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Abstract

In macro, the method and concept of statistical physics can be a powerful

tool in analytical and numerical computation and applied to many fields such

as chemical reaction, bio-evolution, and material science. In our work, the

methods of statistical physics: chemical master equation (CME), Hamilton-

Jacobi equation (HJE), and canonical ensemble are used to calculate various

physical quantities. Our work is organized in three topics: the CME with

the Gaussian and compound Poisson noise, bio-evolution of Eigen model,

and energy conversion in the surface mechanical attrition treatment (SMAT)

experiment.

In the CME part, the chemical reaction among DNA, mRNA, and protein

can be regarded as a stochastic process. We consider the CME with com-

pound Poisson and Gaussian noises and obtain the exact solution of steady-

state probability density function (PDF) verified by the algorithm of forward

finite difference in large-scale time. Without Gaussian white noise, the solu-

tion of CME (set diffusion coefficient ϵ = 0) can be returned to that of CME

derived by Long Cai, et al.

In the bio-evolution part, we use the method of expansion in O( 1
N

) to

obtain the HJE for probability distribution in Hamming class which is applied

to calculate the correction of O( 1
N

) accuracy for the steady-state probability

distribution in Hamming class and mean fitness in Eigen model. The steady-

state distributions of O( 1
N

) correction are well-consistent with the Runge-

Kutta simulation with relative errors less than 1 %, while the mean fitness
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of O( 1
N

) is the same one derived by Michael Deem, et al. in quantum field

theory.

In the SMAT part, we consider the collisions among the 304-steel balls,

motor top, and chamber bottom, where the chamber or motor can be treated

as a hot reservoir. Since we assume that all the collisions among them are

elastic except the ball-sample collisions, the balls with negligible potential

among them can be regarded as the canonical ensemble. By this concept,

we construct the link for energy conversion among the motor top, sample

bottom, and balls, where the kinetic energy, heat energy, and internal energy

are included in the energy conversion. We also introduce the one-dimensional

heat equation with uniform-distributed heat source to obtain the temperature

distribution of sample, and we use this temperature distribution of sample

to connect the Zenner-Hollmann parameter and the heat energy and surface

hardness of sample.

Key words: chemical master equation, Gaussian white noise, compound

Poisson noise, bio-evolution, Eigen model, SMAT, collision, energy conver-

sion
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Chapter 1

Introduction

This chapter is organized as the three following topics: the chemical master equation,

bio-evolution, and SMAT experiment in a brief and general introduction. It makes the

connection and correspondence among the techniques and concepts of statistical physics.

Each section states the topic background and physical meaning of each equation.

1.1 Chemical Master Equation

The coupled chemical differential equations which are equivalent to a number of chem-

ical reactions are common model to describe the chemical reactions among molecules,

where such equations are described by variables: time-dependent concentration of each

molecule and constants of temperature-dependent reaction rate. The changes of concen-

trations with time can be modelled by differential equations with the large number of each

interacting molecules. In the same circumstance, two or more reactions can take place

simultaneously. The meaning for the collection of coupled ordinary differential equations

is that these reactions occur concurrently in the solution.

For the small number of interacting molecules, however, the simple deterministic pro-

cess breaks down. Molecules are collided by stochastic process (drift or diffusion) de-

scribed well by Ito lemma, so chemical reactions can’t well described by some simulta-

neous processes. With the introduction of probability density function (PDF), P (x, t),

in terms of concentration for each molecule at a given time, the time-evolution of PDF

1



represents that reactions take place randomly among any possible reactions.

In recent years, biophysicists have paid more attention to stochastic dynamics in cell

biology [1–6]. Friedman, Cai and Xie (FCX) obtained an partial differential equation

(PDE) to describe the steady-state PDF of protein concentration for living cells in gene

expression problem [1]. Losick and Desplan found that noises can induce cells to switch

between different gene states in their experiments [2]. Thus, the PDF of stochastic process

is a tool to describe stochastic reactions in cell biology.

From Itõ’s lemma [7], the total differential of concentration

dx = b(x)dt +
√

2ϵdB, (1.1)

, where B is the Brownian motion, we can derive the corresponding Kolmogorov forward

equation (KFE), i.e. the chemical master equation (CME),

∂P (x, t)
∂t

= ϵ
∂2P (x, t)

∂x2 − ∂

∂x
[b(x)P (x, t)], (1.2)

obeyed by PDF related to large deviation function or WKB expansion in quantum me-

chanics, P (x, t) = e
−1
ϵ

uϵ(x,t). The equation for large deviation function is:

∂uϵ(x, t)
∂t

= −[(∂uϵ(x, t)
∂x

)2 + b(x)∂uϵ(x, t)
∂x

]

+ ϵ[∂
2uϵ(x, t)

∂x2 + db(x)
dx

], (1.3)

which reduces to Hamilton-Jacobi equation (HJE) with ϵ = 0, where x is the time-

dependent concentration, and ϵ is a small perturbed constant. In classical mechanics (CM),

the right-handed term is negative Hamiltonian, and uϵ(x, t) is the generating function for

corresponding canonical transformation (CT).

For correspondence, we can consider a chemical reaction whose concentration x de-

scribed by ordinary differential equation (ODE),

dx

dt
= b(x), (1.4)

2



where the ODE can be re-written into Itõ’s lemma by the introduction of B white noise

after diffusive perturbation. Equation (1.4) is equivalent to Eq. (1.1) with ϵ = 0, and the

u(x, t) = limϵ→0uϵ(x, t) is called the principal function furnishing the entire family of or-

bits corresponding to Hamiltonian system in phase space. The corresponding Hamiltonian

has the form,

H(q, p) = p2 + b(q)p, (1.5)

which follows the equation of motion,

q̇ = ∂H

∂p
= 2p + b(q)

ṗ = −∂H

∂q
= −p

db(q)
dq

, (1.6)

and has the following Lagrangian,

L(q, q̇) = [pq̇ − H(q, p)]p= 1
2 (q̇−b(q)) = 1

4
(q̇ − b(q))2, (1.7)

which corresponds to the action functional,

S0[q(t); (0, q(0)) → (t, q(t))] =
∫ t

0
dτ

1
4

[dq(τ)
dτ

− b(q(τ))]2. (1.8)

This is equivalent to path integral in quantum mechanics by making the integration path

along imaginary axis in complex plane, and the probability of the system is proportional

to e−S0/ϵ0 which is exactly the probability for a path in stochastic dynamics in Eq. (1.4)

with ϵ = 0. For finite ϵ, the action functional generalized by Onsager and Machlup is

Sϵ = S0 + ϵ
2b′(q) [8–10].

On the other hand, the corresponding CME can be obtained by the chemical system

with n molecules,

∂P (n, t)
∂t

= N [R+(n − 1)P (n − 1, t)

+ R−(n + 1)P (n + 1, t) − [R+(n) + R−(n)]P (n, t)], (1.9)

3



where N is a large integer and a maximal allowed number of molecules, R+ is the growth

rate, and R− is the degradation rate. And the equation should be modified at the border.

Let us use the variable, x = n
N
, to re-write Eq. (1.9) in terms of x as

1
N

∂P (x, t)
∂t

= R+(x − 1
N

)P (x − 1
N

, t)

+ R−(x + 1
N

)P (x + 1
N

, t) − [R+(x) + R−(x)]P (x, t). (1.10)

With the largeness of N , x becomes continuous from discrete. By using the ansatz (Or

WKB method),

P (x, t) = exp[Nu(x, t)], (1.11)

to construct a equation for P (x, t). By using HJE with N → ∞ [11–15], the partial

differential equations can be solved exactly as the following steps:

∂u

∂t
+ H(x, u′) = 0,

H(x, u′) = [R+(x) − R−(x)]u′,

and the corresponding equation of motion for x:

ẋ(t) = ∂H

∂u′

= R+(x) − R−(x) = b(x), (1.12)

where u′ = ∂u
∂x
. The distribution variance has been derived in [15]:

b2(x)
∫ x

x0

c(y)
b3(y)

, (1.13)

where c(y) = R+(y) + R−(y). With these results, we can formulate new CME with

different process or noise.

The rest of CME topic is organized as follows: Firstly, we use HJE as a tool to in-

vestigate the physical of chemical system and solve the CME. Secondly, we introduce

the drift-diffusion process to generalize PDF for chemical reactions [16, 17], which de-
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scribes how to make the correspondence probability of chemical reaction by path integral

and formulate CME with white noise [18]. Finally, we introduce the hybrid model of

Gaussian and Poisson noise solved exactly and verified by the forward finite difference

simulation [19], and we make conclusion about this hybrid model.

1.2 Bio-evolution

It’s widely acknowledged that DNA can carry hereditary code to determine the life

performance, and it has the important influence on the reproduction and survival for each

specie. As we all know that the positive self-regulation or mutation of gene can help

species adapt to their surroundings for survival, and such processes called bio-evolution.

Exact bio-evolution results, the mean fitness, steady state distribution , and dynamics for

genes are obtained by the tool of statistical physics and mathematics [20], HJE method,

partial differential equation, and numerical simulation, which makes possibility to realize

the mechanism of virus or cancer evolution.

In past decades, the bio-evolution process of virus is described very well by the Eigen

and Crow-Kimura models for large population size or genome size [20–27]. In the two

models, the fractions of population for different types pi are described by a set of deter-

ministic partial differential equations. The corresponding HJE for the two models can be

obtained by expanding pi in the order of O( 1
N

), pi = exp (Nui), where N is the genome

length. Since N is possibly 40 ∼ 100 [28], it’s important to investigate the finite popula-

tion effect of 1
N
in a small N genome.

For the sake of simplicity, we can assume there are two different genotypes (denoted

as ±1) for each nucleotide, and the N -nucleotide genome has 2N types. We have the

following system of equations in Eigen model for each probability pi,

∂pi

∂t
=

2N∑
j=1

(Qij)rjpj − pi(
2N∑
j=1

rjpj), (1.14)

where the pi satisfies
∑

i pi = 1, the mean fitness ri is the mean number of offspring per

unit cycle for type i sequence, andmutation matrix with the mean nucleotide incorporation
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fidelity q is expressed as:

Qij = qN−dij (1 − q)dij , (1.15)

where dij is the Hamming distance (HD) between two sequences, Si and Sj , defined as:

dij = (N −
N∑

l=1
sl

is
l
j)/2, (1.16)

where sl
i is the spin with possible values ±1 at l-th site in Si. To simplify the HD between

sequences, we can choose a reference sequence S0 with all spins being +1. Without loss

of generality, sequences with the same number of −1 spin are assumed to have the same

probability, namely, it’s symmetrical distribution. Thus, 2N types are divided into N + 1

Hamming class, and the HD can be written as

dl0 = (N −
N∑

i=1
si

l)/2 = l, (1.17)

where 0 ≤ l ≤ N and l is the number of −1 spin for a sequence. With symmetrical

distribution, we can also assume the mean fitness ri in terms of m is symmetrical,

ri = f(m), (1.18)

where m = 1 − 2l
N

between ±1 called magnetization and f(m) is called the fitness

function. Therefore, the original Eigen model with 2N equations is transformed into

Eigen model with N + 1 equations with which is easy to be treated. This model with

pi = exp[Nu(m, t) + u1] expansion is lead to HJE equation as we did in CME and other

high order of 1
N
equations on which the work of finite correction is based.

The rest of bio-evolution topics is organized as follows: Firstly, we introduce Crow-

Kimura model and derive its some properties. Secondly, HJE is obtained by WKB expan-

sion of pi to investigate the characteristic of Crow-Kimura model, and then we develop

HJE method and derive some useful formula from Crow-Kimura model which can be a

useful tool for the finite correction of Eigen model. Finally, we solve Eigen model with

N + 1 class in O( 1
N

) accuracy, and it’s verified by the numerical simulation, Runge-Kutta
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method.

1.3 SMAT modelling

In traditional engineering treatments, shot peening by using steel balls to bombard onto

metal surfaces has been adopted to leave compressive residual strains within the affected

region in promoting the fatigue properties [29, 30]. The balls have typical diameters of

0.1 ∼ 2 mm and gain their speed by compressed air. Normally, these balls bombard the

metal surfaces in the frequency range of 20 ∼ 100 Hz and speed range of 50 ∼ 100 m/s.

A new physical treatment named ultrasonic surface mechanical attrition treatment

(SMAT) was firstly introduced in 1999 [31, 32]. The SMAT balls are accelerated and

bombarded by the ultrasonic motor on the chamber bottom, as shown in Fig. 1.1 (a).

The diameter and speed of flying balls and the bombarding frequency are in the range,

1 ∼ 10 mm, 1 ∼ 20 m/s, and 10 ∼ 100 kHz [33], respectively. The most important

feature is that the incident direction onto the metal surface can be designed to vary with

time lapse in making smaller grain size of metallic materials. This will lead to promising

properties of metals such as grain refinement and gradient structure. And researchers have

made extensive uses of this SMAT treatment on various metallic materials including pure

iron [34], stainless steel [35], and pure copper [36] inmaking gradient and nano-crystalline

structure [37–40].

Although SMAT has gradually developed into a matured engineering surface treat-

ment, never before has SMAT been treated with rigorous analytical modelling. Therefore,

a systematic SMAT model is actually needed. Here, we consider the interaction between

flying balls and chamber imagined as a canonical ensemble, where chamber is reservoir

giving balls the kinetic, internal, and heat energy. The chamber volume is much greater

than balls volume, so collision frequency between balls is small compared to that between

balls and chamber and balls interaction can be neglected. The motion of motor top is

characterized by longitudinal harmonic motion,

vm = 2Aπνsin(2πνt), (1.19)
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where vm is the velocity of motor top, A is the amplitude, and ν is the angular frequency.

To construct the relation of energy conversion between motor top and balls, the ball-motor

collision can be counted as elastic collision. Thus, the induced velocity of ball, vb, is

described by

vb = 2mmvm

mb + mm

≈ 2vm, mm >> mb, (1.20)

where mb and mm are the mass of each ball and motor. On the other hand, the ball-

sample collision is assumed to be inelastic collision with restitution constant e obeying

conservation of momentum,

e = v′
s − v′

b

vb − vs

, msvs + mbvb = msv
′
s + mbv

′
b, (1.21)

where ms and vs are sample mass and velocity, respectively.

The kinetic energy of flying balls is not conserved due to the inelastic ball-sample

collision. The kinetic energy loss for flying balls and sample in the SMAT chamber can

be mainly converted into three parts as indicated in Fig. 1.1 (b). Firstly, it is the strain

energy of sample due to the formation of dislocations and vacancies [41–43]. Secondly, it

is the heat energy of sample, where the heat flow and its temperature distribution are both

important factors for the resulting metal micro-structure [44]. Recrystallization might be

taken place in the sample while the experienced temperature reaches some critical values.

Finally, it would be the sonic energy and heat energy in the chamber originated from the

inelastic collisions between flying balls.

In SMAT topics, we have established connections among the parameters of flying

balls, the ball size, flying speed, the bombarding frequency and amplitude of motor mo-

tion, the height of chamber, and the energy and power of sample. During the SMAT

processing time, we can find the input energy and power of sample through these con-

nections. The condition for the frequency of flying ball reaching a stead speed can also

be obtained in this approach. For the heat energy of sample, we have introduced the one-

dimensional heat equation with the uniformly-distributed heat source to estimate the heat

flow and temperature distribution of sample which are hard to be measured in the SMAT
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experiment. With the temperature distribution of sample, we can make connection among

the strain rate, hardness, and grain size of sample. With these connections and modelling,

one can find an optimized approach to the mechanical performance of metal surface via

the SMAT experiment.
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Chapter 2

Basic theory for CME, Bio-evolution,

and SMAT

2.1 Hamilton-Jacobi Equation

In Classical Mechanics (CM) [45], theoretical physicists use independent variable of

position x and momentum p for each particle in constructing Hamiltonian to characterize

the particle dynamics, where the correspond equation of motion constructed by Hamilto-

nian for x and p is the Hamilton equation. To simplify the equation of motion, we prefer

the physical system in which all of the generalized coordinates or all of the canonical mo-

mentums are cyclic, namely, Hamiltonian with respect to x and p is a constant. To achieve

the goal, a canonical transformation (CT) under which the equation of motion is invariant

should be found, and any CT corresponds to a generating function consisted of half new

and half old generalized coordinates. Here comes the Hamilton-Jacobi equation (HJE)

which generating function satisfies.

In stochastic dynamics, a fictitious Hamiltonian which is similar to that of CM as a

tool to formulate the Lagrangian and the action functional by using the WKB expansion,

P (xt, t) = e− 1
ϵ

uϵ(xt,t) with small ϵ, where ϵ results from diffusion. And such WKB expan-

sion we use in bio-evolution is P (x, t) = eNu(x,t) with large N , where the N is genome

length or population size. It’s obviously that both expansions are mathematically equiva-
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lent for small ϵ or large N . In our work for CME or bio-evolution, we put such expansion

into the equation of motion (KFE or evolution model) with condition ϵ → 0+ or N >> 1

to get the HJE for u. As ϵ → 0+ or N >> 1, limϵ→0+ uϵ(xt, t) is called the large deviation

rate function in probability theory [46] or the principal function in CM [45]. The large

deviation rate function asymptotes the behaviour of P (xt, t) as ϵ → 0+ or N → ∞, and

the principal function furnishes the entire family of orbits corresponding to a Hamiltonian

system in phase space.

In our research, HJE in chemical reaction derives the path probability of each reaction

while HJE in bio-evolution derives a series of equation for finite correction ofO( 1
N

). Here

we give some derivation and introduction to HJE in CM.

2.1.1 Canonical Transformation

In CM, the form of Hamilton’s equations are invariant under canonical transformation

(CT) and Hamilton’s principle states that the most possible track of classical systemmakes

the corresponding action functional minimized. Thus, we have the variation of action

functional is 0 over the most possible track:

δ
∫ t2

t1
L(q, q̇, t)dt = 0,

δ
∫ t2

t1
L′(q, q̇, t)dt = 0,

δ
∫ t2

t1
[piq̇i − H(q, p, t)]dt = 0,

δ
∫ t2

t1
[PiQ̇i − K(q, p, t)]dt = 0,

which implies:

λ[piq̇i − H(q, p, t)] = PiQ̇i − K(q, p, t) + dF

dt
,

where q and p are old generalized coordinates, Q and P are new generalized coordinates,

L, L′, H , and K are the corresponding Lagrangian respectively, λ is a scale constant, and

F is corresponding generating function in terms of half new and half old coordinates. For
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the λ = 1 case, it’s the case called CT in CM. With λ = 1, the equation becomes:

piq̇i − H(q, p, t) = PiQ̇i − K(q, p, t) + dF

dt
, (2.1)

where F called the generating function has four basic forms by [45],



F = F1(q, Q, t)

F = F2(q, P, t) − PiQi

F = F3(p, Q, t) + piqi

F = F4(p, P, t) + piqi − PiQi

. (2.2)

2.1.2 Hamilton-Jacobi Equation

We start the derivation of Hamilton-Jacobi equation (HJE) from Eq. (2.1) and put the

generating function F2 in Eq. (2.2) to arrive:

piq̇i − H(q, p, t) = PiQ̇i − K(Q, P, t) + dF

dt

= PiQ̇i − K(Q, P, t) + ∂F2

∂t
+ ∂F2

∂qi

q̇i + ∂F2

∂pi

ṗi − ṖiQi − PiQ̇i

= −K(Q, P, t) − ṖiQi + ∂F2

∂t
+ ∂F2

∂qi

q̇i + ∂F2

∂pi

ṗi.

Then we rearrange it and have the equation:

[H(q, p, t) + ∂F2

∂t
− K(Q, P, t)] + (∂F2

∂qi

− pi)q̇i + (∂F2

∂Pi

− Qi)Ṗi = 0, (2.3)

where q̇i and Ṗi are separated independently. Since the three terms in Eq. (2.3) are inde-

pendent of each other, the three terms must be 0 to hold the equality. Therefore,

∂F2

∂qi

= pi,
∂F2

∂Pi

= Qi,

H(q, p, t) + ∂F2

∂t
= K(Q, P, t). (2.4)
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To make all generalized coordinates cyclic, we can set K(Q, P, t) = 0. And the corre-

sponding Hamilton’s equations are:

Q̇i = ∂K

∂Pi

= 0,

Ṗi = − ∂K

∂Qi

= 0,

which means that all generalized coordinates are constants of motion. On the other hand,

making K(Q, P, t) = 0 gives the corresponding equation for F2:

H(q, p, t) + ∂F2

∂t
= 0,

→ H(q⃗,
∂F2

∂q⃗
, t) + ∂F2

∂t
= 0, (2.5)

where Eq. (2.5) is called Hamilton-Jacobi equation and F2 is the Hamilton’s principal

function in CM which is the counterpart of u(x, t) in stochastic dynamics. To investigate

the physical meaning of F2, we can take its total differential with respect to t:

dF2

dt
= ∂F2

∂qi

q̇i + ∂F2

∂Pi

Ṗi + ∂F2

∂t

= piq̇i − H(q, p, t) = L(q, q̇, t),

and then we integrate dF2
dt

back with respect to t:

F2 =
∫ t

t0
L(q, q̇, t′)dt′,

which states that the Hamilton’s principal function F2 is equivalent to action functional.

Thus, in physics, solving the HJE is equivalent to solve the variation equation of action

functional, Euler-Lagrange equation.

2.1.3 HJE Application in CME

The HJE method in CM has been well developed for hundreds years, and it is a power

and analytical tool to investigate the characteristic of physical system in macro. Thus, we
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want to develop the HJEmethod in CME to help us realize the mechanism of chemical sys-

tem. As stated in previous sections, the principal function u(x, t) in stochastic dynamics

is similar to the role of generating function in CM. Here we introduce a fictitious Hamil-

tonian corresponding to HJE in CME. In the introduction of CME, we have the following

CME for general chemical system with n molecules:

∂P (x, t)
N∂t

= R+(x − 1
N

)P (x − 1
N

, t) + R−(x + 1
N

)P (x + 1
N

, t)

− [R+(x) + R−(x)]P (x, t), (2.6)

where N is the maximally-allowed number of molecule, x = n
N
, and R+ and R− are the

rate of generation and degradation. By Taylor expansion with largeness of N at x and

P (x, t) = exp [Nu(x, t)], we have:

R+(x − 1
N

) ≈ R+(x) − 1
N

∂R+(x)
∂x

,

R−(x + 1
N

) ≈ R−(x) + 1
N

∂R−(x)
∂x

,

P (x ∓ 1
N

, t) ≈ P (x, t) ∓ 1
N

∂P (x, t)
∂x

= P (x, t)[1 ∓ ∂u(x, t)
∂x

],

∂P (x, t)
∂t

= N
∂u(x, t)

∂t
P (x, t).

Put these expansions above into Eq. (2.6) to get the equation of zero order in 1
N
:

∂u

∂t
P (x, t) = [R+(x)(1 − ∂u

∂x
) + R−(x)(1 + ∂u

∂x
) − (R+(x) + R−(x))]P (x, t), (2.7)

and divide both sides of Eq. (2.7) by P (x, t) and let u′ = ∂u
∂x

to obtain:

∂u

∂t
+ [R+(x) − R−(x)]u′ = ∂u

∂t
+ H(x, u′) = 0. (2.8)

Equation (2.8) has the exact form of HJE, where u corresponds to generating function in

CT and H corresponds to Hamilton in CM. Thus, the fictitious Hamiltonian and equation
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of motion are shown as:

H(x, u′) = [R+(x) − R−(x)]u′,

˙x(t) = ∂H(x, u′)
∂u′ = R+(x) − R−(x) = b(x),

where b(x) = R+(x) − R−(x). It is reasonable for chemical reaction of zero order whose

concentration obeys the ordinary differential equation. And the variance of P (x, t) has

been derived in [15]:

b2(x)
∫ x

x0

c(y)
b3(y)

dy, (2.9)

where c(y) = R+(y) + R−(y) and x0 is the reference point. Therefore, each chemical

system actually corresponds to a fictitious Hamiltonian system derived from CME of each

chemical system.

