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中文摘要 

  近年來，許多領域持續發現及探討身體系統的複雜性，透過分子生物與病理機

轉的研究，這些複雜機轉最終很可能會形成一個完整理論。另一方面，生醫信號

分析也從生理系統的複雜性與調控理論之中發展出一些方法，能提取複雜特質和

數據之下的訊息。這些非線性特徵提取方法，能夠從模糊不清的訊息下找出非線

性的特徵作為疾病的判斷依據，其中一些方式也被證實效果優於傳統方法。然而

非線性特徵卻容易受到臨床條件和環境的限制，如有限的數據長度，資料偶有會

有參差不齊或是雜訊干擾。除此之外，提取方法也會造成失真，所使用之方法也

可能無法有效濾除其他因素影響，有時甚至會大大增加後續分析的困難。本研究

提出數種強健性的改良方法用來識別臨床數據的非線性特徵，以滿足臨床要求。 

  第一個探討的非線性特徵是訊息在多尺度的相關性，衡量方式是用資訊理論中

的熵及渾沌碎形理論中的尺度，以不同時間尺度下的相關性，衡量系統的複雜特

質。其中一個應用是透過計算血管動脈脈搏波速資訊的多尺度相關性，於大尺度

的計算中增加計算準確度的方法，病患的量測時間能大幅減少到 12 分鐘。本方法

能以較小的樣本大小(即 600 個連續信號)，在區分健康、中年、糖尿病患之間，

達到與傳統的方法(即 1000 個連續信號)同樣的靈敏度。 

  另一個應用是在心率變異度分析中多尺度相關性的計算，透過改良的方法來抵

抗心律不整因素的干擾，用於辨別安裝葉克膜病患的存活率。這項研究中提出了

一種新的方法，通過分析在不同時間尺度的符號時間序列的不規則性來估計信號

的複雜性，能有效避免葉克膜病患頻繁發生的心律不整所造成的干擾，該方法能

夠檢測心臟調節功能的降低，並避免治療充血性心臟衰竭和葉克膜重症患者更加

惡化。研究結果顯示，在嚴重干擾又同時有大量異常數值的心跳序列中，本方法

能夠可靠地評估其多尺度的複雜性，因此可以作為一個有效的臨床工具，用於監

控重症患者的心率調節功能。 

  第二個探討的非線性特徵是動態系統軌道的特質，這是透過相位空間軌跡計算

而得。其中一個應用是在剖腹分娩過程中，以非侵方式從母體腹部體表取得心電

圖，再透過幾種強健方法的處理，得出胎兒心電圖。最後透過類週期特性將胎兒

心跳辨識出來，並使用心率變異參數量化軌跡，以獲取剖腹產對胎兒心跳與神經

系統的作用。這項研究結果顯示，麻醉前，麻醉後，和分娩前 5分鐘心率變異都

明顯上升，該方法能夠可靠地評估胎兒對手術的反應，未來可以作為一個臨床工

具，用於監控剖腹分娩過程中胎兒的狀態。 

  另一個應用是利用非線性波形相似度分析方法用於心房電圖，以找出重要的複

雜碎裂心房電圖區域供心房電燒手術之用。該方法首先利用軌道的特徵找出每段

週期，然後計算相空間這些軌跡的統計特性(相似性指數)。研究結果顯示，相似

性指數在電燒成功病患的複雜碎裂心房電圖區域上較高，此類病患的預後也較好，

這暗示了複雜碎裂心房電圖區域中相似性指數高的部分跟心房振顫的產生與維持

有關聯。  
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Abstract 

  In recent years, the complexity of human body has been continuous revealed and 

discussed in many fields, it may eventually lead to a complete theory through the 

studies on pathogenesis and molecular biology of disease. On the other hand, the 

complex theory combined with the homeostasis mechanism has been used for 

biomedical signal analysis trying to identify such complex phenomena and underlying 

information behind the clinic data. These methods can help to extract non-linear feature 

from ambiguous information as the disease assessments, some of them have been 

accepted to have more advantages than traditional ones. However, such refining 

procedure are subject to many restrictions in clinical conditions and environments, such 

as limited data length, information may be occasional uneven or noise interfered. In 

addition, the extraction itself can also lead to distortions, the interference from other 

mechanism may not be effectively removed which raised the difficulty on the 

subsequent analysis. Therefore, this thesis proposes several robust methods to identify 

the specific nonlinear features in clinic data series and try to fulfill the clinical 

requirements. 

  The first portion of nonlinear feature is quantization of multi-scale correlation. It was 

derived from the entropy in information theory as well as the coarse-graining in 

chaos-fractal theory to quantify the complexity of a system through the correlations at 

different time scale. In the first study, a novel approach has been proposed to decrease 

the length of data in complexity calculation of pulse wave velocity (PWV) such that the 

time for data acquisition can be substantially reduced to 12 minutes. It utilized a smaller 

sample size (i.e. 600 consecutive signals) with remarkable preservation of sensitivity in 

differentiating among the healthy, aged, and diabetic populations compared with the 

conventional method (i.e. 1000 consecutive signals). 

  The second study utilized the multi-scale correlation of heart beat intervals (RRI) on 

critical patients whose life continuation relies on extracorporeal membrane oxygenator 

(ECMO). This study propose a new approach to estimate the complexity in a signal by 

analyzing the irregularity of the sign time series of coarse-grained time series at 

different time scales. Without removing any outliers due to ectopic beats, the method is 

able to detect a degradation of cardiac control in patients with congestive heart failure 

and a more degradation. Moreover, the derived complexity measures can predict the 
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mortality of ECMO patients. These results indicate that the proposed method may serve 

as a promising tool for monitoring cardiac function of patients in clinical settings. 

  In the second portion of nonlinear feature, the trajectories on phase space have been 

used for calculating statistical properties of the orbits in a dynamic system. In the first 

study, a novel method been proposed to noninvasively derive the fetus ECG signals 

from the maternal abdominal ECG during the cesarean section (CS). The heart beat 

series derived from the noisy signal were then quantified by several heart rate variability 

(HRV) methods. Moat parameters tell that the HRV increased 5 minutes after anesthesia 

and 5 minutes before delivery. These results shows that the proposed method may serve 

as a promising tool to obtain significant information about the fetal condition during 

labor. 

  In the second study, a nonlinear-based waveform similarity analysis of the local 

electrograms has been proposed, aiming to detect crucial complex fractionated atrial 

electrograms (CFEs) in atrial fibrillation (AF) ablation. This method firstly identify 

each cycle of orbits in the dynamic system and then calculate the statistical properties 

(similarity index, SI) of these trajectories on phase space. The result shows the average 

SI of the targeted CFEs was higher in termination patients, and they had a better 

outcome. This study suggested that sites with a high level of fibrillation electrogram 

similarity at the CFE sites were important for AF maintenance. 
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Chapter 1  Introduction  

1.1  Homeostasis and Correlations 

  Living creatures can accept environmental stimulus, generate the appropriate 

responses, and automatically keep the cells, tissues and organs maintained in an optimal 

state that allow them to adjust its performance to the varying internal and external 

demands. In the short term, the mechanisms in human body involved the control of 

cardiac and respiratory rate, blood glucose concentration and body temperature. In the 

long term, the control of circadian rhythms, regulation of inflammatory processes and 

control of the immune system were also involved. As a result, our body contains 

different control loops to stay alive and this phenomenon is called "homeostasis" which 

is vital to life and important for disease assessment [1, 2].  

  All homeostatic control mechanisms have three main components for regulation: a 

receptor that monitors and responds to environmental changes. A control center that 

determines an appropriate response to the stimulus. A effector that can receive signals 

from the control center [3]. Through these components and pathways, a change will 

occur on the effector to correct the deviation by depressing it with negative feedback [2, 

4]. When the stimulus occurred and followed by a change on the effector, a time-lagged 

causal relation between them has been built. The states of the control system may be 

represented by a time series so that data in the series will fluctuates between the 

stimulus and response. The time-lagged correlations might arise in such time series. 

Conceptually, the time-lagged correlations existing in a physiological data series 

implies regulation in the homeostatic system, the time scale can range from several 

milliseconds (e.g. for neurons) to several days (e.g. for immune system response to 

vaccination) [4- 6]. 

  Based on causality and feedback, the early studies on homeostasis model is almost 

equivalent to that on the regulatory system, i.e., the control theory. Although the 

application of traditional control theory helps people to predict the behavior of simple 

systems in the body, the handling of a complex system such as immunologic network is 

difficult and sometimes does not lead to satisfactory solutions [6]. As a result, based on 

the time-lagged correlate properties, some studies try to apply the autoregressive (AR) 

to model the homeostatic process and estimate the system response. The AR modeling 
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assume that any stationary process can be expressed as a sum of two components: a 

stochastic component that a linear combination of lags of a white noise process and a 

deterministic component which is uncorrelated with the latter stochastic component. 

The noise source is reminiscent of the external stimulates while the deterministic 

component is reminiscent of the set-points. By applying this model, one can 

mathematically estimations the response of a system through the multiple realizations 

[7]. 

  However, stationary model still relies on the assumptions of simple stationary process 

which may not be able to provide a comprehensive view for disorders or diseases. 

Under normal healthy conditions, the physiological fluctuations are usually neither 

random nor too regular that system is under control and behaves stationary. On the 

contrary, when multiple factors interact to produce the imbalance, particularly under 

serious disease, the physiological fluctuations may become unpredictable [8]. The 

system is out of control and becomes non-stationary, there is no numerical solution in 

such condition. As a result, it would be preferable to identify system states from 

correlations rather than solve the underlying equations in clinical applications. 

 

1.2  Heart Rate Variability and Autonomic Nervous System 

  As mentioned earlier, homeostatic regulations in human body involved the control of 

cardiac rate [3], therefore, quantifying the physiological fluctuations through the easily 

accessible heart beat series has becomes popular in recent years [9-11]. The fluctuations 

on cardiac rate is measured through the variation in the beat-to-beat intervals and 

represented by the heart rate variability (HRV). The heart beats are originally trigger by 

the sinoatrial node (SA node) such that most variations are the results from different 

inputs of SA node. The main inputs are the autonomic nervous system and humoral 

factors. Other inputs includes the respiratory arrhythmia and the low-frequency 

oscillations associated with Mayer waves of blood pressure [12]. 

  The electrical impulse from SA node may be delayed or blocked on an unhealthy 

heart tissues that leads to irregular heart beat and causes errors in the calculation of the 

HRV [13]. Therefore, traditional HRV analysis only calculate the normal sinus rhythms, 

i.e. N-N intervals, such as SDNN (standard deviation of NN intervals), pNN50 

(proportion of successive NNs that differ by more than 50ms), power spectral bands of 
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the interpolated NN intervals. The high frequency (HF) band ranges from 0.15 to 0.4 Hz, 

low frequency (LF) ranges from 0.04 to 0.15 Hz, and the very low frequency (VLF) 

ranges from 0.0033 to 0.04 Hz [14].  

