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摘要

我們用數值方法來模擬在一維及二維空間兩分量玻色-愛因斯坦凝

聚中二孤立子 (soliton)的碰撞，探討孤立子在交互作用時速度和形狀

的變化。我們用一個梯度下降法 [2](gradient flow method)來計算二維

空間中孤立子的形狀，以及利用時間分步正弦擬譜法 [1](time-splitting

sine pseudospectral method)來計算波函數隨時間的變化。數值模擬的結

果顯示在一維空間中若孤立子間若有足夠強的相斥作用力，則它們的

碰撞像是彈性碰撞；而在強相吸作用力下，孤立子在碰撞後將分為兩

個或多個波包 (wave packets)。在二維空間中，孤立子間的相吸作用力

如果夠強，則會在碰撞過程中發生爆破現象 (blow up phenomenon)，其

它的情形下孤立子將在碰撞後成為漸漸散開 (spread out)的波包。

關鍵字: 兩分量、玻色-愛因斯坦凝聚、孤立子碰撞、數值模擬、變

差等式、爆破。
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Abstract

We investigate interaction of bright solitons for two-component Bose-

Einstein condensates (BECs) in one and two dimensions numerically (1D,

2D). The numerical methods we adopt are: (1) Gradient flow with discrete

normalization (GFDN) method for computing the profile function of soli-

tons in 2D. We use backward Euler sine pseudospectral (BESP) method to

discretize it. The algorithm is constructed by Chern and Bao [2]. (2) Time-

splitting sine pseudospectral (TSSP) method for computing the evolution of

wave functions. The algorithm is construct by Bao [1]. We discuss the change

of velocities and shapes of the wave packets during and after the interactions

between them. It is found that (1) In 1D, soliton collisions are like elastic

collisions under strong repulsive interactions. When the interactions are at-

tractive and strong enough, the wave packets may split into two or more parts

after collisions. (2) In 2D, wave packets spread out after collisions when the

interactions are repulsive or weak attractive. The wave functions blow up

during interactions when the attractive interactions are strong enough.

Keywords: Two-component, Bose-Einstein condensates (BECs), Gross-

Pitaevskii equation (GPE), Numerical simulations, Soliton collisions, Vari-

ance identity, Stability, Blow-up.
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1. Introduction

What are BECs

Bose-Einstein condensation is a phenomenon originally predicted by Bose and Einstein

in 1924, and was first realized after 70 years in 1995. When a dilute boson gas is cooled

to extremely low temperature (below a 10−7 K), the interaction between bosons are weak,

and large number of bosons occupy the same quantum state. This gas is called a Bose-

Einstein condensate (BEC). The realization of BECs makes the quantum effects become

apparent at a macroscopic scale.

Mathematical model - Gross-Pitaevskii equation

In quantummechanics, the evolution of a single particle is described by the time-dependent

Schrödinger equation

i~
∂

∂t
ψ(x, t) = Hψ(x, t),

where ψ is the state function, ~ is the reduced Planck constant and H is the Hamiltonian.

The Hamiltonian for a single particle is of the form

Hsψs(x, t) =

(
− ~2

2m
∇2 + V (x)

)
ψs(x, t).

where m is the mass of the particle, V (x) is the applied potential. The BEC is a dilute

ultra cold gas. It is a many particle system. The interaction between particles has to

be taken into account. We consider the binary interaction between particles. We denote

the interacting potential between particle i and j by Vint(|xi − xj|), where xi, xj are the
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positions of particle i, j, respectively. The many-body Hamiltonian of the system takes

the form

HN =

(
− ~2

2m

∑
1≤i≤N

∇2
i + Vext(xi)

)
+

∑
1≤i<j≤N

Vint(|xi − xj|),

where Vext is the external trapping potential. By the mean field theory [5], the interacting

potential is approximated by

Vint(|xi − xj|) ≈ gδ(|xi − xj|),

where δ is the Dirac delta function, g is the coefficient representing the strength of inter-

particle interactions (negative for attractive interactions and positive for repulsive interac-

tions). In BECs we expect all the particles (bosons) occupying the ground state, thus we

take the Hartree ansatz for the many-body wave function

ψN(x1, x2, ..., xN , t) =
N∏
i=1

ψs(xi, t).

Each is normalized with
∫
|ψs(x)|2 dx = 1.

By a formal calculation, the energy of ψN is

E(ψN) = N

∫
R3

[
~2

2m
|∇ψs(x, t)|2 + Vext(x)|ψs(x, t)|2 +

N − 1

2
g|ψs(x, t)|4

]
dx. (1.1)

Now let us introduce the wave function

ψ(x, t) =
√
Nψs

for the whole condensate. Then we have

N =

∫
|ψ(x, t)|2dx,

2



and we define the energy of ψ as

E(ψ) =

∫
R3

[
~2

2m
|∇ψ(x, t)|2 + Vext(x)|ψ(x, t)|2 +

g

2
|ψ(x, t)|4

]
dx ≈ E(ψN).

Each term corresponds to the kinetic energy, the potential energy and the interaction en-

ergy, respectively. Minimizing this energy with respect to infinitesimal variations in ψ∗,

the complex conjugate of ψ, we get the Hamiltonian in the form

Hψ =
δE

δψ∗ =

[
− ~2

2m
∇2 + Vext(x) + g|ψ(x, t)|2

]
ψ(x, t).

The time-evolution of BECs is described by the time-dependent Schrödinger equation,

which is

i~
∂

∂t
ψ (x, t) =

[
− ~2

2m
∇2 + Vext(x) + g|ψ(x, t)|2

]
ψ(x, t), x ∈ R3, t > 0.

This equation is also known as the Gross-Pitaevskii equation (GPE).

In experiments, mixtures of different species of condensates have been created. Multi-

component BECs can be described by a system of coupled Gross-Pitaevskii equations

(CGPEs)

i~
∂

∂t
ψk = − ~2

2mk

∇2ψk + Vext,k(x)ψk +
N∑
l=1

gkl|ψl|2ψk,

where ψk is the kth component wave function (k = 1, 2, · · · ,N ), mk is the mass of

the particle in kth component, Vk is the potential confining the kth component, and gkl

is the interaction coefficient representative the interaction between the kth and the lth

components (gkl = glk).

Soliton solutions

The complex wave function ψ(x, t) of a single species BEC can be expressed in terms of

the density ρ(x, t) ≡ |ψ(x, t)|2 and phase S(x, t) as

ψ(x, t) =
√
ρ(x, t)eiS(x,t).

3



The current density j is defined as

j ≡ ~
2mi

(ψ∗∇ψ − ψ∇ψ∗) = ρv,

where v is the atomic velocity. Thus we have

v(x, t) =
~
m
∇S(x, t),

means that the gradient of the phase is the atomic velocity.

When the external potential Vext = 0, the GPE possesses solutions of the form

ψ(x, t) = ϕ(x− vt)eiS(x,t),

where ϕ are real functions describe the shape of the condensates and v is constant here.

Solutions of this form are called soliton solutions, the kinetic and interaction energy of

them are balanced so the waves can travel without change of shapes. We focus on the

solitons which are localized in space (decay as x goes to infinity). Notice that the GPE

(without external potential) possesses thes type of soliton solutions only when the inter-

action coefficient g is negative, means that the interaction between atoms are attractive.

Solitons are stable in one-dimension (1D) and unstable in two- and three- dimensions (2D,

3D). In 1D, according to the soliton resolution conjecture [12], the solutions should even-

tually resolve into a finite number of solitons, plus dispersive waves which decays to zero.

In 2D and 3D, perturbations of solitons may cause the solutions blow up in a finite time

or disperse to infinity [11].

Goal

In this paper, we take the external potential Vext = 0 and discuss the results of interactions

between solitons. We investigate evolutions of two colliding solitons in 1D and 2D by

numerical methods.