2.2 Diffusion Process

Stochastic or random process is always related to diffusion process which can be traced

back to Brownian motion. The random motion of particles suspended in water and re-

ported by Robert Brown in 1827 is known as Brownian motion or Wiener process, which

is the most important case in stochastic process. Some scientists in earlier periods con-

sidered that Brownian motion is caused by living cells, and Poincaré thought this motion

violates the second law of thermodynamics. Now scientists consider that such molecule

motion is induced by the continuous collision of molecules around them. For general sit-

uation, a specific molecule undergoes 1020 collisions per second. In 1905, Albert Einstein

described Brownian motion in term of PDF equation by the kinetic molecular theory. He

proved that the PDF motion satisfied the following partial differential equation (PDE),

∂P

∂t
= D

∂2P

∂x2 , (2.10)
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where the positiveD is a diffusion coefficient and x is the particle position. By changing of

variables, y = x√
2D
, the PDE equation can be transformed into the form of heat equation:

∂P

∂t
= 1

2
∂2P

∂x2 , (2.11)

whose well-known solution is

P (x, t) = 1√
4πDt

exp[−(x − x0)2

4Dt
], (2.12)

where x0 is the mean position of particle, t is the time, and it is Gaussian distribution for

any given time.

Kiyoshi Itõ, a Japanese mathematician, came up a good idea to describe the drift-

diffusion process by Itõ’s lemma:

dXt = µ(Xt, t)dt + σ(Xt, t)dBt, (2.13)

which states that the random variable dBt makes an impact on other deterministic variables

in a small time interval ∆t; the expectation value E[dXt] is unchanged for an entire cycle.

The derivatives of Itõ’s lemma is the stochastic differential equation which is widely used

in financial and biological physics. From Itõ’s lemma, we also derive the equation of

motion for PDF, Kolmogorov forward equation (KFE), which is substantial to many fields

related to stochastic process.

2.2.1 Brownian Motion

Brownian motion is the process of foundation for various stochastic processes, and

here we derive it from central limit theorem. Considering one particle, it undergoes a

collision to step ∆x displacement after a time-interval ∆t which is independent of the

particle position. Also we consider the probabilities of stepping∆x and−∆x are p and 1−

p respectively. With largeness of container volume, particles are far away from container

border. The particle motion can be treated as the independent 1D-random walk. The
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particle location at a specific time t, X(t), is expressed as:

X(t) = ∆x(I1 + I2 + ... + I[ t
∆t

]), (2.14)

where the Ii is 1 or −1 depending on i-th displacement which is +∆x or −∆x, [ ] is the

Gauss function, and the corresponding probabilities for different displacement (±∆x) are:

P (Ii = 1) = p, P (Ii) = 1 − p. (2.15)

To simplify the derivation of Brownian motion, we can set the following variables:

∆x = σ
√

∆t, p = 1
2

+
√

∆t

2σ
µ,

n = lim
∆t→0

[ t

∆t
] = lim

∆t→0

t

∆t
. (2.16)

We can prove Eq. (2.16) by sandwich theorem:

t

∆t
≥ [ t

∆t
] ≥ t

∆t
+ 1,

∵ lim
∆t→0

t

∆t
+ 1 = lim

∆t→0

t + ∆t

∆t
= lim

∆t→0

t

∆t
,

∴ lim
∆t→0

[ t

∆t
] = lim

∆t→0

t

∆t
. (2.17)

We have the expectation value of Ii∆x,

E[Ii∆x] = p × ∆x + (1 − p) × (−∆x)

= (1
2

+
√

∆t

2σ
µ − 1

2
+

√
∆t

2σ
µ)σ

√
∆t

= µ∆t, (2.18)

and the variance of Ii∆x,

V [Ii∆x] = E[(Ii∆x)2] − E2[Ii∆x]

= E[∆x2] − µ2(∆t)2 = (σ2 − µ2∆t)∆t,
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where µ and σ are both time-independent constants. For p = 1
2 case, the E[Ii∆x] = 0 and

V [Ii∆x] = σ2∆t. Therefore, the expectation value and variance of X(t) for p = 1
2 case

are:

E[X(t)] = nE[Ii∆x] = 0,

V [X(t)] = nσ2∆t = σ2t,

and the position distribution of particle can be derived from central limit theorem as∆t →

0:

z = X(t) − nµ∆t

σ
√

n∆t
= X(t) − X0

σ
√

t
→ 1√

2π
e

−z2
2 ,

→ 1√
2π

exp [−(X(t) − X0)2

2σ2t
] → N(X0, σt), (2.19)

whereN(X0, σt) is theGaussian distributionwith expectation valueX0 = µt and variance

σ2t for a given time t. The motion with µ = 0 and σ2 = 1 is called standard Brownian

motion (SBM). Since any Brownian motion can be transformed into SBM, only SBM

have to be taken into account. Thus, such SBM lead to the important conclusion that each

particle position is normally distributed with expectation value 0 and variance 1.

2.2.2 Itõ’s Lemma

In previous sections, the deterministic term µ which is so-called drift term is interfered

by non-deterministic term σ which is so-called diffusion term, and any drift-diffusion

process is well described by Itõ’s lemma. In physics, we also have the corresponding

counterpart that the specific track of each quantum particle is unpredictable due to the

wave-particle property, so do we have deterministic term (mean particle position) and

non-deterministic term (track). For the total differential of any function f(x, t) in terms

of x and t with the influence of Bt, the useful consequence,

df(x, t) = (µ∂f

∂x
+ σ2

2
∂2f

∂x2 + ∂f

∂t
)dt + σ

∂f

∂x
dBt, (2.20)
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can be derived from Itõ’s lemma. Before proving the formula above, we need to prove the

equality:

dB2
t = dt. (2.21)

To prove this, we at first set S with tn = t as:

S = lim
n→∞

n∑
k=1

(Btk
− Btk−1)2, (2.22)

where Btk
− Btk−1 is Brownian motion in the time interval, ∆t = tk − tk−1, and Btk

−

Btk−1 = dBtk
and ∆t = tk − tk−1 = dt in the case of n → ∞. Then we take the

expectation of S:

E(S) = lim
n→∞

n∑
k=1

(Btk
− Btk−1)2

= lim
n→∞

n∑
k=1

E[(Btk
− Btk−1)2]]

= lim
n→∞

n∑
k=1

(tk − tk−1) = t, (2.23)

and the variance of S:

V (S) = lim
n→∞

n∑
k=1

V [(Btk
− Btk−1)2]

= lim
n→∞

n∑
k=1

{E[(Btk
− Btk−1)4] − E2[(Btk

− Btk−1)2}

= lim
n→∞

n∑
k=1

[3(tk − tk−1)2 − (tk − tk−1)2]

= lim
n→∞

n∑
k=1

2(tk − tk−1)2,
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where here we have used the result,
∫∞

−∞ x4N(0, ∆t)dx = 3∆t2 = 3(tk − tk−1)2. We can

derive V (S) = 0 as follows:

V (S) = lim
n→∞

n∑
k=1

2(tk − tk−1)2

≤ lim
n→∞

2 max
k

(tk − tk−1)
n∑

k=1
(tk − tk−1)

= 2t lim
n→∞

max
k

(tk − tk−1) = 0. (2.24)

As n → ∞, the corresponding integral to E(S) is:

E(S) =
∫ t

0
dB2

t′ = t, (2.25)

which states dB2
t = dt, and V (S) = 0 implies that dB2

t is a measurable variable. Thus,

we can immediately deduce that dB2
t = dt. On the other hand, we have the corresponding

counterpart in quantummechanics, Heisenberg Uncertainty Principal, which states: If two

physical observables are measured simultaneously, their commutator is 0. Here comes the

simple proof from this principle,

[dB2
t , dt] = 0 → dB2

t = cdt,

dt = E[dB2
t ] = cE[dt] = cdt,

→ c = 1, ∴ dB2
t = dt, # (2.26)

where c is a phase constant. Now we turn to derive Eq. (2.20) by this equality. We have

the following Taylor expansion near (x, t) point,

f(x + ∆x, t + ∆t) ≈ f(x, t) + ∂f

∂x
∆x + ∂f

∂t
∆t

+ 1
2!

∂2f

∂x2 (∆x)2 + ∂f

∂x

∂f

∂t
∆t∆x + 1

2!
∂2f

∂t2 (∆t)2.

From Eq. (2.13), we also have:

∆x = µ∆t + σ∆Bt.
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Subtract f(x, t) from the both sides of Taylor expansion to obtain the ∆f :

∆f = f(x + ∆x, t + ∆t) − f(x, t)

≈ ∂f

∂x
(µ∆t + σ∆Bt) + ∂f

∂t
∆t + 1

2
∂2f

∂x2 (µ∆t + σ∆Bt)2

+ ∂f

∂x

∂f

∂t
(µ∆t + σ∆Bt)∆t + 1

2
∂2f

∂t2 (∆t)2

≈ (µ∂f

∂x
+ ∂f

∂t
)∆t + σ2

2
∂2f

∂x2 ∆B2
t + σ

∂f

∂x
∆Bt,

where the approximation has ignored the high order terms, and take the expectation of

∆f :

E[∆f ] ≈ (µ∂f

∂x
+ ∂f

∂t
+ σ2

2
∂2f

∂x2 )∆t.

Under the condition of ∆t → 0, the higher order terms of ∆t disappears. And the random

part of f changes is:

∆f − E[∆f ] ≈ σ
∂f

∂x
∆Bt.

Thus, the total differential of f is obviously:

df = (µ∂f

∂x
+ ∂f

∂t
+ σ2

2
∂2f

∂x2 )dt + ∂f

∂x
dBt.# (2.27)

From this equation, it’s not hard to discover that if dx is a drift-diffusion process, then so

does the f(x, t) be.

2.2.3 Kolmogorov Forward Equation

As we all know that in classical or quantum mechanics, we need a universal equation

of motion for physical observable to describe the system characteristic, and Kolmogorov

forward equation (KFE) is the equation ofmotion for PDF in drift-diffusion process, which

is the foundation of CME. Here we start with an arbitrary fixed function f(x) on the

interval [a, b] to check how the following expectation will change over an infinitesimal
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increment of time ∆t:

Ef (t) =
∫ b

a
f(x)P (x, t)dx,

∆Ef (t) = Ef (t + ∆t) − Ef (t)

=
∫ b

a
f(x)∂P (x, t)

∂t
∆tdx. (2.28)

With the Eq. (2.20) aid, we can obtain:

∆Ef (t) ≈
∫ b

a
dxP (x, t)

∫
∆Bt

[(µ∂f

∂x
+ σ2

2
∂2f

∂x2 )∆t + σ
∂f

∂x
]∆Bt,

and take its integration over all Brownian paths for every x at a given time t to arrive:

∆Ef (t) ≈
∫ b

a
P (x, t)(µ∂f

∂x
+ σ2

2
∂2f

∂x2 )∆tdx, (2.29)

where the contribution of Brownian motion is 0 by its definition. From Eq. (2.29) and Eq.

(2.30), we have:

∫ b

a
P (x, t)(µ∂f

∂x
+ σ2

2
∂2f

∂x2 )dx =
∫ b

a
f(x)∂P (x, t)

∂t
dx,∫ b

a
[∂P (x, t)

∂t
f(x) − P (x, t)(µ∂f

∂x
+ σ2

2
∂2f

∂x2 )]dx = 0. (2.30)

Without loss of generality, we can set the following boundary conditions for f(x),

f(a) = f(b) = f ′(a) = f ′(b) = 0.

In physical world, physical observables always disappear at boundaries. If f(x) didn’t

satisfy the boundary condition, we could let a → −∞ and b → ∞ to makeP (±∞, t) = 0,

where it’s equivalent to set f(±∞) = 0. Next, we can apply integration by part into each
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term of Eq. (2.30):

∫ b

a
µ

∂f

∂x
P (x, t)dx = [µf(x)P (x, t)]

∣∣∣∣∣
b

a

−
∫ b

a
f(x) ∂

∂x
[µP (x, t)]dx

= −
∫ b

a
f(x) ∂

∂x
[µP (x, t)]dx, (2.31)

∫ b

a

σ2

2
P (x, t)∂2f

∂x2 dx = [σ
2

2
P (x, t)∂f

∂x
]
∣∣∣∣∣
b

a

−
∫ b

a

∂f

∂x

∂

∂x
[σ

2

2
P (x, t)]dx

= −f(x) ∂

∂x
[σ

2

2
P (x, t)]

∣∣∣∣∣
b

a

+
∫ b

a
f(x) ∂2

∂x2 [σ
2

2
P (x, t)]dx

=
∫ b

a
f(x) ∂2

∂x2 [σ
2

2
P (x, t)]dx. (2.32)

Then, we put Eqs. (2.31-32) results into Eq. (2.30) to obtain:

∫ b

a
f(x)[∂P (x, t)

∂t
+ ∂

∂x
[µP (x, t)] − ∂2

∂x2 [σ
2

2
P (x, t)]]dx = 0.

Since f(x) is an arbitrary function over interval [a, b], the terms inside the integration

should be 0,

∂P (x, t)
∂t

+ ∂

∂x
[µP (x, t)] − ∂2

∂x2 [σ
2

2
P (x, t)] = 0, # (2.33)

where the PDE of second order, Eq. (2.33), is called Kolmogorov forward equation (KFE)

or Fokker-Planck equation.

2.3 Bio-evolution Model

In statistical physics of magnetism, statistical physicists make a good use of Ising

model with letters to investigate the phase transition of magnetism. And in bio-evolution

model, bio-physicists apply Ising model with two-letters (± 1) to investigate the evolution

dynamics and steady-state distribution for different genotypes. Usually, scientists in evo-
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lution consider the N -length genome with two-letters (± 1) as shown in the illustration:

(+, +, +, +, −, −, −, +), N = 7,

(+, +, −, −, +, +, −, +, +), N = 8,

⇒ (si
1, si

2, ..., si
k, ..., si

N), (2.34)

where si
k with ±1 possible values is the k-th spin in type i sequence or configuration. For

a given length N , the genome or sequence has 2N possible configurations. To express the

gene distribution well, biologists introduce the gene frequency to describe the dynamics of

genome evolution through selection or mutation. The gene frequency has two expressions:

absolute or relative frequency. Take the N = 2 genome with two-letters and 4 possible

configurations for an example:

i = 0 : (+, +), i = 1 : (−, +), i = 2 : (+, −), i = 3 : (−, −),

(+, +), (+, +), (+, +), (+, −), (+, −), (−, −), (−, −), (−, −),

where the absolute frequency pi for type 0 ∼ 3 is p0 = 3,p1 = 0,p2 = 2, and p3 = 3 and

the relative frequency Pi for type 0 ∼ 3 is P0 = 3
8 ,P1 = 0,P2 = 1

4 , and P3 = 3
8 . Therefore,

the relation between pi and Pi is:

Pi =
2N∑
j=0

pi

pj

. (2.35)

The gene adaptivity to their surroundings make an impact on the number of gene offspring

in which scientists are interested, so they define the fitness ri for type i sequence which

is the mean number of gene offspring per unit cycle. To model the interaction between

different sequences, the Hamming distance (HD) between different sequences i and j is

defined as:

dij = (N −
∑
k=1

sk
i sk

j )/2. (2.36)
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It’s not hard to find that Hamming distance is the spin difference between any two se-

quences.

Crow-Kimura and Eigen model which describe molecular evolution are the most fa-

mous model in bio-evolution governing the dynamics of probability distribution for each

type of sequence. This section introduces briefly the two models in mathematical expres-

sion and explains each term defined in two models in a detail.

2.3.1 Crow-Kimura Model

Crow and Kimura in 1968 proposed firstly the Crow-Kimura model formulated by

molecular evolution for i and j type sequence, and the model is:

∂Pi

∂t
= Pi(ri −

2N∑
j=1

rjPj) +
2N∑
j=1

mijPj, (2.37)

where Pi satisfies
∑2N

i=1 Pi = 1 and the element of mutation matrix mij is:



mij = γ0, dij = 1,

mii = −Nγ0, dii = 0,

mij = 0, dij > 1,

(2.38)

where γ0 is the transition rate of mutation. For a given sequence with genome length N , it

has N neighbourhoods with HD dij = 1, so the sum of all transition rate for any sequence

is zero:

N × γ0 + (−Nγ0) = 0.

With such mij matrix, it means that only one-step mutation takes place in the evolution.

Just like in Ising model, the gene mutation only happens for the two parallel site with

different spins as indicated in the following:

(+, −)(+, +) ⇒ (+, +)(+, +) or (+, −)(+, −).
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As a matter of fact, Crow-Kimura model is equivalent to Ising model with two-valued

(±1) spin.

To simplify the Crow-Kimura model, the second term on the right-handed side of Eq.

(2.37) called dilution term,

−Pi

2N∑
j=1

rjPj,

can be ignored by the non-linear transformation of Eq. (2.35) in mapping Pi into pi. We

have the following equation for the fitness:

ri = ni

∆t
, (2.39)

where ni is the number of gene offspring for type i and ∆t is time of a cycle, and the

change of pi with respect to ∆t is:

∂pi

∂t
= ∆pi

∆t
=

[nipi + (∑j mij∆tpj) + pi] − pi

∆t

= nipi

∆t
+
∑

j

mijpj

= ripi +
∑

j

mijpj. (2.40)

With Eq. (2.39-40) aid, we can verify that Eq. (2.37) is equivalent to Eq. (2.40):

∂Pi

∂t
= 1∑

j pj

∂pi

∂t
− pi

(∑j pj)2

∑
j

∂pj

∂t
,

Pi(ri −
2N∑
j=1

rjPj) +
2N∑
j=1

mijPj

= ripi∑
j pj

− pi

(∑j pj)2

2N∑
j=1

rjpj + 1∑
j pj

2N∑
j=1

mijpj.

Therefore, the right-handed side of Eq. (2.37) becomes:

1∑
j pj

(ripi +
2N∑
j=1

mijpj) − pi

(∑j pj)2 (
2N∑
j=1

rjpj +
2N∑
j=1

2N∑
i=1

mjipi),

= 1∑
j pj

(ripi +
2N∑
j=1

mijpj) − pi

(∑j pj)2

2N∑
j=1

rjpj, # (2.41)
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where recall that the total sum of mji is
∑

j mij = 0.

In addition, Crow-Kimura model is invariant under the transformation for fitness:ri →

r′
i = ri + c, where c is an arbitrary constant. This can be proved by taking summing all

i-index on the both sides of Eq. (2.37):

2N∑
i=1

∂Pi

∂t
=

2N∑
i=1

Pi[(ri + c) −
2N∑
j=1

(rj + c − c)Pj] +
2N∑
i=1

2N∑
j=1

mijPj,

2N∑
i=1

∂Pi

∂t
=

2N∑
i=1

Pi[r′
i −

2N∑
j=1

r′
jPj)] +

2N∑
i=1

2N∑
j=1

mijPj + c(
2N∑
j=1

Pj −
2N∑
i=1

Pi),

2N∑
i=1

∂Pi

∂t
=

2N∑
i=1

Pi[r′
i −

2N∑
j=1

r′
jPj)] +

2N∑
i=1

2N∑
j=1

mijPj,

→ ∂Pi

∂t
= Pi[r′

i −
2N∑
j=1

r′
jPj)] +

2N∑
j=1

mijPj.#

This result means that we can choose any value for ri at reference point without changes

of Crow-Kimura model.

2.3.2 Eigen Model

The quasispecies or Eigen model in 1977 was firstly formulated byManfred Eigen and

put forward by Peter Schuster from Eigen’s initial work. The Eigen model with genome

length N without degradation term is the following equation:

∂Pi

∂t
=

2N∑
j=1

QijrjPj − Pi(
2N∑
j=1

rjpj), (2.42)

where Pi is the relative frequency for type i sequence and the element of mutation matrix

is:

Qij = qN−dij (1 − q)dij , (2.43)

where q is themean nucleotide incorporation fidelity and dij is Hamming distance between

type i and j sequence. It’s obvious to find that Qij ̸= 0 for any value of dij . With such

mutation matrix, it means that multiple-step mutation takes place in a given sequence. The

1 − q meaning in such transition process is the probability to copy a nucleotide without
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error. As shown in previous section, the second term on the right-handed side of Eq. (2.42)

called dilution can be ignored by the mapping: Pi = ∑
j

pi

pj
, which lead to the equation:

∂pi

∂t
=

2N∑
j=1

Qijrjpj. (2.44)

2.4 Collision and Heat Equation

In the SMAT experiment, engineers are interested in energy conversion from kinetic

energy to strain and heat energy in a SMAT sample. The energy conversion enhances

the mechanical properties of sample such as the hardness and fatigue improvement on the

sample surface. The energy conversion at first in SMAT is the kinetic transferring between

304 steel balls and motor top. Since the motor mass is millions-time ball mass, the ball-

motor collision can be taken as elastic. After balls accelerated by motor, the collision

between 304 steel balls and sample bottomwill take place in a short time. Since the sample

mass is not as large as motor mass, the ball-sample collision should be counted as inelastic.

This is key to the loss of kinetic energy for balls which will transform into the heat and

internal energy of sample. The resulting heat energywill increase the probability of sample

recrystallization which is an important process related to the strain and hardness of sample.

Thus, it’s necessary to model the heat equation of sample to estimate the distribution of

sample temperature and heat flow in sample.

2.4.1 Collision

The conservation of momentum for a physical system has been widely used for hun-

dreds years in collisions. We can write down the equation for two-particle collision:

m1v1 + m2v2 = m1v
′
1 + m2v

′
2,

m1(v1 − v′
1) = −m2(v2 − v′

2), (2.45)
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where m1 and m2 is the mass of particle 1 and 2, v1 and v2 is the velocity of particle 1

and 2 before collision, and v′
1 and v′

2 is the velocity of particle 1 and 2 after collision. If

the total kinetic energy is conserved after collision, Eq. (2.45) should add the following

constraint:

1
2

m1v
2
1 + 1

2
m2v

2
2 = 1

2
m1v

′2
1 + 1

2
m2v

′2
2 ,

m1(v2
1 − v′2

1 ) = −m2(v2
2 − v′2

2 ). (2.46)

Such collisions with the Eq. (2.46) constraint are named elastic collision. And we can

investigate the relation between v1,2 and v1,2 by dividing Eq. (2.46) by Eq. (2.45) to

obtain:

v1 + v′
1 = v2 + v′

2,

v1 − v2 = v′
2 − v′

1,

→ v′
2 − v′

1
v1 − v2

= 1. (2.47)

Thus, scientists in classical physics introduced the restitution constant e = v′
2−v′

1
v1−v2

to judge

whether the collision is elastic or not. With the introduction of e, v′
1 and v′

2 can be obtained

as a function of e, m1,2, and v1,2 as follows:

v′
2 = e(v1 − v2) + v′

1,

m1v
′
1 = −m2v

′
2 + m1v1 + m2v2

= (m1 − em2)v1 + (1 + e)m2v2 − m2v
′
1.

