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Abstract 

It is well known that the India-Eurasia collision beginning at about 55 Ma ago 

results in the world’s highest Himalayan mountain and largest Tibetan Plateau with an 

average elevation of 5 km and crustal thickness of 70 km. Strain-induced seismic 

anisotropy is commonly used as a proxy to map the distribution and characteristics of 

lithospheric deformation. In this study, we focus on investigation of the crustal 

anisotropy beneath central Tibet by means of modeling radial and transverse receiver 

functions (RFs) observed along a N-S striking, 800-km long linear array from the 

passive seismic experiment of Project Hi-CLIMB. 

To quantitatively characterize the depth-varying anisotropic structure in the crust 

under the plateau, we combine azimuth-dependent RFs in both radial and transverse 

components to invert for 1-D layered anisotropic velocity models under individual 

stations. As the inverse problem is highly non-linear with numerous unknown model 

parameters, we choose a neighborhood algorithm to search for the solution with the 

global minimum of the optimized function, defined as the decorrelation coefficient

between observed and synthetic RFs.

 The resulting models show that the uppermost crust at depths less than 10 km 

beneath most stations reveals >10% strong anisotropy and a nearly vertical fast 

symmetric axis with plunge greater than 70o. For the stations near the E-W trending 

suture zones between terranes, the azimuth of the obtained fast axis is approximately 

aligned E-W, while those within the Lhasa and Qiantang terrane the fast axis is oriented 

more irregularly. These characteristic features suggest that the sutures and E-W striking 

strike-slip and N-S striking normal faults randomly distributed within the terranes may 

be attributed to the observed pattern of upper crust anisotropy. A strong anisotropic layer 

with the subhorizontal symmetric fast axis is observed in the middle crust at the depths 

of 20-35 km, collocated with the low shear velocity zone. The presence of a 

low-viscosity, ductile channel with preferred alignments of partial melt inclusions 

and/or anisotropic mica minerals may be attributed to the observed anisotropy in the 

middle crust. The anisotropy in the lower crust is generally less well constrained due to 

the low signal-to-noise ratios of traverse-component RFs as well as the P-to-s

conversions at the velocity discontinuities in the lower crust strongly influenced by 

complex shallow structures.
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1

1.1

  

1400Km

[e.g., Yin and Harrison, 2000]

:  (1) (Rigid block model)( 1-1); (2) (Continuum 

model); (3) (Lower crustal flow model)( 1-2)

GPS …

[Searle et al., 2011]
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 1-1 Tapponnier et al. [1982]

( Searle et al.,

[2011])

 1-2 Royden et al. [1997] 

 (

Searle et al., [2000])
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1.2

Hess [1964] (Moho 

Discontinuity ) Pn (head wave), 

1.2.1

(seismic anisotropy)

(tranverse 

isotropy)

( 1-3)

Pn : Hess [1964] Pn

( ) sin(2

(azimuthal anisotropy)

Pn 7%

: 

( radial anisotropy ) : Anderson[1961] Aki and Kaminuma[1963]

(Rayleigh wave) (Love wave)
13



Love-Rayleigh discrepancy

SV SH

polarization anisotropy

(azimuthal anisotropy) : 

Tanimoto and Anderson [1985] 100-250

Pn

: [e.g., 

Silver and Chan, 1991]

(shear-wave splitting) ( 1-4)

- -

(delay time) (splitting parameter)

[Silver and Chan, 1991]

S ScS SKS SKKS [Ando, 1984; McNamara et al., 1994] SKS

400

S ScS [Savage, 1999]

S

Chen et al.(2010) SKS/SKKS
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[Crampin, 1994; Cassidy and Bostock, 1996]

 (P-to-S)

(anisotropy) : (1) 

(shape preferred 

orientation, SPO); (2)

(dislocation)

(lattice preferred orientation, LPO); (3) (melt)

( ) (melt preferred orientation , MPO)

: 

SPO : (crack) (microcrack)

[Crampin, 1984] [Allégre and Turcotte,

1986] SPO

( 1-4) 15

[Kern, 1990]

 [Crampin and 

Booth, 1985; Crampin, 1987; McNamara and Owens, 1993; Savage, 1999]

[Kendall, 1994]

