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Abstract

This thesis not only classify all quaternion algebras over rational number field but
also describe the group structure of the Brauer group formed by them.

The quaternion algebra over rational number field can be roughly classified into
two types: the 2 by 2 matrix algebra and division rings. Since all 2 by 2 matrices are
isomorphic, we only need to classify division rings into non-isomorphic classes.

We study the group of norms and the local Hilbert symbols and show that there are
exactly two isomorphic classes of quaternion algebras over the local field unless the
field is complex number field.

Finally, we classify the quaternion algebras over rational number field and define
explicitly the group operation of the Brauer group. By Hasse-Minkowski theorem, a
quaternion algebra over the rational number field determines a set of local data and such

data determines the quaternion algebra.

Key words and phrases: Hamiltonian quaternion, group of norms, Hilbert symbol,

Brauer group, Hasse-Minkowski theorem
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Chapter 1

Introduction

The Hamiltonian quaternion H was first introduced by the Irish mathematician
William Rowan Hamilton in 1843. In modern language, H is a 4 dimensional R-
algebra, with an R-basis {1,4, 7, k} such that > = j2 = —1, ij = —ji = k (which
implies k? = —1).

For a element x = al+bi+cj+dk € H, a,b,c,d € R, denote * = al —bi—cj—dk.
Then ||z|| := 27 = Zx = a®* + V> + ¢ + d*> € R. Thus, if z # 0, then ﬁf is actually
the inverse of x. In other words, H is a division ring.

The simplicity and beauty in the structure of H has been fascinating me, since
the first time I learned it. That is why I chose to study in my thesis the corre-
sponding objects over QQ, namely, the 4-dimensional (Q-algebra that is also a division
ring. Soon, I learned that it is even better to consider all quaternion algebras (see
Definition 2.2.2) over a fixed number field, because their isomorphic classes form a
group, called the Brauer group of quaternions (see §4.2).

Most references I have found are on the general theory of finite dimensional
central simple algebras (see Definition 2.2.1) including quaternion algebras as a
special subset. It turned out that to describe the complete story on the classification
of all all central simple algebras would take much more effort than what I was
originally thought. “But, it might be possible to prove all the related theorems just
for the quaternion algebras instead, because most arguments used can be simplified

and there could be even better short cuts to take”, suggested my advisor, Professor



Ki-Seng Tan. I took his advice, and the result is this thesis. In it I not only classify
all quaternion algebras over Q but also describe the group structure of the Brauer
group formed by them, by using the language and the results in the standard book
on algebraic number theory.

In Chapter 2, I describe the general theory of quaternion algebra over a field of
characteristic different from 2.

Then in Chapter 3, the field is required to be the completion of a number field
at certain place. We study the group of norms and the local Hilbert symbols and
show that there are exactly two isomorphic classes of quaternion algebras over the
field, unless the field is C, then there is only one classes. Finally, in Chapter 4, we
classify the quaternion algebras over Q and define explicitly the group operation of
the Brauer group. We consider Theorem 9 as the main result of this thesis.

As mentioned before, this thesis does not contain anything new other than some
of the proofs formed by piecing together known material and old arguments, and I

am indebted to Professor Tan for many arguments used.



Chapter 2

Quaternion Algebras over a Field
of Characteristic # 2

In this chapter, K denotes a field of characteristic £ 2. All results in this Chapter
can be found in standard references on central simple algebra. For example, [Wel,
§1X]

In general, we have the following lemma:

Lemma 2.0.1. Suppose K is a field and D is a 4-dimensional K -algebra that is a
division ring. Then either D is a field or D is noncommutative and K 1is the center

of D.

Proof. Let L denote the center of D. Then K C L and D is an L-algebra. Therefore,
if [ : K] =1 and dim; D = d, then ld = 4. Therefore, [ = 1, 2, or 4. If [ = 4, then
D is a field. It is sufficient to show that if D is noncommutative, then [ # 2.
Suppose | = 2. Let a be an element of D not contained in L. Then L|a] is
a commutative integral domain which is a finite dimensional vector space over L,
and hence Lo = L(«), a non-trivial field extension of L. The dimension counting

shows D = L(«), a field. This is absurd.



2.1 The fundamental theorem

Definition 2.1.1. A quaternion division ring over a field K is a 4-dimensional

K-algebra that 1s a division ring with K as its center.

Let D be a quaternion division ring over K and let o be an element of D not
contained in K. By the argument similar to the one used in the proof of Lemma
2.0.1, we know that K(«) = K[a] is a non-trivial field extension of K. Then by the
dimension counting, we know that K(a)/K is actually a quadratic extension. By
the assumption char.(K') # 2, there is some element ¢ such that K (i) = K(«) such
that 2 = a € K. It follows that a is not a square of elements of K.

Consider the map ¢; : D —— D that sends z to the conjugate i - z - i~1. It
is a K-linear transformation with ¢; o ¢; = id, the identity map. Since ¢; satisfies
the equation T2 — 1 = 0, its minimal polynomial has no multiple roots, and hence
D can be decomposed as the direct sum of D%, the l-eigenspace of ¢;, and D™,
the —1l-eigenspace of ¢;. It is clear that K (i) C D*. Now if there were some
[ € DT not contained in K (i), then K(i,3) would be a non-trivial field extension,
and hence must equal D, by dimension counting. But, this is absurd, since D is
non-commutative. Thus, we have D* = K (i) and D~ is of dimension 2 over K.

Suppose j € D~ is a non-zero element. Then K (j) is a quadratic extension, and
hence

j% =cj +b, for some b, c € K.

Since ¢; is a ring homomorphism, we have ¢;(52) = ¢;(j)* = (—j)? = j2. Hence

42 € D*. Since b € D, we must have ¢j € D*. But ¢j € D™, too. Hence ¢j = 0,
and j2 = b. Denote k = ij. Then direct computation shows k € D~, and hence j

and k span the 2-dimensional space D~.