Therefore,

v′
1 = m1 − em2

m1 + m2
v1 + (1 + e)m2

m1 + m2
v2,

v′
2 = (1 + e)m1

m1 + m2
v1 + m2 − em1

m1 + m2
v2, (2.48)
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where 0 ≤ e < 1 corresponds to the inelastic collision and e = 1 corresponds to elastic

collision:

v′
1 = m1 − m2

m1 + m2
v1 + 2m2

m1 + m2
v2,

v′
2 = 2m1

m1 + m2
v1 + m2 − m1

m1 + m2
v2. (2.49)

Therefore, the loss of kinetic energy for two particles due to inelastic collision between

them is:

∆Ek = 1
2

m1v
2
1 + 1

2
m2v

2
2 − 1

2
m1v

′2
1 − 1

2
m2v

′2
2 .

2.4.2 Heat Equation

Considering the heat transfer in Fig. (2.1), we can use the law of energy conservation

to derive one-dimension heat equation. In Fig. (2.1), A is the cross-sectional area of

sample and z is the distance from sample bottom. Let us start to consider three kinds of

heat flow: the input, output, and heat generation. The generation of heat energy per unit

volume and time, heat source, is denoted as q̇, so the energy generation in Adz volume is:

Qg = q̇Adz. (2.50)

The input flow at z is:

Qi = −Ak
dT

dz
,

where k is the thermal conductivity of sample, the output flow at z + dz is:

Qo = Qi + dQi

dz
dz

= −Ak
dT

dz
− d

dz
(Ak

dT

dz
)dz,
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and the change of internal energy in Adz volume with respect to time is:

Qt = ρCA
dT

dt
dz,

where ρ is the sample density, C is the specific heat of sample, and t is the time. Since the

net of heat flow must be 0, Qi + Qg = Qo + Qt, we have the followings:

−Ak
dT

dz
+ q̇Adz = −Ak

dT

dz
− d

dz
(Ak

dT

dz
)dz + ρCA

dT

dt
dz,

→ 1
A

d

dz
(Ak

dT

dz
) + q̇ = ρC

dT

dt
, (2.51)

where Eq.(2.51) is called one-dimension heat equation. By solving this equation, the

distribution of sample temperature and heat energy can be estimated.
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Chapter 3

Advanced Theory for CME,

Bio-evolution, and SMAT

In this chapter, we use the basic theory in Ch. 2 to derive important and useful results

in the CME, Bio-evolution, and SMAT modelling.

For CME part, we at first solve the CME in linear-drift Gaussian process, and then

the probability of chemical reaction for each stochastic path is obtained by path integral

formalism through the solution of linear-drift Gaussian process. And the CME with com-

pound Poission noise, Van Kampen model, is derived by the expansion of characteristic

function for PDF.

For bio-evolution part, we modify the Crow-Kimura and Eigen model based on the

following assumptions. Firstly, each sequence with the same number of −1 spin has the

same probability, namely, the distribution is symmetrical. Secondly, the mean fitness is

also assumed to be symmetrical. This two assumptions make tremendous difference in

Crow-Kimura and Eigen model which simplify the equation in a large scale. In next step,

we introduce HJE method to investigate the probability distribution of gene and to obtain

the mean fitness of zero order of 1
N
. With the bulk equation of probability distribution, the

equation of O( 1
N

) for probability distribution is constructed, where we derive the mean

fitness of O( 1
N

) and correction term u1 of O( 1
N

) for probability distribution.

For SMAT part, we model the motor motion as longitudinal harmonic motion in which
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we can derive the average velocity of motor. Through the average velocity of motor and

Taylor expansion, the average velocity and period of flying balls without interaction is

constructed to estimate the loss of kinetic energy and power for balls. With the known loss,

the strain energy and power of sample can be obtained by the law of energy conservation.

3.1 Formalism of Chemical Master Equation

Scientists are always interested in the probability of chemical reaction for a given

stochastic process, and the mean, maximum, and fluctuation of physical observables are

connected to this probability. In this section, the solution of linear-drift Gaussian process

is used to construct the probability of chemical reaction by path integral. In our CME

research, we work with CME with Gaussian and compound Poission noise. Thus, we also

derive the CMEwith compound Poission noise by the expansion of characteristic function

for PDF.

3.1.1 Solution of Linear-Drift Process

Consider Eq. (2.35) with the following functions:

µ = −bx, σ =
√

2ϵ,

where b and ϵ are both constants, the drift term µ is linear in x. Therefore, Eq. (2.35) with

such functions is so-called linear-drift Gaussian process. The corresponding KFE has the

form:
∂P (x, t)

∂t
= ∂

∂x
[bxP (x, t)] + ϵ

∂2P (x, t)
∂x2 ,

which is also called Fokker-Planck equation in physics. Using the WKB expansion,

P (x, t) = exp [−1
ϵ
uϵ(x, t)],
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we have the following partial derivatives for P (x, t):

∂P (x, t)
∂t

= −1
ϵ

∂uϵ(x, t)
∂t

P (x, t),

∂P (x, t)
∂x

= −1
ϵ

∂uϵ(x, t)
∂x

P (x, t),

∂2P (x, t)
∂x2 = −1

ϵ

∂2uϵ(x, t)
∂x2 P (x, t) + 1

ϵ2 (∂uϵ(x, t)
∂x

)2P (x, t).

The set of derivatives maps the equation of P (x, t) into the equation of uϵ(x, t):

∂uϵ

∂t
= −[(∂uϵ

∂x
)2 − bx

∂uϵ

∂x
] + ϵ[∂

2uϵ

∂x2 − b]. (3.1)

To solve Eq. (3.1), we can set the change of variable as a function of t,

uϵ(x, t) = a(t) + (x − µ(t))2

2σ2(t)
, (3.2)

to arrive the following differential equation:

∂uϵ

∂t
= a(t)

dt
− x − µ(t)

σ2(t)
dµ(t)

dt
− (x − µ(t))2

σ3(t)
dσ(t)

dt

= −[ (x − µ(t))2

σ4(t)
− bx

x − µ(t)
σ2(t)

] + ϵ[ 1
σ2(t)

− b]

= −(x − µ(t))2

σ4(t)
[1 − bσ2(t) − b

σ2(t)µ(t)
x − µ(t)

] + ϵ[ 1
σ2(t)

− b]. (3.3)

Divide the both sides of Eq. (3.3) by (x−µ(t))2

σ4(t) to have:

σ4(t)
(x − µ(t))2

da(t)
dt

− σ2(t)
(x − µ(t))

dµ(t)
dt

− σ(t)dσ(t)
dt

= −[1 − bσ2(t) − b
σ2(t)µ(t)
(x − µ(t))

] + ϵ[ σ2(t)
(x − µ(t))2 − b

σ4

(x − µ(t))2 ]. (3.4)

We can find that only the σ(t)dσ(t)
dt

in Eq. (3.4) is not multiplied by 1
(x−µ(t)) , so we can let

σ(t)dσ(t)
dt

= 1 − bσ2(t),

dσ2(t)
dt

= 2[1 − bσ2(t)]. (3.5)
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Put Eq. (3.5) into Eq. (3.4) and divide both sides of Eq. (3.4) by − σ2(t)
(x−µ(t)) to get:

− σ2(t)
(x − µ(t))

da(t)
dt

+ dµ(t)
dt

= −bµ(t) + ϵ[ 1
(x − µ(t))

+ bσ2(t)
(x − µ(t))

]. (3.6)

Similarly, the dµ(t)
dt

in Eq. (3.6) is not multiplied by 1
(x−µ(t)) , we can let

dµ(t)
dt

= −bµ(t). (3.7)

Finally, put Eq. (3.7) into Eq. (3.6) and divide both sides of Eq. (3.5) by − σ2(t)
(x−µ(t)) to

obtain:
da(t)

dt
= ϵ[ 1

σ2(t)
− b]. (3.8)

Thus, the Eq. (3.5) can be solved by the following integration:

∫ t

0

dσ2(t′)
1
b

− σ2(t′)
dt′ =

∫ t

0
2dt′,

ln |1
b

− σ2(t′)|
∣∣∣∣∣
t

0
= −2bt,

σ2(t) = 1
b

+ [σ2(0) − 1
b
] exp (−2bt), (3.9)

and so does the Eq. (3.7):

∫ t

0

dµ(t′)
µ(t′)

dt′ = −
∫ t

0
bdt′

ln |µ(t)| − ln |µ(0)| = −bt,

µ(t) = µ(0) exp (−bt). (3.10)

From Eq. (3.5), we also have:

1
σ2(t)

dσ2(t)
dt

= d ln |σ2(t)| = 2[ 1
σ2(t)

− b].
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Thus, the solution of Eq. (3.8) can be obtained by the integration:

∫ a(t)

a(0)
da(t′) = ϵ

2

∫ σ2(t)

σ2(0)
d ln |σ2(t′)|,

a(t) = a(0) + ϵ

2
ln [ σ2(t)

σ2(0)
]. (3.11)

We can find that the ϵ term only contributes to a(t), and the diffusive term σ2(t) is not

influenced by ϵ. With the aid of Eq. (3.9-10), the solution of Fokker-Planck equation for

PDF is:

P (x, t) = exp [−1
ϵ

uϵ(x, t)]

= exp [−a(t)
ϵ

− (x − µ(t))2

2ϵσ2(t)
]

=

√√√√σ2(0)
σ2(t)

e− a(0)
ϵ exp [−(x − µ(t))2

2ϵσ2(t)
]

= A√
πϵσ2(t)/2

exp [−(x − µ(t))2

2ϵσ2(t)
], (3.12)

where A =
√

πϵσ2(0)
2 exp [−a(0)

ϵ
]. The PDF of Eq. (3.12) is always Gaussian distribution

for any given time, and that’s the reason we call dBt is Gaussian white noise. For a small

ϵ, the PDE of Eq. (3.12) decreases quickly from the mean value µ(t). And for ϵ → 0+

case, the PDF of Eq. (3.12) becomes the delta function with its center at x = µ(t), and

this means physically only the path, x = µ(t), will take place in this process.

3.1.2 Path Integral Formalism in Stochastic Process

In the former section, we have the solution of PDF in linear-drift Gaussian process. In

this section, we apply the solution and start from the Lagrangian L and action functional

S0 as mentioned in CME introduction:

L(q, q̇) = [pq̇ − H(q, p)]p= 1
2 (q̇−b(q)) = 1

4
(q̇ − b(q))2,

S0[q(t); (0, q(0)) → (t, q(t))] =
∫ t

0
dτ

1
4

[dq(τ)
dτ

− b(q(τ))]2,
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to get PDF for each path of chemical reaction in linear-drift process. Let us consider the

initial condition for PDF with linear drift −bx and diffusion term ϵ:

P (x′, 0) = δ(x′),

→ σ2(0) = 0, µ(0) = 0.

And remember that the zero order equation of chemical system obeys the ordinary differ-

ential equation:

dx′

dt
= b(x′) = −bx′,

→ x′(t) = x′(0)e−bt,

which means that the expectation value of x obeys this ordinary differential equation. The

transient PDF of Fokker-Planck equation with linear drift −bx obeys the Markov process:

P (x, ∆t|x′, 0) = P (x − x′, ∆t)P (x′, 0)
P (x′, 0)

= P (x − x′, ∆t)

=
√

2
πϵσ2(∆t)

exp [−(x − x′e−b∆t)2

2ϵσ2(∆t)
]

≈ 1√
πϵ
2b

(1 − e−2b∆t)
exp [− (x − x′e−b∆t)2

2(ϵ/b)(1 − e−2b∆t)
]

≈ 1√
πϵ
2b

[2b∆t − 2b2(∆t)2]
exp [−(x − x′ + bx′∆t)2

4ϵ∆t
]

= 1√
πϵ∆t(1 − b∆t)

exp [−(x − x′ + bx′∆t)2

4ϵ∆t
]

= 1√
πϵ∆t

exp [(x − x′ + bx′∆t)2

4ϵ∆t
− 1

2
ln (1 − db(x)

dx
∆t)],(3.13)
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where we have set A = 1 and used the Taylor expansion:

e−2b∆t ≈ 1 − 2b∆t + (2b∆t)2

2!
,

σ2(∆t) = 1
b
(1 − e−2b∆t)

≈ 1
b
(1 − 1 + 2b∆t + (2b∆t)2

2!
)

= 2∆t(1 − b∆t).

And the trajectory of PDF for any generalized drift b(x) following the Fokker-Planck

equation is:

P (xn, n∆t; xn−1, (n − 1)∆t; ...; x1, ∆t|x0, 0)

= 1√
πϵ∆t

n∏
k=1

exp [−(xk − xk−1 − b(xk−1)∆t)2

4ϵ∆t
− 1

2
ln (1 + db(xj)

dx
∆t)]

≈ A exp [− 1
4ϵ

∫ t

0
[(dx(t)

dt
− b(x(t)))2 + 2ϵ

db(x)
dx

]dt′]

= A exp [−1
ϵ
(S0 + ϵ

2

∫ t

0

db(x)
dx

dt′)], (3.14)

where A = 1√
πϵ∆t

is an appropriate constant for normalization, t = n∆t with n >> 1,

and we have used the Taylor expansion:

ln (1 + y) =
∞∑

k=1
(−1)k+1 yk

k
≈ y, for y << 1. (3.15)

For the ϵ → 0+ or non-diffusion case, the only trajectory obeyed by the chemical reaction

is:
dx(t)

dt
= b(x(t)),

which states that the chemical reaction without ϵ term is deterministic.

3.1.3 Formalism for CME with Compound Poisson Noise

In previous sections, only Gaussian white noise used in a long time interval is taken

into account, however, chemical reactions often take place in a short time interval, where
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the compound Poisson noise is useful. Let us consider a non-Gaussian noise for a given

time t, Λ(t), whose higher cumulants are supposed to be delta-correlated and don’t vanish:



< Λ(t) >= Γ1

< Λ(t)Λ(t′) >= Γ2δ(t − t′)

< Λ(t)Λ(t′)Λ(t′′) >= Γ2δ(t − t′)δ(t − t′′)

< Λ(t1)Λ(t2)...Λ(tm) >= Γmδ(t1 − t2)δ(t1 − t3)...δ(t1 − tm)

, m ≥ 1,

where < > is the notation for taking expectation value and Γk are constants for 1 ≤ k ≤

m. Since such distribution of Λ(t) has singularities, we can define the integral process:

Z(t) =
∫ t

0
Λ(t′)dt′,

which makes the increment of Z independent of the previous Z and is only dependent on

the time interval τ :

z = Z(t + τ) − Z(t)

=
∫ t+τ

0
Λ(t′)dt′ −

∫ t

0
Λ(t′)dt′

=
∫ t+τ

t
Λ(t′)dt′.

Common processes with independent increments for a short time interval can be generated

by compound Poisson processes in the following steps. Put a stochastic set of dots on time

axis making noise:

fn(t1, t2, ..., tn) = ρn,

fn(t1, t2, ..., tn)dt1dt2...dtn

≡ the probability between t⃗ and t⃗ + dt⃗,

where ρ is the probability per unit time, t⃗ = (t1, t2, ..., tn), and dt⃗ = (dt1, dt2, ..., dtn).

Assume that Z increases in an amount z at each dot, which is random with probability
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density w(z). The n random dots in time interval τ is assumed to be Poissonian with

average value ρτ , so the distribution of z is:

Tτ (z) =
∞∑

n=0

(ρτ)n

n!
e−ρτ w(z) ∗ w(z) ∗ ... ∗ w(z),

where ∗ is the notation for convolution and thew(z) product is the convolution of n factors

for w(z). Hence its characteristic function in probability theory can be written as:

∫
eikzTτ (z)dz =

∞∑
n=0

(ρτ)n

n!
e−ρτ

∫
w(z) ∗ w(z) ∗ ... ∗ w(z)dz.

This characteristic function can be simplified by applying Fubini’s theorem,

∫ ∫
A×B

g(x)h(y)dxdy =
∫

A
g(x)dx

∫
B

h(y)dy, (3.16)

into the characteristic function:

∞∑
n=0

(ρτ)n

n!
e−ρτ

∫
w(z) ∗ w(z) ∗ ... ∗ w(z)dz

=
∞∑

n=0

(ρτ)n

n!
e−ρτ [

∫
eikzTτ (z)dz]n

= e−ρτ exp [ρτ
∫

eikzw(z)dz]

= exp [ρτ
∫

(eikz − 1)w(z)dz],

→
∫

eikzTτ (z)dz = exp [ρτ
∫

(eikz − 1)w(z)dz], (3.17)

where we have used the following equality:

∫
eikzw(z) ∗ w(z)dz

=
∫

w(y)dy
∫

eikzw(z − y)dz

=
∫

w(y)dy
∫

eik(z+y)w(z)dz

=
∫

eikyw(y)dy
∫

eikzw(z)dz

= [
∫

eikzw(z)dz]2.
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Differentiate Eq. (3.17) with respect to τ to obtain the CME:

∂

∂τ

∫
eikzTτ (z)dz =

∫
eikz ∂Tτ (z)

∂τ
dz

= ∂

∂τ
exp [ρτ

∫
(eikz − 1)w(z)dz]

= ρ
∫

(eikη − 1)w(η)dη × exp [ρτ
∫

(eikz − 1)w(z)dz]

= ρ
∫

(eikη − 1)w(η)dη
∫

eikzTτ (z)dz

= ρ
∫ ∫

eik(η+z)Tτ (z)w(η)dηdz − ρ
∫

w(η)dη
∫

eikzTτ (z)dz

= ρ
∫ ∫

eikzTτ (z − η)w(η)dzdη − ρ
∫

eikzTτ (z)dz

= ρ
∫

eikz[
∫

Tτ (z − η)w(η)dη − Tτ (z)]dz.

Since ρ and k are both arbitrary, we have the equation:

∫
eikz[∂Tτ (z)

∂τ
− ρ(

∫
Tτ (z − η)w(η)dη − Tτ (z))]dz = 0,

→ ∂Tτ (z)
∂τ

= ρ[
∫

Tτ (z − η)w(η)dη − Tτ (z)]. (3.18)

Equation (3.18) is the CME induced by compound Poisson noise with independent incre-

ments in a short time interval. Finally, we can rewrite Tτ (z) as P (x, t) and the drift term

µ(x) can be added to Eq. (3.18):

∂P (x, t)
∂t

= − ∂

∂x
[µ(x)P (x, t)] + ρ[

∫
P (x − η, t)w(η) − P (x, t)], (3.19)

which is Van Kampen model with compound Poisson noise.

3.2 Formalism of Bio-evolutionModel in HammingClass

Crow-Kimura and Eigen model in Eq. (2.40) and Eq. (2.42) having 2N equations are

not easy to handle in a large N . We need to develop a method to simplify the equations

in Crow-Kimura and Eigen model, so we here apply HJE into these models based on the

two following assumptions. Firstly, each sequence with the same number of −1 spin has

the same probability, namely, the distribution is symmetrical. Secondly, the fitness is also
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assumed to be symmetrical. Finally, the general formula for correction term u1 for PDF

and mean fitness in bio-evolution are derived through HJE method.

3.2.1 Crow-Kimura Model in Hamming Class

The equation of motion for probability in Crow-Kimura model is:

∂pi

∂t
= ripi +

∑
j

mijpj, (3.20)

where pi is the relative frequency for type i sequence and recall that mij is the mutation

matrix: 

mij = γ0, dij = 1,

mii = −Nγ0, dii = 0,

mij = 0, otherwise.

Since we have assumed that the distribution is symmetrical, the 2N -type probability can

be divided into N + 1 classes called Hamming class as illustrated as follows:

(+, +, +, +, +, +), N = 6, l = 0 class,

(+, +, +, −, +, +), N = 6, l = 1 class,

(+, −, +, +, +, +), N = 6, l = 1 class,

(+, −, +, −, +, +), N = 6, l = 2 class,

where l is the number of −1 spin for a sequence and 0 ≤ l ≤ N . To make convenience,

we define the magnetization of l-th Hamming class as:

m = 1 − 2l

N
,
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where −1 ≤ m ≤ 1 and m becomes continuous from discrete as N → ∞. The symmet-

rical fitness function can be written as:

ri = Nf(m), (3.21)

where i is belong to the l-th Hamming class. Based on the symmetrical distribution, we

are interested at the total probabilities of l-th Hamming class. For a given sequence with

l number of −1 spin, l-th class has Nl possible states and

Nl = N !
l!(N − l)!

. (3.22)

Hence, the total probabilities Pl for l-th Hamming class is:

Pl = Nlpl = N !
l!(N − l)!

pl.

We can chose a special sequence S0 with all spins being +1 as a reference to simplify the

Hamming distance as:

di0 ≡ d = (N −
N∑

k=1
sk

i sk
0)/2

= (N −
N∑

k=1
sk

i )/2

= N(1 − m)/2 = l. (3.23)

There are two possible transitions of one-step for pl as illustrated as follows:

pl : (+, +, +, +, +, −, −, ..., −) → pl+1 : (+, +, +, +, −, −, −, ..., −),

pl : (+, +, +, +, +, −, −, ..., −) → pl−1 : (+, +, +, +, +, +, −, ..., −).

There are l possible transitions from pl to pl−1 and N − l possible transitions from pl to

pl+1. Therefore, Eq. (3.20) is transformed into the equation for Hamming class probability
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pl:

∂pl

∂t
= Nf(m)pl +

2N∑
j=1,d=l±1

γ0pj + miipl

= Npl[f(m) − γ0] + γ0[lpl−1 + (N − l)pl+1]. (3.24)

And we have the total probabilities for l + 1 and l − 1 Hamming class:

P1+1 = N1+1p1+1, p1+1 = Pl+1

Nl+1
,

P1−1 = N1−1p1−1, p1−1 = Pl−1

Nl−1
.

Therefore, we can gain the equation for total probabilities of Hamming class by multiply-

ing the both sides of Eq. (3.24) by Nl:

∂Pl

∂t
= NPl[f(m) − γ0] + γ0[

lNl

Nl−1
Pl−1 + (N − l)Nl

Nl+1
Pl+1]

= NPl[f(m) − γ0] + γ0[(N − l + 1)Pl−1 + (l + 1)Pl+1], (3.25)

where we have used the two equalities:

lNl

Nl−1
= l

(l − 1)!(N − l + 1)!
l!(N − l)!

= N − l + 1,

(N − l)Nl

Nl+1
= (N − 1)(l + 1)!(N − l − 1)!

l!(N − l)!
= l + 1.

Equation (3.25) withN +1 equations is small compared to 2N equations in original Crow-

Kimura model, so it’s much easier to be handled for both analytic and numeric than before.

3.2.2 HJE Method in Crow-Kimura Model

In this section, we apply HJE into Crow-Kimura model to obtain the correction term

of O( 1
N

) for the mean fitness and PDF. To investigate the behaviour of pl, we can use the
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following WKB expansion:

pl = p(m, t) = exp [Nu(m, t)],

pl+1 = p(m − 2
N

, t) = exp [Nu(m − 2
N

, t)],

pl−1 = p(m + 2
N

, t) = exp [Nu(m + 2
N

, t)]. (3.26)

The finite population correction can be obtained by the Taylor’s expansion of u(m, t):

u(m − 2
N

, t) = u(m, t) − 2
N

∂u(m, t)
∂m

+ O( 1
N2 ),

u(m + 2
N

, t) = u(m, t) + 2
N

∂u(m, t)
∂m

+ O( 1
N2 ),

pl+1 ≈ exp [Nu(m, t) − 2∂u(m, t)
∂m

] = exp [−2∂u(m, t)
∂m

]pl,

pl−1 ≈ exp [Nu(m, t) + 2∂u(m, t)
∂m

] = exp [2∂u(m, t)
∂m

]pl.

Put these expansions into Eq. (3.24) and rearrange it to obtain the equation of zero order

for pl:

∂u(m, t)
∂t

= f(m) − γ0 + γ0[
1 − m

2
e2 ∂u(m,t)

∂m + 1 + m

2
e−2 ∂u(m,t)

∂m ].