4



In 1D, solitons are stable and they can survive after collisions. Wemeasure somemoments

of the waves such as center of mass, speed of center of mass, etc., and then observe their

variations during the collisions. In 2D, solitons are unstable, they may not survive after

collisions. We solve the CGPEs to see how the waves change during and after collisions.
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2. Bright soliton solutions

In this section we review some properties of solutions of GPE and then introduce the bright

soliton solutions. We rescale the GPE in the unit ~ = m = 1 for convenience:

i
∂

∂t
ψ(x, t) = −1

2
∇ψ(x, t) + Vext(x)ψ(x, t) + g|ψ|2ψ(x, t). (2.1)

2.1 Basic properties of solutions of GPE

Invariants

Let ψ(x, t) be a solution of (2.1). There exist two invariants with respect to time. One is

the total number of atoms (or the total mass since we let the mass of the atomm = 1).

N(ψ(x, t)) =

∫
Rd

|ψ(x, t)|2dx ≡
∫
Rd

|ψ(x, 0)|2dx = N(ψ(x, 0)),

and the other is the energy

E(ψ(x, t)) =

∫
Rd

[
1

2
|∇ψ(x, t)|2 + Vext(x)|ψ(x, t)|2 +

g

2
|ψ(x, t)|4

]
dx

≡
∫
Rd

[
1

2
|∇ψ(x, 0)|2 + Vext(x)|ψ(x, 0)|2 +

g

2
|ψ(x, 0)|4

]
dx = E(ψ(x, 0)).

The invariance of the total mass is obtained by multiplying GPE by ψ∗ and taking the

imaginary part, and the invariance of the energy is obtained bymultiplying GPE by dψ∗/dt

and taking the real part. In fact, for one-dimensional cubic nonlinear Schrodinger equation,

there are infinitely many invariants. It is an integrable system. But here, we are only
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interested in the basic two invariants, the mass and the total energy, which is related to the

classical mechanics directly.

For coupled GPEs we have similar results (obtained by similar techniques). The mass and

total energy are also invariant in time:

Ni(t) =

∫
Rd

|ψi(x, t)|2dx ≡
∫
Rd

|ψi(x, 0)|2dx = Ni(0),

Etotal =
N∑
i=1

Ei(t)

=
N∑
i=1

∫
Rd

[
1

2
|∇ψi(x, t)|2 +

N∑
j=1

gij
2
|ψj(x, t)|2|ψi(x, t)|2

]
dx

≡
N∑
i=1

∫
Rd

[
1

2
|∇ψi(x, 0)|2 +

N∑
j=1

gij
2
|ψj(x, 0)|2|ψi(x, 0)|2

]
dx

=
N∑
i=1

Ei(0).

Moments

A useful tool for analysing BEC dynamics is the moment method [3]. Moments of a

wave function are expected values of physical quantities of atoms in the condensate. They

provide physical properties of condensates in a macroscopic scale. The total mass is the

zeroth moment of the density function

N =

∫
Rd

ρ dx =

∫
Rd

|ψ|2dx.

The center of mass is the first moment divided by the total mass

⟨x⟩ = 1

N

∫
Rd

xρ dx =
1

N

∫
Rd

x|ψ|2dx.

8



The variance is the second moment

V =

∫
Rd

|x|2ρ dx =

∫
Rd

|x|2|ψ|2 dx.

The center of velocity

⟨v⟩ = 1

N

∫
Rd

vρ dx =
1

N

∫
Rd

1

2i
(ψ∗∇ψ − ψ∇ψ∗) dx.

The center of velocity gives the velocity of the whole condensate, we have the equality

⟨v⟩ = d⟨x⟩
dt

.

We also have the equation describing the time evolution of ⟨v⟩

d⟨v⟩
dt

= ⟨−∇Vext⟩ =
1

N

∫
Rd

−|ψ|2∇Vext dx.

This equation tells us that the interaction between atoms play no role in time evolution of

⟨v⟩, the change of velocity in time only depends on the gradient of potential.

Variance identity

Variance identity can help us analysing the stability of a soliton [8]. By the variance

identity, we get that wave packets in 2D with negative energy blow up in a finite time. As

mentioned above, the variance is defined as

V =

∫
Rd

|x|2|ψ|2 dx,

which is the second moment of the density function |ψ|2. Since the center of mass of a

condensate is not necessarily at the origin, we define the second moment of |ψ|2 about the

center of mass as the width of the wave packet w:

w =

∫
Rd

|x− ⟨x⟩|2|ψ|2 dx =

∫
Rd

(
|x|2 − |⟨x⟩|2

)
|ψ|2 dx, (2.2)

9



Wewill identify whether a wave packet blows up or spreads out by findingw as a function

of time. If the width of the wave packet w goes to zero in finite time, then we know the

wave packet blows up; if w goes to infinity as time goes to infinity, then the wave packet

eventually spreads out.

Now we give the variance identity, and we will give the proof later:

d2V
dt2

= 4E + g(d− 2)

∫
Rd

|ψ|4 dx, (2.3)

where d is the dimension of the space. In 2D, the above equation can be simplified to

V(t) = 2E t2 +
dV
dt

(0) t+ V(0). (2.4)

Since the energy is conserved, this equation tells us that we can directly get the variance

of a solution at any time with a given initial condition in 2D.

The width of a wave packet w is related to V by the equality

w = V −N |⟨x⟩|2.

If we set the external potential Vext = 0, then the center of mass ⟨x⟩ = ⟨v⟩t + x0, where

the velocity ⟨v⟩ is constant and x0 is the center of mass at t = 0. Hence we have

w(t) = 2E t2 +
dV
dt

(0) t+ V(0)−N |⟨v⟩t+ x0|2

= 2

(
E − 1

2
N |⟨v⟩|2

)
t2 +

(
dV
dt

(0)− 2N⟨v⟩ · x0
)
t+ V(0)−N |x0|2.

For convenience we define the internal kinetic energy as the energy minus the kinetic

energy for center of mass

KEint = E − 1

2
N |⟨v⟩|2.

Thus, we get that if the internal kinetic energy of a solution is negative, then the width

of the solution tends to zero in finite time, and hence the solution blows up. If E ′ of a

solution is positive, then the width of the wave packet tends to infinity as time goes to

10



infinity, and hence the solution may eventually be a dispersive wave.

Proof of the variance identity (2.3)

Here we give the proof of the variance identity, it is from [8]. We first multiply the single

Gross-Pitaevskii equation

iψt = −1

2
△ψ + g|ψ|2ψ

by ψ∗ and take the imaginary part. Then we obtain

i (ψ∗ψt + ψψ∗
t ) =

1

2
((△ψ∗)ψ − (△ψ)ψ∗) .

Thus we have

∂

∂t
|ψ|2 = − i

2
((△ψ∗)ψ − (△ψ)ψ∗) = Im ((△ψ∗)ψ) ,

and it can be reduced to
∂

∂t
|ψ|2 = ∇ · (Im (ψ∇ψ∗)) . (2.5)

Multiply the above equation by |x|2 and integrate over Rd, we get

∫
Rd

|x|2 ∂
∂t

|ψ|2dx = −
∫
Rd

(
∇|x|2

)
· Im (ψ∇ψ∗) dx = −2

∫
Rd

x · Im (ψ∇ψ∗) dx. (2.6)

Next we multiply the single GPE by x · ∇ψ∗ and integrate the real part over Rd, then we

get

I = II + III, (2.7)

where

I = i

∫
Rd

(x · ∇ψ∗)ψt − (x · ∇ψ)ψ∗
t dx (2.8)

II = −1

2

∫
Rd

(x · ∇ψ∗)△ψ + (x · ∇ψ)△ψ∗ dx (2.9)

III = g

∫
Rd

|ψ|2ψ (x · ∇ψ∗) + |ψ|2ψ∗ (x · ∇ψ) dx (2.10)

11



We integrate equation (2.9) and (2.10) by parts and obtain

II =
1

2

∫
Rd

d∑
j=1

(
∂

∂xj
ψ∗
)(

∂

∂xj
ψ

)
+

d∑
j=1

d∑
i=1

xi

(
∂

∂xi

∂

∂xj
ψ∗
)(

∂

∂xj
ψ

)

