing the space required for storing the state transitions. Lin and

Liu [10] and Pao et al. [11] applied pipeline architectures to implement the character

trie that only contains goto functions of the AC-trie to reduce the space introduced

by the failure functions. Hua et al. [12] developed another approach based on a

block-oriented scheme instead of the usual byte-oriented processing of patterns to

minimize the memory usage. Dimopoulos et al. [13] developed a Split-AC algo-

rithm that partitions a whole AC-trie into multiple smaller tries to increase memory

efficiency.

Several researches developed hybrid string-matching approaches combining DFA

and NFA to obtain both the advantages of DFA and NFA while avoid their dis-

advantages. The previous hybrid approaches include exact and regular-expression

string matching approaches. For example, Yang et al. [14] proposed the head-body

finite automaton (HBFA) that partitions an AC-trie to a head DFA (H-DFA) and a

body NFA (B-NFA) to improve the performance of soft implementation of the AC-

algorithm. Becchi et al. [15] proposed a hybrid-FA solution for regular-expression

string matching to bring together the strengths of both DFA and NFA, i.e. space

efficiency and a deterministic hardware-implementation. In the hybrid-FA of Becchi

et al., the nodes causing state explosion retain an NFA encoding, while the rest are

transformed into DFA nodes.

2.2 Multi-Character Hardware Approaches

Because of the flexibility of programmable devices, some works have developed

string-matching architectures that can inspect multiple characters in parallel to mul-

tiply the throughput of string matching. However, developing an approach capable

of inspecting multiple characters in parallel must consider both the complexity and

the alignment problem incurred in k-character matching processes. As an extension

of the AC-algorithm, Sugawara et al. [16] proposed a string-matching method called

Suffix-Based Traversing (SBT) to process multiple input characters in parallel and

reduce the lookup table size. Alicherry et al. [4] proposed a k-compressed AC-DFA

to achieve a parallel k-character matching engine. A k-compressed AC-DFA con-

sists only of the states whose depth is a multiple of k in the original AC-trie and the

leaf states of the original AC-trie, where the alignment problem is solved by using

additional shallow states. Other works used multiple FSMs to achieve parallelism

and solve the alignment problem, where each FSM is responsible for processing a

pattern beginning at a different position, respectively [5–7]. However, those ap-
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2.3. Software Approaches

proaches require specific logics to combine thematching results from the FSMs. The

approaches of Yamagaki et al. [17] and Katashita et al. [18] solve the alignment

problem by using additional states and transitions.

2.3 Software Approaches

Recently, many software implementations of the AC-algorithm utilize the power of

the multicore in CPU or GPU to accelerate string matching. For example, Scarpazza

et al. [19] proposed an optimized algorithm for the IBM Cell/B.E processor, which is

a heterogeneous multicore processor comprised of a 64-bit processor core and eight

synergistic processor cores, to achieve high-performance exact string matching. In

that algorithm, keywords are split to fit in the local memories of the processing cores

to reach extremely high throughput for each processor.

However, Salmela et al. [20] developed a software approach capable of process-

ing multiple characters in parallel. That approach uses short substrings of length

q, referred to as q-grams, which process q characters as a single character, and bit

parallelism to increase filtering efficiency. Nevertheless, their approach is designed

to match a set of keywords with the same length. Because of advanced semicon-

ductor technologies, multiple processing cores can be packaged in a single CPU or

GPU chip. Recently, many software implementations of the AC-algorithm use the

power of the multicore in CPU or GPU to accelerate string matching. For example,

Scarpazza et al. proposed an optimized algorithm for the IBM Cell/B.E proces-

sor, which is a heterogeneous multicore processor comprised of a 64-bit processor

core and eight synergistic processor cores, to achieve high-performance exact string

matching [19, 21]. In that algorithm, keywords are split to fit in the local memo-

ries of the processing cores to reach extremely high throughput for each processor.

Yang et al. [14] and Yang and Prasanna [22] derived an approach using a head-

body finite automaton (HBFA) to improve the match ratio on multicore processors

and implements the HBFA in multiple threads on the multicore system to achieve

high throughput. Villa et al. presented a software approach for the AC-algorithm

on the Cray XMT multithreaded shared memory machine, capable of achieving a

throughput of 28Gbps [23]. The approach of Tumeo et al. assigns different packets

to different CUDA/GPU threads, as proposed by NVIDIA, to increase the efficiency

of pattern matching [24]. Tumeo et al. later evaluated several software implemen-

tations of the AC-algorithm on shared and distributed memory architectures [25].

Herath et al. applied multicore CPUs to accelerate the string matching used in

7
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biology applications [26].

Software and hardware approaches significantly differ in achieving the paral-

lelism. Software approaches achieve parallelism by splitting an input text into mul-

tiple chunks and then processing the chunks by multiple threads, respectively, where

each thread still inspects the input text character by character. Conversely, hardware

approaches achieve parallelism by inspecting multiple characters in parallel. Both

approaches can multiply the throughput of string matching. However, software and

hardware approaches also differ in that the former can have a larger dictionary size.
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Chapter 3

Aho-Corasick Algorithm and

Implementations

The algorithm proposed by Aho and Corasick (AC-algorithm) is an exact string-

matching algorithm that can locate the occurances of multiple patterns in a text with

a linear time complexity. Therefore, the AC-algorithm is used in many applications

to fast filter out the specific data. This chapter first explains the AC-algorithm

briefly and then presents various implementations of the AC-algorithm.
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Figure 3.1: AC-trie

3.1 AC-trie

A prefix-tree built according to the AC-algorithm is known as an AC-trie that con-

sists of goto and failure functions. Fig. 3.1 illustrates an AC-trie built on the keyword

set {enhappy, happy, happen, happygo}. In this figure, the circled numbers denote
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Chapter 3. AC-Algorithm and Implementations

states, which are called nodes alternatively. In addition, the double circled numbers

denote output states, or output nodes, that have non-empty matching outputs. The

physical and dashed lines denote goto and failure functions respectively. State 0 is

also known as the initial state or the root node. Every non-initial state has a failure

function, while the failure functions linked to the initial state are not shown for

clarity. In an AC-trie, the depth of a node is also called the level of it. A property

of the failure function is that a state only links to another state in the smaller level

through the failure function. For example, the failure function of state 7 in level 7

links to state 12 in level 5.

A matching cycle in the AC-algorithm is defined as a period that begins with

inputting a character and ends with outputting a matching output. There is only

one active state in an AC-trie at any time. In a matching cycle, the goto functions

of the active state are checked first. If none of the goto functions is matched, then

the state transits to a new state through the failure function and the goto functions

of the new activated state are checked continuously. Since all non-initial states are

linked to the initial state eventually through the failure functions and the initial state

has the goto functions for all characters, it ensures that a matched goto function

can be found in every matching cycle. In the matching process, an input string

is processed character by character and we call the character under processing as

an inspecting character. A matching cycle leads to a matching output, which is

represented by a state number. If a keyword is matched, the matching output is a

non-zero state number; otherwise the matching output is state 0.

The AC-algorithm can be implemented in various approaches, which are de-

scribed later, and the matching operations of these approaches are illustrated to-

gether in Fig. 3.2 for comparison. The inspecting texts of these matching examples

are the same which is ‘enhappenhappygo’. The matching operation of the AC-trie

is illustrated in Fig. 3.2(a). In response to the characters ‘enhapp’, the transition

traverses through the states 0, 1, 2, 3, 4, and 5 sequentially. In response to the next

character ‘e’, none of the goto functions of state 5 matches with this character, so

that the state transits to 11 following the failure function of state 5 and the opera-

tion continues to match the goto functions of state 11. In response to the following

character ‘n’, the state transits to 14 which is a output state and we have a matching

output ‘happen’. State 14 is a terminal state, therefore according to its failure func-

tion, the state transits to 2 when the next character is input and then the matching

process goes on from the state 2. Similarly, in response the remaining characters,

the transition traverses through the states 3, 4, 5, 6, 7, 12, 15, and 16 sequentially;
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Figure 3.2: Examples of matching operations

where the transition from 7 to 12 is a transition according to the failure function of

state 7. In the remaining matching operation, we have matching outputs on states

7 and 16 which are ‘enhappy happy’ and ‘happygo’ respectively.

With the failure functions, all matched keywords can be found in a one-pass

search by using an AC-trie. Nevertheless, when an AC-trie is implemented in hard-

ware the complexity will be increased due to the property that often more than

one state transition are needed to find a matched goto function through the fail-

ure functions. An AC-trie can be implemented as a DFA (AC-DFA) or an NFA

(AC-NFA). The DFA and NFA approaches have significant different features. This

thesis proposes a hybrid finite automaton approach that combines the DFA and

NFA approach to implement the AC-algorithm (hybrid AC-FA). The proposed hy-

brid AC-FA approach has both the advantages of DFA and NFA approaches. The

AC-DFA, AC-NFA, and hybrid AC-FA approaches are described in the following

sections.
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Chapter 3. AC-Algorithm and Implementations

3.2 AC-DFA

Fig. 3.3 illustrates the DFA converted from the original AC-trie. The transitions

pointed to the states 1 and 8 that are derived from the failure functions are de-

noted together, respectively, for clarity in this figure. Fig. 3.2(b) illustrates the

matching operations of the AC-DFA which is straightforward and the explanation

of the matching operations is omitted. Fig. 3.4 illustrates the block diagram for

implementing the AC-DFA. The transition table is implemented as a lookup ta-

ble generally. The next state NX is determined by the input character IN CHAR,

current state CUR ST, and the transition table. The next state NX is saved in a

register and output as as the matching result OP. The next state NX is looped back

as the current state CUR ST to be used in the next matching cycle. However, the

transition table of AC-DFA typically is a sparse table, and thus it is inefficient in

space utilization.
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Figure 3.4: Basic AC-DFA implementation block diagram

Alicherry et al. has analyzed the AC-DFA constructed for the signatures ob-

tained from 100 viruses in the Internet [4]. Table 3.1 summarizes the number of

states at a certain depth and the number of transitions to the states at that depth
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3.2. AC-DFA

in the AC-DFA. The analysis result indicates that the number of transitions to the

states at depth 1 is as high as 96.4% of the total transitions. Notably, most of the

transitions to smaller depths are mainly the next transitions derived from failure

functions.

Table 3.1: States and transitions in an AC-DFA (Alicherry et al.)
Depth (d) 1 2 3 4 5 ≥ 6 Total
States 56 89 100 102 102 7248 7698
Transitions 421,243 7,576 551 165 121 7382 437,038

Accordingly, Alicherry et al. proposed an alternative AC-DFA implementation

that uses a TCAM and a SRAM to implement the transition table, in which a

wildcard character is used to resolve the problem of transition explosion. Each

TCAM entry maps a transition in the AC-DFA to an index; and the TCAM index

is used to compute the address of the corresponding memory block in the SRAM.

In a matching cycle, the TCAM-based approach first obtains a matching index from

the TCAM according to the inspecting character and current state, and then obtains

a next state from the SRAM according to this matching index.

IN_CHR

CUR_ST
SRAMTCAM

Input State

NX

Next State

OP

Figure 3.5: Implementation of AC-DFA with TCAM and SRAM

Since a TCAM only outputs indexes according to the matching results, an ad-

ditional SRAM is required for obtaining next states from the resulting indexes in

the TCAM-based approach. This thesis develops a hardware architecture, shown

in Fig. 3.6, that can achieve the feature as integrating the TCAM and SRAM to

implement the AC-DFA. This proposed architecture consists of multiple rule units

and these rule units can be configured according to the keyword set to be processed,

in which each rule unit processes a transition respectively.

Two transitions beginning from the initial state are δ1(0,e)=1 and δ1(0,h)=8. In

order to be distinguishable with a multi-character transition which will be described
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Figure 3.6: Implementation of AC-DFA with priority multiplexer

later, the notation δ1 with a subscript 1 means a 1-character transition. In this figure,

the initial state is replaced by a wildcard character ‘?’, and thus the two transitions of

the initial state are replaced by δ1(?,e)=1 and δ1(?,h)=8. In this way, the transitions

linked to states 1 and 8 derived from the failure functions can be omitted, such as

δ1(1,e)=1, δ1(1,h)=8, and so on. Because of the wildcard character, multiple rules

may be activated simultaneously. For example, when the current state is 6 and

the input character is ‘e’, the transitions δ1(6,e)=13 and δ1(?,e)=1 are activated

simultaneously.

In a typical TCAM, the conflict situation caused by multiple potential results

is resolved by using a priority encoder to determine a final matching index. In this

work, the conflict situation arising from multiple activated rules is resolved by using

a priority multiplexer to determine a final matching result. In Fig. 3.6, the priority

multiplexer PMUX has m inputs D1 through Dm. If the inputs Di and Dj are

both valid and i < j, then the priority of Di is higher than that of Dj; and thus,

the priority multiplexer selects the input Di to be output through MO. For PMUX,

input D1 has the highest priority, and input Dm has the lowest priority. When none

of the inputs is valid, PMUX outputs a default value, such as 0; this ensures that

the next state should return to the initial state when none of rules is matched. In

Fig. 3.6, the upper rule unit has a higher priority. As a result, when the conflict

situation that δ1(6,e)=13 and δ1(?,e)=1 are activated simultaneously is happen, the

priority multiplexer PMUX determines the next state is 13.
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3.3. AC-NFA

3.3 AC-NFA

If the failure links are removed and simultaneously activation of multiple states is

allowed, an AC-trie becomes an NFA. Fig. 3.7 illustrates the AC-NFA obtained from

the original AC-trie by removing the failure links. After converting an AC-trie to

an AC-NFA, all matched transitions are done currently. The parallelism implicit in

hardware makes it more feasible to keep track of concurrent state transitions. The

transitions of an AC-NFA are only the goto functions of the original AC-trie. In the

proposed approach, the complexity in terms of number of transitions remains the

same, whereas the failure functions are transformed into the concurrent transitions

that fit the hardware intrinsically.

