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Abstract

In macro, the method and concept of statistical physics can be a powerful
tool in analytical and numerical computation and applied to many fields such
as chemical reaction, bio-evolution, and material science. In our work, the
methods of statistical physics: chemical master equation (CME), Hamilton-
Jacobi equation (HJE), and canonical ensemble are used to calculate various
physical quantities. Our work is organized in three topics: the CME with
the Gaussian and compound Poisson noise, bio-evolution of Eigen model,
and energy conversion in the surface mechanical attrition treatment (SMAT)
experiment.

In the CME part, the chemical reaction among DNA, mRNA, and protein
can be regarded as a stochastic process. We consider the CME with com-
pound Poisson and Gaussian noises and obtain the exact solution of steady-
state probability density function (PDF) verified by the algorithm of forward
finite difference in large-scale time. Without Gaussian white noise, the solu-
tion of CME (set diffusion coefficient ¢ = 0) can be returned to that of CME
derived by Long Cai, et al.

In the bio-evolution part, we use the method of expansion in O(%) to
obtain the HJE for probability distribution in Hamming class which is applied
to calculate the correction of O(%) accuracy for the steady-state probability
distribution in Hamming class and mean fitness in Eigen model. The steady-
state distributions of O(%) correction are well-consistent with the Runge-

Kutta simulation with relative errors less than 1 %, while the mean fitness

i



of O(=) is the same one derived by Michael Deem, et al. in quantum field
theory. =i :
Byl
In the SMAT part, we consider the collisions among the 304=steel i;lgalié, ‘;
motor top, and chamber bottom, where the chamber or motor can be treated
as a hot reservoir. Since we assume that all the collisions among them are
elastic except the ball-sample collisions, the balls with negligible potential
among them can be regarded as the canonical ensemble. By this concept,
we construct the link for energy conversion among the motor top, sample
bottom, and balls, where the kinetic energy, heat energy, and internal energy
are included in the energy conversion. We also introduce the one-dimensional
heat equation with uniform-distributed heat source to obtain the temperature
distribution of sample, and we use this temperature distribution of sample
to connect the Zenner-Hollmann parameter and the heat energy and surface
hardness of sample.
Key words: chemical master equation, Gaussian white noise, compound
Poisson noise, bio-evolution, Eigen model, SMAT, collision, energy conver-

sion
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Chapter 1

Introduction

This chapter is organized as the three following topics: the chemical master equation,
bio-evolution, and SMAT experiment in a brief and general introduction. It makes the
connection and correspondence among the techniques and concepts of statistical physics.

Each section states the topic background and physical meaning of each equation.

1.1 Chemical Master Equation

The coupled chemical differential equations which are equivalent to a number of chem-
ical reactions are common model to describe the chemical reactions among molecules,
where such equations are described by variables: time-dependent concentration of each
molecule and constants of temperature-dependent reaction rate. The changes of concen-
trations with time can be modelled by differential equations with the large number of each
interacting molecules. In the same circumstance, two or more reactions can take place
simultaneously. The meaning for the collection of coupled ordinary differential equations
is that these reactions occur concurrently in the solution.

For the small number of interacting molecules, however, the simple deterministic pro-
cess breaks down. Molecules are collided by stochastic process (drift or diffusion) de-
scribed well by Ito lemma, so chemical reactions can’t well described by some simulta-
neous processes. With the introduction of probability density function (PDF), P(z,t),

in terms of concentration for each molecule at a given time, the time-evolution of PDF



represents that reactions take place randomly among any possible reactions]

In recent years, biophysicists have paid more attention to stochastic dynar‘nigi%l cell
biology [1-6]. Friedman, Cai and Xie (FCX) obtained an partial differentijgl gﬁdﬁtion
(PDE) to describe the steady-state PDF of protein concentration for living eells ‘in’ gene
expression problem [1]. Losick and Desplan found that noises can induce cells to switch
between different gene states in their experiments [2]. Thus, the PDF of stochastic process
is a tool to describe stochastic reactions in cell biology.

From Itd’s lemma [7], the total differential of concentration
dx = b(x)dt + V2edB, (1.1)
, where B is the Brownian motion, we can derive the corresponding Kolmogorov forward

equation (KFE), i.e. the chemical master equation (CME),

OP(x,t) 682P(x,t) 9

ot Ox? %[

b(xz)P(z,t)], (1.2)

obeyed by PDF related to large deviation function or WKB expansion in quantum me-

chanics, P(z,t) = e ue(®t) The equation for large deviation function is:

Oue(z,t) Oue(z,t) ., Oue(z,t)
it el oV b
By (—5, ) @) —p ]
Puc(z,t)  db(x)
1.
o, (13)
which reduces to Hamilton-Jacobi equation (HJE) with ¢ = 0, where x is the time-

dependent concentration, and € is a small perturbed constant. In classical mechanics (CM),
the right-handed term is negative Hamiltonian, and u.(x, t) is the generating function for
corresponding canonical transformation (CT).

For correspondence, we can consider a chemical reaction whose concentration x de-

scribed by ordinary differential equation (ODE),

dx
i b(x), (1.4)



where the ODE can be re-written into [td’s lemma by the introduction of 5 whitenoise

after diffusive perturbation. Equation (1.4) is equivalent to Eq. (1.1) withle = G;and the
7R |

u(z,t) = lime_oue(z,t) is called the principal function furnishing the entire famlly of or-

bits corresponding to Hamiltonian system in phase space. The corresponding:Hamiltonian

has the form,

H(q,p) = p* + b(q)p, (1.5)

which follows the equation of motion,

. OH
=5 =2p+b(q)

Op
. OH _ db(q)
= 1.6
e (1.6)
and has the following Lagrangian,
: . L.
L(q,q) = [pd — H(q: P)]p=1(4-b(q) = i(q —b(q))?, (1.7)
which corresponds to the action functional,
1 dq
Soa(1: (0,9(0)) = (1,a(0)] = [ e3P gy (18)

This is equivalent to path integral in quantum mechanics by making the integration path
along imaginary axis in complex plane, and the probability of the system is proportional
o0 e~%/ which is exactly the probability for a path in stochastic dynamics in Eq. (1.4)
with e = 0. For finite ¢, the action functional generalized by Onsager and Machlup is
Se = So + 5b'(q) [8-10].

On the other hand, the corresponding CME can be obtained by the chemical system
with n molecules,

OP(n,t)

S = N[Ri(n—1)P(n—1,1)

+ R.(n+1)P(n+1,t) — [Ri(n) + R-(m)|P(n,1)],  (1.9)



where N is a large integer and a maximal allowed number of molecules, & /Tisithe Zérowth

rate, and R_ is the degradation rate. And the equation should be modified at ;ﬁ;porder.
& \
o

Let us use the variable, x = +, to re-write Eq. (1.9) in terms of = as

mn
N

1 0P(x,t) 1 1
N o = Ry(z— ]Y)P(x — ]I]’t)
+ R_(z+ N)P(x + N,t) — [Ry(z) + R_(z)|P(z,t). (1.10)

With the largeness of /V, x becomes continuous from discrete. By using the ansatz (Or
WKB method),
P(z,t) = exp[Nu(x,t)], (1.11)

to construct a equation for P(z,t). By using HJE with N — oo [11-15], the partial

differential equations can be solved exactly as the following steps:

du ,
E%—H(w,u)—o,

H(z,u') = [Ry(r) = R_()]u/,

and the corresponding equation of motion for x:

. 0H
) = ou/
= Ri(z) — R_(x) = b(z), (1.12)
where v/ = %Z- The distribution variance has been derived in [15]:
) [ W (1.13)

o b3 (y) ’

where ¢(y) = Ry (y) + R_(y). With these results, we can formulate new CME with
different process or noise.

The rest of CME topic is organized as follows: Firstly, we use HJE as a tool to in-
vestigate the physical of chemical system and solve the CME. Secondly, we introduce

the drift-diffusion process to generalize PDF for chemical reactions [16, 17], which de-



scribes how to make the correspondence probability of chemical reaction by path iﬁtegral
and formulate CME with white noise [18]. Finally, we introduce the hybrid model of
R |

Gaussian and Poisson noise solved exactly and verified by the forward ﬁnit;e; difference

simulation [19], and we make conclusion about this hybrid model.

1.2 Bio-evolution

It’s widely acknowledged that DNA can carry hereditary code to determine the life
performance, and it has the important influence on the reproduction and survival for each
specie. As we all know that the positive self-regulation or mutation of gene can help
species adapt to their surroundings for survival, and such processes called bio-evolution.
Exact bio-evolution results, the mean fitness, steady state distribution , and dynamics for
genes are obtained by the tool of statistical physics and mathematics [20], HJE method,
partial differential equation, and numerical simulation, which makes possibility to realize
the mechanism of virus or cancer evolution.

In past decades, the bio-evolution process of virus is described very well by the Eigen
and Crow-Kimura models for large population size or genome size [20-27]. In the two
models, the fractions of population for different types p; are described by a set of deter-
ministic partial differential equations. The corresponding HJE for the two models can be
obtained by expanding p; in the order of O(%), p; = exp (Nu;), where N is the genome
length. Since N is possibly 40 ~ 100 [28], it’s important to investigate the finite popula-
tion effect of % in a small N genome.

For the sake of simplicity, we can assume there are two different genotypes (denoted
as £1) for each nucleotide, and the N-nucleotide genome has 2V types. We have the

following system of equations in Eigen model for each probability p;,

Ipi 2 2"
ot = Z(Qij)rjpj - pl(z ijj)v (114)
Jj=1 j=1

where the p; satisfies Y, p;, = 1, the mean fitness r; is the mean number of offspring per

unit cycle for type ¢ sequence, and mutation matrix with the mean nucleotide incorporation



fidelity ¢ is expressed as:

Q= " 45(1 = g reldy

“ M
[| <5

where d;; is the Hamming distance (HD) between two sequences, .S; and 54 defihed as:

N
dij = (N =" si57)/2, (1.16)
=1

where s is the spin with possible values 41 at [-th site in S;. To simplify the HD between
sequences, we can choose a reference sequence Sy with all spins being +1. Without loss
of generality, sequences with the same number of —1 spin are assumed to have the same
probability, namely, it’s symmetrical distribution. Thus, 2%V types are divided into N + 1

Hamming class, and the HD can be written as

N

le:(N—Zsf)/Qzl, (1.17)

i=1

where 0 < [ < N and [ is the number of —1 spin for a sequence. With symmetrical

distribution, we can also assume the mean fitness r; in terms of m is symmetrical,

ri = f(m), (1.18)

where m = 1 — % between +1 called magnetization and f(m) is called the fitness
function. Therefore, the original Eigen model with 2V equations is transformed into
Eigen model with NV + 1 equations with which is easy to be treated. This model with
pi = exp[Nu(m,t) + u,] expansion is lead to HJE equation as we did in CME and other
high order of % equations on which the work of finite correction is based.

The rest of bio-evolution topics is organized as follows: Firstly, we introduce Crow-
Kimura model and derive its some properties. Secondly, HJE is obtained by WKB expan-
sion of p; to investigate the characteristic of Crow-Kimura model, and then we develop
HJE method and derive some useful formula from Crow-Kimura model which can be a
useful tool for the finite correction of Eigen model. Finally, we solve Eigen model with

N +1class in O(%) accuracy, and it’s verified by the numerical simulation, Runge-Kutta



method.

-

1.3 SMAT modelling

In traditional engineering treatments, shot peening by using steel balls to bombard onto
metal surfaces has been adopted to leave compressive residual strains within the affected
region in promoting the fatigue properties [29, 30]. The balls have typical diameters of
0.1 ~ 2 mm and gain their speed by compressed air. Normally, these balls bombard the
metal surfaces in the frequency range of 20 ~ 100 H z and speed range of 50 ~ 100 m/s.

A new physical treatment named ultrasonic surface mechanical attrition treatment
(SMAT) was firstly introduced in 1999 [31, 32]. The SMAT balls are accelerated and
bombarded by the ultrasonic motor on the chamber bottom, as shown in Fig. 1.1 (a).
The diameter and speed of flying balls and the bombarding frequency are in the range,
1 ~ 10 mm, 1 ~ 20 m/s, and 10 ~ 100 kHz [33], respectively. The most important
feature is that the incident direction onto the metal surface can be designed to vary with
time lapse in making smaller grain size of metallic materials. This will lead to promising
properties of metals such as grain refinement and gradient structure. And researchers have
made extensive uses of this SMAT treatment on various metallic materials including pure
iron [34], stainless steel [35], and pure copper [36] in making gradient and nano-crystalline
structure [37—40].

Although SMAT has gradually developed into a matured engineering surface treat-
ment, never before has SMAT been treated with rigorous analytical modelling. Therefore,
a systematic SMAT model is actually needed. Here, we consider the interaction between
flying balls and chamber imagined as a canonical ensemble, where chamber is reservoir
giving balls the kinetic, internal, and heat energy. The chamber volume is much greater
than balls volume, so collision frequency between balls is small compared to that between
balls and chamber and balls interaction can be neglected. The motion of motor top is

characterized by longitudinal harmonic motion,

U = 2A7mvsin(2nvt), (1.19)



where v,, is the velocity of motor top, A is the amplitude, and v is the angulan freqﬁency.
To construct the relation of energy conversion between motor top and balls, the bglfl;@otor
collision can be counted as elastic collision. Thus, the induced velocity. 01;l baﬁl, bb, 18
described by

2M U

Vp = —————— & 20y, My, >> My, (1.20)
my + My,

where m; and m,, are the mass of each ball and motor. On the other hand, the ball-
sample collision is assumed to be inelastic collision with restitution constant e obeying

conservation of momentum,

/ /
e:Us_Ub

/ /
— , MgVs + MpUy = MU, + My, (1.21)
b — Us

where m, and v, are sample mass and velocity, respectively.

The kinetic energy of flying balls is not conserved due to the inelastic ball-sample
collision. The kinetic energy loss for flying balls and sample in the SMAT chamber can
be mainly converted into three parts as indicated in Fig. 1.1 (b). Firstly, it is the strain
energy of sample due to the formation of dislocations and vacancies [41-43]. Secondly, it
is the heat energy of sample, where the heat flow and its temperature distribution are both
important factors for the resulting metal micro-structure [44]. Recrystallization might be
taken place in the sample while the experienced temperature reaches some critical values.
Finally, it would be the sonic energy and heat energy in the chamber originated from the
inelastic collisions between flying balls.

In SMAT topics, we have established connections among the parameters of flying
balls, the ball size, flying speed, the bombarding frequency and amplitude of motor mo-
tion, the height of chamber, and the energy and power of sample. During the SMAT
processing time, we can find the input energy and power of sample through these con-
nections. The condition for the frequency of flying ball reaching a stead speed can also
be obtained in this approach. For the heat energy of sample, we have introduced the one-
dimensional heat equation with the uniformly-distributed heat source to estimate the heat

flow and temperature distribution of sample which are hard to be measured in the SMAT



experiment. With the temperature distribution of sample, we can make connection ameng

the strain rate, hardness, and grain size of sample. With these connections and pﬁg@elling,
R |l
one can find an optimized approach to the mechanical performance of metal Lurfaqe via

the SMAT experiment.



Chapter 2

Basic theory for CME, Bio-evolution,
and SMAT

2.1 Hamilton-Jacobi Equation

In Classical Mechanics (CM) [45], theoretical physicists use independent variable of
position z and momentum p for each particle in constructing Hamiltonian to characterize
the particle dynamics, where the correspond equation of motion constructed by Hamilto-
nian for x and p is the Hamilton equation. To simplify the equation of motion, we prefer
the physical system in which all of the generalized coordinates or all of the canonical mo-
mentums are cyclic, namely, Hamiltonian with respect to « and p is a constant. To achieve
the goal, a canonical transformation (CT) under which the equation of motion is invariant
should be found, and any CT corresponds to a generating function consisted of half new
and half old generalized coordinates. Here comes the Hamilton-Jacobi equation (HJE)
which generating function satisfies.

In stochastic dynamics, a fictitious Hamiltonian which is similar to that of CM as a
tool to formulate the Lagrangian and the action functional by using the WKB expansion,
P(x,t) = e %@ with small ¢, where € results from diffusion. And such WKB expan-

Nu

sion we use in bio-evolution is P(x,t) = ¢N“@" with large N, where the N is genome

length or population size. It’s obviously that both expansions are mathematically equiva-
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lent for small € or large V. In our work for CME or bio-evolution, we put such expénsion
into the equation of motion (KFE or evolution model) with condition ¢ — 0% ordy: >> 1
to get the HJE for u. Ase — 0" or N >> 1, lim,_,o+ u(x,t) is called the largL: d%vfﬁtion
rate function in probability theory [46] or the principal function in CM [45]. The large
deviation rate function asymptotes the behaviour of P(x;,t) as e — 0" or N — o0, and
the principal function furnishes the entire family of orbits corresponding to a Hamiltonian
system in phase space.

In our research, HJE in chemical reaction derives the path probability of each reaction

). Here

while HJE in bio-evolution derives a series of equation for finite correction of O( %

we give some derivation and introduction to HJE in CM.

2.1.1 Canonical Transformation

In CM, the form of Hamilton’s equations are invariant under canonical transformation
(CT) and Hamilton’s principle states that the most possible track of classical system makes
the corresponding action functional minimized. Thus, we have the variation of action

functional is 0 over the most possible track:

t
5 [ Lig g, t)dt =0,

t1

t
5 [ (g ¢, t)dt =0,

t1
to

5/t pigi — H(q,p,t)]dt =0,
1

to .

t1

which implies:
dF

where ¢ and p are old generalized coordinates, () and P are new generalized coordinates,
L, L', H,and K are the corresponding Lagrangian respectively, A is a scale constant, and

F 1s corresponding generating function in terms of half new and half old coordinates. For

11



the A = 1 case, it’s the case called CT in CM. With A\ = 1, the equation becomes: :

i

: : dF 5|
pidi = H(q,p,t) = PQi = K(a,p,1) + —-, »H"@D
where F' called the generating function has four basic forms by [45],
F = Fl <Q7 Q7 t)
F= F2(QaP7t) - PzQz
(2.2)

F=F(p,Q,t) + pigs

F = Fy(p, P,t) + pigi — PiQ;

2.1.2 Hamilton-Jacobi Equation

We start the derivation of Hamilton-Jacobi equation (HJE) from Eq. (2.1) and put the

generating function £ in Eq. (2.2) to arrive:

. . dF
pigi — H(q,p,t) = HQi_K(Q7P7t)+E
. or, 0F, 0L

- R z_K 7P7t i
Q (Q )+3t+a%q+@%

0F, O0F, oF; .

Di — PzQz - PzQz

= —K(Q,Pt)— PQ; i i
Then we rearrange it and have the equation:
(7F2 8F2 . 8F2 -
[H(a,p,) + —; @,,Wﬂa% pi)di + (55 = @i (2.3)

where ¢; and P, are separated independently. Since the three terms in Eq. (2.3) are inde-

pendent of each other, the three terms must be 0 to hold the equality. Therefore,

oF 0B _ Q:
aqz = Pi, aPZ - (2
oF:
H(g,p,t) + 5~ = K(Q, 1), (24)

12



To make all generalized coordinates cyclic, we can set K (Q, P,t) = Qi Andrthe corte-

sponding Hamilton’s equations are:

. oK

: 0K

P’L' = - = 07
9Q;

which means that all generalized coordinates are constants of motion. On the other hand,

making K(Q, P,t) = 0 gives the corresponding equation for Fy:

oF;

H(Q7p7t)+ﬁzoa
L O0F, OF,
H(q, — — = 2.5
S H(G 2 1)+ =0 25)

where Eq. (2.5) is called Hamilton-Jacobi equation and F5 is the Hamilton’s principal
function in CM which is the counterpart of u(z, t) in stochastic dynamics. To investigate

the physical meaning of F3, we can take its total differential with respect to ¢:

dFQ 8F2 . 3F2 . aFQ
L Py
dt 0. ap T o

dF,

and then we integrate <

back with respect to ¢:
t
F2 - / L(q7 Q7 t,)dt/7
to

which states that the Hamilton’s principal function F5 is equivalent to action functional.
Thus, in physics, solving the HJE is equivalent to solve the variation equation of action

functional, Euler-Lagrange equation.