  Although cardiac automaticity is intrinsic to SA node, heart rate and rhythm are 

largely under the control of autonomic nervous system (ANS). The ANS is responsible 

for maintaining homeostasis and regulates the function of all innervated tissues and 

organs throughout the vertebrate body [15]. Since homeostatic regulation are important 

and required for survival, the actions of the ANS usually occur independent of our 

consciousness as the name suggests. The ANS has two divisions that work to counteract 

each other and keep the body in balance, the sympathetic nervous system (SNS) and the 

parasympathetic nervous system (PSNS). Decreased PSNS activity or increased SNS 

activity will result in reduced HRV. And the high frequency activity has been linked to 

PSNS activity [16]. 

  Typically, reduction of HRV is associated with ill state, and such symptoms has been 

reported in several cardiovascular and non-cardiovascular diseases, such as myocardial 

infarction [9], heart failure [10], diabetes and hypertension [17,18]. On the contrary, 

several heart related disease may cause heart-rate turbulence which increase HRV [19]. 

As a result, a proper complexity in heart beat fluctuations has been accepted as a 

hallmark of healthy in physiology and is believed to reflect system adaptability in 

response to constant changes in internal and external inputs [20]. However, such 

statement needs more evidences and theory to explain the underlying phenomenon, 

otherwise, identifying the healthy and diseased state through the physiological 

fluctuations is more like a "blind men and elephant" approach. 

 

1.3  Dynamical System and Orbits 

  From an engineer's perspective, the concept of the homeostasis can be represented by 

a complex feedback system and mathematically modeled as a dynamical system [21]. It 

can model the nonlinear feedback loops but not limited to feedback loops, actually, it 

has been widely used in many fields including biology and physiology. Often, the 

dynamic system model is in the form of a set of differential equations depicting the 

mechanistic interactions between components of the system are constructed:  

),( Pufu


   
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Here u


 is an N dimensional vector describing the state of the system at any given time. 

f


is a vector field describing the dynamics of the system. Parameter vector P


and the 

vector field function f


together determine evolution rule of the dynamical system that 

describes what future states follow from the current state. The output of the model is the 

orbit (state function or trajectory), the path that state follows through space as a function 

of time. The orbits under the same model (the same vector field f


) will be different if 

started from different position. Among these possible orbits (realizations), different 

initial condition may leads to different outcome, therefore, the features on the vector 

field f


 are more interest. Often, in a given system all orbits may tend to a point or a 

closed curve which constitutes an attractor for the system. By examining the state space 

in the neighborhood of a given attractor we can determine the basin of attraction for that 

attractor. For example, to simulation a ventricular cell one can use numerical integration 

of the Hodgkin-Huxley-type ionic model using a forward Euler scheme, with V at time 

tt   calculated as: 

 )()/()()( tICttVttV im ,  

where mC  is membrane capacitance and iI  represents the individual ionic currents 

[22]. Lower figures are the simulation results in time domain (Figure 1, left) and in the 

phase plane (Figure 1, right).  

  

Figure 1 The voltage data and correspond phase-plane trajectory in the model 

  The orbits behave as a typical limit cycle nonlinear oscillator along with a closed 

curve attractor, the homeostasis on such model is dynamic equilibrium. If the 

parameters P


in the model is time independent, i.e. PtP


)( , the system is referred to as 

non-autonomous, otherwise, the system is autonomous. The time vary parameters )(tP


 

thus can be used to model the environmental stimulus. As the autonomous system 
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disturbed by external stimulus, the orbit may shift from the closed curve or equilibrium 

point, and it may go back to the initial state after a period of time [23].  

  Recall the "set-point" concept of the control theory, as the effector correct the 

deviation by depressing it, the state variable will return to the baseline. In the phase 

plane, it acts like the orbit disturbed by a stimulus and finally converges to the 

equilibrium point (attractor or set-point). As a result, the concepts in homeostasis thus 

are related to the probability distribution of the orbits in the dynamical system model.   

In short, if paths of orbits are similar to each others, there will exist a attractor around 

them, and the nonlinear correlation between them are high. In other words, the similar 

but different path of orbits in the phase space implies the existing of governing rules of 

homeostatic control that "attract' the orbits". It also explained why a proper complexity 

in physiological fluctuations are neither random nor too regular under normal healthy 

conditions [20].  

 

1.4 Reconstruct the Dynamics 

  Most control mechanisms are involved with the ANS which carries signals from the 

central nervous system to all organs of the body, in addition, the ANS regulates the 

function of most tissues and organs in the body [15]. As a result, it needs huge number 

of state variables involved in the regulations to describe the system completely. Without 

enough variables, it's really hard to know the whole picture describes the interactions 

between each components. Therefore, this raise a problems of knowing the properties of 

a dynamic system with limit information.  

 

 

Figure 2 The Lorenz attractor and correspond differential equations 

  From Takens’ Embedding theorem, “if we measure any single variable with 
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sufficient accuracy for a long period of time, it is possible to reconstruct the underlying 

dynamic structure of the entire system from the behavior of that single variable using 

delay coordinates and the embedding procedure” [25]. Figure 2 shows a well-known 

Lorenz attractor with the trajectory as a function of time [x(t), y(t), z(t)] derived from 

the differential equations. By applying the embedding method on the x(t), the time 

delayed series [x(t),x(t−τ),x(t−2τ)] are plotted as figure 3 and the topological structure 

of the Lorenz attractor is preserved by the reconstruction. 

 

Figure 3 The time domain signal and the trajectory in reconstructed phase space 

  In 1983, Procaccia and Hentschel [26] described a numerical procedure to introduce a 

characteristic known now as the correlation dimension. As mention above, if paths of 

orbits are similar to each others, the nonlinear correlation between them are high. After 

that, sample-entropy and approximate-entropy have been proposed [27]. Because the 

correlations in the phase space can distinguish colored noise from deterministic chaotic 

behavior while the autocorrelation functions cannot [24], and the algorithm for 

correlation calculation is relatively simple and fast, such method has become one of the 

most popular characteristics of time series analysis. 

  However, the time scale of the physiological applications can range from several 

milliseconds to several days as mentioned earlier. The time lag L during the embedding 

procedure need to be defined first which is a trade-off between the small delay (L = 1) 

and the large delay (L = 100), as figure.4 shows. The Embedding theorem or correlation 
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dimension on certain time delay L fail to account for the multiple time scales inherent in 

time series (such as homeostatic system). 

 

Figure 4 (a) the original phase plot and reconstructed phase space with different 

embedding delay L: (b) L = 1, (c) L = 10 and (d) L = 100 respectively. The delay 

parameter L determines the dimension of the reconstructed space and also the scales of 

fluctuations that can be seen on the reconstructed space. 

 

1.5  Multiple Time Scale Dynamics 

  To solve this, the famous approach is the Multiscale Entropy Analysis (MSE) 

proposed by C.K. Peng in 2002 [11]. Through this method, complexity of a system 

could be derived from nonlinear correlations of variables at multiple time scales. The 

term "Entropy" has been defined as inversely related to energy (in the form of heat: 

Dkentropy log ) in the "Second Law" of classical thermodynamics, and commonly 

understood as a measure of disorder. Latter, Shannon and Weaver proposed the famous 

H measure:  ii ppH ln , commonly understood as a measurement of uncertainty. 

However, neither the second law nor Shannon Entropy make distinction between living 

and non-living things. 

  In the book "What is Life?", Erwin Schrödinger proposed a controversial concept that 

life decreases or maintains its entropy by feeding on negative entropy [28]. The concept 

solve the conflict that life's dynamics may be argued to go against the tendency of 

second law due to the closed system. In other words, life tend to be highly ordered  

rather than unpredictable or random, the interactions between them should be correlated 

and meaningful which implies the entropy of life is low. But to maintain such order, life 

needs multiple scale structures and complex feedback paths [29]. Life thus become 

order and complex which may sound like an oxymoron, but this is due to mistaking the 
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meaning of complexity and randomness [21]. Intuitively, complexity is associated with 

“meaningful structural richness”, which, in contrast to the outputs of random 

phenomena, exhibits relatively higher regularity [20].  

  It thus raises a practical problem to distinguish complex structure from order and 

disordered systems. For this, MSE utilizes the entropy as a measuring tool for quantify 

the correlations in different time scales rather to directly use the entropy to "measure" 

the complexity. This turns the calculation into structural quantification which qualify 

the complexity in the way that more correlations in different time scale corresponds to 

more complex structures and more control mechanisms. As a result, the MSE method 

shows that correlated random signals (colored noise) are more complex than 

uncorrelated random signals (white noise) since the former has the correlations while 

the latter has not. The MSE use the averaging method to form new data series in 

coarse-graining steps (as figure 5 shows) and finally calculates the sample-entropy of 

each new series [20]. 

 

 

Figure 5 Coarse-graining steps for multiple scale entropy calculation  

  For MSE calculations, if time-lagged correlation exists in multiple time scales, it 

reflects that the system has complexity in structures with more adaptability in response 

to constant changes in internal and external inputs. Such concepts has been accepted as 

a hallmark of healthy physiological control and have been applied in many applications. 

However, most signal analysis in clinical applications are difficult to deal with, which 

always need modified methods to solve them, Chapter 2 will give two examples. 

 

 



16 
 

1.6  Attracting Orbit and Discrete Dynamical System 

  Although the complexity of a system can be reconstructed and ranked from a time 

series through MSE method, the underlying dynamics are still hard to figure out without 

the topological information. Furthermore, some clinical application such as surgery 

guiding needs spatial-temporal information for assessments, which is out of the scope of 

statistics analysis such as entropy based calculations. 

  Back to the nonlinear oscillator and attracting orbits in phase space mentioned above. 

There are several known periodic biological fluctuations that also fulfill the assumptions 

of attracting orbits in phase space, such as heart cycle, respiration cycle and circadian 

rhythm [30-32]. There are strict definitions of attracting orbits or periodic orbit in 

mathematics, but here we take the idea of the Poincaré map of a periodic orbit [33]. 

  The stability of a periodic orbit in a dynamic system are usually calculated by the 

Poincaré map which replaces the n-dimensional continuous vector field with an (n−1) 

dimensional map, as figure 6 shows. Such map can be interpreted as a discrete 

dynamical system with a state space that is one dimension smaller than the original 

continuous dynamical system. Because it preserves many topological properties of 

periodic orbits of the original system and has a lower-dimensional state space it is often 

used for analyzing the original system [34].  

 

  
Figure 6 The discrete dynamical system derived from the intersection of the periodic 

orbits in a dynamic system. 

  Take the heart cycle as an example: the discrete dynamical system was firstly start on  

the R-wave peaks derived from the ECG signal. The cycle length dynamics then can be 

reconstructed through the n and (n+1) intervals in the Poincaré plot, as figure 7(b) 
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shows.  