Fig. 3.2(c) illustrates the matching example of the AC-NFA with the same input

‘enhappenhappygo’. In response to the characters ‘enhapp’, a transition sequence

begins from state 0 and ends at state 6, which does not match any keyword. In

response the characters beginning from the third character, another transition se-

quence traverses states 0, 8, 9, 10, 11, 13, and 14, which matches the keyword

‘happen’. The characters beginning from the seventh character initialize a transi-

tion sequence traverses states 0 to 7 and matches the keyword ‘enhappy’. Similarly,

the characters beginning from the ninth character initialize a transition sequence

traverses states 0, 8, 9, 10, 11, 12, 15, and 16, which matches the keyword ‘hap-

pygo’. As can be seen by comparing Fig. 3.2(a) and (c), in every matching cycle,

when a state is activated in the AC-trie, all the states linked to through the failure

functions from the active state are activated simultaneously in the AC-NFA. For

example, when state 3 is activated, state 8, which is pointed by the failure func-

tion of state 3, is activated simultaneously. Therefore the failure functions are not

necessary if multiple states are allowed to be activated simultaneously.
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Figure 3.7: AC-NFA

Fig. 3.8 illustrates the implementation of the AC-NFA, where some similar por-
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Figure 3.8: Implementation of AC-NFA

tions are omitted in the circuit for clarity. The AC-algorithm provides only one

matching output in every matching cycle, while multiple states may be activated

simultaneously in an AC-NFA. Therefore, an output circuit is required to determine

a matching output in the implementation of an AC-NFA. In this implementation,

the final matching output OP is determined by using a priority multiplexer PMUX.

Notation st(i) denotes the status of node i, where i represents the state number

in the AC-NFA. For example, when the text under inspection is ‘enhappy’, states

7 and 12 are activated simultaneously. State 7 represents the string ‘enhappy’ and

state 12 represents the string ‘happy’; the former includes the later. Therefore, state

7 has a higher priority and is determined as the matching output.

In an AC-trie, each state represents a unique string. If a failure function links

state S1 to state S2, then the string represented by S2 is the postfix of the string

represented by S1. For example, state 12 represents the string ‘happy’, and state 7

represents the string ‘enhappy’; in addition, the failure function of state 7 points to

state 12, and the string ‘happy’ is the postfix of the string ‘enhappy’. In an AC-

trie, the matching output is simply the active state since only one state is activated

at any time. Although activation of multiple states is allowed in an AC-NFA, the

proper matching output from the multiple active states must be determined. For

example, like the earlier case, states 7 and 12 are activated simultaneously. Since

failure functions link higher states to lower-level states, the highest-level activated

state in an AC-NFA should determine the final matching output.
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In the matching operation of the AC-algorithm, only a matching output is gen-

erated after every matching cycle. In the proposed NFA approach, the priority

multiplexer PMUX shown in the lower right portion of Fig. 3.8 is used as an output

selection circuit to determine the final matching outputs from multiple activated

output nodes. Notably, the priority multiplexer PMUX in this figure differs from

that in Fig. 3.6 in that each input group consists a control signal and a data sig-

nal; nevertheless, they are the same essentially and the difference in diagrams is

convenient for explanation only.

This AC-NFA has four output nodes so that the priority multiplexer PMUX

has four input groups (E1, D1) through (E4, D4), where inputs E1 through E4

are control signals and inputs D1 through D4 are data signals. The control signals

E1 through E4 indicate whether the data inputs D1 through D4 are valid or not,

respectively. If the inputs Ei and Ej are both true and i < j, then the priority

of input Ei is higher than that of input Ej; in addition, the priority multiplexer

selects the input Di to be output through MO. When none of the inputs is valid, the

output MO is not valid either. However, the output MO of PMUX can output 0 if no

matched output is available. Notation st(s) refers to the status of node s, which is

true when node s is activated. Since higher-level nodes have a higher priority, signal

st(9) has the highest priority and is connected to E1. The data sent to inputs D1

through D4 are the corresponding state numbers. Consider the previous example.

Following acceptance of the text ‘enhappy’, both nodes 7 and 12 are activated and

both st(7) and st(12) become true. Moreover, since the priority of st(7) is higher

than that of st(12), PMUX selects the data 7 input from D1 as the matching output.
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Figure 3.9: Multi-stage architecture of AC-NFA

According to the observation, among the states with the same depth in an NFA

derived from a given AC-trie, the number of active states na is no more than one, i.e.

na ≤ 1. Therefore, an AC-NFA can be implemented in a multi-stage architecture
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alternatively. In an AC-trie, the states with the same depth are known as in the

same level. The states with the same depth represent different strings with the

same length, and thus at most one state in a level can be activated in one time.

Consequently, only one register is required to save the active state for each level

in an AC-NFA. Fig. 3.9 illustrates a multi-stage architecture for implementing the

AC-NFA. The multiple stages are arranged in a chain, in which each stage includes

the transitions of the corresponding level. Fig. 3.10 illustrate the block diagram of

a stage unit. A stage unit includes multiple rule units, in which each rule unit is

responsible for matching one transition. Therefore, the number of rule units in a

stage must be equal or greater than the number of transitions. A rule unit contains

the information of its corresponding transition and matches the information with the

input current state CUR ST and character IN CHAR in the matching operation. A

rule unit is triggered when its pattern is matched with the inputs and then outputs

the next state NX according to the transition.

IN_CHR

NX

NX
IN_CHR

CUR_ST

RULE[1]

RULE[m]

NX
IN_CHR

CUR_STCUR_ST . . .

MUX

MO

D[1]

D[m]

. . .

Figure 3.10: Block diagram of a stage unit

3.4 Hybrid AC-FA

The DFA approach has an attractive property that processing an input string in-

volves one DFA state traversal per character, which implies a deterministic number

of memory accesses. Namely, the memory bandwidth requirement for implement-

ing a DFA is predictable and it is possible to implement a DFA in a lookup table

approach. However, the number of transitions grows explosively when an AC-trie

is converted to a DFA. In contrast, an NFA approach is efficient in the hardware

size utilization. However, an NFA is difficult to be implemented in a pre-designed

architecture, like a lookup table approach, since each input character can trigger

multiple state transitions and multiple states can be active simultaneously. Gener-

ally, an NFA is suitable to be implemented in a programmable device.
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According to the analysis result in Table 3.1, the transitions increase dramatically

in the lower levels due to the failure functions when an AC-trie is converted to a

DFA. Accordingly, this work proposes a hybrid finite automaton to implement an

AC-trie (Hybrid AC-FA), which has both the advantages of DFA and NFA. Fig. 3.11

shows a hybrid AC-FA that is obtained by dividing the AC-trie in Fig. 3.1 to NFA

and DFA portions. In the NFA-portion, all failure functions are removed and only

goto functions are remained; while in the DFA-portion, the failure functions are

substituted by expanding goto functions. For the convenience of discussion, let the

NFA levels are defined as the number of levels in NFA portion, in which level 0 is

excluded. For example, there are three NFA levels in the hybrid AC-FA illustrated

in Fig. 3.11. Notably, states 4 and 11 are in the DFA portion.

Comparing with the AC-DFA illustrated in Fig. 3.3, the transitions linked back-

wardly to states 1, 3, and 8 are eliminated in the hybrid AC-FA. In which, most of

the removed transitions are linked backwardly to the states in levels 0 and 1, i.e.

states 0, 1 and 8. Correspondingly, the hybrid AC-FA only has two more transitions,

linked to states 13 and 15, respectively, than the AC-NFA illustrated in Fig. 3.7.

Like the multi-stage architecture for implementing the AC-NFA, only one register

is required for saving the state for each level in the NFA portion. Furthermore,

because at most one state is allowed to be activated in the DFA portion, only one

register is required for keeping the state in the DFA portion. As a result, the stages

and the registers required for keeping the states in the implementation of hybrid

AC-FA can be predetermined, and this enables to design a general string-matching

architecture based on the AC-algorithm. Because the transitions increase little as

comparing with the AC-NFA approach, the hybrid AC-FA approach is efficient in

space utilization.

Fig. 3.12 shows the multi-stage architecture for implementing the hybrid AC-FA.
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Stages 1 to 4, which belong to the NFA portion, contain the transitions of levels 0 to

3 respectively. Stage 5, which is the terminal stage and belongs to the DFA portion,

contains all of the transitions. Because only one state can be activated at most in

each stage, priority multiplexer PMUX0 determines the next state for the terminal

stage from the next states (NX) output from stage 4 and stage 5. The detail of

each stage is same as the block diagram shown in Fig. 3.10. The next state (NX)

generated by the i-th stage also represents the matching result xopi of that stage.

PMUX1 determines the final matching output from the matching results xop1 to

xop5.
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3.5 Priority Multiplexer

The priority multiplexer plays an important role in the proposed architectures and its

implementation is described briefly here. The implementation of priority multiplexer

mainly refers to the literature of Alera [27]. In a priority multiplexer, the select logic

implies a priority, so the options to select the correct item must be checked in order.

Fig. 3.13 illustrates a 4-to-1 priority multiplexer implemented by multiple chained

multiplexers that evaluates each condition, or select bit, one at a time. However,

this structure of chained multiplexers is generally bad for delay, since the critical

path through the logic traverses through every multiplexer in the chain. As a result,

the delay of the structure of chained multiplexers increases linearly respect with the

number of data inputs.
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Figure 3.14: Priority multiplexer optimized for delay

Fig. 3.14 illustrates an alternate implementation of priority multiplexers to op-

timize the delay. This logic structure is just slightly more complicated than the

standard priority multiplexer scheme, but significantly improves the delay through

the logic. In this structure, if any of the two select lines E1 and E2 are high, then

the 2-input AND gate chooses the upper half of the logic, otherwise it chooses the

lower side. The enable signals E1 through E4 make the final choice of inputs, if all

of the enable signals are low then the output MO is zero. The signal E1 has the

highest priority in the figure. The levels of the chained multiplexers is log2m for m

data inputs in the optimized structure. Therefore the delay of the optimized priority

multiplexer reduces from O(m) to O(log2m) for m data inputs.
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Chapter 4

Multi-Character State Transitions

The throughput of a string-matching engine can be multiplied in the same operating

speed when multiple characters can be processed in parallel in every matching cycle.

Therefore, a 1-character finite automaton (FA), which processes only one character

at a time, has to be derived to a multi-character FA for processing multiple characters

in parallel. Furthermore, the alignment problem also has to be considered in the

derivation of multi-character FA.

This chapter proposes an derivation algorithm to extend the AC-algorithm to be

able to process multiple characters in parallel. This proposed algorithm can derive

a 1-character FA, which could be an AC-DFA, an AC-NFA, or a hybrid AC-FA,

to a multi-character FA by using iterative concatenation operations. In addition,

assistant transitions and a virtual state are introduced to deal with the alignment

problem in the derivation algorithm.

 Input: thishers
Match1: -his----
Match2: ---she--
Match3: ----he--
Match4: ----hers

Figure 4.1: Example of alignment problem

4.1 Alignment Problem and Previous Work

The alignment problem must be considered when multiple characters are inspected

in parallel in every matching cycle. Fig. 4.1 uses an example to demonstrate the

alignment problem. In which, the keyword set to be matched is {he, she, his, hers}.
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Chapter 4. Multi-Character State Transitions

In this matching example, eight characters are inspected in parallel and the input

text is ‘thishers’. As can be seen, all the four keywords appear in the inspecting

text; however, all the occurrences of keywords do not begin at the first character of

the inspecting text.

0

3

hap

enh app
6

y

10
pyg o

pen
14

15 16

7

Figure 4.2: Example of 3-compressed FA

An intuitive approach to convert a 1-character FA to a multi-character FA

is merging multiple successive 1-character transitions to a multi-character transi-

tions, like the k-compressed FA proposed by Alicherry et al. [4]. An example of

3-compressed FA is shown in Fig. 4.2. However, because some states are lost in a

k-compressed FA as comparing with the original AC-trie, special process is required

to deal with the alignment problem. In the Alicherry approach, shallow nodes are

added to resolve the alignment problem as shown in Fig. 4.3. When a keyword does

not appear in the first character of the inspecting character-chunk, an additional

transition is needed to ensure the next state to fall into an existing state in the com-

pressed FA. For example, when the input text is ‘penhapp’, the state first transits

from the initial state to the the shallow state 2 according to ‘pen’ and then to state 3

according to the additional character ‘h’. Consequently, two transitions are required

when alignment problem occurs. Moreover, multiple transitions may be activated

simultaneously because of the same prefix or suffix, such as the keywords ‘hers’ and

‘she’; this further increases the complexity in hardware design.

0 3
enh app

6
y

7

1

2

??e

?en

nh

h

Figure 4.3: Example of shallow states

Alternatively, Tripp proposed a architecture consisting of multiple identical FSMs,

as shown in Fig.4.4, to solve the alignment problem [5]. In which, each FSM is

24



4.2. Derivation of Multi-Character Transitions

responsible to deal with a alignment case respectively. However, the multi-FSM

architecture requires a combine logic circuit to determine the final matching results

from the results of FSMs.

FSM-1

FSM-2

FSM-3

Combine

Logic OP

3

24-bit input

data word

3

3

24

8

8

8

Figure 4.4: Architecture of three FSMs

4.2 Derivation of Multi-Character Transitions

This section proposes a derivation algorithm that derives 1-character transitions

to multi-character transitions by using iterative concatenation operations. Before

describing the concatenation operation, some related definitions are given as follows.

Definition 1. A k-character transition δk(S1, T ) = S2 represents the state transit

from the current state S1 to the next state S2 on a k-character string T .

For example, a 3-character transition δ3(10,pyg)=15 represents that the state

transits from 10 to 15 on a 3-character string ‘pyg’.

Definition 2. A transition δk(S2, T2) = S3 is a successive transition of the transition

δl(S1, T1) = Se if S2 = Se, implying that the starting state of δk(S2, T2) = S3 is

simply the end state of δk(S1, T1) = Se.

Sa Sb
Ta

+ Sb Sc
Tb

Sa Sc
TaTb

(O  )a (O  )b

(O    O  )a b∪

Figure 4.5: Concatenation operation
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Chapter 4. Multi-Character State Transitions

A new multi-character transition can be obtained by concatenating a transition

with its successive transition. The concatenation operation is defined as follows and

its diagram is shown in Fig.4.5:

Definition 3. (Concatenation of two transitions) Given a k-character transition

δk(S1, T1) = S2 and an l-character successive transition δl(S2, T2) = S3, where S1,

S2, and S3 denote states, T1 represents a k-character string, and T2 represents an l-

character string. Then the concatenation of the two transitions is a (k+ l)-character

transition δk+l(S1, T1T2) = S3.