2.1.3 HJE Application in CME

The HJE method in CM has been well developed for hundreds years, and it is a power

and analytical tool to investigate the characteristic of physical system in macro. Thus, we

13



want to develop the HJE method in CME to help us realize the mechanismof chemical SY's-
tem. As stated in previous sections, the principal function u(z,t) in stochastlc dgaiamlcs
is similar to the role of generating function in CM. Here we introduce a ﬁctltiéus Hamll-
tonian corresponding to HJE in CME. In the introduction of CME, we have the following

CME for general chemical system with n molecules:

T = Rulo— PP )+ Bt )Pl 0
— [Ry(z) + R_(2)]P(x,1), (2.6)

where N is the maximally-allowed number of molecule, z = £, and R and R_ are the
rate of generation and degradation. By Taylor expansion with largeness of NV at x and

P(z,t) = exp [Nu(z,t)], we have:

Ry(x - ]1[) ~ Ro(r) JifaR(;; )
R (x+]1v) R (2) leaRax( )
Pz F ]t,t) ~ P(x,t) F zlvapa(i’t)
= Plan 7 2480

8P((9:: t) _ Néug;, t)P(:c,t).

Put these expansions above into Eq. (2.6) to get the equation of zero order in %:

T P(.t) = [Ry(@) (1~ 99+ B @)1+ )~ (R (x) + R_()]Pa,1), @)

and divide both sides of Eq. (2.7) by P(z,t) and let v’ = % to obtain:

) 0
5+ [Re(e) = R (@) = S + H(z,u) = 0. (2:8)

Equation (2.8) has the exact form of HJE, where u corresponds to generating function in

CT and H corresponds to Hamilton in CM. Thus, the fictitious Hamiltonian and equation

14



of motion are shown as:

=]

H(z,u') = [Ry(x) — R_(2)]u/, ALl

_ OH(z,u)

(1) gy~ (7)) — R-(z) = b(2),

where b(z) = Ry (z) — R_(z). It is reasonable for chemical reaction of zero order whose
concentration obeys the ordinary differential equation. And the variance of P(z,t) has

been derived in [15]:

b*(x) ; ;(g/y)) dy, (2.9)

where ¢(y) = Ry(y) + R_(y) and z is the reference point. Therefore, each chemical
system actually corresponds to a fictitious Hamiltonian system derived from CME of each

chemical system.

2.2 Diffusion Process

Stochastic or random process is always related to diffusion process which can be traced
back to Brownian motion. The random motion of particles suspended in water and re-
ported by Robert Brown in 1827 is known as Brownian motion or Wiener process, which
is the most important case in stochastic process. Some scientists in earlier periods con-
sidered that Brownian motion is caused by living cells, and Poincaré thought this motion
violates the second law of thermodynamics. Now scientists consider that such molecule
motion is induced by the continuous collision of molecules around them. For general sit-
uation, a specific molecule undergoes 10?° collisions per second. In 1905, Albert Einstein
described Brownian motion in term of PDF equation by the kinetic molecular theory. He
proved that the PDF motion satisfied the following partial differential equation (PDE),

oP  _°P

= = Do (2.10)
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where the positive D is a diffusion coefficient and x is the particle position: By, changing of

T

variables, y = 55 the PDE equation can be transformed into the form of heat’equation;

2D ‘
| i ‘El

OP 102P :
-t _ -7 2.11
ot 2 O0x2’ .11

whose well-known solution is
Plast) = el @20, 2.12)
x,t) = exp|— , .
JazDt P uDy

where x is the mean position of particle, ¢ is the time, and it is Gaussian distribution for
any given time.
Kiyoshi Itd, a Japanese mathematician, came up a good idea to describe the drift-

diffusion process by Itd’s lemma:

dXt = /L(Xt, t)dt + O'(Xt7 t)dBt, (213)

which states that the random variable d B; makes an impact on other deterministic variables
in a small time interval At; the expectation value E[dX,] is unchanged for an entire cycle.
The derivatives of [td’s lemma is the stochastic differential equation which is widely used
in financial and biological physics. From Itd’s lemma, we also derive the equation of
motion for PDF, Kolmogorov forward equation (KFE), which is substantial to many fields

related to stochastic process.

2.2.1 Brownian Motion

Brownian motion is the process of foundation for various stochastic processes, and
here we derive it from central limit theorem. Considering one particle, it undergoes a
collision to step Az displacement after a time-interval At which is independent of the
particle position. Also we consider the probabilities of stepping Az and —Ax are pand 1—
p respectively. With largeness of container volume, particles are far away from container

border. The particle motion can be treated as the independent 1D-random walk. The

16



particle location at a specific time ¢, X (), is expressed as:

Vo=l )
=gl
-

'1 (2 14)

\
X(t) = Ax(Ly+ L+ o+ I, \(|

where the [; is 1 or —1 depending on i-th displacement which is +Ax or —Ax, | ] is the

Gauss function, and the corresponding probabilities for different displacement (=Ax) are:

P(I;=1)=p,P(I)=1-p. (2.15)

To simplify the derivation of Brownian motion, we can set the following variables:

1 VAt
Axr =oVAt,p= -+ —u,
2 20
. b, .t
" A A T A AT (216
We can prove Eq. (2.16) by sandwich theorem:
t N [ t ] N t 41
At 7 AE T AT
T AU o U
" Atso Al T A0 AL A0 AL
_ t .t
Ay = A ar 247
We have the expectation value of I;Ax,
E[ILAz] = pxAx+ (1 —p)x (—Ax)
1 VAL 1 VAt
= (z+——p— -+ ——povA
(GF g gt g, WoVAL
= uAt, (2.18)

and the variance of I;Ax,

V[LAZ] = E[(I,Az)? — E*[I,Aq]

= E[A7Y] — p2(At)? = (02 — p®At)At,

17



where £ and o are both time-independent constants. For p = 1 case, the B[;Ax] =Q.and

V[I;Az] = 0°At. Therefore, the expectation value and variance of X(t) for p :’ié case
R |
are: | :‘ = |

E[X(t)] = nE[L;Az] = 0,

VX (t)] = no?At = o’t,

and the position distribution of particle can be derived from central limit theorem as At —

0:

X(t) —nuAt  X(t) — X, JR—

Sy v N N
1 X(t) — Xo)?
= e [—(<2)02t0)]—>N(X0,0t), (2.19)

where N (X, ot) is the Gaussian distribution with expectation value X, = xt and variance
ot for a given time ¢. The motion with y = 0 and 0® = 1 is called standard Brownian
motion (SBM). Since any Brownian motion can be transformed into SBM, only SBM
have to be taken into account. Thus, such SBM lead to the important conclusion that each

particle position is normally distributed with expectation value 0 and variance 1.

2.2.2 1to’s Lemma

In previous sections, the deterministic term p which is so-called drift term is interfered
by non-deterministic term o which is so-called diffusion term, and any drift-diffusion
process is well described by Itd’s lemma. In physics, we also have the corresponding
counterpart that the specific track of each quantum particle is unpredictable due to the
wave-particle property, so do we have deterministic term (mean particle position) and
non-deterministic term (track). For the total differential of any function f(x,¢) in terms

of x and t with the influence of B;, the useful consequence,

of c*d*f 0 0
df (x,t) = Wa:{ + ané + a{)dt + aaidBt, (2.20)
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can be derived from Itd’s lemma. Before proving the formula above, we need.to prd'\:/e» the

equality: 7 M

AR |
dB} = dt. [{ = (@.21)
To prove this, we at first set S with ¢, = ¢ as:
S = lim > (By, — By ,)%, (2.22)
k=1

where B, — B,, , is Brownian motion in the time interval, At = ¢, — t;_1, and By, —
B, _, = dB,, and At = t;, — t;,_; = dt in the case of n — oo. Then we take the

expectation of S:

n

E(S) = lim (B, - By, )

k=1
— lim Y E[(B, — By,
k=1

= lim Y (e —ti1) =1, (2.23)

k=1

and the variance of S’

V(S) = Jim > VIBy — Bu )

- nhﬁnolo i{EKBtk - Btk—1)4] - E2[(Btk - Btk—l>2}

= lim Z[3(tk —tp1)® = (te — tr-1)’]

n—00
k=1

= 7111—>H<>10]§:12<tk — tk_1)2,
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where here we have used the result, [, z4N(0, At)dz = 3A2 = 3(t, = ti=g)*. We.can

derive V(.S) = 0 as follows: el

V(S) = lim 320t —tir)?
k=1

S lim Zmax(tk — tk:—l) Z(tk — tk—l)
k=1

n—00 k

= 2t lim ml?X(tk —tg—1) = 0. (2.24)
As n — o0, the corresponding integral to £(S) is:
t
E(S) = / dB2 =t, (2.25)
0

which states dB} = dt, and V(S) = 0 implies that d B is a measurable variable. Thus,
we can immediately deduce that d B? = dt. On the other hand, we have the corresponding
counterpart in quantum mechanics, Heisenberg Uncertainty Principal, which states: If two
physical observables are measured simultaneously, their commutator is 0. Here comes the

simple proof from this principle,

[dB?,dt] = 0 — dB} = cdt,
dt = E[dB?) = cE[dt] = cdt,

—c=1, . dB} =dt,# (2.26)

where c is a phase constant. Now we turn to derive Eq. (2.20) by this equality. We have

the following Taylor expansion near (x,¢) point,

~ O ny 1 9
flz+ Az, t+ At) =~ f(a:,t)—l—aIAx—i— 81&At
10% . ., Of9f LO*f o

From Eq. (2.13), we also have:

20



Subtract f(z,t) from the both sides of Taylor expansion to obtain the Af:

Af = flz+Axt+At)— f(z,1) | |

aof of 10%f 4
e (LAt + cAB,) + T At + 5 92 (WAt + o ABy)

ofof LS apy
50 O (LAt + o ABy) At + (At)

208

of of . orerf ., of
O a4 T A2y oY AR
(e + 9B 5 g iBi Hog AB

Q

Q

where the approximation has ignored the high order terms, and take the expectation of

Af:

of af o2df
B~ o T et 2 00

)AL.
Under the condition of At — 0, the higher order terms of At disappears. And the random
part of f changes is:

of

Af - EIAf] ~ 0 5= AB.

Thus, the total differential of f is obviously:

_of of o?of, . Of
df = (no+ =0 + 55t + = dB, # (2.27)

From this equation, it’s not hard to discover that if dz is a drift-diffusion process, then so

does the f(z,t) be.

2.2.3 Kolmogorov Forward Equation

As we all know that in classical or quantum mechanics, we need a universal equation
of motion for physical observable to describe the system characteristic, and Kolmogorov
forward equation (KFE) is the equation of motion for PDF in drift-diffusion process, which
is the foundation of CME. Here we start with an arbitrary fixed function f(x) on the

interval [a, b] to check how the following expectation will change over an infinitesimal

21



increment of time At;

By(0) = [ f0) PG s, \ (KX
AEf( ) = Ef(t + At) — Ef(t)

- / OP@ ) nyay (2.28)
With the Eq. (2.20) aid, we can obtain:

W2 o® *f ,2f

and take its integration over all Brownian paths for every x at a given time ¢ to arrive:

b 0 o2 62
AFE4(t) = /a P(x,t)(u@i + 2@;;)Atdx, (2.29)

where the contribution of Brownian motion is 0 by its definition. From Eq. (2.29) and Eq.

(2.30), we have:

b B 2 82 b oOP ,
[P0+ 5 D= [ 1w s
b 8 a 282
[P 1) = Pl bt + G g e =0 230

Without loss of generality, we can set the following boundary conditions for f(x),

In physical world, physical observables always disappear at boundaries. If f(z) didn’t
satisfy the boundary condition, we could leta — —oo and b — oo to make P(+o0,t) = 0,

where it’s equivalent to set f(+o00) = 0. Next, we can apply integration by part into each
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term of Eq. (2.30):

b

>\

[ @) 2 el

.

[ oL p de = [uf@)P)

a

= — abf(x)aax[uP(x,t)]dx, (231
2 b 2 52
— @) 5;[ Pt + /a bf<x>§2[2P< s
_ / F(2)— [ P(z, t)]dx. (2.32)

Then, we put Egs. (2.31-32) results into Eq. (2.30) to obtain:

/ f(z aj’t ;[up(m )] — aa;[ P(z,t)]]dz = 0.

Since f(x) is an arbitrary function over interval [a, b], the terms inside the integration
should be 0,

oP(z,t) 0 9% o2

S 5P, t)] = 5 TP t)] = 0, # (2.33)

where the PDE of second order, Eq. (2.33), is called Kolmogorov forward equation (KFE)

or Fokker-Planck equation.

2.3 Bio-evolution Model

In statistical physics of magnetism, statistical physicists make a good use of Ising
model with letters to investigate the phase transition of magnetism. And in bio-evolution
model, bio-physicists apply Ising model with two-letters (4 1) to investigate the evolution

dynamics and steady-state distribution for different genotypes. Usually, scientists in evo-
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lution consider the /V-length genome with two-letters (+ 1) as shown inthe illustration:

1
(+, 4+ 4, — = = +), N=1, |
<+7+7_a_7+7+7_7+7+)7 N = 87
= (51, 85y o0y Sjy s 5N)5 (2.34)

where si with +1 possible values is the k-th spin in type i sequence or configuration. For
a given length N, the genome or sequence has 2% possible configurations. To express the
gene distribution well, biologists introduce the gene frequency to describe the dynamics of
genome evolution through selection or mutation. The gene frequency has two expressions:
absolute or relative frequency. Take the N = 2 genome with two-letters and 4 possible

configurations for an example:

where the absolute frequency p; for type 0 ~ 3 is py = 3,p1 = 0,p2 = 2, and p3 = 3 and

the relative frequency P; for type O ~ 31s Py = g,Pl =0, = 7,and P; = % Therefore,

1
4°

the relation between p; and P is:

oN

p=x2 (2.35)
j=0Pj

The gene adaptivity to their surroundings make an impact on the number of gene offspring
in which scientists are interested, so they define the fitness r; for type ¢ sequence which
is the mean number of gene offspring per unit cycle. To model the interaction between
different sequences, the Hamming distance (HD) between different sequences 7 and 7 is

defined as:

dij = (N =Y sksh)/2. (2.36)
k=1
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It’s not hard to find that Hamming distance is the spin difference between any o, e

quences. (=3t |

R |
Crow-Kimura and Eigen model which describe molecular evolution ‘are ‘qll-e most fa-
mous model in bio-evolution governing the dynamics of probability distribution for each
type of sequence. This section introduces briefly the two models in mathematical expres-

sion and explains each term defined in two models in a detail.

2.3.1 Crow-Kimura Model

Crow and Kimura in 1968 proposed firstly the Crow-Kimura model formulated by

molecular evolution for ¢ and j type sequence, and the model is:

op;
ot

oN N

= PZ(’I“Z —Z’T’jpj) +Zmiij, (237)
j=1 j=1

where P; satisfies Z?;Vl P; = 1 and the element of mutation matrix m; is:

mi; = Yo, dij = 1,
mg; = _N’}/o, dm = 0, (238)

mMs; = 0, dij > ]_,

where 7 is the transition rate of mutation. For a given sequence with genome length NV, it
has NV neighbourhoods with HD d;; = 1, so the sum of all transition rate for any sequence
1S zero:

N x ’}/o—f- (—N’)/o) =0.

With such m;; matrix, it means that only one-step mutation takes place in the evolution.
Just like in Ising model, the gene mutation only happens for the two parallel site with

different spins as indicated in the following:

(+, =)+, +) = (+,+)(+,+) or (+, =) (+, —).
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As a matter of fact, Crow-Kimura model is equivalent to Ising model with two-valued

(£1) spin. ‘ i‘:;:' |

A ||
To simplify the Crow-Kimura model, the second term on the right-handed l‘sid’e of Eq.

(2.37) called dilution term,

21\7
=P, 1P,
i=1

can be ignored by the non-linear transformation of Eq. (2.35) in mapping F; into p;. We

have the following equation for the fitness:
(2.39)

where n; is the number of gene offspring for type ¢ and At is time of a cycle, and the

change of p; with respect to At is:

Opi _ Api _ [nipi + (2 mijAtp;) + pi] — pi
ot At At
niPi

J
With Eq. (2.39-40) aid, we can verify that Eq. (2.37) is equivalent to Eq. (2.40):

or, 1 0p B Z 879]
ot 2P ot Z p] )?

2N
(ri = > 1Py + Zmiij
=1 =

Tip;
= - D mi;P;
> @p@w zwzl o4

Therefore, the right-handed side of Eq. (2.37) becomes:

1 N oN 9N
(ripi + 32 miny) — er + Y ),
ijj j=1 7 (Z]p] = I e J
1 27
=5, ipit > miip;) — ( E erp], (2.41)
7 j=1 1P 2

26



where recall that the total sum of m; is 3°; m;; = 0.
In addition, Crow-Kimura model is invariant under the transformation for ﬁtnqgs*rl
ri = r; + ¢, where c is an arbitrary constant. This can be proved by taking shmemg all

1-index on the both sides of Eq. (2.37):

N oP, 9N oN 2N oN
X =Y Bllri+e) =Y (r; +c— )P+ 3> myP,
=1 j=1 i— 1j 1
aP 2N 2N 2N 2"
ZPT—ZTP —I—ZZTI’LZ]P +CZP Z-F)Z)a
i=1 i=1j5=1 =1
9N OP oN oN oN

,28;‘—213 ZTP £ P,

i—1 i=1j=1

N
ot <

This result means that we can choose any value for r; at reference point without changes

of Crow-Kimura model.

2.3.2 Eigen Model

The quasispecies or Eigen model in 1977 was firstly formulated by Manfred Eigen and
put forward by Peter Schuster from Eigen’s initial work. The Eigen model with genome

length NV without degradation term is the following equation:

ot = Z QiriP; — Pz(z ijj)» (2.42)
j=1 J=1

where P, is the relative frequency for type ¢ sequence and the element of mutation matrix
is:

Qi =q" (1 —q)%, (2.43)

where ¢ is the mean nucleotide incorporation fidelity and d;; is Hamming distance between
type ¢ and j sequence. It’s obvious to find that ();; # 0 for any value of d;;. With such
mutation matrix, it means that multiple-step mutation takes place in a given sequence. The

1 — ¢ meaning in such transition process is the probability to copy a nucleotide without
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error. As shown in previous section, the second term on the right-handed side of Eq. “(2.42)

called dilution can be ignored by the mapping: P; = °; ;%, which lead to the equation:
2N :

Op:
D=3 Qurypy. (2:44)
j=1

ot

2.4 Collision and Heat Equation

In the SMAT experiment, engineers are interested in energy conversion from kinetic
energy to strain and heat energy in a SMAT sample. The energy conversion enhances
the mechanical properties of sample such as the hardness and fatigue improvement on the
sample surface. The energy conversion at first in SMAT is the kinetic transferring between
304 steel balls and motor top. Since the motor mass is millions-time ball mass, the ball-
motor collision can be taken as elastic. After balls accelerated by motor, the collision
between 304 steel balls and sample bottom will take place in a short time. Since the sample
mass is not as large as motor mass, the ball-sample collision should be counted as inelastic.
This is key to the loss of kinetic energy for balls which will transform into the heat and
internal energy of sample. The resulting heat energy will increase the probability of sample
recrystallization which is an important process related to the strain and hardness of sample.
Thus, it’s necessary to model the heat equation of sample to estimate the distribution of

sample temperature and heat flow in sample.