  Second, the amplitude dynamics can be reconstructed directly through the time 

delayed embedded as shows in figure 7(c). The R-peaks in the reconstructed phase 

space thus become the discrete dynamical system that represented the amplitude 

variations of R-wave due to the respiratory effect (EDR), as shows in figure 7(d).   

Since the cycle length of the heart beats can be modulated by the respiratory, there are 

similarities in the distribution of these two different approaches (as figure 7(b) and (d) 

shows). The distribution on the Poincaré plot can be characterized by fitting an ellipse 

to it [35]. The length of axis 1 is defined as the SD of the plot data in that direction 

which describes the instantaneous beat-to-beat variability of the data, SD1. The length 

of axis 2 is defined as the SD of the plot data in the perpendicular direction, SD2, as 

figure 7(b) shows. 

 

Figure 7 (a)ECG wave and correspond R-peak markers. (b) Poincaré plot of RR 

intervals. (c) The ECG signal and correspond R-peak markers on the reconstructed {x(t), 

x(t+L)} space, the area of the markers is partially enlarged in (d).   
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  This shows the attracting orbits can be reconstructed through different approaches, 

and each of them corresponds to different physiological meanings (cycle length or the 

amplitude of the peaks in ECG wave). Hence, the way to identify the feature points and 

the approach for reconstructed the discrete dynamical system would be the key.   

Chapter 3 will give two examples to explain how to identify the feature points from 

noisy data and quantify the attracting orbit from these points while the spatial-temporal 

information are still preserved. 
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Chapter 2  

Quantization of Multi-scale correlation 

 

2.1 Application of a Refined Entropy Computational Method 

in Assessing Complexity of Pulse Wave Velocity Signals in 

Healthy and Diabetic Subjects 

 

2.1.1  INTRODUCTION 

  Atherosclerosis, which is the major pathological change underlying most 

cardiovascular diseases, has been reported to be associated with advanced age, history 

of stroke, diabetes, hypertension, and cerebrovascular disease. Pulse wave 

velocity(PWV) is one of the most popular non-invasive parameter for the assessment of 

atherosclerosis. Despite different equipment used for data acquisition, a mean value is 

usually obtained from the examinee for evaluating the severity of the condition(Blacher, 

Asmar et al. 1999; Laurent, Boutouyrie et al. 2001; Yamashina, Tomiyama et al. 2002; 

Mitchell, Parise et al. 2004; Tsai, Chen et al. 2005; Wu, Hsu et al. 2012). On the other 

hand, Costa et al. found healthy subjects and those with heart conditions can be reliably 

differentiated by a simple measure based on the thermodynamical concept of “entropy” 

(Costa, Goldberger et al. 2002). “Multi-scale entropy (MSE)” is a non-linear means of 

assessing the complexity of physiological signals (Costa, Goldberger et al. 2002; Costa 

and Healey 2003; Costa, Peng et al. 2003).Compared to the traditional complexity 

measures, MSE has the advantage of being applicable to both physiologic and 

physiologic signals of finite length. MSE, which was first reported by Costa et al. to 

compare the differences in R-R interval (RRI) among healthy subjects, patients with 

atrial fibrillation and those with congestive heart failure (CHF) (Costa, Goldberger et al. 

2002), has been successfully applied to the interpretation of physiological series and 

data from patients with various diseases. In previous studies, MSE provided the best 

prognostic prediction in patients with congestive heart failure (CHF) (Ho YL, Lin C, 

Lin YH, Lo MT. The prognostic value of non-linear analysis of heart rate variability in 

patients with congestive heart failure--a pilot study of multiscale entropy. PloS one 
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2011;6:e18699.) and patients receiving unilateral primary carotid angioplasty and 

stenting were reported to exhibit acute increase of complexity in the 

neurocardiovascular dynamics (H. K. Yuan, C. Lin, P. H. Tsai, F. C. Chang, K. P. Lin, H. 

H. Hu, M. C. Su, and M. T. Lo, "Acute increase of complexity in the 

neurocardiovascular dynamics following carotid stenting," Acta Neurologica 

Scandinavica, vol. 123, pp. 187-192, 2011.). In 2006, Escudero et al. reported 

significant difference in entropy values from signals of electroencephalograms (EEG) 

between healthy individuals and those with Alzheimer’s disease after data processing 

with MSE(Escudero, Abásolo et al. 2006). Accordingly, we have previously shown that 

healthy, aged, and diabetic subjects can be distinguished with MSE using 1000 

successive PWV signals with a scale factor of 10(Wu, Hsu et al. 2011). Despite being 

reliable, the whole recording process takes up to 30 minutes that is usually not well 

tolerated by aged or diseased subjects (Wu, Hsu et al. 2011). 

  To refine the assessment approach, the present study proposes a novel means of 

computation, “short time multiscale entropy (sMSE)”, in an attempt to reduce the time 

for data acquisition through refined computation of the harvested data. To compare 

between MSE and sMSE in terms of their sensitivity and validity in differentiating 

signals of small sample size and among healthy, aged, and diabetic subjects, both 

simulation signals and PWV data from testing subjects were used for the current study.  

 

2.1.2  METHODS 

Subject Population and Grouping 

  The testing subjects were divided into four groups, including healthy young 

individuals of age between 20 and 40 (Group 1, n =24), healthy aged subjects of age 

between 20 to 40 (Group 2, n =30), middle-aged patients with well-controlled diabetes 

mellitus type 2 [Defined as age between 41 to 80 and 6.5% < glycosylated hemoglobin 

(HbA1c) level < 8.0%] (Group 3, n =18), and middle-aged patients with 

poorly-controlled diabetes mellitus type 2 (Defined as age between 41 to 80 with 

HbA1c level ≥ 8.0%) (Group 4, n = 22). All participants were volunteers. Diabetic 

patients, who were recruited from the diabetic outpatient clinic of Hualien Hospital 

from July 2009 to October 2010, fit all the three criteria of (1) Fasting blood sugar 

>126mg/dL, (2) HbA1c level > 6.5%, and (3) Established diagnosis of diabetes mellitus 



23 
 

type 2 with a follow-up period > 2 years. On the other hand, healthy subjects, who were 

recruited from the health screening clinic of Hualien hospital during the same period, 

had to fill out a questionnaire declaring the absence of medical history of cardiovascular 

diseases (i.e. Stroke, hypertension, diabetes). The whole study has been approved by the 

Institutional Review Board (IRB) of Hualien Hospital and National Dong Hwa 

University. Informed consents were signed by all testing subjects. 

Short Time Multiscale Entropy (sMSE) 

  The original MSE comprises of two steps: 1) coarse-graining the signals using 

different time scales; 2) quantifying the degree of irregularity in each coarse-grained 

time series using sample entropy (SampEn). However, the major challenge of of MSE in 

clinical application is the need of massive data for the reliability. 

Short time multiscale entropy (sMSE) is a novel approach of computation that enables 

the use of large scale factor for analysis on data acquired through a shortened time 

period. The basic concept is the creation of different time series through removing a 

small number of recordings from the beginning without affecting the overall trend and 

complexity of the acquired signals. The acquired time series then undergo Sample 

Entropy (SE)(Richman and Moorman 2000) computation with steady values of entropy 

obtained (Figure.1). 

  Through altering the number of Lag from 0 to L (where L = τ– 1, τ = coarse-grained 

scale factor) on the native time series (1), a new time series,T(P), can be obtained (2). 

Thus, the number of new time series generated is L+1. 

TN={X1，X2，. . .，XN-1，XN}          (1) 

T(P)={Xk，Xk+1，Xk+2，. . .，XN-1，XN}，k=p+1，p=0,1,2,. . .,L   (2) 

The L+1 time series acquired then undergo coarse-grained processing with a scale 

factor τ (3), giving the time series of y(p)(τ). Hence 

yj
(p)(τ)

=
1

τ
∑ X

jτ+p
k=(j−1)τ+1+p k，1 ≤ j ≤⌊

N−P

τ
⌋，p=0,1,2,…..,L     (3) 

The L+1y(p)(τ) are then subjected to Sample Entropycomputation and averaged, giving 

sMSEτ of scale factor τ(4) 

    sMSEτ=
1

L+1
∑ SL

p=0 E(y(p)(τ))           (4) 
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Figure 1. Method of short time multi-scale entropy (sMSE) computation 

Short Time Multi-scale Entropy Index (sMEI) Using PWV Series 

  The results of MSE from 1000 successive PWV signals were compared with those of 

sMSE acquired from computation on the first 600 PWV signals using the novel 

computation approach in the current study. Utilizing a scale factor of 10, the present 

study categorized scale factors into short time multi-scale entropy index with small 

scale (sMEISS, scale1 to scale5) (5) and short time multi-scale entropy index with large 

scale (sMEILS, scale 6 to scale 10) (6)that were used to compare with the respective 

values of MEISS and MEILS from our previous study using MSE (Wu, Hsu et al. 2011). 

sMEISS=10(∑ sMSE5
τ=1 τ)                 (5) 

sMEILS=10(∑ sMSE10
τ=6 τ)                 (6) 

Study Design 

  The study comprised two parts. The first part involved the design of the sMSE 

method with simulation signals of white noise and 1/f noise using the MATLAB 

R2008b package (MathWorks, Natick, Massachusetts, U.S.A.). The second part focused 



25 
 

on computation of PWV-based multiscale entropy index in study subjects with small 

scale and that with large scale using MSE method on 1000 successive PWV signals that 

are referred to as MEISS (PWV1000) and MEILS (PWV1000), respectively. The 

computation has been previously described (Wu, Hsu et al. 2011). Utilizing the same 

approach, 600 successive PWV signals were obtained for the calculation of MEISS 

(PWV600) and MEILS (PWV600). Comparisons were first made between MEISS (PWV1000) 

and MEISS (PWV600) as well as between MEILS (PWV1000) and MEILS (PWV600) to 

study if a reduction in available data would affect the ability of differentiation among 

different groups. In addition, MEISS (PWV600) and MEILS (PWV600) were compared 

with sMEISS (PWV600) and sMEILS (PWV600), respectively, to investigate possible 

enhancement in sensitivities using the novel method for data processing.  

Statistical Analysis 

  Average values are expressed as mean±SD. Statistical Package for the Social Science 

(SPSS, version 14.0 for Windows, SPSS Inc., Chicago, IL) was used for statistical 

analysis. Independent t-test was adopted for the determination of the significance of 

difference in study parameters among different groups. A probability value, p, of<0.05 

represents statistical significance. 