Definition 2.1.2. Let a and b be two non-zero elements in K. The associated cyclic
algebra H(a,b) over K is defined to be the 4-dimensional K -algebra spanned by the

basis {1,i,j,k}, with the identity i* = a, j> = b, ij = —ji = k.

4



Thus, H(a,b) is a special case of the cyclic algebra discussed in [Wel, §IX.4,

Proposition 11]. The above discussion proves the following theorem.

Theorem 1. If D is a quaternion division ring over K, then D = H(a, b) for some

a,be K*.

Note that if k is as above, then k? = —ab.

2.2 Basic properties of the cyclic algebra H(a, b)

Definition 2.2.1. A finite dimensional K-algebra is a central simple algebra over

K if it is a simple ring (no non-trivial two sided ideal) with center K.
Proposition 2.2.1. The cyclic algebra H(a, b) is a central simple algebra over K.

Proof. For x,y € H(a,b), define [z,y] := zy — yx so that [z,y] = 0 if and only if

xy = yx. Write x = o + a17 + aj + ask, ag, aq,as,a3 € K. Then
i, 2] = 2aa3] + 2azk,

[7, 2] = —2a3bi — 2k,

and

[i], x] = 2bagi — 2acrj.

Thus, x is contained in the center of H(a, b), if and only if a1 = ay = a3 = 0, which
means ¢ = qag € K.

Let I # 0 be a non-zero two sided ideal of H(a, b). We need to show I = H(a, b).
If K NI contains a non-zero element, then 1 € I, and hence I = H(a, b) as desired.
Otherwise, choose an = € I, and x ¢ K. This means at least one of oy, as, and
a3 is non-zero. Consider ug := [i, [ij, z]] = —4aaik, us := [}, [i,z]] = —4basi, and
ug = [k, [j, x]] = 4abasj. Then uy, A = 1,2, 3, are contained in I, and u, is a unit
of H(a, b) if and only if a;y # 0. This shows I contains a unit of H(a,b), and hence
I =H(a,b). O



The following theorem is a consequence of the general theory of central simple

algebra. For instance, see [Wel, §IX.1]. Here we give a direct proof of it.

Theorem 2. A 4-dimensional central simple algebra A is either a division ring, and

hence a quaternion division ring, or isomorphic to the matriz algebra M(2, K).

Proof. There are basic useful facts we are going to use. First, every z € A generates
a finite dimensional subalgebra K[z] C A. Thus, if d := dim K[z], then 1,z, ..., 2¢
are linearly dependent over K. This implies that x satisfied a polynomial equation
over K. For instance, if v = ¢ € K, then x satisfies a linear equation T'— ¢ = 0, and
vice versa. Let f,(T) € K|[T] denote the minimal polynomial, namely, the lowest
degree monic polynomial that has x as its root. Let a, € K denote the constant
term of f,.

Note that we can write f.(T) =T - g(T) + a,. If a, # 0, then

) _ —glx)

x =1,

and hence x € A*. On the other hand, if a, = 0, then z - g(z) = g(z) -z = 0.
This implies x € A*, for otherwise we would have g(z) = g(z) - - 7! = 0, which
contradicts to the fact that f, is the minimal polynomial.

For each z € A, we set the principal left ideal M, := A - x. Suppose M, = A.
Then there exists some y € A such that y - x = 1. In particular, we have g(x) =
y-x-g(x) = —y-a,. But, since the degree of ¢(7T') is less than that of f,(T), we
must have g(x) # 0. Therefore, a, # 0, and hence x € A*. Conversely, if x € A*
then the composition A —— A -x——= A, where the first map sends m to m - z,
while the second n s n - 271, is the identity map. Thus, dimgx M, = 4. Therefore,
M, = A.

Suppose that A is not a division ring and choose a non-zero x € A, which is not
a unit. Then M, is non-zero and is of dimension less than 4.

In general, if M C A is a non-zero left ideal, then the assignment x + 1),., where

Y, : M — M is the K-linear transformation that sends m € M to x - m, gives rise

6



to a K-algebra homomorphism
Y A — Endg (M) ~ M(r, K),

where r = dimg M. Since ¢(1) = id, the kernel of ¢ is a proper two-sided ideal of
A. Hence, by Proposition 2.2.1, the kernel is trivial and v is injective. This also
shows that r # 1, for otherwise ¥ would embed A into the one dimensional vector
space M(1, K') = K, which is impossible.

Now take M = M,. We claim that dimg M, < 2. Since dimg M, # 1, it follows
from the claim that dimgx M, = 2 and Endg(M,) ~ M(2, K). By the dimension
counting, 1 is a surjection, and hence an isomorphism. The lemma is proved.

To prove the claim, recall that z - g(x) = g(x) - = = 0, since z is not a unit. This
implies that M, - g(z) = 0, and hence M, is contained in the kernel of the surjective
K-linear map ¢ : A — M), y — y - g(x). Since My, # 0, the above conclusion
r # 1 (for M = My,) implies dimg ker(p) > 2. Hence the dimension counting
implies dimg M, < 2 as desired.

]

Definition 2.2.2. A 4-dimensional K-algebra is called a quaternion algebra over
K, if it is either a quaternion division ring over K or isomorphic to the matrix

algebra M(2, K).

By Proposition 2.2.1, every cyclic algebra H(a,b) is a central simple algebra,
while Theorem 2 says that each central simple algebra is a quaternion algebra.
Conversely, every quaternion algebra equals some H(a, b), in view of Theorem 1 and

the fact that M(2, K) = H(1, 1) by taking

1 0 01 01
1= ] = and k=
0 —1 10 -1 0
The map sending each x = ag + a7 + agj + azk to T := ayg — a1i — agj — azk is

an isomorphism of H(a,b) (and is an involution).

7



Definition 2.2.3. Define the reduced trace and the reduced norm of an element

x € H(a,b) to be
tr(z) =x+z € K, and |z| =27 =Tz € K.
Thus, every = € H(a, b) satisfies the quadratic equation:
z? — tr(z)z + |z| = 0. (2.1)

Also, x is a unit of H(a, b) if and only if |z| # 0.