2.4.1 Collision

The conservation of momentum for a physical system has been widely used for hun-

dreds years in collisions. We can write down the equation for two-particle collision:

/ /
miv1 + Moy = M1V + Moy,

my(vy — vy) = —ma(vy — v3), (2.45)
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where my and ms is the mass of particle 1 and 2, v; and v is the velogcity of pafficle 1

and 2 before collision, and v} and v} is the velocity of particle 1 and 2 after cpl%;_smn If
A ||

the total kinetic energy is conserved after collision, Eq. (2.45) should add tHlJ, ollowing

constraint;

1 1 1
577111)% + 57”21)% = §m1U/12 + imZUg?
(07 = 1) = —ms (v} — V). (2.46)

Such collisions with the Eq. (2.46) constraint are named elastic collision. And we can
investigate the relation between v, 2 and v; » by dividing Eq. (2.46) by Eq. (2.45) to

obtain:

= 1. (2.47)

Thus, scientists in classical physics introduced the restitution constant ¢ = % to judge
whether the collision is elastic or not. With the introduction of e, v} and v}, can be obtained

as a function of e, m, 2, and v; 5 as follows:

/ /
vy = e(v — vg) + VY,
/ /
miv; = —Maly + M1U1 + Moty

= (my — ema)vy + (1 + e)mavy — mavy.

Therefore,

o T ems (1+€)m2/0

! my + Mo ! my + Mo 2
1+e)m me — em

Ué:( +e) Lop 4+ —2 11}2, (2.48)
my + mo my + ma
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where 0 < e < 1 corresponds to the inelastic collision and e = 1 corresponds to elastic

collision:

, My —my 2mo
mi + Mme my + ma
2m1 Mo — My
vy = vy + Vs. (2.49)
mi + mo my + mo

Therefore, the loss of kinetic energy for two particles due to inelastic collision between

them 1is:

1 1 1 1
AE, = §mlvf + imgvg — imwf - §m2v;2.

2.4.2 Heat Equation

Considering the heat transfer in Fig. (2.1), we can use the law of energy conservation
to derive one-dimension heat equation. In Fig. (2.1), A is the cross-sectional area of
sample and z is the distance from sample bottom. Let us start to consider three kinds of
heat flow: the input, output, and heat generation. The generation of heat energy per unit

volume and time, heat source, is denoted as ¢, so the energy generation in Adz volume is:

Qy = ¢Adz. (2.50)
The input flow at z is:
dT
= — Ak,
@ dz

where £ is the thermal conductivity of sample, the output flow at 2 + dz is:

dQ);
Qo = QZ+ de
dz
dT d dT
— R Sy
dz dz( dz) %
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and the change of internal energy in Adz volume with respect to time is;

dT 1= ?

where p is the sample density, C' is the specific heat of sample, and ¢ is the time. Since the

net of heat flow must be 0, Q; + @, = Q, + (), we have the followings:

dT ar d dr dr

—Ak— = —Ak— — = (Ak=—)d A= dz,
Ak + Adz Akdz - (Ak—)dz + pCA—
1 d dTl dr
— —(Ak—) 4§ = pC— 2.51

where Eq.(2.51) is called one-dimension heat equation. By solving this equation, the

distribution of sample temperature and heat energy can be estimated.
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Chapter 3

Advanced Theory for CME,

Bio-evolution, and SMAT

In this chapter, we use the basic theory in Ch. 2 to derive important and useful results
in the CME, Bio-evolution, and SMAT modelling.

For CME part, we at first solve the CME in linear-drift Gaussian process, and then
the probability of chemical reaction for each stochastic path is obtained by path integral
formalism through the solution of linear-drift Gaussian process. And the CME with com-
pound Poission noise, Van Kampen model, is derived by the expansion of characteristic
function for PDF.

For bio-evolution part, we modify the Crow-Kimura and Eigen model based on the
following assumptions. Firstly, each sequence with the same number of —1 spin has the
same probability, namely, the distribution is symmetrical. Secondly, the mean fitness is
also assumed to be symmetrical. This two assumptions make tremendous difference in
Crow-Kimura and Eigen model which simplify the equation in a large scale. In next step,
we introduce HJE method to investigate the probability distribution of gene and to obtain
the mean fitness of zero order of % With the bulk equation of probability distribution, the
equation of O(%) for probability distribution is constructed, where we derive the mean
fitness of O(;) and correction term u; of O(5;) for probability distribution.

For SMAT part, we model the motor motion as longitudinal harmonic motion in which
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we can derive the average velocity of motor. Through the average velocityiof motor.and

Taylor expansion, the average velocity and period of flying balls without interaction is
R |

constructed to estimate the loss of kinetic energy and power for balls. With the ﬁnoWn loss,

the strain energy and power of sample can be obtained by the law of energy eonservation.

3.1 Formalism of Chemical Master Equation

Scientists are always interested in the probability of chemical reaction for a given
stochastic process, and the mean, maximum, and fluctuation of physical observables are
connected to this probability. In this section, the solution of linear-drift Gaussian process
is used to construct the probability of chemical reaction by path integral. In our CME
research, we work with CME with Gaussian and compound Poission noise. Thus, we also
derive the CME with compound Poission noise by the expansion of characteristic function

for PDF.

3.1.1 Solution of Linear-Drift Process

Consider Eq. (2.35) with the following functions:
w=—br,o= V2,

where b and € are both constants, the drift term 1 is linear in . Therefore, Eq. (2.35) with
such functions is so-called linear-drift Gaussian process. The corresponding KFE has the
form:

OP(x,t) 0O O?P(x,t)

5 = %[me(x,t)] +€ I

which is also called Fokker-Planck equation in physics. Using the WKB expansion,

P, t) = exp [—1u6(aj, Dl
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we have the following partial derivatives for P(x,t):

OP(x,t)  —10u(z,t) el
o e o @i A\ IBd|
OP(z,t) —10u.(x,t)
- P
oz e Ox (z,8),
?P(x,t) —10%u(z,t) 1 Quc(x,t) .,
gy _ 20U ) py gy 4~ P(x,t
57 — g L@t + 5 (—5—)"Pa,?)

The set of derivatives maps the equation of P(z,t) into the equation of u.(x, t):

Ou, Ou,

_ ou, 0%u,
ot ox

2_
) bxax]—l—e[axz

= (3.1)

To solve Eq. (3.1), we can set the change of variable as a function of ¢,

(o = (1)) 652

ue(z,t) = a(t) + 202()

to arrive the following differential equation:

du. _alt) o p(t)du(t) _ (x — pt))? dot)
ot it o%t) dt B dt
I ) P N
- Tan ewn e Y
IR0 RN N
gy bt = b e = (3.3)

Divide the both sides of Eq. (3.3) by % to have:

ol(t)  da(t) B o2(t)  du(t) o) do(t)
—nOF & (—p) i
O 1 T R
B ey ey O

(z — u(t))
We can find that only the a(t)d‘zl—gt) in Eq. (3.4) is not multiplied by m, so we can let
do(t) 5
t =1—bo”(t
o) o),
2
d“dp — o1 — bo(1)]. (3.5)
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Put Eq. (3.5) into Eq. (3.4) and divide both sides of Eq. (3.4) by — ( y o get 5

|0 at o \ ¥
(x—p(t) dt— dt \{Bd

1 bo?(t) :
_|._

= —bu(t) + €
DA )
Similarly, the % (t in Eq. (3.6) is not multiplied by we can let
(@—p(®)’
dp(t)
—= = —bu(t). 3.7
o pu(t) (3.7

Finally, put Eq. (3.7) into Eq. (3.6) and divide both sides of Eq. (3.5) by — -4 to

obtain:
da(t) 1
dt

—1]. (3.8)

Thus, the Eq. (3.5) can be solved by the following integration:

/Ot dag(Q(ildt/ / 2,

1
b
t

% = o2(¢)|| = —2mt,
b 0
o2(t) = 2 +[0%(0) — Zl)] exp (—2bt), (3.9)

and so does the Eq. (3.7):

tdpu(
/ pt /bdt
0 ,ut’

In|p(t)] = In[u(0)] = -

p(t) = u(0) exp (=bt). (3.10)
From Eq. (3.5), we also have:
1 do*(t) 1
20 At dln |o?(t)] 2[02(25) —b.
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Thus, the solution of Eq. (3.8) can be obtained by the integration:

a(t) o2(t) |
[ daty =5 [ dmno(t), |

(0) o2(0) B\

a(t) = a(0) + gln[(i((é;]. G3i11)

We can find that the € term only contributes to a(t), and the diffusive term o2(¢) is not
influenced by e. With the aid of Eq. (3.9-10), the solution of Fokker-Planck equation for

PDF is:

1, (3.12)

where A = %2(0) exp [—@]. The PDF of Eq. (3.12) is always Gaussian distribution
for any given time, and that’s the reason we call d B, is Gaussian white noise. For a small
¢, the PDE of Eq. (3.12) decreases quickly from the mean value p(t). And for e — 07
case, the PDF of Eq. (3.12) becomes the delta function with its center at x = u(t), and

this means physically only the path, x = p(t), will take place in this process.

3.1.2 Path Integral Formalism in Stochastic Process

In the former section, we have the solution of PDF in linear-drift Gaussian process. In
this section, we apply the solution and start from the Lagrangian L and action functional

Sy as mentioned in CME introduction:

L(g.4) = [pd — H(@,P)lp=1 (b)) =

Sola(0): 0,4(0)) = (a(®)] = [ dr 5[ —ba(r))P
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to get PDF for each path of chemical reaction in linear-drift process. Let us consider the

initial condition for PDF with linear drift —bx and diffusion term e:

P(z',0) = (2",

And remember that the zero order equation of chemical system obeys the ordinary differ-

ential equation:

which means that the expectation value of x obeys this ordinary differential equation. The

transient PDF of Fokker-Planck equation with linear drift —bx obeys the Markov process:

P(x — ', At)P(2',0)

P(z, At|z',0) Pl 0) = P(x — 2/, At)
9 (.T o $/€_bAt)2
= e T
meo?(At) 2ea?(At)
N 1 exp [_ (I’ . .Z',e_bAt)Q }
a1 e
1 (x — 2’ + ba' At)?
¥ sans P deAt |
V5 [2bA — 20%(At)?) €
1 (z — 2’ + ba' At)?
- exp [ L2 DEADT
\/WEA?f(l — bAR) €At
B 1 (x — 2’ + b’ At)? 1 db(x)
= Mexp[ AL - 5111 (1-— I At)],(3.13)
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where we have set A = 1 and used the Taylor expansion:

=]

(2bAt)?2 |
21 A\l

Q

e 2At 1 — 20At +

1
UQ(AZf) — 6(1 o 672bAt)

(2bAt)2)
2!

Q

1
S =14+ 2bAt+

= 2AL(1 — bAY).

And the trajectory of PDF for any generalized drift b(x) following the Fokker-Planck

equation is:

P(xn, nAt; x,_1, (n — 1)At; ...; 21, At|zg, 0)

\/ meAt kl_[l P (= e xklﬁl?Abt(xkl)At) B ;ln (1+ dbcgij)At)]
~ Acxp [—@ A [(dfli D b0 + 2
= Aexp [——(SO —I— 5 d?; >dt 1, (3.14)

where A =

\/ﬁ is an appropriate constant for normalization, ¢ = nAt withn >> 1,

and we have used the Taylor expansion:

n(l+y) = Z kHy ~vy, fory<<l. (3.15)
k=1

For the e — 07 or non-diffusion case, the only trajectory obeyed by the chemical reaction

1S:

which states that the chemical reaction without € term is deterministic.

3.1.3 Formalism for CME with Compound Poisson Noise

In previous sections, only Gaussian white noise used in a long time interval is taken

into account, however, chemical reactions often take place in a short time interval, where
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the compound Poisson noise is useful. Let us consider a non-Gaussian noisedor a‘given

time ¢, A(t), whose higher cumulants are supposed to be delta-correlated and dqh’;}yanish:
& \
N E

< A(t) >=1I4
< M)A >= Tad(t — 1)

< A(OAF)A(") >=Tod(t — #)5(t — ")

< MDA () At) >= Tond(ty — t2)0(t1 — t3)..0(t1 — t)

where < > is the notation for taking expectation value and Iy, are constants for 1 < k£ <

m. Since such distribution of A(¢) has singularities, we can define the integral process:

which makes the increment of Z independent of the previous Z and is only dependent on

the time interval 7:

z = Zt+T1)—-Z()
t+71 t
= /0 A(t’)dt’—/OA(t’)dt’
:([”me.

Common processes with independent increments for a short time interval can be generated
by compound Poisson processes in the following steps. Put a stochastic set of dots on time

axis making noise:

fn(th tg, ceey tn) = pn,
Fa(ty, te, .. tn)dtydlsy..dt,

= the probability between t and t + dt,

where p is the probability per unit time, t = (t1, %, ..., t,), and df = (dt1,dts, ..., dt,,).

Assume that Z increases in an amount z at each dot, which is random with probability
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density w(z). The n random dots in time interval 7 is assumed to be Poissonianywith

average value p7, so the distribution of z is: =55 ||
l\ A |l
33N | ;‘ 3{ ‘
=Y ('OT') PTw(z) x w(z) * ... x w(z), l
= n!

where * is the notation for convolution and the w(z) product is the convolution of n factors

for w(z). Hence its characteristic function in probability theory can be written as:

/ e** T (2)dz = i /w(z) «w(z) * ... xw(z)dz.

This characteristic function can be simplified by applying Fubini’s theorem,

//AxB dxdy—Ag(x)dx/jgh(y)dy7 (3.16)

into the characteristic function:

=e Texp [pT/eikzw(z)dz]
= exp [pr [ (™ — Dw(z)dz],

o /eiszT(z)dz = exp [pT/(eikz — Dw(z)dz], (3.17)
where we have used the following equality:

/ () % w(z)dz

= [wldy | o

— / w(y)dy / em(”y)w(z)dz
foman

[/ e*= ) (2)dz)?.

40



Differentiate Eq. (3.17) with respect to 7 to obtain the CME:

B2

0 / T (2)dy = /eikzaTT<Z>dZ i‘;

or or S\ |
= 2exp [pT/( 2 1w(z)dz]
= p/ thn _ n)dn x exp pT/ thz _ (2)dz]
= ,0/ (e — dn/ e** T (2)dz

= p// kT (2)w(n)dndz —p/ dn/eiszT(z)dz

= p//elszT z —n)w(n)dzdn —p/elszT(z)dz
= o [ [ Tl = muwin)dn - T ().

Since p and £ are both arbitrary, we have the equation:

/ zkz

n)dn — T-(2))ldz = 0,

/T 2 = yw(n)dn — Ty (2)]. (3.18)

Equation (3.18) is the CME induced by compound Poisson noise with independent incre-
ments in a short time interval. Finally, we can rewrite 7, (z) as P(x,t) and the drift term
p(x) can be added to Eq. (3.18):

OP(x,t) 0

A7 = = u@)P(a, )] + pl [ P(e =, Own) - P(e,0)], (3.19)

which is Van Kampen model with compound Poisson noise.

3.2 Formalism of Bio-evolution Model in Hamming Class

Crow-Kimura and Eigen model in Eq. (2.40) and Eq. (2.42) having 2" equations are
not easy to handle in a large V. We need to develop a method to simplify the equations
in Crow-Kimura and Eigen model, so we here apply HJE into these models based on the
two following assumptions. Firstly, each sequence with the same number of —1 spin has

the same probability, namely, the distribution is symmetrical. Secondly, the fitness is also
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assumed to be symmetrical. Finally, the general formula for correction term.ar; forPDF

and mean fitness in bio-evolution are derived through HJE method.

3.2.1 Crow-Kimura Model in Hamming Class

The equation of motion for probability in Crow-Kimura model is:

Op;
o ripi + Z m;;p;, (3.20)
J

where p; is the relative frequency for type ¢ sequence and recall that m;; is the mutation

matrix:

mi; = Yo, dz] = 17

my; = — N, di; = 0,

m;; = 0, otherwise.

Since we have assumed that the distribution is symmetrical, the 2V -type probability can

be divided into N + 1 classes called Hamming class as illustrated as follows:

(4+,+,+, 4.+, +), N =6, | = 0 class,
(4+,+,+,— +,+), N =6, | =1 class,
(+,— +,+,+,+), N =6, | =1 class,

(+7 ) +7 EE) +7 +)7 N = 6, =2 ClCLSS,
where [ is the number of —1 spin for a sequence and 0 < [ < N. To make convenience,

we define the magnetization of /-th Hamming class as:

2l
—1-=
m N,
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where —1 < m < 1 and m becomes continuous from discrete as N — 0. The syrhmet-

rical fitness function can be written as:
r; = N f(m), ‘ (3.21)

where 7 is belong to the /-th Hamming class. Based on the symmetrical distribution, we
are interested at the total probabilities of /-th Hamming class. For a given sequence with

[ number of —1 spin, [-th class has N; possible states and

NI

N=—"".
TN =)

(3.22)
Hence, the total probabilities F; for [-th Hamming class is:

NI
P, = Nip, = D1

(N . 0)

We can chose a special sequence Sy with all spins being +1 as a reference to simplify the

Hamming distance as:

N
dip = d:(N_ZSfSS)/Q
k=1

= V-2 51)/2
= N(1-m)/2=1. (3.23)

There are two possible transitions of one-step for p; as illustrated as follows:

U (+7+7+7+7+7 Ty T 7_> — DPi+1 - (+7+7+7+7_7 EREE] "'7_)7

b - (+7+7+7+7+7 Ty T 7_> — Di-1: (+7+7+7+7+7+7 Ty ey _)

There are [ possible transitions from p; to p;_; and N — [ possible transitions from p; to

pi+1. Therefore, Eq. (3.20) is transformed into the equation for Hamming class probability
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pi:

dp 2" =2\
aftl Nfm)pi+ > vopj + map \‘ .
j=1,d=l%1 SN ‘
= Np[f(m) =] + vllpi-1 + (N = Dprs1]. (3:24)

And we have the total probabilities for [ 4+ 1 and [ — 1 Hamming class:

P
Py = Nijypis, iy = N+ )
I+1

Py
Py =Ni_ipi-1,p11 = -
Ny

Therefore, we can gain the equation for total probabilities of Hamming class by multiply-

ing the both sides of Eq. (3.24) by N;:

or,
ot

IN, (N = )N,

= NPJ[f(m) — ] +70[Nl_lpl—1 T - Ny

= NPB[f(m) =] +%[(N =1+ )Py + (I + 1) Pl (3.25)

where we have used the two equalities:

N, (=N -1+ 1)

Ne U Ny SN

(N = )N, L+ DN =1 1)!

(Sl S Y
P G 70 g1 Ir

Equation (3.25) with N 41 equations is small compared to 2" equations in original Crow-

Kimura model, so it’s much easier to be handled for both analytic and numeric than before.

3.2.2 HJE Method in Crow-Kimura Model

In this section, we apply HJE into Crow-Kimura model to obtain the correction term

of O(+;) for the mean fitness and PDF. To investigate the behaviour of p;, we can use the
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following WKB expansion:

I ;,,
m = p(m,t) = exp [Nu(m,t)], | IM e ‘; }1
2 2 P e
Pl+1 Zp(m TN ) = exXp [Nu(m TN )L
2 2
Pi-1 = p(m + N?t) = exp [Nu(m + Natﬂ (326)

The finite population correction can be obtained by the Taylor’s expansion of u(m, t):

2 B du(m,t) 1
u(m — N t) =u(m,t) — N o + O(ﬁ)’

2 2 du(m, t) 1
u(m+N,t) fu(m,t)+N o —i—O(ﬁ),
pra ~ exp [Nu(m, ) — 220 0)] = e [-p 200,
pi-1 =~ exp [Nu(m,t) + 2 é )] = exp | 8ué:: t>]pz

Put these expansions into Eq. (3.24) and rearrange it to obtain the equation of zero order

for py:

Ju(m,t) 1—m joumsn 14+m _,outmo

BN = f(m) =0 + ol 5 € +T€ om ).