0 0
?

-

-
?

14 -
?

16

?
7

-
?

-

-
?

12

Figure 4.6: Assistant transitions

Besides the transitions of the 1-character FA, three types of assistant transitions

are defined to facilitate the construction of multi-character transitions capable of

solving the alignment problem.

Definition 4. (Assistant transitions) The first type of assistant transitions is defined

as δ1(0, ?) = 0 that denotes a transition from state 0 to state 0 on an arbitrary

character. The second type of assistant transitions is defined as δ1(Sop, ?) = − that

denotes a transition from an output state Sop to a pseudo state on an arbitrary

character. The third type of assistants is defined as δ1(−, ?) = − that denotes a

transition from a pseudo state to another pseudo state on an arbitrary character.

Fig. 4.6 shows examples of assistant transitions. Assistant transitions are denoted

by dashed lines to distinguish them from the 1-character transitions of a original

FA. The circled character ‘-’ denotes a pseudo state that is a virtually defined state

and nonexistent in an AC-trie. Furthermore, the symbol ‘?’ denotes an arbitrary

character. The first type assistant transition, i.e. δ1(0, ?) = 0, deals with the

alignment problem in which the beginning of a pattern does not appear in the first

character of the inspecting characters. The second type assistant transition, i.e.

δ1(Sop, ?) = −, preserves the matching output for a situation in which the ending

of a pattern does not appear in the final character of the inspecting characters. In

Fig.4.6, the transitions beginning from states 7, 12, 14, and 16, respectively, and

ending at pseudo states are examples of the second type assistant transitions. The
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Figure 4.7: Derivation examples

third type assistant transition, i.e. δ1(−, ?) = −, can follow a second type assistant

transition to form a multi-character transition.

The examples shown in Fig. 4.7 explain how to derive 3-character transitions by

repeating concatenation operations. These examples also explain the usages of the

assistant transitions in the derivation. In this figure, ‘+’ denotes the concatenation

operation.

First, referring to Fig. 4.7(a), concatenating two assistant transitions δ1(0,?)=0

obtains a 2-character transition δ2(0,??)=0; and then concatenating the deriving

transition with δ1(0,e)=1 and δ1(0,h)=8, respectively, obtains two 3-character tran-

sitions δ3(0,??e)=1 and δ3(0,??h)=8. Despite obtaining a 3-character transition

δ3(0,???)=0, concatenation of the transition δ2(0,??)=0 with another δ1(0,?)=0, it

is discarded owing to its uselessness. The transitions δ3(0,??e)=1 and δ3(0,??h)=8

imply that the state stays at state 0 for the first two any characters and then transits

to state 1 or 8 on the third character ‘e’ or ‘h’, respectively. By using these derived

transitions, the alignment problem arising from the situation that the first character

of keywords appears at the third inspecting character is dealt with.

In the example of Fig. 4.7(b), state 6 has two goto functions, δ1(6,y)=7 and

δ1(6,e)=13. Concatenating δ1(6,y)=7 with two assistant transitions δ1(-,?)=- ob-

tains a 3-character transition δ3(6,y??)=-, and concatenating δ1(6,y)=7 with other

two transitions δ1(7,g)=15 and δ1(15,o)=16 obtains another 3-character transition

δ3(6,ygo)=16. Concatenating δ1(6,e)=13 with δ1(13,n)=14 and δ1(-,?)=- obtains a

3-character transition δ3(6,en?)=-. States 7 and 14 are output states, particularly

state 14 is a terminal state, each of which is concatenated with assistant transitions
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Chapter 4. Multi-Character State Transitions

to form a complete 3-character transition to preserve the matching output. Because

the trailing two characters of the pattern in transition δ3(6,y??)=- are wildcard char-

acters, the transition is always triggered along with the transition δ3(6,ygo)=16; this

conflict situation is resolved by introducing a priority multiplexer in the proposed

hardware implementation. As a result, repeating the described concatenating oper-

ation iteratively can derive all k-character transitions from a given AC-trie for any

required number k.

From an AC-NFA, we can infer that when the characters under simultaneous

inspection are increased by one more, the number of transitions increased is equal

to the number of output states. This observation is owing to that each output

state is concatenated with an assistant transition to preserve the matching output

for a situation that the following character is not matched. Next, consider the

transition δ1(6,y)=7 as an example, concatenating it with the successive transition

δ1(7,g)=15 can obtain δ2(6,yg)=15 and concatenating it with the assistant transition

δ1(7,?)=- can obtain δ2(6,y?)=-; the latter transition δ2(6,y?)=- is used to preserve

the matching output for the situation that only the first character is matched with

‘y’.

An NFA consisting of the k-character transitions derived from an AC-NFA is

called as a k-character AC-NFA here. The proposed approach can be used to derive

a k-character AC-NFA for any number k from an original AC-NFA, which is called

1-character AC-NFA alternatively. The growth of the derived k-character transitions

is linear with respect to the number k. As a result, the number of the k-character

transitions grows linearly with respect to k, the number of the characters to be

inspected in parallel.

The result can be summarized as the following description. For a given AC-NFA

with the number of 1-character transitions denoted as r1 and the number of output

states denoted as nop, then the number of the k-character transitions is obtained as

follows:

rk = r1 + (k − 1)× nop (4.1)

For instance, the AC-NFA example has 16 1-character transitions and four output

states, and thus the number of 3-character transitions is 16 + (3− 1)× 4 = 24.
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4.3. Derivation Algorithm

Algorithm 1: Algorithm for deriving k-character transitions

Input : k: number of characters
NXSET : 1-character transition set

Output: TRSET : k-character transition set
1 begin
2 TRSET ← empty
3 for each state Si do
4 begin
5 NSET ← all 1-character transitions of Si in NXSET
6 repeat k − 1 do
7 begin
8 TMPSET ← empty
9 for each transition NXi in NSET do

10 begin
11 NX ST ← next state of NXi
12 for each transition NXj of NX ST do
13 begin
14 NEW TR← concatenate NXi with NXj
15 TMPSET ← TMPSET ∪NEW TR

16 end

17 end
18 NSET ← TMPSET

19 end
20 TRSET ← TRSET ∪NSET
21 end
22 remove unused transitions from TRSET
23 return TRSET

24 end

4.3 Derivation Algorithm

Algorithm 1 is a generalized algorithm for deriving multi-character transitions from

an AC-trie. In this algorithm, the input parameter k is the number of charac-

ters to be inspected in parallel. The input parameter NXSET contains the origi-

nal 1-character transitions that are derived according to the approach of AC-DFA,

AC-NFA, or hybrid AC-FA. The output variable TRSET contains the resulting k-

character transitions. By using multiple level iterations, this algorithm derives the

k-character transitions for every state in the original AC-trie.

In line 2, TRSET is initialized. Statements in the loop between line 3 and line 21

derive all of the k-character transitions of every state Si. In line 5, the 1-character

transitions of state Si are duplicated to variable NSET . The loop between line 7
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Chapter 4. Multi-Character State Transitions

and line 19 is repeated k − 1 times, in which the 1-character transitions of Si are

concatenated with their successive 1-character transitions iteratively to derive the

k-character transitions of Si. After executing the loop, NSET contains all of the k-

character transitions of Si. In line 20, NSET is added to TRSET . The algorithm

then returns to line 5 to process the next state continuously. The algorithm is

terminated when all of the states are processed. Finally, TRSET contains the

derived k-character transitions.

Now let’s look into the loop between line 7 and line 19. In line 8, TMPSET

is initialized. In the loop between line 10 and line 17, every transition NXi in

NSET is expanded. In line 11, the next state of NXi is assigned to NX ST . In

the loop between line 13 and line 16, NXi is concatenated with every transition

NXj respectively beginning from NX ST to obtain new transitions. In line 14,

NXi is concatenated with NXj to obtain a new transition NEW TR. In line 15,

NEW TR is added to TMPSET . Here the number of the pattern characters of

NEW TR is one more then the number of the pattern characters of NXi.

Because the intermediate state is concealed after two transitions are concate-

nated, the matching outputs must be reserved in the concatenation operation in

line 14. Moreover, some transitions consists of all assistant transitions that may be

obtained in the concatenation process are not useful and are subsequently removed

in line 22.

Now let’s estimate the time complexity of the derivation algorithm by using

k-character AC-NFA. According to equation (4.1), the number of transitions in

a i-character AC-NFA is ri = r1 + (i − 1) × nop, implying that ri concatenation

operations are required to derive the i-character transitions from (i-1)-character

transitions. Therefore, the total required concatenation operations Tc to derive the

1-character transitions to k-character transitions can be obtained as follows:

Tc =
k∑

i=2

(r1 + (i− 1)× nop) = (k − 1)× r1 +
2k

k − 1
× nop

Consequently, the time complexity of Algorithm 1 is O(k × r1 + nop). Since a

derived multi-character AC-DFA or hybrid AC-FA generally has more transitions

than a multi-character AC-NFA for the same original AC-trie, the time complexity

for deriving a multi-character AC-DFA or hybrid AC-FA should be greater than

that for deriving a multi-character AC-NFA.
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Figure 4.8: Regular-expression example

4.4 Comparison of Derivation Approaches

Some previous researches have proposed derivation approaches for deriving multi-

character transitions in different perspectives. This section discusses the approaches

of Yamagaki et al. [17] and Yang et al. [28] for comparison. Since both their ap-

proaches derive the transitions of a regular expression to multi-character transitions,

the regular expression “ab(c|d)” is used as an example for comparison; the FSM

built on the regular expression example is shown in Fig. 4.8.

4.4.1 The proposed approach

First, the FSM example is derived to a 2-character FSM by using the proposed

approach and the derivation process is briefly shown in Fig. 4.9. At the beginning,

the 1-character transitions of the FSM are retrieved and the assistant transitions

are prepared as shown in Fig. 4.9(a). In which, the transitions denoted as dashed

lines are assistant transitions. Every transition is concatenated with its successive

transitions to obtain 2-character transitions; the concatenation processes are shown

Fig. 4.9(b). Finally, the resulting 2-character FSM is shown in Fig. 4.9(c).

4.4.2 Yamagaki et al. approach

Yamagaki et al. derive multi-character transition by iteratively merging two succes-

sive transitions and solve the alignment problem by adding additional transitions for

the initial state and all final states. Fig. 4.10 describes a derivation example of Ya-

magaki et al. [17]. In this example, the 1-character NFA of “ab(c|d)” is converted

into a 2-character NFA. Fig. 4.10(a) shows the NFA graph obtained from the regular-

expression example, where dashed edges show original edges. Before the derivation

procedure, a self edge δ1(0,?)=0 is added to the initial node and an additional tran-

sition δ1(Sf ,?)=- is added for each final node Sf . The derivation procedure merges

each of the transitions with its successive transition(s) respectively. These tasks are

performed for all of the transitions, and then the 2-character NFA graph as shown

in Fig. 4.10(b) is obtained. Fig. 4.10(c) shows the rearranged FSM to show how the
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Figure 4.9: Deriving 2-characters NFA by using the proposed approach

alignment problem is resolved. Where the right final state, i.e. the added virtual

node, becomes active when a match occurs at the first position of the two input

character positions, and the left state, i.e. state 3, becomes active when a match

occurs at the second character position. If matches occur at both positions, both

states become active. Similarly, a 4-character NFA can be obtained from the new

derived 2-character NFA by the merging operations. Consequently, a 2k-character

NFA can be obtained by k iterations of the described derivation procedure.
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Figure 4.10: Deriving 2-character NFA by using Yamagaki et al. approach

4.4.3 Yang et al. approach

Yang et al. proposed a circuit-level spatial approach to construct a multi-character

regular-expression matching engine [28]. Their approach accepts an m-character

matching-engine circuit Cm and a p-character matching-engine circuit Cp for the

same regular expression, and then merges the two input circuits by reconnecting

the transitions to obtain an (m+ p)-character matching-engine circuit Cm+p for the

same regular expression. In the merging procedure, the states of one of the input

circuits are converted to dummy nodes, and then the destination of each of the links

is reconnected to the same destination node in the other circuit. Notably, the two

input-circuits and the output circuit have the same states. As a result, merging two

identical 1-character FSMs obtains a 2-character FSM; and merging the resulting 2-

character FSM and the original 1-character FSM further obtains a 3-character FSM.

Repeating the procedures can obtain an FSM for processing a required number of

characters in parallel.

An example of the merging procedure proposed by Yang et al. is shown in

Fig. 4.11. In (a), FSM1 and FSM2 are two identical original FSMs. The nodes and

transitions of FSM2 are denoted as grey color for clarity. In addition, the states

in FSM2 are converted to dummy nodes. Fig. 4.11(b) illustrates the FSM after
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Figure 4.11: Deriving 2-character NFA by using Yang et al. approach

reconnecting the destination nodes. For example, the destination node of δ(0, a) = 1

in FSM1 is reconnected to state 1 in FSM2; and, on the other hand, the destination

node of δ(0, a) = 1 in FSM2 is reconnected to state 1 in FSM1. The resulting FSMs

after rearranged are shown in Fig. 4.11(c), where additional transitions are added

for obtaining complete 2-character transitions. Finally, Fig. 4.11(d) shows the FSMs

after removing the dummy nodes.

4.4.4 Summary of comparison

As can be seen in Fig. 4.10, 4.11, and 4.9, the resulting 2-character FSMs are all

the same. While the derivation approach of Yamagaki et al. achieving by merging
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operations does have the limitation that the number of characters to be inspected in

parallel is restricted to 2k. In addition, the wildcard character is used to deal with

the alignment problem in these approaches. Although the paper of Yang et al. does

not mention how to resolve the alignment problem, the wildcard character is used

implicitly in resolving the alignment problem in the circuit derived by using their

approach.

Furthermore, the obtained 2-character FSM has the same states as the original

FSM has, excepting the pseudo states added for dealing with the alignment problem.