2.3 Isomorphic classes of cyclic algebras

Suppose ¢ : H(a,b) — H(c, d) is an isomorphism of K-algebras and let {1,4", j”, K"}
be the basis of H(c,d) with "’ = ¢, j"j" = d, i"j" = —j"" = k". Put i =
o (i), 7 = 07'(4"), and k' = o7 }(k”). Then {1,¢,5',k'} forms a basis of H(a,b)
with i'i'" = ¢, 7’7/ = d, i'j’ = —ji' = k’. Thus, we can write H(a,b) = H(c,d)
instead. In this situation, the H(c, d) structure induces the corresponding reduced
trace and reduced norm on H(a,b), which we denote by tr'(z) and |z|". Namely, if

x = fol + B1i’ + Boj’ + B3k, then tr'(x) = 23y and |z|' = 52 — Bic — B3d + Bicd.

Lemma 2.3.1. If H(a,b) = H(e,d), then tr'(x) = tr(z) and |x|" = |z| for every

x € H(a,b).
Proof. By applying (2.1) both, we get
—(tr'(x) — tr(z))z + (Jz| = |2z]) =0—0=0.

Thus, if tr'(xz) # tr(z), then z = H,'é‘;—:mx) € K. This shows the first equality in

the lemma, for z ¢ K. Then the second follows from the above equation. If z € K,

then tr'(x) = 22 = tr(z) and |z| = 2% = |z|. O
Definition 2.3.1. For a given pair (a,b) € K* x K*, define

Qan) (T, ,2) = az® + by? — abz’.



Suppose H(a,b) = H(e,d). Then Lemma 2.3.1 implies
H(a,b)® := Span(i, j, k) = {x € H(a,b) | tr(x) = 0} = Span(¢’, j', k).
If © = 210 + x9j + w3k € H(a, b)?, then
—|x| = ax? + brl — abri = Q(ap) (T1, T2, T3).
Similarly, using the expression x = 2}’ + x4j" + x4k’, we have
ol = eaf? + daf? — eda = Qe 2 )

Recall that if f = Z?j:l a;jr;xj, where a;; = aj € K, is a quadratic form,

then the symmetric matrix A = (a;;), called the matrix of the quadratic form f, is

uniquely determined by f, and vice versa. If X = (21,9, ...,2,), then
F(X) = XAX.

Two quadratic forms f and g are equivalent, denoted as f ~ g, if there is some

C € GL(n, K) such that the matrix of g equals CAC".

Theorem 3. Two cyclic algebras H(a,b) and H(c,d) are isomorphic if and only if

the associated quadratic forms Qap) and Q.q) are equivalent.

Proof. Let A denote the matrix of Q. If H(a,b) = H(c,d), then there exists
C € GL(3, K) such that for x1i + x2j + x3k = x = 2}’ + 25’ + 24k’ as before, we

have (x7, 2, 2%) C = (21, x2,x3). and hence
Qe (w1, 7, ) = —|a| = (a1, 2, 2) CAC" (21, 2, x3)".

This means Q.q) ~ Qap)-

Conversely, assume Q(c,a) ~ Q) and let C' € GL(3, K) be such that

Qea) (w1, 7, 74) = (a7, 2%, 7%) CAC (1, 2, a5)".



Let (cg)‘), Y, c:({\)) denote the Ath row of the matrix C' and set

i = cgl)i + cél)j + cél)k:,

j = 052)2' + 0(22)j + ch)k.

Then 77 = —|I] = Quu(ci”, 5’ ") = Qea(1,0,0) = ¢, and similarly, 5/j' =
Qc,a)(0,1,0) = d. Then (¢'+7")(7'+j") = Qe.a)(1,1,0) = c+d, and hence i'j" = —j5"4.
Set k' =i'j". Then the basis {1,7', 7', k'} gives rise to a H(c, d) structure of H(a, b).

In other words, we have H(a, b) = H(c, d).

2.4 Quadratic forms

In this section, we review the classical theory on Quadratic forms. Our reference is

[Bor, page 390-396.]. See also, [Ser]

Definition 2.4.1. Let f be a quadratic form and let A be its matriz. Then f is

non-singular if and only if det(f) := det A # 0.

Definition 2.4.2. Let [ be a quadratic form. We say that [ represents an element
r € K, if there exist some ay, as, ..., a,, € K, not all zero, such that f(aq, ag, ..., ap) =

T.

Definition 2.4.3. Let f and g be quadratic forms in n and m variables respectively.
We say a quadratic form h in n + m variables is the direct sum of f and g and

denote h = f & g, if

h(21, ooy Tpm) = F(21, s 20) + 9(Tnat, ooy Trm)-
If f~g,then f& fi ~g® fi for every f;.

Lemma 2.4.1. If quadratic forms f ~ g, then det(f) = ¢*det(g), where c € K*.

Proof. If A and B = CAC" are matrices of f and g, then det B = (det C')>det A. [

10



Lemma 2.4.2. If quadratic form f in n variable represents r # 0, then f ~ ra? +

9(x2, .y Tp).

Proof. Let A denote the matrix of f. For two vectors X, Y € K", define (X,Y) :=
X AY" and denote
Xt ={ZcK" | (Z X)=0}

which is a K-linear subspace of K" of dimension at least n—1. Let a = (ay, ..., ay,) €
V' be such that

fla) =(a,a) =
Then a € at. Write o) = o and extend it to a basis {a™, o ... oM™} of K™
with o?, ..., o™ € at. Let C be the matrix with a® as its A\th row and let f’
be the quadratic form with CAC* as its matrix. Then f ~ f" and f'(x1,...,x,) =

rz? + g(xa, ..., x,) as desired.

]

Corollary 2.4.1. Every quadratic form f in n variable is diagonalizable. Namely,

[ ~riw? 4+ rxs + ...+ rpx? for some ry, ...,r, € K which are representable by f.