  

2.1.3  RESULTS 

Computation of Sample Entropy Using Multi-Scale Entropy (MSE) and Short 

Time Multi-Scale Entropy (sMSE) methods on Simulation Signals 

  Values of sample entropy were acquired through multi-scale entropy (MSE) (Figure 

2a) and short time multi-scale entropy (sMSE) (Figure 2b) methods using simulation 

white noise and 1/f noise with different scale factors on 30 sets of 1000 successive 

signals. The results showed that the values of sample entropy decreased with an increase 

in values of the coarse grained scale factor regardless of the method used. On the other 

hand, computation with 1/f noise eliminated the effect of scale factor, giving a value of 

around 2 for both methods (Figure 2a & 2b). Comparison of changes in values of 

sample entropy using multi-scale entropy (MSE) and short time multi-scale entropy 

(sMSE) approaches with different scale factors on 600 successive white noise signals 

(Figure 3) showed a steady drop in sample entropy as the scale factor increased from 1 

to 4. From the scale factor 5 onwards, sample entropy from MSE began to exhibit 
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remarkable fluctuations, while that from sMSE showed a relatively steady decrease. 

 

 

Figure 2. Simulation signals. (a)Values of sample entropy acquired through multi-scale 

entropy (MSE) computation using white noise and 1/noise with different scale factors 

on 30 sets of 1000 successive signals. (b)Values of sample entropy acquired through 

short-time multi-scale entropy (sMSE) computation using white noise and 1/noise with 

different scale factors on 30 sets of 1000 successive signals 

 

Figure 3. Comparison of changes in values of sample entropy using multi-scale entropy 

(MSE) and short time multi-scale entropy (sMSE) methods with different scale factors 

on 600 successive white noise signals  
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Table 1 

Comparison of anthropometric, hemodynamic, serum biochemical, arterial 

stiffness, and multiple entropy parameters among the testing subjects 

Parameter 

600 points 
Group 1 Group 2 Group 3 Group 4 

Number 24 30 18 22 

Ages (years) 25.8±5.6 52.6±6.6** 56.5±9.3 57.9±9.5 

Duration of 

Diabetes(years) 

0 0 6.8±3.8 11.7±6.8++ 

circumference(cm) 79.9±10.8 84.3±10.1 92.2±10.1ε 96.7±12.8 

BMI (kg/m2) 22.6±3.5 24.2±3.9 26.9±3.7 28.4±5.2 

SBP (mmHg) 115.5±9.8 115.5±14.4 129.8±22.0ε 125.7±19.4 

DBP(mmHg) 70.1±6.6 73.9±10.0 78.5±13.6 75.5±10.8 

PP(mmHg) 44.5±6.6 41.1±9.4 51.2±12.3ε 45.1±6.7 

HbA1c(%) 5.5±0.2 5.8±0.4* 6.8±0.7εε 9.53±1.9++ 

HDL(mg/dL) 41.7±11.5 49.4±14.1 39.9±11.4 43.2±14.9 

Triglyceride 

(mg/dL) 

100.6±74.0 106.0±54.9 107.0±51.7 156.9±74.3+ 

Fasting Blood 

Sugar(mg/dL) 

92.4±8.4 96.1±9.9 128.5±28.1εε 182.8±61.9+ 

PWV1000(m/s) 4.4±0.3 4.7±0.4* 5.0±0.3ε 5.1±0.6 

MEISS (PWV1000) 96.5±4.4 97.4±4.3 98.4±6.7 91.5±12.5+ 

MEILS (PWV1000) 89.4±7.3 84.3±6.3* 79.6±9.2ε 71.9±12.6+ 

MEISS (PWV600) 97.0±7.6 99.1±4.3 100.9±8.3 93.3±12.4+ 

MEILS (PWV600) 88.3±10.8 86.1±12.8 85.2±11.0 82.9±11.6 

sMEISS(PWV600) 95.9±10.0 96.8±7.1 96.9±11.3 89.2±12.1+ 

sMEILS (PWV600) 92.2±8.9 86.8±11.3* 80.5±6.2ε 73.7±11.4+ 

Group 1: Healthy young subjects without known cardiovascular disease; Group 2: Healthy 

middle-aged subjects without known cardiovascular disease; Group 3: Middle-aged individuals 

with well-controlled diabetes mellitus type 2; Group 4: Middle-aged patients with 

poorly-controlled diabetes mellitus type 2. Values are expressed as mean+SD. BMI=body mass 

index; SBP=systolic blood pressure; DBP=diastolic blood pressure; PP=pulse pressure; 

HbA1c=glycosylated hemoglobin; HDL=high-density lipoprotein; PWV1000=1000 successive 

pulse wave velocity using the distance from the sternal to the second toe divided by the time 

difference between R wave on LeadⅡof ECG to the corresponding foot point of pulse wave of 

second toe; MEISS (PWV1000)= 1000 successive PWV-based multiscale entropy index with 

small scale; MEILS (PWV1000) = 1000 successive PWV-based multiscale entropy index with 

large scale; MEISS (PWV600)= 600 successive PWV-based multiscale entropy index with small 
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scale; MEILS (PWV600)= 600 successive PWV-based multiscale entropy index with large scale; 

sMEISS (PWV600)= 600 successive PWV-based short time multiscale entropy index with small 

scale; sMEILS (PWV600)= 600 successive PWV-based short time multiscale entropy index with 

large scale. 

*p<0.05 Group 1＆Group 2, εp<0.05:Group 2＆Group 3, +p<0.05:Group 3＆Group 4, 

**p<0.001 Group 1＆Group 2, εεp<0.001:Group 2＆Group 3, ++p<0.001:Group 3＆Group 4 

 

 Demographic and Biochemical Parameters 

  Subjects in Group 3 was significantly older than those in Group 2 who, in turn, were 

significantly older than those in Group 1 (all p<0.001) (Table 1).The duration of 

diagnosed diabetes was significantly longer in Group 4 than that in Group 3(p<0.001). 

Although there was no significant difference in body mass index (BMI) among the four 

groups, the waist circumference was significantly larger with systolic blood pressure 

higher in individuals in Group 3 compared to those in Group 2(both p=0.005). Besides, 

the pulse pressure was also substantially higher in Group 3 than that in Group 2 

(p=0.001). Moreover, the levels of HbA1c were significantly different among the four 

groups with Group 4 being the highest, followed by Group 3, Group 2, and Group 1 

(Group 1 vs. Group 2, p=0.007; Group 2 vs. Group 3 & Group 3 vs. Group 4, p<0.001), 

although the parameter was within normal range (i.e. <6.0%) in Group 1 and Group 2. 

Serum triglyceride was also significantly higher in Group 4 than in Group 3 (p=0.037). 

Furthermore, fasting blood sugar level was highest in Group 4, followed by Group 3 

and Group 2, while there was no notable difference between Group 1 and Group 2 

(Group 2 vs. Group 3, p<0.001; Group 3 vs. Group 4, p=0.003). 

Comparisons among PWV1000, MEISS (PWV1000), MEILS (PWV1000), MEISS 

(PWV600), MEILS (PWV600), sMEISS (PWV600) and sMEILS (PWV600) 

PWV1000 was lowest in Group 1, followed by that of Group 2 and Group 3, while there 

was no remarkable difference in this parameter between Group 3 and Group 4 (Group 1 

vs. Group 2, p=0.007; Group 2 vs. Group 3, p=0.009). MEISS (PWV1000) was 

significantly higher in Group 3 than that in Group 4 (p=0.02). On the other hand, MEILS 

(PWV1000) was higher in Group 1 than that in Group 2 (p=0.03), significantly higher in 

Group 2 than that in Group 3 (p=0.016), and higher in Group 3 compared to that in 

Group 4 (p=0.04). Although MEISS (PWV600) was significantly higher in Group 3 than 

that in Group 4 (p=0.005), there was no significant difference in MEISS (PWV600) 

between Group 1 and Group 2. Failure in differentiation was noted between Group 1 
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and Group 2 using MEISS (PWV600) as well as among Groups 2, 3, and 4 using MEILS 

(PWV600). Similar to that of MEISS (PWV600), although sMEISS (PWV600) was 

significantly higher in Group 3 than that in Group 4 (p=0.011), it failed to differentiate 

among Groups 1, 2, and 3. On the other hand, sMEILS (PWV600) was significantly 

higher in Group 1 than that in Group 2 (p=0.029), higher in Group 2 than that in Group 

3 (p=0.045), and higher in Group 3 than that in Group 4 (p=0.045). 

 

Figure 4. Values of sample entropy obtained through computation using short time 

multi-scale entropy (sMSE) method on 600 successive pulse wave velocity (PWV) 

signals. Group 1: Healthy young subjects without known cardiovascular disease; Group 

2: Healthy middle-aged subjects without known cardiovascular disease; Group 3: 

Middle-aged individuals with well-controlled diabetes mellitus type 2; Group 4: 

Middle-aged patients with poorly-controlled diabetes mellitus type 2 

 

  There was an overall reduction in sample entropy with an increase in scale factors 

(Figure 4). While no significant difference among the four groups was noted on a scale 

factor less than 6, significant differences began to emerge when the scale factor was 6 or 

above. The value of sample entropy was highest in Group 1, followed by that of Group 

2, Group 3, and Group 4. 

 

2.1.4  DISCUSSION 

  PWV is one of the most popular noninvasive assessment tools for the assessment of 

atherosclerosis (Laurent, Boutouyrie et al. 2001; Tsai, Chen et al. 2005; Cecelja and 

Chowienczyk 2009) that operates on the assumption that PWV is a stationary parameter. 

However, after analyzing the data on PWV over 1000 cardiac cycles within 30 minutes, 

our previous study (Wu, Hsu et al. 2011) demonstrated that PWV is a non-stationary 
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parameter, the variability of which may reflect subtle atherosclerotic change that was 

missed by taking only the mean value for analysis. That study explored the possibility 

of combining MSE and PWV in assessing sugar control and progression of vascular 

pathology in diabetic patients and elderly to allow timely therapeutic intervention. Other 

than MSE, various tools for non-linear data analysis are available, including Ensemble 

empirical Mode Decomposition (EEMD) (Wu and Huang 2009; Chang and Liu 2011), 

linguistic (Yang, Hseu et al. 2003; Lei, Li et al. 2007) and fractal (Goldberger, Amaral 

et al. 2002; Tapanainen, Thomsen et al. 2002) analyses.  

  Albeit sensitive in differentiating healthy, aged, and diabetic subjects, one of the 

pitfalls of applying MSE for PWV signal analysis is the relatively long time for data 

collection that involves the acquisition of 1000 successive signals in 30 minutes (Wu, 

Hsu et al. 2011). Our experience showed that, although a scale factor of 10 can be used 

for analyzing 1000 successive PWV signals to produce significant outcomes, the use of 

scale factor 10 on a smaller sample size acquired within a shorter time period would 

give aberrant results (Figure 3). In an attempt to solve the problem, the current study 

introduced a novel non-linear computational method, sMSE, that gave values of sample 

entropy comparable to those obtained through MSE from a relatively long period of 

simulation signals (Figure 2a & 2b). The results, therefore, are consistent with those 

from the study of Peng et al. that also demonstrated similar results in simulation study 

on healthy subjects and those with cardiac diseases (Costa, Goldberger et al. 2005). 