1.5-4.5% [Crampin, 1994]

LPO :

15



(dislocation)

(olivine) (pyroxene) (

1-5)

[Zhang and 

Karato, 1995]

Yang et al. [2010] 

7%

5%

 [Weiss et al.,

1999] 

[Sherrington et al., 2004]

MPO

[Ree,1994]

Daines and Kohlstedt [1997] (pure shear)

20o ( 1-6)

LPO MPO Yang et al. [2002] MPO

12.3% LPO
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0.5%-4% MPO

:

 1-3 (transverse isotropy) (hexagonal symmetry)

( ) (

) trend plunge

trend

plunge ( ) (

Sherrington and Zandt, [2004]) 
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 1-4 SPO S

( Crampin, [1999])

 1-5 P S

P a S a
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b a

( Kumazawa and Anderson,

[1969]) 

 1-6 MPO

20o ( Yang et al.,[2002])

1.3

(undertrhust) 1500

5 [Yin and Harrison, 2000]

-

(Songpan-Ganzi terrain) (Qingtang terrain) (Lhasa terrain)

(Himalayan) - ( Indus-Yarlung 

19



suture, IYS ) ( Banggong-Nujiang 

suture. BNS) ( Jinsha River 

suture, JRS) -  ( 1-7)   

(multiple phase)

70

70-80 65

[Owens and Zandt, 1997; Zhao et al., 2001; Tseng et al., 2009; Xu et al., 2013]

1.4

1990

(1)

Pn

Sn Sn [McNamara and et al., 1995; 

McNamara et al., 1997; Ni and Barazangi, 1983] (2) [Wei 

et al., 2001] (3) [Owens and Zandt, 1997; Kind et al., 

2002] Kind et al. [2002] (1.85~1.90)

1.73 1.75

( 20-40 )

[Rapine et al., 2003] Xu et al. [2012]

Hi-CLIMB

(20-35 ) ( 1-9) [2012]

(1) 20 10

20



Hi-CLIMB 15 (2) 30-40

Hi-CLIMB

(3)50-60

IYS

 1-7 

(Lhasa) (Qiangtang) - (Songpan-Ganzi )

( Indus-Yarlung suture, 

IYS ) (Himalayan) -

( Banggong-Nujiang suture. BNS) ( Jinsha River suture, JRS)

(Tarim Basin) (Kunlun Fault , KLF)( [2011])
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 1-8 90 90o

INDEPTH

-

(

Owens and Zandt [1997] )

 1-9 2002-2005 86

22



Hi-CLIMB

(Nabelek et al., 

2009) 25

(BNS) (

Xu et al. [2012])

Sherrington and Zandt [2004] PASSCAL

4%~14%

;

- -

Ozacar and Zandt [2004] INDEPTH 

III

(>10%)

SV

SH

[ , 2010; Shapiro et al., 2004]

( 1-10)

Chen et al.[2010] SKS SKKS Hi-CLIMB

( 1-11)

0.8±0.3
- - BNS

23



Hi-CLIMB (

1-11)

Chen and 

Özalaybey [1998] 0.7 ±0.2 ; McNamara et al. [1994]

1.0 ±0.2 Huang et al. [2000]

SKS/SKKS

[Kaneshima, 1990]
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 1-10  (a) (b) SH( ) SV( )

SH

SV

SH>SV

 ( [2011])
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 1-11 SKS/SKKS

Chen et al. [2010]

(mantle suture, MS) (Indian mantle front, IMF)

( Chen et al. [2010])

1.5

[Sherrington et al., 2004; Ozacar and Zandt, 2004]

26



(extrusion)

Hi-CLIMB

27



2

2.1

Hi-CLIMB(Himalayan Tibetan Continental Lithosphere during Mountain Building )

2002 2005

800 IYS

3-8

Hi-CLIMB 2004 6

2005 8 P 67

( 2-1)

IRIS (Incorporated Research Institutions for Seismology)
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 2-1 Hi-CILMB

67 2004

6 2005 8

2.2

Mb 5.5 30 90

P S

30 P

90 P S

IRIS

Hi-CLIMB P 80 200

  

29



( mean)

( linear trend ) 0.01 Hz ( >100 s)

- - (radial) (transverse)