Proposition 2.4.1 (Witt’s Theorem). Let f, g, h be non-singular quadratic forms.

Iff®g~ fDdh, then g~ h.

Proof. Let fy be a diagonal form equivalent to f. Since f@® g~ fo@®gand fHh ~
fo® h, we have fo® g ~ fo®h. Thus, we can assume f is diagonal. Then it suffices

to consider the case where f = ax?,a # 0. Let A and B denote the matrices of g

g

and h. Since ax® @ g ~ ax® @ h, there exists a matrix C' = such that
T Q
v Tt a 0 v S a 0
st ot|loallT @ 0 B

11



Then, we obtain
o+ T'AT =a
vaS +T'AQ =0

StaS + QtAQ = b

Then we want to show that there exists a nonsingular matrix Cy such that C{ACy =
B. The matrix Cy will be found in the form Cy = @ + £T'S, where the element £ is
suitably chosen. By above equations we have
CLAC) = (Q" + ES'THA(Q + £T'S)
= Q'AQ + £S'TMAQ + EQ'AT S + €2S'TTATS
= QUAQ +[(1 - 1)) — 2€]S'S.
Thus, if (1 —+*)&% — 29 = 1, then we have C{AC, = B. The equation can be

written in the form &2 — (v¢ + 1)? = 0, there is always a solution ¢ € K for any

v e K. ]

Lemma 2.4.3. If a non-singular quadratic form f represents zero over field K, then

f represents all number of K.

Proof. Since equivalent forms represent the same field elements, it suffices to prove
the theorem for a diagonal form f = a12? + ... + a,22. Let a;02 + ... + a,a? =0 be
a representation of zero, and let v be any element of K. Without loss of generality,
we can assume that a; # 0. We express the variables xq, ..., x, in terms of a new
variable t:

x1 =aq(l+1),

T = (1l —1t) (k=2,..,n).

Substituting in the form f we obtain

= f*(t) = 2a103t — 2a00i3t — ... — 2a,0°t = 4a,a3t.

12



If we now set t = /4a;a?, we obtain f* = ~. O

Lemma 2.4.4. A non-singular quadratic form f represents v # 0 in K if and only

if the form —vyx2 + f(z1, ..., z,) represents 0.

Proof. 1If f represents r, then f ~ rz? @ g by Lemma 2.4.2, and hence —rz2 @ f ~
—raz® + ra? @ g, which represents zero. Since equivalent forms represents the same
things, —yx3+ f(x1, ..., ¥,) = 0 represents 0. Conversely, if —ra3+ f(ay,...,a,) =0,
then either oy = 0, and hence f represents 0 and r (by Lemma 2.4.3), or ag # 0,
and hence f(&, .., 22) =r.

ey ao

O
Lemma 2.4.5. If a quadratic form [ represents 0, then it is equivalent to a form
of the type y1yz + g(Ys, -+ Yn)-

Proof. By Lemma 2.4.3, f represents 1, and hence by Lemma 2.4.2, is equivalent to
22 + f'(x9,...,2,). By Lemma 2.4.4, f’ represents —1, and hence by Lemma 2.4.2
again, is equivalent to —z2% + g(x3, ..., z,). Therefore, f is equivalent to 22 — 23 +
g(x3, ..., z,). Then take y; = x1 + 9, Yo = T1 — To, Y3 = T3,..., Y = Tp.

O

Corollary 2.4.2. All nonsingular quadratic forms in two variables representing 0

i K are equivalent.
Proof. They all equivalent to xyxs. O]

Lemma 2.4.6. A quadratic form f in two variables with d = det(f) # 0 represents

0 in K if and only if —d is a square in K.
Proof. We can write f(z,y) = ax? + by?, by Corollary 2.4.1. O

Lemma 2.4.7. Let f, g be two nonsingular quadratic forms in two variables. Then

the following statements are equivalent:

(a) f~g

13



(b) det(f) = cPdet(g), ¢ € K, and there exists some nonzero element a € K

represented by both f and g.

Proof. The implication (a)=(b) is clear. If (b) holds, then Corollary 2.4.1, we can

write f = ax? + by? and g = az? + dy*. Then (a) follows.

2.5 The quadratic form P, (z,y, 2)

The quadratic form P ) (2,y, 2) := ax®+by? —2? turns out to be useful for studying

the quaternion algebra H(a, b).

Theorem 4. The quaternion algebra H(a,b) is isomorphic to M(2, K) if and only

if the quadratic form Py (x,y, 2) represents zero in K.

Proof. If H(a,b) = M(2, K) = H(1,1), then by Theorem 3,

Q(a,b) (l’, Y, U) ~ Q(l,l) (ZL’, Y, U’))
and hence

2 2 2

P(a,b)(l'7y,2)—(lbUQZQ(&b)(I',y,U)—Z N[EQ—f-yQ—U -z

Since y? —u? = (y + u)(y —u) ~ yu ~ (aby)u ~ ab(y* — u?), the above relation
implies

Py (m,y,2) — abu® ~ 2° + aby® — 2° — abu®.
Then by Proposition 2.4.1, P,y (x,y, z) ~ z* + aby® — z*, which represents zero.
If Py)(2,y,2) represents zero, then by Lemma 2.4.5, we have
P(a,b)(wa Y, Z) ~ Y1y + Cyf)? ~ '1.2 - y2 + Cy?2>7
where by Lemma 2.4, we can choose ¢ = ab. Then

Qap) (T, y,u) — 22 = Py (z,y,2) — abu? ~ 2% —y® + aby§ — abu?.

14
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Again, since aby? — abu® ~ wv ~ u* — 22, the above relation shows

Q(a,b)(iﬁ,y,u) — 22 ~ gj2 _ y2 + U2 . 22.

Hence, by Proposition 2.4.1,

Q(a,b) ("L‘7 Y, U’) ~ {E2 + u2 - y2 = Q(l,l) (IL’, u, y) ~ Q(l,l) (xa Y, U)
]

If K(y/a)/K is a quadratic extension, let Nq) := Ny (/z)/x (K(y/a)*) denote the

subgroup of norms. If a is a square in K*, denote N(,) := K*.
Lemma 2.5.1. The following statements are equivalent:

(a) b€ Ng.