On the other hand, the total probabilities F; for the [-th Hamming class is:

lan

P, = Nip = exp[N(u(m,t)+ N )]

= exp [N(u(m,t) + h(m))]

= exp [NU(m,1)],

where h(m) = 8 and U(m,t) = u(m,t) + h(m). For general case in bio-evolution,

[ and N — [ are both large enough to use Stirling formula. Thus, the approximation of
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function h(m) is:

hm) = - I \(

= —In(l— )+ n l_/N ]

(I+m) 1-—m 14+m,, ,1—m
= T I (AT (AT
B _[(1+m)ln(1+m) (1—m)1n(1—m)]

2 2 2 2 ’

(3.27)

which is the zero order in % approximation. Similarly, we have the following expansions

for P:
2 9U(m,t)
Um——,t)=U(m,t) — —————
(= ) = Ulm, 1) = =2,
2 2 9U(m,t)
U(m+ N,t) ~ U(m,t) + NW’
2 ou
P = PB(m - Nﬂf) A exp (—2%)37
2 ou
Plfl = Pl(m + N7t) /A exp (2%)37
where g—g = %. Put these expansions into Eq. (3.25) and arrange it:
0P, oU (m, t)
— = N——Ph
ot o

~ N(f(m) —70)P 4+ 7[(N — 1+ 1)eXom + (I + 1)e 23],

and divide it by P, to get the equation for U (m, t):

oU (m, t) I+m 1,0 1—m 1, yev

o = f(m) — v +l( 5 "‘N)eam"‘( 5 +N

The bulk equation in Eq. (3.28) for U(m, t) turns to:

oU(m,t) L+m yo0  1—m o

P
— —_ om _
o f(m) — 70 + ol 5 ¢ + 5 ¢
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which is the exact form of HJE,

AU (m, t) oU I
—— > =—H(m,—)=—-H(m, U |
ot ™ ) (m, 1), A\
where U’ = g—g and the negative Hamiltonian of system:
/ ]_ + m 2U/ ]_ - m 72U/
—H(m,U") = f(m) — v +[———¢e" +——e " |.

2 2

To investigate the asymptotic behaviour in a large-scale time for U (m, t), we can assume
that U(m,t) = v(m) + kt where k is a constant. This assumption means that the change
rate of U (m, t) with respect to ¢ is fixed, and k£ = 0 corresponds to stationary state. Phys-
ically, we can imagine that the system energy will not change after a long time. Then we

get the ordinary differential equation for k:

1 +m ’ 1 - m /
k= f(m)— + vl 5 e+ Te_% ), (3.30)
where v/ = dzs;"). Let y = €% to get the solution of Eq. (3.30) by the following way:

b= fm) 0+ 3ol Ty ¢ L2y

)= k+70—f(m)i\/(k:+%_f(m>)2_%2)(1_m2)

Yo(1 4+ m) ’
oy B0 = fm) (0 — f(m)2 — 93 (1 = m?)
v'(m) = =1 ot m) . (331

Therefore, v(m) is obtained by integrating Eq. (3.31) with respect to m':

L1 ko — fm) £ /(0 — F(m)? — 31— m?)
v(m) /mT In o)

bl

where m,. is an appropriate reference point where v(m,.) = 0. Assume that the maximum

of v(m) is at s where the v'(s) = 0 and v”(s) < 0, and Eq. (3.30) turns to:

k= f(s), (3.32)
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which gives the equation of zero order in O+ for k. For the [s, 1] interval; the pﬁysical

solution for v'(m) in Eq. (3.31) is the + solution. Similarly, the physical sp]‘gﬁi_on for
A ||
v'(m) in Eq. (3.31) is the '—' solution for the [—1, s] interval. Equation (3,32}‘p01’nt$ that

the total probabilities P, has a maximum at s with mean fitness R = N[k +:Q(5)]. And

the s value is defined as the surplus:

N
R = S Nf(m)R
=
’ N
= NkPysyt Y NJ(m)R
1=0,m#s
~ NE+O()] (3.33)

Since the k value corresponds to the negative Hamiltonian of system, we can expect it
will reach the maximum or fixed value in a large-scale time. Physically, the bio-evolution
process in a large-scale time minimizes or fixes the system energy. We have the following

inequality:

and thus the corresponding inequality:

k—f(m) 4+ = 70[(1 —;m)e%, + 4 —2m)6_2v/]7

— k—f(m) 4+ = 0.
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For the maximum condition for &, the partial derivatives of k& with respect torv’ at ul'1s

Zero: \E, ‘
X
\‘ ;:“ g
ak 1 / / 1—m N ~&
_ = (1 —2vy(4vy - " -0
o' "=}, 2( +mje (e 1+m) ’
1 1—=m
— e — — =0,
14+m
1 1—m
o = Zln(—). 3.34
h(m) = 0 () (3.34

Since v(m) must be real in physics, we have the inequality for the square root function in

Eq. (3.31):

(k+70 — f(m))? > 75 (1 —m?),
[k +7 — f(m)] = %V1—m?
k> f(m) =30+ V1 —m? = V(m), (3.35)

where we define the V' (m) as the potential of system. In CM, the V' (m) corresponds to
negative potential energy of the system. Such inequality can be derived from the geomet-

rical inequality:

1+m / 1—m ’
2v+ 6—21))

E+v—f(m) = 5 ¢ 5
> V1—m2,
—k > f(m) =" +%V1I—m2=V(m). (3.36)

Thus, the £ value is the maximum of V' (m) which corresponds to the minimum energy of

system:

k= max V(m), (3.37)

—1<m<1
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which is consistent with the condition for v{(m), where the negative Hamilfontan of SYs-

tem: \E, ‘
| &
% i1 ;\
1+m o, 1—m o <
—H(m,vy(m)) = f(m) = +7[— e —5 € %)
— f(m) — 0 + VI —m? = V(m).
For the O(%) correction of £, the P in a large-scale time can be written as:
ks
P, =exp[N(k+ N)t + Nv(m) 4+ vi(m)], (3.38)

where v;(m) and k; are the correction terms of O(;) for v(m) and k. Similarly, we have

the following Taylor expansions for v(m) and vy (m):

2 2 2 d*v(m)
v(m + N> ~ov(m) £ N (m) + N2 dmz
2 2
vi(m £ N) ~ vy (m) £ Nvl(m),

so the corresponding expansion for P, and Fj;1:

Piv ~ exp N(k-+ )t No(m) 4 or(m) +20/(m) + 20/ (m) + oo} (m)]

N ) )
= exp[20/(m) + 2(m) + 0l ()P,
P =~ exp[N(k+ I;\})t + No(m) + vi(m) — 2v'(m) + i/_y”(m) _ ;vi(m)]
= exp[20m) + 5/ 0m) — i)
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where v"(m) = % and v} (m) = ‘h;T(Qm). Put these expansions into Eq: (3.28)‘3:0' get
the equation of O(+) for k1 and v (m): ;:F | “
R ||
| < |
1o |l
k 1 1 ! 1 s
(k—{—Nl)Pl ~  f(m) =9+ l( —;m +N) 20 R o RVl
1 - 1 ! " !
+ (Tm + N)e_% e%“ 6_%1)1]
1 ! 1 - ! 1 / /
~ f(m)—"+ %[‘;mezv + 727“6_2” + N<€2U + e )]
290" 14+m o0  1—m o 2900) 14+m o 1—m _,,
TN (5 2 S I R
! / 1 / 1 - /
N kl :’}/0[62U _'_6721) +2U”( —;me2v 2m67211)
1 P /
+ 21/1(7;7”62“ - ey, (3.39)

where these approximations have been used:

2.1 2
eNv %14—7'0”,

N

Alternatively, the k; value can be defined at point mq where the coefficient of v} vanishes,

so we have:

]_ + mo eQUI(mO) _ 1 - m(] e*QUI(mO)

=0
2 2 ’
N e4v’(m0) _ 1 _mO’
1+m0
1 1—m0
N =1 3.40
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which is consistent with the condition defined in Eq. (3.34), where v/(m)s= v{;:(mo).

Therefore, the k; value is: ‘ E"’ <
i

| |

| il
! )

kio= yo{e®m0) 4 e m0) o (mg)[(1 + mg)e ™) 4 (1 — mg)e, 20}

= %[f T \/”m° + 0" (mo) (y/1 = m3 + /1 — m3)]

1+m0 1—m0

2
= = =+ 2900" (mg) /1 — md. (3.41)
\/ 1 - mo

To find v"(my), we can write —k = H(m,v’) or k = V(m) and expand it near mg up
to second order. Remember that the first derivatives of V' (m) and H (mqg, v'(mg)) with
respect to m and v’ at mg and v’(my) are both zero. We have the following expansions

and approximations:

k=~ V(mgy) + V”(mo)<m_2m0),
—k ~ H(mg,v'(mg)) + d H(T’;Oz;;/(mO)) (v'(mo) ;Uo(mo)) ’
— V" (o) (m —2m0)2 i dQH(n;(Zg/(mO)) (v'(my) ;Uo(mo))Q ~0, (3.42)

where the second derivatives of V' (m) and H(my, v'(m)) at mg and v} (my) are:

Yo
(1—m3):

= 4v9\/1 — md, (3.43)

! —ny/
7/1)0

V" (mg) = f"(mo) —

Y

d*>H (mqg, v'(my))
dv/2

v

where f”(mg) = diz{r(;l) - Also, we have the following approximations for vj(m)
near the my = 1 — % point:
2(lp — 1) 1
e —O(=—
m mO N (N)’
-1 v'(m) — vj(mg) 1
20" = =2 0 0]
V(o) = T m—me TO)
1
2[v"(m) — vg(mo)] ~ [20"(mo) + 7—5](m —mo),
—my
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where [ is near [y and O(+;) terms must be neglected for k; correctionterms Puthése

approximations into Eq. (3.42) to obtain v” (my): | gr Q|
| n |l
I
d*>H (mg,v'(myg)) 1 o
" ) " 2 3
4V (mo) + dU/2 v/:%[ZU (mo) + 1 _m%] ~ 0,
1 4V (my)
" ~ - _
2v (mO) ~ 1_ m% d2H(mo ' (mo))
dv'? !

]. (3.44)

With the known 20" (my), we can put it into Eq. (3.41) to obtain k;:

2% % T J 1_ (1- m%)%f”(mo)
\/1—md \/1—m% \/1—m% Yo
g Jl_u—m%)if"(mo)

V1—md Yo

And the equation for v] can be obtained:

). (3.45)

1+m 2 1—m

201 ( 5 ¢~ Te_w)
_ E_QQU,_e—Q’Ul _21}//(1—;777‘621)’ 1_2m€—2v’)'
Yo
/ % _ 6211’ _ 6—211’ o U//[(l + m)e2v’ 4 (1 _ m)e—2v’] 346
e (1+m)e2’ — (1 —m)e 2 (3-46)
Therefore, the correction term v; is:
k1 20’ —2v’ " n ,2v" n,—2v'
m B — e — e — ) [(1+m)e?” + (1 —m)e
_ Yo dm’ 3.47
Ul(m) /m,r (1 + m,)em}/ _ (1 _ m/)e_ZUI] m, ( )

where m,. is an appropriate reference point, where v; (m,.) = 0.
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3.2.3 Modified Eigen Model in Hamming Class

As mentioned before, Eigen model is the evolution of multiple-step mutaq(rn“?zhlch is
more complicated than the Crow-Kimura model of one-step mutation. Here we are infer-
ested at the Eigen model in Hamming class, where the sequence distribution and'fitness
function are both symmetrical.

Considering the sequence S;_,, with [ —n Hamming distance from reference sequence
Sp, the S;_,, can be generated from .5; through n; up and ny down, where n = ny — no.
This process can be explained by Hamming distance d;p = [ in the following way. For the
sequence .S; with [ number of —1 spin, ny up and n, down corresponds to the change of

Hamming distance:

Ad = —Nn1 + N

—dp+Ad=1—(n; —ng) =1—n,

where Ad is the change of Hamming distance after n, up and n, down. And all the possible
transitions from .S;_,, to S; is:

Il (N =)

M, = )
nl'(l —nl)‘ s 7’L2'(N—l—n2)|

(3.48)

where M,, is the number of all possible transitions, 0 < n; < [,and 0 < ny < N — L.

Consider the following mutation matrix,
Qi = Qu=0Q¢ (1 —q)", (3.49)

where n = d;; and Q is the constant ¢’¥. Thus, we can write down the modified Eigen

model without dilution and degradation terms as the following:

dp,

I N-I
dt = Z Z Mn@nﬂrnzrlfnplfn, (350)

n1=0n2=0

where p; is one sequence probability in /-th Hamming class and the number of total mu-
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tations from p;_,, to p; is Ny + no.

-

3.3 SMAT Modelling

For common SMAT experiments, 304-steel balls always cover the area of motor top
in 20 ~ % ~ 25 %. The probability ratio of ball-ball collision to ball-sample collision is

very small, and it can be estimated as follows:

N
PbeCAgX‘)/b, PbsO(AbAsa

c

Py Ay NV,
— ~ 0
—>PbsO<As ‘/c ’

where we have assumed that flying balls are uniformly distributed in the chamber, Py,
and P, are the probability of ball-ball and ball-sample collision, A, and A, are the cross-
sectional area of ball and sample, V}, and V, are the volume of ball and chamber, and
N is the ball number. Usually, the ratio of ﬁ—: is less than 1 % [33,47]. Based on this
fact, the collisions between flying balls is less frequent than collisions between flying
balls and sample or flying balls and motor, namely, ball-ball collisions can be neglected
without loss of generality. Physically, this means that the ball-ball interaction or potential
can be neglected. Thus, we can select a flying ball to stand the whole flying balls as a
representative particle, and the motor is regarded as a reservoir providing balls energy.
Consequently, these identical-flying balls can be regarded as a system interacting with the
sample bottom while ignoring the collisions between these flying balls. For this reason,

we can consider the time-averaged value of single representative ball.

3.3.1 The Kinetic Energy of balls

Since the average ratio of horizontal speed to vertical speed for flying balls in common
SMAT experiments is abut 0.16 ~ 0.25 [33], namely, the average angle of both motor and
sample surfaces is about 80°. The kinetic energy ratio of horizontal component to vertical

component is about 0.05, which is << 1. Thus, we can assume the angle of both impact
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surfaces are normal without loss of generality. The motor-top motion canbe characterized

as a longitudinal harmonic motion:

Uy = Awsin(wt)

= 2mvAsin(wt), (3.51)

where A is the oscillation amplitude, w is the angular frequency, and v is the oscillation
frequency. By the formula in Eq. (2.49), the ball velocity induced initially by motor top

1S:

2My,
Vg = ————Up,
®0 My, + My
2
= T m U R 20y, (3.52)

Mm

where m,,, and m,, are the mass of motor and ball. Usually, m,, is millions times m; in

common SMAT experiments. Therefore, the initial velocity of balls is assumed to be:

Vpg = T+ sin @, (3.53)

where ¢ is the phase of sinusoidal function. And flying balls will collide with the sample

bottom under the condition:

1 2g(h — D
§mb"0b02 > mg(h — D) — sing > M)
Umaa:
2Aw o 2g(h — D)
Umaz = @, 0y = sin I(W)’ (3.54)

where h is the chamber height, D is the diameter of a flying ball, g is the gravitational
acceleration, and v,,,, and 6, are parameters defined by Eq. (3.54). This condition states
that a flying ball must overcome the gravitational potential between a flying ball and earth

to collide with the sample bottom. The time average for initial speed of balls is obtained
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by carrying out the integration per one cycle of harmonic motion:

fg;/ % Upode  Upaz €08 By j |
Jfde 56 U

Vpo =

where sin ¢ is symmetrical to ¢ = 7 and this integration can be carried out over first
quadrant. For common SMAT experiments, we are allowed to use the following conditions

and approximations:

Aw > +/g(h— D)/2,

sin 0y ~ 0, sin 6y = 6,

my  [g(h — D)
0y ~ (1 : 3.55
o~ (1+ mm> 2A2w? (3-55)
Then the averaged initial speed of these balls turn immediately to:
vmax( - %) 2
Vo P ~ —Umaz;
5 90 m
where the following Taylor expansion for cosine function has been used:
2
cosp~1— o
Let us define the two parameters for simplicity:
2g(h — D) o
— 6% = = 3.56

and the flying time of these balls from the motor top to the sample bottom are given by
the equation:

1
h—D = vyt — §gt2.
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Thus, we have the following approximation for ¢:

Vb0 « R |
t = 2a- J1- TR
g( sin2¢) » M
Upo
= "),
g
-~ Ubo 1 1 2 1 3
R g(Qn%-8U-+16n)
max 1 1
— Oﬂ;g (csc o + Zozcsc?’(b + gozzcsc%),

where « and 7 are both parameters defined in Eq. (3.56) and the binomial expansion has

been used:

o k

ill'k oo
oy = ST g =3 ()

k=0
-1 -1 -2
~ l+nz+ n(n2' )ZB2 + n(n 3)'(n )

3 forx << 1. (3.57)

With the expansion for ¢, the time-averaged ¢, 7, can be acquired by carrying out the

integration with respect to ¢ over one period of sinusoidal function:

Wz Jo (csc @ + Jacsc3p 4 taesc®p)do

29 Ji£ o

AVUmaz

— 71— .
g(ﬂ_ . 29()) (9(])7 (3 58)

where

62 365
I(6)) = (1+ s T 67) In (csc By + cot by)

3 3602 s

+ S (1+ ?0) csc b cot Oy + 3—% csc? By cot Bp.

For common SMAT experiments, the scale of A, w, h, and D are 40 ~ 80 um, 40w krad/s,
20 mm, and 1 ~ 3 mm respectively [33,47]. The corresponding value of parameters, «
and sin 6, are from 8.242 x 10™* ~ 3.685 x 1072 and 2.871 x 1072 ~ 6.070 x 1072
respectively, so the higher order terms can be neglected without loss of generality. The

relative errors of approximation in Eq. (3.55) are less than 0.1%. The 7 in Eq. (3.58)
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ranges from 2.413 ~ 4.570 ms. The averaged initial speed of these balls rangeé from

6.645 ~ 13.033 m/s. The time-averaged speed of these balls before second cql]@pn can

be obtained by:

1‘ M |l
| = |
‘ . |
1] |

Jat \Jow? — 2g(h — D)d¢

Jo, do
v 3
max . 1 . d
= ], sinoy1—ndo
™ 2 3
Umazx 2 . n n n
1—2 - 1 q
s /90 sino(l =5~ g ~ 1%
Upo — 9T =~ Upo, (3.59)

which gives the averaged-speed of these balls, varying from 6.588 ~ 12.693 m /s in good

agreement with the speed of flying balls in the SMAT experiment measured by high-speed

cameras [33]. The variation trends of averaged flying ball speed as a function of SMAT

vibration amplitude and frequency are presented in Fig. 3.1. It can be seen that the ball

speed would increase in proportional to the SMAT amplitude and frequency.

Thus, the total-averaged kinetic energy of these flying balls before second collision

between the sample bottom and flying balls is the sum of kinetic energy of each ball:

Ek,total

Q

Q

Smp(v)
i
1 ) 1,
N x imb(vbo —g7)°~ N X 5o
N
— D3pp A%w? x DA%*wW?,
3m

where p, is the density of flying balls. Recall that the balls will cover about 25% area of

the chamber bottom,

N x D% ~ 0.25A,,
A, 1
irD? < D2

~
~

where A, is the surface area of chamber bottom. Thus, the higher the diameter of ball is,
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the lower the total number of balls would be.

\
3.3.2 The Loss of Kinetic Energy for Balls | i‘!

