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Abstract

In this dissertation, systematic techniques have been developed for helping users to make
new music by concatenating existing audio materials, i.e. concatenative audio music re-
composition. The re-composed music can be used as the background music for personal
films and slideshows or for non-stop dance suites. Based on the content analysis tech-
niques, music theory, and psychoacoustics, various composition and selection schemes
have studied in detail. We could locate appropriate connecting positions on the basis of
similarity values, phrase boundaries or bar information. Besides, psychoacoustics-based
tempo adjustment methods are used to smooth the tempo of concatenated music pieces.
For cases of distinct tempo or volume, effective dual tempo adjustment and volume nor-
malization schemes have been proposed and investigated, respectively. Two different
schemes are proposed for selecting materials from music collections: The straightforward
scheme filtered out unfitting clips by pair wise comparison and ordered the clips by simi-
larity values at the found connecting points. The graph-assisted scheme, first, constructed
a musical dice graph from pre-processed clips based on the results of music signal anal-
yses. Then, with the graph, we can provide personalized medley creation service, which
will generate various pleasing medleys conform to the specified conditions, such as the
medley structure or must-use clips. We also provide an GUI for the users to choose music
clips, specify parameters and adjust concatenation boundaries. Experiment results showed
the effectiveness of individual components, comparisons among methods, and provide

guidelines for users to choose parameters.
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Chapter 1

Introduction

Music has Charms to sooth a savage Breast,
To soften Rocks, or bend a knotted Oak.

— William Congreve (The Mourning Bride,1697)

1.1 Background and Motivation

The development of digital music gives people convenient ways to access their favourite
music pieces. The prevalence of digital capture devices also make people start to create
their own media, such as photo, video, audio, etc.. With the help of media editing tools,
people can combine existing media, organize them to make new media, and then share
the creations on social websites like Facebook, Youtube, etc.. There are more and more
such kinds of creations spread over the internet. Besides entertaining the masses (c.f. Fig-
ure 1.1(a)), these creations also play the major role in satirizing society (c.f. Figure 1.1(b))
or commemorating personal experiences (c.f. Figure 1.1(c)), and become the sustenance

of our daily life.

1.1.1 Media Re-composition

We define the process of using existing media as materials to make new media as “media
re-composition.” It is related to the technique of “appropriation” in modern art, which

means using existing elements and re-contextualising them with little or no transformation

1
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Figure 1.1: (a—c) Examples of media re-composition: (a) A student extended the portrait
of Guan Hangqing (B /% "7) on a Chinese textbook, and painted a motorcycle for him.
(b) Some netizens modified the poster of the famous Taiwanese romance drama “In Time
with You (Chinese: #* ¥ it # § & i7; literally: “I might not love you”)”, and satirically
changed the leading roles’ faces to those of the presidential election candidates of Taiwan
in 2012. The title of the poster was also satirically changed to “I might not ‘vote for’
you”. (c) Screenshot of the results of tiling slideshow[ 1], an automatic photo slideshow

creation system. (d) Example of the appropriation art: Monroe in Warhol Style. Andy
Warhol (1967).



in the creation of a new work. Figure 1.1(d) show an example of appropriation ‘ast by
Andy Warhol (1967), which contains a photo of Marilyn Monroe with different colors.
In this study, we will focus on the media re-composition for music, the so-Qalled music

re-composition.

1.1.2 Types of Music Re-composition

Music re-composition can be categorised from three aspects: the type of source music, the

type of content usage, and the type of composition method.

Categorised by the type of source material

In general, there are two types of source materials for music re-composition: symbolic and
audio domains. The first type refers to using symbolic representation of music as materials
for re-composition, e.g. taking existing melodies, rhythms, or styles into account. One
example is a sonata' re-composed by David Cope’s EMI System [8], which mimics the
melody and style of Beethoven’s works. Another example is the Chinese pop song “Shen
Qi Bai Ma (Riding on a white horse)” by Lala Hsu (% 4 % (¥ 5 v 5 ) ?). In that song,
Hsu inserted a famous melody from Taiwanese opera. Music re-composition in symbolic
domain causes no obvious audible artifacts in the auditory aspect. However, to be listened
to, the re-composed music should be performed by performers or be synthesized.

The second type of source refers to using the audio representation as materials for re-
composition, i.e. using the recordings of existing music pieces. An example is the Chinese
pop song “Long Live Punk’n’Funk” by Jutoupi (F# g £ (¢ F X K F & #& ) °), in which
the audio recording of Jutopi’s rap has been overlaid with the audio of Lenny Kravitz’s
“Are You Gonna Go My Way”.” In contrast to symbolic music re-composition, there is
no need to re-perform the used music materials. However, we need to infer the content in

the audio materials and deal with possible discontinuity artifacts in the resultant music.

Iftp://arts.ucsc.edu/pub/cope/beet?.mp3
thtp://www.youtube.com/watch?szzXOT26_Da8
https://www.youtube.com/watch?v=wIrFFtgElnY
“https://www.youtube.com/watch?v=uAcAuuLNEHY



Categorised by the type of content usage

According to the type of content usage, we can categorize the music re-composit}on into
three types: use of single music piece, use of both existing music and new music piece,
and use of multiple existing music pieces. For the first type, only single music piece is
used, we name it self re-composition. In the audio domain, this type of usage is also called
audio retargeting [9, 10]. The goal is often to lengthen or shorten the input music while
preserving the characteristics of the original music. Common approaches would be to
identify the near-identical parts in the music and then delete or repeat those parts to make
the duration of music match the user’s need. For the second type, composers will compose
new music to make it match with the existing music. As a result, the re-composed music
will be more natural and with less artifacts. For the third type, multiple existing music
pieces are used as materials to re-compose music. The music materials are relatively

fixed, so we need to find out proper method to compose these pieces euphoniously.

Categorised by the type of composition method

Based on the composition methods, there are three different types: overlaid, concatenated,
and hybrid. For the first type, the music pieces are composed to play concurrently. For
example, the mashup song composed by FAROFF? is made by the vocal track of Beatles’
“Let it be” overlaid with the instrumental track of Bob Marley’s “No Cry”. The second
composition type is to concatenate the input music, that is, the music pieces are played
successively. An example is the Taiwanese pop song “Red Line” by Jody Chiang (ix &
(i) ©), the Taiwanese folk song “Bang Chhun-hong ( { % % k ) ) is inserted and con-
catenated with other part of “Red Line.” The third type is to use both the aforementioned
two composition methods. For example, some netizens concatenated short words in Pres-
ident Obama’s speech recordings with each other and overlaid them with an instrumental

track of the song “Jingle Bells”, resulting in an interest rap song’.

>http://www.youtube.com/watch?v=Ac1X16K5X1U
Shttp://www.youtube.com/watch?v=uf7Amee9RtM
7http://www.youtube.com/watch?v=HW7hvllbYAw
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1.1.3 Concatenative Audio Music Re-composition

In this dissertation, we focus on the music re-composition in audio domain,(audio music
re-composition), that is, composing of multiple existing music pieces on the basisiof con-
catenating methods. We name this type of re-composition as “concatenative audio music

99 ¢¢

re-composition”. The term “concatenative”, “concatnate”, or “concatenation” could also

2% ¢ 99 ¢ 9% ¢

be described with other terms like, “justapose”, “segue”,“strung together”, “combine”,
“connect”, “link to form a single piece”, “arranged so that the end of one merges into
the start of the next”. And the resultant music piece of concatenative audio music re-
composition can also be called a medley or a megamix.

A musical medley is a piece of music composed from parts of existing music pieces
[11]. As stated in [12], “the term was first used by 16th-century composers,..., for a piece
that strings together several favourite tunes.” In light operas and musicals, the overtures
that are composed of the most prominent melodies in the associated work are also called
medley overtures [13]. In the digital audio era, the term “medley” indicates the remix
composed of parts of tracks of a particular artist or popular songs of a specific genre®.
In the rest of this dissertation, we will mainly use the term “concatenate” to describe the

relationship between music materials, and use the term “medley” to describe the result of

the concatenated audio music.

1.2 Problem Statement

In the past, medleys were usually edited by professional audio engineers and distributed
by music production companies, e.g. The Beatles Movie Medley °. Currently, more and
more music hobbyists create their own medleys from their favorite songs with the help of
newly-developed audio technologies and publish the results on websites like Youtube. The
resultant medleys can be used as background music for personal films and slideshows or
for non-stop dance suites. If each individual track only appears as a partial sample (usually

less than 30 seconds), users are allowed to include their favorite songs while avoiding

8http://en.wikipedia.org/wiki/Medleyi(music)
*https://www.youtube.com/watch?v=pKOiculk5tA
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Figure 1.2: Functional blocks of a general music re-composition process by human.

copyright infringement issues.

Existing editing tools like Goldwave'’ and Audition'' enable users to cut and connect
audio clips at manually-specified positions. However, these tools still require users to have
the knowledge and skills necessary to (i) select suitable materials to put together and (ii)
euphoniously connect the materials. As shown in Figure 1.2, the process of manual music
re-composition can be divide into three steps, pre-processing, selection and composition.
During the process, people may do these steps iteratively. Professionals may reduce the
number of iterations with the help of their domain knowledge or experiences. But for
general people, the process can be just trial-and-error. Given the vast amount of digital
music currently available'?, finding suitable songs which can be sequenced to produce a
cohesive and pleasant medley is a time- and labor-intensive process. In addition, once the
user decides which music materials should be adjoined, they still need to listen to each of
them to determine the positions for cutting the audio files into clips and connecting them
together. Furthermore, users may need to manually adjust the tempi and volume levels of
the clips to smoothly connect them.

As a result, automatic schemes would help to reduce human efforts in facing of time-
and labor-intensive tasks. A general automatic scheme for concatenative audio music re-
composition can be illustrated in Figure 1.3. First, the system analyses the input music
based on certain domain knowledge by extracting features and detecting basic music com-

ponents, such as, beats, chord, etc.. Then, according to the analysed results, the system

Onttp://www.goldwave.com/
Uhttp://www.adobe.com/products/audition.html
2There are 26 million songs on the iTunes store[14].
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Figure 1.3: General framework for automatic concatenative audio music re-composition.

can determine the unit for re-composition (pre-processing), select and order the music
materials based on the result of pairwise similarity comparison, and finally compose the
materials. Besides, user preferences should also be taken into account to enhance the qual-
ity of re-composed music. For professional users, one could maximize the flexibility of
the system to adapt to users’ targets. For general users, one could minimize their efforts

at creating new media.

1.3 Summary of Contribution

This dissertation is devoted to develop systematic techniques for concatenative audio mu-
sic re-composition by exploiting content-based music signal analysis. Most of the results
are outcomes of several projects I have explored during my PhD study. The main con-
tributions of this thesis in solving the faced problems are twofold, as summarized in the

following two sections.

1.3.1 Thorough Investigation of Material Concatenation Methods

During the projects, numerous concatenation methods have been proposed and investi-
gated. The adventure of music concatenation started from the idea illustrated in Fig-

ure 1.4(a). We knew that a listener will anticipate the follow-up music based the on current

7
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Figure 1.4: Two proposed schemes for concatenative audio music re-composition.

and the past music he or she has listened [15]. As a result, in our first project: Music Paste
[4], we proposed to connect the music materials at the position where the former clips is
most similar to the latter ones —- the former clip and the latter clip will be overlapped
at their most similar part. Then, that part becomes the transition segment. The resultant
music from the beginning through the connecting-position to the end will all conform to
the listener’ anticipation. To smooth the change in tempo between the consecutive clips,
an adequate duration (transition duration) is a must for gradually adjusting the tempo from
one clip to another based on the concept of just noticeable difference (JND) [16].

In our second project [5, 6], we focused more on developing a personalized framework
for medley creation and improving the concatenation by phrase detection. That is, the
music materials will be first pre-processed and turned into music phrases. And then, we
will concatenate the music materials at their phrase boundaries and apply the same tempo
adjustment process, which was developed in our first project. A volume normalization
method was also proposed to further improve the concatenation quality.

Finally, in our third project [17], we further improved the concatenation method de-

veloped in the second project. We proposed to also cut the music materials at their phrase



boundaries but align them with the bar information, so as to improve the beat counting
experience of listeners. Besides, we improved the tempo adjustment by considering the

double/half or quadruple/quarter of the original tempi to dealing with tempo-distinét cases.