+
d∑
j=1

(
∂

∂xj
ψ

)(
∂

∂xj
ψ∗
)
+

d∑
j=1

d∑
i=1

xi

(
∂

∂xi

∂

∂xj
ψ

)(
∂

∂xj
ψ∗
)
dx

=
1

2

∫
Rd

2|∇ψ|2 +
d∑
j=1

d∑
i=1

xi
∂

∂xi

(
∂

∂xj
ψ

)
dx

=
1

2

∫
Rd

2|∇ψ|2 + x · ∇
(
|∇ψ|2

)
dx

=
1

2

∫
Rd

2|∇ψ|2 + d
(
|∇ψ|2

)
dx

= ( 2− d )

∫
Rd

1

2
|∇ψ|2 dx,

III = g

∫
Rd

|ψ|2ψ (x · ∇ψ∗) + |ψ|2ψ∗ (x · ∇ψ) dx

= g

∫
Rd

−
[
∇ ·
(
|ψ|2ψx

)]
ψ∗ + |ψ|2ψ∗ (x · ∇ψ) dx

= −g
∫
Rd

∇ψ∗ ·
(
|ψ|2ψx

)
+∇ψ ·

(
|ψ|2ψ∗x

)
+ d

(
|ψ|4

)
dx

= −III − gd

∫
Rd

|ψ|4 dx.

So we have

II = (2− d)

∫
Rd

1

2
|∇ψ|2 dx, (2.11)

III = −gd
2

∫
Rd

|ψ|4 dx. (2.12)
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Now by equation (2.6) to equation (2.12), we have

d2

dt2
V = −2

d2

dt2

∫
Rd

x · Im (ψ∇ψ∗) dx

= −2
d2

dt2

∫
Rd

−i
2

((x · ∇ψ∗)ψ − (x · ∇ψ)ψ∗) dx

= i

∫
Rd

(x · ∇ψ∗
t )ψ + (x · ∇ψ∗)ψt − (x · ∇ψt)ψ∗ − (x · ∇ψ)ψ∗

t dx

= I + i

∫
Rd

(x · ∇ψ∗
t )ψ − (x · ∇ψt)ψ∗ dx

= I + i

∫
Rd

(∇ · (ψ∗x))ψt − (∇ · (ψx))ψ∗
t dx

= I + i

∫
Rd

[(x · ∇ψ∗)ψt − (x · ∇ψ)ψ∗
t ] + d (ψ∗ψt − ψψ∗

t ) dx

= 2I + d

∫
Rd

ψ∗ (iψt) + ψ (−iψ∗
t ) dx

= 2I + d

∫
Rd

|∇ψ|2 + 2g|ψ|4 dx

= (4− 2d)

∫
Rd

1

2
|∇ψ|2 dx− gd

∫
Rd

|ψ|4 dx

+ 2d

∫
Rd

1

2
|∇ψ|2 dx+ 2gd

∫
Rd

|ψ|4 dx

= 4

∫
Rd

1

2
|∇ψ|2 dx+ gd

∫
Rd

|ψ|4 dx

= 4

∫
Rd

1

2
|∇ψ|2 + g

2
|ψ|4 dx+ g (d− 2)

∫
Rd

|ψ|4 dx

= 4E + g (d− 2)

∫
Rd

|ψ|4 dx.

Thus we completes the proof.

2.2 Bright soliton solutions

Without the trapping potential Vext, GPE possesses bright soliton solutions when the in-

teraction coefficient g < 0 (focusing). Bright solitons are travelling waves which decay

at infinity in space. They travel at a constant velocity without change of shape.

As mentioned in section 1, soliton solutions can be written in the form

ψ(x, t) = ϕ(x− vt)eiS(x,t).
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We call ϕ the shape function of the soliton. The shape function of solitons in 1D are

hyperbolic secant functions. The shape functions of solitons in high space dimensions

satisfy a nonlinear elliptic equation which can be solved numerically. The phase function

S(x, t) is correlated with the shape function ϕ and the velocity v of the soliton.

We first find the soliton solutions in 1D, then discuss the general form inmulti-dimensional

space.

Soliton solutions in 1D

This process of finding soliton solutions in 1D is very similar to the process in chapter 4

of [6]. When the potential Vext = 0 and g = −1, the GPE becomes

i
∂

∂t
ψ = −1

2
△ψ − |ψ|2ψ. (2.13)

The soliton wave solution in 1D assumes the form

ψ(x, t) = ϕ(x− vt)ei(kx−ωt) = ϕ(ξ)ei(kx−ωt), (2.14)

where ϕ is real, v, k, and ω are the group velocity, wave number and frequency, respec-

tively. The function ϕ is assumed to be 0 at x = ±∞. Substituting (2.14) into (2.13), we

have

i
∂

∂t
ψ = −ivϕ′ei(kx−ωt) + ωϕ ei(kx−ωt)

−1

2

∂2

∂x2
ψ = −1

2
ϕ′′ei(kx−ωt) − ikϕ′ei(kx−ωt) +

1

2
k2ϕ ei(kx−ωt)

−|ψ|2ψ = −|ϕ|2ϕ ei(kx−ωt),

thus equation (2.13) becomes

1

2
ϕ′′ei(kx−ωt) = −i(k − v)ϕ′ei(kx−ωt) − (ω − k2

2
)ϕ ei(kx−ωt) − |ϕ|2ϕ ei(kx−ωt).

14



Choose v = k and divide by ei(kx−ωt), we obtain

1

2
ϕ′′ = −(ω − k2

2
)ϕ− ϕ3.

Multiply this equality by ϕ′

1

2
ϕ′′ϕ′ = −(ω − k2

2
)ϕϕ′ − ϕ3ϕ′,

then integrate both sides and we get

1

4
(ϕ′)

2
= −1

2
(ω − k2

2
)ϕ2 − 1

4
ϕ4 + c1.

We assume ϕ, ϕ′ → 0 as ξ → ±∞, so that c1 = 0. Hence

ϕ′ = ±ϕ
√

(k2 − 2ω)− ϕ2.

We take the minus sign, and use the implicit formula for ϕ:

ξ = −
∫ ϕ(ξ)

0

dy

y
√
(k2 − 2ω)− y2

+ c2.

Choose c2 = 0 and substitute y =
√
k2 − 2ω sech θ, then we have

y2 = (k2 − 2ω) sech2 θ

dy = −
√
k2 − 2ω sech θ tanh θ dθ

y
√
(k2 − 2ω)− y2 =

√
k2 − 2ω sech θ

√
(k2 − ω) tanh θ.

Hence

ξ =

∫ ϕ(ξ)

0

1√
k2 − 2ω

dθ.

Let
√
k2 − 2ω = η, then

ξ =
θ

η
.
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So θ = ηξ, ϕ(ξ) = η sech (ηξ), and finally we get the bright soliton solutions in 1D:

ψ(x, t) = η sech (η(x− vt)) ei(kx−ωt),

where the dispersion relation is

ω =
1

2

(
k2 − η2

)
.

We express the soliton solutions in the form ψ(x, t) =
√
ρ eiS . The particle density of the

bright soliton is η2 sech2(η(x− vt)), which is localized within a small region with width

η, and travelling at speed v. On the other hand, the velocity of the soliton is∇S = k = v,

agree with our assumption.

General form of soliton solutions in d-dimension

In fact, the shape function of a bright soliton ϕ is a bound state defined as follows. We

consider a stationary solution in d-dimension

ψ(x, t) = ϕ(x) e−iµt, x ∈ Rd,

where µ is the chemical potential of the condensate. Then we plug it into the GPE (with

Vext = 0), the shape function ϕ satisfies the time-independent GPE

µϕ = −1

2
△ϕ+ g|ϕ|2ϕ.