Moreover, the number of transitions increases linearly with respect to the number

of transitions ended with final states, because of the assistant transitions added for

preserving the matching information.
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Chapter 5

Multi-Character String-Matching

Approaches

This chapter proposes various architectures for implementing the multi-character

FAs, including AC-DFA, AC-NFA, and hybrid AC-FA, derived by the algorithm

described in previous chapter. In addition, the proposed approaches are imple-

mented in FPGA devices to evaluate the utilization of hardware resource and esti-

mate achievable throughput.
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Figure 5.1: Basic block diagram of a 3-character string matching engine

First, the generalized block diagram and matching operation of a multi-character

string matching engine is described. This generalized block diagram and opera-

tion are applicable to the proposed architectures described in this thesis. Fig. 5.1

shows the complete bock diagram of a basic 3-character string matching engine,

and Fig. 5.2 shows the waveform of the matching example with an input text

‘enhappenhappygo’.
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Figure 5.2: Waveform of matching operations

In every matching cycle, three characters are input via C1, C2, and C3 in parallel;

and then, three corresponding matching outputs are generated from OP1, OP2, and

OP3 after this matching cycle. In most of the implementations in this thesis, a

matching cycle is equal to a clock cycle. Three registers are connected after PMUX1,

PMUX2, and PMUX3 to save the matching outputs. A matching output can include

a signal to indicate it is valid or not; the matching output is plotted as a zero line

if it is invalid in the waveform.

The matching operations are synchronized with the clock signal CLK and data

are latched in the rising edges of CLK. This input text is divided to five 3-character

chunks ‘enh’, ‘app’, ‘enh’, ‘app’, and ‘ygo’ and then processed in five consecu-

tive matching cycles, respectively. An inspecting 3-character chunk is input via

IN CHRS, which includes C1 through C3, and three corresponding matching outputs

are generated from OP1 through OP3 after one matching cycle. A valid matching

output OP2, which is 14 or ‘happen’, after matching cycle 3; and two valid matching

outputs OP1 and OP3, which are 7 and 16 or ‘happy’ and ‘happygo’ respectively,

after matching cycle 5.

5.1 Multi-Character AC-DFA

This section proposes an efficient architecture for implementing the derived multi-

character AC-DFA. Fig. 5.3 illustrates the transitions of 3-character AC-DFA. In

which, the growth of transitions is reduced by using a wildcard character to represent

a unmatched character. Because the intermediate states are concealed when multiple

characters are inspected simultaneously, the output set is denoted beside the pattern

in a transition. For example, the output set denoted beside δ3(5,py?)=- is (0,17,-
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Figure 5.3: Transitions of the 3-character AC-DFA

), in which the three notations of this output set are corresponding to the three

pattern characters respectively. The first number 0 represents a empty string; and

the second number 17 means state 17 which represents keywords ‘enhappy happy’.

Finally, the last notation ‘-’ represents a invalid output which is corresponding to

the wildcard character ‘?’ in the pattern. Notably, an output set is not denoted if

all of the matching outputs are empty strings for clarity.

The 3-character AC-DFA is depicted as three portions according to the levels of

nodes. The first to the third groups, from top to bottom, consist of the nodes in the

(3× i + 1), (3× i + 2), and (3× i) levels, in which i is an integer and i ≥ 0. Some

transitions across two groups are derived from failure functions.

5.1.1 Implementation

Fig. 5.4 illustrates the block diagram of the implementation of 3-character AC-DFA.

The string matching engine accepts the input IN CHRS, which consists of three

characters C1 through C3, and produces three matching outputs OP1 through OP3

corresponded to the three input characters, respectively. In the application of the
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Figure 5.4: Architecture for a 3-character AC-DFA

proposed string-matching engine, an inspecting text is split to chunks of three char-

acters and then fed via the input IN CHRS to this device chunk by chunk. This

string matching engine includes m matching units where each matching unit is re-

sponsible for processing a transition. Because the derived 3-character transitions

include wildcard characters and multiple transitions could be activated simultane-

ously, priority multiplexers are needed to determine the next state and matching

outputs. The priority multiplexer PMUX0 determines the next state and PMUX1

through PMUX3 determine three final matching outputs. When none of the inputs

of a priority multiplexer is valid, this priority multiplexer output a default output,

such as zero; and thus it ensures that a next state can be return to the initial state

when none of rules is matched.

The detailed diagram of each matching unit is illustrated in Fig. 5.5. Where each

matching unit includes data registers, a matching circuit, and a control circuit. The

block enclosed by dashed lines is a control circuit. The control circuit which consists

of multiple AND gates performs AND operation of the output EQ of the matching

circuit with the corresponding bits of output mask OMASK to obtain the control

flags NX FLG and OF1 to OF3. The information of transition rule is stored in the

data registers. The data registers are logically partitioned to two groups which store
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the pattern data and the output data, respectively. The matching circuit matches

the input data with the pattern data. If the matching result is matched, then the

output EQ is true; otherwise the output EQ is false.

The pattern data include the ternary mask TMASK, the pattern characters

P CHRS, and the current state P ST. The output data include the output mask

OMASK, the matching outputs OP1 to OP3, and the next state NX ST. The details

of pattern data and output data are explained together with the description of the

transition rules.

Table 5.1 lists the transition rules of the example 3-character AC-DFA. The

example 3-character AC-DFA has total 32 3-character transition rules while only

portion of the rules are listed as examples. In the table, ‘-’ represents a don’t-care

output, while in the real work the matching output is determined by the corre-

sponding bit in OMASK. The rule number in the first field is only for the sake of

convenience in explanation and is not required to be stored in registers in the real

implementation. In the table, the rules are arranged in the order according to their

priorities; where rules 1 through 32 are arranged from the highest priority to the

lowest priority.

The fields of each rule can be grouped to pattern data and output data roughly.

The pattern data include ternary mask TMASK, current state P ST, and pattern

characters P CHRS. The output data include output mask OMASK, next state
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Table 5.1: Transition rules of the 3-character AC-DFA

Rule Patern Data Output Data
no. TMASK P ST P CHRS OMASK NX ST OP1 OP2 OP3
1 1100 15 o?? 0100 - 16 - -
2 1111 14 hap 1111 5
3 1111 13 nha 1111 4 14
4 1100 13 n?? 0100 - 14 - -
5 1110 12 go? 0110 - 16

:
:

28 0111 0 hap 1111 10
29 0011 0 ?en 1011 2 -
30 0011 0 ?ha 1011 9 -
31 0001 0 ??e 1001 1 - -
32 0001 0 ??h 1001 8 - -

NX ST, and matching outputs OP1 through OP3. The pattern data are compared

with the input characters and the current state, if the comparing result is matched

then the rule is activated and the output data with flag are generated. The matching

outputs OP1 through OP3 are corresponded to the first to third characters of the

pattern characters P CHRS respectively. Each bit of the ternary mask TMASK de-

termines if the corresponding pattern data should be compared or not. For example,

the bits of TMASK, from the most significant bit (MSB) to the least significant bit

(LSB), are corresponding to the current state P ST, and the first to third pattern

characters of P CHRS, respectively.

A pattern character is compared when the corresponding ternary mask bit is ‘1’;

otherwise the pattern character is don’t-care. For example, the bit 3 of TMASK in

rules 28 through 32 are all ‘0’, it means the current states P ST of these rules are

don’t-care. Each bit of the output mask OMASK determines if the corresponding

output data is valid or not. For example, the bits of OMASK, from the MSB to

the LSB, in the rules are corresponding to the next state NX ST, and the matching

outputs OP1 to OP3 respectively. For example, bit 3, bit 1, and bit 0 of the OMASK

in the first rule are all ‘0’, which means the NX ST, OP2, and OP3 are not valid;

namely, when rule 1 is activated it does not affect both the next state and the

matching outputs corresponded to the second and third input characters.

In Table 5.1, the matching outputs are expressed as state numbers; this facilitates

a hardware implementation. For example, the output OP1 of the first rule is 16
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which is corresponded to the output string ‘happygo’, and the output OP1 of the

fourth rule is 14 which is corresponded to the output string ‘happen’. In this manner,

the outputs can be stored in fixed width spaces instead of storing the variable length

string data, and it is convenient for hardware design.

Now, the hardware cost required for implementing a k-character AC-DFA by

using the proposed architecture is estimated. Suppose that each input character is

bc bits, P ST and NX ST are bs bits, and each of OPi is bp bits in the implementation.

In addition, the widths of TMASK and OMASK are k+1 bits. As a result, the total

width of k matching outputs is k × bp bits and the width of P CHRS is k × bc bits.

The required space bm of each matching unit for storing one k-character transition

rule is calculated as follows:

bm = (k + 1) + bs + k × bc + (k + 1) + bc + k × bp (5.1)

= (bc + bp + 2)× k + 2bs + 2

As can be seen from the above equation, the space for storing the rule in each

matching unit is proportional to the number of characters, i.e. k, to be inspected

in parallel. If the usual 8-bit character set is used and the matching outputs are

represented by state numbers, then bc = 8 and bp = bs, and the required space can

be obtained by the following simplified equation:

bm = (bs + 10)× k + 2bs + 2 (5.2)

As can be seen from this equation, the number of states determines the widths

of the registers and further determines the space for rules and complexity of com-

parators.
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5.1.2 Matching example

In order to demonstrate the effectiveness of the proposed multi-character AC-DFA

approach, Fig. 5.6 illustrates an example of the matching operation of the 3-character

AC-DFA. In this example, the input string to be matched is ‘enhappenhappygo’,

which is divided to five 3-character chunks ‘enh’, ‘app’, ‘enh’, ‘app’, and ‘ygo’ and

then processed in five consecutive matching cycles, respectively. This figure only

displays the triggered transitions; the transitions with higher priorities are arranged

in the upper portion. The matching results of a matching cycle are denoted under

the next state, which are represented by state numbers for clarity. However, the

matching results are omitted if all of them are empty results for clarity.

The state register is initialized before the matching procedure. In the first

matching cycle, according to the input characters ‘enh’, the matched transitions

are δ3(0,enh)=3 and δ3(0,??h)=8; in which, δ3(0,enh)=3 has a higher priority and

determines the next state to be 3. Both the matching outputs determined by these

two triggered transitions are empty strings. In the second matching cycle, according

to the input characters ‘app’ and the next state determined in the previous cycle,

the matched transition is only δ3(3,app)=6. The matching output determined by

this triggered transition is an empty string in the second matching cycle.

In the third matching cycle, according to the input characters ‘enh’ and the next

state, i.e. 6, determined in the previous matching cycle, the matched transitions

are δ3(6,en?)=-, δ3(0,enh)=3, and δ3(0,??h)=8. The matching result of δ3(6,en?)=-

is (0,14,-), which has a matching output corresponding to the second inspecting

character. Consequently, at the end of the third matching cycle, the final matching

result OP2 is 14, or ‘happen’, and both the other two results OP1 and OP3 are

empty strings. The next state is determined as 3 in the third cycle. In the same

way, OP1 through OP3 are all empty strings and the next state is 6 at the end of

the fourth matching cycle. In the fifth matching cycle, two transitions δ3(6,ygo)=16

and δ3(6,y??)=- are triggered; the former has a higher priority and determines the

matching results OP2 and OP3 are 7 and 16 respectively. The next state is deter-

mined as 16 in the fifth cycle.

5.1.3 Experiment and evaluation

The keywords retrieved from the rules of SNORT are used for evaluation. The

numbers of transitions for k-character AC-DFAs of 200, 400, 600, 800, and 1,000

keywords are evaluated for the cases of k= 1, 2, 3, and 4.
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Table 5.2: Rules for different k-character AC-DFA

keywords k = 1 k = 2 k = 3 k = 4
(total length) (r1/len) (r2/r1) (r3/r2) (r4/r3)

200 4,775 12,053 31,030 75,712
(2,321) (2.06) (2.52) (2.57) (2.44)

400 16,011 61,653 222,899 777,428
(4,692) (3.41) (3.85) (3.62) (3.49)

600 35,064 169,307 757,859 3,306,210
(8,032) (4.37) (4.83) (4.48) (4.36)

800 53,756 308,207 1,571,908 7,806,812
(10,728) (5.01) (5.73) (5.10) (4.97)

1000 73,465 458,623 2,590,140 14,249,657
(13,374) (5.49) (6.24) (5.65) (5.50)

len: total lenth of keywords
r1 to r4: numbers of rules for k = 1 to 4

Table 5.2 lists the numbers of transition rules for different number of keywords

and different k-character AC-DFAs. The numbers in the parentheses, for k = 1 is

the ratio of the rules for k = 1 to the total length of keywords, and for k = 2 through

4 are the ratios of the rules between k and k − 1. In this table, len represents the

total length of keywords, and r1 through r4 represent the numbers of transition rules

of k-character AC-DFAs for k = 1 through 4.
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Figure 5.7: Growth of transitions of k-character AC-DFAs

Fig. 5.7 shows the growth of transitions of k-character AC-DFAs with respect k.

These curves are represented by rk = len × pk, where the value of p is dependent

on the keyword set. The values of p are 2.4, 3.6, 4.5, 5.2, or 5.7 for 200, 400, 600,
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800, and 1,000 keywords respectively. The value of p is obtained by the arithmetic

mean of the ratios r1/len and ri/ri−1, in which i is 1 through 4. The curve for 200

keywords is omitted in this figure since it is too close to the x-axis as compared with

others. As can be seen in the results, the number of rules increases more rapidly

when the keywords increase. This phenomenon might be owing to the fact that when

keyword-set size grows the failure functions linked to non-initial states increase, and

thus the transitions (δ) of the derived AC-DFA increase more. Accordingly, in order

to decrease the number of transition rules, the keywords should be partitioned to

small subsets and each subset is processed by a separate string matching engine.

Although the wildcard character is used to reduce the transitions, the evalua-

tion indicates that the number of k-character transitions grows exponentially with

respect to k for a k-character AC-DFA. In which, the growth of transitions is ap-

proximately 5.7k for the case of 1,000 keywords by using the proposed AC-DFA

approach. Nevertheless, the growth of transitions should be 256k generally if a

k-character transition DFA is implemented in a traditional lookup table approach.

Table 5.3 shows the required spaces of each matching unit and total matching

units for different numbers of keywords and different parallel characters k, the re-

quired total spaces are derived by multiplying the unit spaces with total rules showed

in Table 5.2. In which, bs is the width of the registers, which is represented in bits.

The space of a matching unit is derived by equation (5.2) for an 8-bit character set.