Using a relatively small simulation sample size of 600, the changes in sample entropy 

acquired with MSE and sMSE were compared (Figure 3). The results showed spiking 

increases in entropy at a scale factor of 6, 9, and 10 using the MSE method, while 

sample entropy from sMSE exhibited a relatively steady reduction throughout the 

elevation in scale factor from 1 to 10. Compared to traditional MSE, the significantly 

reduced standard deviation of sMSE indicates the reduction of the cost of the 

experimentation. Therefore, despite a smaller sample size, sMSE could still produce 

results similar to that of MSE on a large sample (Figure 2a). The results highlight the 

applicability of sMSE in the analysis of signals acquired through a long time period and 

also those from a relatively short period (i.e. 600 consecutive signals) using a scale 

factor of 10 to produce steady results that could not be obtained through the original 

MSE approach. The results from simulation studies are consistent with those from 

human subjects. Although MEISS (PWV600) and MEILS (PWV600) failed to reproduce the 
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significant results from MEISS (PWV1000) and MEILS (PWV1000) after curtailing the 

sampling size, sMEISS (PWV600) and sMEILS (PWV600) were found to be as sensitive as 

MEISS (PWV1000) and MEILS (PWV1000) in differentiating among the four groups. 

Failure in differentiation among the four groups using MEILS (PWV600)(Table 1) may 

be due to the marked fluctuations in sample entropy at large scale factors (Figure 3). 

Furthermore, consistent with the findings of previous studies (Wu, Hsu et al. 2011), the 

results of the present study also demonstrated a reduction in signal complexity with age 

and the severity of diabetes (Figure 4). 

  The present study has its limitations. First, compared with MSE, the method of sMSE 

requires a larger volume of computation. Second, although we have established a 

signal-to-scale factor ratio of 100 (i.e. 1000 successive signals/ scale factor 10) as a 

minimal requirement for successful computation using the MSE approach and a reduced 

ratio of 60 for sMSE in this study, whether aberrancy would arise from sMSE using a 

ratio below 60 remains to be elucidated. 

  In conclusion, the present study demonstrated that, using a novel sMSE approach for 

PWV signal analysis, the time for data acquisition can be substantially reduced from 30 

minutes to 10 minutes with remarkable preservation of sensitivity in differentiating 

among the healthy, aged, and diabetic populations compared with the conventional 

MSE method.   
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2.2 Outlier-Resilient Complexity Analysis of Heartbeat 

Dynamics 

 

2.2.1  INTRODUCTION 

  Complexity in physiological outputs is believed to be a hallmark of healthy 

physiological control. How to accurately quantify the degree of complexity in 

physiological signals with outliers remains a major barrier for translating this novel 

concept of nonlinear dynamic theory to clinical practice. Here we propose a new 

approach to estimate the complexity in a signal by analyzing the irregularity of the sign 

time series of its coarse-grained time series at different time scales. Using surrogate data, 

we show that the method can reliably assess the complexity in noisy data while being 

highly resilient to outliers. We further apply this method on human heartbeat recordings. 

Without removing any outliers due to ectopic beats, the method is able to detect a 

degradation of cardiac control in patients with congestive heart failure and a more 

degradation in critically ill patients whose life continuation relies on extracorporeal 

membrane oxygenator (ECMO). Moreover, the derived complexity measures can 

predict the mortality of ECMO patients. These results indicate that the proposed method 

may serve as a promising tool for monitoring cardiac function of patients in clinical 

settings. Many physiological variables such as motor activity and heart rate display 

seemingly irregular fluctuations over a wide range of time scales1,2. Under normal 

healthy conditions, these physiological fluctuations are neither random nor too regular, 

possessing robust, multi-scale dynamic patterns that are independent of external 

influences 3-5. Such a complexity in physiological fluctuations has been accepted as a 

hallmark of healthy physiology and is believed to reflect system adaptability in response 

to constant changes in internal and external inputs. Numerous studies have supported 

this theory of complexity by showing that physiological fluctuations become either too 

random or too regular with aging and under pathological breakdowns 6-10.  

  Despite the physiological importance of the complexity theory, its application to 

clinical studies has been hindered by the lack of algorithms that can be easily 

implemented for accurate estimation of the degree of complexity in physiological 

fluctuations3,4. One generic challenge for algorithm design is to account for the effects 

of “outliers”, which often exist in clinical recordings due to not only external random 
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influences but also intrinsic physiological/pathological incidence such as ectopic beats 

in ECG recordings 5 (Figure 1). For example, multiscale entropy analysis (MSE)11 is a 

useful tool for estimating the complexity of heartbeat fluctuations; and it can detect 

alterations in cardiac control with aging and predict clinical outcomes of patients with 

heart diseases10,12. However, MSE results are not reliable when heartbeat signals 

consist of outliers13,14. Thus, those data segments contaminated by outliers must be 

identified and excluded before performing MSE14. Such heavy-duty pre-processing is 

time consuming, thus compromising the clinical application of the analysis at the 

bedside. In addition, ignoring the segments with arrhythmia-related outliers may lead to 

loss of important information about the pathology of cardiac control. Therefore, there is 

an urgent need for the development of complexity analyses that can reliably quantify the 

degree of complexity in noisy physiological recordings with outliers. 

 

  In general, the change of a variable at a time point can be decomposed into two parts: 

the magnitude (absolute value) and the direction (sign)15. We hypothesize that 

dynamics in the sign time series can adequately reflect the complexity in raw data and 

that the complexity estimation based on the sign time series is more resilient to outliers 

as compared to raw data. Based on the hypothesis, we propose a new complexity 

analysis termed ‘multiscale symbolic entropy analysis’ (MSSE) that assesses the 

multiscale entropy of a signal from its sign time series. We also hypothesize that the 
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new method can reliably detect pathological alterations of cardiac control based on the 

complexity of heartbeat fluctuations even when the signals are contaminated by ectopic 

beats. To test these hypotheses, we conducted numeric simulations (and theoretical 

derivations) to examine the performance of the new method in signals with and without 

outliers. We also applied the method on human heartbeat recordings and examined 

whether complexity can be used detect the alterations of cardiac control in patients with 

congestive heart failure (CHF) and in critically ill patients with certain dysfunctional 

organ(s) and life continuation relying on a mechanical circulatory support system, 

namely, extracorporeal membrane oxygenator (ECMO) 16. Moreover, we compared the 

MSSE results with those of the traditional MSE. 

 

2.2.2  METHODS 

Multiscale entropy analysis 

  As described previously 11, MSE calculates the degree of irregularity in the 

fluctuations of a signal, 
 iX

, at different time scales l . For each time scale, the time 

series is first coarse-grained to produce a new time series   
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, where n l j  . . Then the degree of irregularity in 
 jY

 is 

estimated using sample entropy (SpEn).  

Multiscale symbolic entropy analysis 

  To better account for the influence of outliers, we propose a new algorithm, namely 

MultiScale Symbolic Entropy (MSSE) analysis. Different from MSE, MSSE considers 

the sign time series 
 ljb

 of each coarse-grained series at a time scale l . (Figure 3a), 

where 
l

jb
 is either 1 when the corresponding 

l

iy
 is increasing or 0 otherwise. To 

consider the quantization error in digital signals (e.g., 4 msec for signals with a 

sampling rate of 250 Hz), let 
0l

jb 
 if the amplitude of a change is less than the 

quantization error. In addition, median values rather than mean values in 

non-overlapped windows are used to construct coarse-grained time series in order to 

minimize the impact of outliers (Figure S4).  
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  To quantify the irregularity of a sign time series, the signal is first divided into 

sequences each with the same length m  — the sequence length that is pre-selected (by 

default, m =8 in this study). These m -bit sequences are divided into different 

categories based on their temporal patterns using the similar concept of the 

approximate/sample entropy24. Specifically, a m -bit sequence is divided into multiple 

vectors, each consisting of D consecutive bits. 

 
    1 2 2 3 1, ; , ;D Db b b b b b  , where D is the dimension of vectors. The number of 

paired vectors consisting of the exactly same binary codes is then obtained and is 

denoted as 
 n D

. The conditional probability of the sequence is determined by 

   1n D n D
. All sequences are assigned to different categories based on their 

conditional probabilities (i.e., sequences in a category have the same conditional 

probability). Categories are created using all possible m -bit sequences (not only the 

sequences present in a sign time series) and ranked based on the conditional probability, 

i.e., the conditional probability is the highest for the category with Rank =1 and lower 

for the categories with lower ranks (Figure 3). Then, based on the distribution of the 

sequences in different categories, the Shannon entropy 
 eSC l

 and the mean rank 

(namely, symbolic sample entropy) 
 eEC l

 can be obtained for the sign time series. 

Conceptually, eSC describes the information richness of a signal while eEC indicates 

the degree of uncertainty of the fluctuations.  

Human heartbeat recordings 

  To test the performances of complexity analyses, we utilized existing heartbeat 

recordings of three groups of human subjects: (1) 46 control subjects at age of 65.9±4.0 

(SE) years old (24 hours); (2) 29 patients with congestive heart failure (CHF) at age of 

55.2±11.6 (SE) years old (24 hours); (3) 64 critically ill patients at age of 53.5±18.2 (SE) 

years old who had severe dysfunction in certain organ(s) (i.e., fulminant myocarditis, 

severe respiratory failure, cardiogenic shock after cardiac surgery and septic 

shock)16,25,26 and relied on the extracorporeal membrane oxygenator (ECMO) to 

maintain life continuation (24 hours). Within the 64 ECMO patients, 33 survived while 

the others died.  
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  The data of the first two groups are publically available in Physionet.org. The data of 

Group 3 were collected in the National Taiwan University (NTU) Hospital between 

March 2008 and March 2010. Patients were eligible for the present study if they were 

18 years or older and had received ECMO for circulatory or respiratory failure that 

required mechanical support. The decision to use ECMO was made by experienced 

intensive care specialists or cardiac surgeons. The primary endpoint is death or urgent 

cardiac transplantation during the index admission. The patients were followed until 

discharge or death of the index admission. The Institutional Review Board of the NTUH 

approved the study and informed consent was obtained from each patient’s next-of-kin 

in ECMO group and from each subject in control group in accordance with the NTU’s 

human subject’s research polices. 

Surrogate data 

  We generated noise with different correlation properties by using a modified Fourier 

filtering method 27. The generated signals possess the desired power-law correlation 

functions that asymptotically behave as fractional Brownian motion (fBM) processes 

with different Hurst exponent (H) (see Supplementary I): white noise (Hurst exponent = 

0.5), 1/f noise (Hurst exponent = 1), noise with stronger correlations (Hurst exponent = 

1.2), and signals with anticorrelations (Hurst exponent = 0.4). For each type of noise, 

we generated 1000 signals each with 30,000 points.  