On the other hand, the total probabilities Pl for the l-th Hamming class is:

Pl = Nlpl = exp [N(u(m, t) + ln Nl

N
)]

= exp [N(u(m, t) + h(m))]

= exp [NU(m, t)],

where h(m) = ln Nl

N
and U(m, t) = u(m, t) + h(m). For general case in bio-evolution,

l and N − l are both large enough to use Stirling formula. Thus, the approximation of
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function h(m) is:

h(m) = ln Nl

N
= 1

N
ln N !

l!(N − l)!

≈ ln N − (1 − l

N
) ln (N − l) − l

N
ln l

= − ln (1 − l

N
) + l

N
ln [(N − l)/N

l/N
]

= − ln (1 + m)
2

+ 1 − m

2
ln [(1 + m

2
)/(1 − m

2
)]

= −[ (1 + m)
2

ln (1 + m)
2

+ (1 − m)
2

ln (1 − m)
2

], (3.27)

which is the zero order in 1
N
approximation. Similarly, we have the following expansions

for Pl:

U(m − 2
N

, t) ≈ U(m, t) − 2
N

∂U(m, t)
∂m

,

U(m + 2
N

, t) ≈ U(m, t) + 2
N

∂U(m, t)
∂m

,

Pl+1 = Pl(m − 2
N

, t) ≈ exp (−2 ∂U

∂m
)Pl,

Pl−1 = Pl(m + 2
N

, t) ≈ exp (2 ∂U

∂m
)Pl,

where ∂U
∂m

= ∂U(m,t)
∂m

. Put these expansions into Eq. (3.25) and arrange it:

∂Pl

∂t
= N

∂U(m, t)
∂t

Pl

≈ N(f(m) − γ0)Pl + γ0[(N − l + 1)e2 ∂U
∂m + (l + 1)e−2 ∂U

∂m ]Pl,

and divide it by Pl to get the equation for U(m, t):

∂U(m, t)
∂t

= f(m) − γ0 + γ0[(
1 + m

2
+ 1

N
)e2 ∂U

∂m + (1 − m

2
+ 1

N
)e−2 ∂U

∂m ]. (3.28)

The bulk equation in Eq. (3.28) for U(m, t) turns to:

∂U(m, t)
∂t

= f(m) − γ0 + γ0[
1 + m

2
e2 ∂U

∂m + 1 − m

2
e−2 ∂U

∂m ], (3.29)
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which is the exact form of HJE,

∂U(m, t)
∂t

= −H(m,
∂U

∂m
) = −H(m, U ′),

where U ′ = ∂U
∂m

and the negative Hamiltonian of system:

−H(m, U ′) = f(m) − γ0 + γ0[
1 + m

2
e2U ′ + 1 − m

2
e−2U ′ ].

To investigate the asymptotic behaviour in a large-scale time for U(m, t), we can assume

that U(m, t) = v(m) + kt where k is a constant. This assumption means that the change

rate of U(m, t) with respect to t is fixed, and k = 0 corresponds to stationary state. Phys-

ically, we can imagine that the system energy will not change after a long time. Then we

get the ordinary differential equation for k:

k = f(m) − γ0 + γ0(
1 + m

2
e2v′ + 1 − m

2
e−2v′), (3.30)

where v′ = dv(m)
dm

. Let y = e2v′ to get the solution of Eq. (3.30) by the following way:

k = f(m) − γ0 + γ0[
(1 + m)

2
y + (1 − m)

2
y−1],

y =
k + γ0 − f(m) ±

√
(k + γ0 − f(m))2 − γ2

0(1 − m2)
γ0(1 + m)

,

v′(m) = 1
2

ln
k + γ0 − f(m) ±

√
(k + γ0 − f(m))2 − γ2

0(1 − m2)
γ0(1 + m)

. (3.31)

Therefore, v(m) is obtained by integrating Eq. (3.31) with respect to m′:

v(m) = 1
2

∫ m

mr

ln
k + γ0 − f(m′) ±

√
(k + γ0 − f(m′))2 − γ2

0(1 − m′2)
γ0(1 + m′)

,

where mr is an appropriate reference point where v(mr) = 0. Assume that the maximum

of v(m) is at s where the v′(s) = 0 and v′′(s) < 0, and Eq. (3.30) turns to:

k = f(s), (3.32)
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which gives the equation of zero order in O 1
N
for k. For the [s, 1] interval, the physical

solution for v′(m) in Eq. (3.31) is the + solution. Similarly, the physical solution for

v′(m) in Eq. (3.31) is the ′−′ solution for the [−1, s] interval. Equation (3.32) points that

the total probabilities Pl has a maximum at s with mean fitness R = N [k + O( 1
N

)]. And

the s value is defined as the surplus:

s =
N∑

l=0
mPl,

which gives the general form of mean fitness:

R =
N∑

l=0
Nf(m)Pl

= NkPN( 1−s
2 ) +

N∑
l=0,m̸=s

Nf(m)Pl

≈ N [k + O( 1
N

)]. (3.33)

Since the k value corresponds to the negative Hamiltonian of system, we can expect it

will reach the maximum or fixed value in a large-scale time. Physically, the bio-evolution

process in a large-scale time minimizes or fixes the system energy. We have the following

inequality:

0 ≤ 1 + m

2
≤ 1, 0 ≤ 1 − m

2
≤ 1,

and thus the corresponding inequality:

k − f(m) + γ0 = γ0[
(1 + m)

2
e2v′ + (1 − m)

2
e−2v′ ],

→ k − f(m) + γ0 ≥ 0.
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For the maximum condition for k, the partial derivatives of k with respect to v′ at v′
0 is

zero:

∂k

∂v′

∣∣∣
v′=v′

0
= 1

2
(1 + m)e−2v′

0(e4v′
0 − 1 − m

1 + m
) = 0,

→ e4v′
0 − 1 − m

1 + m
= 0,

→ v′
0(m) = 1

4
ln (1 − m

1 + m
). (3.34)

Since v(m) must be real in physics, we have the inequality for the square root function in

Eq. (3.31):

(k + γ0 − f(m))2 ≥ γ2
0(1 − m2),

|k + γ0 − f(m)| ≥ γ0
√

1 − m2,

k ≥ f(m) − γ0 + γ0
√

1 − m2 = V (m), (3.35)

where we define the V (m) as the potential of system. In CM, the V (m) corresponds to

negative potential energy of the system. Such inequality can be derived from the geomet-

rical inequality:

k + γ0 − f(m) = γ0(
1 + m

2
e2v′ + 1 − m

2
e−2v′)

≥ γ0
√

1 − m2,

→ k ≥ f(m) − γ0 + γ0
√

1 − m2 = V (m). (3.36)

Thus, the k value is the maximum of V (m) which corresponds to the minimum energy of

system:

k = max
−1≤m≤1

V (m), (3.37)
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which is consistent with the condition for v′
0(m), where the negative Hamiltonian of sys-

tem:

−H(m, v′
0(m)) = f(m) − γ0 + γ0[

1 + m

2
e2v′

0 + 1 − m

2
e−2v′

0 ]

= f(m) − γ0 + γ0
√

1 − m2 = V (m).

For the O( 1
N

) correction of k, the Pl in a large-scale time can be written as:

Pl = exp [N(k + k1

N
)t + Nv(m) + v1(m)], (3.38)

where v1(m) and k1 are the correction terms of O( 1
N

) for v(m) and k. Similarly, we have

the following Taylor expansions for v(m) and v1(m):

v(m ± 2
N

) ≈ v(m) ± 2
N

v′(m) + 2
N2

d2v(m)
dm2 ,

v1(m ± 2
N

) ≈ v1(m) ± 2
N

v′
1(m),

so the corresponding expansion for Pl−1 and Pl+1:

Pl−1 ≈ exp [N(k + k1

N
)t + Nv(m) + v1(m) + 2v′(m) + 2

N
v′′(m) + 2

N
v′

1(m)]

= exp [2v′(m) + 2
N

v′′(m) + 2
N

v′
1(m)]Pl,

Pl+1 ≈ exp [N(k + k1

N
)t + Nv(m) + v1(m) − 2v′(m) + 2

N
v′′(m) − 2

N
v′

1(m)]

= exp [−2v′(m) + 2
N

v′′(m) − 2
N

v′
1(m)]Pl,
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where v′′(m) = d2v(m)
dm2 and v′

1(m) = dv1(m)
dm2 . Put these expansions into Eq. (3.28) to get

the equation of O( 1
N

) for k1 and v1(m):

(k + k1

N
)Pl ≈ f(m) − γ0 + γ0[(

1 + m

2
+ 1

N
)e2v′

e
2
N

u′′
e

2
N

v′
1

+ (1 − m

2
+ 1

N
)e−2v′

e
2
N

u′′
e− 2

N
v′

1 ]

≈ f(m) − γ0 + γ0[
1 + m

2
e2v′ + 1 − m

2
e−2v′ + 1

N
(e2v′ + e−2v′)]

+ 2γ0v
′′

N
(1 + m

2
e2v′ + 1 − m

2
e−2v′) + 2γ0v

′
1

N
(1 + m

2
e2v′ − 1 − m

2
e−2v′)

→ k1 = γ0[e2v′ + e−2v′ + 2v′′(1 + m

2
e2v′ + 1 − m

2
e−2v′)

+ 2v′
1(

1 + m

2
e2v′ − 1 − m

2
e−2v′)], (3.39)

where these approximations have been used:

e
2
N

v′′ ≈ 1 + 2
N

v′′,

e
2
N

v′
1 ≈ 1 + 2

N
v′

1,

e− 2
N

v′
1 ≈ 1 − 2

N
v′

1.

Alternatively, the k1 value can be defined at point m0 where the coefficient of v′
1 vanishes,

so we have:

1 + m0

2
e2v′(m0) − 1 − m0

2
e−2v′(m0) = 0,

→ e4v′(m0) = 1 − m0

1 + m0
,

→ v′(m0) = 1
4

ln (1 − m0

1 + m0
), (3.40)
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which is consistent with the condition defined in Eq. (3.34), where v′(m0) = v′
0(m0).

Therefore, the k1 value is:

k1 = γ0{e2v′(m0) + e−2v′(m0) + v′′(m0)[(1 + m0)e2v′(m0) + (1 − m0)e−2v′(m0)]}

= γ0[
√

1 − m0

1 + m0
+
√

1 + m0

1 − m0
+ v′′(m0)(

√
1 − m2

0 +
√

1 − m2
0)]

= 2γ0√
1 − m2

0

+ 2γ0v
′′(m0)

√
1 − m2

0. (3.41)

To find v′′(m0), we can write −k = H(m, v′) or k = V (m) and expand it near m0 up

to second order. Remember that the first derivatives of V (m) and H(m0, v′(m0)) with

respect to m and v′ at m0 and v′(m0) are both zero. We have the following expansions

and approximations:

k ≈ V (m0) + V ′′(m0)
(m − m0)2

2
,

−k ≈ H(m0, v′(m0)) + d2H(m0, v′(m0))
dv′2

(v′(m0) − v0(m0))2

2
,

→ V ′′(m0)
(m − m0)2

2
+ d2H(m0, v′(m0))

dv′2
(v′(m0) − v0(m0))2

2
≈ 0, (3.42)

where the second derivatives of V (m) and H(m0, v′(m)) at m0 and v′
0(m0) are:

V ′′(m0) = f ′′(m0) − γ0

(1 − m2
0)

3
2
,

d2H(m0, v′(m0))
dv′2

∣∣∣∣∣
v′=v′

0

= 4γ0

√
1 − m2

0, (3.43)

where f ′′(m0) = d2f(m)
dm2

∣∣∣
m=m0

. Also, we have the following approximations for v′
0(m)

near the m0 = 1 − 2l0
N

point:

m − m0 = 2(l0 − l)
N

= O( 1
N

),

2v′′(m0) = −1
1 − m2

0
= 2v′(m) − v′

0(m0)
m − m0

+ O( 1
N

),

2[v′(m) − v′
0(m0)] ≈ [2v′′(m0) + 1

1 − m2
0
](m − m0),
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where l is near l0 and O( 1
N

) terms must be neglected for k1 correction term. Put these

approximations into Eq. (3.42) to obtain v′′(m0):

4V ′′(m0) + d2H(m0, v′(m0))
dv′2

∣∣∣
v′=v′

0
[2v′′(m0) + 1

1 − m2
0
]2 ≈ 0,

2v′′(m0) ≈ − 1
1 − m2

0
−
√√√√√− 4V ′′(m0)

d2H(m0,v′(m0))
dv′2

∣∣∣
v′=v′

0

= −1
1 − m2

0
− 1

(1 − m2
0)

1
4

√√√√ 1
(1 − m2

0)3/2 − f ′′(m0)
γ0

= −1
1 − m2

0
[1 +

√√√√1 − (1 − m2
0)

3
2 f ′′(m0)

γ0
]. (3.44)

With the known 2v′′(m0), we can put it into Eq. (3.41) to obtain k1:

k1 = 2γ0√
1 − m2

0

− γ0√
1 − m2

0

− γ0√
1 − m2

0

√√√√1 − (1 − m2
0)

3
2 f ′′(m0)

γ0

= γ0√
1 − m2

0

[1 −

√√√√1 − (1 − m2
0)

3
2 f ′′(m0)

γ0
]. (3.45)

And the equation for v′
1 can be obtained:

2v′
1(

1 + m

2
e2v′ − 1 − m

2
e−2v′)

= k1

γ0
− e2v′ − e−2v′ − 2v′′(1 + m

2
e2v′ + 1 − m

2
e−2v′).

v′
1 =

k1
γ0

− e2v′ − e−2v′ − v′′[(1 + m)e2v′ + (1 − m)e−2v′ ]
(1 + m)e2v′ − (1 − m)e−2v′ . (3.46)

Therefore, the correction term v1 is:

v1(m) =
∫ m

mr

k1
γ0

− e2v′ − e−2v′ − v′′[(1 + m′)e2v′ + (1 − m′)e−2v′

(1 + m′)e2v′ − (1 − m′)e−2v′ ]
dm′, (3.47)

where mr is an appropriate reference point, where v1(mr) = 0.
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3.2.3 Modified Eigen Model in Hamming Class

As mentioned before, Eigen model is the evolution of multiple-step mutation which is

more complicated than the Crow-Kimura model of one-step mutation. Here we are inter-

ested at the Eigen model in Hamming class, where the sequence distribution and fitness

function are both symmetrical.

Considering the sequence Sl−n with l −n Hamming distance from reference sequence

S0, the Sl−n can be generated from Sl through n1 up and n2 down, where n = n1 − n2.

This process can be explained by Hamming distance dl0 = l in the following way. For the

sequence Sl with l number of −1 spin, n1 up and n2 down corresponds to the change of

Hamming distance:

∆d = −n1 + n2

→ dl0 + ∆d = l − (n1 − n2) = l − n,

where∆d is the change of Hamming distance aftern1 up andn2 down. And all the possible

transitions from Sl−n to Sl is:

Mn = l!
n1!(l − n1)!

× (N − l)!
n2!(N − l − n2)!

, (3.48)

where Mn is the number of all possible transitions, 0 ≤ n1 ≤ l, and 0 ≤ n2 ≤ N − l.

Consider the following mutation matrix,

Qij = Qn = Q̂q−n(1 − q)n, (3.49)

where n = dij and Q̂ is the constant qN . Thus, we can write down the modified Eigen

model without dilution and degradation terms as the following:

dpl

dt
=

l∑
n1=0

N−l∑
n2=0

MnQn1+n2rl−npl−n, (3.50)

where pl is one sequence probability in l-th Hamming class and the number of total mu-
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tations from pl−n to pl is n1 + n2.

3.3 SMAT Modelling

For common SMAT experiments, 304-steel balls always cover the area of motor top

in 20 ∼ % ∼ 25 %. The probability ratio of ball-ball collision to ball-sample collision is

very small, and it can be estimated as follows:

Pbb ∝ A2
b × NVb

Vc

, Pbs ∝ AbAs,

→ Pbb

Pbs

∝ Ab

As

NVb

Vc

≈ 0,

where we have assumed that flying balls are uniformly distributed in the chamber, Pbb

and Pbs are the probability of ball-ball and ball-sample collision, Ab and As are the cross-

sectional area of ball and sample, Vb and Vc are the volume of ball and chamber, and

N is the ball number. Usually, the ratio of Ab

As
is less than 1 % [33, 47]. Based on this

fact, the collisions between flying balls is less frequent than collisions between flying

balls and sample or flying balls and motor, namely, ball-ball collisions can be neglected

without loss of generality. Physically, this means that the ball-ball interaction or potential

can be neglected. Thus, we can select a flying ball to stand the whole flying balls as a

representative particle, and the motor is regarded as a reservoir providing balls energy.

Consequently, these identical-flying balls can be regarded as a system interacting with the

sample bottom while ignoring the collisions between these flying balls. For this reason,

we can consider the time-averaged value of single representative ball.

3.3.1 The Kinetic Energy of balls

Since the average ratio of horizontal speed to vertical speed for flying balls in common

SMAT experiments is abut 0.16 ∼ 0.25 [33], namely, the average angle of both motor and

sample surfaces is about 80◦. The kinetic energy ratio of horizontal component to vertical

component is about 0.05, which is << 1. Thus, we can assume the angle of both impact
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surfaces are normal without loss of generality. The motor-top motion can be characterized

as a longitudinal harmonic motion:

vm = Aωsin(ωt)

= 2πνAsin(ωt), (3.51)

where A is the oscillation amplitude, ω is the angular frequency, and ν is the oscillation

frequency. By the formula in Eq. (2.49), the ball velocity induced initially by motor top

is:

vb0 = 2mm

mm + mb

vm

= 2
1 + mb

mm

vm ≈ 2vm, (3.52)

where mm and mb are the mass of motor and ball. Usually, mm is millions times mb in

common SMAT experiments. Therefore, the initial velocity of balls is assumed to be:

vb0 = 2Aω

1 + mb

mm

sin ϕ, (3.53)

where ϕ is the phase of sinusoidal function. And flying balls will collide with the sample

bottom under the condition:

1
2

mbvb0
2 ≥ mg(h − D) → sin ϕ ≥

√
2g(h − D)

vmax

,

vmax = 2Aω

1 + mb

mm

, θ0 = sin−1(

√
2g(h − D)

vmax

), (3.54)

where h is the chamber height, D is the diameter of a flying ball, g is the gravitational

acceleration, and vmax and θ0 are parameters defined by Eq. (3.54). This condition states

that a flying ball must overcome the gravitational potential between a flying ball and earth

to collide with the sample bottom. The time average for initial speed of balls is obtained
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by carrying out the integration per one cycle of harmonic motion:

v̄b0 =
∫ π/2

θ0
vb0dϕ∫ π/2

θ0
dϕ

= vmax cos θ0
π
2 − θ0

,

where sin ϕ is symmetrical to ϕ = π
2 and this integration can be carried out over first

quadrant. For common SMAT experiments, we are allowed to use the following conditions

and approximations:

Aω ≫
√

g(h − D)/2,

sin θ0 ≈ 0, sin θ0 ≈ θ0,

θ0 ≈ (1 + mb

mm

)
√

g(h − D)
2A2ω2 . (3.55)

Then the averaged initial speed of these balls turn immediately to:

v̄b0 ≈
vmax(1 − θ0

2

2 )
π
2 − θ0

≈ 2
π

vmax,

where the following Taylor expansion for cosine function has been used:

cos ϕ ≈ 1 − ϕ2

2!
.

Let us define the two parameters for simplicity:

α = θ2
0 = 2g(h − D)

v2
max

, η = α

sin2ϕ
, (3.56)

and the flying time of these balls from the motor top to the sample bottom are given by

the equation:

h − D = vb0t − 1
2

gt2.

57



Thus, we have the following approximation for t:

t = vb0

g
(1 −

√
1 − α

sin2ϕ
)

= vb0

g
(1 −

√
1 − η),

≈ vb0

g
(1
2

η + 1
8

η2 + 1
16

η3)

= αvmax

2g
(csc ϕ + 1

4
αcsc3ϕ + 1

8
α2csc5ϕ),

where α and η are both parameters defined in Eq. (3.56) and the binomial expansion has

been used:

(1 + x)n =
∞∑

k=0
[ dk

dxk
(1 + x)n]

∣∣∣
x=0

xk

k!
=

∞∑
k=0

(
k

n

)
xn

≈ 1 + nx + n(n − 1)
2!

x2 + n(n − 1)(n − 2)
3!

x3, for x << 1. (3.57)

With the expansion for t, the time-averaged t, τ , can be acquired by carrying out the

integration with respect to ϕ over one period of sinusoidal function:

τ ≈ αvmax

2g

∫ π
2

θ0
(csc ϕ + 1

4αcsc3ϕ + 1
8α2csc5ϕ)dϕ∫ π

2
θ0

dϕ

= αvmax

g(π − 2θ0)
I(θ0), (3.58)

where

I(θ0) = (1 + θ2
0
8

+ 3θ4
0

64
) ln (csc θ0 + cot θ0)

+ θ2
0
8

(1 + 3θ2
0

8
) csc θ0 cot θ0 + θ4

0
32

csc3 θ0 cot θ0.

For common SMAT experiments, the scale ofA, ω, h, andD are 40 ∼ 80 µm, 40π krad/s,

20 mm, and 1 ∼ 3 mm respectively [33, 47]. The corresponding value of parameters, α

and sin θ0, are from 8.242 × 10−4 ∼ 3.685 × 10−3 and 2.871 × 10−2 ∼ 6.070 × 10−2

respectively, so the higher order terms can be neglected without loss of generality. The

relative errors of approximation in Eq. (3.55) are less than 0.1%. The τ in Eq. (3.58)
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ranges from 2.413 ∼ 4.570 ms. The averaged initial speed of these balls ranges from

6.645 ∼ 13.033 m/s. The time-averaged speed of these balls before second collision can

be obtained by:

⟨v⟩ =
∫ π

2
θ0

√
vb02 − 2g(h − D)dϕ∫ π

2
θ0

dϕ

= vmax
π
2 − θ0

∫ π
2

θ0
sin ϕ

√
1 − η)dϕ

≈ vmax
π
2 − θ0

∫ π
2

θ0
sin ϕ(1 − η

2
− η2

8
− η3

16
)dϕ

≈ v̄b0 − gτ ≈ v̄b0, (3.59)

which gives the averaged-speed of these balls, varying from 6.588 ∼ 12.693 m/s in good

agreement with the speed of flying balls in the SMAT experiment measured by high-speed

cameras [33]. The variation trends of averaged flying ball speed as a function of SMAT

vibration amplitude and frequency are presented in Fig. 3.1. It can be seen that the ball

speed would increase in proportional to the SMAT amplitude and frequency.

Thus, the total-averaged kinetic energy of these flying balls before second collision

between the sample bottom and flying balls is the sum of kinetic energy of each ball:

Ek,total =
N∑

k=1

1
2

mb⟨v⟩2

≈ N × 1
2

mb(v̄b0 − gτ)2 ≈ N × 1
2

mbv̄b0
2

≈ N

3π
D3ρbA

2ω2 ∝ DA2ω2,

where ρb is the density of flying balls. Recall that the balls will cover about 25% area of

the chamber bottom,

N × πD2 ≈ 0.25Ac,

N ≈ Ac

4πD2 ∝ 1
D2 ,

where Ac is the surface area of chamber bottom. Thus, the higher the diameter of ball is,
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the lower the total number of balls would be.