The spaces are all represented in bits. This table also lists the numbers of states

in the AC-DFAs for different numbers of keywords, and the width (represented as

bits) of state registers are denoted in the parentheses. The number of states in an

AC-DFA is determined by the keyword set, and further the width of state registers

and the total required space are determined according to the number of states. On

the other hand, when k is increased, the number of pattern characters and match-

ing outputs and the widths of pattern mask and output mask of the transition rule

increase correspondingly. The relationship between the required space and k can be

obtained by simply multiplying the number of rules rk = len × pk with the space

of a matching unit which is obtained by equation (5.2). The resulting equation is

Sk = len× pk × [(10 + bs)× k + 2bs + 2]. Consequently, the growth of the required

space is about k × pk.

Table 5.4 shows the results of implementing 4-character AC-DFAs in ASIC de-

vices for the cases of 512 and 1,024 matching units. These implementations were

compiled and synthesized by using Altera Quartus II tools with an Altera’s Hard-

Copy IV ASIC HC4E35FF1517. According to the data sheet of the product, this
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Table 5.3: Spaces for different k-character AC-DFA

k=1 k=2 k=3 k=4
Keywords States Unit Tot. Unit Tot. Unit Tot. Unit Tot.

(tot. len.) (bs) spc. spc. spc. spc. spc. space spc. spc.

200 1,790
45 215K 66 795K 87 2.7M 108 8.2M

(2,321) (11 bits)

400 3,597
48 769K 70 4.3M 92 21M 114 89M

(4,692) (12 bits)

600 6,081
51 1.8M 74 13M 97 74M 120 397M

(8,032) (13 bits)

800 8,029
51 2.7M 74 23M 97 152M 120 937M

(10,728) (13 bits)

1000 9,916
54 4.0M 78 36M 102 264M 126 1.8G

(13,374) (14 bits)

* spaces are all represented in bits.

Table 5.4: Implementation of 4-character AC-DFA in ASIC
512 Units 1,024 Units

Used HCells 304,666 608,436
HCell Utilization 3% 6%

Total registers 45,432 91,045
Clock 142 MHz 95 MHz

Throughput 4.5 Gbps 3.0 Gbps

ASIC device has 9774,880 HCells, where an HCell is a logic array cell used in the

HardCopy IV series devices. In the table, the results include total used HCells, the

utilization of HCells and registers, the maximum achievable operating clock, and the

derived maximum achievable throughput. The achievable throughput is obtained

by multiplying the data width, which is 32 bits, with the clock rate. As of the max-

imum operating clock, the implementation of 512 matching units is higher than the

implementation of 1,024 matching units. The reason for the degradation of operat-

ing clock is that the priority multiplexers are implemented by chained multiplexers.

The minimal critical path of a priority multiplexer is log2M chained multiplexers

for M matching units. Therefore, the delay of the priority multiplexer is longer for

the more matching units. If the priority multiplexers are re-designed to reduce the

time delays, the operating clock should be improved.
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Figure 5.8: Transitions and output multiplexers of the 3-character AC-NFA

5.2 Multi-Character AC-NFA

This section proposes an efficient architecture for implementing the derived multi-

character AC-NFA. Fig. 5.8 depicts the 3-character transitions derived from an AC-

NFA as three disjoint 3-character AC-NFAs. Although the disjoint 3-character AC-

NFAs can be merged to a single 3-character AC-NFA, the disjointed AC-NFAs are

explained more clearly. Since the final matching outputs are determined by priority

multiplexers and the matching outputs of the nodes in the higher levels have higher

priorities, the nodes of the three individual AC-NFAs are arranged according to their

levels in the original AC-trie to more clearly illustrate the relationship of the nodes.

For clarity, pseudo nodes are denoted as V1 through V8. The matching outputs

that contain non-empty strings are denoted beside the corresponding node. For

example, the notation (12,0,16) beside node 16 means that when state 16 is activated

the matching outputs corresponding to the three inspecting characters are state 12,

0, and 16, or ‘happy’, an empty string, and ‘happygo’. Level numbers denoted

at the top are the levels corresponding to the original AC-trie. Matching outputs

OP1 through OP3 are corresponding to the three inspecting characters. The output

selection circuit consisting of three priority multiplexers PMUX1 through PMUX3
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shown on the right is used to determine the last matching outputs OP1 through

OP3 from the matching results of the activated nodes. As describing above, the

matching outputs of the nodes in a higher level have higher priorities. The strings

represented by matching outputs are depicted in the right lower corner of this figure

for clarity.

Because ‘?’ represents an arbitrary character, multiple transitions could be

matched simultaneously in the same level. For example, transition δ3(11,y??)=V1

is always matched when transitions δ3(11,ygo)=16 is matched. However, transi-

tion δ3(11,y??)=V1 preserves the matching output of pattern ‘happy’. Therefore,

the matching output corresponding to the first inspecting character can be deter-

mined by node V1 alone when these two transitions are matched simultaneously.

As another example, when state 15 is activated pseudo state V5 is also activated,

where the second matching outputs of node 15 and pseudo node V5 are the same.

Therefore, only st(V5) is sent to input E4 of priority multiplexer PMUX1.

Therefore, when multiple transitions in the same level are matched simultane-

ously, the matching output is determined by the pseudo node that is appended for

preserving the matching output for the corresponding inspecting-character. The re-

lationship between the pseudo nodes and the actual nodes can be grouped as follows

V1-V5-12, V2-V6-14, V3-V7-16, and V4-V8-7. Where the three members of each

group are the matching outputs corresponding to the first through third inspecting

characters, respectively. As shown in the figure, the control inputs of PMUX1 and

PMUX2 are all the status functions of the pseudo nodes. Consequently, with an

increasing number of characters to be inspected in parallel, only the priority multi-

plexers required for determining the matching outputs must be increased accordingly

while the inputs of each priority multiplexer are the same.

The earlier description can be generalized to the case inspecting k characters in

parallel, in which the derived k-character transitions can be grouped to k disjoint

k-character AC-NFAs. Notably, each AC-NFA is responsible for dealing with a

misalignment case. In addition, k priority multiplexers are required for determining

the last k matching outputs and each multiplexer has nop inputs.

5.2.1 Implementation

Next, this work describes the logic circuit for implementing the multi-character

transitions where the character matching function is implemented by decoders with

combinational logics instead of comparators [29]. Moreover, the approach of Sidhu
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and Prasanna [30] that implements the comparators by the Look-Up Tables (LUTs)

of FPGAs can be used as well. Fig. 5.9 illustrates an example of the logic circuit

of four transitions. In the upper portion of this figure, devices DEC1, DEC2, and

DEC3 are 8-to-256 decoders, with each one used to decode one input character to

256 signals. Signals dec1(i), dec2(i), and dec3(i) represent the i-th decoded signals

of input characters C1 through C3, respectively, where i is an integer between 0 and

255. For example, when input character C1 is ‘e’, which corresponds to ASCII code

101, the signal dec1(101) is true. In this figure, the notation dec1(‘e’) instead of

dec1(101) is used for clarity.

In addition to depicting the transitions used as the example in the lower left

portion, Fig. 5.9 also shows the corresponding logic circuit in the lower right portion.

Where signal st(s) denotes the activating signal for the node s, in which s is 10,

14, 15, or V5. Consider a situation in which S10 is true and dec1(‘p’), dec2(‘y’),

and dec3(‘g’) are true as well. In this situation, signal st(15) is true, implying that

transition δ3(10,pyg)=15 is matched, and node 15 is activated in the next clock.

Alternatively, a multi-character AC-NFA can be implemented in a multi-stage

architecture. Nevertheless, it is similar to the implementation of multi-character

hybrid AC-FA described later and is omitted here.
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5.2.2 Matching example

In order to demonstrate the effectiveness of the proposed multi-character AC-NFA

approach, Fig. 5.10 illustrates an example to explain the matching operation of the

3-character AC-NFA. In this example, the input string to be matched is ‘enhap-

penhappygo’, which is divided to five 3-character chunks ‘enh’, ‘app’, ‘enh’, ‘app’,

and ‘ygo’ and then processed in five consecutive matching cycles, respectively. This

figure displays only the triggered transitions; the transitions with higher priorities

are arranged in the upper portion. The matching results of each matching cycle

are depicted in the bottom portion of this figure, which are represented by state

numbers for clarity.

Before the matching procedure, all the states are initialized. In the first match-

ing cycle, according to the input characters ‘enh’, the matched transitions are

δ3(0,enh)=3 and δ3(0,??h)=8 and both the matching outputs determined by these

two triggered transitions are empty strings. In the second matching cycle, according

to the input characters ‘app’ and the next states determined in the previous cycle,

the matched transitions are δ3(3,app)=6, and δ3(8,app)=11. Both the matching

outputs determined by the two triggered transitions are empty strings in the second

matching cycle.

In the third matching cycle, according to the input characters ‘enh’ and the

next states determined in the previous matching cycle, the matched transitions are

δ3(11,en?)=V7, δ3(0,enh)=3, and δ3(0,??h)=8. The matching result of pseudo node

V7 is (0,14,-), in which V7 has a matching output corresponding to the second

inspecting character. Consequently, at the end of the third matching cycle, the

final matching result OP2 is 14, or ‘happen’, and the other two results OP1 and
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OP3 are both empty strings. In the same way, OP1 through OP3 are all empty

strings at the end of the fourth matching cycle. In the fifth matching cycle, two

transitions δ3(6,y??)=V3 and δ3(11,ygo)=16 are triggered. Both these two triggered

transitions have matching results corresponding the first inspecting character which

are 7 and 12. Because state 7 is in a higher level than state 12, the final matching

result OP1 is determined to be 7. Only δ3(11,ygo)=16 has valid matching outputs

corresponding to the second and third inspecting characters, and which determines

the final matching results OP2 and OP3 to be 0 and 16 respectively.

100 MHz

200 MHz

50,000
ALUTs

100,000
ALUTs

150,000
ALUTs

10 Gbps

20 Gbps

k=1 k=4 k=8 k=12 k=16

Throughput
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1000 Bible keywords

2000 Bible keywords

1000 Snort keywords

Figure 5.11: Result curves for evaluation of k-character AC-NFAs

5.2.3 Experiment and evaluation

The keywords for evaluation are extracted from the index of the King James Bible

and the rules of Snort. The implementations of 1,000 and 2,000 Bible keywords

with k = 4, 8, 12, and 16 are evaluated first. For the case of 1,000 Bible keywords,

the total length is 7,400 characters and the average length is 7.4 characters; in

addition, the AC-trie built on these keywords has 3,982 states, in which 1,125 states

are output states. Since the number of goto functions is equal to the number of the

states in an AC-trie, the number of the transitions of the k-character AC-NFA is

rk = 3982 + 1125 ∗ (k − 1). For the other case of 2,000 keywords, the total length
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is 15,414 characters and the average length is 7.7 characters; in addition, the built

AC-trie has 8,681 states, in which 2,391 states are output states. Consequently, the

number of transitions is rk = 8681 + 2391 ∗ (k − 1) for the k-character AC-NFA of

2,000 keywords.

A significant amount of research on IDS adopts the Snort rules to evaluate the

performance of string matching. Therefore, in this work, Snort keywords are also

evaluated for making a comparison with the results of related works. During the

evaluation of 1,000 keywords extracted from Snort rules, the total length is 13,566

characters and the average length is 13.6 characters; in addition, the built AC-

trie contains 10,157 states and 1,130 output states. Consequently, the number of

transitions for k-character AC-NFA is rk = 10157 + 1130 ∗ (k − 1).

Table 5.5: Evaluation of multi-character AC-NFA with 1,000 Bible Keywords
k = 1 k = 4 k = 8 k = 12 k = 16

Total transitions 3,982 7,357 11,857 16,357 20,857
Logic utilization 2% 5% 10% 16% 21%

Used ALUTs
3,583 18,113 34,588 53,579 70,100

(< 1%) (4%) (8%) (13%) (16%)

Registers
3,106 3,142 3,190 3,238 3,286

(< 1%) (< 1%) (< 1%) (< 1%) (< 1%)
Fmax (MHz) 190.33 180.18 162.15 162.07 167.36
Throughput 1.5Gbps 5.8Gbps 10.4Gbps 15.6Gbps 21.4Gbps
LE/char 1.13 3.59 6.38 9.60 12.40

Table 5.6: Evaluation of multi-character AC-NFA with 2,000 Bible Keywords
k = 1 k = 4 k = 8 k = 12 k = 16

Total transitions 8,681 15,854 25,418 34,982 44,546
Logic utilization 5% 11% 23% 33% 43%

Used ALUTs
8,038 38,805 76,427 111,801 147,626
(2%) (9%) (18%) (26%) (35%)

Registers
6,902 6,944 7,000 7,056 7,112
(2%) (2%) (2%) (2%) (2%)

Fmax (MHz) 164.15 142.8 138.52 135.72 137.34
Throughput 1.3Gbps 4.6Gbps 8.9Gbps 13.0Gbps 17.6Gbps
LE/char 1.21 3.71 6.77 9.64 12.55

Programs were developed according to the proposed algorithm to derive the

multi-character transitions from the keywords and convert the derived transitions
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Table 5.7: Evaluation of multi-character AC-NFA with 1,000 Snort Keywords
k = 1 k = 4 k = 8 k = 12 k = 16

Total transitions 10,157 13,547 18,067 22,587 27,107
Logic utilization 4% 8% 16% 24% 31%

Used ALUTs
6,209 28,589 53,386 78,715 102,030

(< 1%) (7%) (13%) (19%) (24%)

Registers
9,193 9,235 9,291 9,347 9,403

(< 1%) (2%) (2%) (2%) (2%)
Fmax (MHz) 180.28 172.47 130.17 143.39 131.27
Throughput 1.4Gbps 5.5Gbps 8.3Gbps 13.8Gbps 16.8Gbps

to VHDL codes. The generated VHDL codes were compiled and synthesized by

Altera’s development tool Quartus II 9.1. The hardware function was verified by

ModelSim-Altera 6.5b software. The device selected for evaluating the proposed

architecture is an Altera’s Stratix IV family FPGA EP4SE530F43C2 which has

424,960 ALUTs and 424,960 Registers, where an ALUT (adaptive look-up table) is

a logic unit used in the Altera’s FPGA devices. The achievable throughput is derived

by multiplying the data width with the maximum frequency (Fmax) reported by the

development tool.