  Human heartbeat recordings with artificial ectopic beats are generated from total 

24-hour heartbeat signals collected from 26 healthy young individuals. The signals have 

been previously reviewed and contain no abnormal beats (www.physionet .org\...). For 

each recording, two different ways were adopted to simulate the ectopic beats. We 

randomly selected certain percentage (e.g., 20% and 45%) of RR intervals and 1) 

replace the normal beats with intervals imitating premature ectopic beats [ref] of which 

the average RR was xx percent (XX~ XX in uniform distribution) of the mean value of 

the four normal hear beat intervals proceeding to these ectopic beats; or 2) replaced 

them with artificial outliers which is selected based on arrhythmia heartbeat intervals of 

the patients with CHF in Physionet database. In addition, we also consider the influence 

from the spike train, ∑ Aiδ(t − τi)i  which simulates the spurious peaks due to R wave 

detection errors []. WhereAi is the spike amplitude and  τi is the temporal location of 

the spike. The spike trains were generated using a Bernoulli process of probability p 
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(e.g., 0.2 and 0.45).  The output of the Bernoulli process was used to determine 

whether this sample should be added a spike. The sign of spike is also determined by 

Bernoulli process and the positive and negative spikes indicate the missing and false 

positive heart beat detection, receptively. In this study, the amplitude of each spike was 

assigned to be a normal distribution with mean value determined adaptively as half the 

median of 10 RR intervals adjacent to the spike location.   

Autonomic filter  

  The certain automatic filtering procedure has been proposed in previous studies to 

address the time consuming procedure of manual filtering. For example, in each 

iteration, the recursive filtering procedure will remove the RR intervals that deviate 

from a predetermined tolerance determined adaptively by the ratio (1.25~0.75) of mean 

value derived from the preceding and following RR intervals(20 beats). A new RR 

interval derived from the linear interpolation of two adjacent normal beats will replace 

the removed one (see Figure 7). 

 

2.2.3  RESULTS 

Assessment of complexity requires the examination of fluctuations at different time 

scales. 

  The theoretical concept behind the MSE and MSSE as well as many other complexity 

analyses is that the complexity of a time series cannot be reliably determined by 

statistical properties such as fluctuation amplitude and entropy at a fixed time scale 

because these properties can vary with time scale 11. To demonstrate this concept, we 

considered MSE results of (1) white noise that simply consists of uncorrelated data 

points, and (2) 1/f noise that is believed to represent the most complex fluctuation 

patterns in physical systems and is observed in many physiological systems under 

healthy conditions. As shown in Figure 2, the entropy value of a white noise can be 

smaller, equal to, or greater than that of a 1/f noise, depending on the time scale (and 

their standard deviations). Note that the entropy of a coarse-grained white noise at a 

time scale l  is decreased by 
 ln 2l

 while the entropy of a coarse-grained 1/f noise 

remains approximately constant at all different times scales (Figure 2 and 

Supplementary Material I). Thus, for the assessment of complexity, the entropy as the 



39 
 

function of time scale (e.g., both the absolute values and the slope of the function) 

should be considered.   

 

MSSE provides the similar information as MSE for signals without outliers. 

  To better account for the influence of outliers, we proposed a new algorithm, namely, 

multiscale symbolic entropy analysis, which quantifies entropies of fluctuations across 

different time scales (Figure 3 and see details in Methods). Figure 4a~c show the MSSE 

results for generated noise with different temporal correlations (see Methods). For all 

these signals, the two proposed MSSE measures (i.e., eSC and eEC) provided consistent 

results as the MSE measure does. For instance, eSC and eEC remained the same at 

different time scale for 1/f noise, decayed quickly at larger time scales for white noise, 

and decayed faster for anti-correlated noise. For noise with Hurst exponent >1 (stronger 

correlations as compare to 1/f noise), the entropy measures slightly increased with 

increasing time scales). Indeed both MSSE measures were highly correlated with the 

MSE measure at all time scales (Figure 5). We further applied MSE and MSSE to 
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heartbeat recordings of 26 healthy human individuals without outliers (Physionet: mean 

age: 31.7±3.5 years old) (Figure 6). Consistent with previous findings 13, we found that 

all the entropy measures remained relatively constant at different time scales (except for 

very small time scales), suggesting fluctuation patterns similar to 1/f-noise (Figs. 6 

a,g,i).  

 

 

MSSE is more resilient to outliers  

  To examine how outliers impact the performances of MSE and MSSE, we generated 

surrogate data by randomly replacing some data points in the normal heartbeat intervals 

of those healthy subjects with three different type outliers due to the arrhythmic beats or 
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QRS detection error (Figure 7a~c and see details in Methods). The outliers significantly 

affected MSE, leading to overestimated entropies at time scales from 1-15 beats. The 

degree of overestimation depends on the time scales, i.e., more overestimation at 

smaller time scales. As a result, the MSE function became more like that of white noise 

(Figure 6a~c). The automatic filter can attenuate the effect of outliers in MSE , 

nevertheless the improvement is not yet satisfied (Figure 6d~f). In contrast, the results 

of MSSE remained virtually the same as those of the raw data, even when 45% artificial 

outliers were imposed (Figs. 6g~l).   

Complexity reveals altered cardiac dynamics in diseases 

  We next applied the MSSE and MSE to human heartbeat recordings of additional 

three groups: (1) 46 older control subjects; (2) 29 patients with congestive heart failure 

(CHF); and (3) 64 critically ill patients using ECMO. Unlike the data in healthy young 

subjects, heartbeat recordings of these three groups contained numerous 

abnormal/ectopic beats (Figure 1) such that many of them, especially those of ECMO 

patients, would be not usable if all ectopic beats must be removed. To test the 

performances of MSSE and MSE, we did not reject ectopic beats prior to performing 

the two analyses.  

  Overall there were significant group differences in all entropy measures. The 

differences between the control and CHF subjects were present exclusively at small 

time scales (< ~5 heartbeats). Specifically, the mean eEC at < ~5 beats showed a 

significant difference between the two groups (i.e., the CHF group has smaller eEC); 

and the slopes of MSE and eEC functions at <~5 beats were consistently reduced in the 

CHF patients as compared to the controls (Table 1). In addition, the dependences of 

entropy measures on time scales in CHF patients behaved (Figure 8) more like that of 

correlated signals with H>1 (Figs. 4b~c), e.g., the slope of eEC at scales 2-10 

(0.084±0.10) was larger than that of control subjects (0.048±0.063, p<0.05). These 

results are consistent with the MSE results as reported previously10,11,13, indicating 

reduced complexity in heartbeat fluctuations in CHF patients.  

  As compared to the controls, the ECMO patients had much lower values of MSSE 

measures at all time scales (p<0.0001), suggesting significantly reduced heartbeat 

variability (see Table 1 and Figure 8). Similar to the controls, the ECMO patients also 

displayed a crossover in the MSSE functions (e.g., see the profile of eEC in Figure 8). 
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However, unlikely the controls, the slope of eEC function at time scales below the 

crossover was negative in ECMO patients, resembling those observed in white noise or 

anti-correlated noise (Figs. 4b-c). These results suggest altered/disrupted cardiac control 

in these ECMO patients. Moreover, the changes of MSSE results in the ECMO group 

(i.e., reduced entropy values at all time scales and reduced slope at small time scales) 

were much more pronounced in those patients who died as compared to those who 

survived (see Table 1), suggesting more degraded cardiac control in the ECMO patients 

with fatal outcomes. At time scales >5 beats, eEC of ECMO survivors slightly increased 

with time scales (Figure 8), suggesting a behavior similar to fractional Brownian noise 

with Hurst exponent >1.  

 

  Consistent with the MSSE results, the MSE function of ECMO patients also showed 

a negative slope at small time scales. But the slope was not different between the 

survived and the deceased patients (Table 1). The most unexpected results were that the 

MSE-derived entropy values of the ECMO patients, especially the survived patients, 

were close to or even larger than those of the controls at all time scales (see Table 1). 

This discrepancy is likely due to arrhythmia-related outliers in these signals that can 

significantly affect the performance of MSE, leading to artificial increases in entropy 

values as shown in the simulations (Figure 6a). Thus, the results of ECMO data provide 

further evidence for the limitation of MSE. 

  It should be noted that MSSE as well as the traditional MSE have the issue of 
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threshold effect (see the details in Supplementary III). The variation between two 

normal heartbeat intervals in the critically ill patients usually becomes very small, likely 

as a consequence of reduced autonomic never activity. Thus, the difference between two 

consecutive data points in the coarse-grained time series at large scales hardly exceeds 

the quantization error such that the sign series contain mainly zeros. Consequently, 

entropy measures are expected to become relatively stable at very large time scales, 

which was observed at scales >7 beats in ECMO patients (Figure S3).  

 

2.2.4   DISCUSSION 

  With the emergence of the interdisciplinary field of nonlinear dynamics in medicine, 

how to extract health-related information in ECG-derived heartbeat fluctuations has 

attracted more and more attentions. It is hypothesized that complexity in heartbeat 

fluctuations reflects healthy cardiac control and reduced complexity in the fluctuations 

indicates degraded cardiac control as occurred with aging and under pathological 

conditions10,12,13,15. Our results confirm this hypothesis and further show that cardiac 

complexity can predict survival of the critically ill patients who used ECMO to sustain 

their lives.  

  Complex heartbeat fluctuations is believed to stem from the interconnectedness of 

physiological mechanisms that is facilitated by a network of control nodes with 

feedback interactions1. Such complexity is manifested by many nonlinear features, 

including strong correlations at multiple time scales17,18 that can be assessed by fractal 

analysis such as detrended fluctuation analysis (DFA) 19-21. Based on the estimation of 

randomness, multiscale entropy analyses such as MSE and MSSE also can be used to 

determine multiscale correlations by examining the relationship between entropy and 

time scale (Figs. 2, 4).  For example, a negative slope of the entropy function indicates 

anti-correlated (i.e., simple oscillation, a repetitive pattern of an increase follow by a 

decrease) or uncorrelated fluctuations with the loss of feedback interactions13. Thus, 

the negative slope in the entropy function of the deceased ECMO patients suggests 

significantly reduced correlations in heartbeat fluctuations that are expectedly caused by 

the loss of feedback interactions in cardiac control of these patients. This finding 

provides evidence that reduced heartbeat correlations could predict the outcome of 

severely ill patients.   
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  The proposed complexity analysis is based on the examination of the sign time series 

of a signal and its coarse-grained signals at different time scales. As we showed in our 

simulations, this approach can minimize the effect of randomly distributed outliers, thus 

helping to reveal the true dynamics in signals. Regarding the approach and simulations, 

there are a few points worth clarifying. First we note that ectopic beats do not 

necessarily occur randomly22. Thus, it is likely that the temporal distribution of ectopic 

beats in a real heartbeat signal may reflect certain aspects of cardiac control and/or 

pathological changes. More systemic studies are required to test how those ectopic beats 

contribute to complexity in heartbeat fluctuations. Second, by focusing on sign series, 

we do not imply that the magnitudes of a signal contain no useful information. Indeed 

the magnitude time series of a signal may contain dynamic information that is 

complementary to that in the sign series15. We sacrificed the possible useful 

information in the magnitude series because it can be easily contaminated by outliers. 