To sum up, we divide our concatenation methods into three steps: transition'segments
locating, tempo adjustment, and synthesis. At transition segments locating step, we pro-
vide three options for users: at the most similar position, at phrase boundaries, and with
bar alignment. Then, psychoacoustics-based tempo adjustment methods are proposed to
smooth the tempo of concatenated music. For cases of distinct tempo or volume, corre-
sponding techniques for doing dual tempo adjustment and volume normalization schemes

have also been studied, respectively.

1.3.2 Personalized Material Selection Scheme

In our first project [4], we just simply select and order the music materials by the similarity
values of the transition segments between connecting material pairs, while in our second
project [5, 6], we took another view for material selection. As shown in Figure 1.4(b), we
assume that music materials are interchangeable if they are similar enough. As a result,
clips will be chosen to be put after the former clip if they are similar enough to the phrase
just after the former clip in the original music. We knew that the aesthetic appeal of music
is highly subjective and is subject to personal tastes. Based on the aforementioned concept
in Figure 1.4(b), we proposed a personalized material selection scheme in reflection to the

rarely considered user preferences in previous related studies.

As shown in Figure 1.5, users can specify the structure of the target medley, and op-
tionally select a few materials at certain positions in the medley, i.e. the darker parts in
the figure. The system then completes the medley with materials selected from the mu-
sic collection provided by the user. We built a flexible scheme to create medleys based
on user preference, thus even users with no understanding of music theory can compose

medley songs from their favourites tracks.
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Figure 1.5: Operational scenario of the proposed system. Upper part: the user specified
medley structure and must-used clips. Bottom part: the completed medley produced by
our system. The result of this example is available at http://www.cmlab.csie.
ntu.edu.tw/~known/medley/results/scenario.wav

1.4 Thesis Organization

The rest of this dissertation is organized as follows. In the next chapter, we will review
literature related to concatenative audio re-composition. In Chapter 3, we will introduce
the domain knowledge and audio features have been used in the dissertation. Then, the
concatenation techniques used in our three projects will be re-organized and presented in
Chapter 4. In Chapter 5, the selection schemes and the overall system structure of our first
two projects will be presented. Afterwards, the effectiveness of the investigated methods
will be discussed in Chapter 6. Finally, the conclusion and future study directions will be

presented in Chapter 7
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Chapter 2

Review of the Literature

If I have seen further it is by standing on the shoulders of giants.

—Isaac Newton, 1676

2.1 Music Re-composition in Symbolic Domain

Re-composing music clips in the symbolic domain has been studied since the 1980s [18].
Cope [8] conducted various experiments and developed a music-generating system based
on the concept of the dice game [15]. In the system, music clips from master composers
are analyzed and recombined to generate a new master style music pieces. Cope also ar-
gued that the recombination of existing excerpts is a basic technique frequently used by
composers. More recently, Shan and Chiu [19] used machine learning techniques to an-
alyze existing music samples and proposed a top-down algorithmic composition system
that generates music pieces similar to the given samples. Combining music clips in the
symbolic domain causes no obvious audible artifacts in the auditory aspect. The music is
usually synthesized and performed by the same artist so that the key, tempo, and the in-
struments used in the song clips of the generated music can be easily altered. Nonetheless,
the approaches in the symbolic domain cannot be easily applied to the audio domain be-
cause current music transcription and separation techniques are still not accurate enough

to extract all the music notes from polyphonic audio clips. Instead, in this dissertation, we

11



use more applicable (but coarser') audio music analysis paradigms, such as'the deteetion

of beats, chords, and phrases.

2.2 Self Re-composition — Audio Retargetting

Audio retargeting is a self re-composition (c.f. Section 1.1.2) approach that changes the
duration of a given audio track to arbitrary lengths by inserting or deleting a portion of
the same track. A common approach for audio retargeting includes two subtasks: (i)
segment the song into short clips and group together near-identical clips, and (i1) find
an appropriate method to concatenate these clips under the constraints given by users,
usually the duration of the output audio. Wenger and Magnor [9] segmented a given song
by calculating its self-similarity matrix of music signals. Liu et al. [10] employed time-
stamped lyric information as well as the self-similarity matrix of chroma features to find
appropriate cut points. Grouping segments with the self-similarity matrix only allows for
the identification of near-identical segments, and thus can hardly be applied to our case,
which involves multiple and potentially dissimilar songs. Besides, using the self-similarity
matrix to segment songs does not necessarily guarantee accurate segmentation, and the
corresponding computational complexity grows dramatically with the number of involved
clips. To avoid selecting near-identical clips and to better capture the musical content of
the clips, this study takes higher level features including chord sequence similarity into

account.

2.3 Short Material Re-composition — Concatenative Syn-

thesis

Concatenative synthesis [20] focuses on synthesizing speech, music or environmental

sounds based on pre-collected “short” audio snippets. Schwarz et al. [21] provided a com-

'Compared to “all the musical notes”, beat detection provides only time indexes for each beat, while
chord detection reports only the chords at each time index, and phrase detection provides the phrase bound-
aries in the songs.
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prehensive survey of the techniques of concatenative synthsis. Some studiesssynthesize
music notes from a corpus according to a user-provided description, such as|a'sequence
of pitches or midi files [22]. Some recent works have focused on developing GUIS for
interactive performance artists to control synthesis results [23, 24]. As for selecting au-
dio snippets, some studies [24, 25] adopted approaches similar to the proposed one in
our second project [5] — they pre-clustered the snippets and chose them according to cer-
tain statistics of consecutive snippets in the clusters. However, the unit for concatenative
synthesis can be as short as a musical note/onset (usually less than a second). Conse-
quently, the music pieces produced by concatenative synthesis techniques will not keep
the phrasing of the original songs, i.e., the resultant output is a totally new song rather than
a combination of existing song excerpts, thus losing the spirit of a medley song. Here, we
need to handle additional issues to compose songs with musically meaningful units, such
as chord/note sequence similarities, tempo differences between clips, and the smoothness

of the music as it transitions from one clip to the next.

2.4 Overlaid Material Re-composition — Mashup Creation

Mashup is another paradigm for music re-composition, where the clips are overlaid with
each other, usually with the vocal track of one song and the instrumental track of another.
That is, in a mashup, the clips from different songs are played concurrently with the origi-
nal songs while in a medley, the clips are played successively. Automatic mashup creation
is still new and few studies focused on it. Griffin et al. [26] used a phase vocoder to adjust
the tempo of each one of the user-specified clips, and combine them after synchronizing
their beats. The AutoMashupper was recently proposed by Davies et. al. [27] to automat-
ically create mashup music from multiple song tracks. In their system, users first pick a
song track as the basis song. Then, the system will segment the picked track into short
phrases. For each phrase, clips with the highest mashability — by chromagram similarity —
will be overlaid on the phrase to create the final mashup. A limitation of AutoMashupper
is that the resultant mashups should follow the structure of the basis song while in the

system of our second project [5], users can specified their own structures of the resultant

13



medley.

2.5 Material Selection — Playlist Generation

The study of playlist generation emphasizes on selecting suitable songs for playback suc-
cessively. A general approach to these tasks is to select similar songs for being included in
the playlists based on some specific criteria. Users may specify a seed song, then the song
best matched with the specific criteria will be chosen as the next song by the system, and
so on. Sometimes, slightly random factors may be used, to increase the novelty/interest
of playlists. Commonly used criteria usually fall into one of the following types: (i) meta-
data based (e.g. same artist, album, or genre), (ii) content-based (e.g. audio feature sim-
ilarity [28, 29], key [30], tempo/rhythm [31]), and (ii1) collaborative filtering based (e.g.
occurrence of songs in user’s friends’ playlists [32]). The present case deals with song
excerpts (~10 sec on average) rather than whole songs and, as such, the properties used to
select adjacent clips are stricter than those used to select adjacent songs. In other words,
the song selection approaches used for playlist generation cannot be directly applied to
the selection of song excerpts for medley generation. In playlist generation, the next song
only begins after the previous ends, and each song in the playlist is complete and played
without interruption. In contrast, a medley consists of partial song clips sequenced to
form a new song, with the next song excerpt starting before the previous song excerpt has
finished. Therefore, while playlist generation merely considers the global similarities be-
tween songs, this is insufficient for medley generation. Local audio similarities between
consecutive song excerpts should also be considered to meet the listeners’ expectations

for seamless musical flow in the resultant medley.

2.6 Material Concatenation — Automatic DJ tools

The studies on Automatics DJ tools [33, 34, 35] often emphasize more on the issues of
music concatenation. The songs or clips mentioned in these studies are specified by users,

and the tools only have to deal with the concatenation issues. Basu [34] aligned two

14



clips through scaling and shifting so that the energy of the two songs‘became similar.
Jehan [33] realized a DJ system by extracting auditory features, connecting [the clips at
rhythm-similar segments and aligning the beats of clips. Given a collection of tré’cks and
a tempo trajectory of the tracks, CIliff [35] determined how the track sequence should
be played in accordance with their tempi. In [36], a detailed discussion was presented
on how two given clips should be concatenated without producing listener discomfort.
In the clip selection phase, audio clips with similar Mel-frequency cepstral coefficients
(MFCCs) were selected. Their tempi were then adjusted by computing their optimal tempo
adjustment coefficients (OTAC), and the two clips were then aligned and concatenated by
matching the strong beats of the clips. However, in the aforementioned work, “rhythm
similarity” and “beat alignment” are emphasized most because the concatenated songs are
often used for dancing. Given that medleys are also a kind of music composition, in this
work we focus more on the chordal euphoniousness of the consecutive clips.

We summarized the related studies of playlist generation and automatic DJ tools in

Table 2.1.
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ﬁ Studies : Goal 7 Unit 7 Pre-processing 7 Selection criteria Composition User involved
Logan 2002 [28] Playlist Song Timbre (MFCC) Seed song
. . Co-occurrence of
Baccigalupo et al. 2006 [32] Playlist | Song songs in past playlists Seed song
Flexer et al. 2008 [29] Playlist Song Timbre (MFCC) start and end songs
. Playlist Crosstade, Seed song, tempo
Lin et al. 2010 [31] for jogging Song Rhythm Beat Sync profile
. Crossfade, )
CIlift 2000 [35] DJ tool Song Tempo Beat sync Song set, tempo trajectory
Crossfade, .
Basu 2004 [34] DJ tool Song Energy matching Given two songs
Crossfade,
Jehan 2005 [33] DJ tool Song Beat sync Song set
Ishizaki et al. 2009 [36] DJtool | Song Timbre (MECC) Crossfade, Seed song
Beat sync
) . Playlist, . Segmentation by Tempo, Key, Crossfade, Seed song, choose next
Chiarandini et al. 2011 [30] D1J tool Clip novelty curve Timbre, Mood Beat sync song from a list

Table 2.1: Related studies in playlist generation and automatic DJ tools.
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Chapter 3

Domain Knowledge and Audio Music

Features

If music be the food of love, play on.
— William Shakespeare (Twelfth Night,1601-02)

In this chapter, we will briefly introduce the domain knowledge and audio music fea-
tures we used. The used features reflected the basic properties of an audio music: temporal
related factors, pitch related factors, dynamics factors, and timbre factors. We will detail

these factors in the following sections.

3.1 Temporal Related Factors

Temporal related factors are music properties that related to music events along the time
axis, such as beat, onset, tempo, measure, rhythm, etc.. The used temporal related factors

are listed below.

* Beat
Beat is the basic unit of time in music [12]. It is often indicated by the conductor’s
moving hand or baton. People can also interpret the beats by listening to music,
though different people may feel different beat timings. Fortunately, most of the

time, we can find consensus in beats times. Beside, the interpreted beats are often
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Figure 3.1: Example of beat and onset’s position

integer multiples (often double or half) of each other. As a result, there were numer-
ous studies dedicated to detect beats from audio recordings. In this dissertation, the
beat information is extracted using BeatRoot [37], a state-of-the-art beat-detection
tool that won the Music Information Retrieval Evaluation Exchange (MIREX) con-
test ! in 2006 with a P-score of 0.575. Beats are also used as the unit with respect

to other audio features when analyzing music signals.