TauP P

P

ak135 Tseng et al. [2009]

H1360

( noise to signal ratio , NSR)

NSR = 1 ( 40 + ) (1 ( 40 + ))max {| ( 3 + )| }            (2.1)
S(t) (sample rate) TauP

P (2.1) P

40 5 K P

M (Z) (R) NSR

0.3 P 5 15

20

(deconvolution)

(variance reduction) 70%  [Schulte-Pelkum et al., 2005]
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2-2

( 30

150 ) - (Kamchatka)

(Ryhulyu) - (Izu-Bonin) -

(Mariana) (Sumatra) - (New 

Guinea-Solomon) ; 220 270  340 360

 2-2 : 2004 2005 5.5

30 90 Hi-CLIMB

H1250

-
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3

, P

receiver function P (ray parameter)

3-1
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 3-1 

3.1 Ps 

P ( ) S ( )

P S P

S

SV SH ( 3-2)

(impedance )

(Snell’s Law)

 P SV
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SV P

SH ( 3-3) Ps P

S Pds d

S P410s 410

S P S Pms

 3-2 P SV SH P

S

 3-3 P SV

P

SV SH
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3.2 ( Receiver function )

P P

P S

P-S 3-4

P

P-to-S P

D(t) S(t)

E(t) I(t) (convolution)

- -

(radial) (transverse) SV SH

( ) = ( ) ( ) ( ), ( ) = ( ) ( ) ( ),                                             (3.1)( ) = ( ) ( ) ( ),
Burdick et al. [1974] P

( ) ( ) ( ),                                                    (3.2).

(deconvolution) (3.1)( ) ( ) S(t) I(t)( ) ( ) P

SV

SH
35



[Levin and Park, 1997; Hu and Menke,

1992]

Ps P P

S P S (Vp/Vs)

Ps-P Vp/Vs

(trade-off) S-to-P

P-to-S ( 3-4)

P S

 3-4 (a) (b)  (b)
36



P P (a)

P S

3.3

spectrum

round-off error (overflow

(water level) [Ammon et al., 1991]

(side-lobe)

Ligorria and Ammon [1999]

[ Langston, 1979; Ammon, 1991; 

Cassidy, 1992] (3.2 )

G( ) = exp( 4 ),                                              (3.3) 
37



g( ) = 2 exp( 4),                                              (3.4)
a (Gaussian filter width)

a 2.5

0.8 s (1.25 Hz)

1.6 s

P ( cross-correlation )

a

 (

3-5)

(least-squares method)

0.01%

300

P S (

3-6)
38



 3-5 

(

Ligorrfa and Ammon [1999])

39



 3-6 

P

Pms 9 P 3

3.4

P

P

(incident angle)

40



(backazimuth)

P

P

  

P P

3.4.1 ( Moveout correction )

P  (

ray parameter) P

 [Cassidy, 1992]

= 6.18 10  s/km (

60 35 ) P

3-7

3.4.2

P

41



10o ±10o

( 3-8)

 3-7 

110±5P
 o

Pms 9

42



 3-8 

3.5

Frederiksen and Bostock [2000] (Ray-theoretical) 

(RAYSUM)

P S

21

transverse isotropy P S

43



(plunge) (azimuth)

tradeoff

3.5.1

(Neighbourhood algorithm, NA) (non-linearity)

[Sambridge, 1999a, b]

 ( 3-7)

(1)

Voronoi cell

(2) (misfit 

function  ( < )

(3) Voronoi cells

(4) (2) 

Frederiksen et al. [2003] /
;

44



;

Frederiksen et al. [2003] /
, 500 15

150

150 P S

(Poisson’s ratio 1.75~1.85 P-to-S

P P S

P

3.5.2

( misfit function )

(global 

minimum)

-norm

=                                                             (3.4)
D S

(local minima)

(weight)
45



  

P

[ Frederiksen et al,. 2003; Levin and Park, 1997; Frazer and

Sun, 1998]

(Correlation coefficient , cc)

1

( ) = (1  )   (3-5)

i

j

i

1~3

3.5.3

[Sambridge, 2001]

P S

46



  

P

-5-2.5 s (radial: 0.5-2.5s) 2-6 s 5.5-12 s

 3-9 (a-c)