We rewrite this equation as

−1

2
△ϕ− µϕ+ g|ϕ|2ϕ = 0. (2.15)

When the interaction coefficient g < 0 and µ < 0, there exist nontrivial solutions to

equation (2.15) which decays at infinity [9]. Let ϕ be such a solution, then we call it a

16



bound state associate with µ. Then bright soliton solutions are wave functions of the form

ψ(x, t) = ϕ(x− vt− x0) e
i(v·x− |v|2

2
t−µt−δ0)

which describes a solitary wave travelling with velocity v. However, in this paper we just

focus on those solitons whose shape function is a ground state. A ground state is a bound

state which minimizes the action

S(ϕ) =

∫
Rd

1

4
|∇ϕ|2 − µ

2
|ϕ|2 + g

4
|ϕ|4dx.

In fact, it can be proven that for fixed µ the ground state solution is the unique solution

which is positive and radially symmetric [9]. We denote the ground state associated to µ

by ϕµ. Then the (ground state) solitons are of the form

ψ(x, t) = ϕµ(x− vt− x0) e
i(v·x− |v|2

2
t−µt−δ0).

Notice that the velocity does not depend on ϕµ. We can choose the velocity of a soliton as

initial conditions once we have the ground state ϕµ.

The ground state associated to different values of µ can be obtained by scaling. Consider

a positive wave function ϕµ satisfies the time-independent GPE

−1

2
△ϕµ − µϕµ + g|ϕµ|2ϕµ = 0.

Multiply the above equation by η3 and replace x by y, we obtain

−1

2
η3△yϕµ(y)− η3µϕµ(y) + η3g|ϕµ(y)|2ϕµ(y) = 0.

Let y = ηx, we have

−1

2
△x (ηϕµ(ηx))− η2µ (ηϕµ(ηx)) + g|ηϕµ(ηx)|2 (ηϕµ(ηx)) = 0.
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Then choose ϕµ′(x) = ηϕµ(ηx), we get

−1

2
△ϕµ′ − µ′ϕµ′ + g|ϕµ′ |2ϕµ′ = 0,

where µ′ = η2µ. Hence ϕµ′ also satisfies the time-independent GPE. This tells us that once

we have a ground state ϕµ with some chemical potential µ, we can get all other ground

states by rescaling ϕµ.

Notice that this kind of scaling doesn’t change the 2-norm of the wave functions in 2D,

and hence we know that all ground states (with different values of µ) in 2D are of the same

mass.

2.3 Stability/Instability of solitons in 1D and 2D

In this section we review some theorems about the global existence of the solution and the

stability of ground state solitons in 1D and 2D.

Existence of solutions

Two dimension is the critical dimension for existing solutions blow up in a finite time. We

give a theorem which states a sharp sufficient condition for global existence, from [13].

Theorem 1. Let φ ∈ H1(Rd). For dimension d = 2, a sufficient condition for global

existence (the solution exist for all time) for the initial-value problem

i
∂

∂t
ψ(x, t) = −1

2
△ψ(x, t) + g|ψ|2ψ(x, t), x ∈ Rd, t ∈ R+, (2.16)

ψ(x, 0) = φ(x), x ∈ Rd, (2.17)

is:

∥φ∥2L2 < ∥ϕ∥2L2 .

Here ϕ is a positive ground state solution of the time-independent GPE (2.15).

This theorem tells us that a solution in 2D may blow up only when its mass is greater
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than or equal to the mass of a soliton.

Stability/Instability of solitons

We give two theorems about the stability/instability of solitons in 1D and 2D, respectively.

Theorem 2 (Orbital stability in 1D [4]). In 1D, let ϕ be the ground state of the time-

independent GPE (2.15). Then for any ϵ > 0, there exist δ > 0 such that if the initial

condition φ obeys

inf
θ∈R,y∈Rd

|φ(·)− eiθϕ(·+ y)|H1 < δ,

then the solution ψ(x, t) of the initial value problem (2.16)-(2.17) satisfies

inf
θ∈R,y∈Rd

|ψ(x, ·)− eiθϕ(·+ y)|H1 < ϵ.

The orbit of a function u is defined as

Gu = {u(·+ x0)e
iγ,∀x0 ∈ Rd, γ ∈ [0, 2π)}.

This theorem tells us that if the initial condition φ is close to a ground state ϕ inH1 norm,

up to the transformations keeping the equation invariant (translation and phase shift), then

the solution ψ at any later time is also close to the ground state ϕ in H1 norm.

Theorem 3 (Instability by blow up in 2D). At critical dimension d = 2, all the H1 so-

lutions of time-independent GPE (2.15) are unstable for GPE in the following sense: Let

ϕ ∈ H1(Rd) be the ground state solution of (2.15). For any ϵ > 0, there exists a function

φ ∈ H1, with |φ − g|L2 < ϵ, such that the solution ψ of (2.16) with initial condition φ,

satisfies limt→T |∇ψ|L2 = ∞, for some 0 < T <∞.

This theorem tells that there exist a perturbation of ground state ϕ in 2D that makes

the solution blows up in a finite time. We can use the fact that the energy of a stationary

soliton in 2D is zero and the variance identity to prove it. Let φ = (1 + ϵ)ϕ, then we get

the energy of φ is negative, and hence the solution satisfies ψ(x, 0) = φ blows up.
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In fact, in 2D there exist explicit solutions whose mass are equal to the mass of solitons

that blow up in a finite time [11]. They have the form

ψ(x, t) =
1

t∗ − t
ϕ

(
x

t∗ − t

)
e

i
t∗−t

(
− |x|2

2
+1

)
,

where t∗ is the time at which solutions blow up. For solutions which blow up in a finite

time and their mass greater than the mass of solitons, they have the asymptotic form [7]

[10] [11]

ψ(x, t) ≈ 1

L(t)
P

(
|x|
L(t)

, b(t)

)
e
i(τ(t)−a(t) |x|2

2L2(t)
)

near the singularity. The scaling factor L(t) has the asymptotic form

L(t) ≈

(
2π(t∗ − t)

ln ln 1
t∗−t

) 1
2

.

These tell us the asymptotic behaviour of the solutions near the blow-up time.
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3. Numerical methods

3.1 Gradient flow method for finding solitons in 2D

In the previous section, we see that a wave function ϕµ which describes the profile of a

bright soliton, is a ground state of BEC with external potential V (x) = 0 and interaction

coefficient g < 0. It satisfies the time-independent GPE

−1

2
△ϕµ − µϕµ + g|ϕµ|2ϕµ = 0,

and minimizes the action

S(ϕ) =

∫
Rd

1

4
|∇ϕ|2 − µ

2
|ϕ|2 + g

4
|ϕ|4dx.

In 1D, we have the exact solution of bright solitons (the hyperbolic secant family). But

in dimensions d > 1, we have to solve the equation numerically to find the solutions of

bright solitons.

The gradient flow with discrete normalization

We use the gradient flow with discrete normalization (GFDN) method to compute the

ground states, and use backward Euler sine pseudospectral (BESP) method to discretize

it. This numerical method is from [2].

When we use GFDN method, we are not specifying the value of µ and then compute the

corresponding ϕµ. We compute the ground state under certain normalization and compute

the corresponding chemical potential µ.
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Choose a time step τ = △t and set tn = n△t for n = 0, 1, · · · . The gradient flow with

discrete normalization is as follows

∂

∂t
ϕ(x, t) = −δS(ϕ)

δϕ
=

(
1

2
∇2 + µ− g|ϕ|2

)
ϕ(x, t), x ∈ Rd, t > 0, (3.1)

ϕ(x, tn+1) =
ϕ(x, t−n+1)

∥ϕ(·, t−n+1)∥
, x ∈ Rd, n ≥ 0, (3.2)

ϕ(x, 0) = ψ0(x), x ∈ Rd with ∥ψ0∥ = 1. (3.3)

Since the wave functions we are interested in tends to zero exponentially as |x| → ∞, we

can approximate the function in a bounded domain and choose the homogeneous Dirichlet

boundary condition. Following we set x ∈ Ω, where Ω is a bounded domain.

For discretizing the gradient flow, we use backward Euler method for temporal discretiza-

tion and sine pseudospectral method for spatial derivatives (BESP).