* Onset
The term “onset” in the field of music information retrieval often means the note
onset, i.e. the starting instant of a music note [38]. Figure 3.1 provides an example
to show the locations of onsets and beats on time axis. The detected onset locations
often used to further interpret beats or represent the rhythm features of the music.
Bello et al. [38] provided a good overview of onset detection techniques. In this

dissertation, we use the onsets extracted along with beats in BeatRoot system[37].

* Tempo
In musical theory, tempo is defined as the speed of a given piece [11], usually mea-
sured by the number of beats per minute (BPM). The tempo value (in BPM) at the

i'" inter-beat-interval (IBI, in second), T(i) can be calculated as,

60
(1) = IBI,

(3.1)

* Measure (Bar)

According to [12], bar is a kind of musical notation, which is a line drawn vertically

1http://www.music—ir.org/mirex/wiki/MIREXiHOME
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Figure 3.2: Illustration that indicates the 5 dimensions in the rhythm feature.

through a staff or staves, indicating the metrical unit (e.g., two, three, or four beats)
of the music piece is divided into. “Bar” also indicates the metrical unit itself, and
the line notation is called “bar-line”. In American usage, “bar” is the line itself, and
the metrical unit is named “measure”. In some studies, the authors use “downbeat
tracking” to describe the action of extracting bar information from audio signals
because a downbeat is the first strong beat of a measure [12]. In this dissertation,

we use the EchoNest API° to extract bar information from music signals.

* Rhythm
Rhythm is the pattern of movement in time [13]. The term covers “everything re-
lated to the time aspect of music,..., i.e. it includes the effects of beats, accents,
measures, grouping of notes into beats, grouping of beats into measures, grouping
of measures into phrases, etc.” [39]. As aresult, it is not feasible to exactly describe
the rhythmic property of a music piece. Many past studies have proposed ways to
extract audio features that could capture the rhythmic property [40, 41]. Here we
use the rhythmic feature proposed by Cicconet [42] because this method can be
combined with other beat-sync features easier. To extract the rhythmic feature by
[42], we first detect onset positions of an audio. Then, as illstrated in Figure 3.2, for
each inter-onset-interval (IOI), we extract 5 values to represent current IOI: volume
levels at the beginning and the ending of current 101, the duration of current 1OI,

maximum volume in the current 101, and the position of the maximum volume. Af-

’http://echonest.github.io/remix/apidocs/echonest.remix.audio.
AudioAnalysis-class.html
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terwards, we average the 5-dimension values of each IOI in each inter-beat-interval

to have a beat-sync rhythmic feature.

3.2 Pitch Related Factors

Pitch is “the location of a sound in the tonal scale, depending on the speed of vibrations
from the source of the sound, fast ones producing a high pitch and slow ones alow” [39]. A
melody — pitched sounds arranged in musical time — and a chord — simultaneous sounding
of two or more notes — are all examples of pitch related factors. In this dissertation, two

pitch related factors are used, chroma feature and chords.

¢ Chroma
Chroma vector is a 12-dimensional feature, representing the energy of 12 pitch
classes. Some researchers also called it pitch class profile. A common approach
to calculate chroma feature is to first calculate the frequency response according to
the frequency of each musical note for each audio frame. One may map the energy
of each band in FFT to that of musical notes [2], or use the Constant Q transform
[43] to directly compute the frequency response for each semitone. Then, as illus-
trated in Figure 3.3, we add up the frequency response of each pitch class over all the
frequency ranges. For example, the frequency response values of the every E notes
are summed up as the 5th element of the chroma vector. Finally, the 12-dimension
vector represents the energy of 12 pitch classes for the current audio frame. This
feature is often used in the studies of chord detection, music structure analysis, and

cover song detection.

* Chord
A chord is defined as “the simultaneous sounding of two or more notes” [44]. The
most frequent-used chords in Western music are the triads, which comprise of a
root note with two superposed 3rds [40]. The most common triads are the major and

minor triads. The terms major and minor are referred to as chordal quality *. Chords

3http://en.wikipedia.org/wiki/Chordi(music)
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Figure 3.3: Schematic diagram for calculating the chroma feature. (Images are taken from

[2])

can also be classed by their root notes, for example, a C major chord means the chord
is made of a triad with major quality and its root is a C note. In this dissertation,
we detect chords in songs with the Harmony Progression Analyzer (HPA) [45], a
state-of-the-art chord estimation system. HPA ranked first in the MIREX Audio
chord description contest in 2012 and achieved an superior accuracy of 75% to 85%
for most musical genres. The number of possible chords estimated is limited to
25, inlcuding 12 major chords, 12 minor chords, and no-chord for silence. Beat-
synchronized chord sequences are then extracted by aligning the chord estimation

results with the detected beats.

3.3 Dynamics Factors

In music, dynamics normally indicates the relative intensity (loudness, volume) and degree
of accentuation of sounds or notes [12]. The correspondence of dynamics of a music in its
signal is the amplitude. To calculate the volume of the music signal, we first separate the

signal into short frames of length n (often about 5 to 10 ms). For each frame, the volume
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Abba--Thank You for the Music part
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Amplitude
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Time (sec)

Figure 3.4: Example result of the volume levels of an excerpt from the song “Thank you
for the Music (by Abba)”. Top: the origin waveform; middle: volume levels calculated
by Equation (3.2); bottom: volume levels calculated by Equation (3.3).

is calculated as the sum of the amplitude of each samples in that frame, that is,

volume =Y |sy], (3.2)

i=1

where s; is the i*" sample in the current frame. Another approach turns the amplitude into

logarithmic scale (in db), which is closer to human auditory perception, as follows.

volume = 10 * logy Z 57 3.3)

=1

Figure 3.4 illustrates an example of the calculated volume levels by using asp toolbox*.

“http://mirlab.org/jang/books/audioSignalProcessing/
basicFeatureVolume.asp?title=5-2%20Volume%20 ($AD%B5%B6Q)
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Figure 3.5: Waveform and spectrum of flute, piano, trumpet in middle C. (Images are
taken from [3])

3.4 Timbre Factors

Timbre, also known as tone color, tone quality, texture, is the quality of a musical note
(or sound or tone) that distinguishes the types of sound production’®. For example, a piano
and a guitar produce the same note at the same loudness are said to have different timbres.
Timbre is a more complex property than other music factors like pitch and loudness [44].
Pitch and loudness can be represented in one-dimensional scale (pitch: high—low, loud-
ness: loud—soft) [44]. However, timbre may be affected by multiple factors: the shape of
frequency spectrum, the patterns in starting transients and the time envelope of the sound,
etc. [44]. As far as we know, the shape of frequency spectrum is of great importance in
determining the timbre. As shown in Figure 3.5, three different instruments are played
with the same note—middle C. The fundamental frequencies are the same, but the energy
of the corresponding harmonics varies, which makes the 3 instruments sound different.
To model the timbre property, several features were proposed, e.g., spectral centroid®,
spectral flatness’, etc..

In this dissertation, we use the mel-frequency cepstral coefticient (MFCC) [46], which

Shttp://en.wikipedia.org/wiki/Timbre
Shttp://en.wikipedia.org/wiki/Spectral centroid
7http://en.wikipedia.org/wiki/Spectraliflatness
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Figure 3.6: Steps for extracting MFCC.

is widely used in speech recognition, and has generally obtained a better accuracy at rel-
atively low computational complexity. MFCC, in some sense, measures the frequency of
mel-frequency, which is a “perceptual scale of pitches judged by listeners to be equal in
distance from one another

often used to represent the timbre. The general steps for extracting MFCCs are illustrated

in Figure 3.6.

899

8http://en.wikipedia.org/wiki/Meliscale
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Chapter 4

Concatenation Methods

We cannot direct the wind, but we can adjust the sails.

— anonymous

In this chapter, we will describe the concatenation methods used in our 3 projects
[4, 5, 6, 17]. To explain the methods clearer, we will disassemble and re-organize the
components used in the projects. We will focus on the concatenation methods of given
materials (clips), specifically for two given clips. Music concatenation can be divided into

3 steps: transition segments locating, tempo adjustment, and synthesis processes.

4.1 Transition Segments Locating Process

To concatenate clips, we first have to find out where to connect the clips — locating the
transition segments. As we have shown in Figure 1.4(a), the transition segments are the
parts in the clips that will be overlapped in concatenation. There are three schemes to
locate the transition segments, (i) at the most similar position, (ii) at the phrase boundary,

and (ii1) with bar alignment.

4.1.1 At the Most Similar Position

The first proposed scheme [4] is to connect the clips at the most similar positions of the

clips. That is, the transition segment in clip a is the most similar part to the one in clip b.
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To locate this kind of segments between clips a and b, similarity/distance based method
[47] is applied. We extract chroma (c.f. Section 3.2) and rhythm features (c.f. Section 3.1)
per inter-beat-interval (IBI) and then calculate their Euclidean distances. The sm;iller the
values are, the more similar the segments are. Let D¢ (a, b)[7, j] and Dg(a,b)[z, j] repre-
sent the chroma and rhythm distance values between clip a’s i** IBI and clip b’s j** 1BI,
respectively. That is,

Dec(a,b)[i, ] = |Cai — Cigl |2, (4.1)
DR<a7 b)[Z,j] = Héai - éij% (42)

where C; and C); denote clip a’s i*" and clip b’s j™* chroma vectors, respectively. And
similarly, R,;and Ry, represent the thythm feature vectors. The two matrices D¢ (a, b)|i, j]
and Dg(a, b)[i, j] are linearly combined into a new matrix Dcg(a, b) (as shown in Equa-

tion (4.3)), which is the distance matrix we used for finding transition segments:
DCR(a7 b) [Z7]] = OADc((Z, b) [Z7]] + (1 - OZ)DR((I,, b) [Z7.7] (43)

where o € [0, 1]. Figure 4.1(a) depicts the distance matrix (Dcr(a, b)) of 2 clips chosen
from Chinese pop songs: “Real man ( { = % % ) )” (clip a) and “Let’s move it” (clip b),

respectively. The darker the color is, the more similar the segments are.

Then, we want to find consecutive IBIs in both clips a and b which are similar. So
we trace the values diagonally by applying an overlapping window with L,,;, to L4z
IBIs long and compute the average distance value within each window. The window with
the minimum average value is picked and the corresponding segments are the transition
segments. Moreover, for the purpose of reducing the computational load and avoiding
promptly switching clips, we consider only the last half of clip a and the first half of
clip b. Figure 4.1(a) shows the most similar segment we found. Figure 4.1(b) shows the

ignored areas marked with thick crosses. Mathematically, the process can be described as

L
[Z'*,j*7 L*] = arg IZI;}? L1 ;DCR(CL, b)[@ + l,j + l] (44)
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Figure 4.1: Distance matrix of two clips chosen from Chinese pop songs: “Real man (
(~ 2 %) ) (clip a) and “Let’s move it” (clip b), respectively.
where L € [Lyin, Linaz), @ > % , ] < %, N and M are the total beat number of clip a and

clip b, respectively.

4.1.2 At the Phrase Boundary

The second scheme [5] is to connect the clips at phrase boundaries. According to Webber
[48], phrasing is one of the most important factors to be considered when concatenating
different tracks. Interruption occurring in the middle of a musical phrase is just as unpleas-
ant and unexpected as the interruption of an oral sentence in a conversation. Therefore,
the transition between clips should occur at the end of each musical phrase. As a result,
we proposed to cut the music materials into phrases, and then use the phrase clips as a unit

to re-compose music.

Musical Phrase

A musical phrase is usually subjective and not well-defined. We take the definition by
[49], which described a musical phrase as “any group of measures (including a group of
one, or possibly even a fraction of one) that has some degree of structural completeness.”
According to [ 12], musical phrases may come in different lengths, but are most frequently
of four bars. In [48], the author also mentioned many pop songs and dance records use
musical phrases that are multiples of four bars long and is a half or a quarter of a verse

or chorus section in popular songs [48]. For example, in Billy Joel’s “She’s Always a
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Woman to Me”, the phrases are 4-bar long, the first vocal phrase is with the lyrics:She
can kill with a smile...with her casual lies”, while in John Denver’s “Rocky Motuntain
High”, most phrases are 8-bar long, the first vocal phrase is with the lyrics “He was|born

in the summer...place he’d never been before”.