47



Voronoi cells

(d) 

( Sambridge, [1999a])

3.6

P P

SV R

P SH

P

P SV SV

P SV

P S T

T

RAYSUM

3.6.1

3-1 3-8

RAYSUM

48



0 P 2.76 s

Ps P 20 S

6.03 s Ps 40 P

S 8.43 s Pms P 60

S : 

(1) P Ps

(2) P-to-S

(3)

3.6.2

SV SH R T

S

R T Pds

3.6.1

P S 10%

3-2 ( 3-9) : 

(1) 6-8 s

90o

49



(2) 8 s Pms 180o

(baz= 0o 180o) (baz = 90o

270o)

(3) P baz=0o

180o baz=90o 270o

Pms

baz=40 o 140 o

220o Pms

(4) T P

(5)

SV SH

 [Eckhardt and Rabbel, 2011]

Ps

3.6.3

( 3-3, 3-10) plunge 90

transvere isotropy trend

( 3-8) Pms( 8

) Ps ( 6 ) P-to-S

P S

50



[Aki and Richards, 2002] S

3.6.4

45°( 3-4) ( 3-11)

( 3-9) : 

(1) (baz=0°,180°)

T (baz=90°,270°)

180

(2) 120o-240o R Pms

P

P-to-S Pms

  

(3) T

180°

(4) P 6 s P

S

3.6.5

P S T

51



R T P

Ps

20o( 3-5) 3-14 : 

(1) P SH SV

(2) Ps 360 R

(downdip) (baz=270o) (baz=90o)

T (baz=0°, 180°) 

(3) Ps baz=0°, 180°

baz=90°, 270°

180o

T P Ps

(4) R P

52



 3-1

layer thickness

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

trend

( )

plunge

( )

strike

( )

dip  (

)

20 6030 3350 - - - - - -

20 5040 2800 - - - - - -

20 7020 3900 - - - - - -

- 7900 4400 - - - - - -

 3-10 

(R) (T) P

P

53



 3-2

layer thickness

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

trend

( )

plunge

( )

strike

( )

dip

( )

20 6030 3350 - - - - - -

20 5040 2800 - - - - - -

20 7020 3900 10 10 180 0 - -

- 7900 4400 - - - - - -

 3-11

3-10

54



 3-3

layer thickness

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

trend

( )

Plunge

( )

strike

( )

dip  (

)

20 6030 3350 - - - - - -

20 5040 2800 - - - - - -

20 7020 3900 20 20 180 90 - -

- 7900 4400 - - - - - -

 3-12 

3-10 3-10

Ps
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 3-4

layer thickness

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

trend

( )

plunge

( )

strike

( )

dip  (

)

20 6030 3350 - - - - - -

20 5040 2800 - - - - - -

20 7020 3900 10 10 180 45 - -

- 7900 4400 - - - - - -

 3-13 45o

3-10

56



 3-5

layer thickness

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

trend

( )

plunge

( )

strike

( )

dip  (

)

20 6030 3350 - - - - - -

20 5040 2800 - - - - - -

20 7020 3900 - - - - 180 20

- 7900 4400 - - - - - -

 3-14 20o

3-10

57



3.7

3.7.1

Schulte Pelkum and Mahan [2014]

360

( 3-15) : 

(1)

(2) 90

90 90

(3) P Ps

(node)

( 3-16)

(4) (plunge = 0 ) (2)

90 45  ( 3-17)

180o ( 3-12)

P Ps ( 3-11)

Ps

P

P
58



 3-15 (a) (b)

+90 (c) (a) (b)

(

 ~160 )

1 Schulte Pelkum and 

Mahan, [2014])

59



 3-16 

(a)

(b) ±90

( Shiomi et al. [2008]) 

60



 3-17 90 ( )

45 ( ) ( )

3.7.2

:

(1) ( 3-6)

T Ps

( 3-18)

+90o

3-19 Ps baz=45 o

Ps baz=180o

61



Ps

(2) ( 3-7) ( 3-19)

( 3-20)

( 3-8)

( 3-22)

Ps (

3-23) P (baz=180o) 5

7 Ps

Pms 180o

62



 3-6

layer thickness

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

trend

( )

plunge

( )

strike

( )

dip  (

)