We present the numerical method in 1D. Choosing Ω = (a, b) and mesh size h = △x > 0

with h = (b − a)/M forM an even positive integer. Set the grid points xj = a + j△x,

j = 0, 1, · · · ,M . Then the scheme is

ϕ∗
j − ϕnj
τ

=
1

2
Ds
xxϕ

∗|x=xj + µϕnϕ
∗
j − g|ϕnj |2ϕ∗

j , j = 1, 2, · · · ,M − 1, (3.4)

ϕ∗
0 = ϕ∗

M = 0, ϕ0
j = ϕ0(xj), j = 0, 1, · · · ,M, (3.5)

ϕn+1
j =

ϕ∗
j

∥ϕ∗∥
, j = 0, 1, · · · ,M, n = 0, 1, · · · , (3.6)

where µϕn is the approximation of chemical potential of ϕn and Ds
xx is a spectral differ-

ential operator approximation of ∂xx. The chemical potential of a wave function ϕ which

satisfies the time-independent GPE can be computed as

µϕ =

∫
1
2
|∇ϕ|2 + g|ϕ|4dx∫

|ϕ|2dx
=

1
2
∥∇ϕ∥22 + g∥ϕ2∥22

∥ϕ∥22
.

We use discrete sine transform method to approximate the gradient of ϕn, and the 2-norm

is designed as ∥ϕn∥22 = h
∑M−1

j=1 |ϕnj |2 (1D). Thus µϕn can be computed.
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The spectral differential operator Ds
xx is defined as

Ds
xxϕ|x=xj = − 2

M

M−1∑
l=1

µ2
l (ϕ̂)l sin(µl(xj − a)), j = 1, 2, · · · ,M − 1.

where µl = πl
b−a and (ϕ̂)l (j = 1, 2, · · · ,M−1) are the discrete sine transform coefficients

of ϕj (j = 1, 2, · · · ,M − 1). We solve the equation (3.4) by introducing a stabilization

term with constant coefficient α

ϕ∗,m+1
j − ϕnj

τ
=

1

2
Ds
xxϕ

∗,m+1|x=xj − αϕ∗,m+1
j +

(
α + µϕn − g|ϕnj |2

)
ϕ∗,m
j ,

m = 0, 1, 2, · · · , (3.7)

ϕ∗,0
j = ϕnj , j = 0, 1, · · · ,M. (3.8)

The α is called the optimal stabilization parameter suggested as [2]

α =
1

2
(bmax + bmin),

where

bmax = max
1≤j≤M−1

(
−µϕn + g|ϕnj |2

)
,

bmin = min
1≤j≤M−1

(
−µϕn + g|ϕnj |2

)
.

To solve (3.7), we take discrete sine transform at both sides of it and obtain

(ϕ̂∗,m+1
j )l − (ϕ̂nj )l

τ
= −

(
α +

1

2
µ2
l

)
(ϕ̂∗,m+1

j )l + (Ĝm
j )l, l = 1, 2, · · · ,M − 1, (3.9)

where (Ĝm
j )l are the discrete sine transform coefficients of Gm

j defined as

Gm
j =

(
α + µϕn − g|ϕnj |2

)
ϕ∗,m
j , j = 1, 2, · · · ,M − 1.
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We rewrite (3.9) to get

(ϕ̂∗,m+1)l =
2

2 + τ(2α + µ2
l )

(
(ϕ̂n)l + τ(Ĝm)l

)
, l = 1, 2, · · · ,M − 1. (3.10)

And taking inverse discrete sine transform, then we get ϕ∗,m+1.

We need to specify the type of norm in (3.6). Usually we use 2-norm for measuring wave

functions, but in the 2D case, we can’t use 2-norm to compute the ground state. The reason

is that we can’t assign the total mass and compute the corresponding wave function of

soliton in 2D, since the mass of every solitons in 2D are all the same. We shall use the

uniform norm ∥ψn∥ = maxj(ϕnj ) instead. The ground state we find here is a soliton with

height 1.

Tests of the gradient flow method

We define numerical residual by

err = max
j

(
1

2
Ds
xxϕ

n|x=xj + µϕnϕ
n
j − g|ϕnj |2ϕnj

)
.

The stopping criterion for the above backward iteration scheme is when the residual error

reaches some prescribed value. Here, we choose it to be 1E-12. The density profile so

obtained is shown in Figure 3.1.

3.2 TSSP method for computing the dynamics of BECs

We use the time-splitting sine pseudospectral (TSSP) method to solve the GPE with a

given initial wave function. This algorithm was constructed by Weizhu Bao [1], it is fast

and unconditionally stable.

Since the wave functions which we are concerned about tend to zero as x tends to infinity,

we can solve the GPE in a bounded domain which is large enough, and set the values of

the wave functions at the boundary to be zero. Hence it becomes an initial boundary value

problem with homogeneous Dirichlet boundary condition. We represent the problem in
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Figure 3.1: Soliton in 2D with ∥ϕ∥∞ = 1

1D:

i∂tψ(x, t) = −1

2
ψxx(x, t) + V (x)ψ(x, t) + g|ψ|2ψ(x, t), x ∈ (a, b), t > 0,

ψ(x, 0) = ψ0(x), x ∈ [a, b],

ψ(a, t) = ψ(b, t) = 0, t > 0.

Now we consider an initial value problem

d

dt
u(t) = (A+B)u(t), u(0) = f(x), (3.11)

whereA andB are two operators, the solution can bewritten in the formu(t) = et(A+B)u(0).

In general, A does not commute with B, so u(t) ̸= etAetBu(0). But by using Taylor ex-

pansion, we have

u(t+∆t) = e∆tAe∆tBu(t) +O(∆t).

This implies that if △t is small, then we can approximate u(t + △t) by e∆tAe∆tBu(t),

and hence we can solve the two operators A and B separately. This is an example of

time-splitting approximation. Let∆t = τ > 0, tn = nτ , and un be the numerical approx-

25



imation of u(tn). There are two splitting methods commonly used to solve (3.11)

un+1 = eτAeτBun, Lie-Trotter splitting,

un+1 = eτA/2eτBeτA/2un, Strang splitting.

The error of Lie-Trotter splitting is of first order O(τ), and the error of Strang splitting is

of second order O(τ 2).

In our case GPE, we choose

Aψ =
i

2
∂xxψ, Bψ = −i

(
V + g|ψ|2

)
ψ,

and use the Strang splitting. From tn to tn+1, we solve ψ(1) = eτA/2ψ, ψ(2) = eτBψ(2),

and ψn+1 = eτA/2ψ(2) to get ψn+1 from ψn. To solve ψ(1) = eτA/2ψn, we first write

ψn =
∑
l

(ψ̂n)l sin(µl(x− a)),

where µl = lπ/(b−a), l = 1, ...,M − 1, (ψ̂n)l are the discrete sine transform coefficients

of ψn. Hence

Aψn =
i

2
∂xxψ

n =
i

2

∑
l

(
−µ2

l

)
(ψ̂n)l sin(µl(x− a)),

the second derivative of ψn is obtained by multiplying it’s Fourier coefficients by −µ2
l ,

and thus we get

ψ(1) = eτA/2ψn =
∑
l

e
i
2(−µ2l )τ/2(ψ̂n)l sin(µl(x− a)).

For solving ∂
∂t
ψ = Bψ, since |ψ| is invariant in t in this ODE, it can be integrate exactly,

we get

ψ(2) = eτBψ(1) = e−i(V+g|ψ(1)|2)τψ(1).
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Let mesh size △x = h, xj = jh + a, j = 0, ...,M , M = (b − a)/h, and ψj be the

numerical approximation of ψ(xj, t). The complete algorithm is

ψ
(1)
j =

2

M

M−1∑
l=1

e−iτµ
2
l /4 (ψ̂n)l sin(µl(xj − a)),

ψ
(2)
j = e−i(V (xj)+β|ψ

(1)
j |2)τψ

(1)
j , j = 1, ...,M − 1

ψn+1
j =

2

M

M−1∑
l=1

e−iτµ
2
l /4 (ψ̂(2))l sin(µl(xj − a)), ψn+1

0 = ψn+1
M = 0

where µl = lπ/(b − a), and (ψ̂n)l and (ψ̂(2))l are the discrete sine transform coefficients

of ψn and ψ(2), respectively.