Phrase Detection via Singing Voice Detection

There are many studies investigating on audio music structure analysis and song segmen-
tation of popular songs. However, the task is still challenging. As noted by Paulus et al.
[50], common approaches in music structure analysis can be categorized into repetition-
based, novelty-based or homogeneity-based methods. The first two methods often de-
termine segments via the self-similarity/distance matrix [51] of audio signals or feature
sequences. The last method often adopts HMM or HMM-like approach to cluster similar
segments [52]. A more recent approach was proposed by Pauwels et al. [53], which com-
bines the novelty-based method and their previously proposed harmony-based approach

to jointly estimate keys, chords and structural boundaries in a probabilistic framework.

In our application, identifying correct segment boundary is more important than rec-
ognizing correct section labels. Besides, the musical phrases that we deal with here are
shorter than the segmentations targeted by previous studies. So we turn to another view,
via singing voice detection. The key idea is, at least, not to cut the songs in the middle of
a vocal phrase since singing voice is usually the leading character in a popular song and
medleys are composed of parts of popular songs. Therefore, we cut the songs into clips
based on the boundaries of detected vocal segments, and use these as the basic unit for
creating medleys.

Singing voice detection aims to categorize which parts in a given track are vocal or in-
strumental segments. We define an instrumental segment as a segment consisting of purely
instrumental sounds. A vocal segment, on the other hand, is defined as a singing voice
with or without background music, as defined in [54]. Many studies have proposed solu-
tions for singing voice detection, typically by extracting frame-based audio features and

then training a two-class classifier to classify each audio frame as instrumental or vocal.
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Commonly used classifiers include Gaussian Mixture Models (GMM), Hidden Mazkov
Models (HMM) and their variants, and Support Vector Machines (SVM). Frequently used
features include Mel Frequency Cepstral Coefficients (MFCC), Linear Predictioﬂ'Coefﬁ-
cients (LPC), and Zero-Crossing Rate (ZCR) [55]. Techniques used to correet the bound-
aries of the segments have also been widely explored. Temporal smoothing techniques
are often used to constrain the length of each vocal and instrumental segment afterwards

to prevent over-segmentation [56, 55].

Here, we employ beat-synchronized MFCCs as audio features and HMM as the classi-
fier. The use of beat-synchronized features is based on the fact that vocals are more likely
to join the accompaniment at beat onsets [57], as noted in [58]. During the training phase,
MFCCs and the beat information are first extracted (c.f. Section 3.4 and Section 3.1).
Then, MFCCs within an inter-beat interval (IBI) are regarded as the observed sequence
of an HMM classifier. In the test phase, each IBI in a test song can then be classified as
vocal or instrumental. Consecutive vocal/instrumental IBIs can then be connected as vo-
cal/instrumental segments. To avoid over-segmentation, we then apply a moving median

filter of 3-IBI long (i.e., about 1 seconds) to the singing voice detection result.

From our observations, there is often a short instrumental segment after a vocal seg-
ment, which is likely to appear when the singer transits from one phrase to another. The
instrumental segment is too short and it should be regarded as a trailing part of the leading
vocal segment. Similarly, a short vocal segment between two instrumental segments is
likely to be short humming (such as interjection) or noise, which should be ignored by
merging it with the neighboring instrumental segments. Based on these observations, we
derive a “hybrid grouping” method to further refine the vocal/instrumental segments and
convert them into musical phrases. The pseudo code of the grouping method is shown in
Algorithm 1. Note that the input candidate segments seg are alternate with vocal and in-

strumental because these segments are grouped from consecutive vocal/instrumental IBIs.
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ALGORITHM 1: The pseudo code for hybrid grouping method
input/output: An array of candidate segments seg

for i «+ 1 to numSeg do
if seg[i].segLen < G then

if seg[i — 1].label is VOCAL then
| combine seg[: — 1] and seg]i] into one segment;

else // segli — 1].label is INSTRUMENTAL
combine seg[i — 1], seg|i], and seg[i + 1] into one segment;
skip seg[i + 1];

end

end

end

Concatenation

When concatenation, for the alignment of phrase boundaries of the consecutive clips, we
extend the clips by x IBIs if a 22-1Bls crossfade is specified by the user. These 22-1Bls
long segments around the phrase boundaries are regarded as the transition segments (to be
overlapped). With this scheme, the specified crosstade duration should not be too long.

In our experience, crossfade duration < 4 IBIs is preferred.

4.1.3 With Bar Alignment

As we mentioned in Section 4.1.2, the transition between clips should occur at the end
points of musical phrases. However, there are many songs contain pick up notes'. If
we directly connect the songs at phrase boundaries, even with the beats matched [5], the
connected clips will be still temporally unsmooth (sounds like losing tempo). So in our
third scheme [17], we suggest to cut the songs at phrase boundaries but connect the songs
with bar alignment. Then, the transition segments will be determined according to the

results of bar alignment, so that users cannot specify the crossfade duration with the aid

!One or more notes preceding the first metrically strong beat of a phrase. Also called anacrusis or upbeat
[13].
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Figure 4.2: Proposed bar alignment method.

of this scheme. We first extract bar and beat information (c.f. Section 3.1) from music
signals. Then, we proceed the following two processes according to the conditions at the
boundaries of phrases, as shown in Figure 4.2. For each pair of consecutive phrase clips
a and b, suppose that there are m remaining inter-beat intervals (IBIs) after the last bar of
clip a, and n IBIs before the first bar of clip b. Let S be the average number of IBIs per
bar of the former song, which can be treated as the time signature of clip a. Let 5, and
By respectively denote the last bar of the former clip and the first bar of the latter clip. If
m+n < S, we align 3, with 3, as shown in Figure 4.2(a), otherwise, if m +n > 5, we

let the number of IBIs between [, and (3, to be .S (see Figure 4.2(b)).

4.2 Tempo Adjustment Process

After locating the transition segments, now we need to adjust the tempi of the clips so that

the concatenated clips will sound smooth in beat counting.

4.2.1 Transition Duration Determination

For each pair of clips a and b, we adjust the tempi of the two clips to make them smooth.
To gradually adjust the tempi from the tempo of clip a, T,, to the tempo of clip b, T}, a
transition duration of K IBIs is determined to ensure that the tempo change ratio, r, at
each beat, is small enough so that the change in the speed of the songs would not sound

abrupt to the listener. That is, r should lie in the range of the Just Noticable Difference
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(JND) [16] in the domain of psychoacoustics, which can be calculated as
T,
= \=. 4.5
T (+3)

Figure 4.3 shows a diagram describing the ratio r.

JND is defined as the minimum difference of stimuli that people can perceive. These
stimuli include loudness, tempo and pitch. According to Weber s law, IND can be com-
puted with the Webers Constant. However, the Weber's Constant of tempo varies with
changes in the environment. Thus, inspired by Thomas [59], we conduct experiments to
find the JND of tempo on our music datasets (c.f. Section 6.1.5). For fast tempo clips
(120 ~ 180 BPM), we found out that the ratio of the tempi from 0.96 to 1.03 will not be
perceived. For slow tempo clips (40 ~ 90 BPM), the JND ranges from 0.97 to 1.04.

Since real world music clips may contain more than one tempo, (e.g., the pieces with
accelerando or ritardando), we developed Algorithm 2 to find the transition duration and
the ideal target tempi 7,7 and 7). The procedure is also illustrated in Figure 4.4. We start
from the boundaries of transition segments, each time extend the transition duration with 1
IBI, and check the value of r. The iteration stops when r lies within the range of IND. We
then compute the corresponding ideal tempi for clips a and b. Afterwards, phase vocoder
[60] is used to adjust the tempi from 7, and 7} to 7 and 7} , respectively. Figure 4.5
shows the example results of two song excerpts from: Jolin Tsai ’s “Let’s move it” (3= i
tk (Let’s move it) ) and “Real man” ( { = % % ) ). The ratio of change appears like a

linear decay because the ratios are usually very close to 1.
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ALGORITHM 2:
Input: the tempi of clip a and clip b: T, (i), T;(j), fori =1... N, j = 1. M IBIs,
and the start indexes (in IBI), 7%, 7%, duration L* of transitlon segments 1r1;_cllps a and
b, respectively. :
I: fore =0to*,y=0to (M — L* — 5%) do
itmp <= (i* — )
jtmp (]* + L* + y)
r <= z+y+L*/ gz((iz:ii%
if 7 is within JND then
break
end if
end for

D THI) <

W N

T (1), for i < iy
Tou(itmp) x 7~%mp) | otherwise.
x( + Tb(])a for ¢ Z jtmp
() <= { Ty(Jimp) X 77 Utm»=3)  otherwise.
Output: the target tempi 7, T
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Figure 4.4: Schematic diagram of finding the transition duration.
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Figure 4.5: Tempi changes in the transition duration of the clips of “Let’s move it” and
“Real man.”
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Figure 4.6: Proposed bar alignment method (with consideration of dual tempo adjust-
ment).

4.2.2 Dual Tempo Adjustment

Sometimes the consecutive music clips a and b may be with large tempo differences. In
such a case, we may not find a long enough transition duration to gradually change the
tempi. Besides, the found ideal tempi will be far from the original ones and will lead
to explicitly audible artifacts. Moreover, most beat detection algorithms have a common
issue with double/half errors [36]. To handle this issue, we incorporate a concept similar
to what Ishizaki et al. mentioned in [36] to deal with it: take the dual tempo into account.
That is, match the IBIs of clip a to its double/half or to its quadruple/quarter of that of clip
b. Let T, and T}, be the average tempi of clips a and b. The weighting factors representing

the multiples relations of clips a and b can be calculated as

§o =arg min [i- T, — Ty, (4.6)
& = arg min |i-Tp — Tol. (4.7)

For example, in Figure 4.6(a), £, = 2 and &, = 1 while in Figure 4.6(b), £, = 1 and
&, = 2. Then, to apply the tempo adjustment method presented in Algorithm 2, we should
make the numbers of overlapped IBIs to be the same for both clips. So, we up-sample the
tempo value sequence and weight the tempo values in the slower-tempo clip s by its factor
&s. After this pre-processing, we could apply Algorithm 2 without any change while still
taking the dual tempo into account.

Note that the bar alignment method presented in Section 4.1.3 should be modified

accordingly as follows. As shown in Figure 4.6, S, m and n are respectively weighted
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by factors of &, and &, for clips a and b. Accordingly, 3, and (3, should’bealigned if
Eam + &, < £,6S. On the other hand, if {,m + &, > £,£,5, we should align Bg with 3,
in a way to make the number of IBIs (take IBIs of the faster clip as the base) bet§’veen B
and [, to be £,£,S.

4.3 Synthesis Process

The final step is the synthesis process. In this step we handle the volume levels of the

music materials.

4.3.1 Volume Normalization

Sometimes the volume levels of music materials are quite different, causing the transition
quite intrusive (e.g., the sound suddenly becomes loud. ). To handle such a condition, the
volume levels of the clips are then normalized so that the volume levels near the transition
segments of the segued clips are consistent across the clips. After scaling every selected
clip so that the amplitude of the signals falls into the range of -1 to 1, the logarithmic
intensity” (c.f. Section 3.3) within a small window (approximately 3 seconds) at both the
beginning and the ending of each clip is calculated. The beginning or the ending window
whose volume level represents the median of all selected clips is selected as the reference.
Starting from the clip containing this reference window, we adjust the volume of each
neighboring clip one-by-one so that the beginning or the ending window alongside of the
reference window has the same volume level as the reference. In other words, for a clip
a, we denote its beginning and ending windows as w? and w?, respectively. Let V (w)
denote the volume level of a given window w. Given a set of clips {uy, us, ..., uyn}, if
the selected reference window is at the end of clip u;. We adjust the global volume levels
of clip u;+1 and u;—; to make V(w¥+1) = V(w¥) and V (wli-1) = V(w¥), respectively.
The volume levels of wli+* and w¥*-* should be changed accordingly. We then adjust the

global volume levels of clip u;1 2, u;_2, and so on.