3.3.2 The Loss of Kinetic Energy for Balls

On colliding with the sample surface, the kinetic energy of flying balls will not be

conserved due to the inelastic collision between flying balls and sample. In the SMAT

chamber, we assume that a ball with mass mb have velocity vb before colliding with the

sample bottom and velocity v′
b after colliding with the sample bottom, and the sample with

mass ms is initially at rest and gains velocity v′
s after colliding with a flying ball. Thus,

the corresponding coefficient of restitution (the act of recovering to a former state) is:

e = vs
′ − vb

′

vb − vs

= v′
s − v′

b

vb

,

Considering the inelastic collision, we can use Eq. (2.48) and Eq. (3.59) to calculate the

v′
b and v′

s:

vb
′ = mb − ems

mb + ms

vb = mb − ems

mb + ms

⟨v⟩ ,

vs
′ = (1 + e)mb

mb + ms

vb = (1 + e)mb

mb + ms

⟨v⟩ .

And the averaged-loss of kinetic energy for flying balls and sample (∆Ek,loss,b and∆Ek,loss,s)

are:

∆Ek,loss,b = N(1
2

mbvb
2 − 1

2
mbvb

′2)

= N

2
mb ⟨v⟩2 [1 − (mb − ems

mb + ms

)2], (3.60)

∆Ek,loss,s = N(1
2

msvs
2 − 1

2
msvs

′2)

= N

2
mb ⟨v⟩2 [ (1 + e)mb

mb + ms

]2. (3.61)

This loss will be converted into the heat energy of sample and flying balls and the internal

energy (or so-called the strain energy) of sample and flying balls. And the kinetic energy

of sample will be assumed to convert almost into the internal energy of sample. Figure 3.2
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presents the variation trends of kinetic energy loss of flying balls, sample, and total (the

sum of those for balls and sample). It is apparent that the kinetic energy loss will increase

with increasing mb

ms
, the loss will reach the maximum at the point mb

ms
= e. Similarly, the

average time, τ ′, of flying balls from the sample bottom to the motor top between second

collision of the sample bottom and flying balls and third collision of the motor top and

flying balls can be obtained by the following equations:

h − D = |vb
′| τ ′ + 1

2
gτ ′2,

τ ′ = |vb
′|

g
(−1 +

√
1 + 2g(h − D)

vb
′2 )

= |vb
′|

g
(−1 +

√
1 + η′),

where the corresponding ball velocity and parameters:

|vb
′| =

∣∣∣∣∣
mb

ms
− e

1 + mb

ms

∣∣∣∣∣ vb =
∣∣∣∣∣

mb

ms
− e

1 + mb

ms

∣∣∣∣∣ ⟨v⟩ = −χ + e

1 + χ
⟨v⟩ , (3.62)

η′ = 2g(h − D)
vb

′2 , χ = mb

ms

= πρbD
3

6ρsAsL
. (3.63)

where L is the sample thickness, ρs is the sample density, and η′ and χ assumed to be

smaller than e are parameters defined in Eq. (3.63). Similarly, the average time of these

flying balls from the sample bottom to the motor top between second and third collision,

τ ′, can be obtained by the expansion of η′:

τ ′ ≈ vb
′

2g
(η′ − 1

4
η′2 + 1

8
η′3).

Thus, the averaged-time period of flying balls (going up and down between second and

third collision) and total-averaged power loss of kinetic energy of balls are

∆t = τ + τ ′, (3.64)

Ploss,b = N
∆Ek,loss,b

∆t
= N

2
mb⟨v⟩2 1 − (χ−e

χ+1)2

τ + τ ′ . (3.65)
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And so does the total-averaged power loss of kinetic energy of sample:

Ploss,s = N × ∆Ek,loss,s

∆t
= N

2
ms⟨v⟩2 [ (1+e)χ

χ+1 ]2

τ + τ ′ , (3.66)

where we have assumed that there is N collisions between the sample and flying balls in

∆t. Figure 3.3 illustrates the variation trend of averaged-time period of flying balls as a

function of the SMAT vibration amplitude and frequency. The trend says that the time

period decreases with increasing amplitude and frequency. This is reasonable in physics

since the average speed of flying balls is proportional to amplitude and frequency. In

addition, Fig. 3.4 shows the variation trends of power loss of flying balls, sample, and

total (the sum of those for balls and sample). It is apparent that with increasing mb

ms
the

energy loss will increase, but with different trends.

On the other hand, the phase change of harmonic motion after ball going up and down

in the SMAT chamber is:

∆ϕ = 2π × ν∆t,

and if ∆ϕ satisfies the condition:

∆ϕ = 2π × n, n ∈ positive integer,

→ ν · ∆t = n,

then the sinusoidal function will reach the same value (sin (ϕ + ∆ϕ) = sin ϕ), namely,

the velocity of flying balls will be steady. In static, the condition make the fluctuation of

speed for flying balls independent of time in a large-scale time. With the steady speed of

flying balls, each strain caused by a collision in the sample will be uniform.
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Chapter 4

Analytical and Numerical Solution

In this chapter, we solve the analytical and numerical solution of CME with Gaussian

white and compound Poisson noises, modified Eigen model in Hamming class, and heat

equation for SMAT. Analytical solutions of CME and Eigen are well consistent with nu-

merical simulation in a large-scale time. Mathematically, we can say that they are equal

to each other. The calculation of analytical solutions and numerical equation is involved

in this chapter in a detail.

4.1 CME Solution

We consider two models to describe chemical reactions including the CME with com-

pound Poisson noise and CME with compound Poisson and Gaussian noise. We have

calculated the analytical solution of steady-state PDF for the models, and the dynamics

of PDF has been simulated by finite difference methods. On reaching the steady state of

dynamics for PDF, they are in a good agreement with each other. We at first preferred the

Galerkin method which requires fixed boundary conditions (B.C.s) for x = 0 and x = ∞

to do this simulation, however, the only B.C.s for this case is P (∞) = 0 and P ′(∞) = 0.

Additionally, it can be expected that the B.C.s of analytical solution at x = 0 are not fixed

making the Galerkin method failed. Thus, we turn to the forward finite difference method

with normalized condition which doesn’t need the fixed B.C.s at x = 0 to simulate the

dynamics state of PDF.
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4.1.1 Finite Difference Method

In our CME research, we works with the general CME with the domain x ∈ [0, ∞):

∂P (x, t)
∂t

= ϵ
∂2P (x, t)

∂x2 + ∂

∂x
[R(x)P (x, t)]

+c[
∫ x

0
P (x − y, t)w(y)dy − P (x, t)], (4.1)

w(y) = k exp (−ky).

From Taylor expansion with finite difference h, we have the following for f(x + h):

f(x + h) =
∞∑

n=0

f (n)(x)
n!

hn

= f(x) + f ′(x)h + f ′′(x)
2!

h2 + f ′′′(x)
3!

h3 + · · ·

= f(x) + f ′(x)h + O(h2).

Therefore, we have the following approximation of O(h) for f ′(x):

f ′(x) = f(x + h) − f(x) − O(h2)
h

,

= f(x + h) − f(x)
h

+ O(h).

Similarly, f(x + 2h) and f(x + h) can be expanded as:

f(x + 2h) = f(x) + 2f ′(x)h + 2f ′′(x)h2 + O(h3),

f(x + h) = f(x) + f ′(x)h + f ′′(x)
2

h2 + O(h3).

Thus, the approximation of O(h) for f ′′(x):

f(x + 2h) − 2f(x + h) + f(x) = f ′′(x)h2 + O(h3),

f ′′(x) = f(x + 2h) − 2f(x + h) + f(x) − O(h3)
h2

= f(x + 2h) − 2f(x + h) + f(x)
h2 + O(h).
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These are the forward finite difference with accuracy of O(h) for f ′(x) and f ′′(x). To get

the accuracy of high order for f ′(x), we can expand f(x + h) into more terms:

f(x + h) = f(x) + f ′(x)h + f ′′(x)
2!

h2 + O(h3),

and we have:

f ′(x) =
f(x + h) − f(x) − f ′′(x)

2! h2 − O(h3)
h

= 2f(x + h) − 2f(x) − f(x + 2h) + 2f(x + h) − f(x) + O(h3)
h

= −f(x + 2h) + 4f(x + h) − 3f(x)
2h

+ O(h2).

Similarly, the accuracy of high order for f ′′(x) can be derived as:

f ′′(x) = −f(x + 3h) + 4f(x + 2h) − 5f(x + h) + 2f(x)
h2 + O(h2).

The coefficients of higher order for forward finite difference are listed in the table of

Appendix. For the integration of Eq. (4.1), we apply the trapezoid rule with accuracy of

O(h2) to approximate it:

∫ b

a
f(x)dx = h[f(a) + f(a + h)]

2
+ h[f(a + h) + f(a + 2h)]

2

+ ... + h[f(a + (N − 1)h) + f(b)]
2

+ O(h2)

=
N−1∑
l=1

f(a + lh)h + h[f(a) + f(b)]
2

+ O(h2),

where the discrete space of integration is chose to be equal to that of differentiation, N is

the partition number of interval [a, b], and Nh = b − a. Put all these approximations into

Eq. (4.1) and take the forward finite difference with space H in first order on time axis to

obtain the following numerical equation with accuracy of O(h2) and O(H) at x = ih and
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t = jH:

P (ih, (j + 1)H) − P (ih, jH)
H

≈ ϵ
−P ((i + 3)h, jH) + 4P ((i + 2)h, jH) − 5P ((i + 1)h, jH) + 2P (ih, jH)

h2

+ −R((i + 2)h)P ((i + 2)h, jH) + 4R((i + 1)h)P ((i + 1)h, jH) − 3R(ih)P (ih, jH)
2h

+ c[
i−1∑
l=1

P ((i − l)h, jH)w(lh)h + ckh

2
[P (0, jH)e−ikh + P (ih, jH)] − P (ih, jH)].(4.2)

For sake of simplicity, we can introduce the following notations:

P (ih, jH) = P j
i , R(ih) = Ri.

Therefore, Eq. (4.2) can be re-written as:

P j+1
i = −ϵH

h2 P j
i+3 + (4ϵH

h2 − H

2h
Ri+2)P j

i+2 + (−5ϵH

h2 + 2H

h
Ri+1)P j

i+1

+ (1 + 2ϵH

h2 − 3H

2h
Ri + kchH

2
− cH)P j

i

+ ckhH
i−1∑
l=1

P j
i−1e

−lkh + ckHh

2
P j

0 e−ikh. (4.3)

For i = 0 and j = 0,

P 1
0 = −ϵH

h2 P 0
3 + (4ϵH

h2 − H

2h
R1)P 1

0 + (1 + 2ϵH

h2 − 3H

2h
R0 − cH)P 0

0 ,

where we have removed the integral term of Eq. (4.3) which makes no contribution (the

area is zero) at i = 0 and j = 0. For i = 1 and j = 0:

P 1
1 = −ϵH

h2 P 0
4 + (4ϵH

h
− H

2h
R3)P 0

3 + (−5ϵH

h2 + 2H

h
R2)P 0

2

+ (1 + 2ϵH

h2 − 3H

2h
R1 + kchH

2
− cH)P 0

1 + ckHh

2
e−khP 0

1 .
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For i = 2 and j = 0:

P 1
2 = −ϵH

h2 P 0
5 + (4ϵH

h2 − H

2h
R4)P 0

4 + (−5ϵH

h2 + 2H

h
R3)P 0

3

+ (1 + 2ϵH

h2 − 3H

2h
R2 + kchH

2
− cH)P 0

2 + ckHh

2
(2e−khP 0

1 + e−2khP 0
0 ).

To simplify the representation of N numerical equations, it can be written as the matrix

multiplication: 

P 1
0

P 1
1
...

P 1
N−2

P 1
N−1

P 1
N



= AN×N+3



P 0
0

P 0
1
...

P 0
N+1

P 0
N+2

P 0
N+3



, (4.4)

where A is a N by N + 3 non-square matrix. To make A square, the last three elements of

right column on the right side of Eq. (4.4) can be neglected without loss of generality. If

the system boundary is large enough, the PDF is approximately zero on x = (N + 1)h ∼

(N + 2)h. Effect of the last three elements is so small that it will make no impact on the

dynamical behaviour of PDF. By observing the A elements from i = 0 ∼ 2 at j = 0, A

can be written as the general representation in i and j:



Ai,i = 1 + 2ϵH
h2 − 3H

2h
Ri + kchH

2 (1 − δi0) − cH, 0 ≤ i ≤ N − 1

Ai,i+1 = −5ϵH
h2 + 2H

h
Ri+1, 0 ≤ i ≤ N − 2

Ai,i+2 = 4ϵH
h2 − H

2h
Ri+2, 0 ≤ i ≤ N − 3

Ai,i+3 = − ϵH
h2 , 0 ≤ i ≤ N − 4

Ai,0 = 1
2kchHe(1−i)kh, 1 ≤ i ≤ N − 1

Ai,j = chHw((i − j)h), for i ≥ 1 and i > j

, (4.5)

where we have ignored the last three columns of A not affecting the dynamical state of

PDF in general ifNh is large enough. Thus,A is a squareN byN matrix now. Eventually,
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the time-evolution of PDF can be simulated by the algorithmwith normalization condition

for PDF:

P 1
i = AP 0

i , P 1
i = P 1

i∑
j P 1

j

,

P 2
i = AP 1

i , P 2
i = P 2

i∑
j P 2

j

,

...

P k
i = AP k−1

i , P k
i = P k

i∑
j P k

j

,

where P k
i = P k

i∑
j

P k
j
is the step for normalization. As time past, we can judge whether PDF

arrive the steady state or not by the following criteria:

P k
i

P k−1
i

≈ 1 or
P k

i − P k−1
i

P k−1
i

≈ 0 for all i.

With the h → 0+ and H → 0+ condition, A will become a Markov matrix. Physically,

each matrix multiplication of A is equivalent to the perturbation of previous state. Since

this perturbation is so small that it can be imagined as the adiabatic process in quantum

mechanics, initial PDF will finally become one of the eigenvectors of A. Nevertheless,

it’s very hard to find the eigenvector of A for large N value. As we all know that the

total eigenvectors of A is of O(N) and N is normally from 10000 ∼ 20000 in this case.

Furthermore, it’s also hard to judge which eigenvector is right for the steady state of PDF.

Thus, it’s better to simulate the dynamical steady of PDF in a large-scale time, namely,

the initial PDF is multiplied by A after many times.

4.1.2 Analytical Solution ofVanKampenCMEwithoutDiffusionTerm

Consider the Van Kampen CME solved by FCX in 2006 [1]:

∂P (x, t)
∂t

= ∂

∂x
[γ2xP (x, t)] + k1[

∫ x

0
dyP (x − y, t)w(y) − P (x, t)], (4.6)
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where w(y) is the transition PDF for a mRNA into protein. This partial differential equa-

tion (PDE) corresponds to the following scheme for DNA-mRNA-protein process as indi-

cated in Fig. 4.1, where k1 is the transition rate of a DNA into mRNA, k2 is the transition

rate of a mRNA into protein, and γ1,2 is the degradation rate of mRNA or protein, re-

spectively. Since the lifetime of mRNAs can be assumed to be short compared to that of

proteins, proteins can be considered to be produced in random uncorrelated events. The

transition PDF w(y) for a mRNA into protein has been measured in Fig. 4.2 [48].

w(y) = 1
b

exp (−1
b
y),

where b = k2
γ1
. Let us at first consider the steady-state solution of PDF, namely,

∂P (x, t)
∂t

= 0,

and take the Laplace transform on the both sides of Eq. (4.6):

0 = sL [γ2xP (x)] − [γ2xP (x)]
∣∣∣
x=0

− k1(
1
b

s + 1
b

− 1)P̂ (s),

0 = −γ2s
dP̂ (s)

ds
− k1

s

s + 1
b

P̂ (s),

0 = dP̂ (s)
ds

+ a

s + 1
b

P̂ (s), (4.7)

where a = k1
γ2
, s is a complex constant, and

P̂ (s) = L [P (x)] =
∫ ∞

0
P (t)e−stdt.
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The P̂ (s) solution can be obtained by taking the integration in the method of separation

variables:

dP̂ (s)
P̂ (s)

= −a

s + 1
b

ds,

∫
dP̂ (s)
P̂ (s)

=
∫ −a

s + 1
b

ds,

ln |P̂ (s)| = −a ln |s + 1
b
| + ln c,

P̂ (s) = c

(s + 1
b
)a

. (4.8)

where c is an integration constant. Finally, the P (x) solution is immediately obtained by

taking the inverse Laplace transformation of P̂ (s):

P (x) = L −1[P̂ (s)] = c

Γ(a)
xa−1e− x

b , (4.9)

where

L −1[P̂ (s)] = 1
2πi

lim
T →∞

∫ γ+iT

γ−iT
estP̂ (s)ds,

and P (x) is a gamma distribution. The c value can be calculated from the normalization

condition for P (x):

1 =
∫ ∞

0
P (x)dx = c

Γ(a)

∫ ∞

0
xa−1e

−x
b dx

= cba

Γ(a)

∫ ∞

0
xa−1e−xdx = cba

Γ(a)
Γ(a) = cba,

⇒ c = 1
ba

, P (x) = 1
Γ(a)ba

xa−1e
−x
b . (4.10)

To test the validity of our numerical algorithm, we can simulate the dynamical state of

PDF by the forward finite difference method with three set of parameters: (i) a = 0.5,

b = 5, (ii) a = 5, b = 5, (iii) a = 8, b = 8, and set the initial PDF as exponential

distribution which is reasonable for the DNA-mRNA–protein process:

P (x, 0) = ke−kx or P (x, 0) = 2√
π

e−x2
.
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No matter which initial exponential PDF we set, we can expect that PDF will finally reach

the same steady state, namely, the gamma distribution. The Figs. 4.3-5 correspond to

the case (i) of dynamical state and steady state for PDF. As indicated in these figures,

the dynamical state of PDF in a large-scale time will be consistent with the analytical

solution of steady state for PDF, the gamma distribution. For a < 1 parameter, the gamma

distribution goes to infinity as x → 0+. For a > 1 parameter, the gamma distribution has

a global maximum at x0 = b(a − 1) where dP (x)
dx

∣∣∣
x=x0

= 0. The Figs. 4.6-8 correspond to

the case (ii) of dynamical state and steady state for PDF. The Figs. 4.9-10 correspond to

the case (iii) of dynamical state and steady state for PDF. As shown in Figs. 4.6-10 the

x0 value increases with increasing a and b.

4.1.3 Asymptotic Solution of VanKampen CMEwith Diffusion Term

Now we turn to consider the Van Kampen CME added diffusion term, ϵ∂2P (x,t)
∂x2 , which

is so-called intrinsic noise for a given system. This CME has the form:

∂P (x, t)
∂t

= ϵ
∂2P (x, t)

∂x2 + ∂

∂x
[γ2xP (x, t)]

+ aγ2[
∫ x

0
P (x − y, t)w(y)dy − P (x, t)], (4.11)

where the transition PDF w(y) we use is ke−ky. To investigate the steady-state solution of

Eq. (4.11), we at first calculate the special cases: (i) a = 0 and (ii) x near 0. For a = 0

parameter, Eq. (4.11) on reaching steady-state becomes the form:

0 = ϵ
∂2P (x, t)

∂x2 + ∂

∂x
[γ2xP (x, t)], (4.12)

which is the exact form of Fokker-Planck equation. The Eq. (4.12) can be reduced into

the ordinary differential equation of first order:

0 = ∂

∂x
[∂P (x)

∂x
+ γ2x

ϵ
P (x)],

c1 = ∂P (x)
∂x

+ γ2x

ϵ
P (x), (4.13)

71



where c1 is an integration constant. The integrating factor I(x) of Eq. (4.13) is:

I(x) = exp
∫ γ2x

ϵ
dx = exp (γ2x

2

2ϵ
).

With this I(x), the general solution of P (x) in Eq. (4.13) is:

P (x) = c1e
− γ2x2

2ϵ

∫ x

c
e

γ2t2
2ϵ dt + c2e

− γ2x2
2ϵ , (4.14)

where c2 is an integration constant and c is an appropriate reference point. Physically, we

require the B.C.s for PDF: P (∞) = 0 and P ′(∞) = 0. We have the following equations

for P (∞) and P ′(∞) in Eq. (4.14):

lim
x→∞

P (x) = lim
x→∞

[c1e
− γ2x2

2ϵ

∫ x

c
e

γ2t2
2ϵ dt + c2e

− γ2x2
2ϵ ]

= lim
x→∞

[c1e
− γ2x2

2ϵ

∫ x

c
e

γ2t2
2ϵ dt]

= c1 lim
x→∞

∫ x
c e

γ2t2
2ϵ dt

e
γ2x2

2ϵ

= c1 lim
x→∞

ϵ

γ2x
= 0,

lim
x→∞

P ′(x) = lim
x→∞

[−c1
γ2

ϵ
xe− γ2x2

2ϵ

∫ x

c
e

γ2t2
2ϵ dt + c1 − c2

γ2

ϵ
xe− γ2x2

2ϵ ]

= c1 lim
x→∞

[1 − γ2

ϵ

x
∫ x

c e
γ2t2

2ϵ dt

e
γ2x2

2ϵ

]

= c1 lim
x→∞

[1 −
∫ x

c e
γ2t2

2ϵ dt + xe
γ2t2

2ϵ

xe
γ2t2

2ϵ

]

= −c1 lim
x→∞

∫ x
c e

γ2t2
2ϵ dt

xe
γ2t2

2ϵ

= 0,

72



where the both solutions satisfy the B.C.s of P (x) and P ′(x) as x → ∞. Since we have

the following asymptotic behaviour for the first solution of P (x) in Eq. (4.14):

lim
x→∞

∫ x
c e

γ2t2
2ϵ dt

e
γ2t2

2ϵ

= ϵ

γ2
lim

x→∞

1
x

,

e− γ2x2
2ϵ

∫ x

c
e

γ2t2
2ϵ dt ∼ 1

x
,

the first solution violates the normalization condition for P (x):

∫ ∞

0
dxe− γ2x2

2ϵ

∫ x

c
e

γ2t2
2ϵ dt → ∞ ̸= 1.

Thus, the first solution of P (x) in Eq. (4.14) must be dropped off. By the normalization

condition, the c2 can be obtained by:

1 =
∫ ∞

0
P (x)dx

= c2

∫ ∞

0
e− γ2x2

2ϵ dx = c2

√
πϵ

2γ2
,

⇒ c2 =
√

2γ2

πϵ
, P (x) =

√
2γ2

πϵ
e− γ2x2

2ϵ ,

where P (x) is a Gaussian distribution with
√

2ϵ
πγ2

expectation value. Physically, this small

amount of proteins are created by the intrinsic noise, random collisions in diffusion pro-

cess. As γ2 increases, the protein production decreases. The effect of random collisions

disappears as ϵ → 0, and P (x) becomes the delta function at x = 0. Without intrinsic

noise (ϵ term) and extrinsic noise (aγ2 term), protein cannot be synthesised.
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We have the following integration by part for the integration term in Eq. (4.11):

∫ x

0
P (x − y)w(y)dy =

∫ x

0
P (y)w(x − y)dy

= e−kx
∫ x

0
P (y)kekydy = e−kx

∫ x

0
P (y)deky

= e−kx{[ekyP (y)]
∣∣∣x
0

− 1
k

∫ x

0
P ′(y)deky}

= e−kx{ekxP (x) − P (0) − [e
ky

k
P ′(y)]

∣∣∣x
0

+ 1
k2

∫ x

0
P ′′(y)deky}

= e−kx{ekxP (x) − P (0) − 1
k

[ekxP ′(x) − P ′(0)]

+ 1
k2

∫ x

0
P ′′(y)deky}, (4.15)

where we have the following approximations for x near 0:

ekxP (x) − P (0)

≈ (1 + kx)[P (0) + P ′(0)x] − P (0)

≈ kxP (0) + xP ′(0),

ekxP ′(x) − P ′(0)

≈ (1 + kx)[P ′(0) + P ′′(0)x] − P ′(0)

≈ kxP ′(0) + xP ′′(0).