20 6030 3350 - - - - - -

20 5040 2800 10 10 45 45 - -

20 7020 3900 10 10 180 45 - -

- 7900 4400 - - - - - -

 3-18 

( ) ( ) 5

63



 3-19  ( ) 3-18

( ) +90 ( )

Ps 135o 270o

64



 3-7

layer thickness

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

trend

( )

plunge

( )

strike

( )

dip  (

)

20 6030 3350 - - - - - -

20 5040 2800 - - - - - -

20 7020 3900 - - - - 45 30

- 7900 4400 - - - - 180 20

 3-20 

65



 3-21 ( ) 3-20

( ) +90 ( )

Ps 45o 180o

66



 3-8

layer thickness

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

trend

( )

plunge

( )

strike

( )

dip  (

)

20 6030 3350 - - - - - -

20 5040 2800 - - - - - -

20 7020 3900 10 10 180 45 180 20

- 7900 4400 - - - - - -

 3-22 

67



 3-23  ( ) 3-22

( ) +90 ( )

P 5 7 Ps

3.8

3.8.1

Wang et al. [2011] Hi-CLIMB 83

S

, ,

,

68



,

Wang et al.[2011]

P

Sherrington et al.[2004]

[Ammon, 1997]

: 

1. H1630 (baz=30-130)

(baz=290~310)

2. H1630

( 3-24 25)

69



Ps

3.5

3.8.2

,

,

, ,

Wittlinger et al. [2009] h- Hi-CLIMB

(Poisson's ratio)

( 3-26):

(1)

(2) Wittlinger et al. [2009] P S

Ps

,

(3) 3.6 3.7
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(4) (1)
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 3-24 H1630 baz = 110

Vp/Vs 

Vs ( )

trend plunge

72



 3-25 H1630 baz = 290

3-24 3-24

,
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 3-26 

H1060 :

P (0 ) (Pms 9 ) (

2 )

H1060
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4

P

-5 s 12 s

-5 s-2.5 s 20

, Vp/Vs (1.75-1.85) P S

0-20% (trend), 0-360o

(plunge)(0-89o) ±4 km

3.5

2 s-6 s

20-50

(plunge ±5o, trend ±10o, ±10%,Vp/Vs 1.75-1.85)

5.5 s-12 s

 4-1

(trend)
75



(plunge)
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 4-1 (a)-(c) H1250

(d)

H1250

S (trend)

77



(plunge)

4.1 (H1010-H1200)

H1010-H1200 IYS

(trend) H1120

(plunge)

30-50

IYS 60

( 4-2 4-4) 

H1060

T Pms ( 8~9

) 5-7

plunge 90

4-2

H1090

6

Pms

H1060 plunge 90 20

4-3   

H1120

baz =300o 6

78



4-4

4.2 (H1210-H1400)

70 H1280

H1340

 H1280

90o

4-5

 H1340

P

3.5

4-6

4.3 (H1410-H1630)

H1550

H1460 H1550

H1460
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Pms 5 s-7 s

4-7

H1550 3.5

120o

Pms

4-8

S
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 4-2 H1060

S

4-1
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 4-3 H1090 4-2

82



 4-4 H1120 4-2

83



 4-5 H1280 4-2

84



 4-6 H1340 4-2

85



 4-7 H1460 4-2

86



 4-8 H1550 4-2 

87



4.4

Hi-CLIMB

( 4-9) 4-10 4-11 4-12 Vp/Vs

P S

4-10

[Tseng et al., 2009] 4-11

( )

4-11 H1200

IYS BNS
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 4-9 H0641 H1630
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 4-10 Hi-CLIMB

90



 4-11 Hi-CLIMB

4-10

91



 4-12 Hi-CLIMB
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5

67

Pms

5.1 Pms

Liu and Niu [2012] Sun et al. [2012] Ps

cosine= cos(n + ) n

degree , cosine n=2 Ps

180 n=1 360

i = 0
(grid search)

degree Ps

degree Ps

Ps 5-1a

Ps T

R 5-1b T

5-1c
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Ps (normalized) 5-1d

Sun et al. [2012] R

Ps R Ps

Ps Ps

Ps

Pms 5-2

Pms

(degree)