2i e., the volume level
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4.3.2 Crossfading

The clips can then be concatenated with each other using a constant-power crossfade in-
between to make the perceptual energy “constant” during the crossfade [33). 'The cross-

fade duration is determined according to the duration of transition segments (in IBTs).
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Chapter 5

Material Selection

There is no perfect pickle; there are only perfect pickles.

— Howard Moskowitz (in Malcolm Gladwell’s TED talk, 2004)

In this chapter, we will describe the selection schemes and the overall system structures
in our first two projects: “Music Paste [4]” (with a straightforward selection scheme) and
“Audio Musical Dice Game [5, 6]” ( with a graph-assisted and personalized selection

scheme).

5.1 Straightforward Scheme

The first selection scheme is quite straight forward, we just remove unfitted clips, and
then order the remaining clips based on the similarity values of found transition segments.
Figure 5.1 illustrates the system flows of the first project [4]. First, all the music features
we need for the input music are extracted, such as volume, chroma, rhythm, and tempo.
Then, in the selection stage, we filter out distinct clips by pair-wise comparisons, and then
order the clips by similarity values of transition segments between all pairs of clips. After
that, we perform the steps we mentioned in Chapter 4. The transition segments are located
according to chroma and rhythm similarities (c.f. Section 4.1.1). The tempi are adjusted
based on Section 4.2.1 and the clips are synthesized without volume normalization because

clips with distinct volume levels will be filter out in previous steps. The materials filtering
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Figure 5.1: System Framework for our first project: “Music Paste [4]s

and ordering schemes will be detailed in the following sections.

5.1.1 Filtering

In order to reduce the probability of concatenating quite distinct clips and the computa-
tional load in the ordering process (c.f. Section 5.1.2), we remove clips with extreme
values by pair-wise comparison. A clip a is said to be with extreme values and should be
removed if there are more than half of the other clips (clip b) in the database dissimilar
to clip a. The dissimilarity and similarity of any two clips are measured sequentially as

follows.

Loudness Dissimilarity

The loudness dissimilarity is defined by the ratio r (a, b) of the average volume levels of

two clips clip a and clip b, as shown in Equation (5.1),

|Ld, — Ldy)|

TL(a7b) = Ld

b=1...W.b+a, (5.1)

where Ld,, and Ld, are the average volume values of the a*" and the b*" clips in the datasets
and W is the total number of clips. The volume values are computed by accumulating log-

energy (in db) in all the frequency bands (c.f. Section 3.2). Clips a and b are said to be
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loudness-dissimilar if 7 (a, b) is greater than a certain threshold. By Weber’s law [16],
the JND of loudness in db is 0.1, i.e. we will perceive the loudness change between clip
a and clip b when the changing ratio (1 (a, b)) is greater than 0.1 db. Since we will apply
crossfade in-between concatenated clips, we set the threshold value as 0.2 instead of the

original strict standard.

Tempo Dissimilarity

Clips a and b are said to be tempo-dissimilar if there are not enough durations for them to
gradually adjusting the tempi from one to the other. The tempo dissimilarity is defined as
rr(a,b), that is
Tb Laiﬁb
rT(a,b):<v> a=1...W.,b+# a, (5.2)

where 7}, and L, are the minimal tempo value of the last quarter in clip a and the corre-
sponding length (in IBIs) taken from the position of T, to the end of clip a. Similarly, T,
and L, are the maximal tempo value of the first quarter in clip b and the corresponding
length, as shown in Figure 5.2. If 71 (a, b) does not lie in the range of IND mentioned in
section 4.2.1, there will not be enough transition length for changing tempi from clip a to

clip b and they should be regarded as tempo-dissimilar.
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Chroma Histogram Similarity

In this module, we tend to avoid concatenating clips with different pitch distribuf.i"on. The
reason is as follows: the resultant medley will be unpleasant if we directly.combine:clips
of different tonalities (e.g. C Major — eb minor) without modulation. Generally speaking,
music clips with the same tonality contain similar pitch distributions. Thus, we construct
a chroma histogram for each clip to represent its dominant pitch distribution and compare
the clips by the corresponding histograms. For the 12 dimensional chroma vector (C’ﬁm-)
of the i IBI in clip a, we choose the index of its maximal value to represent the chroma

dominant pitch (CA'ai) of the IBI. That is,

A

C,i = arg max éai(u), u=1...12 (5.3)

The chroma histogram of clip a (C'H,,) is constructed from the statistics of dominant pitch
represented by Clai. Inspired by the commonly used color histogram intersection method
[61] in the computer vision field, we define the chroma histogram similarity between clip

a and clip b by
12 min(CH,(u), CHy(u))
Su(a,b) = e MI(CHa(w),
i) TIE, CHa(u)

(5.4)

where b = 1...W, a # b. Analogous to the two previous subsections, clip a and clip b

are viewed as dissimilar if S (a, b) is less than 0.5.

5.1.2 Ordering

In the music ordering process, we tend to find an appropriate order to minimize the average
distance values between each clip pair. For example, if the transition segments between
clip, and clip, is not similar enough, maybe clip, can be the bridge for them. Besides, the
transition segments from clip, to clip, may be less similar as compared with the transition
segments from clipy to clip,. Therefore, the ordering problem can be formulated as finding

a path which goes through all clips in the datasets with minimum cost in the ordering matrix
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clip; clip; clip; clip,
clip; 0 0.3486  0.329 0.342
clip, 0.3936 0 0.4704 0.4577
clip; 02609 0.537 0 0.4806

clip, 02898 0.4826 0.3732 0

Figure 5.3: An example of the ordering matrix for 4 clips.

(D,) defined as follows:

L
Do[a7b] :%}EL—F?L ;DCR(avb)[Z—i_l?j +l] (55)

where L € [Lyin, Limas)- To reduce the computation loads, we use a method analogous to
the greedy algorithm but the path found cannot be guaranteed to reach the global optimum.

The procedure is as follows:

1. Find the minimum value in the ordering matrix and set the corresponding two clips

as the initial clips.

2. Find the minimum value in the row that corresponding to the last clip in the order
found previously (each clip can only be visited once) and then add the corresponding

clips to the order.

3. Repeat step 2 until all the values in the target row are larger than a predefined thresh-

old or all clips have been visited.

Figure 5.3 shows an example of an ordering matrix constructed by four clips. First,
we look for the minimum value in the matrix: 0.2609. We set the order as 3 — 1. Then,
we check the values of first row: {0, 0.3486, 0.3290, 0.3420}. Since the first entry (0)
represents clip; going to clip; itself and the third entry (0.3290) means clip; going to clips
again, we would not consider these two values. We find the minimum value of the rest:

{0.3486, 0.3420} is 0.3420. Thus, the order becomes 3 — 1 — 4. Next, we check the
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Figure 5.4: Example of a musical dice graph.

fourth row and find 0.4826 is the only left value, so we compare it with the predefined
threshold. If it is smaller than the threshold, the order would become 3 — 1 — 4 —
2. Otherwise, we would not concatenate clip, and the order would be just 3 — 1 — 4.

Currently, the threshold is 0.5.

5.2 Graph-assisted and Personalized Scheme

In the second selection scheme, we took another view of material selection. The medley
creation is turned into an audio version musical dice game. The musical dice game, also
known as Musikalische Wiirfelspiele [15], is a kind of music composition which orig-
inated from the European classical era. In a musical dice game, players throw dice to
randomly choose short pieces of melodies from a pool of pre-composed interchangeable
musical figures' for each bar. Aside from providing entertainment value, this kind of
composition enables people without music knowledge to compose music on their own,
i.e. they can “generate” multiple new pieces of music simply by throwing dice. Similarly,
our system generates medleys by choosing the clip at a given position from a set of in-
terchangeable clips. To create sets of interchangeable clips, we first analyze the songs in
the user-provided collection and cut the songs into clips (based on musical phrase detec-

tion we have mentioned in Section 4.1.2) and determine the type of the clips, i.e. vocal

'A short musical phrase [13].
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or instrumental. For each clip type, we then group similar clips into clusterss” Theyused
distance measures should make the clips in the same cluster interchangeable i amedley.
Many distance measures can be used in this regard. Here we combine 3 distance fﬁnctions
for chord sequence, timbre and tempo, respectively, to form the overall distance measure.
We then connect clusters according to the transition probability calculated from clip con-
nectivity in the songs from which they were originally extracted. The result is referred to
as a “musical dice graph” in which the vertices are the clusters and the edges are weighted
by the calculated transition probability. Each path on the graph is a version of a medley.
Figure 5.4 shows an example of a musical dice graph. With this graph, we can generate
various medleys based on user preferences and the transition probability. This allows us
to transform the steps of concatenative music re-composition, “material selection” and
“material composition” into “musical dice graph construction” and “medley generation
from the walk on the graph” respectively. Figure 5.5 illustrates the proposed framework.
The selection step has been divide into musical dice graph construction and a part of med-
ley generation, path finding. After path finding, the selected clips are concatenated via
methods we have mentioned in Chapter 4. The transition segments are decided at phrase
boundaries. Tempo adjustment scheme is the same as the one mentioned in Section 4.2.1,
and in the synthesis process, the clips are concatenated after volume normalization. The

methods used in the selection scheme will be detailed in the following section.

5.2.1 Musical Dice Graph Construction

We divide the construction of a musical dice graph into two steps: clip clustering, and

cluster connecting.

Clustering

After dividing songs into phrase clips, we group these clips according to their degree of
similarity of chord sequences, timbre, and tempo. In a musical dice game, the interchange-
able musical figures are often chord-similar or dominant-pitch-similar [15]. Besides, since

the task deals with audio music, similarity of timbre and tempo must be accounted for, an
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Figure 5.5: System Framework for our second project: “Audio Musical Dice Game [5, 6].”
Purple stars marks the function blocks that can take user preference into acount.

issue that does not arise in the musical dice game in the symbolic domain. Two clips of
different timbres and tempi can sound quite different even if their score notations are the
same, e.g., the same song played with different instruments with different tempi. The clip

clustering process can be divided into two steps: distance computation, and clustering.

Distance of Chord Sequence To compute the chord sequence distance of two clips, we
first detect the beat-synced chord sequence appearing in the given clips (c.f. Section 3.2).
We then measure the chord sequence distance between each clip pair. First, our system
measures the similarity between two given chord sequences by using an edit-based ap-
proach proposed by [62] via local alignment. To better capture the harmonic relationship
between two chord sequences, the substitution score used to calculate similarity varies
with the consonance of the interval between two given chord roots, as proposed by [7].
Consonant intervals are the intervals that sound stable [13], and chords whose roots are
more consonant will be given higher substitution scores. For example, substituting a C
chord with a G chord (the fifth chord of the C chord) may affect the chord sequence less
than substituting it with an Am chord. As a result, the sequence pair: “C F C G” and “C F
G G” has a higher score (8.55) than that of “C F C G” and “Am F C G” (6.55). The used
substitution scores are listed in Table 5.1. The pseudo code for calculating chord sequence

similarity is stated in Algorithm 3. Finally, the similarity score of two chord sequences
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Pitch Differences in Semitones | Associated Score \

0 +2.850
1 -2.850
2 -2.475
3 -0.825
4 -0.825
5 +0.000
6 -1.800

Table 5.1: Different substitution scores of the edit-algorithm according to the intervals
between chord roots.[7]

will be transformed to a distance score after normalization (c.f. Section 5.2.1), in order to

be combined with the other two distance functions: timbre and tempo.

ALGORITHM 3: The pseudo code for computing chord sequence similarity
input : two chord root sequences C'; and C5 of lengths M and N, respectively

output: the chord sequence similarity score simScore

delScore <— —1; insertScore < —1;

subScore + [2.85, —2.85, —2.475, —0.825, —0.825,0, —1.8, —0.5];
for i < 1 to M do localScoreli, 0] < localScore[i — 1, 0] + delScore;
for j < 1to N do localScore[0, j] <— localScore[0, j — 1] + insertScore;
for i < 1to M do

for j < 1to N do

del < localScore[i — 1, j| + delScore;

ins < localScore[i, j — 1] + insertScore;

d <« |Cy[i — 1] = Cslj — 1];

sub < localScore[i — 1, j — 1] 4 subScore(min(d, 12 — d));

localScoreli, j] < max(del,ins, sub);

end

end

simScore < localScore[M, N,
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Distance of Timbre MFCCs [46] are used to represent the timbre characteristicsy(c.f.
Section 3.4). To calculate the distance of MFCC between clips, a multivariate Gatissian
model is used to describe the distribution of MFCCs after they are extracted [63]. We then
employ the symmetrized Kullback-Leibler divergence (KL divergence) as:the distance

measure between the Gaussian models of different clips, as suggested in [63].