Finally, in MSSE, we proposed to use two entropy measures (i.e., eEC and eSC) to 

estimate the irregularity of the sign series at each time scale. Actually the MSSE results 

appear to be not sensitive to the method of estimating the irregularity, and similar 

results can be obtained using an alternative approach for the estimation of entropy in 

sign time series (see Supplementary Material II). 

  The number and severity of critically ill patients increase worldwide such that it is 

crucial for critical care professionals to make prudent and objective decisions on the 

allocation or termination of costly and risky treatments such as ECMO for these patients. 

Currently only about half of the adult patients receive ECMO 23. Due to the high cost 

of the treatment, it is important to identify patients who are likely to benefit from 

ECMO and to determine the appropriate timing of stopping ECMO. Physiology-based 

risk-classification tools are therefore needed to support decisions for or against 

continuous ECMO usage.  Monitoring ECG is a routine procedure in clinical setting. 

Successfully applying the research findings of complexity in heartbeats to clinical 

practice (e.g., the use of ECMO) will have huge impacts on healthcare and medicine 

(e.g., ECMO usage). However, such a potentially important application has been 

impeded by the fact that, exclusively all previous complexity analyses require heartbeat 

signals without outliers or ectopic beats. This requirement is important because outliers 

can change significantly the estimated complexity based on the traditional complexity 

analyses such as MSE (Figure 6a). Removing outliers or ectopic beats is not trivial, not 
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only requiring specific expertise in ECG waveforms but also being very 

time-consuming.  It has been shown that the recursive automatic filtering can help to 

minimize the effect of outliers on some heart rate variability measures such as 

frequency domain analysis[]. However, how the automatic filtering affects complexity 

measures is not known. In addition, the procedure works well in the signals with the 

occasional and isolated ectopic beats but may not be applicable in the data with 

numerous and often continuous ectopic beats as occurred in ECG data of ECMO 

patients (see lower panel of Figure 7 in the revised manuscript). Thus, our results 

demonstrated the recursive automatic filtering only slightly attenuate the effect of 

outliers in MSE (Figure 6d~f). Moreover, ectopic beats in certain patients such as the 

ECMO patients occur so frequently that no continuous heartbeat recordings can be 

obtained after removing all ectopic beats. The proposed MSSE was specially designed 

to resolve these problems. With its reliability and high resilience to outliers, the method 

gives the hope of applying the theory of complexity in clinical practice. Further 

validation of the method using a large sample size is warranted.  
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Chapter 3  

Quantification of Attracting Orbit 

 

3.1 New Method to Noninvasively Monitor Fetal Heart Rate 

during Cesarean Section 

 

3.1.1  INTRODUCTION 

  Continuous fetal heart rate (FHR) monitoring is a routine for obtaining significant 

information about the fetal condition during labor. The intrapartum fetal ECG (FECG) 

has been shown capable of detecting newborn acidemia, and hypoxia [1]. However, the 

only clinically-available device for FECG analysis requires an invasive fetal scalp 

electrode, limiting its use to only those with ruptured membranes and a dilated cervix 

[2]. An alternative method, generally known as the non-invasive FECG, can monitor the 

FHR through the maternal ECG by placing electrodes on the mother’s abdomen, and 

many researchers have developed signal processing methods to derive the FECG from 

the ECG recorded from the mother’s abdomen [3-7]. However, to extract the FHR from 

the maternal abdominal ECG during cesarean section (CS) remains a challenge since the 

electrodes cannot be placed properly. The ECG electrodes could only be placed on the 

lateral sides of the maternal abdomen to avoid interfering with the surgical procedure 

that can significantly reduce the amplitude of FECG. Moreover, the CS procedure 

would introduce large motion artifacts and myopotential interference which are difficult 

to deal with by using traditional methods proposed to extract FECG recorded in the 

resting state during the prenatal examination. For example, methods based on 

independent Component Analysis (ICA) might fail since the assumption-the sources 

(mother and fetal ECGs) are mutually statistically independent-might not be true in the 

long-term recording for the CS delivery. Also, the frequent position changes of the fetus 

position during CS delivery can cause the morphological variation of FECG and 

reconstruction of FECG by the wavelet method with a single selected base (mother 

wavelet) might be unreliable. 

  In the present study, we develop a method to derive the FECG by adaptively 
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suppressing the maternal ECG and other interferences from the maternal abdominal 

ECG. Since the fetal status could not be properly monitored during the CS delivery, it is 

of clinical importance to monitor FHR during the procedure especially for early 

identification of fetal distress. Our goal of the present study is to use the novel method 

to derive FHR noninvasively from the maternal abdominal ECG during CS. 

 

3.1.2  MATERIALS AND METHODS 

  Subjects scheduled for elective cesarean delivery from September 2012 to December 

2012 were included in the study. Subjects admitted for CS were asked if they were 

willing to join the study when receiving pre-operative anesthesia assessment. Informed 

consent was obtained one day before in CS after detailed explanation of the study 

procedure. Only subjects with uncomplicated pregnancies and excluded those with 

pregnancy-induced hypertension and gestational diabetes were included. 

  After the parturient were transferred into the National Taiwan University Hospital 

operating room, they were placed in a supine position, equipped with standard monitor, 

a non-invasive blood pressure cuff, and a pulse oximeter. The ECG signals were 

obtained from five abdomen electrodes (four electrodes for signal collecting and one for 

reference) placed away from the surgical site and recorded using a PC-based EEG 

system (Neuron-Spectrum-4, Neurosoft Company, Russia) in 16 bit, 2 KHz sampling 

format (see Figure 1). 

  After being prehydrated with 1000ml lactated Ringer’s solution, the parturient was 

turned on her side. A 27-gauge Quincke spinal needle was introduced into the 

subarachnoid space at the L2-3 or L3-4 interspace in the lateral decubitus position, and 

10-12 mg of 0.5% hyperbaric bupivacaine was administered to achieve sensory 

anesthesia (determined by pin prick) extending to the T4 dematone. Hypotension was 

treated immediately by intravenous injection of 4-8 mg ephedrine in repeated doses. 

Other medications were avoided because of their potential influence on measurements. 

The recordings were performed in the operating room during three different processes: 

preparing for operation, 5 minutes after spinal anesthesia and 5 minutes before cesarean 

delivery. 

  In the study, we included four electrodes with one reference ground. The reference 
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ground was used to serve as a potential reference against which other potentials can be 

measured and limit the build-up of static electricity, while the other four electrodes were 

used to do the QRS detection as well as the analysis; since the fetal positions are 

changing during the laboring process, it is our experience that we can ensure the 

detection of high quality signals (at least one of the voltage signals) by using the applied 

experimental setting. After that, we could select the highest quality results for analyzing. 

The ECGs were recorded during the surgery, and the analyses stated below were 

performed off-line without any interference to the surgery. 

 

          (c) 

 

Figure 1. Five abdomen electrodes (four electrodes for signal collecting and one for 

reference) were placed in different ways for two scenarios: (a) before and (b) during the 

surgical operations. (c) The work-flow chart of our proposed algorithm. We use four 

electrodes (marked as A, B, C, and D) for signal acquisition and one (marked as G) for 

common system reference electrode. Since an voltage signal usually represents a 

difference between the voltages at two electrodes in EEG measurements, the number of 

voltage signals in our study would be six (two out of four leads: VAB, VAC, VAD, VBC, 
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VBD, VCD). Noted that the fetal positions are changing during the laboring process, it is 

our experience that we can ensure the detection of high quality signals (at least one of 

the voltage signals) by using the applied experimental setting. 

Maternal QRS-T cancellation 

  The FECG is derived from cutaneous electrodes placed on the pregnant women’s 

abdomen. The FECGs are very weak and usually overwhelmed by the maternal ECG, so 

the maternal ECG need to be first removed to make way for fetal heart beat detection. 

Ideally, many studies have proposed to reconstruct the FECG signal by 1) identifying 

each maternal beat, 2) creating a template acquired from the average of those maternal 

beats to filter out the blended fetal heart beats and 3) finally subtracting the template 

from each maternal beat [8, 9]. However, since the waveforms of the maternal ECG are 

not consistent in different heart beats, this limits effective performance (i.e., the 

subtraction of the fixed template from an inconsistent maternal ECG will produce a 

large residue intermittently to severely disturb fetal heart beat detection). An adaptive 

template therefore was proposed in this study to substantially suppress the material 

residue. Figure 2 shows the illustrative maternal ECG signals processed by the proposed 

algorithm step by step. Briefly, the maternal heart beats were firstly identified and the 

ith maternal QRS wave was denoted as: 

         ,)()()(
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Where )(tx  is the ECG signals obtained from abdomen electrodes, i  is maternal R 

wave peak time, and W is width of the QRS complex. Then a QRS-template, 
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was created by averaging the maternal QRS waves with Gaussian weighting function, 

G(t).  
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Then, Hilbert transform is applied to the resultant QRS-template to generate another 

basis, ))(( tQRSH


which is mathematically orthogonal to the QRS-template (see 

lower panel, Figure 2a) [10, 11].  

Respiration and body movements usually cause inconsistent geometrical projection of 

the depolarization loop onto the electrodes. The adaptive combination of these two 

orthogonal bases can accommodate the template to the nonstationary change of 
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maternal QRS waveform induced by inconsistent geometrical projection, i.e., 

(3) 

as shown in Figure 2(a), removing such adaptive templates from the ECG recordings 

can suppress the maternal QRS complex substantially, 

   )()()(
1

i

t

id Q R S ttd Q R Stxx   


             (4) 

  In some situations, the maternal P and T waves still appear in the residues even after 

the QRS complex has been perfectly removed (Figure 2b). Nevertheless, the P and T 

waves both occupy the low frequency band in the spectrum and are insensitive to body 

movements. Therefore, the subtraction of the P and T waves can be simply implemented 

by removing the average of all P-T segments (see Figures 2b-c). 
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, where 𝑊𝑃𝑇 is the PT interval. 

 

Figure 2. (a) An example of raw data with maternal ECG interferences which could be 
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suppressed significantly by the adaptive combination of two orthogonal QRS templates. 

(b) The maternal P and T waves still appear in the residues even when the QRS 

complexes are completely removed. (c) The subtraction of P and T waves can be simply 

implemented by removing the average of all P-T segments. 

 

We apply the Gabor transform to build the time-frequency representation of the 

reconstructed FECG signals, )(tx f
 shown in Figure 3. Apparently, after P-QRS-T 

cancellation, the fetal heart beats occupy the frequency range of ~10Hz to 20Hz 

intermittently and exhibit less contamination. Therefore, the fetal QRS waves can be 

identified by an easy criterion: whether the integrated power within the adaptively 

selected frequency band crosses the threshold. 