On colliding with the sample surface, the kinetic energy of flying balls will'not be
conserved due to the inelastic collision between flying balls and sample. In the SMAT
chamber, we assume that a ball with mass m; have velocity v, before colliding with the
sample bottom and velocity v} after colliding with the sample bottom, and the sample with
mass m is initially at rest and gains velocity v after colliding with a flying ball. Thus,

the corresponding coefficient of restitution (the act of recovering to a former state) is:

v —wvy vl =
e = =
Up — Vs Ub

)

Considering the inelastic collision, we can use Eq. (2.48) and Eq. (3.59) to calculate the

/ /.
v, and v/

, My — emsg mp — €My
vy = Vp = (v),
my —+ mg my -+ mg
1 1
5 = ( +e)mbvb _ Ltem (v) .
my + M my + Mg

And the averaged-loss of kinetic energy for flying balls and sample (A E}; 1555 5 and AE, jo55.5)

arc:

1 1
AEk,zoss,b = N(imbvbQ - imbvblg)

N 2
= — 1—
2 ms (v) | mp + My
1 1
AEﬁk,loss,s - N(§msU52 - §msvs/2)
N 1
N L)

2 mp + My

my — €My

)3, (3.60)

(3.61)

This loss will be converted into the heat energy of sample and flying balls and the internal
energy (or so-called the strain energy) of sample and flying balls. And the kinetic energy

of sample will be assumed to convert almost into the internal energy of sample. Figure 3.2
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presents the variation trends of kinetic energy loss of flying balls, sample and total (the
sum of those for balls and sample). It is apparent that the kinetic energy loss W11]::1norease
with increasing 7%, the loss will reach the maximum at the point [°* = e. SnLnlarly, the
average time, 7/, of ﬂymg balls from the sample bottom to the motor top between second
collision of the sample bottom and flying balls and third collision of the motor top and

flying balls can be obtained by the following equations:

1
h—D = ‘Ub/|7,+§g7/2,
|v'| 2g(h — D)
R
= |gb|( 14++/1+7),

where the corresponding ball velocity and parameters:

my mp __

e
[y Lm0 =
= 2g(h — D) _@_wpr3

vy'? AT ms  6ps AL’

(v) (3.62)

'] =

-

(3.63)

where L is the sample thickness, p, is the sample density, and " and y assumed to be
smaller than e are parameters defined in Eq. (3.63). Similarly, the average time of these
flying balls from the sample bottom to the motor top between second and third collision,

7/, can be obtained by the expansion of 7'

Thus, the averaged-time period of flying balls (going up and down between second and

third collision) and total-averaged power loss of kinetic energy of balls are

At = 17+7, (3.64)
P = N% - Em (v)? LX“)Q (3.65)
loss,b — At - 9 b T+ 7 . .
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And so does the total-averaged power loss of kinetic energy of sample:

W

(14e)x12 k==

AEy; N 2[ T1 } Hoom
Posss:N 2 = s X ‘ =+ (B.66
toss, x At 2m<v> T+ A\ vl

where we have assumed that there is /V collisions between the sample and flying balls in
At. Figure 3.3 illustrates the variation trend of averaged-time period of flying balls as a
function of the SMAT vibration amplitude and frequency. The trend says that the time
period decreases with increasing amplitude and frequency. This is reasonable in physics
since the average speed of flying balls is proportional to amplitude and frequency. In
addition, Fig. 3.4 shows the variation trends of power loss of flying balls, sample, and
total (the sum of those for balls and sample). It is apparent that with increasing % the
energy loss will increase, but with different trends.

On the other hand, the phase change of harmonic motion after ball going up and down
in the SMAT chamber is:

A¢p =21 x VAL,

and if A¢ satisfies the condition:

A¢p = 2w X n, n € positive integer,

—v- At =n,

then the sinusoidal function will reach the same value (sin (¢ + A¢) = sin ¢), namely,
the velocity of flying balls will be steady. In static, the condition make the fluctuation of
speed for flying balls independent of time in a large-scale time. With the steady speed of

flying balls, each strain caused by a collision in the sample will be uniform.
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Chapter 4

Analytical and Numerical Solution

In this chapter, we solve the analytical and numerical solution of CME with Gaussian
white and compound Poisson noises, modified Eigen model in Hamming class, and heat
equation for SMAT. Analytical solutions of CME and Eigen are well consistent with nu-
merical simulation in a large-scale time. Mathematically, we can say that they are equal
to each other. The calculation of analytical solutions and numerical equation is involved

in this chapter in a detail.

4.1 CME Solution

We consider two models to describe chemical reactions including the CME with com-
pound Poisson noise and CME with compound Poisson and Gaussian noise. We have
calculated the analytical solution of steady-state PDF for the models, and the dynamics
of PDF has been simulated by finite difference methods. On reaching the steady state of
dynamics for PDF, they are in a good agreement with each other. We at first preferred the
Galerkin method which requires fixed boundary conditions (B.C.s) for x = 0 and x = oo
to do this simulation, however, the only B.C.s for this case is P(co) = 0 and P'(c0) = 0.
Additionally, it can be expected that the B.C.s of analytical solution at x = 0 are not fixed
making the Galerkin method failed. Thus, we turn to the forward finite difference method
with normalized condition which doesn’t need the fixed B.C.s at x = 0 to simulate the

dynamics state of PDF.
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4.1.1 Finite Difference Method

In our CME research, we works with the general CME with the domain, | F;‘EU, Bo)
l‘ { | - ; “‘

OP(x,t) O?P(x,t) 0
o e~z T %[R(x)P(x, t)]

+qAﬁ%x—%ﬂw@my—P@¢m .1

w(y) = kexp (—ky).

From Taylor expansion with finite difference h, we have the following for f(x + h):

)

n

fa+h) = i

_ ﬂ@+f@m+fgﬂM+fg@M+~~

= f@)+ f(@)h+O0(r?).

Therefore, we have the following approximation of O(h) for f’(z):

oy - = -oud)
flx+h)— f(x

_ (z)
— . +O(h).

Similarly, f(z + 2h) and f(z + h) can be expanded as:

f(z+2h) = f(z) +2f (x)h + 2f"(x)h* + O(h?),

fe+h) = f@) + floh+ LD

L2+ o).

Thus, the approximation of O(h) for f”(x):

f(z+2h) —2f(z+h)+ f(z) = f'(x)h* + O(h?),

wy _ f@+2h) =2f(x +h) + f(z) - O(hY)
f (:L‘)_ h2

flx+2h) —=2f(z+h)+ f(x)
= 12 + O(h).
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These are the forward finite difference with accuracy of O(h) for f'(z) and fa (a:) To get

the accuracy of high order for f(z), we can expand f(z + h) into more termsfi= <}

=z

\‘1

f//( )

fz+h)=f(x)+ f(x)h+ R+ O(h?),

and we have:

fz+h) = fx) - 5202 — O(h?)

f@) = -
_ 2f(x+h) —2f(z) — f(x+2h) + 2f(x + h) — f(z) + O(h?)
h
—f(x+2h)+4f(x+h)—3f(x) 5
- = +O(h?).

Similarly, the accuracy of high order for f”(x) can be derived as:

riay = LI LA 20) 51 W42 E) o

The coefficients of higher order for forward finite difference are listed in the table of
Appendix. For the integration of Eq. (4.1), we apply the trapezoid rule with accuracy of

O(h?) to approximate it:

b _ hlf(a)+ fla+h)] | hlf(a+h)+ fla+2h)]
/a flz)dz = 5 + 5
hlfa+ (Y = 1)+ FO) |
2

:lea+lh [Jc((l);_f(b)]

=1

+ o+

+O(h?),

where the discrete space of integration is chose to be equal to that of differentiation, /V is
the partition number of interval [a, b], and Nh = b — a. Put all these approximations into
Eq. (4.1) and take the forward finite difference with space H in first order on time axis to

obtain the following numerical equation with accuracy of O(h?) and O(H) at z = ih and
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t=jH:

—d
=

P(ih, (j + 1)H) — P(ih, jH) ['T;
H | i
N E—P«r+$hJH)+4P«m+mh4H)—5P«m+thH)+2P@ij)
h2
—R((i +2)h)P((i + 2)h, jH) + 4R((i + 1)h)P((i + 1)h, jH) — 3R(ih)P(ih, jH)
2h
+ 4§p%@—wmjﬂmwmh+Cgﬁmnjﬂy4M+fwijﬂ—Pumﬂﬂu4m
=1

For sake of simplicity, we can introduce the following notations:

P(ih, jH) = P}, R(ih) = R;.

Therefore, Eq. (4.2) can be re-written as:

. ed . 4eH H , —5eH 2H ~
Pz‘JH = _ﬁPZ{F3+(?_ﬁRi+2)‘Pgﬁ-2+( L2 + h*Rz‘Jrl)Pijﬂ
2¢H 3H kchH A
1+~ - 2R — ¢H)P!

+ (1+ 2 oh R; + 5 cH)P:
Lt g kHh _; .

+ ckhH Y Pl 4 SO P, 4.3)
=1

Fori=0andj =0,

H 4eH H 2¢H 3H
—%539+@%;—A—Rnﬂﬁ+a+gi————Rm—dﬁR&

P} =
0 o2h h2 2h

where we have removed the integral term of Eq. (4.3) which makes no contribution (the
areais zero)ati = 0and j = 0. Fori = 1and j = 0:

eH 4e H H —beH 2H

1 _ 0 0 0
Pl - _h2p4+( h _QhR3)P3+( h2 + hRQ)P2
2¢H 3H kchH kHh
+ (4 T = SR+ o — cH)P) + ==Y
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Fori=2and j = 0:

eH 4¢eH H —5¢H  2H |
2¢H 3H kchH kHh 2 |
+ (I+ % — 5 ot —CQ — cH)PY + 2 (2eHh PO g2k PO,

To simplify the representation of N numerical equations, it can be written as the matrix

multiplication:
Py Py
P} PY
= ANxN+3 | ) (4.4)
Py, PR
Py Py
Py PRris

where A is a NV by N + 3 non-square matrix. To make A square, the last three elements of
right column on the right side of Eq. (4.4) can be neglected without loss of generality. If
the system boundary is large enough, the PDF is approximately zero on z = (N + 1)h ~
(N + 2)h. Effect of the last three elements is so small that it will make no impact on the
dynamical behaviour of PDF. By observing the A elements fromi =0 ~ 2atj =0, A

can be written as the general representation in ¢ and j:

Ay =1+ Z = IR + M (1 — 6y9) —cH, 0<i < N —1

Ajipr = + 2R, 0<i< N -2

Ao =5 — JRiys, 0<i <N =3 45)

Ajjys=—H 0<i<N-—4

Ajg=1kchHel-* 1 <i <N -1

A, j =chHw((i— j)h), fori>1landi>j

where we have ignored the last three columns of A not affecting the dynamical state of

PDF in general if N h is large enough. Thus, A is a square N by /N matrix now. Eventually,
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the time-evolution of PDF can be simulated by the algorithm with normalization condition

for PDF: =
i M
Pl — Ap0 pl — P |
(3 1) 3 Z] P]17
P2 — APl p2 — i
1 (] 1 Z] P]Z
Pk = Apk-1 pk — i
7 ) 7 Zj PJk

k
where PF = ZP'L' 5 18 the step for normalization. As time past, we can judge whether PDF
Joa

arrive the steady state or not by the following criteria:

pk pF—pFt
——=x~1lor +——— =0 foralli.
Pt P

K3 (2

With the h — 0" and H — 0" condition, A will become a Markov matrix. Physically,
each matrix multiplication of A is equivalent to the perturbation of previous state. Since
this perturbation is so small that it can be imagined as the adiabatic process in quantum
mechanics, initial PDF will finally become one of the eigenvectors of A. Nevertheless,
it’s very hard to find the eigenvector of A for large N value. As we all know that the
total eigenvectors of A is of O(N) and N is normally from 10000 ~ 20000 in this case.
Furthermore, it’s also hard to judge which eigenvector is right for the steady state of PDF.
Thus, it’s better to simulate the dynamical steady of PDF in a large-scale time, namely,

the initial PDF is multiplied by A after many times.

4.1.2 Analytical Solution of Van Kampen CME without Diffusion Term

Consider the Van Kampen CME solved by FCX in 2006 [1]:

OP(z,t) O

or %[Vgxp(:v,t)] + ky [/Ox dyP(x —y, t)w(y) — P(z,1)], (4.6)

68



where w(y) is the transition PDF for a mRNA into protein. This partial differential equa-
tion (PDE) corresponds to the following scheme for DNA-mRNA-protein brocpsgéw‘ indi-
cated in Fig. 4.1, where £, is the transition rate of a DNA into mRNA, ks is t}]‘lé tsénéition
rate of a mRNA into protein, and ; o is the degradation rate of mRNA or‘ proteiny re-
spectively. Since the lifetime of mRNAs can be assumed to be short compared to that of
proteins, proteins can be considered to be produced in random uncorrelated events. The

transition PDF w(y) for a mRNA into protein has been measured in Fig. 4.2 [48].

w(y) = geXp(—gy),

where b = % Let us at first consider the steady-state solution of PDF, namely,

OP(z,t)

=0
ot ’

and take the Laplace transform on the both sides of Eq. (4.6):

1

— ky(—2+ — 1) P(s),

0 = sZLyprP(x) — [’Yzflfp(l“)]‘

=0 s + %
dP(s) S
0 = — —k P
dP(s) a -
= P 4.7
O dS + s+ % (S>7 ( )
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The P (s) solution can be obtained by taking the integration in the methodiof sepéfation

variables: ‘ :, \
7R
) I
P _ : 1
dA (s) _ al s,
P(s) sty
)z _
/dA (s) :/ al s,
P 5) s+ b

P(s) = . (4.8)

where c is an integration constant. Finally, the P(x) solution is immediately obtained by

taking the inverse Laplace transformation of P(s):

C

Pla) = 27 [P(s)] = e e 49)
where
A 1 YT
-1 _ : st
L7 P(s)] = 57 Tlgrolo AiT e P(s)ds,

and P(z) is a gamma distribution. The ¢ value can be calculated from the normalization

condition for P(x):

1 = /Ooop(iv)dx:r(z)/ooo:v“_le?dz

cb® oo cb®
_ a Tdr — T — b
F(a)/o ¥ e dx T (a) (a) = cb®,

1

= c¢=—, P(x)= 9 e . (4.10)

To test the validity of our numerical algorithm, we can simulate the dynamical state of
PDF by the forward finite difference method with three set of parameters: (i) a = 0.5,
b =25, (it)a =5,b=2>5,(ii) a = 8 b = 8, and set the initial PDF as exponential

distribution which is reasonable for the DNA-mRNA—protein process:

2
P(x,0) = ke ™™ or P(z,0) = —=e ™.

S
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No matter which initial exponential PDF we set, we can expect that PDF will ﬁnally reach
the same steady state, namely, the gamma distribution. The Figs. 4.3-5 conregpond to
the case (i) of dynamical state and steady state for PDF. As indicated in thelse ﬁgures
the dynamical state of PDF in a large-scale time will be consistent with the analytical
solution of steady state for PDF, the gamma distribution. For a < 1 parameter, the gamma
distribution goes to infinity as z — 0*. For a > 1 parameter, the gamma distribution has

a global maximum at o = b(a — 1) where %SC)

= 0. The Figs. 4.6-8 correspond to
=x0
the case (i¢) of dynamical state and steady state for PDF. The Figs. 4.9-10 correspond to
the case (i7i) of dynamical state and steady state for PDF. As shown in Figs. 4.6-10 the

xo value increases with increasing a and b.

4.1.3 Asymptotic Solution of Van Kampen CME with Diffusion Term

Now we turn to consider the Van Kampen CME added diffusion term, € & g , which

is so-called intrinsic noise for a given system. This CME has the form:

R o))
+ anl[ Pl -y wlydy - Pla,1)], (4.11)

where the transition PDF w(y) we use is ke *¥. To investigate the steady-state solution of
Eq. (4.11), we at first calculate the special cases: (i) @ = 0 and (ii)  near 0. Fora = 0

parameter, Eq. (4.11) on reaching steady-state becomes the form:

PP(x,t) 0
oz T %[729013@@]7 (4.12)

which is the exact form of Fokker-Planck equation. The Eq. (4.12) can be reduced into

the ordinary differential equation of first order:

0 0P(x) L
0 = o[~ +_ Pl
o = M;YHV?‘:P(:C), (4.13)
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where ¢, is an integration constant. The integrating factor /(z) of Eq. (4:13).is

I(x) = exp/%dm = exp(ﬁy;6 ). f '\l ! H
With this /(z), the general solution of P(x) in Eq. (4.13) is:
_mge? [T ype? _e?
P(z) = cie” = / e 2c dt + coe” 2, (4.14)

where ¢, is an integration constant and c is an appropriate reference point. Physically, we
require the B.C.s for PDF: P(co) = 0 and P’(c0) = 0. We have the following equations
for P(c0) and P’'(00) in Eq. (4.14):

. : _mga? [T g2 _me?
lim P(z) = lim[ce” 2 / e 2 dt + coe” 2
Tr—00 T—00 c
z2 T 2
. e Lk 22t
= lim [cje” % / e 2 dt]
T—00 c
2
2t
. [Teadt
= ¢ lim ~*———
T—>00 J2r
€ 2e
. €
= ¢ lim — =0,
T—r00 72‘7;
2 2 2
. . Y2 o et 217 Yo o _oew
lim P'(z) = lim|[—¢—ze 2 e 2 dl + ¢ —cg—xe 2 |
T—r00 T—r00 € c €

2
Yox [F e B3 dt

= ¢ lim|1
1 :E%oo[ € ’Y2902
€ 2
2 2
ot ot
: [Fe2dt + xe 2
= ¢ lim[l - . ]
T—00 2t
Te 2e
2
2t
y [Fe2dt 0
- Ta :1:1—{20 1212 o
xTre 2e
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where the both solutions satisfy the B.C.s of P(z) and P'(x) as x — og. Sinee wé have

Y
——
—

the following asymptotic behaviour for the first solution of P(z) in Eq. (4 14)‘ =
\ ‘ A |

W2t

. [Te2adt e .. 1
h T — hm -
T—00 e %6 72 T—00 I

2 T 2 1

2T Y2t
6_ 2e / € 2e dt ~ —
c ZL‘

the first solution violates the normalization condition for P(x):

o0 22 x 2
/ dre % / e dt — 0o # 1.
Jo

C

Thus, the first solution of P(x) in Eq. (4.14) must be dropped off. By the normalization

condition, the ¢, can be obtained by:

1 = / P(z)dx
0
) AQZ
= 02/ 2¢ l‘—CQ
0

=
o am B - [

where P(x) is a Gaussian distribution with ﬂ% expectation value. Physically, this small

amount of proteins are created by the intrinsic noise, random collisions in diffusion pro-
cess. As v, increases, the protein production decreases. The effect of random collisions
disappears as ¢ — 0, and P(x) becomes the delta function at + = 0. Without intrinsic

noise (e term) and extrinsic noise (a7, term), protein cannot be synthesised.
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We have the following integration by part for the integration term inEqi (4.1 1)“':: »

| P =iy = [" Pwe—y)dy

z 1

(¥ P' () — P'(0)]

where we have the following approximations for x near 0:

e P(x) — P(0)

~ (14 kz)[P(0) + P'(0)z] — P(0)
~ kxP(0) + 2P'(0),

" P'(z) — P'(0)

~ (14 kz)[P'(0) + P"(0)z] — P'(0)

~ kzP'(0) + 2P"(0).