Distance of Tempo The average tempo (measured in BPM) of a clip a, 7}, can be cal-
culated as:
1 N-1
T,=—— T,(7) , 5.6
N1 ) (56)
where T, (i) is the tempo of the i*" IBI of clip a (c.f. Section 3.1), and N is the number of

IBIs in clip a. The tempo distance between clips a and b is the absolute difference between

T, and T;,.

Clustering We then normalize the chord sequence distance, the timbre distance, and
the tempo distance of all clip pairs by subtracting the corresponding minimum distance
scores from the distances and dividing them by their ranges so that the distance scores lie
between 0 and 1. A mixed distance score of all pairs is then calculated by performing a
weighted average over the three distance measures mentioned above. Given the distance
between each pair of the clips, we could then cluster the clips by average-linkage hierar-
chical clustering. Each clip is first categorized into 6 types based on its properties (vocal
or instrumental) and its positions (beginning, middle, or end). The clips of different types
are then clustered separately. In other words, we would have 6 types of clusters in total:
beginning, ending and middle clusters, each of which can be either vocal or instrumental.
For a 100-song collection, each type consists of an average of around 38 clusters, with an

average of about 6 clips per cluster.

Cluster Connecting

Finally, we connect the clusters according to the transition probability, as defined in Equa-

tion (5.7). For two arbitrary clusters A and B, the transition probability P(B|A) is defined

46



as the proportion of clips in cluster A that is originally concatenated with clips'in Cluster
B, that is
5|

P(BIA) = 31 § = {(@.b)la € Ab € [N(a) 1 B} 5 sl

where a and b stand for two arbitrary clips, and N (a) is the set of clips that appearing just

after clip a in the original song.

5.2.2 Medley Generation

Once the musical dice graph is constructed, we can then compose medleys by finding a
path on the graph and concatenating” them according to the clips selected from the clusters

on the path.

Path Finding

Here we describe how to find a path on the musical dice graph with the maximum transi-
tion probability. First, we pick candidate clusters according to the user-specified medley
structure. For example, the user may designate the structure as [-+V—I—V—I, where
“I” and “V” respectively stands for instrumental and vocal clips. For the previous exam-
ple, we then choose clusters conforming to the types the user specified in the structure
as candidate clusters, that is, instrumental-beginning clusters for the first clip slot, and
vocal-middle clusters for the second, and so forth.

Then, for those slots where the user has specified must-use clips or songs, we assign
the corresponding cluster(s) which conform to the user specified condition as candidates.
For instance, if the user assigns clip a to slot n, then the cluster to which clip a belongs is
directly assigned to slot n. If the user specifies that slot 7 should be filled with a clip from
song A, then the clusters contain clips of song A are chosen as candidate clusters for slot
n. The user can also specify a desired range of duration for each chosen clip. The clusters
which do not have any clips within the desired duration range are eliminated from the set

of candidate clusters.

2using the methods we mentioned in Chapter 4
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We then use Viterbi algorithm [64] to find a path through candidate clusters with: the
maximal transition probability, where the candidate clusters at each slot are regarded as
the states used in the algorithm. If the path does not exist for the user-specified sﬁ‘ucture,
the system will automatically extend the structure. The structure extension is.an iterative
process. At each iteration, a new slot will be inserted after the first found slot where the
transition probabilities from all the candidates at that slot to the candidates at its following
slot are zero. For example, if the transition probabilities from all the candidates at slot
n to the candidates at slot n + 1 are zero, a new slot will be inserted between n and
n + 1. After slot insertion, the system will check whether the path can be found with the
new structure. The process will be iterated several times until a path has been found or a
specified maximum number of iterations is reached.

After path finding, we randomly select one clip per cluster along the path?, since clips
in the same cluster are assumed to be interchangeable. Here, we also design another option
for the system to have less probability of selecting consecutive clips from the same song.
The idea is to reduce the probability of a clip to be chosen if any clip from the same song
has been selected in the previous slots of the medley. The degree of probability reduction
is based on the distance between the previously selected same-song clip to the current slot

1, as follows:

pyla) = pn(a)—ni:l pp(a) -y - I'(clip a and the chosen clip at slot n belong to the same song),
" (5.8)

where p, (@) is the probability of clip a in the current cluster at slot 7, v is a parameter be-

tween 0 and 1, and I'(+) is an indicator function. After this modification, all of the selected

clips are then used to compose the final medley by methods mentioned in Chapter 4.

5.3 User Interface

The quality of the generated medley is highly subjective and depends greatly on users’

preferences. For example, it is hard to determine the ending position of a singing voice

3except for slots that the user has specified certain clips.
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that fades out gradually, and there is no absolutely “correct” answer for ‘this situation.
The crossfade duration between two clips is also subjective since some may preferlonger
overlaps to increase the smoothness of the transition, while others may prefer sﬁ’orter or
even no crossfade to avoid blurring sounds. To better satisfy various users*preferences,
we have developed a GUI (as shown in Figure 5.6 and Figure 5.7) where users are allowed
to specify parameters, modify the segmentation result, and so on. The demo site can be

found at http://www.cmlab.csie.ntu.edu.tw/~known/medley/demo/.
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Chapter 6

Experiments

The best and most beautiful things in the world cannot be seen nor even touched,

but just felt in the heart.

— Helen Keller, 1891

In this chapter, we will describe experiments about the performance of the proposed
concatenative music re-composition system. Most of the experiments are conducted by
subjective evaluations because the aesthetic appeal of music is highly subjective and is
subject to personal tastes. As a result, it is not feasible to compare all the combinations of
methods we proposed. In the rest of this chapter, parameter explorations and effectiveness
of the components were investigated individually. And the comparisons among different
combinations of components were done according to the versions in our projects[4, 5, 17,
6]. For those comparisons or settings we did not provide, interested readers may judge for
themselves by listening the used samples at http://www.cmlab.csie.ntu.edu.
tw/~known/medley/results/. and exploring our demo site at: http://www.

cmlab.csie.ntu.edu.tw/~known/medley/demo/
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Figure 6.1: Comparisons among various overlap durations.

6.1 Evaluations on Concatenation Methods

6.1.1 Overlap Duration of Similarity-based Transition Segments

In this experiment, we discussed the effect of overlap durations in similarity-based tran-
sition segments (c.f. Section 4.1.1). Fifteen evaluators were invited to report their satis-
faction. 8 sets of clips (= 40 secs/clip) taken from different types of Chinese pop songs
are used. We generate medleys with 2 overlap durations (force L* =4, 12 IBIs in Equa-
tion (4.4)), and each of them are with three different o values (we set &« = 0,0.5,1 in
Equation (4.3)) when locating transition segments. Figure 6.1 presents the overall results.
The vertical axis denotes the percentages of how many people prefer each method. We
found that results with longer overlap duration are not necessarily more acceptable than the
shorter ones. The reason is probably that the similarity of transition segments decreases as
the overlap duration grows. Another observation is that the evaluator’s acceptance varies
with the types of the music clips. For instance, the accepted overlap duration between two
rap clips may be shorter than those of two lyric clips. Over 60% of the evaluators preferred
4 IBIs as the overlapping duration. Hence, we set the default overlap duration to 4 IBIs

long in the next section to compare the influence of different similarity measurements.
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Figure 6.3: The results of singing voice detection with different HMM parameters'.

6.1.2 Similarity Measurements in Similarity-based Transition Seg-

ments

This experiment discussed the similarity measurement for locating similarity-based tran-
sition segments (c.f. Section 4.1.1). The compared similarity measurements are chroma
only, rhythm only and both chroma and rhythm, i.e. « =0, 1, 0.5. The overlap duration is
set to 4 IBIs. We utilized 8 sets of clips from songs in different languages. Fifteen eval-
uators gave scores from 1 to 10 to represent their satisfactions (higher score means better
satisfaction) with respective to the feeling of intrusion. Figure 6.2 shows the percentages
of how many people prefer each method. The results show that chroma only may be the
most preferred measurement. Thus, we choose the chroma measurements to conduct other

experiments of concatenation with similarity-based transition segments.
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6.1.3 Effectiveness of Phrase Detection

This experiment investigates the effectiveness of the proposed approach for phrdg“e detec-
tion, which is based on the result of singing voice detection (c.f. Section 4.1.2), .

The used music dataset consists of 100 English hit songs from the 1950s to the'1990s,
collected from Youtube®. These songs correspond to various genres, including folk, pop,
jazz, Broadway musical and movie soundtrack, with track length ranging from 1.5 to
5.5 minutes. Two annotation sets were manually built to create the ground truth of vo-
cal/instrumental segments and musical phrases, respectively. In total, there are 1409 mu-
sical phrases and 1716/1813 vocal/instrument segments in the dataset. For each track,
both annotations were performed by the same person to avoid inconsistencies. All songs
in this dataset have both singing and instrumental parts, i.e., none is purely instrumental
nor a cappella®.

We used HMM with tied Gaussian mixtures for singing voice detection, which basi-
cally classifies an IBI into two categories of “vocal” and “instrumental”. All audio files
are 22050 Hz-sampled, and 26 MFCCs are extracted from each frame of 256 samples,
with 50% overlap. We changed the numbers of states and mixtures to obtain the perfor-
mance based on 5-fold cross validation, as shown in Figure 6.3. From the figure, we can
see that the accuracy of singing voice detection approximately increases with the number
of mixtures in each HMM state. On the other hand, the number of HMM states does not
seem to affect the accuracy in an obvious manner. Since HMM with 4 states and 100
mixtures achieves the highest accuracy, we adopt the settings for phrase detection.

To evaluate the performance of phrase detection, we compare our method with three
publicly available systems for song segmentation, including the Dynamic Texture Model
based approach (DTM) [65], the sparse Shift-Invariant Probabilistic Latent Component

analysis based approach (SI-PLCA) [66], and the EchoNest audio analysis tool °. The

'The main reason that some settings we did not test is that it takes too much memory to proceed experi-
ments with them.

2This method only segments tracks, did not predict the segments are vocal or instrumental.

3Song names and URLs are listed at: http://www.cmlab.csie.ntu.edu.tw/~known/
medley/EnglishSongsDataset.html.

4<A cappella”: choral music without instrumental accompaniment [13]

’http://echonest.github.io/remix/apidocs/echonest.remix.audio.
AudioAnalysis-class.html
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evaluation 1s based on several different metrics:

* Precision, recall and F-measure: A detected boundary is regarded as a “Rit” if ifs
time difference from the nearest true boundary lies within a certain threshold.' (We
used two thresholds of 0.5 and 3 seconds in our experiment, which are the'same as

in [65].)

* Medians of Guess-to-true (G-to-T) and true-to-guess (T-to-G): The median of the
time differences between detected boundaries and the closest true ones, and the me-
dian of the time differences between true boundaries and the closest detected ones,

respectively, as defined in [65]. (The median is computed over all songs.)

* [Bl accuracy: The percentage of IBIs that are correctly labeled as vocal/instrumental

phrases.

The experimental results are presented in Table 6.1, where the rows can be grouped into

3 parts:

 The upper part of the table presents the results of phrase detection that used ground-
truth singing voice annotations as reference, including GT, GT-BeatSync, and GT-

BeatSync-hybrid.

— GT: The boundaries of singing voice annotations were used directly as the

predicted phrase boundaries.

— GT-BeatSync: The GT boundaries are aligned to the beat locations detected by
BeatRoot [37].
— GT-BeatSync-hybrid: The “hybrid grouping”(Algorithm 1) is applied to the

boundaries of GT-BeatSync.

As shown in the table, the performance difference between GT and GT-beatSync is
quite small, indicating the alignment operation is not a critical factor. In contract,
the performance difference between GT-beatSync and GT-beatSync-hybrid is sig-
nificant, indicating that the "hybrid grouping” is an effective operation for improv-

ing the performance. Notice that the performance of GT-beatSync-hybrid should be
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viewed as the upper bound of the proposed phrase detection since'the methodwuses

the GT for singing voice detection.