Therefore, Eq. (4.15) can be approximated as:

kxP (0) + xP ′(0) − xP ′(0) − x

k
P ′′(0) + 1

k2

∫ x

0
P ′′(y)deky

≈ kxP (x) − x

k
P ′′(x) + P ′′(x)

k

∫ x

0
ekydy

= kxP (x) − x

k
P ′′(x) + P ′′(x)

k2 (ekx − 1)

≈ kxP (x) − x

k
P ′′(x) + xP ′′(x)

k
≈ kxP (x) (4.16)

where we have used the mean value theorem of integral for the integration:

∫ x

0
P ′′(y)ekydy = P ′′(c)

∫ x

0
ekydy, for c ∈ (0, x).
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Since x is near 0, the c can be approximated as x. For x near 0 case, the integration term

in Eq. (4.11) can be neglected under the condition:

kx << γ2 ⇒ x <<
γ2

k
,

and the Eq. (4.11) becomes:

∂P (x, t)
∂t

= ϵ
∂2P (x, t)

∂x2 + ∂

∂x
[γ2xP (x, t)] − aγ2P (x, t). (4.17)

For the steady-state P (x) of Eq. (4.17), we have:

0 = d2P (x)
dx2 + d

dx
[γ2

ϵ
xP (x)] − aγ2

ϵ
P (x),

0 = d2P (x)
dx2 + γ2

ϵ
x

dP (x)
dx

+ γ2
1 − a

ϵ
P (x). (4.18)

Since the solution of Eq. (4.18) with a = 0 reduces to Gaussian distribution, we can use

the ansatz:

P (x) = e− γ2x2
2ϵ H(x) = e− γ2x2

2ϵ xF (x). (4.19)

The corresponding derivatives of P (x) in terms of F (x) are:

dP (x)
dx

= e− γ2x2
2ϵ [−γ2

ϵ
xH(x) + dH(x)

dx
]

= xe− γ2x2
2ϵ [(−γ2

ϵ
x + 1

x
)F (x) + dF (x)

dx
],

d2P (x)
dx2 = e− γ2x2

2ϵ [(γ2
2x2

ϵ2 − γ2

ϵ
)H(x) − 2γ2

ϵ
x

dH(x)
dx

+ d2H(x)
dx2 ]

= xe− γ2x2
2ϵ [γ2

ϵ
(γ2

ϵ
x2 − 3)F (x) + 2(1

x
− γ2

ϵ
)dF (x)

dx
+ d2F (x)

dx2 ].

Put these expressions into Eq. (4.18) to obtain:

d2F (x)
dx2 + (2

x
− γ2

ϵ
x)dF (x)

dx
− γ2

ϵ
(1 + a)F (x) = 0. (4.20)

And set the change of variables:

t = γ2x
2

2ϵ
.
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The corresponding differential operators with respect to t:

d

dx
= γ2

ϵ
x

d

dt
,

d2

dx2 = γ2

ϵ

d

dt
+ γ2

2
ϵ2 x2 d2

dt2 .

Thus, the Eq. (4.20) is transformed into:

t
d2F (t)

dt2 + (3
2

− t)dF (t)
dt

− 1 + a

2
F (t) = 0,

which is the Kummer’s differential equation with the two linear-independent solutions:

F (t) = c1KummerM(1 + a

2
,
3
2

, t) + c2KummerU(1 + a

2
,
3
2

, t). (4.21)

And the asymptotic behaviour of the two Kummer functions near t = 0 is:

KummerM(1 + a

2
,
3
2

, t) ∼ 1,

KummerU(1 + a

2
,
3
2

, t) ∼ 1√
t
,

where the corresponding behaviour of P (x) near x = 0:

P (x) = xe− γ2x2
2ϵ F (t) ≈ (c1x + c2

√
2ϵ

γ2
)e− γ2x2

2ϵ ∼
√

ϵ

γ2
.

Thus, the random-collision process or diffusion term with any a value is the dominating

factor for P (x) near x = 0. No matter what the a value is, the intrinsic noise strongly

affects the behaviour of P (x) near x = 0, and the non-zero P (0) is proportional to
√

ϵ
γ2
.
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4.1.4 Analytical Solution of Van Kampen CME with Diffusion Term

Now we turn to solve the steady state of Eq. (4.11) with ∂P (x,t)
∂t

= 0. Equation (4.11)

must satisfy the normalization condition for PDF:

∫ ∞

0
P (x, t)dx = 1.

Therefore, we at first take integration on the both sides of Eq. (4.11) with respect to x over

the integrand [0, ∞):

0 = ∂

∂t

∫ ∞

0
P (x, t)dx =

∫ ∞

0

∂P (x, t)
∂t

dx

= ϵ[∂P (x, t)
∂x

]
∣∣∣∞
0

+ [γ2xP (x, t)]
∣∣∣∞
0

+ aγ2[
∫ ∞

0

∫ x

0
ke−kyP (x − y, t)dydx −

∫ ∞

0
P (x, t)dx]

= ϵ
∂P (x, t)

∂x

∣∣∣
x=0

+ [γ2xP (x, t)]
∣∣∣
x=0

,

to investigate the behaviour of P (x, t) at x = 0, where the integration for convolution

term is:

∫ ∞

0

∫ x

0
ke−kyP (x − y, t)dydx =

∫ ∞

0
ekyP (y, t)

∫ ∞

y
ke−kxdxdy

=
∫ ∞

0
ekyP (y, t)[−e−kx]

∣∣∣∞
y

dy

=
∫ ∞

0
P (y, t)dy = 1.

Since we have P (∞, t) = 0 and ∂P (x,t)
∂x

∣∣∣
x=∞

= 0, we can chose the reasonable boundary

conditions for P (x, t):

lim
x→0

[xP (x, t)] = 0,

∂P (x, t)
∂x

∣∣∣
x=0

= 0,
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where the last condition is the zero flux for P (x, t) at x = 0. For sake of simplicity, we

can set the change of variables for the steady-state P (x):

y(x) =
∫ x

0
P (x − y)e−kydy = e−kx

∫ x

0
P (x)ekydy, (4.22)

where the corresponding derivatives of P (x) in terms of y(x) are:

P (x) = dy(x)
dx

+ ky(x),

dP (x)
dx

= d2y(x)
dx2 + k

dy(x)
dx

,

d2P (x)
dx2 = d3y(x)

dx3 + k
d2y(x)

dx2 .

And the corresponding initial conditions for y(x) at x = 0:



y(0) = 0,

y′(0) = P (0),

y′′(0) = −kP (0),

, (4.23)

where recall that we have the zero flux for PDF at x = 0. Therefore, we have the following

ordinary differential equation of third order for y(x):

ϵ

γ2

d3y(x)
dx3 + (x + ϵ

γ2
k)d2y(x)

dx2 + (1 − a + kx)dy(x)
dx

+ ky(x) = 0, (4.24)

which is a linear homogeneous equation. Since the Eq. (4.24) is linear homogeneous

and third order equation, the solution of Eq. (4.24) can be expressed as the sum of three

linear-independent functions:

y(x) = c1y1(x) + c2y2(x) + c3y3(x), (4.25)

where c1−3 are all undetermined constants determined by the initial conditions of Eq.

(4.23) and normalization condition for P (x, t) and y1−3(x) is the homogeneous solution
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of Eq. (4.24). Since the solution of Eq. (4.24) without diffusion term is a gamma function,

we can expect that y(x) is proportional to e−kx. To simplify Eq. (4.24), we can let y(x)

in term of:

y(x) = e−kxH(x),

where the corresponding derivatives of y(x) are:

dy(x)
dx

= −ky(x) + e−kx dH(x)
dx

,

d2y(x)
dx2 = −k

dy(x)
dx

− e−kx(kdH(x)
dx

+ d2H(x)
dx2 ),

d3y(x)
dx3 = −k

d2y(x)
dx2 + e−kx(k2 dH(x)

dx
− 2k

d2H(x)
dx2 + d3H(x)

dx3 ).

Put all these derivatives of y(x) in term of H(x) into Eq.(4.24) and rearrange it:

0 = e−kx[ ϵ

γ2

d3H

dx3 + (x − 2 ϵ

γ2
k)d2H

dx2 + ( ϵ

γ2
k2 + 1 − a − kx)dH

dx
+ akH],

0 = ϵ

γ2

d3H

dx3 + (x − 2 ϵ

γ2
k)d2H

dx2 + ( ϵ

γ2
k2 + 1 − a − kx)dH

dx
+ akH. (4.26)

Set c = ϵ
γ2

k and the change of variable:

s = x − ϵ

γ2
k = x − c,

and then the Eq. (4.26) becomes:

ϵ

γ2

d3H

ds3 + (s − c)d2H

ds2 + (1 − a − ks)dH

ds
+ akH = 0. (4.27)

As we did in previous section, we can let:

H(s) = e− γ2s2
2ϵ sF (s),
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where the corresponding derivatives of H(s):

dH(s)
ds

= se− γ2s2
2ϵ [(−γ2

ϵ
s + 1

s
)F (s) + dF (s)

ds
],

d2H(s)
ds2 = se− γ2s2

2ϵ [γ2

ϵ
(γ2

ϵ
s2 − 3)F (s) + 2(1

s
− γ2

ϵ
)dF (s)

ds
+ d2F (s)

ds2 ],

d3H(s)
ds3 = se− γ2s2

2ϵ {d3F (s)
ds3 + 3(1

s
− γ2

ϵ
s)d2F (s)

ds2

+ 3(γ2
2

ϵ2 s2 − 3γ2

ϵ
)dF (s)

ds
+ [(−γ3

2
ϵ3 s3 + 6γ2

2
ϵ2 )s − 3γ2

ϵ

1
s

]F (s)}.

Put all these derivatives into Eq. (4.27) to obtain the equation for F (s):

ϵ

γ2

d3F

ds3 + (3 ϵ

γ2

1
s

− ϵk

γ2
− 2s)d2F

ds2 + [γ2

ϵ
s2 + ks + 2 ϵk

γ2s
− (a + 6)]dF

ds

+(a + 2)(γ2

ϵ
s − 1

s
+ k)F = 0. (4.28)

Similarly, we can set the change of variable:

t = γ2s
2

2ϵ
,

where the corresponding differential operators with respect to t:

d

ds
= γ2

ϵ
s

d

dt
,

d2

ds2 = γ2

ϵ

d

dt
+ γ2

2
ϵ2 s2 d2

dt2 ,

d3

ds3 = 3γ2
2

ϵ2 s
d2

dt2 + γ3
2

ϵ3 s3 d3

dt3 .
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Put all these operators into Eq. (4.28) to obtain the equation:

ϵ

γ2
(γ3

2
ϵ3 s3 d3F

dt3 + 3γ2
2

ϵ2 s
d2F

dt2 ) + (3 ϵ

γ2

1
s

− ϵk

γ2
− 2s)(γ2

2
ϵ2 s2 d2F

dt2 + γ2

ϵ

dF

dt
)

+[γ2

ϵ
s2 + ks + 2 ϵk

γ2s
− (a + 6)]γ2

ϵ
s

dF

dt
+ (a + 2)(γ2

ϵ
s − 1

s
+ k)F = 0,

γ2
2

ϵ2 s3 d3F

dt3 + γ2

ϵ
s(6 − 2γ2

ϵ
s2 − ks)d2F

dt2 + [3(1
s

− k)

+γ2

ϵ
s(−8 + γ2

ϵ
s2 + ks − a)]dF

dt
+ (a + 2)[γ2

ϵ
s(1 − ϵ

γ2s2 ) + k]F = 0,

γ2

ϵ
s[2t

d3F

dt3 + (6 − 4t)d2F

dt2 + (−8 + 2t − a +
3
2
t
)dF

dt
− a + 2

2t
F ]

+k[−2t
d2F

dt2 + (2t − 3)dF

dt
+ (a + 2)F ] = 0. (4.29)

Since the solution of F (x) is Kummer function near x = 0, we can assume that F (x) may

be related to Kummer function for x ̸= 0. We have the solutions KummerM(µ, ν, t) and

KummerU(µ, ν, t) to Kummer’s differential equation:

t
d2F

dt2 + (ν − t)dF

dt
− µF = 0,

where µ and ν are both constants, and the following equivalent equations:

2t
d3F

dt3 + (2 + 2ν − 2t)d2F

dt2 − 2(µ + 1)dF

dt
= 0,

d2F

dt2 + (ν

t
− 1)dF

dt
− µ

t
F = 0,

−2kt
d2F

dt2 + (2kt − 2kν)dF

dt
+ 2kµF = 0,

−2t
d2F

dt2 + (2t − 2ν)dF

dt
+ 2µF = 0.
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These equations give us the direction to write Eq. (4.29) in terms of t as:

{γ2

ϵ
s[2t

d3F

dt3 + (5 − 2t)d2F

dt2 − 2(a

2
+ 2)dF

dt
]}

−k{2t
d2F

dt2 + (3 − 2t)dF

dt
+ (a + 2)F}

+{γ2

ϵ
s[d

2F

dt2 + (
3
2
t

− 1)dF

dt
−

a
2 + 1

t
F ]}

+{γ2

ϵ
s[−2t

d2F

dt2 + (2t − 3)dF

dt
+ (a + 2)F ]} = 0. (4.30)

By observation, the solutions to Eq. (4.30) areKummerM(1+a
2 , 3

2 , t) andKummerU(1+
a
2 , 3

2 , t) which make all four terms zero in Eq. (4.30). Thus, we already have two solutions

to Eq. (4.24). And the two solutions is choose as:

y1(x) = e−kx(x − ϵk

γ2
)e− γ2

2ϵ
(x− ϵk

γ2
)2

KummerM(1 + a

2
,
3
2

,
γ2

2ϵ
(x − ϵk

γ2
)2),

y2(x) = e−kx(x − ϵk

γ2
)e− γ2

2ϵ
(x− ϵk

γ2
)2

KummerU(1 + a

2
,
3
2

,
γ2

2ϵ
(x − ϵk

γ2
)2).

To simplify the expression of Eq. (4.30), we can introduce the variable Y = Y (F (t), t)

as:

Y = 2t
d2F

dt2 + (3 − 2t)dF

dt
− (a + 2)F,

dY

dt
= 2t

d3F

dt3 + (5 − 2t)d2F

dt2 − (a + 4)dF

dt
,

where Y = 0 corresponds to the y1(x) and y2(x) solution. With the introduction of Y , Eq.

(4.30) can be written as:

γ2

ϵ
s

dY

dt
+ (−k + γ2

ϵ
s

1
2t

− γ2

ϵ
s)Y = 0,

⇒ dY

ds
+ (1

s
− k − γ2

ϵ
s)Y = 0. (4.31)

82



Therefore, the y3(x) can be found by the Eq. (4.31) with Y ̸= 0. For Y ̸= 0, we have:

dY

ds
= (k + γ2

ϵ
s − 1

s
)Y,

dY

Y
= (k + γ2

ϵ
s − 1

s
)ds,

⇒ Y (s) = c′
3
1
s

eks+ γ2
2ϵ

s2
, (4.32)

where c′
3 is an integration constant. We should transform Y (t) into Y (s) by the relation

between t and s differential operators:

d

dt
= ϵ

γ2

1
s

d

ds
,

d2

dt2 = − ϵ2

γ2
2

1
s3

d

ds
+ ϵ2

γ2
2

1
s2

d2

ds2 ,

Y (s) = γ2

ϵ
s2( ϵ2

γ2
2

1
s2

d2F

ds2 − ϵ2

γ2
2

1
s3

dF

ds
) + (3 − γ2

ϵ
s2) ϵ

γ2

1
s

dF

ds
− (a + 2)F

= ϵ

γ2

d2F

ds2 + (2 ϵ

γ2

1
s

− s)dF

ds
− (a + 2)F.

Now we turn to solve the non-homogeneous equation:

ϵ

γ2

d2F

ds2 + (2 ϵ

γ2

1
s

− s)dF

ds
− (a + 2)F = c′

3
1
s

eks+ γ2
2ϵ

s2
,

d2F

ds2 + (2
s

− γ2

ϵ
s)dF

ds
− γ2

ϵ
(a + 2)F = c′

3
γ2

ϵ

1
s

eks+ γ2
2ϵ

s2
. (4.33)

Since we have the two homogeneous solutions to Eq. (4.33), the particular solution to Eq.

(4.33) can be solved by the variation of parameters. For sake of simplicity, we can set:


Y1 = Y1(t) = KummerM(1 + a

2 , 3
2 , γ2

2ϵ
s2)

Y2 = Y1(t) = KummerU(1 + a
2 , 3

2 , γ2
2ϵ

s2)
.
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Thus, the particular solution, Y3, to Eq. (4.33) is:

Y3 = −Y1

∫ Y2

W (Y1, Y2)
c′

3
γ2

ϵ

1
s

eks+ γ2
2ϵ

s2
ds + Y2

∫ Y1

W (Y1, Y2)
c′

3
γ2

ϵ

1
s

eks+ γ2
2ϵ

s2
ds

= c′
3
γ2

ϵ
(−Y1

∫ Y2

W (Y1, Y2)
1
s

eks+ γ2
2ϵ

s2
ds + Y2

∫ Y1

W (Y1, Y2)
1
s

eks+ γ2
2ϵ

s2
ds)

= c3(−Y1

∫
Y2seksds + Y2

∫
Y1seksds), (4.34)

where c3 = −(γ2
2ϵ

) 3
2 c′

3, W is the Wronskian determinant, and we have used the formula

[49]:

W (Y1, Y2) = dt

ds
[Y1(t)

dY2(t)
dt

− dY1(t)
dt

Y2(t)]

= −γ2

ϵ
s(γ2

2ϵ
s2)−νe

γ2
2ϵ

s2 Γ(ν)
Γ(µ)

∣∣∣
µ=1+ a

2 ,ν= 3
2

= −2
√

2(γ2

ϵ
)− 1

2
1
s2 e

γ2
2ϵ

s2 Γ(3
2)

Γ(1 + a
2)

. (4.35)

With the Y3, the y3(x) is:

y3(x) = e−kx[−KummerM(1 + a

2
,
3
2

,
γ2

2ϵ
s2)

∫
KummerU(1 + a

2
,
3
2

,
γ2

2ϵ
s2)seksds

+ KummerU(1 + a

2
,
3
2

,
γ2

2ϵ
s2)

∫
KummerM(1 + a

2
,
3
2

,
γ2

2ϵ
s2)seksds]se− γ2

2ϵ
s2

,

where s = x − ϵk
γ2
. From Eq. (4.25) and normalization condition for P (x), the values of

c1−3 and P (0) can be evaluated numerically by the following equation:



c1y1(0) + c2y2(0) + c3y3(0) = 0

c1y
′
1(0) + c2y

′
2(0) + c3y

′
3(0) = P (0)

c1y
′′
1(0) + c2y

′′
2(0) + c3y

′′
3(0) = −kP (0)

c1
∫∞

0 y1(x)dx + c2
∫∞

0 y2(x)dx + c3
∫∞

0 y3(x)dx = 1
k
[1 + c1y1(0) + c2y2(0)]

.

After getting y(x), the steady-state PDF of Eq. (4.11) is determined by:

P (x) = dy(x)
dx

+ ky(x).
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The Fig. 4.11 shows the variation trend of P (x) with fixed k, a, and γ2 for different ϵ

values. The larger the ϵ value is , the more P (x) is diffused and so does the fluctuation of

P (x). The Fig. 4.12 shows the variation trend of P (x) with fixed ϵ, a, and γ2 for different

k parameters. The larger the k value is, the more the maximum of P (x) is close near

x = 0. Physically, the transition PDF decreases rapidly wit increasing k.

4.1.5 Dynamic Simulation of VanKampenCMEwith Diffusion Term

The simulation of Eq. (4.11) uses the forward finite difference introduced in Ch. 4.1.1,

but the algorithm must be modified at the x = 0. Since the ∂P (x,t)
∂x

∣∣∣
x=0

in Eq. (4.11) is

zero, the condition of zero flux must be added to the algorithm. The modified algorithm

is described as follows:

P 1
i = AP 0

i , P 1
i = P 1

i∑
j P 1

j

,
∂P 1

0
∂x

= 0,

P 2
i = AP 1

i , P 2
i = P 2

i∑
j P 2

j

,
∂P 2

0
∂x

= 0,

...

P k
i = AP k−1

i , P k
i = P k

i∑
j P k

j

,
∂P k

0
∂x

= 0.

For x = 0 point, we have used the central difference of O(h2) for ∂P (0,t)
∂x

:

∂P k
0

∂x
≈ P 1

0 − P −1
0

2h
,

P −1
0 = P 1

0 , for zero flux, (4.36)

which modifies the two of A matrix element: A0,0 and A0,1 in Ch. 4.1.1. With zero flux

at x = 0 for the forward finite difference of O(h3), we can write ∂P k
0

∂x
= 0 in O(h3) as:

−11
6

P k
0 + 3P k

1 − 3
2

P k
2 + 1

3
P k

3 = 0,

⇒ P k
0 = 8

11
P k

1 − 9
11

P k
2 + 2

11
P k

3 .
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In a large-scale time, the Figs. 4.13-18 show that the dynamical state of PDF is consistent

with the steady-state of PDF. Mathematically, we can say they are equal to each other. For

a larger k value, the maximum position of PDF approaches the x = 0. The fluctuation

of PDF increases with the increasing ϵ value. No matter what a and ϵ values are, the

steady-state or dynamical PDF is strongly affected by diffusion term at x = 0.

4.2 Finite correction of Modified Eigen Model in Ham-

ming Class

Modified Eigen Model in Hamming class in Ch. 3.2.3 is described as the following:

∂pl

∂t
=

l∑
n1=0

N−l∑
n2=0

MnQn1+n2rl−npl−n, (4.37)

where pl is a sequence probability in l-th Hamming class,

Mn = l!
n1!(l − n1)!

(N − l)!
n2!(N − l − n2)!

, rl = f(m),

and

Qn1+n2 = Q̂q−(n1+n2)(1 − q)n1+n2 .

In this chapter, we derive the mean fitness and probability distribution of O( 1
N

) by HJE

method, where N is the genome length. The numerical simulation is well consistent with

our analytical results in a relative errors less than 1 %.

4.2.1 The derivation for Hamilton-Jacobi equation

At first, we can apply the WKB expansion for pl:

pl = exp[Nu(m, t) + u1(m)],
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where u(m, t) is the HJE solution with the bulk Hamiltonian, u1 is the correction term of

O( 1
N

) for the steady-state probability distribution. The u1 calculation is our main goal of

this work. Since we want to investigate the finite correction ofO( 1
N

), each variable should

be related to N . All our work is to calculate the correction of O( 1
N

), so all the O( 1
N2 ) and

higher order terms are neglected. Then we can expand the u(ml−n) and u1(ml−n) at m

till all correction terms are of O( 1
N

):

ml−n = 1 − 2(l − n)
N

= ml + 2n

N
≡ m + 2n

N
,

u(ml−n, t) = u(m, t) + 2n

N
u′(m, t) + 2( n

N
)

2
u′′(m, t) + . . . ,

u1(ml−n) = u1(m) + 2n

N
u1

′(m) + . . . ,

pl−n ≈ pl exp(2nu′ + 2n2

N
u′′ + 2n

N
u1

′), (4.38)

where u′(m, t) = ∂u(m,t)
∂m

, u′′(m, t) = ∂2u(m,t)
∂m2 , and u1

′(m) = du1(m)
dm

. The rl−n can be

expanded at m:

rl−n = f(ml−n) ≈ f(m) + 2n

N
f ′(m), (4.39)

where f ′(m) = df(m)
dm

. The element of mutation matrix can be expressed by the parameter:

γ = N(1 − q). (4.40)

For N >> 1, we have the following approximations and notation:

Qn = Q̂( γ

N
)n(1 − γ

N
)−n = Q̂( γ

N − γ
)n,

γ0 ≡ Nγ

N − γ
= γ(1 − γ

N
)−1 ≈ γ(1 + γ

N
),

Q̂ = (1 − γ

N
)N ≈ (e

γ
N − γ2

2N2 )N ≈ e−γ(1 − γ2

2N
). (4.41)
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With all these expansions, we turn to derive the Hamilton-Jacobi equation now. We have

the approximation equation for modified Eigen model in Hamming class:

∂pl

∂t
≈ Q̂

l∑
n1=0

N−l∑
n2=0

l!
n1!(l − n1)!