Therefore, Eq. (4.15) can be approximated as:

1 T
kzP(0) + 2P'(0) — 2P'(0) — %P”(O) o / P"(y)dek
0

/" -

~ kxP(z) — gP"(Jc) + Pla) / e dy
k k 0
Pl/

= kaP(z) — %P”(x) + k(;” (eh* — 1)

P/I
~ kaP(z) — %P”(m) + L k(“") ~ kaP(z)

where we have used the mean value theorem of integral for the integration:
/ P"(y)edy = P"(c) / eMdy, force (0,z).
0 0
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Since x is near 0, the ¢ can be approximated as x. For = near 0 case, the/integrationgterm

in Eq. (4.11) can be neglected under the condition: ';-‘:—:‘1_ I

2
kx<<72:x<<l,

k
and the Eq. (4.11) becomes:

OP(x,t) O?P(z,t) 0
ot o2 + %hﬂp(%tﬂ — ayeP(z,1). (4.17)

For the steady-state P(x) of Eq. (4.17), we have:

dQP(x) d 72 a2
- LR ep@) - 2p
0= TPy L2 pay) - 2,
2P P 1
o= P& 7 dP(@)  1=ap (4.18)
dx? € dx €

Since the solution of Eq. (4.18) with a = 0 reduces to Gaussian distribution, we can use

the ansatz:

772332 72332

P(x)=e 2 H(z)=¢ 2 xF(x). (4.19)

The corresponding derivatives of P(z) in terms of F'(x) are:

dP(z) IECTLIET dH (z)
dr ° ’ [—?xH(x) dz ]
= ze Tk [(—%JJ + ;)F(:c) + dFd;x)]’
d*P(x) v YSTE Y ve dH(z) d*H(zx)
dzz € ( e ?)H@) _Q?x dx dz? )

1 B)dF(m) N d*F(x)

€ € T e’ dx dx? )

Put these expressions into Eq. (4.18) to obtain:

d*F(x) 2 v dF(z)
P C -y B )R = 0 (420)
And set the change of variables:
2
_ X
t = 9 "
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The corresponding differential operators with respect to ¢:

4 _md g |
dr € dt’ A\
& pd & :

A2 edt e d2

Thus, the Eq. (4.20) is transformed into:

d*F(t) 3 dF(t) 1+a

t St —
TS R T

which is the Kummer’s differential equation with the two linear-independent solutions:

1 3 1 3
;Q,Q,t)+02KummerU( +a,2,t). (4.21)

F(t) = ey KummerM (

And the asymptotic behaviour of the two Kummer functions near ¢ = 0 is:

1
Kummer M ( a3

KummerU(

where the corresponding behaviour of P(x) near x = 0:

12 2 z2
P(I‘) = ])6_7226 F(t) ~ (Clx —+ 02\/7)6_7225 ~ i
V2

V2

Thus, the random-collision process or diffusion term with any a value is the dominating
factor for P(x) near x = 0. No matter what the a value is, the intrinsic noise strongly

affects the behaviour of P(z) near x = 0, and the non-zero P(0) is proportional to \/WZ2 :

76



4.1.4 Analytical Solution of Van Kampen CME with Diffusion Term

Now we turn to solve the steady state of Eq. (4.11) with % =0. Equﬁtio}’f‘(zt.ll)
W

must satisfy the normalization condition for PDF:

/OO P(z,t)dx = 1.
0

Therefore, we at first take integration on the both sides of Eq. (4.11) with respect to z over

the integrand [0, co):

0 g % 0P, t)
O_.aAPWﬁM_A o da

2P0 | (e, ][

+ a’yg[/ooo /OI ke ™™ P(x — vy, t)dyds — /OOO P(z,t)dx]
Eﬁp(x, t)
Ox

Il
)

+ [yexP(x,1)]

=0 2=0’

to investigate the behaviour of P(x,t) at z = 0, where the integration for convolution

term is:
/ / ke ™ P(x —y,t)dydr = / M P(y, t)/ ke *dxdy
o Jo 0 y
= [T PPl Ty
0 y
= / P(y,t)dy = 1.
0
Since we have P(co,t) = 0 and % ~ =0, we can chose the reasonable boundary

conditions for P(z,t):

lim[zP(x,t)] =0,

xz—0

OP(x,t)
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where the last condition is the zero flux for P(x,t) at z = 0. For sake of simplicify, We

can set the change of variables for the steady-state P(z): ';-‘:—:‘1_ I

y(@) = [ Plo =yl vy = ™ [* Pla)etray,
0 0
where the corresponding derivatives of P(z) in terms of y(x) are:

Ple) = P 4 ky(a),

dx

APla) _ dya) | | dyla)
dzx dx? dx
PPE) _dy) ()
dz?2  dad dz?

And the corresponding initial conditions for y(z) at x = 0:

y'(0) = P(0), (4.23)

where recall that we have the zero flux for PDF at z = 0. Therefore, we have the following
ordinary differential equation of third order for y(z):
dy(z)

+(1—a+ kx)ﬁ + ky(x) =0, (4.24)

43 &
€ y(w)+(x+ik) y(@)
Yo da? Y2 dx?

which is a linear homogeneous equation. Since the Eq. (4.24) is linear homogeneous
and third order equation, the solution of Eq. (4.24) can be expressed as the sum of three

linear-independent functions:

y(x) = ciyi(x) + coye(x) + csys(x), (4.25)

where c;_3 are all undetermined constants determined by the initial conditions of Eq.

(4.23) and normalization condition for P(z,t) and y;_3(x) is the homogeneous solution
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of Eq. (4.24). Since the solution of Eq. (4.24) without diffusion term is a gamma fuﬁbtion,

we can expect that y(x) is proportional to e**. To simplify Eq. (4.24), we cprx‘;ieu ()
| n |l
\ | T i

in term of:

1
1

y(z) = e H (),

where the corresponding derivatives of y(z) are:

T = —ky(x) +e ot
d*y(x) dy(x) 4., dH(z) d*H(z)
dz?2 -k dr e (k dz + dz? )
Pyle)  Pye) | e wdH@) | PHE)  PHE)
— —he (282 g .
dx? dx? ek dx K dx? + dx? )

Put all these derivatives of y(x) in term of H () into Eq.(4.24) and rearrange it:

e *H e d*H € dH
0=e ko[ ——— —2—k)—— —k*+1—a—kx)— kH
e [72 73 + (z - )da:Q +(72 +1—a—kx) oo T ],
e *H e d*H € dH
0= —— —2—k)—— —k+1—a—kx)— kH. 4.26
Ve da? T Y2 )dxz * (’Yz * ¢ @) dx a ( )

Set ¢ = %k and the change of variable:

€
s=xrx——k=x—c,

Y2
and then the Eq. (4.26) becomes:
;g+(s—c)§§+(1—a—k3)ig+akH:o. 4.27)
As we did in previous section, we can let:
H(s) = e’gf sF(s),
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where the corresponding derivatives of H (s):

|
dH (s) _w? T 1 dF(s) \
pr— € —— J— F
s se” 2 [( E$~|—8) (s) + 7 ], f “
d*H (s) 22 Y2 Y2 o 1 7y dF(s) d*F(s)
_ F(s)+2(- - 2
ds? 5¢ [ € ( € 3)F(s) + (s € ) ds + ds?
d*H (s) s d3F(s) 1 7y (d*F(s)
= Sy ek et

Put all these derivatives into Eq. (4.27) to obtain the equation for F'(s):

e d*F el ¢k d’F ek dF

—— (3= = = = 28—+ [Pt ks +2— — 6)]—

72d53+(723 V2 S)d52+[€8+ o Yas (a+ )]ds
1

+(a+2)(¥s—;+k)F:O.

Similarly, we can set the change of variable:

o 7282

13 ;
2€

where the corresponding differential operators with respect to ¢:

d_’}/g d

ds ?S%’

i g
ds? edt € dt?
&
ds®
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Put all these operators into Eq. (4.28) to obtain the equation:

3 73 2 72 2 =)
€ Yy d°F v d°F el €k vy L d°F T Yadk g ||
S 3 s )+ B - 2s) (5 g i =

Yo 638 dt3 VoS Yo €2 dt? é 3“1_
k dF 1 l :

22 ks 128 (a4 6) 258 1 (a+2)(Bs— = 4+ k) E=0,

€ Y28 € dt € S

2 3 2

¥y 3 d°F Y2 o d°F 1

R KN DT WD S S S Y iy

25 3 + 5 s(6 =S s) o +[3(8 )

My gy P i Mg € _

+€s( 8 + =S + ks —a)) - +(a+2)[€s(1 7252)+k]F_0’

Yo . d°F d*F SdAF  a+2

Pl T 6—4) s (-8 2 —at )T F

St (6= A g + (=82 —at ) — 5T

d’F dF
k|—2t—— 2t — 3)— 2)F| =0. 4.29
w22l -3 4 9 =0 429)

Since the solution of F'(x) is Kummer function near = = 0, we can assume that F'(z) may
be related to Kummer function for = # 0. We have the solutions Kummer M (i, v,t) and

KummerU (u, v, t) to Kummer’s differential equation:

@2F dF
= e F =0
dt2+(v )dt 0 ,

where . and v are both constants, and the following equivalent equations:

Qtiz + (2420 — 215)22]5 — 2+ 1)621; =0,
A

—2kt(§5 + (2Kt — Qky)ag + 2kuF =0,
—ztﬁg + (2t — 21/)(25 +2uF = 0.
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These equations give us the direction to write Eq. (4.29) in terms of ¢ as:

\Z"_ |
% o, d°F 2F a dF el
S|2t—— — 28— —2(= +2)— = ||
Cslt g + (52 — 2+ W2 |
d*F dF
—k4{2 — 2t)— 2F
k{tdt2+(3 t)dt+(a+) }
d2F 3 dF  §+1
= —1)— F
d2F dF

By observation, the solutions to Eq. (4.30) are Kummer M (1+%, 3, t) and KummerU (1+

, 3, t) which make all four terms zero in Eq. (4.30). Thus, we already have two solutions

VIS
V]

to Eq. (4.24). And the two solutions is choose as:

k _ck 3 k
y(z) = e (2 — ‘ —)e~ 2 )KummerM(l a2 B(m—e— %),
V2 2727 2 V2
B L v+ L3 20y
yo(z) = e (2 72)6 ummerU (1 + 53 5 (x - )

To simplify the expression of Eq. (4.30), we can introduce the variable Y = Y (F'(t),t)

as:

LF AF
y =28 L 3—oaE _ (a4 2)F,
e + ( )dt (a+2)
Yy  BF 22F Ma
— ot L5t (a4
dt g Tl Jae ~ et

where Y = 0 corresponds to the y; () and y»(x) solution. With the introduction of Y, Eq.

(4.30) can be written as:

Y2 dY 2 1 7

Ls— — Zs— — Z25)Y =0

esdt+( + 2t e) ’
dY 1

= 1 (c—k- 2oy =o. (4.31)
ds s €
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Therefore, the y3(z) can be found by the Eq. (4.31) with Y # 0. For Y # 0, we have:

\Z’_ |
dy 1 el
R k 1= _fY L |
ds (+es s)’ | |}
Sk I P Y
Y (k+ € 5) %

1
= Y(s) = dy-eFst s’ (4.32)
s

where ¢ is an integration constant. We should transform Y'(¢) into Y'(s) by the relation

between ¢ and s differential operators:

d _ eld
dt  vYasds
o 621d+€21d2
a2 A3s3ds A2 s2ds?
2 2 2
Yo o€ 1 d°F € 1dF Yo o € 1dF
Y = =s(55=——S5=— 3— —=5)——— — 2)F
() 65(7382 ds? 23 ds)+< € "vpsds (a+2)
e d*°F el dF
= —+2——5)— — 2)F
Yo ds? + Yo § s) ds (a+2)
Now we turn to solve the non-homogeneous equation:
e d°F el dF 1 2 g2
- 277_ o 2 F: /7 ICSJrTS
Yo ds? + Yo 8 S)ds (a+2) Gye T
d*F 2 vy dF vy P2l a2
— 4 (== =8 — == = (g——e" T2, 4.
ds? (3 68) ds e(a+2)F C3€ se ’ (4.33)

Since we have the two homogeneous solutions to Eq. (4.33), the particular solution to Eq.

(4.33) can be solved by the variation of parameters. For sake of simplicity, we can set:

2727 2

Y] = Yi(t) = KummerM(1+ 2,3 2252)

Yy = Yi(t) = KummerU(1+ %, 3, 25?)

&3



Thus, the particular solution, Y3, to Eq. (4.33) is:

Pl Yo 1 \‘»Eé;“\
Yy = Y/ 2=k 3t Y/ ¢ 2Ry
3 1 W}/l7}/2>c s+ 2 W}/l7}/2> 6 “ M
1 12 2 1 72‘2\
— Y, /7 ks+—€s d Y /77 ks—i——es d
Uwmvst PR s T
= 3 —Yl/Ygsedes+Y2/Ylseksds), (4.34)
where c3 = —(32 )203, W is the Wronskian determinant, and we have used the formula
[49]:
dt dYs(t)  dYi(t)
Y1,Y,) = —t — Yo(t
W (Y1, Ys) Nt — o Ya(t)]
2 QF
= _ES<7282) l/efs ( )‘ ,
€ 2e [(p) le=1+5v=3
Y1l me T(3)
S NoTEE s iy Ly 435
VAo e T(1+9) (3:33)
With the Y3, the y3(x) is:
ys(z) = e *[—KummerM (1 + a3 BSQ /KummerU(l +2 3 lsz)seksals
2727 2¢ 2727 2¢
3 3 &2
+ KummerU|( g 5 g— /KummerM(l % 5,%5) eFds|se” 2

where s = x — 2—’; From Eq. (4.25) and normalization condition for P(z), the values of

¢1—3 and P(0) can be evaluated numerically by the following equation:

c1y1(0) + cay2(0) + c3y3(0) = 0
191 (0) + c25(0) + c3y3(0) = P(0)

c1y1(0) + c2y5(0) + c3y5(0) = —kP(0)

¢ foo yi()de + ¢ [0 ya()dr + cs [5° ys(z)de = £[1 + c191(0) + c212(0)]

After getting y(z), the steady-state PDF of Eq. (4.11) is determined by:




The Fig. 4.11 shows the variation trend of P(z) with fixed &, a, and 7> for different ¢
values. The larger the € value is , the more P(x) is diffused and so does the ﬂqctggtipn of
P(x). The Fig. 4.12 shows the variation trend of P(x) with fixed ¢, a, and 95 }fLr gifférent
k parameters. The larger the & value is, the more the maximum of P(z)s close near

x = 0. Physically, the transition PDF decreases rapidly wit increasing k.

4.1.5 Dynamic Simulation of Van Kampen CME with Diffusion Term

The simulation of Eq. (4.11) uses the forward finite difference introduced in Ch. 4.1.1,

but the algorithm must be modified at the x = 0. Since the % 70 in Eq. (4.11) is

zero, the condition of zero flux must be added to the algorithm. The modified algorithm

is described as follows:

P! OR}
Pl — Ap° pl— i 270
(3 7 7 Z] P]]_ ? ax ?
P?  OF}
P2 — APl p?z_— i 270
1 177 Z] P]27 ax ?
PF = APF1 pF— FY LP(? =
? ? P2 Zj ij7 8.1'
For z = 0 point, we have used the central difference of O(h?) for %:
opry N Pl - Pyt
or ~ 2hn
PO_1 = Pol, for zero flux, (4.36)

which modifies the two of A matrix element: A, and Ay ; in Ch. 4.1.1. With zero flux

at x = 0 for the forward finite difference of O(h?), we can write 88—1? = 01in O(h3) as:

11 3 1
—gPé“—i-SPf—?Pf%—g > =0,
8 9 2
Py =—P/——Py+ Py
R TR TRE TR

&5



In a large-scale time, the Figs. 4.13-18 show that the dynamical state of PDF is consistent
with the steady-state of PDF. Mathematically, we can say they are equal to each'othet, For
a larger k value, the maximum position of PDF approaches the z = 0. The:i hﬁztuation
of PDF increases with the increasing € value. No matter what a and e valuges ‘are,-the

steady-state or dynamical PDF is strongly affected by diffusion term at x = 0.

4.2 Finite correction of Modified Eigen Model in Ham-
ming Class

Modified Eigen Model in Hamming class in Ch. 3.2.3 is described as the following:

apl B l N-I
- Z Z MnQnﬁ-Tmrl—npl—m (437)

8t n1=0n2=0
where p; is a sequence probability in /-th Hamming class,

I (N —1)!
ni!(l = ny)!na! (N — 1 — ng)!l’

Mn: T :f(m)v

and

Qm—i—ng - Qq_(n1+n2)<1 - q)n1+n2'

In this chapter, we derive the mean fitness and probability distribution of O(%) by HJE
method, where N is the genome length. The numerical simulation is well consistent with

our analytical results in a relative errors less than 1 %.

4.2.1 The derivation for Hamilton-Jacobi equation

At first, we can apply the WKB expansion for p;:

pi = exp[Nu(m, t) +w (m)),
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where u(m, t) is the HJE solution with the bulk Hamiltonian, u; is the corréction term of

O(%) for the steady-state probability distribution. The u; calculation is our maig,:_goal of

m | ‘
this work. Since we want to investigate the finite correction of O(+- ), each yariéLbI  should

1
N
be related to N. All our work is to calculate the correction of O(+), so all the.O (55 )and
higher order terms are neglected. Then we can expand the wu(m,;_,) and u;(m;_,) at m

till all correction terms are of O(+):

) 2(l —n) +2n_m+2n
mi_n, = - =m —_— = -,
: N TN N

9 2
WMy, t) = u(m, t) + Nnu’(m,t) + 2(%) W(myt) + ..

2n

ur (my—p) = ur(m) + ﬁ%/(m) +o

n? 2n
Pion ~ prexp(2nu’ + ZNu” + Ful’), (4.38)

where u/(m,t) = %, u’(m,t) = %, and u;'(m) = d“dlig“). The r;_,, can be

expanded at m:
2n ,
T = f(mu_n) = f(m) + Wf (m), (4.39)
where f'(m) = %. The element of mutation matrix can be expressed by the parameter:

v=N(1-q). (4.40)

For N >> 1, we have the following approximations and notation:

_Aln _lfn_/\ ’7 n
N
VO—N_VW—V( —%)*I%V(H%),
2 2
0= (1—%)]\]%(6% —#)Nzeﬂﬂ—;—]v). (4.41)
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With all these expansions, we turn to derive the Hamilton-Jacobi equation riow: Weshave

the approximation equation for modified Eigen model in Hamming class: | g_k Q|
Y
% %QZZ ! (N =10 L&
ot n1=0ng— 0711 l—nl)'n2'<N—l—TL2)!
70 ni+ne 2(n1 - TLQ) !/
X —_ —_—
(R2yme]fom) + 22 )
) 2t (4.42)
Similarly, the exponential term can be approximated as:
62(n17n2)u’+%(n1fnz)zu”Jr%(nlfng)ul’
/ 2 2
~ et (14 Nn2u")(1 + Nnul/)
/ 2
~ 62(n1—n2)u [1 + N((nl — n2)2u” + (n1 - nQ)ul')]. (443)

And note that the multiplicative number M, is the product of two binomial coefficients:

l (N —1)!