( 5-2) 5-2

degree=2

Pms H1550 degree=2

5-3 H1250

degree=2 180o

Pms

100o-120o 270o-300o

260o -

3.7

[Schulte-Pelkum and Mahan, 2014] R

T +90o Pms

180o ( 5-4)

5-5 5-6 H1280 5-5 R

Pms 180o(degree=2)
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340o-360o 160 o -180 o

5-6 R T Pms

180o

H1280

5-7 5-8 H1550 5-7 R

Pms 180o

- 300o-330o ( 120o-150o)

- 210o -230o ( 30o-50o)

H1550 Pms 180o

5-8 R T Pms

90o 180o
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 5-1 Pms (degree)

cosine Pms

(a) R Pms

(b) T

R (c) T

; Pms
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(d)

(a-d) degree

( Liu and Niu [2012])

 5-2 cosine degree 4

Pms Sun et al.[2012] R

( ) ( )

degree=2 Pms 180o

180o
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 5-3  5-2 H1250 Pms

(degree) 2 Sun et al. [2012]

(a-c) (d)

100o-120o

270o-300o
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 5-4 H1250 R

(a) T +90o (b) (c)

 [Schulte-Pelkum and Mahan, 2014]

8~9 180o ( )
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 5-5 180o (degree=2) H1280 Pms

Pms (a-c)

(d) 5-3 340o-360o 160 o -180 o
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 5-6 H1280 R (a) T

+90o (b) (c) 5-4 8~9

180o ( )

(

5-5)
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 5-7 180o (degree=2) H1550 Pms

Pms (a-c)

(d) 5-3

- 300o-330o (

120o-150o) - 210o -230o ( 30o-50o)
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 5-8 H1550 R (a) T

+90o (b) (c) 5-4 9 s

Pms 90o 180o ( )

5.2

(decorrelation)
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(1)

(trend) 180 (2) (trend)

90 ; (3) (plunge) 90

5.2.1 trend 180

trend 180 3.6

(plunge=0o)( 3-9) R T

180o 180

180o 180

3-11

180o 3-6

5-9 30o

trend 180o ( 5-9 ) ( 5-9 ) R T

Ps 7-9 s

180o 5 s

2-3 s
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180o 180

180

  

 5-9 30o 180o
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10% 5 ( ) 180o

Ps 2.5 s

Ps R T

5.2.2

70

10%

3-10 T R

90o trend

Ps

T

[2014] S

S 10%

SV SH

S SH SV [Shapiro et al.,

2004; 2011 ]
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5.3

RAYSUM

:

0-20% 0 -360

0 -90 ±5%

5.3.1

(trend=180o)

(plunge=0o) 30o ( 5-1 5-2) P S

(

)

180o 0o 180o 5-1

5-2 S
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 5-1

P S P S

(trend) (plunge)

input 

Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

20 6030 3350 - - - -

20 5040 2800 5.0 5.0 180.0 0.0

20 7020 3900 - - - -

output 

Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

20 6030 3350 - - - -

20 5040 2816.6 5.3 5.3 0.7 0.9

20 7020 3900 - - - -
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 5-2 5-1

5-1

input 

Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

20 6030 3350 - - - -

20 5040 2800 5.0 5.0 180.0 30.0

20 7020 3900 - - - -

output 

Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

20 6030 3350 - - - -

20 5040 2806.1 4.6 4.6 180.0 30.1

20 7020 3900 - - - -
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5.3.2

Ps

5-3 5-5 45o

(

5-6 5-7) : (1) 