(N − l)!
n2!(N − l − n2)!

× (γ0

N
)n1+n2 [f(m) + 2(n1 − n2)

N
f ′(m)]

× e2(n1−n2)u′+ 2
N

(n1−n2)2u′′+ 2
N

(n1−n2)u1′
pl. (4.42)

Similarly, the exponential term can be approximated as:

e2(n1−n2)u′+ 2
N

(n1−n2)2u′′+ 2
N

(n1−n2)u1′

≈ e2nu′(1 + 2
N

n2u′′)(1 + 2
N

nu1
′)

≈ e2(n1−n2)u′ [1 + 2
N

((n1 − n2)2u′′ + (n1 − n2)u1
′)]. (4.43)

And note that the multiplicative number Mn is the product of two binomial coefficients:

Mn = l!
n1!(l − n1)!

(N − l)!
n2!(N − l − n2)!

=
(

l

n1

)(
N − l

n2

)
.

Holding till the second order terms for Eq. (4.42), we get:

∂pl

∂t
≈ Q̂plf(m)

l∑
n1=0

N−l∑
n2=0

(
l

n1

)(
N − l

n2

)
(γ0

N
)n1+n2

·e2(n1−n2)u′ [1 + 2
N

((n1 − n2)2u′′ + (n1 − n2)u1
′)]

+Q̂plf
′(m)

l∑
n1=0

N−l∑
n2=0

(
l

n1

)(
N − l

n2

)

·( γ

N
)n1+n2e2(n1−n2)u′ 2(n1 − n2)

N
. (4.44)

By the binomial theorem, we can use the formula for summation:

(1 + a)n =
n∑

k=0

(
l

k

)
ak. (4.45)
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With these expansions, the Eq. (4.44) divided by pl turns to

∂u(m, t)
∂t

+ Ĥ(m, u′) + H3(m, u′, u1, u′′, f ′) = 0, (4.46)

where we have rescaled t → t
N
( d

dt
→ 1

N
d
dt
), H3(m, u′, u1, u′′, f ′) is a linear combination

of correction terms including u1, u′′, and f ′ terms, and

−Ĥ = Q̂f(m)
l∑

n1=0

N−l∑
n2=0

(
l

n1

)(
N − l

n2

)
(γ0

N
)n1+n2e2(n1−n2)u′

= Q̂f(m)
l∑

n1=0

(
l

n1

)
(γ0

N
e2u′)n1

N−l∑
n2=0

(
N − l

n2

)
(γ0

N
e−2u′)n2

= Q̂f(m)
l∑

n1=0

(
l

n1

)
xn1

0

N−l∑
n2=0

(
N − l

n2

)
yn2

0

= Q̂f(m)(1 + x0)l(1 + y0)N−l, (4.47)

where we have denoted the two notations:

x0 = γ0

N
e2u′

, y0 = γ0

N
e−2u′

,

and the corresponding notations:

α10 = lx0 = γ0
1 − m

2
e2u′

,

α20 = (N − l)y0 = γ0
1 + m

2
e−2u′

.

Without H3 term in Eq. (4.46), Eq. (4.46) becomes the HJE form:

∂u(m, t)
∂t

+ Ĥ(m, u′) = 0,

where Ĥ(m, u′) is the fictitious Hamiltonian of system. Recall that we have the approxi-

mation for N >> 1,

(1 + α

N
)N = eα(1 − α2

2N
).
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With the largeness of l >> 1 and N − l >> 1, then

(1 + x0)l = (1 + α10

l
)l ≈ eα10(1 − α2

10
2l

),

(1 + y0)N−l = (1 + α20

N − l
)N−l ≈ eα20 [1 − α2

20
2(N − l)

],

(1 + x0)l(1 + y0)N−l ≈ eG[1 − α2
10

2l
− α2

20
2(N − l)

]

= eG[1 − γ0

2N
(α10e

2u′ + α20e
−2u′)],

where G = α10 + α20. Therefore, the bulk term and O( 1
N

) term in Eq. (4.47) can be

re-written as:

Q̂f(m)eG[1 − γ0

2N
(α10e

2u′ + α20e
−2u′)]

= −H0(γ0) − H2(γ0), (4.48)

where

−H0(γ0) = Q̂f(m)eG,

−H2(γ0) = γ0

2N
(α10e

2u′ + α20e
−2u′)H0(γ0).

Taking the simple expansion of γ0 in 1
N
, the Hamiltonian in terms of γ can be represented

as:

−Ĥ = Q̂f(m)eG = (1 − γ

N
)Nf(m)e(1+ γ

N
)γ( 1−m

2 e2u′ + 1+m
2 e−2u′ )

≈ −(1 − γ2

2N
)H0(1 + γ

N
z) ≈ −H0 − H1,

−H1 = −H0(−
γ2

2N
+ γ

N
z),

−H2 = −H0[
−γ

2N
(α1e

2u′ + α2e
−2u′)], (4.49)
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where we have denoted the following notations:

α1 = γ
1 − m

2
e2u′

, α2 = γ
1 + m

2
e−2u′

,

z = α1 + α2, H0 = H0(γ) = −e−γf(m)ez.

And the other approximations for −H3 term:

−H3 = 2Q̂

N

l∑
n1=0

N−l∑
n2=0

(
l

n1

)(
N − l

n2

)
( γ

N
)n1+n2e2(n1−n2)u′

× {[(n1 − n2)2u′′ + (n1 − n2)u1
′]f(m) + (n1 − n2)f ′(m)}. (4.50)

For sake of simplicity, let us denote a = 2u′ and define the function:

J(a) =
l∑

n1=0

N−l∑
n2=0

(
l

n1

)
( γ

N
ea)n1

(
N − l

n2

)
( γ

N
e−a)n2

= (1 + x)l(1 + y)N−l, (4.51)

where we have denoted:

x = γ

N
ea, y = γ

N
e−a.

Then the differentiation of J(a) with respect to a is:

J ′(a) = ∂J(a)
∂x

dx

da
+ ∂J(a)

∂y

dy

da

= lx(1 + x)l−1(1 + y)N−l − (N − l)y(1 + x)l(1 + y)N−l−1

= J(a)( α1

1 + x
− α2

1 + y
)

≈ J(a)[(1 − x)α1 − (1 − y)α2] ≈ J(a)(α1 − α1),
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where the x and y of O( 1
N

) can be ignored since H3 is proportional to 1
N
. And the differ-

entiation of J ′(a) with respect to a is:

J ′′(a) = dJ ′(a)
da

= ∂J ′(a)
∂α1

dα1

da
+ ∂J ′(a)

∂α2

dα2

da

≈ J ′(a)(α1 − α2) + J(a)(α1 + α2)

≈ J(a)[z + (α1 − α2)2]. (4.52)

Since H3 is a linear combination of J ′(a) and J ′′(a), H3 can be obtained by the following

steps:

H3 = 2
N

Q̂
l∑

n1=0

N−l∑
n2=0

(
l

n1

)
( γ

N
ea)n1

(
N − l

n2

)
( γ

N
e−a)n2

× {[(n1 − n2)2u′′ + (n1 − n2)u1
′]f(m) + (n1 − n2)f ′(m)}

= 2
N

Q̂{[u′′J ′′(a) + u′
1J

′(a)]f(m) + J ′(a)f ′(m)}

≈ 2
N

e−γf(m)J(a){u′′[z + (α1 − α2)2] + (α1 − α2)(u′
1 + f ′(m)

f(m)
)}

≈ 2
N

H0[(α1 − α2)(u1 + f ′

f
) + u′′(z + (α1 − α2)2)]. (4.53)

Thus, the Hamilton-Jacobi equation with O( 1
N

) correction terms, H1−3, has the form:

∂u(m, t)
∂t

+ H0 + (H1 + H2 + H3) = 0. (4.54)

On reaching the steady state, we can imagine that this fictitious Hamiltonian arrives the

minimum energy without time-dependence. Thus, we can assume that

Nu(m, t) + u1(m) = N [u(m) + kt] + u1(m),

where remember that we have rescaled t to t
N
. Mathematically, this assumption for u(m, t)

is reasonable since H0−3 are all independent of time t. As we did in Ch. 3.2.2, we can
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define the potential V (m) for H0 by the following way:

−H0 = e−γf(m) exp [γ(1 − m

2
e2u′ + 1 + m

2
e−2u′)]

≥ f(m)eγ(−1+
√

1−m2) = V (m).

Thus, the zero order and first order of 1
N
for k ≈ k0 + k1

N
are:

k0 = max
−1≤m≤1

[V (m)],

k1 = −N [H1(m0) + H2(m0) + H3(m0)], (4.55)

where the k0 will reach the minimum energy at steady state while V (m) reaches the max-

imum, and m0 is the maximum point for V (m). The first order k1 can be also defined at

m0 where the coefficient of u′
1 and f ′ is zero as shown in Ch. 3.2.2, so we have:

u′(m0) = 1
4

ln(1 + m0

1 − m0
),

k1 = H0(m0)[2u′′(m0)z + γ(z(m0) − γ)]. (4.56)

Since we are working with a sequence in l-th Hamming class, the total probability of l-th

Hamming class is

Pl = Nlpl = exp[Nu(m) + u1(m) + ln Nl], (4.57)

where Nl is the multiplicative number of l-th Hamming class,

Nl = N !
l!(N − l)!

.
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For general case of N − l >> 1 and l >> 1, it is allowed to apply Stirling formula to

approximate these logarithms:

ln N ! ≈ N ln N − N + 1
2

ln (2πN),

ln l! ≈ l ln l − l + 1
2

ln (2πl),

ln (N − l)! ≈ (N − l) ln (N − l) − (N − l) + 1
2

ln [2π(N − l)].

For the zero order term of 1
N
, it was derived in Ch. 3.2.2:

h(m) = −[1 + m

2
ln (1 + m

2
) + 1 − m

2
ln (1 − m

2
)].

Therefore, the approximation of ln Nl up to first order can be written as:

ln Nl ≈ Nh(m) + 1
2

ln (2πN) − 1
2

ln (2πl) − 1
2

ln [2π(N − l)]

= Nh(m) − 1
2

ln (2πN) − 1
2

ln (2π
l

N
) − 1

2
ln (2π

N − l

N
)

= Nh(m) − 1
2

[ln (1 + m) + ln (1 − m) + ln (2Nπ)]

= Nh(m) + h1(m), (4.58)

where we have denoted:

h1(m) = −1
2

[ln (1 + m

2
) + ln (1 − m

2
) + ln (2Nπ)].

Thus, the expression of Pl in O( 1
N

) in Eq. (4.57) can be approximated as:

Pl ≈ exp[N(u(m) + h(m)) + u1(m) + h1(m)], (4.59)

and the relation between the single sequence u and the class v in Ch. 3.2.2 is:

v = u + h(m), u′′ = v′′ − d2h(m)
dm2 = v′′ + 1

1 − m2 .
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Therefore, we can use the previous results of Crow-Kimura model in Ch. 3.2.2 by the

mapping:

f → ln f, (4.60)

and the u′′(m0) value is:

2u′′(m0) = 2v′′(m0) + 2
1 − m2

0

= 1
1 − m2

0
[1 −

√
1 − (1 − m2

0)3/2 (ln f(m0))′′

γ
]. (4.61)

With the Eq. (4.61) aid, the k1 value of Eq. (4.56) is:

k1 = γ2ez(m0)−γf(m0){
1

z(m0)
[1 −

√
1 − z3(m0)

γ4 (ln f(m0))′′] − 1 + z(m0)
γ

}

= γ2f0e
z0−γ{ 1

z0
[

√√√√1 − z3
0

γ4 (ln f)′′)] − 1 + z0

γ
}, (4.62)

where we have let

f0 = f(m0), z0 = γ
√

1 − m2
0.

With the known u′′(m0) and k1, the u′
1 can be obtained by the Eq. (4.55). Thus, we have:

− 2u′
1(α1 − α2)H0

= k1 + 2u′′[z + (α1 − α2)2]H0 + 2f ′

f
(α1 − α2)H0

+ γ

2
[2z − (α1e

2u′ + α2e
−2u′) − γ]H0,

(α1 − α2)u′
1 = k1

2f
e−z+γ − u′′[z + (α1 − α2)2]

− (α1 − α2)
f ′

f
+ γ

4
(α1e

2u′ + α2e
−2u′) + γ2

4
− γ

2
z,

or

u′
1 = 1

α1 − α2
{ k1

2f
e−z+γ − u′′[z + (α1 − α2)2]

− (α1 − α2)
f ′

f
+ γ

4
(α1e

2u′ + α2e
−2u′) + γ2

4
− γ

2
z}. (4.63)
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Therefore, u1 can be obtained from Eq. (4.63) by integrating u′
1 with respect to m:

u1(m) =
∫ m

mr

dm′

α1 − α2
{ k1

2f
e−z+γ − u′′[z + (α1 − α2)2]

− (α1 − α2)
f ′

f
+ γ

4
(α1e

2u′ + α2e
−2u′) + γ2

4
− γ

2
z}, (4.64)

where mr is an appropriate reference point where u1(mr) = 0. The u′(m) and u(m) we

have used in Eq. (4.64) is obtained from H0 by the following steps:

k0 = H0(m) = e−γ+zf,

ln k0 = −γ + z + ln f

= −γ + γ(1 − m

2
e2u′ + 1 + m

2
e−2u′) + ln f,

e2u′ =
ln k0 + γ − ln f −

√
(ln k0 + γ − ln f)2 − γ2(1 − m2)
γ(1 − m)

,

u′(m) = 1
2

ln
ln k0 + γ − ln f −

√
(ln k0 + γ − ln f)2 − γ2(1 − m2)
γ(1 − m)

,

u(m) = 1
2

∫ m

m′
r

ln
ln k0 + γ − ln f −

√
(ln k0 + γ − ln f)2 − γ2(1 − m′2)
γ(1 − m′)

dm′,

where we only take the + solution for u′(m) since we are interested in the interval [m0, 1],

and m′
r is an appropriate reference point where u(m′

r) = 0. Therefore, the probability

distributions of Hamming class for zero and first order of 1
N
are:


P (m) = exp [N(u(m) + h(m))],

P1(m) = P (m) exp [u1(m) + h1(m)]
, (4.65)

where P (m) and P1(m) are the probability distributions of zero and first order of 1
N
.

4.2.2 Comparison with Numerics

To test the validity of our analytic solution in Eq. (4.65), we use Runge-Kutta method

to simulate the Eq. (3.50) for different values of γ and functions of f(m). The proba-

bility distributions of Hamming class for the zero order, the first order, and numerics are
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shown in Figs. 4.19 to 4.21. Some probability values for correction and numerics near the

maximum point are listed in tables 4.1-3. As shown in the figures and tables, our results

of P1(m) are well consistent with numerics. The relative error of probability distribution

between numerics and first order is less than 1 %.

4.3 Solution of Heat Equation in SMAT

Considering the one-dimensional heat equation, where the sample temperature, T , is

described by the partial differential equation (PDE) derived in Ch. 2.4.2:

∂

∂z
k0

∂T

∂z
+ q̇ = ρsC

∂T

∂t
, (4.66)

where z is the distance from the sample bottom, t is the time, k0 is the thermal conductivity

of sample at 300 K, the heat source, q̇, is the heat energy generation per unit volume per

unit time, C is the specific heat of sample, and ρs is the sample density.

4.3.1 The Heat Source

We can count the collisions between the sample bottom and flying balls as the heat

source, where the loss of kinetic energy converts into the heat and internal energy of sam-

ple and flying balls. Experimentally, the balls in SMAT acts on a effective depth within

100 µm. With this idea, the heat source can be thought as uniformly distributed in some

effective depth of sample and it can be described as

q̇ = q[u(z) − u(z − l)],

where l is the effective depth with heat source within it, and u(z) is the unit step function

since it has the following property

∫ l

0
q[u(z) − u(z − l)]dz = ql,
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and q is heat coming from the power loss of averaged kinetic energy of sample and flying

balls,

q = r
Pk,loss,s + Pk,loss,b

Asl
,

where r is the conversion ratio of kinetic energy loss to heat energy and As is the cross-

sectional area of sample.

4.3.2 The Temperature Distribution of Steady State

On reaching the steady state, the changing rate of sample temperature with respect to

time will become zero, ∂T
∂t

= 0, the Eq. (4.66) can be simplified as:

d
dz

k0
dT

dz
+ q̇ = 0. (4.67)

Eq. (4.67) can be solved by the following steps:

∫ z

0

d
dz′ k0

dT

dz′ dz′ = −
∫ l

0
q̇dz′ −

∫ z

l
q̇dz′,

dT

dz
=


− q

k0
z + c1, z < l

c2 − ql
k0

, z ≥ l

,

T (z) =


− q

2k0
z2 + c1z + c3, 0 ≤ z < l

(c2 − ql
k0

)z + c4, l ≤ z ≤ L

, (4.68)

where c1−4 are all integration constants. Assume that the equilibrium temperature of bot-

tom surface of sample is Tb and the equilibrium temperature of top surface of sample is

Tt. We have the boundary conditions for T (z) and dT (z)
dz

at z = l to determine the c1−4

values: 
T (l−) = T (l+)

dT (z)
dz

∣∣∣
z=l−

= dT (z)
dz

∣∣∣
z=l+

.
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Thus, we have the system equation for c1−4:



− ql
k0

+ c1 = c2 − ql
k0

− q
2k0

l2 + c1l + c3 = (c2 − ql
k0

)l + c4

T (0) = Tb = c3

T (L) = Tt = (c2 − ql
k0

)L + c4

,

and the c1−4 values are:



c1 = Tt−Tb

L
+ ql

k0
(1 − l

2L
)

c2 = c1

c3 = Tb

c4 = Tb + ql2

2k0

,

where L is the sample thickness along z direction. Therefore, the temperature distribution

of sample is:

T (z) =


− q

2k0
l2 + [Tt−Tb

L
+ ql

k0
(1 − l

2L
)]z + Tb, 0 ≤ z < l

(Tt−Tb

L
− ql2

2k0
)z + Tb + ql2

2k0
, l ≤ z ≤ L

. (4.69)

The temperature drop predicted by Eq. (4.69) from the surface (subject to SMAT bom-

barding) to the inner portion is presented in Fig. 4.22 for pure Cu and 304 stainless steel,

for the region near the surface (less than 0.05 mm) and the overall depth (up to 1 mm).

Near the surface region, there exists a small hump, and then the temperature continues to

drop all the way into the inner portion. With the known temperature distribution, we can

calculate the heat energy of sample by integration:

∆Q = C
∫ L

0
∆T (z)dms

= ρsAsLC
∫ L

0
(T (z) − T0)dz, (4.70)
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where ms is the sample mass and T0 is the initial temperature of sample with isothermal-

distributed temperature. Normally, T0 can be set to room temperature, 300 K. Now we

turn to consider the case in which the thermal conductivity has temperature dependence,

namely,

k = k0[1 + β(T − T0)],

where β is a temperature-independent constant. We can apply the change of variables into

Eq. (4.67), Tv = T − T0, to do the integration:

∫ z

0

d
dz′ k0(1 + βTv)dTv

dz′ dz′ = −
∫ l

0
q̇dz′ −

∫ z

l
q̇dz′.

Then we can immediately obtain:

(1 + βTv)dTv

dz
=


− q

k0
z + c1, 0 ≤ z < l

c2 − ql
k0

, l ≤ z ≤ L

,

Tv + 1
2

βTv
2 =


− q

2k0
z2 + c1z + c3, 0 ≤ z < l

(c2 − ql
k0

)z + c4, l ≤ z ≤ L,

. (4.71)

Similarly, we have the boundary conditions for Tv(z) and dTv(z)
dz

:


Tv(l−) = Tv(l+)

dTv(z)
dz

∣∣∣
z=l−

= dTv(z)
dz

∣∣∣
z=l+

.

And the system equation for c1−4:



− ql
k0

+ c1 = c2 − ql
k0

− q
2k0

l2 + c1l + c3 = (c2 − ql
k0

)l + c4

Tv(0) = (Tb − T0)(1 + β Tb−T0
2 ) = c3

Tv(L) = (Tt − T0)(1 + β Tt−T0
2 ) = (c2 − ql

k0
)L + c4

,

100



and the c1−4 values:



c1 = Tt−Tb

L
[1 + β(Tb+Tt

2 − T0)] + ql
k0

(1 − l
2L

)

c2 = c1

c3 = (Tb − T0)(1 + β Tb−T0
2 )

c4 = (Tb − T0)(1 + β Tb−T0
2 ) + ql2

2k0

,

The temperature drop predicted by Eq. (4.71) from the surface (subject to SMAT bom-

barding) to the inner portion is presented in Fig. 4.23 for pure Cu and 304 stainless steel,

for the region near the surface (less than 0.1 mm) and the overall depth (up to 1 mm).

With small changes in the temperature of sample and small β for general metal, the solu-

tion will be returning to the solution of Eq. (4.67). Similarly, the heat energy of sample

can be obtained by Eq. (4.70) with Tv:

∆Q = ρsAsLC
∫ L

0
Tv(z)dz. (4.72)

4.3.3 The internal energy of sample

The power for internal energy (or so-called the strain energy) of sample is denoted as:

Pint,s = ∆Uint,s

∆t
,

where ∆Uint,s is the change of internal energy of sample in ∆t. The energy conservation

can be used to estimate the internal energy of sample acquired per unit time in SMAT:

Ploss,s + Ploss,b = ∆Q

∆t
+ Pint,s,

Pint,s = Ploss,s + Ploss,b − ∆Q

∆t
, (4.73)

where we have ignored the sonic energy and heat energy of speeding balls because the

volume and mass of chamber is much higher than those of balls. By Ch. 3.3, the collision

probability is proportional to their cross section area, and the probability ratio of ball-

101



ball to ball-sample should be proportional to πD2

4As
. For the common ball size of 2 mm in

diameter and SMAT sample area of 40 × 20 mm2, the ratio value is less than 1 %. In this

case, the collisions between the balls is not so frequent and the heat energy of balls is also

small compared to that of chamber and sample.