TSSP method is faster than finite difference method, since it uses fast Fourier transform

to solve the differential equation. And since the integrations are all exact, it is uncondi-

tionally stable.

Tests of TSSP method

We use the bright soliton solutions to test the TSSP method.

• Case 1: 1D soliton

First we test the method in 1D. The 1D soliton solutions are

ψ(x, t) = η sech (η(x− vt)) ei(kx−ωt),

where v ≡ ∂ω/∂k = k, ω = 1
2
(k2 − η2). We choose η = 1, k = 2, and hence

ω = 1.5 and v = 2. The bright soliton becomes

ψ(x, t) = sech(x− 2t) ei(2x−
3
2
t),

the initial condition is taken as

ψ(x, 0) = sech(x) ei2x,
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h 1/2 1/4 1/8 1/16
error 4.580E-3 8.595E-7 8.622E-7 8.622E-7

Table 3.1: Errors for τ = 1/1024 and various values of h (case 1)

τ 1/8 1/16 1/32 1/64
error 1.397E-2 3.521E-3 8.821E-4 2.206E-4

τ 1/128 1/256 1/512 1/1024
error 5.517E-5 1.379E-5 3.448E-6 8.622E-7

Table 3.2: Errors for h = 1/16 and various values of τ (case 1)

we solve this on [−64, 64], and check the results at t = 10, the mesh size and time

step are h and τ , respectively.

Table 3.1 lists the errors in sup norm for τ = 1/1024 and various spatial mesh sizes

h. We see that the error decreases very fast when h is reduced from 1/2 to 1/4, then

saturated. This means that the temporal error dominates. Table 3.1 lists the errors

in sup norm for h = 1/16 and various time steps τ . From these two tests, we see

that the method is spectrally accurate in space and second order accurate in time.

• Case 2: 2D soliton

In general, the soliton solution is

ψ(x, t) = ϕ(x− vt) ei(v·x−
|v|2
2
t+ωt),

where ϕ is real and satisfies the equation

−1

2
△ϕ(x) + ωϕ(x)− ϕ3(x) = 0.

We use BESP method to find the 2D soliton centered at the origin (0, 0) with height

1 (max(ϕ) = 1), and denote the wave function by ϕ1. The value of ω for ϕ1 can be

computed numerically, so we know the solution at any time with a given velocity v.

28



τ 1/8 1/16 1/32 1/64
error 1.210E-2 3.084E-3 7.747E-4 1.939E-4

τ 1/128 1/256 1/512 1/1024
error 4.850E-5 1.213E-5 3.031E-6 7.579E-7

Table 3.3: Errors for h = 1/16 and various values of τ (case 2)

We take the initial wave function as

ψ(x, 0) = ϕ1(x) e
i(v·x),

with v = (2, 1), solve the GPE on (−32, 32) × (−32, 32), and check the results at

t = 5. Table 3.3 lists the errors in sup norm for h = 1/16 and various time steps τ .

We see that the error is also of O(τ 2).

• Case 3: Two solitons in 2D

In this case we test TSSP method by using it to solve coupled GPEs:

i
∂

∂t
ψ1 = −1

2
∇2ψ1 +

(
g11|ψ1|2 + g12|ψ2|2

)
ψ1,

i
∂

∂t
ψ2 = −1

2
∇2ψ2 +

(
g21|ψ1|2 + g22|ψ2|2

)
ψ2.

If we assume that ψ1 and ψ2 are solitons and ψ2 = aψ1, choose g11 = g11 = −1

then there are simple solutions in the form:

ψ1 =
1√

1− a2g12
ϕµ(x− vt) ei(v·x−

|v|2
2
t−µt),

ψ2 =
1√

1− g12/a2
ϕµ(x− vt) ei(v·x−

|v|2
2
t−µt),
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τ 1/8 1/16 1/32 1/64
error(ψ1) 5.410E-3 1.379E-3 3.465E-4 8.673E-5
error(ψ2) 1.082E-2 2.758E-3 6.930E-4 1.735E-4

τ 1/128 1/256 1/512 1/1024
error(ψ1) 2.169E-5 5.423E-6 1.356E-6 3.389E-7
error(ψ2) 4.338E-5 1.085E-5 2.711E-6 6.779E-7

Table 3.4: Errors for h = 1/16 and various values of τ (case 3)

where ϕµ is the same as in section 2, a and g12 satisfy the following equations

(g12 + 1)(a2 − 1) = 0,

g12 − a2 < 0,

g12a
2 − 1 < 0.

We choose a = 2, g12 = −1, v = (2, 1), ϕµ same as in case 2 (with height 1),

solve the coupled GPEs in (−32, 32) × (−32, 32), and check the results at t = 5.

Table 3.4 lists the errors in sup norm for h = 1/16 and various time steps τ .

30



4. Numerical examples

4.1 Examples of one-component BEC: perturbations of

solitons

In this subsection, we perturb the amplitude of a static soliton and solve the evolution

of the wave packet. We can see the stability/instability of solitons under this kind of

perturbations.

The initial value problem is

i∂tψ(x, t) = −1

2
ψxx(x, t)− |ψ|2ψ(x, t), x ∈ Ω, t > 0,

ψ(x, 0) = ψ0(x), x ∈ Ω,

ψ(x, t)|x∈Ω = 0, t > 0.

The initial condition is taken as

ψ0(x) = (1± ϵ)ϕ(x),

where ϕ is the ground state which satisfies the time-independent GPE (2.15) with g = −1.

We solve this problem by the TSSP method presented in section 4.
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Example 1: Perturbations of a soliton in 1D

In example 1 we solve the above problem in 1D. We specify the initial condition as

ψ(x, 0) = (1 + ϵ)ϕ(x),

where ϕ(x) = sech(x) is the shape function of a soliton in 1D.

We solve this initial value problem on Ω = (−16, 16) and choose the mesh size h = 1/16

and time step τ = 1/1024.

Figure 4.1 shows the density profile |ψ(x)|2 of the wave packet at different times, with

ϵ = 0.01. We see that the shape of the wave packet does not change very much in time.

Next we observe the difference between this wave function and the original soliton. For
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Figure 4.1: Density profile of |ψ|2 at different time for ϵ = 0.01

convenience, we only measure the difference between the absolute values of them. The
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difference is defined as

d(ψ, ϕ) = ∥|ψ(·, t)| − ϕ(·)∥H1 .

The difference vs. time graph is shown in Figure 4.2. We see that the it is bounded in

time.

Figure 4.3 shows the difference vs. time graph with ϵ = 0.001 and ϵ = 0.0001. Obviously
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Figure 4.2: Difference vs. time graph for ϵ = 0.01

the difference is less as ϵ is less. This result is consistent with the fact that soliton in 1D

is (orbitally) stable.
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Figure 4.3: Difference vs. time graph for ϵ = 0.001, 0.0001
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Example 2: Perturbations of a soliton in 2D

In example 2 we solve the same problem in 2D. The crucial point in this example is that

the mass of the wave packets are changed by the perturbation. As we see in section 2,

the mass of all solitons in 2D are all the same. Thus the wave packets in this example are

no longer solitons and their behaviour will be different. We split this example into two

cases, one for a smaller amplitude of perturbation, and the other for a greater amplitude

of perturbation.

Case 1: Smaller mass than that of a soliton We take the initial condition as

ψ(x, 0) = 0.99ϕ(x),

where ϕ is the ground state satisfies the time-independent GPE (2.15) in 2D, with

g = −1. It also satisfies

ϕ(x) > 0

∥ϕ(x)∥∞ = ϕ(0, 0) = 1.

We solve this initial value problem on Ω = (64, 64)2 and choose the mesh size

h = 1/16 and time step τ = 1/1024.

Figure 4.4 shows the density profile |ψ|2 of the wave packet at different times, we

see that it spreads out in time.