( 5-6 5-10) (2) ( 5-7

5-11) 2
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 5-3

input 
Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

10 6030 3350 - - - -

10 5760 3200 - - - -

10 5040 2800 5.0 5.0 180.0 0.0

10 6120 3400 5.0 5.0 180.0 0.0

10 7020 3900 - - - -

10 7380 4100 - - - -

output 
Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

10 6030 3350 - - - -

10 5760 3200 - - - -

10 5040 2783.9 7.2 7.2 179.5 2.1

10 6120 3385.3 6.3 6.3 176.4 0.0

10 7020 3900 - - - -

10 7380 4100 - - - -
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 5-4

input 
Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

10 6030 3350 - - - -

10 5760 3200 - - - -

10 5040 2800 5.0 5.0 90.0 0.0

10 6120 3400 5.0 5.0 180.0 0.0

10 7020 3900 - - - -

10 7380 4100 - - - -

output
Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

10 6030 3350 - - - -

10 5760 3200 - - - -

10 5040 2793.7 8.4 8.4 86.2 2.0

10 6120 3343.7 7.9 7.9 175.5 3.4

10 7020 3900 - - - -

10 7380 4100 - - - -
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 5-5

45o

input 
Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

10 6030 3350 - - - -

10 5760 3200 - - - -

10 5040 2800 5.0 5.0 45.0 0.0

10 6120 3400 5.0 5.0 90.0 0.0

10 7020 3900 - - - -

10 7380 4100 - - - -

output
Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

10 6030 3350 - - - -

10 5760 3200 - - - -

10 5040 2813.7 6.3 6.3 44.7 7.6

10 6120 3354.5 5.7 5.7 89.6 4.9

10 7020 3900 - - - -

10 7380 4100 - - - -
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 5-6

Input 
Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

10 6030 3350 - - - -

10 5760 3200 - - - -

10 5040 2800 5.0 5.0 90.0 60.0

10 6120 3400 5.0 5.0 180.0 30.0

10 7020 3900 5.0 5.0 180.0 30.0

10 7380 4100 - - - -

output 
Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

10 6030 3361.5 - - - -

10 5760 3235.2 - - - -

10 5040 2803.9 4.1 4.1 74.8 54.3

10 6120 3484.8 2.5 2.5 177.4 38.6

10 7020 3868.0 3.0 3.0 172.2 22.9

10 7380 4091.4 - - - -
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 5-10 

5-6

135o-225o 6.5 s
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 5-7

input 

Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

10 6030 3350 - - - -

10 5760 3200 - - - -

10 5040 2800 5.0 5.0 90.0 30.0

10 6120 3400 5.0 5.0 180.0 60.0

10 7020 3900 5.0 5.0 180.0 60.0

10 7380 4100 - - - -

output 

Thick

(km)

Vp

(m/s)

Vs

(m/s)

dVp/Vp

(%)

dVs/Vs

(%)

Trend

( ) 

plunge

( ) 

10 6030 3216.7 2.5 2.5 141.8 19.6

10 5760 3199.0 0.8 0.8 107.8 38.1

10 5040 2866.0 6.1 6.1 85.9 63.0

10 6120 3405.9 2.9 2.9 19.3 1.8

10 7020 3960.7 1.2 1.2 165.3 40.1

10 7380 4087.3 1.3 1.3 1.5 7.9
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 5-11

5-7

135o-225o 6.5 s T

2-5 s
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5.4

Hi-CLIMB

(0-20 ) (20-50 ) (50

- )

5-12 5-14

10% 5-12 IYS BNS
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 5-12 0-20 ( )

25-35

( 10%) T

40-50 IYS

NNE-SSW (

5-13) BNS

 [Folsom and Zandt, 2004]
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Wang et al. [2011] Hi-CLIMB

[2013]

25-35

S

  

Nelson et al. [1996] 

 [Wei et al., 2001; 

Unsworth et al., 2005] [Zhang et al., 2001]

Ozacar and Zandt [2004] Hi-CLIMB

INDEPTH III

Clark and Royden [2000]

BNS Xu et al. [2012]

Hi-CLIMB

S

Hacker 

et al. [2000] (xenoliths)

30~50
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 5-13 20-50

5-12 

T

( 5-14)  >50

- -

[Kind et al., 2002; Tseng et 

al., 2009; Nábelek et al., 2009] Wittlinger et al.[2009] 
121



(Common-Conversion-Point Stacking) IYS

20-150

(eclogite) GPS

[Bettinelli et al., 2006]

Ábalos et al [2011]

3.5%

8%-12%

5-3

  

[Ozacar et al., 2004 ; Sherrington et al., 2004 ; 

Shapiro et al., 2004 ]

(rheology)

SKS  [Chen et al.,

2011]
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 5-14 50

5-12 
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6

1. Hi-CLIMB (< 10km) (> 10%)

70o

2. 25-35 (

10%)

[Wang et al., 2011; Xu et al., 2012; , 2012]

3. (> 6s)

(Pms)
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