4.3.4 Experimental Methods

In order to compare with the proposed model, an AISI 304 stainless steel was adopted

as the tested material with chemical compositions of (in wt%): 0.049 C,18.20 Cr, 8.66 Ni,

0.58 Si, 1.04Mn, 0.021 P, 0.007 S, and the balanced Fe. A plate measuring 40×20×1 mm

was set on the top of the SMAT chamber, with a cylindrical chamber measuring 70 mm in

diameter and 20 mm in height. The SUJ2 bearing steel balls with smooth surface and high

hardness in the RC scale of 62 are applied as the energy deliverer and are placed in a re-

flecting chamber that is vibrated by a vibration generator with a fixed vibration frequency

ν = 20 kHz. The vibration amplitude, A, was chosen to vary in three levels: 40, 60, and

80 µm. Three sizes of the balls selected are 1, 2, and 3 mm in diameter. All these balls with

different sizes have the same density ρb, which is 7.8 g/cm3. To maintain the fixed ball

coverage area of 25% inside the chamber, the 1 mm ball case would install 5 g of the total

ball weight, the 2 mm ball case for 10 g, and the 3 mm ball case for 15 g. Throughout the

SMAT experiment, the working temperature is controlled and traced to be below 150�,

which is about 0.2 Tm (melting temperature) of the 304 stainless steel and is considered

to be relatively low for the 304 stainless steel samples. After careful mechanical grinding

and polishing of the cross section of SMAT samples, the sample surface roughness and

the morphology level were sufficient for nano-indentation to extract the hardness varia-

tion from the free surface (subject to SMAT) into the inner portion. The SEM observations

were performed using a Zeiss Supra 55 field-emission scanning electronmicroscope. With

a low acceleration energy at 5 kV and a low working distance at 5 ∼ 7 mm, it is able to

visualize the distinguishable grains from the back-scattering images (BEIs). The cross-

sectional transmission electron microscopy (TEM) foils of SMAT samples were fabricated

using the dual-beam focused-ion-beam (FIB) system (Seiko, SMI3050) with an operating
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voltage of 30 kV and an ion beam current of 1 pA. The TEM foils were examined by the

Tecnai G20 field emission transmission electron microscopy with an operating voltage of

200 kV . The hardness of SMAT specimens from the cross-sectional surface was measured

by the MTS Nano Indenter XP System. The tests were operated with a displacement rate

about 10 nm/s, and the allowable vibration drift of environment was controlled under

0.05 nm/s. The indented depth limit was set to be 1200 nm.

4.3.5 Relating strain rate and temperaturewith samplemicro-structure

in SMAT

For metallic materials, it is almost a universal rule that the sample micro-structure

would be related to the processing parameters by the Zener-Holloman relationship. In

general, the average grain sizes would decrease with decreasing working temperature and

increasing working strain rate. The Zener-Holloman Z parameter is defined as:

Z = ε̇exp(Q/RT ), (4.74)

where ε̇ is the strain rate, Q is the activation energy, T is the absolute temperature, and R

is the gas constant. The accumulative strain ε by the successive bombarding cycles can

be approximately expressed by

εi = ∆x

x
≈ 0.2, (4.75)

where εi is each strain by each ball bombarding incident, ∆x is each compressed depth

by each ball bombarding incident, and x is the sample depth experiencing the bombard-

ing impact. The precise strain is difficult to be calculated since the bombarding can be

induced by the flying balls from various directions and the induced strain would be dif-

ferent for bombarding from different directions. The average is estimated to be about 0.2

in Eq. (4.75). But in general larger balls are expected to induce a higher degree of strain

per bombarding, it is thus postulated that the 1, 2, and 3 mm balls would induce an av-
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erage strain about 0.15, 0.20, and 0.25, respectively. The overall strain accumulated by

numerous ball bombarding events is simply expressed by:

εt = n · εi, (4.76)

where n is a statistic evaluation of the overall ball bombarding events during the SMAT

time duration t. Since the balls in the chamber can fly randomly in all 3D directions,

the probability P that one ball will bombard on the sample can be rationalized by the

sample flat surface divided by the total surface area including the chamber wall and sample

surfaces. This probability can be varied for different SMAT machine system designs. If

the sample surface occupies 10% of the overall surface area, then P is assumed to be

0.1. For a vibration frequency ν and overall SMAT time t, the bombarding event onto the

sample surface will be:

n = νt · P. (4.77)

Thus, the strain rate is equal to the accumulative strain divided by the SMAT time duration

t,

ε̇ = εt

t
= νtPεi

t
= νPεi. (4.78)

The SMATworking temperature T may or may not be measured with reasonable accuracy,

depending on the chamber design. Also, even the temperature can be measured from the

sample surface, the temperature should be a gradient profile from the outer surface to the

inner portion of sample. Since the grain sizes in many SMAT metals or alloys are in the

nano- to micro-scale with no pronounced grain growth, the experienced temperature is

thought to be around or less than 0.2 Tm, where Tm is the melting temperature of metallic

sample. With the activation energy Q for the involved major diffusion species, Z can be

calculated. And then it is hoped that the grain size can be related to the Z parameter.
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Chapter 5

Conclusion

5.1 Van Kampen CME with Gaussian White Noise

The model with the particle under the influence of Gaussian and Poisson noises has

been considered, and we have solved the exact steady-state PDF of the model with the

transition PDF, kekx. Namely, we have considered the related integro-differential Fokker-

Planck equation and mapped it into a third order PDE. For the simplest case of drift term,

b(x) = −γ2x, we have found the exact steady-state PDF supported by the direct numerics

very well. Furthermore, the convergence to the steady-state can be proved analytically.

The exact steady-state PDF can be found for any values of a > 0, ϵ > 0, and k > 0.

However, the PDF is expressed byKummer functions, a special function. We have to solve

a transcendental equation to obtain the formula for the exact position of the maximum for

PDF, and thus it cannot be derived. Therefore, our main question is transferred to whether

the diffusion term can move the position of maximum for PDF from the x = 0 point or

not. Following from the properties of functions yi(x) for i = 1 ∼ 3, the value of P (0)

is finite, it depends on ϵ, k, and a. As we can see from Figs. 4.3-18, the limit behaviour

of PDF at x = 0 is that of PDF for ϵ = 0, the gamma distribution, namely P (0) → ∞

for a < 1 and P (0) → 0 for a > 1. This means that the maximum point of PDF moves

from x = 0 if a > 1, where this result is independent of any k and γ2 value. Following

from the analytical solution of steady-state PDF, the result holds for any values of ϵ, not

necessarily small. In a more general case of the drift term, b(x) = γ2x, the threshold
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value is a = γ2. Moreover, under basic assumptions this should hold for any kind of

transition PDF. Thus, the drift term shifts the particle to the origin, and the Poisson noise

acting in the opposite manner competes with drift term. At the same time, the maximum

point and decay rate as x → ∞ of PDF and P (0) value depend on all the parameters, a,

ϵ, γ2, and k. For example, P (0) ∼ (
√

ϵk)a−1 is the ratio of variances of Gaussian and

exponential PDF. Figures 4.13-18 present a series of numerical simulations intending to

prove that the solution of Eq. (4.11) converges to the steady-state PDF for different values

of parameters. Figures 4.11-12 illustrate the maximum position is at the origin for a < 1

and outside of the origin for a > 1. For a < 1 the value of the maximum increases as

ϵ → 0; for a > 1 the value of maximum for PDF and the PDF value at x = 0 decrease

as ϵ → 0. Regarding the level of compound Poisson noise below the critical value, the

Gaussian noise can strongly affect the behaviour of the solution removing the singularity

of distribution at x = 0, as shown in fig. 4.13-14, while for the stronger Poisson noise

above the critical value a > 1, the effect of the Gaussian noise is not drastic as shown

in fig. 4.15-18. The results can be interpreted as follows. In the case of Gaussian noise,

there is a finite maximum of distribution at x = 0; in the case of both Gaussian and weak

Poisson noises, the distribution also has a finite maximum at zero, but this maximum tends

to be infinite as the Gaussian component vanishes. If the Poisson noise is sufficiently

large, then the maximum moves from the origin for any values of ϵ and k. Thus, the

maximum position of PDF depends only on the Poisson component of noise. We can look

at our results from the following point of view: a large noise, due to a finite number of

molecules, can strongly influence the biological processes, while up to a certain level of

this noise the situation is rather stable. This phenomenon is important for cell biology [50],

where the systems can be shaped during the evolution to suppress some finite molecular

number fluctuations. Moreover, sometimes the fluctuations can be suppressed, even for

single molecule reactions, which yields a highly intriguing experimental result.
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5.2 Finite Correction of Eigen Model

In conclusion, we have used HJE method to get the solution of modified Eigen model

in Hamming class. Based on the two symmetrical assumptions, the symmetrical distri-

bution and fitness function, the modified Eigen model becomes a solvable problem for

large genome length. In this approach, the steady-state probability of Hamming class with

O(1/N) relative accuracy has been obtained by working carefully with the combinatorial

problems during the calculation process, where N is the genome length. These calcula-

tions are much harder than the corresponding calculations for the Crow-Kimura case [51].

The properties for the O( 1
N

) correction terms have been investigated completely in these

calculations. The analytical results for the steady-state probability of Hamming class is

well consistent with the numerical results simulated by Runge-Kutta method, where the

relative errors between the analytical and numerical results are less than 1 % as shown

in Figs. 4.19-21 and table 4.1-3. Our formula for the O( 1
N

) correction of probability in

Hamming class, Eq. (4.64), is not the special case, and one can apply this formula for any

symmetrical distribution and fitness function. Furthermore, our results can be applied to

get accurate expression for the steady-state probability of Hamming class for the case of

large genome length, where the numerics cannot give the accurate results. In our model

we work with the mutation parameter γ = N(1−q), while in [52] the mutation parameter

µ = N(1−q)/q has been considered. Our expressions for the corrections of zero and first

order in 1
N
for the mean fitness is identical to the results derived in [52] by quantum field

theory.

5.3 SMAT Modelling

Experimentally, it is observed that the grain size is appreciably refined by SMAT, from

the initially about 20 µm down to less than 100 nm, as shown in Fig. 5.1(a) with a gradient

trend as viewed from the sample cross-section [47]. In parallel, the hardness increases

from the initial about 2.7 GPa up to about 6.0 GPa, as shown in Fig. 5.1(b) [47]. The

kinetic energy from the flying balls appear to effectively induce substantial internal or
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strain energy into the sample surface, increasing the dislocations and other defects, refining

the grain size, and raising the hardness. The ball speed can be estimated from Eq. (3.59)

to be within the range of 5 ∼ 10 m/s, and the kinetic energy for all the flying balls can

also be estimated to be about 10 ∼ 120 mJ . From the experimental results in Fig. 5.1,

coupled with the estimated values based on the current analytical model, it appears that the

optimum speed for the 304 stainless steel might be around 8 ∼ 10 m/s and the optimum

kinetic energy might be around 70 ∼ 75 mJ . The adjustment of the SMAT parameters

will influence accordingly the speed (in Fig. 3.1), kinetic energy (in Fig. 3.2), flying time

period (in Fig. 3.3), power (in Fig. 3.4), and temperature profiles within the experienced

range of the samples (in Figs. 4.22-23).

In this model, we have made efforts in evaluating the temperature profile from the

bombarded surface to the sample inner portion (Figs. 4.22-23). This profile can be used

as a reference in assessing the experienced temperature at the particular sample depth. For

example, based on the calculated temperature in Fig. 4.23 for the 304 stainless steel, the

temperature at the depth of 200 µm from the surface would be 365 K or 92�.

The other parameter left would be the strain rate. In accordance with Eq. (4.78), the

strain rate would vary from 3×102 ∼ 5×102 s−1. Taking the 4×102 s−1 as themean value,

and 92 � as the experienced temperature, we can incorporate into Eq. (4.74) to extract

the Zener-HollomanZ parameter, which is useful for estimate thematerials microstructure

properties. For 304 stainless steel, the governing activation energy Q should be related

to the Fe diffusion, and Q ∼ 220 kJ/mol is a logical value [53, 54]. With the above

information and the gas constant R = 8.3 J/K, Z can be calculated to be 1.4 × 1034 s−1.

With the same calculation manner, we can estimate all values for various cross-sectional

positions of the SMAT sample, and plot the measured grain size and Zener-Holloman Z

parameter, as presented in Fig. 5.2.

Thus, for SMAT researchers, we can first design the SMATworking parameters (based

on the needs), and can calculate the resulting speed, temperature, strain rate, and energy

based on this model in Figs. 3.1-4 and Figs. 4.22-23. With all the information, we can es-

timate the grain size from the Zener-HollomanZ parameter based on Fig. 5.2. The current
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approach and modelling nicely establish the link between the physics and the engineering

material surface modifications.
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Appendix

.1 The Coefficient of Finite Difference

The following tables present the coefficients of the forward finite difference with space

h for several order accuracy in h.

Table 1: The coefficient table for the forward finite difference of f ′(x).
Accuracy f(x) f(x + h) f(x + 2h) f(x + 3h) f(x + 4h) f(x + 5h)

O(h) −1 1
O(h2) −3/2 2 −1/2
O(h3) −11/6 3 −3/2 1/3
O(h4) −25/12 4 −3 4/3 −1/4
O(h5) −137/60 5 −5 10/3 −5/4 1/5

Table 2: The coefficient table for the forward finite difference of f ′′(x).
Accuracy f(x) f(x + h) f(x + 2h) f(x + 3h) f(x + 4h) f(x + 5h)

O(h) 1 −2 1
O(h2) 2 −5 4 −1
O(h3) 35/12 −26/3 19/2 −14/3 11/12
O(h4) 15/4 −77/6 107/6 −13 61/12 −5/6

For example, the first derivative of f(x) with O(h3) accuracy is:

f ′(x) ≈
−11

6 f(x) + 3f(x + h) − 3
2f(x + 2h) + 1

3f(x + 3h)
h

,
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and the second derivative of f(x) with O(h2) accuracy is:

f ′′(x) ≈ 2f(x) − 5f(x + h) + 4f(x + 2h) − f(x + 3h)
h2 .

.2 The Power Series Expansion of Kummer’s Function

The expansion in power series for KummerM(a, b, x) with a > 0 and b > 0 near

x = 0:

KummerM(a, b, x)

= 1 + a

b
x + a(a + 1)

2b(b + 1)
x2 + a(a + 1)(a + 2)

6b(b + 1)(b + 2)
x3

+ a(a + 1)(a + 2)(a + 3)
24b(b + 1)(b + 2)(b + 3)

x4 + a(a + 1)(a + 2)(a + 3)(a + 4)
120b(b + 1)(b + 2)(b + 3)(b + 4)

x5 + O(x6).

The expansion in power series for KummerU(a, b, x) with b ̸= Z near x = 0:

KummerU(a, b, x) = Γ(1 − b)
Γ(a − b + 1)

[1 + a

b
x + a(a + 1)

2b(b + 1)
x2 + · · · ]

+ Γ(b − 1)
Γ(a)

x1−b[1 + 1 + a − b

2 − b
x + (1 + a − b)(2 + a − b)

2(2 − b)(3 − b)
x3 + · · · ].
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Figures and Tables

Figure 1.1: (a) The desiged-dimension of chamber in the SMAT experiment. (b) The
schematic drawing showing that the sample material gains the heat and strain energy from
the kinetic energy loss of sample and flying balls.

Figure 2.1: The Schematic of sample configuration.
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Figure 3.1: (a) The average speed of flying balls (in Eq. (3.59)) versus the SMAT ampli-
tude for the parameters, H = 20 mm, D = 3 mm, ω = 40π krad/s, and mb

mm
= 10−6.

(b) The average speed of flying balls (in Eq. (3.59)) versus the SMAT angular frequency
for the parameters, H = 20 mm, D = 3 mm, A = 60 µm, and mb

mm
= 10−6.

Figure 3.2: (a) The variation trend of∆Ek,loss,b predicted by Eq. (3.60) as a function of mb

ms

for the parametersH = 20 mm,A = 60 µm, ω = 40π krad/s, mb

mm
= 10−6, and e = 0.25,

(b) the variation trend of ∆Ek,loss,s predicted by Eq. (3.61) as a function of mb

ms
for the

parametersH = 20 mm,A = 60 µm, ω = 40π krad/s, mb

mm
= 10−6, and e = 0.25, (c) the

variation trend of total energy loss, i.e., the sum of ∆Ek,loss,b and ∆Ek,loss,s as a function
of mb

ms
for the parameters H = 20 mm, A = 60 µm, ω = 40π krad/s, mb

mm
= 10−6, and

e = 0.25.
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Figure 3.3: (a) The averaged time period of flying balls predicted by Eq. (3.64) versus
the SMAT amplitude for the parameters H = 20 mm, ω = 40π krad/s, mb

mm
= 10−6, and

e = 0.25. (b) The averaged time period of flying balls predicted by Eq. (3.64) versus the
SMAT angular frequency for the parameters H = 20 mm, A = 60 µm, mb

mm
= 10−6, and

e = 0.25.

Figure 3.4: (a) The variation trend of Ploss,b predicted by Eq. (3.65) as a function of mb

ms

for the parameters H = 20 mm, A = 60 µm, ω = 40π krad/s, mb

mm
= 10−6, and

e = 0.25. (b) The variation trend of Ploss,s predicted by Eq. (3.66) as a function of mb

ms
for

the parametersH = 20 mm,A = 60 µm, ω = 40π krad/s, mb

mm
= 10−6, and e = 0.25. (c)

The variation trend of the total power loss, i.e., the sum of Ploss,b and Ploss,s as a function
of mb

ms
for the parameters H = 20 mm, A = 60 µm, ω = 40π krad/s, mb

mm
= 10−6, and

e = 0.25.
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Figure 4.1: The mechanism for DNA-mRNA-protein process.

Figure 4.2: The transition PDF for mRNA-protein process.
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Figure 4.3: The simulation for the dynamical state of PDF with parameters: a = 0.5 and
b = 5 from t = 14 s ∼ 4200 s.
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Figure 4.4: The simulation for the dynamical state of PDF with parameters: a = 0.5 and
b = 5 from t = 5600 s ∼ 9800 s.
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Figure 4.5: The simulation at t = 25200 s for the dynamical state of PDF and analytical
solution with parameters: a = 0.5 and b = 5.
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Figure 4.6: The simulation from t = 8 s ∼ 1000 s for the dynamical state of PDF with
parameters: a = 5 and b = 5.
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Figure 4.7: The simulation from t = 1200 s ∼ 2000 s for the dynamical state of PDF
and analytical solution with parameters: a = 5 and b = 5.
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Figure 4.8: The simulation from t = 2400 s ∼ 12000 s for the dynamical state of PDF
and analytical solution with parameters: a = 5 and b = 5.
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Figure 4.9: The simulation from t = 40 s ∼ 1000 s for the dynamical state of PDF with
parameters: a = 8 and b = 8.
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Figure 4.10: The simulation from t = 1600 s ∼ 9600 s for the dynamical state of PDF
and analytical solution with parameters: a = 8 and b = 8.
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Figure 4.11: The steady-state of PDF for Eq. (4.11) with parameters: a = 2 , k = 1, and
γ2 = 1.
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Figure 4.12: The steady-state of PDF for Eq. (4.11) with parameters: a = 2, ϵ = 0.1,
and γ2 = 1.
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Figure 4.13: The simulation from t = 0 ∼ 4480 for the dynamical state of PDF and
analytical solution with parameters: a = 0.5, ϵ = 2 × 10−6, γ2 = 2 × 10−3, and k = 1.
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Figure 4.14: The simulation from t = 0 ∼ 1200 for the dynamical state of PDF and
analytical solution with parameters: a = 0.5, ϵ = 2 × 10−4, γ2 = 2 × 10−3, and k = 1.
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Figure 4.15: The simulation from t = 0 ∼ 4320 for the dynamical state of PDF and
analytical solution with parameters: a = 2, ϵ = 2 × 10−6, γ2 = 2 × 10−3, and k = 1.
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Figure 4.16: The simulation from t = 0 ∼ 4000 for the dynamical state of PDF and
analytical solution with parameters: a = 2, ϵ = 2 × 10−4, γ2 = 2 × 10−3, and k = 1.
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Figure 4.17: The simulation from t = 0 ∼ 1800 for the dynamical state of PDF and
analytical solution with parameters: a = 2, ϵ = 2 × 10−4, γ2 = 2 × 10−3, and k = 10.
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Figure 4.18: The simulation from t = 0 ∼ 1000 for the dynamical state of PDF and
analytical solution with parameters: a = 2, ϵ = 0.02, γ2 = 2 × 10−3, and k = 1.
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Figure 4.19: The probability distributions predicted by Eq. (4.65) and numerical results
with the fitness function and parameters: N = 100, f(m) = em2 , and γ = 1.
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Figure 4.20: The probability distributions predicted by Eq. (4.65) and numerical results
with the fitness function and parameters: N = 100, f(m) = e2m2 , and γ = 2.
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Figure 4.21: The probability distributions predicted by Eq. (4.65) and numerical results
with the fitness function and parameters: N = 100, f(m) = e2m2 , and γ = 1.

Table 4.1: The comparison of our results among P (m), P1(m), and numerics for the
fitness function and parameters: f(m) = em2

, γ = 1, N = 100.
m 0.44 0.46 0.48 0.50 0.52 0.54

P (m) 0.0672 0.0738 0.0782 0.0798 0.0782 0.0735
P1(m) 0.0691 0.0748 0.0780 0.0784 0.0757 0.0702

Numerics 0.0692 0.0749 0.0781 0.0785 0.0758 0.0703

Table 4.2: The comparison of our results among P (m), P1(m), and numerics for the
fitness function and parameters: f(m) = e2m2

, γ = 2, N = 100.
m 0.44 0.46 0.48 0.50 0.52 0.54

P (m) 0.0672 0.0738 0.0782 0.0798 0.0782 0.0735
P1(m) 0.0720 0.0764 0.0782 0.0771 0.0730 0.0663

Numerics 0.0721 0.0766 0.0783 0.0771 0.0730 0.0662

Table 4.3: The comparison of our results among P (m), P1(m), and numerics for the
fitness function and parameters: f(m) = e2m2

, γ = 1, N = 100.
m 0.68 0.70 0.72 0.74 0.76 0.78

P (m) 0.0722 0.0894 0.1036 0.1118 0.1117 0.1028
P1(m) 0.0744 0.0906 0.1033 0.1099 0.1086 0.0991

Numerics 0.0746 0.0908 0.1036 0.1103 0.1089 0.0993
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Figure 4.22: The temperature distributions for pure Cu predicted by Eq. (4.69) for
narrow region near the surface in (a) and for wider region in (b) with the parameters
k0 = 401 W/m ·K, q = 0.772×103 ∼ 2.28×103 W/mm3, As = 800 mm2, L = 1 mm,
l = 5 µm, Tb = 398 K, and Tt = 358 K. The temperature distributions for 304 stainless
steel predicted by Eq. (4.69) for narrow region near the surface in (c) and for wider region
in (d) with the parameters k = 14.9 W/m · K, q = 0.773 × 103 ∼ 2.28 × 103 W/mm3,
As = 800 mm2, L = 1 mm, l = 5 µm, Tb = 378 K, and Tt = 318 K. The different
colored lines correspond to various percentages of kinetic energy loss which is converted
into the heat energy of sample.

131



Figure 4.23: The temperature distributions for pure Cu predicted by Eq. (4.71) for
narrow region near the surface in (a) and for wider region in (b) with the parameters
k0 = 401 W/m ·K, q = 0.772×103 ∼ 2.28×103 W/mm3, As = 800 mm2, L = 1 mm,
l = 5 µm, Tb = 398 K, and Tt = 358 K. The temperature distributions for 304 stainless
steel predicted by Eq. (4.71) for narrow region near the surface in (c) and for wider region
in (d) with the parameters k = 14.9 W/m · K, q = 0.773 × 103 ∼ 2.28 × 103 W/mm3,
As = 800 mm2, L = 1 mm, l = 5 µm, Tb = 378 K, and Tt = 318 K. The different
colored lines corresponds to various percentages of kinetic energy loss which is converted
into the heat energy of sample.

Figure 5.1: (a) The cross-sectional SEM micrograph taken from the sample subject to
SMATwith the 2 mm flying balls and 40 µm SMAT amplitude. (b) The gradient variation
trend of hardness of selected SMAT 304 SS samples.
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Figure 5.2: The relationship between the resulting grain size and Zener-Holloman pa-
rameter with the sample processed by different SMAT conditions.
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