We check the results by the variance identity. As discussed in section 2, the energy

of a static soliton is zero. The kinetic energy and interaction energy of a static soliton

in 2D have the same magnitude but are opposite in sign. LetC be the kinetic energy

of ϕ, then we have

E(ψ) =
[
(1− ϵ)2 − (1− ϵ)4

]
· C

≈ [(1− 2ϵ)− (1− 4ϵ)] · C = 2ϵ · C > 0.
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Figure 4.4: |ψ(x)|2 at different time (case 1)
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Hence by the variance identity, the wave packet should eventually spread out (blow

up cannot happen since its total mass is less than the mass of a soliton).

Figure 4.5 shows the energy vs. time graph and Figure 4.6 shows the width w
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Figure 4.5: Energy vs. time graph (case 1)

(in this case it equals the variance since ⟨x⟩ = (0, 0)) vs. time graph. We see

that the energy is both constant and positive. The curve on the w vs. time graph

fits a quadratic curve very well, as suggested by the variance identity in 2D. The

difference between the quadratic coefficient of the curve and two times of the energy

is 2.996E-5.

This result matches our expectation, since a wave packet can not keep its shape

unchanged or even blow up with its mass less than the mass of a soliton.

Case 2: Greater mass than that of a soliton In this case we take the initial condition as

ψ(x, 0) = 1.01ϕ(x),

where ϕ(x) is same as in case 1.

We solve this initial value problem on (32, 32)2 and choose the mesh size h = 1/32,

time step τ = 1/1024.

Figure 4.7 shows the density profile |ψ(x)|2 at different times, and Figure 4.8 shows
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Figure 4.6: w vs. time graph (case 1)

the maximum of |ψ(x)|2 vs. time graph. We see that the solution grows up quickly

near the time t = 18.578.

To check whether it blows up at that time, we observe the energy E and the width

w of the solution vs. time graph shown in Figure 4.9 and Figure 4.10, respectively.

In Figure 4.9, we find that the energy is not conserved at that time. This tells us that

the solution exceeds the limitation of the computing. On the other hand, the energy

before t = 18.578 is negative (as suggested by a similar estimate as in case 1), and

hence by the variance identity the solution should blow up in a finite time.

In Figure 4.10, we see that the curve on the w vs. time graph also fits a quadratic

curve very well. The difference between the quadratic coefficient of the fitting curve

and two times of the energy is 2.816E-5. The fitting curve predicts that the solution

blows up at t ≈ 18.699.
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Figure 4.7: Density profile of the wave packet at different time (case 2)
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Figure 4.8: ∥ψ∥2∞ vs. time graph (case 2)
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Figure 4.10: w vs. time graph (case 2)
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4.2 Examples of two-component BECs: collisions of soli-

tons

In this subsection we solve the evolutions of colliding solitons in 1D and 2D. The initial

value problem is

i
∂

∂t
ψ1 = −1

2
△ψ1 + (−|ψ1|2 + g12|ψ2|2)ψ1 x ∈ Rd, t > 0

i
∂

∂t
ψ2 = −1

2
△ψ2 + (g21|ψ1|2 − |ψ2|2)ψ2 x ∈ Rd, t > 0

ψ1(x, 0) = ψ10(x) x ∈ Rd,

ψ2(x, 0) = ψ20(x) x ∈ Rd,

where g12, g21 are interaction coefficients have the same value. They represent the inter-

action strength between the two waves (negative for attractive and positive for repulsive).

The initial conditions are of the form

ψ10(x) = ϕ(x− x10)e
i(v10·(x−x10)),

ψ20(x) = ϕ(x− x20)e
i(v20·(x−x20)),

where ϕ(x) is the shape function of a soliton, x10, x20 and v10, v20 are center of mass

and center of velocities of the two soliton at t = 0, respectively. The shape function ϕ

of solitons is the same as the previous examples. It satisfies the time-independent GPE

(2.15) with g = −1 and

ϕ(x) > 0, x ∈ Rd,

∥ϕ(x)∥∞ = ϕ(O) = 1,

where O is the origin of the space.
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Example 3: Collision of two solitons in 1D

In example 3 we solve this problem in 1D. The initial conditions are taken as

ψ10(x) = sech(x+ 50) ei(4(x+50)),

ψ20(x) = sech(x+ 30) ei(2(x+30)).

The initial conditions are shown in Figure 4.11. We solve this initial value problem with

−60 −40 −20 0 20 40 60
0

0.5

1

1.5

2

X

|ψ
|2

time=0.0000

Figure 4.11: Initial conditions in example 3

different values of g12 = g21, on the domain Ω = (−64, 64) and choose the mesh size

h = 1/16 and time step τ = 1/1024.

The initial center of soliton 1 and 2 are at x = −50 and x = −30, and the initial velocities

are 4 and 2, respectively. At the beginning, ψ1ψ2 ≈ 0, the interaction between soliton 1

and 2 are weak. After a short time, soliton 1 catches up soliton 2 and they begin to interact

with each other. We discuss the dynamics during their collision with different values of

interaction coefficient g12 = g21.

1. Attractive g12 = g21 ≤ 0

When g12 =≤ 0, the two solitons pass through each other after collisions. If the

interactions are weak (g12 < 2), then they pass through each other with both shapes

almost unchanged after collisions. The density function of them at different time

for g12 = −2 are shown in Figure 4.12.

When the interactions are stronger, (g12 = −3,−4), we observe that after collisions,

there are small waves separate from the original solitons which will follow the other
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Figure 4.12: Density profiles of ψ1 and ψ2 at different time for g12 = −2 (example 3)
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solitons, see Figure 4.13. When g12 < −7, there are second small waves in the

middle of the two solitons after collision, see Figure 4.14.

Next we observe the speeds of the waves. The center of velocities change when the
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Figure 4.13: Small waves separate from original solitons (g12 = -5)

two wave packets are interacting, and hence causes position shifts after collision.

Figure 4.15 shows the velocity vs. time graph of the two solitons with different

values of g12.

We see that when the interactions are weak (those cases where there are no small

waves separated from the original soliton after collisions), the center of velocities

of them are the same before and after the collisions, but they change during the

interactions. For soliton 1, we can see that it’s speed increases and then decreases

to the original value during the collision. While for soliton 2, the speed decreases

and then increases to the original value.

This phenomenon is physically reasonable. When the two solitons are getting closer,

their attractive interactions become stronger, so there is a stronger force act between
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Figure 4.14: Small waves separate from original solitons (g12 = -9)
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them to pull them together. We can see that the velocities change more (and thus

greater position shifts) when the interaction coefficient g12 is lower.
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Figure 4.15: Velocity v.s. time graph of soliton 1 and 2 with different values of g12 (ex-
ample 3)

2. Repulsive g12 = g21 > 0

When the interaction between solitons is repulsive, whether or not they will pass

through each other depends on the strength of interactions. They can still pass

through each other when the interaction is weak, and can not pass through each

other when the interaction is strong enough.

Figure 4.16, Figure 4.17 and Figure 4.18 show the density functions of the two soli-

tons at different time for interaction coefficient g12 = 0.1, g12 = 1 and g12 = 5,

respectively. In the case of g12 = 0.1, we see that the solitons pass through each

other and maintain their shapes during collision. In the case of g12 = 0.95, we see

that parts of the solitons pass through and the other parts do not, and their shapes

continuously change. In the case of g12 = 5, we see that they do not pass through

each other. The two solitons change their shapes when they collide, and then almost

recover to the original shapes after collision.

The problem whether the two wave packets would pass through each other is also
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Figure 4.16: Density profiles of ψ1 and ψ2 at different time for g12 = 0.1 (example 3)
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Figure 4.17: Density profiles of ψ1 and ψ2 at different time for g12 = 0.95 (example 3)
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Figure 4.18: Density profiles of ψ1 and ψ2 at different time for g12 = 5 (example 3)
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related to the initial kinetic energy for center of mass (1
2
N |⟨v⟩|2). If the initial ki-

netic energy for center of mass of soliton 1 is large enough, then the repulsive force

can not stop it during the interaction even when g12 is relatively large.