The middle part of the table shows the phrase detection results based on HMM-based

singing voice detection: HMM-raw, HMM-median, and HMM-hybrid.

— HMM-raw: consecutive vocal/instrumental IBIs are regarded as vocal/instrumental

phrases.
— HMM-median [5]: a median filter is applied to the results of HMM-raw.

— HMM-hybrid [6]: the proposed “hybrid grouping” is applied to the results of

HMM-median.

As can be seen from the table, the HMM-hybrid method generally outperforms
HMM-raw and HMM-median, demonstrating the effectiveness of ’hybrid group-

2

ing”.

The bottom 3 rows of the table show the results of the three publicly available seg-
mentation systems. As shown in the table, the proposed method outperforms these
three systems in most of the metrics. Since DTM, SI-PLCA, and EchoNest tend to
identify less boundaries than ours, their precision are generally higher than the re-
call. Different values of the parameters (such as the length of the median filter used
to prevent over-segmentation) may also influence the trade-off between precision
and recall. In this study, our primary goal of segmentation is to avoid interruption
in the middle of a phrase when concatenating songs. Hence a higher precision is
preferable. However, if too few boundaries are detected (low recall), then the clip
will become too long which makes the medley boring. Thus, we still need to strike

a balance between precision and recall.
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6.1.4 Comparison Between Similarity-based and Phrase-based Tran-

sition Segments Locating Methods

This experiment aims at comparing the similarity-based (Section 4.1.1) and phrase-based
(Section 4.1.2) transition segments locating methods. Six pairs of medleys with two dif-
ferent settings for crossfading are used in this experiment. Each pair contains two med-
leys, and each medley is composed of two song clips. Three of them are in the format
of “vocal+vocal”, two are “vocal+instrumental”, and one is “instrumental+vocal”. The
two song clips used in the medleys of a test pair are the same. For one medley in each
pair, the transition, based on the phrase-based method, happens immediately at the end
of a phrase of the first clip. (We extended the clips by x IBIs if a 2z2-1Bls crossfade is
desired, for the alignment of phrase boundaries of the successive clips. ) In order to avoid
the potential bias due to inaccurate segmentation, human-labeled annotations were used
to indicate musical phrase boundaries. For the other medley, the transition, based on the
similarity-based method, could be anywhere in the middle of the clips such that the short-
term chroma features of two clips are best matched. (We extended the clips by 4 IBIs at
both ends first.) In Section 6.1.1 we have found that crossfading with 4 IBIs outperforms
longer crossfading durations. Thus, we adopted crossfading durations of 1 and 4 IBIs to
explore their perceptive differences in this experiment. For counterbalance, half of the
participants evaluated the 1 IBI setting first and the other half evaluated the 4 IBIs first.
25 participants were invited to listen to the 6 medley pairs and assess them in terms of the
transition smoothness between two adjacent clips. The questions were designed using a
7-point Likert scale [67]. The higher the score, the smoother the evaluators perceived the
transition to be.

The average scores of the six test sets concatenated with 1-IBI crossfades and 4-IBI
crossfades are shown in Figure 6.4. At the 1-IBI crossfade duration setting, the average
score of the medleys generated by the phrase-based method is significantly higher than
that created by the similarity-based method in every set with a confidence level of 95%.
As in 4-IBI setting, the mean scores of the medleys concatenated by the phrase-based

approach are significantly higher than that of the medleys concatenated by the similarity
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Figure 6.4: Results of user evaluation for clip concatenation with 1-IBI and 4-1BI
crossfades, in which the relevant p-values of pairwise t-tests between phrase-based and
similarity-based methods are displayed under the corresponding bars of each experiment.

approach in 5 out of 6 test sets.

In conclusion, no matter how long the duration of the crossfade applied to concatenate
two clips, participants found the medleys generated with the phrase-based approach, i.e.,
concatenating clips at phrase boundaries, will be more pleasant. In addition, the compari-
son between medleys concatenated with crossfades of different durations also shows that
users prefer longer crossfades over short ones when similarity-based method is used, while
no clear user preference was found for crossfade durations when phrase-based method is
used to concatenate the clips. Finally, segmenting songs into clips according to their mu-
sical phrases helps retain the characteristics of the concatenated clips, and thus results in

smoother transitions between clips.

6.1.5 The Just Noticeable Difference of Tempo

In this section, we will describe the details about finding the just noticeable difference
of tempo for the tempo adjustment component in Section 4.2.1. Inspired from [59], two
groups of songs are used: fast tempi (120 ~ 180 BPM) and slow tempi (40 ~ 90 BPM).
Each group contains 6 Chinese pop songs of different types. Each song has been adjusted
to have two different tempi. 25 evaluators are invited to judge if they could tell apart the

tempi in the two samples of the same song. The corresponding results are illustrated in
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Figure 6.5: Percentages of evaluators who can recognized the tempi difference of the
samples

Figure 6.5. The bars of each set represent the percentages of the users who recognize the
changes of tempi and judge them correctly, wrongly, or cannot tell apart, respectively. The
value on the horizontal axis denotes the tempo ratio between the two samples of the same
song. From Figure 6.5, we can infer that users may not notice the change of tempo when
the tempo ratio is close to unity since the third bar (evaluators cannot judge) reaches high
values. For quick (i.e. fast tempo) music clips, we found out that the ratio of the tempo
from 0.95 to 1.03 will not be perceived. For slow music clips, the non-perceivable IND

range is from 0.96 to 1.04.

6.1.6 Effectiveness Bar Alignment and Dual Tempo Adjustment

This experiment aims to verify the effectiveness of connecting clips with bar alignment
(c.f. Section 4.1.3) and dual tempo adjustment (c.f. Section 4.2.2). As a result, we com-
pared the concatenated clips using bar alignment and dual tempo adjustment (denoted as
BD method) with those did not (denoted as PT method), that is, just connected at phrase
boundary (c.f. Section 4.1.2) and use normal tempo adjustment (c.f. Section 4.2.1). Be-
side, another Echonest® method was also compared as a reference. Echonest connects
clips at timbre similar positions, matches beats, and adjusts tempi linearly from clip to
clip, and does take dual tempo adjustment into consideration.

To systematically analyze the effectiveness of connecting methods, we proposed to use

®https://github.com/echonest/remix/tree/master/examples/capsule
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the similarity between “the latter clip” and “the phrase after the former ¢lip_in"the origi-
nal song” as the metric to represent the suitability of the consecutive clips for| connection
(c.f. Figure 6.6). Three kinds of similarity are used, the chord sequence sim_ilariit'y (Sec-
tion 5.2.1), the timbre similarity (Section 5.2.1), and the tempo similarity (Section 5.2:1).
Based on these metrics, we can measure the performance of different connecting methods
on the clip pairs with various connecting-suitability. To choose the clip pairs that cover
various suitability, we first compute the three types of similarity on each pair of phrases in
the dataset 7. Then, we divide all the computed similarity values into 3 groups: the highest
30 % similar, the middle, and the lowest 30 % similar. After that, total 20 different types
of music clip pairs are chosen, according to the relation between the two clips. The 20
types are composed of 5 similarity types multiplied by 4 different timbre types. The 5
similarity types consist of the clip pairs that their similarity characteristics between “the
latter clip” and “the phrase after the former clip in the original song” belong to one of the

following situations:

» LLL: low similarity® in all dimensions (chord, timbre, tempo).

LLH: low chord and timbre similarity, but high tempo similarity.

LHL: low chord and tempo similarity, but high timbre similarity.

* HLL: low timbre and tempo similarity, but high chord similarity.

HHH: high similarity in all dimensions.

The 4 timbre types are:

* V-V: both of the clips are vocal.

* V-I: the former clip is vocal, but the latter clip is instrumental.

* [-V: the former clip is instrumental, but the latter clip is vocal.

* I-I: both of the clips are instrumental.

"the same as the set we use in Section 6.1.3
8in the the lowest 30 % of all the similarity values
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The former clips will be fixed for the five similarity types to reduce the influence of vari-
ation. We then randomly choose 3 clip pairs from each one of the clip pair types, that is,
there are 60 clip pairs in total.

For each one of the 60 chosen clip pairs, we connect them based on the above-mentioned
3 methods, and there are 168 resulting connected clips’ in total. We divide the connected
clips into 12 groups, each group contains 9 ~ 15 connected clips of 3 ~ 5 different sim-
ilarity types and 1 timbre type. The former clips in the connected samples are the same
for each group. Our user evaluations are performed through the aid of a web interface,
and the tested clips are presented in random order. Users are invited to listen to one group
of clips per time, taking about 10 minutes to finish each test. The questions are designed
using a 7-point Likert scale [67]— users are asked to report their opinions of the connected
clips from the following options: very pleasing, pleasing, somewhat pleasing, neutral, not
so pleasing, not pleasing, and very unpleasing.

46 males and 11 females, aged around 20 to 40, participated in this experiment. Each
user involved 1 to 2 groups, and each test sample was listened by 5 different people.
Figure 6.7 shows the mean scores of each one of the connecting methods with all tested
clips and with the test clips of each similarity type only. The paired Wilcoxon signed
rank test is applied to analyze the results. The corresponding p-values are reported in

Figure 6.7, each line reported the p-values of “BD vs. PT”, “BD vs. Echonest”, and

Some clip pairs contains too short phrases so that the Echonest method cannot produce the result. So
we remove them.
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Figure 6.7: Mean scores of each one of the temporal adjustment methods for total data
and for each similarity type of the test samples, in which the relevant p-values of paired
Wilcoxon signed rank test on “BD vs. PT”, “BD vs. Echonest”, and “PT vs. Echonest”
are displayed above the corresponding bars of each experiment, respectively.

“PT vs. Echonest”, respectively. The overall result shows that BD method did improve
the smoothness of clip concatenation under a confidence level of 95%. For those low-
tempo-similar (LLL, LHL, HLL) clips, BD method and Echonest’s approach out perform
the PT method, which shows that dual tempo adjustment is relatively more important in
tempo-dissimilar cases. In those high-tempo-similar (LLH, HHH) cases, the mean score
of the BD method is higher than those of both PT and Echonest, which indicates that bar
alignment did improve the temporal adjustment since, now, it is no need to apply dual

tempo adjustment to high-tempo-similar clips.

6.2 Evaluations on Selection Schemes

6.2.1 Effectiveness of Clustering Criteria

This experiment verifies if the proposed clustering criteria (Section 5.2.1) can put similar
clips into the same cluster, and if clips in the same cluster are mutually interchangeable.

We used 5 sets of medleys of the form “vocal+vocal” to perform subjective test, where
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Figure 6.8: Results of user evaluation on clip selection with the proposed clustering cri-
teria, in which the relevant p-value of pairwise t-test of the proposed and the lower bound
methods is displayed under the corresponding bars of each experiment.

2 of them are male artists while 3 are female. Each set contains 3 medleys, and each
medley is composed of 2 clips only. Within each set, the first clips of the 3 medleys are the
same, while the second clips were obtained via three different methods. More specifically,
suppose that each medley M;,7 = 1,2, 3 in a set can be expressed as the concatenation of

two song clips [a; and b;], then the selection of b; is based on the following methods:

* The upper bound: b, is the original clip that follows the first clip in the original

song. This selection serves as the “upper bound”, or the best selection.

* The proposed method: b, is randomly selected from the cluster containing b, (but

not b, itself).

» The lower bound: bs is randomly selected from the cluster that is the least similar
to the cluster containing b;. This selection serves as the “lower bound” to check if
the similarity score computed by the proposed method conforms to the interchange-

ability perceived by humans.
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These three methods can be put into mathematical notations as follows:

b1 = N(CL),
e C(N(a), 6.1)
by € C(d), d = argmax D(c, N(a)),

c,ce{all clips}

where N (a) is the clip that immediately comes after clip a in the original song, C'(a) is the
cluster containing clip a, and D(a, b) is the distance between clips a and b, as we proposed
in Section 5.2.1.