(b) a € N.

(c) The quadratic form Py represents zero in K.

Proof. Note that P4 = Papy). It is sufficient to show (a)&(c), because by inter-
changing a and b, we obtain (b)<(c) as well. If a is a quare in K, then both (a)
and (c) holds. Suppose a is not a square in K. By Lemma 2.4.4, (c¢) holds if and

only if the quadratic form z? — az? represents b. But this means exactly b € N(,).

]

15



Chapter 3

Quaternion Algebras over Local
Fields

In this chapter, K is the completion of a number field at certain place v. Our

references are [Bor, Lan].

3.1 The group of local norms
Let L/K be a quadratic extension with G := Gal(L/K) = {id,o}.
Theorem 5. The group K*/Np k(L") is isomorphic to G.

The theorem holds for any abelian extension of K and is one of the main theorem
in the class field theory. In §3.5, a direct proof of Theorem 5 will be given. Basically,
it is the same as the proof given in [Lan|. The theorem allows us to make use of the

Hilbert Symbol defined in the next section.

3.2 The Hilbert symbols

We let 2Z/Z = {0, 3} denote the cyclic group of order two.

Definition 3.2.1. For a,b € K*, define the Hilbert Symbol

(a, b) 0e %Z/Z, if Play) represents zero;
=)=
1€ 1LJZ, otherwise.
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Some basic properties of the Hilbert Symbol are in order.

Lemma 3.2.1. The Hilbert Symbol satisfied the following:

(@) (%) = (%)

(b) Ifa orb is a square in K*, then (a—b) =0.

(c) We always have (22%) = 0.

Proof. Statements (a) and (b) follow directly from Lemma 2.5.1, while (c) is obvious,

2

since ax? — ay? — 2% represents zero. O

Proposition 3.2.1. The map K* x K* — 1Z/7 sending (a,b) to (“?b) is bi-linear
a,bb’\  [(a,b N a, b
K ) \K K )’
aa’,b a,b a,b
K K K

Furthermore, the left kernel and the right kernel of this bi-linear map are exvactly

i the sense that

and

(K*)?, the subgroup of the squares in K*. Namely, we have

a,b

{a e K™ | (K):O, forall be K*} = (K*)?,

and
a5

{be K* | (K):O’ for all a € K*} = (K*)%

Proof. By Lemma 3.2.1, if a € (K*)?, then the first equality holds trivially. Suppose
a € (K*)?. By Theorem 5, K*/N(,) ~ 1Z/7Z, and Lemma 2.5.1 says the composition

of group homomorphisms
K* — K*/N(y) — %Z/Z ,

where the left map is the quotient map, is the same as the map

a, e 1
— )K" — —-Z/7Z
(%) 52/
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that sends b € K* to (“?b) Thus, (%) is a group homomorphism and the first
equality follows. The second equality is proved similarly.

If a € (K*)?, then a is contained in the left kernel of the Hilbert Symbols. If
a & (K*)?, then again K* /N, ~ 1Z/7Z. Hence there exists some b € K*, b & N(,).

For such b, we have (%b) 2 0. This shows a is not contained in the left kernel of the

Hilbert Symbols. The same argument can be applied to the right kernel. O]

3.3 Quaternion algebras over local fields

Recall that two quaternion algebras H(a,b) and H(c, d) are isomorphic if and only
if the quadratic forms Qa5 and Q(.q) are equivalent. Also, H(a,b) is a quaternion
division ring if and only if P does not represents zero in K, or equivalently, the
Hilbert Symbol (%2) # 0.

If K ~ R, then (K*)> = RT is a subgroup of index 2 in R*. If the place v is
non-archimedean, then K* = Z x O*, where O denotes the ring of integers of K,

and hence (K*)? = 2Z x (O*)?, also a proper subgroup of K*.

Theorem 6. Suppose K % C. Then there is exactly one isomorphic class of quater-
nion division rings over K. Namely, every two quaternion division rings over K

are 1somorphic.

Proof. First, for every non-square a € k*, Theorem 5 says there is b € N(,. Hence,
P45y does not represent zero in K. This shows the isomorphic classes of quaternion
division rings over K is not empty.

Let H(a,b) and H(c, d) are two quaternion division ring. First consider the case

where ¢ = a (mod (K*)?). Then Q) ~ Q(q,a) and (%1) = (%1) we need to show

that Qa,a) ~ Q(a), Which, by Proposition 2.4.1, is equivalent to
fi=dy* — az®) = dy* — adz* ~ by* — abz* = b(y* — az?) = g.

Since det(f) = —ad?, det(g) = —ab*, and f represents d in K, Lemma 2.4.7 says

f ~ g holds if and only if g represents d in K. The quadratic form 3? — az? =
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(y++/a)(y—+/a) represents all elements in N(,). Therefore, g represents all elements
in bN(,). But, since (‘%’) = (%1) = %, Theorem 5 says dN(,) = bN(,, and hence g
represents d.

In general, we need to find some e € K* to have Q) ~ Q) and Qeay ~
Q(e,a), for some ', d’ € K*. Then we can apply the above result to conclude Q4 ) ~
Q(c,a)- To proceed, write f = by* — abz® and g = cy* — cdz®. We claim to find an e
representable by f and g. Then e is also representable by Q.5 = az?® f and Q(c.a) =
cx® @ g. By Lemma 2.4.2 and Corollary 2.4.1, we have Qg ~ ex? + by + b'2%,
where by the computation of the related determinants, we can write b’ = —eb’. In
other words, Q) ~ Qep)- Similarly, Q(cay ~ Q(e,a), as desired. By the argument
used before, f represents all elements in bN(,), and g all dN(). We need to show

that bN(,) N dN) is non-empty. But, since b € N,y and d € N, we have
K" = N(4) UbN(g) and K™ = N, LUdN,
where both N,y and Ny are subgroup, elementary group theory implies
N@) UN( & N - Neo)-
O

Thus, if K = R, then the isomorphism class of quaternion division is represented
by the Hamiltonian Quaternion H(—1, —1).