- () )

Holding till the second order terms for Eq. (4.42), we get:

M, =

s anson) 35 5 (1) (7! gy

n1=0mn9=0

ePmmn2)u'[] 4 ;((m —n2)*u" + (1 — ng)uy")]
+Qpif'(m Z Z ( ) <N l)
n1=0n2=0 2
2(m —na)

.(%ymgez(m—nz)u (4.44)

N

By the binomial theorem, we can use the formula for summation:

(1+a)" = fj (é) a®. (4.45)

k=0
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With these expansions, the Eq. (4.44) divided by p; turns to

du(m, t sk
U(g:q) +ﬁ<m’u,) +H3(m,u/,u1,u//,f/) = 07 l 1‘ {

where we have rescaled t — L+ u

N (G — th) Hs(m,u',up,u”, f') is a linear combination

of correction terms including uy, u”, and f’ terms, and

_H = n1+n2 2(n1 no)u’
i o 2 3 ()86

n1=0n9=0

- Qrom) i () e 5 (V) oy

n1=0 ni no=0

= Gfm) Y (Z)w Y (N‘l)y?

n1=0 ny no=0

= Qf(m)(1+z0)' (1 +yo)" ", (4.47)

where we have denoted the two notations:

E 2u/ — E e_Qu,

-CEO:Ne ayO_N 5

and the corresponding notations:
1—-m 2/

2 )
Q0 = (N - l)yo =%

g = lxg =

Without H3 term in Eq. (4.46), Eq. (4.46) becomes the HJE form:

Ju(m,t)

ot T [A{(m, ul) =0,

where H (m, u') is the fictitious Hamiltonian of system. Recall that we have the approxi-

mation for N >> 1,
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With the largeness of [/ >> 1and N — [ >> 1, then

[ |
(140 = (1+ 20) s eoro(1 — %o Y
[ 21 A\l |
2 2
1 N-l _ (1 Qoo N—l o, ,a20 1_& :
(1+ o) ( +N—l) e[ 2(N—l)]’
2 2
1 ‘(1 N-l g G — 2o %20
(1 o) (L gn) ™ e 1 = G — ]
=<l - ;7]2[(04106%, + agoe )],

where G = a9 + ay. Therefore, the bulk term and O(%) term in Eq. (4.47) can be

re-written as:

QF (m)eC(1 = T3 (anpe™ + aze™)

= —Ho(v) — Ha(70), (4.48)

where

—Hy(y0) = Qf(m)e?,

—Hy(30) = 50 + axe™ ) Ho(30).

Taking the simple expansion of 7 in ﬁ, the Hamiltonian in terms of -y can be represented

as:

2
A
-
|
|
=
—
_l’_

“Hy = —Ho|L(ae® + ase ), (4.49)
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where we have denoted the following notations:

1-m 2/ 1+m —ou! ‘ "

2 ¢ g ¢ Al

z =1+ ag, Hy = Ho(y) = —e 7 f(m)e*

ap =7 Qo =7y

And the other approximations for — H3 term:

A 1l N-I
0= BEE()( e

n1=0ns U

X A{[(n1 —n9)*u” + (n1 — no)uy']f(m) 4+ (ny — na) f'(m)}.

For sake of simplicity, let us denote a = 2u’ and define the function:

OIS 95 o (R 5 ”1(N_l)<;$e-a>m

n1=0mn9=0 U
= (1+2)1+y)N

where we have denoted:

Then the differentiation of J(a) with respect to a is:

dJ(a)dx  0J(a)dy
dr da * dy da
= le(l+2) 7 1+ )" = (N =Dyl +2) (1 +y) ™"
.
J(a)[(1 = z)ar = (1 = y)ao] = J(a) (a1 — ar),

J'(a) =

Q
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where the = and y of O(%) can be ignored since Hj is proportional to % And-the differ-

entiation of J'(a) with respect to a is: ';-‘:—:‘1_ \

dJ'(a)  9J'(a)da N dJ'(a) doy &
da  Oay da Jdas  da
J'(a)(ar — az) + J(a) (a1 + az)

J// (a) —

Q

~ J(a)z+ (g — az)?]. (4.52)

Since Hj is a linear combination of .J'(a) and J”(a), Hs can be obtained by the following

steps:
2 . I N-I l ~ N—l ~
H — = I Jayni I —a\n2
3 Ninz()nZO <n1>(N€) ( s )(Ne )

= OU @) + T (@) fm) + T(a) ()}

~ 36_7 m)J(a){u"[z + (a1 — @2)*] + (a1 — o) (¥ J(m)

e fm)J(@){ule + (e = a2)] + (an 2)<1+f(m))}

—~ 2 f, " 2

~ NHQ[(CM — ag)(uy + 7) +u"(z + (o — a2)?)]. (4.53)

Thus, the Hamilton-Jacobi equation with O(%) correction terms, H;_3, has the form:

ou(m,t)

o +HHo+ (H, + Hy + H3) = 0. (4.54)

On reaching the steady state, we can imagine that this fictitious Hamiltonian arrives the

minimum energy without time-dependence. Thus, we can assume that

Nu(m,t) +ui(m) = Nu(m) + kt] + ui(m),

where remember that we have rescaled ¢ to +. Mathematically, this assumption for u(m, t)

is reasonable since H_3 are all independent of time . As we did in Ch. 3.2.2, we can
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define the potential V' (m) for H, by the following way:

_ 1—TTI, u/ 1+m —2u’ ‘ m \
—Hy = e Vf(m)exp[’y(TeQ +T€ 2] | H &

flm)e T =V (m).

v

Thus, the zero order and first order of % for k ~ ko + % are:

ko = max [V(m)],
]Cl = —N[Hl(mo) + Hg(mo) + H3(m0)], (455)

where the ky will reach the minimum energy at steady state while V' (m) reaches the max-
imum, and my is the maximum point for V' (m). The first order k; can be also defined at

mo where the coefficient of u) and f” is zero as shown in Ch. 3.2.2, so we have:

1 1
u'(mg) = ~ In( Mo

),
4
k1 = Ho(mo)[2u"(mo)z + v(2(mo) — 7)]- (4.56)

1—m0

Since we are working with a sequence in /-th Hamming class, the total probability of /-th

Hamming class is

P, = Nyjp; = exp[Nu(m) + uy(m) + In Ny, (4.57)

where NN, is the multiplicative number of /-th Hamming class,

N!

N=—1_
ST
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For general case of N — [ >> 1 and [ >> 1, it is allowed to apply Stirling formula’to

approximate these logarithms: ‘ E"’ <
[

\
l\ s 1‘3\

1
In V! lenN—N—i—iln(ZwN),
1
Inl! ~Inl —l—|—§1n(27rl),

ln(N—l)!%(N—l)ln(N—l)—(N—l)+;ln[QW(N—l)].

For the zero order term of %, it was derived in Ch. 3.2.2:

1—|—m1 (1+m)+1—m 1—-m
n
2 2 2

h(m) = =

Therefore, the approximation of In N; up to first order can be written as:

1 1 1
InN, =~ Nh(m)+ iln (27N) — 5 In (27l) — §ln 27 (N —1)]

1 1 [ 1 N —1

= Nh(m) — ;[ln(l +m)+1In(l —m)+1In(2N7)]

—  Nh(m) + hy(m), (4.58)

where we have denoted:

ha(m) = —;[1n(1+2m)+1n(1 —m

)+ In (2N)].
Thus, the expression of F; in O(%) in Eq. (4.57) can be approximated as:
P, =~ exp|[N(u(m) + h(m)) + ui(m) + hy(m)], (4.59)

and the relation between the single sequence v and the class v in Ch. 3.2.2 is:

Bhim) _ 1

dm? 1 —m?’

v=u+ h(m),u" =v" —

94



Therefore, we can use the previous results of Crow-Kimura model in €Ch:73:2.2 By»the
mapping: | E"’ I

R |
f—Inf, , l\l

~ (4.60)

and the u”(mg) value is:

2
1 —m3

_ 1 - \/1 —(1- m%)g/QW]. (4.61)

1 — m? g

20" (mg) = 20"(mg) +

With the Eq. (4.61) aid, the k; value of Eq. (4.56) is:

k = 726Z(m0)7f(m0){2(:n0) [1 B \/1 _ 232/7?0) (1nf(m0))”] 14 Z(:Lg)}
= 2 20— i — ig n £ — @
= Vo {1 - g )] =1+ T, (4.62)

where we have let
fo= f(mo), 20 =7y - m%.

With the known u”(mg) and k1, the u} can be obtained by the Eq. (4.55). Thus, we have:

— 2U/1(Oél — Oéz)H(]
/

= ]{31 + ZUN[Z + (061 - a2)2]H0 + 2£(Oél - OéQ)HO

/
+ %[22 — (04162“/ + 0426_2“/) — v|H,,
k
(o — a)uy = ﬁe_zﬂ —u"[z 4 (a1 — a2)?]
/ 2
— (ay — 042)7 + %(mez“ + age” ) 4 VZ S
or
1k
5o ot e o
o / N
— (1 — 042)7 + Z(ale% + age™ ) + i 52} (4.63)
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Therefore, u; can be obtained from Eq. (4.63) by integrating v/ with respect.to e

modm' ko _, !
wim) = [ Ao N
! 2

— (O[l — OéQ)L; + %(alezul + OZQG_QU,) + "YZ - %Z}, (464)

where m, is an appropriate reference point where w;(m,.) = 0. The v/(m) and u(m) we

have used in Eq. (4.64) is obtained from H, by the following steps:

ko = Ho(m) = e 72 f,

Inkg=—-—v+z+Inf

I—m 5, 1+m _,,

= (e T ey i
ko =l f =y 5 — b = 21— )
V(1 —m)

1 1nk0+7—1nf—\/(lnk0+7—lnf)2—72(1—m2)

uw'(m)==1In ,
V(1 —m)

1 /m 1nk0+7—lnf—\/(lnko—irv—lnf)?—y?(l—m&)
u(m):f/ In dm’,

2 Jm; Y(1—m)

where we only take the + solution for u’(m) since we are interested in the interval [my, 1],
and m/. is an appropriate reference point where u(m.) = 0. Therefore, the probability

distributions of Hamming class for zero and first order of % are:

P(m) = exp [N (u(m) + h(m))],
, (4.65)

Pi(m) = P(m) exp [u;(m) + hy(m)]

where P(m) and P;(m) are the probability distributions of zero and first order of 4.

4.2.2 Comparison with Numerics

To test the validity of our analytic solution in Eq. (4.65), we use Runge-Kutta method
to simulate the Eq. (3.50) for different values of v and functions of f(m). The proba-

bility distributions of Hamming class for the zero order, the first order, and numerics are
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shown in Figs. 4.19 to 4.21. Some probability values for correction and numesics near the

maximum point are listed in tables 4.1-3. As shown in the figures and tables, our tesults
R |

of P;(m) are well consistent with numerics. The relative error of probability gdistr'ibution

between numerics and first order is less than 1 %.

4.3 Solution of Heat Equation in SMAT

Considering the one-dimensional heat equation, where the sample temperature, 7', is

described by the partial differential equation (PDE) derived in Ch. 2.4.2:

o, oT orT
71{07 + q = psC

0z = 0z ot’ (4.66)

where z is the distance from the sample bottom, ¢ is the time, £ is the thermal conductivity
of sample at 300 K, the heat source, ¢, is the heat energy generation per unit volume per

unit time, C' is the specific heat of sample, and p is the sample density.

4.3.1 The Heat Source

We can count the collisions between the sample bottom and flying balls as the heat
source, where the loss of kinetic energy converts into the heat and internal energy of sam-
ple and flying balls. Experimentally, the balls in SMAT acts on a effective depth within
100 pm. With this idea, the heat source can be thought as uniformly distributed in some

effective depth of sample and it can be described as

q = qlu(z) —u(z = 1],

where [ is the effective depth with heat source within it, and u(z) is the unit step function

since it has the following property

[ alutz) ~u(z ~ Dz = gl
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and ¢ is heat coming from the power loss of averaged kinetic energy of sample and”ﬂying

balls,
Prioss,s + Prossp

Al ’ S|

where r is the conversion ratio of kinetic energy loss to heat energy and A, is the cross-

sectional area of sample.

4.3.2 The Temperature Distribution of Steady State

On reaching the steady state, the changing rate of sample temperature with respect to

time will become zero, W = 0, the Eq. (4.66) can be simplified as:

ko =0, (4.67)

Eq. (4.67) can be solved by the following steps:

! z
/ e Q—dz = —/0 cjdz'—/l Gdz’,

2kOZ +cztce3, 052 <1
T(z) = , (4.68)

(02—%)24—04, <z < L

where ¢, _4 are all integration constants. Assume that the equilibrium temperature of bot-
tom surface of sample is 7}, and the equilibrium temperature of top surface of sample is

T;. We have the boundary conditions for 7'(z) and dﬂ—(j)

at z = [ to determine the ¢;_4

values:

T(-) = T(I*)
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Thus, we have the system equation for ¢;_4:

and the ¢;_, values are:

L ko 2L
Ca=0C
)
C3 = Tb
l2
Cqy = Tb + r

2kg

where L is the sample thickness along z direction. Therefore, the temperature distribution
of sample is:
— P+ B+ 21 - 52+ T, 0< 2 <

2ko

T(z) = . (4.69)

T =T, 12 12
(2 —370)2+Tb+370, [<z2<L

The temperature drop predicted by Eq. (4.69) from the surface (subject to SMAT bom-
barding) to the inner portion is presented in Fig. 4.22 for pure Cu and 304 stainless steel,
for the region near the surface (less than 0.05 mm) and the overall depth (up to 1 mm).
Near the surface region, there exists a small hump, and then the temperature continues to
drop all the way into the inner portion. With the known temperature distribution, we can

calculate the heat energy of sample by integration:

AQ

L
C / AT (2)dm,
0

L
— P ALC /0 (T(2) — Tp)dz, (4.70)
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where m is the sample mass and 7§ is the initial temperature of sample with isothermal-
distributed temperature. Normally, 7, can be set to room temperature, 300 K:N OW we
turn to consider the case in which the thermal conductivity has temperature d‘s\Lpgnd‘ence
namely,

k= ko[l + B(T = Ty)],

where [ is a temperature-independent constant. We can apply the change of variables into

Eq. (4.67), T, =T — Ty, to do the integration:

——/qdz—/qdz

d
[ Gl 45T

Then we can immediately obtain:

dT, —%z+cl,0§z<l

- )
dz gl
cg—%,lgz < L

(1+6T,)

q 2
1 —sL iz 4c3, 0< 2 <
T, + 58T, = 2k . @.71)

(02—,%)Z+C4, l<z<L,

.. " dT, (Z) .
Similarly, we have the boundary conditions for T’,(z) and = ;*:
T,(7) = Tv(lJr)

dTy(z)
dz

_ dTu(2)
- dz

z=l z=It

And the system equation for ¢;_4:

=Pt el + ey = (ca — Bl + ey

T,(0) = (T, — To) (1 + 1572) = ¢4

T,(L) = (T, = To)(L + BH571) = (ca = )L+ 4
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and the ¢;_, values:

e = BB+ B -] + (1 -5 N
Ca = (1

cs = (T, — Tp) (1 + po5Th)

c1= (T — To)(1 + pT5T) + 22

The temperature drop predicted by Eq. (4.71) from the surface (subject to SMAT bom-
barding) to the inner portion is presented in Fig. 4.23 for pure Cu and 304 stainless steel,
for the region near the surface (less than 0.1 mm) and the overall depth (up to 1 mm).
With small changes in the temperature of sample and small 3 for general metal, the solu-
tion will be returning to the solution of Eq. (4.67). Similarly, the heat energy of sample

can be obtained by Eq. (4.70) with 7T5,:

AQ = p,A,LC /0 "1 (2)da 4.72)

4.3.3 The internal energy of sample

The power for internal energy (or so-called the strain energy) of sample is denoted as:

A(]imf,s
At

Pint,s =

where AU,  is the change of internal energy of sample in A¢. The energy conservation

can be used to estimate the internal energy of sample acquired per unit time in SMAT:

AQ
Posss Poss = A", Pin s
loss,s T Lloss,b At + Lint,
AQ
Pin s — Posss Poss AL 4.73
t, loss,s T Lloss,b AL (4.73)

where we have ignored the sonic energy and heat energy of speeding balls because the
volume and mass of chamber is much higher than those of balls. By Ch. 3.3, the collision

probability is proportional to their cross section area, and the probability ratio of ball-
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ball to ball-sample should be proportional to Z—gj. For the common ball§ize.of 2 marin

diameter and SMAT sample area of 40 x 20 mm?, the ratio value is less than I %;:1n this
A ||

case, the collisions between the balls is not so frequent and the heat energy.of i;llall's isjalso

small compared to that of chamber and sample.

4.3.4 Experimental Methods

In order to compare with the proposed model, an AISI 304 stainless steel was adopted
as the tested material with chemical compositions of (in wt%): 0.049 C,18.20 Cr, 8.66 Ni,
0.58 S1, 1.04 Mn, 0.021 P, 0.007 S, and the balanced Fe. A plate measuring 40 x 20 x 1 mm
was set on the top of the SMAT chamber, with a cylindrical chamber measuring 70 mm in
diameter and 20 mm in height. The SUJ2 bearing steel balls with smooth surface and high
hardness in the R scale of 62 are applied as the energy deliverer and are placed in a re-
flecting chamber that is vibrated by a vibration generator with a fixed vibration frequency
v = 20 kH z. The vibration amplitude, A, was chosen to vary in three levels: 40, 60, and
80 um. Three sizes of the balls selected are 1, 2, and 3 mm in diameter. All these balls with
different sizes have the same density p;, which is 7.8 g/cm3. To maintain the fixed ball
coverage area of 25% inside the chamber, the 1 mm ball case would install 5 ¢ of the total
ball weight, the 2 mm ball case for 10 g, and the 3 mm ball case for 15 g. Throughout the
SMAT experiment, the working temperature is controlled and traced to be below 150 °C,
which is about 0.2 7}, (melting temperature) of the 304 stainless steel and is considered
to be relatively low for the 304 stainless steel samples. After careful mechanical grinding
and polishing of the cross section of SMAT samples, the sample surface roughness and
the morphology level were sufficient for nano-indentation to extract the hardness varia-
tion from the free surface (subject to SMAT) into the inner portion. The SEM observations
were performed using a Zeiss Supra 55 field-emission scanning electron microscope. With
a low acceleration energy at 5 £V and a low working distance at 5 ~ 7 mm, it is able to
visualize the distinguishable grains from the back-scattering images (BEIs). The cross-
sectional transmission electron microscopy (TEM) foils of SMAT samples were fabricated

using the dual-beam focused-ion-beam (FIB) system (Seiko, SMI13050) with an operating
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voltage of 30 £V and an ion beam current of 1 pA. The TEM foils were examined By the
Tecnai G20 field emission transmission electron microscopy with an operating veltage of
200 kV. The hardness of SMAT specimens from the cross-sectional surface waé nﬁéa.éured
by the MTS Nano Indenter XP System. The tests were operated with a displacenment rate
about 10 nm/s, and the allowable vibration drift of environment was controlled under

0.05 nm/s. The indented depth limit was set to be 1200 nm.