We invited 36 participants to listen to the medleys (multiple times if they preferred) and
score each medley based on its subjective appeal. The three medleys in the test sets were
randomly ordered, and all questions were designed using a 7-point Likert scale [67]. The
higher the score, the more cohesive and pleasant the medley is (based on the participant’s
perception). Participants were also asked to indicate whether they were familiar with the
song from which the first clips were taken.

Figure 6.8 shows the mean score of each set for this subjective test. We performed a
pairwise t-test to analyze the results. Overall, the medleys composed of clips selected with
the proposed method significantly outscored the medleys composed of “lower-bound”
clips under a confidence level of 95%. In addition, the medleys composed of clips selected
with the proposed method achieved an average score of 4.97 out of 7 points, while the
medleys composed of “lower-bound” clips achieved an average of only 3.05. When 5
test sets were evaluated individually, we found that participants were satisfied with the
medleys composed by the proposed method in test sets A, B, C, and E, with a score above
4. The result demonstrates that the proposed method is capable of putting similar and

interchangeable clips in the same cluster.

6.2.2 Effectiveness of Path Finding

This experiment aims to verify the proposed path finding-scheme (based on the Viterbi
algorithm, c.f. Section 5.2.2) which finds an optimum path with given constraints in a

musical dice graph. We used 5 pairs of medleys for subjective test. The number of transi-
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Figure 6.9: Results of user evaluation on the proposed path-finding scheme based on the
Viterbi algorithm, in which the relevant p-value of pairwise t-test is displayed under the
corresponding bars of each experiment.

tions and the structures of the two medleys in a pair are the same, and the beginning and
the ending clips of the medleys are the same as well. For one medley in each pair, the cho-
sen clusters (from which the clips are randomly selected) and their order are decided by
the proposed Viterbi-like path finding. For the other medley, clips are selected randomly.
We invited 17 participants to evaluate the generated medleys. Each pair of medleys was
played twice.

Figure 6.9 illustrates the score of each test pair. Overall, the mean score of medleys
constructed by the proposed path-finding scheme is significantly higher than that of the
one based on random selection, with a confidence level of 95%. If the 5 test sets are
evaluated separately, the mean score of medleys constructed by the proposed path-finding
scheme is significantly higher than that of the randomly generated ones in 4 out of 5 test
pairs (i.e., pairs A, B, D, and E, with p < 0.05). The result shows that the proposed path-
finding scheme based on the Viterbi algorithm is effective in selecting clips that sound

pleasant when they are concatenated and played in sequence.

6.3 Overall Performance

In this section, we compare the overall performance of our two projects: “music paste” [4]

and “audio musical dice game” [6]. In music paste [4], two clips are concatenated at the

66



~

B Music paste

(e}

Audio musical dice game

]lllll

p= 000013 p= 00030 p= 011 " op= 0013 ' p=0.0070  p=0.13
E F

(%2}

Mean Score
D
|

w
|

Test Pairs

Figure 6.10: Results of user evaluation on the overall performance of “audio musical
dice game” [6] when compared with “music paste” [4], in which the relevant p-value of
pairwise t-test is displayed under the corresponding bars of each experiment.

position where the chroma vectors are the most similar (c.f. Section4.1.1). For each music
clip, its following clip is selected by picking the one with the highest similarity value at the
connecting position (Section 5.1.2). In audio musical dice game [6], clips are concatenate
at phrase boundaries (c.f. Section 4.1.2), with volume normalized (c.f. Section 4.3.1), the
order of the clips are determine by path finding (c.f. Section 5.2.2). In this experiment, we
follow similar settings of the experiment in Section 6.2.2, that is, the structures of the two
medleys in a test pair are the same, but here only the first slots are specified. Besides, we
use detected phrases as the unit for medley creation. We also set the range of duration of
each chosen clips to be 10 ~ 30 seconds to avoid bad segmentation. 21 people are invited
to evaluate the overall pleasantness of the medleys. The participants are allowed to listen

to the medleys multiple times if they preferred.

Figure 6.10 illustrates the mean score of each test pair generated by “music paste” and
“audio musical dice game”. In general, the mean score (4.17) of medleys constructed by
“audio musical dice game” is significantly higher than that (3.33) of “music paste”, with
a confidence level of 95% tested via pairwise t-test. In the 6 test pairs, the mean scores of
“audio musical dice game” are significantly higher than “music paste” in 4 out of 6 test
pairs (i.e., pairs A, B, D, and E, with p < 0.05). Due to audible phrase boundary errors, the

mean scores of test pairs C and E are not significantly higher than that of “music paste”.
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These results indicate that “audio musical dice game” system generally generates'more
satisfactory medleys than the approach in “music paste”, even with detected boundaries.
If the detected phrase boundaries can be slightly corrected by human, the scores can be

improved further.

6.4 Discussion

This section discusses the observations in our experiments.

6.4.1 The Influence of Accompanied with Visual Content

To investigate the influence of accompanied visual contents on the quality of medleys, we

conduct two subjective tests.

In the first test, users listened to each test sample twice. At the first time, they just
listened, but at the second time, they were informed the position of transition (by viewing
labels) while listening. 12 evaluators are invited to grade their satisfactions from 1 to
10 points, and answered the number of transitions they recognized. Three test samples
composed of Chinese pop songs are used. Figure 6.11 illustrates of the percentages of how
many evaluators scored lower, the same, and higher when they listen to the samples at the
2nd time, respectively. Over 60% of the evaluators rated the same score after knowing the

position of the transition points.

In the second test, a medley is played with and without photo slideshows generated by
[1], respectively. Twelve evaluators attended the test. Over 90% of evaluators think that

the medleys are more euphonious after playing with tiling slideshow.

To sum up, we may infer that knowing the position of the transition points did not
affect the satisfactory of the medleys but visual contents may still distract the users from

the intrusions in the medleys.
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when they listen to the sample at the 2nd time, respectively

6.4.2 The Influence of User Familiarity with the Songs

In the experiments conducted in Section 6.1.4 and Section 6.2.1, users were asked to reveal
whether they were familiar with the song clips used to compose the medleys in each test
set.

From the results of Section 6.2.1, we found that participants who had heard of the first
of the two clips in a medley gave significantly higher scores to the “upper bound” test
medleys, compared with those who had not. This was probably due to the well-known
“mere-exposure effect” [68] from cognitive psychology — people tend to show a positive
inclination for the familiarity. Therefore, users who are familiar with the songs may pre-
fer the “upper bound” group, which consists of song clips selected as they appeared in the
original song. On the other hand, “lower bound” and “proposed” test medleys received
lower scores from those who had heard the songs before. This can also be explained by
the mere-exposure effect since participants who knew the first clip often held higher ex-
pectations of the original following clip in the song, and took stricter criteria in evaluating
the replaced second clip.

We also noticed that in the experiment of Section 6.1.4, participants who had not heard
either of the clips used in the medleys gave higher scores to the medleys concatenated
with similarity-based transition segment approach (c.f. Section 4.1.1) than those who were

already familiar with the clips. On the other hand, medleys concatenated with the phrased-
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based approach (c.f. Section 4.1.2) received higher scores from those who_had algeady
heard the original songs than those who had not. This observation suggested|that people
who knew the songs may be relatively more sensitive to the music phrases, demori’strating
a stronger preference for medleys concatenated with the proposed approach;which tends

to retain complete musical phrases.

6.4.3 Other Criteria that Might Contribute to Better Clip Selection

In the experiment of Section 6.2.2, we asked participants to suggest some possible factors
that might influence the perceived smoothness of the transition between clips in the com-
posed medleys. The most frequently given factor was the volume of the clips (mentioned
by 11 out of 17 participants). Other frequently factors include timbre, tempo/rhythm, key
and genre, along with the singer’s gender. Some also suggested that the lyrics of the clips
influence how well two clips are concatenated. However, it should be noted that the im-
portance of the role these factors play when composing medleys is highly subjective and
may vary from person to person. While some people are sensitive to key changes in a song
(e.g., people with absolute pitch), others may not consider it as a serious concern. Simi-
larly, most people prefer medleys composed with clips characterized by similar emotions,
whereas some like the thrill brought by unexpected emotional transitions between clips.
Therefore, a more personalized graph construction scheme based on user preferences as
clustering criteria should be introduced in the future to better satisfy different user’s needs.
For instance, the users should be able to specify the weighting of chords, tempi/rhythms,

and timbre.

6.4.4 Comparison with Human Created Medley

As compared to human made medleys, the proposed system cannot handle several skills

that are commonly used in expert generated medleys, including:

* More elaborative excerpts : The expert may use a unit that is shorter than a musical

phrase to generate medleys that sounds more natural. For example, the last phrase
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in the Beatles Movie Medley (3°48.37 ~ end) is a combination of the'first half of a
phrase (0°50.70 ~ 0°52.44) and the last half of another phrase (2743.32 ~:2°54.38)

in the song “Get Back™.

* Newly composed tracks : The expert may compose new music tracks to mix with

the concatenated music clips according to the clips’ characteristics.

Amateur users may still use these skills, but perhaps not as proficiently as expert users can
do.

To make a pleasant medley, the most time consuming step for human is to find appro-
priate song excerpts to be put together. In the proposed system, we used a statistical way
to find suitable excerpts based on the assumption that clip a is suitable to connect with
clip b if clip b is similar to the next phrase of clip a in the original song. The proposed
system may not generate medleys that are as pleasant as those generated by human, but
it can surely be a computer-assisted tool for human, which is useful for and effective in

suggesting clips for concatenation.
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Chapter 7

Conclusions and Future Work

Learn from yesterday, live for today, hope for tomorrow.
The important thing is not to stop questioning.

— Albert Einstein

7.1 Conclusions

In this dissertation, systematic techniques for concatenative audio music re-composition
has been developed. The re-composition process is divided into four steps: content anal-
ysis, pre-processing, selection, and composition. We have briefly reviewed the content
analysis techniques that are useful in audio music re-composition. Based on the content
analysis techniques, music theory, and psychoacoustics, various composition and selec-
tion schemes have been proposed and investigated. We divide the composition step into
three parts, transition segments locating, tempo adjustment, and synthesis. In locating
transition segments, three options are proposed: at the most similar positions, at the phrase
boundaries, and with bar alignment. In order to find phrase boundary for pre-processing,
an approach based on singing voice detection is adopted. Then, psychoacoustics-based
tempo adjustment methods are proposed. To handle the cases of distinct tempo and vol-
ume, we also examined the corresponding dual tempo adjustment and volume normaliza-
tion schemes, respectively. For the selection, two schemes are discussed. The straight-

forward scheme filtered out unfitting clips by pair wise comparison and ordered the rest
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clips by similarity values of transition segments. The graph-assisted scheme firstycon-
structed a musical dice graph from the pre-processed clips based on several musie‘signal
analysis techniques. Then, with the graph, we can provide personalized medley éreation
service, which generates various pleasing medleys conforming to the specified.conditions,
such as medley structures or must-use clips. Besides, we also provide a GUI for the users
to choose clips, specify parameter and adjust concatenation boundaries. The experiment
results have shown the effectiveness of individual components, comparisons among meth-

ods, and provided guidelines for users to choose parameters.

7.2 Future Work

Many aspects of our system can be improved in the future. First, the current clip clustering
method can be modelled as an optimization problem, where the parameters of the “mixed
distance score” could be set according to user preferences, resulting in customizable clip
clustering and selection criterion. More clip similarity measures (e.g., meter, genre, mood,
etc.) can also be introduced during the clip clustering phase. Second, cluster types can be
extended into sections of different roles in a pop song, such as “first half verse”, “second
half chorus”, “bridge”, etc.. The length of each phrase can also be taken into account dur-
ing clip selection, enabling users to specify the desired lengths of each clip and the overall
medley. Third, song segmentation with singing voice detection restricted this work to vo-
cal songs. In the future, we will improve the current phrase detection method and explore
other music segmentation methods that are able to recognize phrases in instrumental mu-
sic. Other learning-based boundary detection methods [69, 70] are also worth exploring.
In addition, the current research ignored potential impacts of lyrics and the language in
which the songs are performed. Our future studies will explore how these two factors
could be used to help with composing lyrically-meaningful medleys. Finally, automatic

separation of background music from foreground singing voices may enable us to create

and add intermediate bridges, allowing for greater flexibility in medley generation.
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