If K # C, then there are two isomorphic classes of cyclic algebras. Hence, there
are also two equivalent classes of quadratic forms of the type Q). It is worthwhile
to mention that this does not mean there are only two equivalent classes of quadratic
forms of type Plop). Indeed, Py ~ Pq) if and only if ax® + by* ~ cz? + dy?, by
Witt’s theorem. Write az?® + by? = a(z? — V'y?), cz? + dy? = c(2? — d'y?), with
b= —ab/,d= —cd. By Lemma 2.4.7, P ~ P.q if and only if b'/d’" € (K*)* and
both a(z? — V'y?) and c(x® — d'y?) represent a same number. Then one sees there

are actually more than two isomorphic classes.
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3.4 The Herbrand quotient

Let L/K be a quadratic extension as before and denote G := Gal(L/K) = {id, a}.

For each G-module M, set
M%:={meM | o(m)=m},
Neg(M) :={m+o(m) | me M},
ker(Ngr) = {m € M | m+ a(m) =0},
(1—0)M :={m —o(m) | me M}.
Obviously, these are sub-modules of M, with
Ng(M) c MY and (1 —o)M C ker(Ng ).
Definition 3.4.1. Define
H¢(G, M) := M®/Ng(M), and H°(G, M) := ker(Ng.s)/(1 — o) M.

If a: M7 — M, is a homomorphism of G-modules, then we have the induced

homomorphism «, : H*(G, M;) — H*(G, M), for e = ¢, or @ = o.

Definition 3.4.2. If both H°(G, M) and H°(G, M) are finite groups, define the

Herbrand quotient of the G-module M to be

_|HH(G, M)
M) = (e

Lemma 3.4.1. If M is a finite G-module, then h(M) = 1.

Proof. We have the exact sequence

0 M€ M=% (1-0)M—>0,

where the middle arrow is the map m +— m — o(m). This implies

(M| = |M®]-|(1 = o) M.
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Also, the exact sequence
0 —= ker(Ng.a1) — M —% Ng(M) —=0

implies

|M| = |ker(Ng )| - [Ng(M)].
Then the lemmas follow from the above two equalities. O
Lemma 3.4.2. Suppose we have the exact sequence of G-modules

B

0— My, —2 My 2= My ——0. (3.1)
If two of h(My), h(Ms), h(Ms) are defined, then so is the third, and we have
h(Mz) = h(My) - h(Ms).

Proof. We have the exact sequence (exact hexagon)

H¢(M;) —— H*(M;) —— H*(Ms3) (3~2)

Here the boundary homomorphisms d. and J, are as follow. By applying the snake

lemma to the diagram

0 M1 = MQ i M3 0 )
llo’ lla jlo’
0—= My —2= My —2= My ——0
we obtain the exact sequence
MS —— MS 2 My (1 - o) My 2 My /(1 — o) M. (3.3)

Suppose m3 = Ng(mj), for some mj € Mz and by (3.1), let m, € M, be such

that B(mj) = m4. Let ma = Ng(mb). Then ms = B(ms). This shows that [

21



induces a surjection Ng(Ms) —= Ng(M;) . Thus, the exact sequence (3.3) implies

Ng(Ms) C ker(6(), and hence 6 factors through
56 : HE(G, Mg) — M1/<1 — U)Ml.

Now (3.3) also implies the image of &, equals the kernel of a(Y, which can be
expressed as (M; N (1 — o)Ms)/(1 — o)M;. Since ((1 — o)Ms) C ker(Ngas),
M; N (1 —o)M, is contained in ker(Ng az, ). Therefore, the image of . is contained
in H(G, M,).

Also, by applying the snake lemma to the diagram

0 M1 = M2 i M3 0 ’

| lNcﬁ |

0 M, —= M, Ms 0

we obtain the exact sequence

o) Ne))
ker(Ne a1,) — ker(Ng s, ) ——= My /Ng(My) -2 My /N (Ms). (3.4)

Similarly, (3.1) implies the surjection (1 —o)My— (1 —0o)Ms, and hence §(V)
factors through

(50 : HO(G7 Mg) — Ml/Ng(Ml)

then we apply the exact sequence (3.4) to show that the image of J, is contained
in H*(G, M;). The boundary maps are defined. Then the exactness of (3.2) can be
checked accordingly.

Suppose h(M;) and h(M,) are defined. Then by (3.2), both H°(G, M3) and
H¢(G, M3) are finite, and hence h(Ms;) is defined. Other cases can be treated by

similar arguments. Finally, (3.2) shows
[H?(G, My)| - [HO(G, Ms)| - [HY(G, My)| = [H(G, My)| - [HY(G, My)| - [HY(G, Ms))|
that implies h(Msy) = h(M;) - h(Ms3). O

Another proof of the above lemma can be found in [Lan, §IX.1].
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Lemma 3.4.3. If h(M) is defined and the multiplication by 2 is invertible in M,
then h(M) = 1.

Proof. Then for every m € M, there is a unique n such that 2n = m. Hence
m = (n+o(n)) + (n —o(n)). Then it follows that M“ = Ng(M) and ker(Ng p) =
(1—0)M. O

Lemma 3.4.4. Suppose M = 7Z, or M = Zo. If G acts trivially on M, then

h(M) =2. If o acts as (—1) on M, then h(M) = %

Proof. Direct computation. m

3.5 The proof of Theorem 5

Proof of Theorem 5. Suppose K = R. Then L = C is the only quadratic extension,
and hence K * /Ny /k(L*) = R*/R*, which is of order 2.

Suppose K is non-archimedean, let Fx denote the residue field of K, and let Oy,
F; denote the ring of integers of L and the residue field.