Tables 5.5 and 5.6 summarize the evaluation results for 1,000 and 2,000 Bible

keywords, respectively. In addition, Table 5.7 lists the evaluation results for 1,000

Snort keywords. Fig. 5.11 shows the curves of the hardware costs, the maximum

frequencies, and derived throughputs for the implementations with respect to dif-

ferent k values. The curves reveal that the throughputs and hardware costs are

linearly proportional with respect to k, whereas the maximum frequencies (Fmax)

are slightly decayed as k increases.

Tables 5.5 and 5.6 indicate that the throughputs grow about 14 times, and the

used ALUTs grow about 18 times for k = 16 with respect to k = 1 for both cases. In

the case of 1,000 Snort keywords, the throughputs grow about 12 times and the used

ALUTs grow about 16 times for k = 16 with respect tok = 1, as shown in Table 5.7.

In these implementations, the used ALUTs of the hardware resource grows nearly

linearly with respect to k, whereas the used registers remain nearly the same since

the states do not increase as k increases and the pseudo states are not saved.

Analysis results indicate that the Fmax is degraded slightly as k increases. The

max frequencies Fmax in the case of 2,000 Bible keywords are always lower than in the

case of 1,000 Bible keywords for different k values, even though the former has fewer

transitions. For example, the used ALUTs and Fmax in the case of 1,000 keywords
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with k = 16 are 70,100 ALUTs and 167.36 MHz, and those in the cases of 2,000

keywords with k = 1 and k = 4 are 8,038 ALUTs and 164.15 MHz and 38,805 ALUTs

and 142.8 MHz respectively, where the first one has more transitions while can

achieve a higher Fmax. This phenomenon might be owing to the fact that the critical

path of the circuit is dominated by the complexity of output-selection circuit that

depends on the number of output states (nop). Routing between the output states

and the output selection circuit becomes more complex as nop increases, whereas

the routing complexity increases slightly as k increases. Moreover, max frequencies

Fmax in the case of 1,000 Snort keywords are lower than that in the case of 1,000

Bible keywords. This difference might me owing to the fact that the average length

of the Snort keyword is nearly twice that of the average length of the Bible keyword.

In these implementations, the priority multiplexers consist of multiple levels of

multiplexers, and the critical path is the delay produced by log2 nop levels of multi-

plexers for nop output states, explaining why the delay of the priority multiplexers

is longer for the more inputs. In the proposed approach, the number of inputs for

a priority multiplexer is equal to the number of output states. In the case of 1,000

Bible keywords, 1,125 output states exist and the critical path of the priority mul-

tiplexer is 11 levels of multiplexers according to log2 1125 = 10.13. In the case of

2,000 Bible keywords, 3,982 output states exist and the critical path of the priority

multiplexer is 12 levels of multiplexers according to log2 2391 = 11.22. In the case of

1,000 Snort keywords, 1,130 output states exist and the critical path of the priority

multiplexer is 10 levels of multiplexers according to log2 1130 = 10.14.

Table 5.8: Evaluation with 1,000 Snort Keywords for Matching-Flag Output
k = 1 k = 4 k = 8 k = 12 k = 16

Total transitions 10,157 13,547 18,067 22,587 27,107
Logic utilization 7% 9% 16% 24% 33%

Registers
1,701 10,105 15,372 22,751 30.226
(1%) (7%) (11%) (16%) (21%)

Registers
8,682 8,195 7,804 7,841 7,860
(6%) (6%) (6%) (6%) (6%)

Fmax (MHz) 333.44 280.5 245.94 203.79 167.11
Throughput 2.7Gbps 9.0Gbps 15.7Gbps 20.0Gbps 21.4Gbps
LE/char 0.96 1.69 2.14 2.82 3.51

In some applications (e.g., the string-matching circuit for IDS described in the

article of Katashita et al. [18], in which only the matching output for each pattern

is required), the priority multiplexers can be replaced with OR-gates. This work
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also examines how the priority multiplexers influence performance by undertaking

additional experiments with the architecture that determines the matching outputs

by OR-gates instead of priority multiplexers. During this evaluation, the imple-

mentation is built on a smaller FPGA EP4SGX180DF29C2X, which has 140,600

ALUTs and 140,600 registers. Table 5.8 summarizes the evaluation results with

only matching flags as output. Comparing Table III with Table IV reveals that

when the matching outputs are determined by priority multiplexers, the required

ALUTs increase approximately 3.36 times. Additionally, Fmax decreases by ap-

proximately 38%, implying that the critical path delay increases on average by 1.61

times.

In Katashita et al. [18], the hardware resources required for every character

are 0.83 LE/char and 4.13 LE/char for the cases of 1-character and 16-character

NFAs, respectively. In the proposed approach, the hardware costs are 0.96 LE/char

and 3.51 LE/char for the cases of 1-character and 16-character NFAs, respectively,

when only matching flags are output, which resembles the results of Katashita et

al. When the output stage is implemented by priority multiplexers, the hardware

costs increase to 1.42 LE/char and 10.27 LE/char for the cases of 1-character and

16-character NFAs, respectively. Despite the increases in hardware cost and time

delay when using priority multiplexers to determine the matching outputs, providing

a corresponding matching output represented in a state number for each inspected

character should be convenient in most applications.

5.3 Multi-Character Hybrid AC-FA

This section proposes a multi-stage string-matching architecture for implementing

the derived multi-character hybrid AC-FA. Fig. 5.12 illustrates the transitions of the

3-character hybrid AC-FA. The transitions of NFA portion and DFA portion are sep-

arated for clarity. Comparing with the 3-character AC-NFA, the 3-character hybrid

AC-FA has three additional transitions δ3(7,go?)=-, δ3(6,ygo)=16, and δ3(6,en?)=-

in the DFA portion.

5.3.1 Implementation

Fig. 5.13 illustrates the block diagram of the proposed architecture which implements

a 3-character hybrid AC-FA, which derived from the example of Fig.3.11.

The number of the stages L is determined by the number of NFA levels NNFA
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Figure 5.12: Transitions of multi-character hybrid AC-FA

and k value, that is L = NNFA + k + 1. For the described example, the NFA-level

is NNFA = 3 and the number of characters under inspection in parallel is k = 3, so

that the number of stages L = 3 + 3 + 1 = 7.

The first six stages are arranged as three chains where each stage chain deals

with a alignment case. Stage 1, the first stage of the first chain, deals with the case

that the first character of pattern appears in the third character of the input chunk,

and therefore the preceding two characters of the transitions are both wildcard

characters.

The transitions in stage 7, which is a terminal stage, are corresponding to the

DFA portion of the hybrid AC-FA. The next states determined by the final stages,

which are stages 4 through 6, in the three chains all traverse into stage 7. Because

at most one state can be activated in a time for each stage, the priority multiplexer

PMUX0 determines the next state for stage 7 from the next states (NXs) output

from stages 4 through 7. The transitions in the later stage are corresponding to the

states in the deeper level of the AC-trie, and thus the next state determined by the

later stage has higher priority, e.g. the next state determined by stage 7, which is

the final stage, has the highest priority.

Since multiple transitions may be triggered simultaneously, the transitions in

each stage are arranged according their priorities where a transition with a higher
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Figure 5.13: Implementation of 3-character Hybrid AC-FA

priority is arranged in a higher position in the block diagram. For example, transition

δ3(6,y??)=- is triggered always when the transition δ3(6,ygo)=16 is triggered, and

thus the former should have a lower priority. However, if two transitions are never

triggered at the same time then their priorities do not matter.

OP[i]

xop[6,i]

xop[2,i]
xop[1,i]

xop[7,i]

MO

D1
D2

...

D6

D7

...

PMUX
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Figure 5.14: Matching output circuit

In the multi-stage hybrid-FA approaches, the matching output and next state are

determined by using priority multiplexers from multiple potential results. Fig. 5.14

illustrates the priority multiplexer for determining the i-th final matching output

corresponding to the i-th inspecting character. Three priority multiplexers are re-

quired for determining three matching outputs in the above example. A priority

multiplexer accepts multiple inputs and selects a valid input with the highest prior-

ity as the output; if none of the inputs is valid then a default value is output, such
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as zero in general. Where the input in the upper position has a higher priority, for

example, the input D1 has the highest priority.
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Figure 5.15: Matching example of the 3-character hybrid AC-FA.

5.3.2 Matching example

In order to demonstrate the effectiveness of the proposed approach, Fig. 5.15 illus-

trates an example to explain the matching process of the 3-character hybrid AC-FA.

The input text of this example is ‘enhappenhappygo’, which is split to chunks of

three characters and then processed sequentially in five matching cycles. In the

first cycle, according to the input ‘enh’, the transitions δ3(0,??h)=8 in stage 1 and

δ3(0,enh)=3 in stage 3 are triggered. Neither the transition has matching output so

the matching outputs are all empty in this cycle. The next states determined by

stages 1 and 3 are sent to stages 4 and 6, respectively.

In the second cycle, according to the input ‘app’ and the next states determined

in preceding cycle, the transitions δ3(8,app)=1 in stage 4 and δ3(3,app)=6 in stage

6 are triggered which determine next states 11 and 6, respectively. Both states 11

and 6 are in DFA portion and the latter one is in deeper depth, so that state 6 is

preserved and sent to stage 7. The matching outputs are all empty in this cycle

also.

In the third cycle, according to the input ‘enh’ and the next states determined

in preceding cycle, the transitions δ(6,en?)=- in stage 7, δ(0,??h)=8 in stage 1,

and δ(0,enh)=3 in stage 3 are triggered. The transitions δ(6,en?)=- determines the

matching output corresponding to the second input character to be 14 or ‘happen’.

In the fourth matching cycle, transitions δ3(8,app)=1 in stage 4 and δ3(3,app)=6

in stage 6 are triggered in response to the input characters ‘app’ and the next
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states determined in the preceding matching cycle. The priority multiplexer PMUX0

selects the next state determined by the stage 6, which is 6, to sent to stage 7. The

matching outputs are all empty strings in this cycle.

In the fifth matching cycle, two transitions of stage 7 which are δ3(6,ygo)=16 and

δ3(6,y??)=- are triggered in response to the input characters ‘ygo’ and the next states

determined in the preceding matching cycle. The transition δ3(6,ygo)=16 has a

higher priority so that it determines the next state to be 16 and the matching outputs

corresponding to the three input characters to be 7, 0, and 16 in this matching cycle.

The first and third matching outputs, 7 and 16, are corresponding to keywords

‘enhappy happy’ and ‘happygo’ respectively.

5.3.3 Estimation of required stages

This subsection estimates the required stages in a multi-stage string matching engine

from two perspectives. First, in order to understand how many stages are required

to effectively identity the keywords if a multi-stage string-matching engine only

has the NFA portion, the probabilities of sharing common prefixes of keywords

for different lengths are examined. Alternatively, the number of multi-character

transitions versus the levels of the NFA-portion is evaluated to estimate the total

stages are required in the hybrid AC-FA architecture.
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First, the probabilities of sharing common prefixes of keywords for different

lengths are examined to understand how many stages are required if a multi-stage

string-matching engine only has the NFA portion. Figure 5.16 illustrates the graph

of analysis results. The keywords for analysis are extracted from the index of the
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King James Bible and the rules of Snort. The average lengths are 8 and 22 char-

acters and the longest keywords are 37 and 80 characters for the Bible and Snort

keywords, respectively.

Because many keywords of the Bible keywords have common prefixes, such

as ‘ABEL’, ‘ABEL-BETH-MAACHAH’, ‘ABEL-MEHOLAH’, ‘ABEL-MIZRAIM’,

and ‘ABEL-SHITTIM’, the probabilities of baring common prefixes is high for the

cases the lengths of prefixes are less than five characters. As shown in Figure 5.16,

the probability for sharing the 10-character common prefixes of the Bible keywords

is 0.09. While for the Snort keywords, it needs to share 25-character common pre-

fixes to achieve the probability of 0.09. As a result, to assure that the probability

is low enough, the length of prefixes to be compared in the NFA portion should be

larger than the average length of keywords, which is 22 for Snort keywords.

Next, to evaluate the number of multi-character transitions versus the levels of

the NFA-portion, the samples for evaluation are 1,000 keywords retrieved randomly

from SNORT [31] rules. The numbers of k-character transitions are evaluated for the

cases of k=1, 4, and 8, and NFA levels are 1 to 15, respectively. Fig. 5.17 shows the

relation between the numbers of transitions and levels of NFA-portion. The AC-trie

built on these keywords has 10,157 goto functions and 1,130 non-empty outputs, so

that the number of transitions is 10, 157+(k−1)∗1, 130 for a k-character AC-NFA.

The numbers of transitions of the k-character AC-NFAs are denoted as horizontal

dashed lines in this figure.
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Figure 5.17: Transitions versus NFA-levels for the k-character Hybrid AC-FA

As seen in this graph, the transitions increase dramatically when the NFA levels

are less than four; while the curves are nearly flat when the NFA levels are greater

61



Chapter 5. Multi-Character String-Matching Approaches

than eight. Moreover, when the NFA levels are more than 15, the number of transi-

tions of the k-character hybrid AC-FA is equal to that of the k-character AC-NFA.

This comparison indicates that the transitions grow almost linearly with respect to

k as the NFA levels are more than eight. As can be seen in this result, the benefit of

the hybrid approach is more significant when the k is larger. Although the longest

keyword has 80 characters, the transitions do not increase when the NFA levels are

more than 15. In other words, eighty stages are required if the matching engine is

implemented in an AC-NFA approach.