Next we observe the center of velocities vs. time graph for different values of g12,

shown in Figure 4.19. We see that when the interaction is weak, the center of ve-

locity of ϕ1 decrease and then increase during the collision. While the variation of

the center of velocity of ψ2 is reverse. This is similar to the attractive cases, but the

interactive forces between waves are in opposite direction.

However, when the repulsive interactions are stronger, not the whole wave packets

are able to pass through the other component. Thus the center of velocity of ψ1 de-

creases and the center of velocity of ψ2 increases after collisions. We observe that

the momentum transfer is greater as the value of g12 is greater. When g12 is large

enough, the two wave packets almost interchange their center of velocities after col-

lisions, see Figure 4.20.

We say that the collision is like an elastic collision under strong repulsive inter-

actions, in the following senses: 1. The waves do not pass through each other,

and their fields almost do not overlap. 2. The kinetic energy for center of mass
1
2
N⟨v⟩21 + 1

2
N⟨v⟩22 is conserved after collisions.

Example 4: Solitons collision in 2D

In example 4 we solve the initial value problem in 2D. The initial conditions are taken as

ψ1(x, 0) = ϕ(x− (−10,−5)) ei((2,1)·x),

ψ2(x, 0) = ϕ(x− (10, 5)) ei((−2,−1)·x).

The center of mass of soliton 1 and 2 are at (−10,−5) and (10, 5), respectively. The cen-

ter of velocities of soliton 1 and 2 are (2, 1) and (−2,−1), respectively. They collide in
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Figure 4.19: Velocity v.s. time graph for different values of g12 (example 3)

49



−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

g
12

d<
X

>
/d

t

velocities after collision

Figure 4.20: Velocities of the two wave packets after collisions with different values of
g12 (example 3)

opposite direction. The density function of the initial conditions are shown in Figure 4.21.

We solve this initial value problem on Ω = (−64, 64)2 and choose the mesh h = 1/16

Figure 4.21: Initial conditions in example 4

and time step τ = 1/1024.

1. Repulsive (g12 = g21 > 0)

We first observe the results under repulsive interactions between wave packets. Fig-

ure 4.22 shows the density profile of the two wave packets for g12 = 2 at different

times. We see that the wave packets pass through each other, and then continuously

spread out after the collision.

When the repulsive interactions are stronger, part of the wave packets reflect back
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Figure 4.22: Density profiles of ψ1 and ψ2 at different time for g12 = 2 (example 4)
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after collisions. Figure 4.23 shows the density profiles of the two components at

different time for g12 = 4. We see that after the collision, part of the waves reflect

back in the direction they came from and the other part continue to move forward.

The latter part splits into two groups separated by the reflected wave of the other

component.

Figure 4.24 shows the density profiles of the two components at different time for

g12 = 6. We see that most of the waves reflect back after collision.

We find that all the waves in these cases spread out after collisions. For those cases

in which waves are separated into parts after collisions, this is expected since the

mass of the wave packets are less than the mass of solitons in 2D. For the other

cases, we can check the results by verifying the variance identity. First we observe

the absolute value of the center of velocities |⟨v⟩| vs. time graph. The graphs for

g12 = 1, 2, 3 are shown in Figure 4.25.

We see that the speeds of center of mass decrease after collisions. Thus the internal

kinetic energy KEint = E − 1
2
N |⟨v⟩|2 after collisions are greater than their initial

values. Since the initial internal kinetic energy is zero, we get that KEint > 0 after

collisions. Hence by the variance identity, the width of the waves w grows quadrat-

ically with time after collisions, meaning that the wave packets spread out.

Figure 4.26 shows the widthw1 of ψ1 vs. time graph for g12 = 2 during t = 8 ∼ 20

(after the collision). The fitting curve on the graph is a quadratic curve with a pos-

itive quadratic coefficient as we expect. The differences between the quadratic co-

efficients and the internal kinetic energy after is 1.178E-2.

2. Attractive (g12 = g21 ≤ 0)

We first observe the results for g12 = −1. The profile of the density functions |ψ|2

at different time are shown in Figure 4.27. We see that the waves grow up and then

continuously decay after collision.

For attractive interaction between waves, we discuss two things: 1. Whether all

the wave packets eventually decay? 2. Would the wave packets blow up during
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Figure 4.23: Density profiles of ψ1 and ψ2 at different time for g12 = 4 (example 4)
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Figure 4.24: Density profiles of ψ1 and ψ2 at different time for g12 = 6 (example 4)
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Figure 4.25: |⟨v⟩| v.s. time with different values of g12 (example 4)
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Figure 4.26: w v.s. time graph after collision for g12 = 2 (example 4)

collisions when the attractive interactions between them are strong enough?

To answer the first question, we observe the speed of the center of mass |⟨v⟩| vs.

time graph. The graph for g12 = −1,−2,−3,−4 are shown in Figure 4.28. We see

that the speeds after collisions are lower than their initial values (and the values are

lower for lower g12). Hence, as previously discussed, the internal kinetic energies

of the two wave packets are positive after collisions. The wave packets would then

spread out.

For the second question, we need a criteria to judge whether a solution blows

up. Here we can not use the variance identity, since it is for single GPE and the

interactions during collisions can not be neglected. (In fact the positive width still

does not imply the global existence of the solution.) We judge whether solutions

blow up only by checking whether the energy is conserved.

Let us observe the results of soliton collisions under stronger attractive interactions.

We set the mesh size h = 1/32 for g12 < −5. As we lower the value of g12, we

find that the energy is not conserved during collision when g12 = −6. The density

profile of the waves at different time are shown in Figure 4.29 and Figure 4.30.

We see that the two wave packets pass through each other at first, but then they
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Figure 4.27: Density profiles of ψ1 and ψ2 at different time for g12 = −1 (example 4)
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Figure 4.28: |d⟨x⟩1/dt| v.s. time with different values of g12 (example 4)
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are pulled back together by the attractive force and their amplitude grow up. The

energy vs. time graph is shown in Figure 4.31. The energies are not conserved near

the time t ≈ 5.78.

The waves can blow up in a shorter time when the attractive interactions are even

stronger, see the case for g12 = −8 shown in Figure 4.32. The energy vs. time

graph for g12 = −8 is shown in Figure 4.33, the energy is not conserved near the

time t ≈ 5.33.

In these two cases we know that the wave packets would blow up during collision

when the attractive interactions between them are strong enough.
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Figure 4.29: Density profiles of ψ1 and ψ2 at different time for g12 = −6 (example 4)
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Figure 4.30: Density profiles of ψ1 and ψ2 at different time for g12 = −6 (2) (example 4)
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Figure 4.31: Energy v.s. time graph for g12 = −6
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Figure 4.32: Density profiles of ψ1 and ψ2 at different time for g12 = −8 (example 4)
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Figure 4.33: Energy v.s. time graph for g12 = −8 (example 4)
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5. Conclusions

We investigate interactions of bright solitons in two-component BECs. The numerical

results are basically consistent with the one-component theoretical results that solitons are

stable in 1D and unstable in 2D.

We perform collision of two solitons belonging to different component. We outline the

results as follows.

1. 1D, repulsive interactions between two species: the collisions are inelastic when the

interactions are weak, in the sense that the waves do not completely separate after the

collisions. The collisions are like elastic collisions when the repulsive interactions

are strong, in the senses that (1) they completely separate and keep their shapes

almost intact after collisions. (2) The kinetic energy for center of mass of the two

wave packets is conserved.

2. 1D, attractive interactions between two species: solitons pass through each other.

For weak interactions, the speeds of solitons change during collisions and hence

cause the position shifts. For strong interactions, after the collisions there are small

waves separated from the original solitons which follow the waves of the other com-

ponent.

3. 2D, repulsive interactions between two species: all the waves spread out after col-

lisions. When the interactions are weak, the wave packets pass through each other.

When the interactions are stronger, part of the wave reflect back and the other part

split into two groups and continue to move forward.

4. 2D, attractive interactions between two species: the wave packets pass through each
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other and eventually spread out when the interactions are weak. The wave packets

blow up during the collisions when the interactions are strong enough.
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