Let mx denote a prime element of K and 7, a prime element of L. Write
Uy .= 1+ 7,0p. Let p denote the characteristic of Fx. Then U is a p-group. We

have the exact sequences (all group written additively)

0 O3 L Z—0, (3.5)

and

0 Uy o: F; 0. (3.6)

Consider the case where p # 2. Then multiplication by 2 is invertible in Uj.
Hence, Lemma 3.4.3 implies h(U;) = 1. Also, by Lemma 3.4.1, h(F}) equals 1.
Thus, Lemma 3.4.2, (3.5) and (3.6) together imply h(L*) = h(Z), which is 2 by
Lemma 3.4.4. But Hilbert Theorem 90 says H°(G, L*) = 1. Therefore, we have
[K* Nk (L) = [H(G, L7)] = 2.
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Suppose p = 2. We need to show that h(U;) = 1. The the previous argument
applies. Let F™ (resp. F~) denote the free Z,-module of rank 1 such that on it &
acts as 1 (resp. —1). The lemma below implies that h(U;) = h((FT)" - h(F~)" = 1.

O

Lemma 3.5.1. Suppose K/Q, is a finite extension of degree r and L/K is a
quadratic extension with G = Gal(L/K) = {id,c}. Then there exist G-modules

Ut and U~ satisfying the following:

(a) Both Ut and U~ are free Z,-modules. On U", o acts trivially, while o acts

as —1 on U™.

(b) We have the exact sequence

0—=UtaU~ U, H 0
where H 1s a finite group.

Proof. Let 7 denote a prime element of K and put Uy x = 1 + 7 O. It is well
known that U g (resp. Uy) is a finitely generated Z,-module of rank r (resp. 2r),
[Bor, §4.5, Theorem 3]. Thus, we can find some rank r free Z,-module W+ C U g
such that Uy x /W™ is a finite group. Clearly, G act trivially on W*. Consider the

exact sequence of G-modules (written additively)

l—0o

0 Uik Uy

U17

where 1 — o is the map sending £ to -0 (£)™!. Then its image Y is a G-module and
its Z,, rank is r. Since 0(1 —0) =0 — 1, 0 acts on Y as —1. Let W~ be a rank r
free Z, submodule of Y. Then W and W~ generate a submodule WW~ of U; of
Z, rank 2r, so that Uy /W*TW™ is finite. If z € W NW ™, then z = o(z) = o(x) ™,
and hence 22 = 1. But since Wt N~ is a free module over Z,, x must be 1. Take

Ut=WTand U~ =W~". O
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3.6 Non-archimedean places

Consider the case where v is a non-archimedean place. Then there is a unique
unramified quadratic extension L/K. Let notation be as the previous sections. In
particular, O denotes the ring of integers of K. We quote the following well known

fact (see [Lan, §I1.4, Corollary of Proposition 9]).

Proposition 3.6.1. If L/ K is a finite unramifed extension, then the group of norms

N k(L") contains O*.
Corollary 3.6.1. Suppose p # 2. If a,b € OF, then (“—b) =0.
Proof. Since K(y/a)/K is unramified and b € O*. O

Lemma 3.6.1. Suppose p # 2, a is a prime element of K and b € O*. Then

(a?b) = 0 if and only if the residue class of b is contained in (F%)?.

Proof. Since (“z%) =0 by Lemma 3.2.1 and a is a prime element, if (%) = 0 for

all £ € O, then (%) =0 for all n € K*. But this is absurd. Since
O0*/(0*)? —=TF/(F)* —=3Z/Z,

where the first arrow is induced by the reduction map, we see that (ﬂ’) = ( if and

only if the reduction of b is a square.
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Chapter 4

Quaternion Algebras over Q

Although the “Hasse-Minkowski Theorem” holds for any number field K, here we
only quote the K = Q case, because it is a classical result and the proof is relatively
“elementary”, part of the proof can be traced back to Legendre (in some what

different terminology). See [Bor, §1.7] or [Ser] for details.
Theorem 7 (Hasse-Minkowski). A quadratic form with rational coefficients rep-
resents zero in Q if and only if it represents zero in R and in Q, for all primes
.

Another classical result is the summation formula: for every a,b € Q*, then for

p running through all places including the archimedean one,
b
3 (a—) = 0. (4.1)
P Q

Note that by Corollary 3.6.1, the values of <f‘(pr> equal 0 for almost all p. Therefore,
the summation is well-defined. The formula is basically an equivalence of Gauss’
quadratic reciprocity formula. See [Bor, §1.7, p.66].

In Section §4.1, we apply Theorem 7 to the following:
Theorem 8. Let a,b,c,d € Q*. The following statements are equivalent:

(a) The quaternion algebra H(a,b) and H(c,d) are isomorphic over Q.

(b) The quaternion algebra H(a,b) and H(c,d) are isomorphic over Q,, for all

p=00,2,3,....
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(c) We have <?JQT:> = (Eﬁj), for allp=o00,2,3, ....

Let Bry(Q) denote the isomorphic classes of all quaternion over Q. Then by

Theorem 8, the map

inv: Bry(Q) — @anp%Z/Z
Ha.t) — (%))

is injective. Here in the target of inwv, the direct sum is taken over all places including

the archimedean one. In view of the summation formula (4.1), we have the sequence

0 — Bry(Q) 2% 12)2.%—~17/7.—0, (4.2)

allp 2

where X is the summation map. Finally, we have our main theorem.

Theorem 9. We can endow Bra(Q) an abelian group structure to make (4.2) an

exact sequence of abelian groups.
The proof of the theorem as well as an explicit description of the group operation

on Bry(Q) is given in §4.2.

4.1 The local-global relation

In this section we complete the proof of Theorem 8.

Proof of Theorem 8. Since over each Q,, p = 00,2, 3, ..., there are only two iso-

a,b

Qv
H(a, b) is isomorphic to M(2,Q,) or not, we can conclude that (b)<(c). Also, the

morphic classes of Quaternion and the value of Hilbert Symbol ( ) determines if
implication (a)=(b) is obvious. It remains to show (b)=(a).