Table 5.9: Implementing multi-character hybrid AC-FAs on FPGA
k=1 k=4 k=8

Total rules 2,813 3,756 5,013
Used ALUTs 11,741 (3%) 21,460 (5%) 31,258 (7%)
Used registers 132 (<1%) 204 (<1%) 300 (<1%)

Logic utilization 3 % 6 % 9 %
Max. Freq. 83.93 MHz 76.44 MHz 66.6 MHz
Throughput 0.7 Gbps 2.4 Gbps 4.3 Gbps

LE/char 3.81 6.96 10.14

5.3.4 Experiment and evaluation

The proposed architecture of multi-character hybrid AC-FA was evaluated on FPGA

devices. The proposed architectures were designed in VHDL code and then built by

Altera’s development tool Quartus II. The built results were simulated in Modelsim

to verified the logic functions of the architectures. The devices selected for evaluating

the proposed architecture is Altera’s products Stratix IV FPGA, which has 424,960

ALUTs and 424,960 registers. The proposed implementation was evaluated with

300 keywords and the results are shown in Table 5.9. The total length of the 300

keywords is 3,892 characters. Comparing the results of k=4 and 8 with that of

k=1 shows that the throughputs grow 3.4 and 6.1 times, respectively, while the

used ALUTs grow 1.8 and 2.7 times, respectively. The growth rates of used ALUTs

are lower than those of throughputs. Comparing the results also indicates that

the maximum operating clock is degraded when the transitions grow. The reason

for clock degradation as transitions growing is that the minimal critical path of a

priority multiplexer with M inputs consists of log2M chained multiplexers; therefore

the delay of the priority multiplexers is longer for the more inputs.
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Chapter 6

Configurable Architectures

This chapter presents configurable architectures of multi-character string-matching.

Although the hybrid-FA approach has the space efficiency and the stages of which

can be determined as required, the number of rules in each stage is varied with the

keyword set to be processed. Therefore, a configurable architecture consisting of

multiple rule units is proposed, in which each rule unit can be configured to process

a specific transition and be allocated to a specific stage. Due to the configurability

features, the proposed architectures can process different keyword sets by simply

updating the configuration.

rule[1]

rule[M]

. . . .

Rule circuit

IN_CHRS

State
circuit

Output
circuit Matching

Outputs

Next
states

Figure 6.1: Main block diagram of the configurable architecture

6.1 Configurable stage architecture

This section describes a architecture that includes multiple configurable rule units

each of which can be dynamically configured to a desired stage. The proposed

configurable architecture can be applied to the AC-DFA or hybrid-FA.
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6.1.1 Block diagram

Fig. 6.1 illustrates the block diagram of the proposed configurable architecture,

which includes rule, state, and output circuits. All rule units are put together in

the rule circuit in which each rule unit processes a transition. A rule unit can

be allocated to a desired stage according to its own rule data. The state circuit

determines the next states of stages; and the determined next states are looped back

to the rule circuit as current states in the next matching cycle. The output circuit

determines the final matching outputs corresponding to the inspecting characters

from the matching results of all rule units.
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Figure 6.2: Rule unit for the configurable stage architecture

Fig. 6.2 illustrates the block diagram of a rule unit. The rule data of each rule

unit contains stage information used to determine which stage this rule unit belongs

to. According to the stage information, the multiplexer selects the corresponding

input state and the demultiplexer sends the resulting next state to the corresponding

output.

NX[i]

xnx[1,i]

xnx[M,i]

MO

D[1]

D[M]

. . . .

. . . .

PMUX[i]

i=1,2,3

Figure 6.3: State circuit of stages 1 through 3 for the configurable stage architecture

The circuits for determining the next states NX[1] through NX[3] are identical,

each of which is implemented by a priority multiplexer as shown in Fig. 6.3. The

circuit for determining the next state NX[4] consists of two levels of priority multi-

plexers, as shown in Fig. 6.4. The priority multiplexers PMUX4 through PMUX7

determine the next states from the matching results corresponding to the stages 4

through 7 and then PMUX8 determines NX[4] from the results of PMUX4 through

PMUX7. The output circuit consists of multiple priority multiplexers each of which
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Figure 6.4: State circuit of the terminal stage for the configurable stage architecture

is similar to the block diagram shown in Fig. 5.14, while the priority multiplexers

must have M inputs according to the M rule units here. Therefore the detail of the

output circuit is omitted here.

The proposed configurable matching engine can be manufactured as a standalone

chip. Consequently, when the processing keyword set is changed, only the transitions

need to be regenerated according to the new keyword set, and then the rule units

are reconfigured by using the new generating transitions. Because of the flexibility,

the proposed configurable matching engine can be implemented in ASICs and not

restricted in FPGAs. However, there is a trade off between the flexibility and per-

formance. While the proposed configurable matching engine is flexible, the circuit

becomes complicated and the performance is degraded. However, this degradation

in performance can be compensated by advanced semiconductor technologies.

6.1.2 Experiment and evaluation

The proposed architectures are evaluated on FPGA and ASIC devices. The pro-

posed architectures were designed in VHDL code and then built by Altera’s devel-

opment tool Quartus II. The built results were simulated in Modelsim to verified

the logic functions of the architectures. The devices selected for evaluating the pro-

posed architectures are Altera’s products Stratix IV FPGA and HardCopy IV ASIC,

where the FPGA has 424,960 ALUTs and 424,960 registers and the ASIC device

has 9,774,880 HCells.

Since the multi-stage architecture is implemented by decoders and combination

logics instead of registers and comparators [29] and must be rebuilt when the key-

word set is changed, it is only evaluated on FPGA devices. While the rule data of

the configurable architecture can be reconfigured when the keyword set is changed,

it is evaluated on both FPGA and ASIC devices. The NFA levels are 8 for all of
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the implementations, and thus the stages are 10, 13 and 17 for k = 1, 4, and 8,

respectively. Additionally, the achievable throughput is derived by multiplying the

data width with the clock rate.

Table 6.1: Implementing the configurable architecture on FPGA
Original 2-stage pipeline

k=1 k=4 k=8 k=1 k=4 k=8

Used ALUTs
60,119 77,948 106,632 59,544 79,033 102,315
(14%) (18%) (25%) (14%) (19%) (24%)

Used registers
27,063 60,921 106,532 35,090 72,580 120,749
(6%) (14%) (25%) (8%) (17%) (28%)

Logic utilization 24 % 34 % 48 % 24 % 34 % 47 %
Max. Freq. (MHz) 34.34 25.97 20.54 74.75 57.95 48.44
Throughput (Gbps) 0.3 0.8 1.3 0.6 1.9 3.1

The proposed configurable architecture is evaluated on FPGA and ASIC devices.

These implementations consist of 512 rule units for the purpose of verification and

evaluation. Moreover, the pipeline approach of Soewito [32], which integrates the

pipeline architecture and multi-thread operation, is applied to increase the through-

put in the evaluation of configurable architecture. The pipeline configurable archi-

tecture for evaluation includes two stages.

Table 6.1 summarizes the results of implementing the original and pipeline con-

figurable architectures on FPGAs. The results of implementing the original archi-

tecture on FPGAs are discussed first. The derived throughputs grow approximately

2.7 and 4.3 times for k=4 and 8 with respect to k=1, respectively. Considering the

hardware resources, the used ALUTs grow 1.3 and 1.8 times, and the used regis-

ters grow 2.3 and 3.9 times for k=4 and 8 with respect to k=1, respectively. Next,

the results of implementations of the pipeline architecture on FPGAs are discussed.

The derived throughputs grow approximately 3.2 and 5.2 times for k=4 and 8 with

respect to k=1, respectively. Considering the hardware resources, the used ALUTs

grow 1.3 and 1.7 times, and the used registers grow 2.1 and 3.4 times for k=4 and

8 with respect to k=1, respectively.

Subsequently, Table 6.2 summarizes the results of implementing the original

and pipeline configurable architectures on ASICs. The results of implementing the

original architecture on ASICs are discussed first. The derived throughputs grow

approximately 3.8 and 5.8 times for k=4 and 8 with respect to k=1, respectively.

Whereas the used HCells grow 1.6 and 2.5 times for k=4 and 8 with respect to k=1,

respectively. Next, the results of implementing the pipeline architecture on ASICs
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Table 6.2: Implementing the configurable architecture on ASIC
Original 2-stage pipeline

k=1 k=4 k=8 k=1 k=4 k=8
Used HCells 389,094 626,943 966,938 383,247 629,855 943,581

HCell utilization 4 % 6 % 10 % 4 % 6 % 10 %
Max. Freq. (MHz) 77.66 70.76 54.18 172.0 136.46 123.44
Throughput (Gbps) 0.6 2.3 3.5 1.4 4.4 7.9

are discussed. The derived throughputs grow approximately 3.1 and 5.6 times for

k=4 and 8 with respect to k=1, respectively. Additionally, the used HCells grow

1.6 and 2.5 times for k=4 and 8 with respect to k=1, respectively.

For the implementations on ASIC, the maximum operating clock for k=4 is de-

graded 9% as comparing with that for k=1, while the maximum operating clock

for k=8 is degraded 23% as comparing with that for k=4. The reason of the clock

degradation much more for k=8 might be because the multiplexers and demulti-

plexers used in the implementation are 32 to 1 for k=8, while are 16 to 1 for k=1

and k=4.

Comparing Table 5.9 with Table 6.1 indicates that the maximum frequencies of

the configurable architecture are lower than those of the multi-stage architecture

for the implementations on FPGAs. This might be because the configurable archi-

tecture is more complicated than the multi-stage architecture. Furthermore, since

the rule matching function is implemented by decoders with combinational logics

instead of registers and comparators in the implementations of the multi-stage ar-

chitecture, its hardware efficiency and achievable clock rate are much higher than

the implementations of the configurable architecture. Both in the implementations

on FPGA and ASIC, when k increases the hardware utilization is increased and the

maximum operating clock is degraded, while the implementations on ASIC have

higher clock rates and hardware efficiency. These results imply that the multi-stage

architecture should be used if FPGA is selected for an application, while the con-

figurable architecture should be the choice if ASIC is selected or a stand alone chip

is going to be designed. Tables 6.1 and 6.2 also indicate that the throughput can

increase approximately twice by using a two-stage pipeline structure, whereas the

used hardware resources increase slightly.
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6.2 Configurable data-width architecture

This section proposes an architecture of configurable rule unit to provide the flex-

ibility of the multi-stage architecture. The rule units can be configured according

to the keyword set to be processed. In addition, multiple rule units can be grouped

together to process more characters in parallel, i.e., the number of characters to

be inspected in parallel is configurable. For example, a rule unit can process two

characters in parallel, and then a unit-group consisting of four units can process

eight characters in parallel.

Furthermore, in the proposed configurable architecture, all rule units are put

together and each one can be allocated to a different stage dynamically according

to the rule data. Consequently, this configurable architecture can process various

keyword sets by simply reconfiguring the rule data.
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Figure 6.5: Rule unit for the configurable data-width architecture

6.2.1 Basic rule unit

Figure 6.5 illustrates the block diagram of a basic rule-unit, and the table in Fig-

ure 6.6 briefly lists the symbol descriptions for the rule unit. The configurable set-

tings of a basic rule-unit include ST SEL, NX SEL, F, L, CUR ST, C1, C2, NX ST,

OP1, and OP2. Notably, some symbol names of the configurable settings are same

as the signal names for simplicity.

The multiplexer MUX1 selects the corresponding state to the input CUR ST
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Symbol Description
SEQ NO Sequence no.
ST SEL Current state selection
NX SEL Next state selection

F First unit flag
L Final unit flag
M Matching result
EN Output enable
CI Carry input
CO Carry output
EI Enable input
EO Enable output

Figure 6.6: Symbol descriptions of the configurable data-width rule-unit

according the setting ST SEL. The demultiplexer DEMUX1 sends the resulting

next state NX ST to the corresponding output according to the setting NX SEL.

The settings ST SEL and NX SEL are determined by which stage that the unit

belongs to. In this example, MUX is a 12-to-1 multiplexer and DEMUX is a 1-to-12

demultiplexer, the basic rule-unit can be configured to stage 1 to 12. However, since

the twelfth stage is the final stage, the twelfth input of MUX1 is omitted.

The multiplexer MUX2 selects corresponding characters to the inputs XC1 and

XC2 according the setting SEQ NO. The demultiplexer DEMUX2 sends OP1 and

OP2 to corresponding matching outputs according to the setting SEQ NO.

Multiple rule units can be cascaded as a unit-group through control signals CI,

CO, EI, and EO. The signals CI and CO are carry signals; and EI and EO are enable

signals. The basic rule-unit in this example can inspect two characters in parallel.

Consequently, a unit-group consisting of n rule units can inspect 2n characters in

parallel. In a unit group, the matching results of rule units are aggregated at the

final unit through CI and CO. In which, the signal L is true for the final unit of a

group. The final matching result obtained in the final unit are feed back to other

units through signals EI and EO.

Signals F and L determine the carry and enable signals should be propagated to

another unit or not. Signal F is a first-unit flag. When a unit is the first unit of a

unit-group, the signal F of which should be true. Signal L is a final-unit flag. When

a unit is the final unit of a unit-group, the signal L of which should be true.

The table in Figure 6.7 summarizes the decisions for determining the control sig-

nals EN, CO, and EO. In the first three cases, a group consists of multiple cascaded
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Flag Control signal
Description

F L CO EO EN
0 0 CI∧M EI EI middle unit
0 1 0 CI∧M CI∧M final unit
1 0 M 0 EI first unit
1 1 0 0 M standalone

Figure 6.7: Decisions of control signals for the configurable data-width rule-unit

units; while in the last case, a group has only one unit.

The first case is that a unit is in the middle of multiple cascaded units, i.e. both

F and L are configured as false. A middle unit must aggregates the value received

from CI with its own matching result M and then forwards the aggregating result

to the next unit, so that CO is obtained by CI∧M. Fur a middle unit, the enable

signal EN is equal to the value received from EI, and the value of EI is passed to

the previous unit through EO.

The second case is happened in the final unit of a group. Since there is no other

unit after the final unit the signal CO should be false. The final unit is responsible

for aggregating the matching result of a group that must consider the value of CI

and its own matching result M, so that EN is obtained by CI∧M. The final unit also

must feed the obtained EN backward to the previous unit through output EO.

The third case is considered for the first unit of a group. There is no other unit

before the first unit and thus the signal EO is false. In addition, the output CO of

the first unit is simply equal to its own matching result M. The enable signal EN

of the first unit is equal to the value of EI directly. A unit as described in the last

case is a standalone unit, i.e. a single unit processes a transition alone. The signals

CO and EO are not used in a standalone unit and thus both CO and EO are always

false. The signal EN of a standalone unit is simply equal to its own matching result

M.

Since each unit-group needs to generate only one next-state, only one rule unit

is required to generate the next state when this unit-group is matched. While

every rule unit has to produce the matching outputs corresponding to the characters

inspected by that unit when a unit-group is matched.