4.3.5 Relating strain rate and temperature with sample micro-structure

in SMAT

For metallic materials, it is almost a universal rule that the sample micro-structure
would be related to the processing parameters by the Zener-Holloman relationship. In
general, the average grain sizes would decrease with decreasing working temperature and

increasing working strain rate. The Zener-Holloman Z parameter is defined as:
Z = éexp(Q/RT), (4.74)

where € is the strain rate, () is the activation energy, 7' is the absolute temperature, and R
is the gas constant. The accumulative strain ¢ by the successive bombarding cycles can

be approximately expressed by
g, =—=0.2, (4.75)

where ¢; is each strain by each ball bombarding incident, Ax is each compressed depth
by each ball bombarding incident, and x is the sample depth experiencing the bombard-
ing impact. The precise strain is difficult to be calculated since the bombarding can be
induced by the flying balls from various directions and the induced strain would be dif-
ferent for bombarding from different directions. The average is estimated to be about 0.2
in Eq. (4.75). But in general larger balls are expected to induce a higher degree of strain

per bombarding, it is thus postulated that the 1, 2, and 3 mm balls would induce an av-
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erage strain about 0.15, 0.20, and 0.25, respectively. The overall strain accumulated by

numerous ball bombarding events is simply expressed by:
cr=n-¢, (4.76)

where 7 is a statistic evaluation of the overall ball bombarding events during the SMAT
time duration ¢. Since the balls in the chamber can fly randomly in all 3D directions,
the probability P that one ball will bombard on the sample can be rationalized by the
sample flat surface divided by the total surface area including the chamber wall and sample
surfaces. This probability can be varied for different SMAT machine system designs. If
the sample surface occupies 10% of the overall surface area, then P is assumed to be
0.1. For a vibration frequency v and overall SMAT time ¢, the bombarding event onto the
sample surface will be:

n=uvt-P. (4.77)

Thus, the strain rate is equal to the accumulative strain divided by the SMAT time duration

t,

. Et l/tp&‘i
E=— =
t t

= vPs¢;. (4.78)

The SMAT working temperature 7’ may or may not be measured with reasonable accuracy,
depending on the chamber design. Also, even the temperature can be measured from the
sample surface, the temperature should be a gradient profile from the outer surface to the
inner portion of sample. Since the grain sizes in many SMAT metals or alloys are in the
nano- to micro-scale with no pronounced grain growth, the experienced temperature is
thought to be around or less than 0.2 7},,, where T}, is the melting temperature of metallic
sample. With the activation energy () for the involved major diffusion species, Z can be

calculated. And then it is hoped that the grain size can be related to the Z parameter.
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Chapter 5

Conclusion

5.1 Van Kampen CME with Gaussian White Noise

The model with the particle under the influence of Gaussian and Poisson noises has
been considered, and we have solved the exact steady-state PDF of the model with the
transition PDF, ke**. Namely, we have considered the related integro-differential Fokker-
Planck equation and mapped it into a third order PDE. For the simplest case of drift term,
b(x) = —~,z, we have found the exact steady-state PDF supported by the direct numerics
very well. Furthermore, the convergence to the steady-state can be proved analytically.
The exact steady-state PDF can be found for any values of a > 0, ¢ > 0, and £ > 0.
However, the PDF is expressed by Kummer functions, a special function. We have to solve
a transcendental equation to obtain the formula for the exact position of the maximum for
PDF, and thus it cannot be derived. Therefore, our main question is transferred to whether
the diffusion term can move the position of maximum for PDF from the x = 0 point or
not. Following from the properties of functions y;(x) for i = 1 ~ 3, the value of P(0)
is finite, it depends on ¢, k, and a. As we can see from Figs. 4.3-18, the limit behaviour
of PDF at = = 0 is that of PDF for ¢ = 0, the gamma distribution, namely P(0) — oo
fora < 1 and P(0) — 0 for @ > 1. This means that the maximum point of PDF moves
from x = 0 if @ > 1, where this result is independent of any £ and -, value. Following
from the analytical solution of steady-state PDF, the result holds for any values of ¢, not

necessarily small. In a more general case of the drift term, b(x) = ~»x, the threshold
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value is a = ~2. Moreover, under basic assumptions this should hold for.any kind'of
transition PDF. Thus, the drift term shifts the particle to the origin, and the Pojss_fgp}noise
acting in the opposite manner competes with drift term. At the same time,.the niiixifnum
point and decay rate as z — oo of PDF and P(0) value depend on all the parameters; a,
€, 72, and k. For example, P(0) ~ (\/ek)*! is the ratio of variances of Gaussian and
exponential PDF. Figures 4.13-18 present a series of numerical simulations intending to
prove that the solution of Eq. (4.11) converges to the steady-state PDF for different values
of parameters. Figures 4.11-12 illustrate the maximum position is at the origin for a < 1
and outside of the origin for @ > 1. For a < 1 the value of the maximum increases as
e — 0; for a > 1 the value of maximum for PDF and the PDF value at x = 0 decrease
as € — 0. Regarding the level of compound Poisson noise below the critical value, the
Gaussian noise can strongly affect the behaviour of the solution removing the singularity
of distribution at z = 0, as shown in fig. 4.13-14, while for the stronger Poisson noise
above the critical value @ > 1, the effect of the Gaussian noise is not drastic as shown
in fig. 4.15-18. The results can be interpreted as follows. In the case of Gaussian noise,
there is a finite maximum of distribution at z = 0; in the case of both Gaussian and weak
Poisson noises, the distribution also has a finite maximum at zero, but this maximum tends
to be infinite as the Gaussian component vanishes. If the Poisson noise is sufficiently
large, then the maximum moves from the origin for any values of € and k. Thus, the
maximum position of PDF depends only on the Poisson component of noise. We can look
at our results from the following point of view: a large noise, due to a finite number of
molecules, can strongly influence the biological processes, while up to a certain level of
this noise the situation is rather stable. This phenomenon is important for cell biology [50],
where the systems can be shaped during the evolution to suppress some finite molecular
number fluctuations. Moreover, sometimes the fluctuations can be suppressed, even for

single molecule reactions, which yields a highly intriguing experimental result.

106



5.2 Finite Correction of Eigen Model

In conclusion, we have used HJE method to get the solution of modified E}géw;l model
in Hamming class. Based on the two symmetrical assumptions, the symme‘:[rical distri-
bution and fitness function, the modified Eigen model becomes a solvable problem for
large genome length. In this approach, the steady-state probability of Hamming class with
O(1/N) relative accuracy has been obtained by working carefully with the combinatorial
problems during the calculation process, where NV is the genome length. These calcula-
tions are much harder than the corresponding calculations for the Crow-Kimura case [51].
The properties for the O(%) correction terms have been investigated completely in these
calculations. The analytical results for the steady-state probability of Hamming class is
well consistent with the numerical results simulated by Runge-Kutta method, where the
relative errors between the analytical and numerical results are less than 1 % as shown
in Figs. 4.19-21 and table 4.1-3. Our formula for the O(%) correction of probability in
Hamming class, Eq. (4.64), is not the special case, and one can apply this formula for any
symmetrical distribution and fitness function. Furthermore, our results can be applied to
get accurate expression for the steady-state probability of Hamming class for the case of
large genome length, where the numerics cannot give the accurate results. In our model
we work with the mutation parameter v = N (1 — ¢), while in [52] the mutation parameter
i = N(1—q)/qhas been considered. Our expressions for the corrections of zero and first
order in % for the mean fitness is identical to the results derived in [52] by quantum field

theory.

5.3 SMAT Modelling

Experimentally, it is observed that the grain size is appreciably refined by SMAT, from
the initially about 20 zm down to less than 100 nm, as shown in Fig. 5.1(a) with a gradient
trend as viewed from the sample cross-section [47]. In parallel, the hardness increases
from the initial about 2.7 G Pa up to about 6.0 G Pa, as shown in Fig. 5.1(b) [47]. The

kinetic energy from the flying balls appear to effectively induce substantial internal or
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strain energy into the sample surface, increasing the dislocations and otherdefeets, réﬁning
the grain size, and raising the hardness. The ball speed can be estimated from Eg:: (}.59)
to be within the range of 5 ~ 10 m/s, and the kinetic energy for all the ﬂyipg t;alls can
also be estimated to be about 10 ~ 120 m.J. From the experimental results.in Fig. 5.1,
coupled with the estimated values based on the current analytical model, it appears that the
optimum speed for the 304 stainless steel might be around 8 ~ 10 m /s and the optimum
kinetic energy might be around 70 ~ 75 m.J. The adjustment of the SMAT parameters
will influence accordingly the speed (in Fig. 3.1), kinetic energy (in Fig. 3.2), flying time
period (in Fig. 3.3), power (in Fig. 3.4), and temperature profiles within the experienced
range of the samples (in Figs. 4.22-23).

In this model, we have made efforts in evaluating the temperature profile from the
bombarded surface to the sample inner portion (Figs. 4.22-23). This profile can be used
as a reference in assessing the experienced temperature at the particular sample depth. For
example, based on the calculated temperature in Fig. 4.23 for the 304 stainless steel, the
temperature at the depth of 200 pm from the surface would be 365 K or 92 °C.

The other parameter left would be the strain rate. In accordance with Eq. (4.78), the
strain rate would vary from 3x 10 ~ 5x 10% s~!. Taking the 4x 10 s~! as the mean value,
and 92 °C as the experienced temperature, we can incorporate into Eq. (4.74) to extract
the Zener-Holloman Z parameter, which is useful for estimate the materials microstructure
properties. For 304 stainless steel, the governing activation energy () should be related
to the Fe diffusion, and Q ~ 220 kJ/mol is a logical value [53, 54]. With the above
information and the gas constant R = 8.3 .J/ K, Z can be calculated to be 1.4 x 103! 571,
With the same calculation manner, we can estimate all values for various cross-sectional
positions of the SMAT sample, and plot the measured grain size and Zener-Holloman 72
parameter, as presented in Fig. 5.2.

Thus, for SMAT researchers, we can first design the SMAT working parameters (based
on the needs), and can calculate the resulting speed, temperature, strain rate, and energy
based on this model in Figs. 3.1-4 and Figs. 4.22-23. With all the information, we can es-

timate the grain size from the Zener-Holloman Z parameter based on Fig. 5.2. The current

108



approach and modelling nicely establish the link between the physics and t

material surface modifications.
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Appendix

.1 The Coefficient of Finite Difference

The following tables present the coefficients of the forward finite difference with space

h for several order accuracy in h.

Table 1: The coefficient table for the forward finite difference of f'(x).

Accuracy |  f(z) flx+h)| flx+2h) | f(x+3h)| f(xr+4h) | f(x + 5h)
O(h) -1 1
o(1?) —3/2 2 —1/2
O(R3) | —11/6 3 —3/2 1/3
oY | —25/12 4 —3 4/3 —1/4
O(R%) | —137/60 5 =5 10/3 —5/4 1/5

Table 2: The coefficient table for the forward finite difference of f”(z).

Accuracy | f(z) | f(x+h) | f(x+2h) | f(x+3h) | f(x+4h) | f(x + 5h)
O(h) 1 ) 1
O(h?) 2 —5 4 —1
O(R®) | 35/12 | —26/3 19/2 —14/3 11/12
O(hY) | 15/4 | —77/6 | 107/6 —13 61/12 —5/6

For example, the first derivative of f(x) with O(h?) accuracy is:

f'(x)

() + 3@+ ) — (@ +2h) + L@+ 3h)
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and the second derivative of f(x) with O(h?) accuracy is:

|
e

() ~ 2f(x) —5f(x + h) + 4f(x + 2h) — f(z + 3h) | 'y “:j

h? |

.2 The Power Series Expansion of Kummer’s Function

The expansion in power series for KummerM (a,b,x) with a > 0 and b > 0 near

z=0:

KummerM (a,b,x)

a ala+1) 5, ala+1)(a+2) ,
Yt e )T Taorner)”
ala+1)(a+2)(a+3) , ala+1)(a+2)(a+3)(a+4)
2460+ )b+ 2)(b+3)" " 1206(b + 1)(0 + 2)(b+ 3)(b + 4)

z® 4+ O(29).

The expansion in power series for KummerU (a, b, x) with b # Z near x = 0:

ala+1) ,

ra-» [1—1—2374— T ]

IFla—b+1) b 20(b+1)
roe—-1) 4 I+a—-10 (I14+a—-0b)(2+a—-0) 4
N R T S s ; oy 57 oy

KummerU(a,b,z) =
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Figures and Tables

(b)

Figure 1.1: (a) The desiged-dimension of chamber in the SMAT experiment. (b) The
schematic drawing showing that the sample material gains the heat and strain energy from
the kinetic energy loss of sample and flying balls.

> —>
Z dz

Figure 2.1: The Schematic of sample configuration.
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Figure 3.1: (a) The average speed of flying balls (in Eq. (3.59)) versus the SMAT ampli-
tude for the parameters, H = 20 mm, D = 3 mm, w = 407 krad/s, and 2= = 107°.
(b) The average speed of flying balls (in Eq. (3.59)) versus the SMAT angular frequency
for the parameters, H = 20 mm, D = 3 mm, A = 60 um, and ::i = 1079,
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Figure 3.2: (a) The variation trend of A E}, 14555 predicted by Eq. (3.60) as a function of ™%
for the parameters H = 20 mm, A = 60 pm, w = 407 krad/s, ™= = 1075, and e = 0. 25
(b) the variation trend of AEj .. s predicted by Eq. (3.61) as a functlon of ™ for the
parameters H = 20 mm, A = 60 pm, w = 407 krad/s, 7= = 10~ 6,ande = 0. 25 (c) the
variation trend of total energy loss, i.e., the sum of AE), ZD?S » and AEk, loss,s as a function

of ™t for the parameters H = 20 mm, A = 60 pm, w = 407 krad/s, = = 107, and
e= O 25.
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Figure 3.3: (a) The averaged time period of flying balls predicted by Eq. (3.64) versus
the SMAT amplitude for the parameters H = 20 mm, w = 407 krad/s, ™ = 10~ —6, and
e = 0.25. (b) The averaged time period of flying balls predicted by Eq. (3 64) Versus the
SMAT angular frequency for the parameters H = 20 mm, A = 60 pm, ;"> = 10~ 6, and
e =0.25.
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Figure 3.4: (a) The variation trend of P, predicted by Eq. (3.65) as a function of %
for the parameters H = 20 mm, A = 60 um, w = 407 krad/s, me =107 6 and
e = 0.25. (b) The variation trend of Py s predlcted by Eq. (3.66) as a function of - mb for
the parameters H = 20 mm, A = , o =107 6 ande = 0. 25 (c)
The variation trend of the total power loss 1.e., the sum of Pl;';s »and Ploss s as a function
of = for the parameters H = 20 mm, A = 60 pm, w = 407 k:md/s M — 1075, and
e= O 25.
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Figure 4.1: The mechanism for DNA-mRNA-protein process.
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Figure 4.2: The transition PDF for mRNA-protein process.
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Figure 4.3: The simulation for the dynamical state of PDF with parameters: a = 0.5 and
b=>5fromt =14 s ~ 4200 s.
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Figure 4.4: The simulation for the dynamical state of PDF with parameters: a = 0.5 and
b =15 from ¢ = 5600 s ~ 9800 s.
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Figure 4.5: The simulation at t = 25200 s for the dynamical state of PDF and analytical

solution with parameters: a = 0.5 and b = 5.
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Figure 4.6: The simulation from ¢ = 8 s ~ 1000 s for the dynamical state of PDF with
parameters: @ = 5 and b = 5.
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Figure 4.7: The simulation from ¢ = 1200 s ~ 2000 s for the dynamical state of PDF
and analytical solution with parameters: a = 5 and b = 5.
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Figure 4.8: The simulation from ¢t = 2400 s ~ 12000 s for the dynamical state of PDF
and analytical solution with parameters: a = 5 and b = 5.
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Figure 4.9: The simulation from ¢ = 40 s ~ 1000 s for the dynamical state of PDF with
parameters: a = 8 and b = 8.
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Figure 4.10: The simulation from ¢ = 1600 s ~ 9600 s for the dynamical state of PDF
and analytical solution with parameters: ¢ = 8 and b = 8.
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Figure 4.11: The steady-state of PDF for Eq. (4.11) with parameters: a = 2, k = 1, and
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Figure 4.12: The steady-state of PDF for Eq. (4.11) with parameters: a = 2, ¢ = 0.1,
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Figure 4.13:

‘ X
1.5 2

The simulation from ¢ = 0 ~ 4480 for the dynamical state of PDF and

analytical solution with parameters: a = 0.5, ¢ =2 x 107%, 95 =2 x 1073, and k = 1.
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Figure 4.14: The simulation from ¢ = 0 ~ 1200 for the dynamical state of PDF and
analytical solution with parameters: a = 0.5, e =2 x 1074, 75 =2 x 1073, and k = 1.
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Figure 4.15: The simulation from ¢ = 0 ~ 4320 for the dynamical state of PDF and
analytical solution with parameters: a = 2, ¢ = 2 x 107%, 75 =2 x 1073, and k = 1.
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Figure 4.16: The simulation from ¢ = 0 ~ 4000 for the dynamical state of PDF and
analytical solution with parameters: a = 2, ¢ =2 x 1074, v =2 x 1073, and k = 1.
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Figure 4.17: The simulation from ¢ = 0 ~ 1800 for the dynamical state of PDF and
analytical solution with parameters: a = 2, ¢ = 2 x 107, 75 = 2 x 1073, and k = 10.
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Figure 4.18: The simulation from ¢ = 0 ~ 1000 for the dynamical state of PDF and
analytical solution with parameters: a = 2, ¢ = 0.02, 75 = 2 x 1073, and k = 1.
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Figure 4.19: The probability distributions predicted by Eq. (4.65) and numerical results
with the fitness function and parameters: N = 100, f(m) = ™, and v = 1.
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Figure 4.20: The probability distributions predicted by Eq. (4.65) and numerical results

with the fitness function and parameters: N = 100, f(m) = 2™, and y = 2.
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Figure 4.21: The probability distributions predicted by Eq. (4.65) and numerical results
with the fitness function and parameters: N = 100, f(m) = ¢*™*, and y = 1.

Table 4.1: The comparison of our results among P(m), P;(m), and numerics for the

fitness function and parameters:

f(m)=e™ v=1,N = 100.

m 0.44 0.46 0.48 0.50 0.52 0.54
P(m) 0.0672 | 0.0738 | 0.0782 | 0.0798 | 0.0782 | 0.0735
Pi(m) ]0.0691 | 0.0748 | 0.0780 | 0.0784 | 0.0757 | 0.0702

Numerics | 0.0692 | 0.0749 | 0.0781 | 0.0785 | 0.0758 | 0.0703

Table 4.2: The comparison of our results among P(m), P;(m), and numerics for the
fitness function and parameters:

f(m) =e¥* =2 N =100.

m 0.44 0.46 0.48 0.50 0.52 0.54
P(m) 0.0672 | 0.0738 | 0.0782 | 0.0798 | 0.0782 | 0.0735
Pi(m) ]0.0720 | 0.0764 | 0.0782 | 0.0771 | 0.0730 | 0.0663

Numerics | 0.0721 | 0.0766 | 0.0783 | 0.0771 | 0.0730 | 0.0662

Table 4.3: The comparison of our results among P(m), P;(m), and numerics for the

fitness function and parameters: f(m) = 2™, v =1, N = 100.

m 0.68 0.70 0.72 0.74 0.76 0.78
P(m) 0.0722 | 0.0894 | 0.1036 | 0.1118 | 0.1117 | 0.1028
Pi(m) ]0.0744 | 0.0906 | 0.1033 | 0.1099 | 0.1086 | 0.0991

Numerics | 0.0746 | 0.0908 | 0.1036 | 0.1103 | 0.1089 | 0.0993
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Figure 4.22: The temperature distributions for pure Cu predicted by Eq. (4.69) for
narrow region near the surface in (a) and for wider region in (b) with the parameters
ko =401 W/m-K,q=0.772x 10® ~ 2.28 x 103 W/mm3, A, = 800 mm?, L = 1 mm,
I =5pum, T, =398 K, and T; = 358 K. The temperature distributions for 304 stainless
steel predicted by Eq. (4.69) for narrow region near the surface in (c¢) and for wider region
in (d) with the parameters k = 14.9 W/m - K, ¢ = 0.773 x 103 ~ 2.28 x 10> W/mm3,
Ay, =80 mm? L = 1mm,l =5 um, T, = 378 K, and T, = 318 K. The different
colored lines correspond to various percentages of kinetic energy loss which is converted

into the heat energy of sample.
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Figure 4.23: The temperature distributions for pure Cu predicted by Eq. (4.71) for
narrow region near the surface in (a) and for wider region in (b) with the parameters
ko =401 W/m-K,q = 0.772x 103 ~ 2.28 x 10> W/mm?3, A, = 800 mm?, L = 1 mm,
[ =5pum, T, =398 K, and T; = 358 K. The temperature distributions for 304 stainless
steel predicted by Eq. (4.71) for narrow region near the surface in (c) and for wider region
in (d) with the parameters k = 14.9 W/m - K, ¢ = 0.773 x 103 ~ 2.28 x 10°> W/mm?,
Ay =80 mm? L = 1mm,l =5 um, T, = 378 K, and T, = 318 K. The different
colored lines corresponds to various percentages of kinetic energy loss which is converted
into the heat energy of sample.
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Figure 5.1: (a) The cross-sectional SEM micrograph taken from the sample subject to
SMAT with the 2 mm flying balls and 40 pm SMAT amplitude. (b) The gradient variation
trend of hardness of selected SMAT 304 SS samples.
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Figure 5.2: The relationship between the resulting grain size and Zener-Holloman pa-
rameter with the sample processed by different SMAT conditions.
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