Suppose (b) holds. Then @4 represents c in Q, for all p. Therefore, by the
Hasse-Minkowski theorem, Q(, ) represents ¢ in Q. Hence, by Lemma 2.4.2, we have
Qap) ~ cx?+b'y*+b"z%. By computing the determinant, we see that b” can be taken
as —cb’, and hence Q45) ~ Q). Thus, it is sufficient to show that f := b'y? — cbz?

and ¢ := dy? — cdz? are equivalent over Q. But the assumption of (b) implies that
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f ~ g over Q, for all p. Since g represents d, f also represents d in all Q,. Then
by Hass-Minkowski theorem, f represents d in Q. Then again, by Lemma 2.4.2 and

the determinant computation, we have f ~ g as required. LJ

4.2 The Brauer group

Since the invariant map inv is injective, the group structure of Bry(Q) is completely
determined by that of B, :7Z/)Z. The point is for two pairs (a,b) and (c,d), we

need to show there is the third (e, f) such that
inv(H(e, f)) = inv(H(a, b)) + inv(H(e, d)). (4.3)
One can prove this by first showing that the tensor product
H(a,b) ®q H(c,d) = M(2,H(e, f)) (4.4)

for some (e, f) that actually satisfies (4.3). This is the usual way to solve this
problem, but it takes a long way to arrive at the end, one reason might be that (4.4)
might not hold in for arbitrary field.

Fortunately, there is a direct way to do it. For a given pair (a, b), choose a finite

set S of places of Q such that

(M> = 0 for every p & S. (4.5)
Qp

Write \, = —1, if p = oo, and A, = p, otherwise.

Lemma 4.2.1. Let the notation be as above. Then @4y represents the product
Ag 1= Hpes Ap in Q.
Proof. By the Hasse-Minkowski theorem, we need to show that @, represents Ag
in all Q,. If <?QT:> = 0, then H(a,b) = M(2,Q,). Thus Q4 ~ Q(1,1) representing
zero, and hence by Lemma 2.4.3, it represents Ag.

Suppose (%:) = % Then p € S. If p = oo, then H(a,b) = H(—1,—1) and \g is

a negative in Q, = R. Therefore, H(a, b) represents Ag. If p is a finite prime number,
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then Ag = p-u, where u € Z¢. Choose ¢ € Zj such that Q,(1/c)/Q, is unramified. By

Proposition 3.6.1, u is contained in the group of norms Ng (/) /0,(Qy(1/€)*), while

p is not. Thus, (CQ),\]S> = % Therefore (%) = (CQ?)S), and hence Qup) ~ Qerg)s

which represents Ag. O
If the set S chosen satisfies (4.5) for (a, b) and S” contains S, then S’ also satisfies
(4.5) for (a,b). Thus, for two pairs (a,b) and (c,d), we can choose S to satisfies
(4.5) for both (a,b) and (c,d). By Lemma 4.2.1, both Q3 and Q.4 represent
Ag in Q. Put e = A\g. Then Lemma 2.4.2 and the computation of determinant
imply that Qs ~ Q) and Qra) ~ Q) for some b and d’. In particular,
inv(H(a,b)) = inv(H(e, b)) and inv(H(c, d)) = inv(H(e, d')), and hence

inv(H(a, b)) + inv(H(c, d)) = inv(H(e, b)) 4+ inv(H(e, d')) = inv(H(e, 'd")).

Put f = 0'd’. Then (4.3) is satisfied. This defines the group structure on Bry(Q),
which we call the Brauer group of quaternions over Q. Finally, we prove Theorem

9.

Proof of Theorem 9. We need to prove that every element £ = (§,), € ker(X) can be
written as inv(H(a, b)) for some pair (a,b). Since now Bry(Q) is a group and ker(X)
is a vector space over FFy, the field of order 2, it is sufficient to prove the statement
for a basis of ker(X).

An obvious basis consists of E,, ¢ = 2,3,..., where the coordinate of £, at
p = oo and p = ¢ equals % and other coordinates all equal 0. For instant, Fy =
inv(H(—1,—1)). For each odd prime, consider H(—gq, —¢") where ¢’ is another odd
prime # ¢. Then <_qﬁ{q,) = (—1}1,%—1) = 3. Also, if p # 2,¢,¢, then <_‘f@;q,> =0 by

Corollary 3.6.1. Also, by Lemma 3.6.1, <*‘{@;‘1/> = % if and only if

“—q s not a quadratic residue modulo q”, (4.6)

while <7ajq/> =0, if and only if

“—q s a quadratic residue modulo ¢ . (4.7)
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If ¢ =1 (mod 4), choose ¢’ such that ¢ = 3 (mod 4) and ¢’ not a quadratic
residue modulo ¢, then by the quadratic reciprocity law, ¢ is not a quadratic residue
modulo ¢/, and hence the above conditions (4.6) and (4.7) are satisfied. For such
pair (q,q’), each coordinate of inv(H(q, ¢')) is the same as that of E, except maybe
the coordinate at p = 2. But, by (4.1), their coordinates at p = 2 also equal.

If ¢ =3 (mod 4), choose ¢’ such that ¢ =3 (mod 4) and ¢’ a quadratic residue
modulo ¢, then by the quadratic reciprocity law, ¢ is not a quadratic residue modulo
¢, and hence the above conditions (4.6) and (4.7) are satisfied. Then we have
inv(H(q,q')) = E.

30



Bibliography

[Bor| Z. 1. Borevich, I. R. Shafarevich, Number Theory, Academic Press Inc, 1966.

[Lan] S. Lang, Algebraic Number Theory, second edition, Springer Verlag New York,
1994.

[Ser] J.-P. Serre, A Course in Arithmetic, Graduate texts in Mathematics, 7,

Springer Verlag New York, 1973.

[Wel] A, Weil, Basic Number THeory, Springer Verlag Berlin, Heidelberg, 1971.

31



	3
	1

	04082014163311-0001
	3
	2
	thesis6