Considering that each basic rule-unit can process a 2-character transition and

the requirement is to process 6-character transitions and wants to have total 12

stages. In this scenario, each unit-group should consist of three basic units. The re-

sulting architecture has six stage-chains and each stage-chain consists of two stages.
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According to this configuration, the longest pattern that can be processed is varied

from 7 to 12 characters corresponding to the first to sixth stage-chain respectively.

As a result, the configurable data-width allows a user to choose the required config-

uration depend on the application. In addition, the characters inspected in parallel

are more, the throughput gains more.

According to the proposed configurable approach, when the processing keyword

set is changed, only the transitions need to be regenerated for the new keyword

set, and then the rule units are reconfigured by using the new generating transi-

tions. Because of the flexibility, the proposed configurable matching engine can be

manufactured as a standalone device, for example, manufactured by using ASICs.

However, there is a trade off between the flexibility and performance. While the

proposed configurable matching engine is flexible for a real application, the circuit

becomes complicated and the performance is degraded. Nevertheless, this degrada-

tion in performance can be resolved by advanced semiconductor technologies.

SEQ_NO

0

CHRS

NX_ST

3

0, 1

CUR_ST

'yg'

15

12, 0

ST_SEL 0

NX_SEL 6

SEQ_NO

F, L

0

NX_ST

OP1, 2

1

1, 0

CUR_ST

'ha'

-

0, 0

ST_SEL 0

NX_SEL -

SEQ_NO

0

CHRS

NX_ST

2

CUR_ST

'pp'

-

ST_SEL 0

NX_SEL -

EI

EO

EI

EO

CO

CI

CO

CI

C5
C6

C3
C4

C1
C2

OP5
OP6

OP3
OP4

OP1
OP2

NX

CHRS

Unit 1

Unit 2

Unit 3

F, L OP1, 2 0, 00, 0

F, L OP1, 2

Figure 6.8: Example of three-unit group

6.2.2 Example of three-unit group

Figure 6.8 illustrates an example of three concatenated rule-unit configured as a 6-

character transition. In this figure, only the used signals are shown for clarity. The
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transition represented by this example is δ6(0,happyg)=15. In which, the matched

output OP5, corresponding to the fifth inspecting character C5, is 12.

The first unit, the rule data SEQ NO of which is 1, selects characters C1 and C2

as input characters. The flag F being 1 indicates that no other unit is before this

unit, and the flag L being 0 indicates that it has a successive unit. In the second

unit, SEQ NO is 2 and the flags F and L of which are both 0. The first and second

units do not output next states. Only the third unit, which is the final unit of this

group, output a next state NX.

As described above, the number of transitions grows linearly with respect to k

for a k-character AC-NFA. Furthermore, the space required to store a k-character

rule also grows linearly with respect to k approximately. Consequently, the required

space grows quadratically with respect to k for a k-character AC-NFA implemented

in the proposed multi-stage architecture. In short, the space complexity of the

proposed configurable multi-character multi-stage string-matching architecture is

O(n2) with respect to the number of inspecting characters.

Unit 1

xx

ha

pp

C1, 2

C3, 4

OP1, 2

CO

CO

EO

xx ygC5, 6

OP5, 6 12, 0

15NX

EO

Unit 2

Unit 3

OP3, 4

xx

0, 0

0, 0

Matching
  cycle

cycle 1 cycle 2 cycle 3

xx

xx

Figure 6.9: Waveform of the three-unit group

6.2.3 Waveform of three-unit group

Fig. 6.9 illustrates the waveform of the matching operations of the example shown

in Fig. 6.8. Because the start state of the example transition is 0, i.e. the root node,

72



6.2. Configurable data-width architecture

and does not need to be checked in matching operations, the CUR ST is not shown

in this waveform diagram. For clarity, the input characters and matching outputs

are denoted in groups. For example, the input characters of unit 1 are denoted as

C1,2 and the matching outputs of which are denoted as OP1,2. In addition, the

propagation delays in circuit are not considered in this waveform diagram.

In matching cycle 1, according to the input characters ‘haxxxx’, only unit 1 is

matched and its CO becomes true. In matching cycle 2, according to the input

characters ‘happxx’, units 1 and 2 are matched and their CO become true. In

matching cycle 3, according to the input characters ‘happyg’, all units of this group

are matched and the matching result aggregated in unit 3 is true. The matching

result obtained in unit 3 is fed backward to units 2 and 1 through terminals EI

and EO, and thus all matching results are enabled to be output together. After

matching cycle 3, the input characters become ‘xxxxxx’, so that all units are not

matched and their matching outputs are disabled again.

6.2.4 Experiment and evaluation

Since the rule data of the configurable architecture can be reconfigured as required,

the propose architecture is evaluated on both FPGA and ASIC devices. The pro-

posed architectures were designed in VHDL code and then built by Altera’s devel-

opment tool Quartus II. The built results were simulated in Modelsim to verified

the logic functions of the architectures. The devices selected for evaluating the pro-

posed architectures are Altera’s products Stratix IV FPGA and HardCopy IV ASIC,

where the FPGA has 424,960 ALUTs and 424,960 registers and the ASIC device

has 9,774,880 HCells.

These implementations consist of 64 rule units for the purpose of verification and

evaluation. Three cases, i.e. 1-character, 2-character, and 4-character rule-units, are

evaluation. In all of the cases, a group unit can consist of four rule-units at most.

It means that the three cases can be configured to process 1 through 4, 2 through

8, and 4 through 16 characters in parallel, respectively.

The results of implementing the configurable architectures with different data

widths on FPGAs and ASICs are summarized in Table 6.3 and Table 6.4 respectively.

In which, the achievable throughput is derived by multiplying the data width with

the clock rate. In the evaluation on FPGAs, the hardware resource required for a

character is represented by LE/char, which is calculated as follows:

(] of ALUTs + ] of Registers) ∗ 1.25/(total characters)
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Table 6.3: Implementing the configurable architecture on FPGA
Data Width/Unit 1 Char. 2 Char. 4 Char.

Combinational ALUTs 6,261 10,263 13,524
Dedicated logic registers 1,885 4,857 7,684

LE/Char 159 148 104
Fmax (MHz) 44.35 39.22 37.64

Data Width/Group 8-32 bits 16-64 bits 32-128 bits
Throughput (Gbps) 0.35-1.42 0.63-2.51 1.20-4.82

Table 6.4: Implementing the configurable architecture on ASIC
Data Width/Unit 1 Char. 2 Char. 4 Char.

Total HCells 39,649 73,000 98,232
HCell/Char 629 570 384

Fmax (MHz) 60.0 55.03 54.85
Data Width/Group 8-32 bits 16-64 bits 32-128 bits
Throughput (Gbps) 0.48-1.92 0.88-3.52 1.76-7.02

As can be seen in these tables, the resource required for a character is less when a

basic rule unit can process more characters; this is might because that the resource

used for matching the state pattern and the control logic is a constant overhead

and is independent of the number of characters processed simultaneously in a basic

rule unit. While the characters processed in parallel are more, the portion of the

constant overhead in the required resource is less. As shown in the results, it is

reasonable for the case that a basic rule unit processes four characters in parallel,

because this case is balanced between flexibility and efficiency.
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Comparison of Approaches

This chapter compares the results of the proposed approaches with those of pre-

vious work. Making a fair comparison is relatively difficult, because the hardware

and software approaches significantly differ in the way that they achieve the paral-

lelism. Nevertheless, the comparison provides insight into the status of the proposed

approaches.

7.1 Comparing Results

Table 7.1 summarizes the comparing results. The performance data of the other

approaches are taken from the corresponding literature. For software approaches,

column Clock is the operating clock of the CPU or GPU and column Parallelism

is the number of processing cores. While for hardware approaches, columns Clock

and Parallelism are the clock rate and the width of the data bus respectively. The

throughput of a hardware implementation is generally derived by multiplying the

clock rate by the data width.

In this comparison table, hardware approaches are listed in the upper rows. The

approach proposed by Katashita et al. [18] is an implementation of multi-character

NFAs that runs at 263 MHz and has a 512-bit data width and its throughput can

achieve 134.7 Gbps. The approach of Pao and Wang [6] achieves the parallelism by

using three QSV (quick sampling with on demand verification) units that runs at

230 MHz and has a 24-bit data width and consequently its throughput is 5.5 Gbps.

The approach of Tripp [5] achieves the parallelism by using multiple string matching

engines that can process four characters every clock and runs at 149 MHz and the

achievable throughput is 4.8 Gbps. Notably, the two implementations operating at

more than 200MHz clock have been accelerated by the pipeline technique.
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Table 7.1: Comparison of different approaches

Approach
Clock

Parallism
Throughput

(MHz) (Gbps)
Multi-character AC-DFA* 142 32 bits 4.5
Multi-character AC-NFA* 137 128 bits 17.6
Multi-character hybrid-FA* 66.6 64 bits 4.3
Configurable stage architecture* 123 64 bits 7.9
Configurable data-width architecture* 55 32-128 bits 1.8-7.0
multi-character NFA [18] 263 512 bits 134.7
QSV implementation [6] 230 24 bits 5.5
Parallel string matching engine [5] 149 32 bits 4.8

Multicore CPU (IBM Cell/B.E.) [19] 3,200 8 cores 40
Multicore GPU (Nvidia) [24] 1,300 30 cores 15.6
Cray XMT [25] N/A 128 nodes 28.0
Multicore CPU (Intel Xeon) [22] 2,260 32 cores 34.0

* Proposed architectures.

The remaining rows of the table are for software approaches. The approach of

Scarpazza et al. [19] was implemented on an IBM Cell/B.E. processor which has

eight SPEs (synergistic processing element); the throughput of each SPE is 5 Gbps

and jointly is 40 Gbps. The approach of Tumeo et al. [24] was implemented on an

Nvidia GPU Tesla C1060, which works at 1296 MHz (shader clock) and has thirty

cores, and the throughput can achieve 15.6 Gbps. In the later work of Tumeo et

al. [25], several architectures are evaluated where this table lists only the result with

the highest performance, which is evaluated on a Cray XMT with 128 processors;

the resulting throughput is 28Gbps. The approach of Yang and Prasanna [22] was

implemented on a 32-core Intel Manycore Testing Lab machine based on the Intel

Xeon X7560 processors, which is an 8-core ‘Nehalem’ running at 2.26 GHz, and the

resulting throughput is 34 Gbps.

The top five rows list the results of the approaches proposed in this thesis. The

proposed multi-character AC-DFA and two configurable architectures are imple-

mented in ASIC devices, and the proposed multi-character AC-NFA and hybrid

AC-FA approaches are implemented in FPGA devices. In addition, the architecture

with configurable stage scheme has been optimized by a two-stage pipeline circuit.

The results of the architecture with configurable data-width scheme is obtained by

the implementation of 4-character units.

Among the proposed multi-character string matching approaches, the AC-NFA

approach has the best performance due to the simplicity in architecture, while its
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7.2. Discussions

circuit needs to be rebuilt when the keyword set is changed and is suitable to be

implemented in programmable devices, such as FPGAs. The AC-DFA approach can

operate at a higher clock rate; nevertheless, the multi-character AC-DFA approach

would suffer from the problem of explosive transitions as the number of characters

inspected in parallel increases. Although the proposed configurable data-width ar-

chitecture operates at a relative low clock-rate, it can be configured to process more

characters in parallel and can obtain a reasonable performance as compared with

the AC-DFA approach. In addition, techniques of pipelining can be considered to

optimize the operation clock of the configurable string matching architecture.

7.2 Discussions

The advantages of the hardware string matching accelerator are revealed from this

comparison. The modern CPUs are sophisticated products that can run at very

high speed and have wide data width, while they are designed for general purposes.

It is worth to note that a simple hardware string matching accelerator running at

much lower clock can achieve the compatible throughput with respect to a software

program running at a very powerful CPU. Moreover, a hardware string matching

accelerator that can inspect multiple characters in parallel can achieve multiplied

throughput at the same clock rate. As comparing with the software approaches that

process multiple texts in multiple threads, it is more intuitive in a real application

that the hardware approaches process multiple characters in parallel.

The proposed work aims to propose a systematic approach for deriving multi-

character transitions and develop high efficient string matching engines capable of

inspecting multiple characters in parallel, and builds the implementations mainly for

verifying the effectiveness of architecture. The obtained results are preliminary and

can be improved further. For instance, the priority multiplexer are used intensively

in the proposed architectures and dominates the performances of the proposed ar-

chitectures. The structure of priority multiplexer is much similar to the structure

of CAM, which have been researched and improved in many previous works [33,34].

Therefore, it is considerable to improve the structure of priority multiplexer by re-

ferring to the structure of CAM. The performances of the proposed architecture

should be improve further when the priority multiplexer is improved.
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Chapter 8

Conclusions

This thesis first presents three approaches including AC-DFA, AC-NFA, and hybrid

AC-FA approaches to implement the AC-algorithm. The AC-DFA approach can be

implemented in a deterministic circuit while is inefficient in space. In contrast, the

AC-NFA approach is efficient in space while is nondeterministic in implementation.

Therefore, this thesis proposes a hybrid AC-FA that combines both the advantages

of the AC-DFA and AC-NFA approaches, i.e. efficiency in space and being deter-

ministic in implementation. The deterministic implementation is enable to design a

general architecture of string matching to process various keyword sets.

Next, an intuitive algorithm is proposed to derive multi-character transitions

from an AC-DFA, an AC-NFA, or a hybrid AC-FA, where each transition can match

multiple characters at a time. This derivation algorithm also includes using assistant

transitions and a pseudo state to resolve the alignment problem. Several architec-

tures are also proposed to implement the derived multi-character AC-DFA, AC-NFA,

and hybrid FA, respectively. Moreover, configurable architectures are also proposed

to provide flexibility in applications. Evaluations are performed for the proposed

architectures, respectively, to demonstrate their properties.

In summary, the proposed architectures of multi-character transition string match-

ing engine are simple and intuitive, allowing for its easy implementation for any

required number of characters to be inspected in parallel. As a result, the proposed

architectures can achieve efficient performance by inspecting multiple characters in

parallel, while maintain the efficiency in the hardware implementation.
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