 

Figure 3. An example of Gabor time frequency representation (lower panel) of ECG 

signals with suppressed maternal ECG (upper panel). The red arrows indicate the 

location of the fetal QRS waves, which occupy a frequency range of ~10Hz to 20Hz 

intermittently that are free of material contamination in Gabor representation.  

 

 The fetal heart beats were detected generally by threshold crossing. To account for 

variability in waveform amplitude, we set an adaptive threshold on the integrated power 

within the adaptively selected frequency band. A nonlinear strategy, namely 

order-statistic filter, was used as the most crucial step to determine the adaptive 

threshold. The concept of order-statistic filtering was adapted using median filtering 
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algorithm, which is commonly used in imaging denoising [12]. In order-statistic 

filtering, the input data (i.e., the integration of Gabor power spectrogram within the 

adaptively selected band) were simply weighted with sliding Tukey window, and then 

the maximum among the weighted data was obtained as output. In measuring the 

envelope with order-statistic filtering, the window was shifting 1-point forward each 

time until the entire set of signals was analyzed, and the procedure was repeated for 

each windowed data, the fetal heart beat peaks were determined by finding the points 

with equal magnitude to the integration of Gabor power spectrogram within the 

adaptively selected band and its envelope. The method basically can reject the pseudo 

peaks which may be caused by electromyogram or maternal heart beat residue between 

two consecutive fetal heart beats [13]. 

  To provided evidence to explain the veracity of FECG detection results, we applied 

our proposed “Fetal QRS Detection” method to the experimental signals download from 

“Non-Invasive Fetal Electrocardiogram Database” of “PhysioBank” (A valid 

open-source online database; http://physionet.nlm.nih.gov/pn3/nifecgdb/), and the 

accurate detection rate is higher than 95%. 

Fetal Heart Rate Variation 

Linear time-domain parameters 

  The linear time-domain parameters including mean heart rate, standard deviation of 

normal-to-normal intervals (SDNN), maximum and minimum heart rate at different 

stages of the baseline, both 5 minutes after anesthesia, and 5 minutes before CS delivery, 

were computed. Ectopic beats were inspected visually and rejected by comparison with 

the adjacent QRS morphologic features. For each stage, the annotated signals of the 

90-second ECG recording, which consisted of more than 95% of qualified normal sinus 

beats, were then used for analysis of HRV. After the outliers of FHR were rejected, we 

evaluated the mean value of its highest quarter as the mean maximum FHR, and 

represent the mean value of the lowest quarter as the mean minimum FHR. 

Poincaré method to assess the autonomic function 

  Unlike the well-established link between the density of the spectrum in specific bands 

and autonomic system of the adult, the frequency domain analysis of the FHR variation 

is still too preliminary to show utility. Therefore, instead of frequency domain 
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parameters, the Poincaré method was applied to the assessment of the autonomic 

nervous function [14-16]. Poincaré plot is a simple and easily implemented method 

which is capable of summarizing an entire RR time series derived from an 

electrocardiogram in the picture to provide 'real time' visualization of data and a 

quantitative technique which gives information on nonlinear features of autonomic 

system [17]. Its clinical ability as a predictor of disease and cardiac dysfunction has 

been proven [18] thus is becoming a popular technique in the field of HRV. The current 

study attempted to apply this method to the assessment of fetal autonomic nervous 

activities in different stages. The Poincaré plot is a two dimensional scatter distribution, 

which is constructed by plotting each RR interval against the previous one. Qualitative 

analysis of the Poincaré plot was proposed by fitting an ellipse to the shape of the plot. 

The fast beat-to-beat variability (SD1) determined by the dispersion along the minor 

axis of the ellipse is characterized as a marker of parasympathetic modulation, while the 

long term beat-to-beat variability (SD2) determined by the dispersion along the major 

axis of the ellipse is usually characterized as a marker of parasympathetic and 

sympathetic modulation. The reduced SD1/SD2 ratio may be used as indicative of the 

increase in the sympathetic modulation. 

Symbolic Dynamics of HRV 

  Guzzetti et al. have proposed a nonlinear method of HRV analysis (symbolic dynamic 

analysis) to quantify the predominance of sympathetic or parasympathetic cardiac 

modulation in conditions while the use of a linear HRV approach is limited or disputed 

[19]. The full range of the sequences was divided into 6 levels (from 0 to 5) based on a 

simple criterion that the 6 levels are equally spaced within the maximum and minimum 

RR intervals. The symbolic sequences were sorted into categories, and the sequence 

length L was 3. [19]. All possible patterns were classified into 3 categories: (1) patterns 

with no variation (0 V; all 3 symbols were at the same level); (2) patterns with 1 

variation (1 V; 2 consecutive equal-leveled symbols with one at different level); and (3) 

patterns with 2 variations (2 V; all symbols were at different levels compared to the 

previous one). The percentage of the patterns 0 V, 1 V, and 2 V were calculated (see 

Table 1). 

Statistical Analysis 

  The average values were expressed as mean ± SD. The normal distribution of the data 
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was first tested using the Shapiro–Wilk test before the subsequent statistical analysis of 

the computational parameters. The serial data baseline, 5 minutes after anesthesia, and 5 

minutes before CS delivery, were then compared by repeated measures analysis of 

variance. If the result demonstrated a significant time-related effect, either paired 

Student’s t test or Tukey HSD with Bonferroni correction were performed for the 

comparisons between groups. The Statistical Package for the Social Sciences (SPSS, 

version 16.0 for Windows. SPSS Inc., Chicago, II) was used for all statistical analyses. 

A P value of less than 0.05 was considered statistically significant. 

 

3.1.3  RESULTS 

Subject characteristics and procedures 

  A total of 17 parturients scheduled for elective cesarean delivery were included after 

their written informed consent was obtained. The parturient age was 35.1±3.9 years. 

The gestational age was 38.7±0.5 weeks. The body weight of the fetus was 

3100.8±192.9 g. The Apgar score changed from 8.6±0.7 to 9.8±0.4 1 minute and 5 

minutes after delivery respectively. During the study, no complications were noted. 

 

Table 1. Temporal evolutional changes of time domain HRV parameters and 

autonomic nervous function measures (Poincaré method) for Baseline (preparing 

for operation), 5 minutes after anesthesia and 5 minutes before caesarean-section 

delivery. 

 Baseline 5 minutes after 

anesthesia 

5 minutes before 

caesarean-section delivery 

Min HR (per minute) 131.36±6.03 133.75±8.64 142.79±15.71+ 

Max HR (per minute) 141.24±7.81 151.16±7.75* 163.68±14.06++ 

Mean HR (per minute) 135.88±6.26 141.86±7.69* 153.33±14.51+ 

SDNN (ms) 13.01±6.89 21.30±9.05** 22.88±12.01+ 

SD1 7.86±4.42 9.75±6.01 9.03±8.06 

SD2 16.18±10.01 27.92±12.28** 30.54±15.88+ 

SD1/SD2 0.65±0.41 0.38±0.18* 0.33±0.24+ 

0V 0.30±0.13 0.37±0.14 0.39±0.14+ 

1V 0.37±0.06 0.34±0.05 0.36±0.06 

2V 0.33±0.10 0.29±0.12 0.25±0.10+ 

Min HR, minimum heart rate; Max HR, maximum heart rate; Mean HR, mean 
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normal-to-normal intervals; SDNN, standard deviation of normal-to-normal intervals; 

SD1, fast beat-to-beat variability; SD2, the long term beat-to-beat variability; SD1/SD2, 

the ratio of SD1 to SD2; 0V, patterns with no variation; 1V, patterns with 1 variation; 

2V , patterns with 2 variation; *P < 0.05 baseline vs. 5 minutes after anesthesia; ** P 

<0.001 baseline vs. 5 minutes after anesthesia;+P <0.05 baseline vs. 5 minutes before 

caesarean-section delivery.; ++P < 0.001 baseline vs. 5 minutes before caesarean-section 

delivery. 

Temporal evolutional changes of heart rate variability of fetus during delivery 

  Post hoc pairwise comparisons of HRV parameters against baseline values were 

shown in Table 1. The mean minimum FHR 5 minutes after anesthesia was similar to 

the baseline FHR (133.75±8.64 vs. 131.36±6.03 per minute, P > 0.05) but increased 

significantly before delivery (142.79±15.71 vs. 131.36±6.03 per minute, P < 0.05). As 

for the mean maximum FHR and the mean FHR, both increased significantly 5 minutes 

after anesthesia and 5 minutes before delivery as compared with those of the baseline 

stage. As for the HRV parameters, the SDNN increased both 5 minutes after anesthesia 

and 5 minutes before delivery (21.30±9.05 vs. 13.01±6.89, P < 0.001 and 22.88±12.01 

vs. 13.01±6.89, P < 0.05). The SD1 did not change during anesthesia, while the SD2 

increased significantly both 5 minutes after anesthesia (27.92±12.28 vs. 16.18±10.01, P 

< 0.001) and 5 minutes before delivery (30.54±15.88 vs. 16.18±10.01, P < 0.05) stages. 

The SD1/SD2 ratio decreased significantly both 5 minutes after anesthesia (0.38±0.18 

vs. 0.65±0.41, P < 0.05) and 5 minutes before delivery (0.33±0.24 vs. 0.65±0.41, P < 

0.05) stages. For the result of symbolic dynamic analysis, the percentage of 0 V was 

significantly higher in 5 minutes after anesthesia (0.30±0.13 vs. 0.39±0.14, P < 0.05); 

on the contrary, the percentage of 2 V was also significantly reduced in 5 minutes after 

anesthesia (0.33±0.10 vs. 0.25±0.10, P < 0.05); while 0V and 2V percentages did not 

change during anesthesia. 
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 Figure 4. (a) Fetal R-R interval time series of a study subject from baseline 

preparation to the caesarean-section delivery of the fetus. Three time points-baseline, 5 

minutes after anesthesia, and 5 minutes before delivery-were marked by colors of deep 

green, light green, and yellow. The Poincaré plot for the whole recording is marked with 

different colors to show the temporal change (b). Detailed Poincaré plot of three stages 

is provided in Figure 4c to 4e. 
 

 Figure 4a illustrates the fetal R-R interval time series of a study subject from baseline 

preparation to the caesarean-section delivery of the fetus. Three time points: baseline, 5 

minutes after anesthesia, and 5 minutes before delivery were marked by colors of deep 

green, light green ,and yellow. The corresponding scatter distribution of each RR 

interval against the previous one for the whole recording are plotted with different 

colors to show the temporal change (see Figure 4b). We also provide the detailed 

Poincaré plot of the three stages in Figure 4 c to 4e. Obviously, both long term 

beat-to-beat variability (SD2) and mean heart rate showed an increased trend as time 

evolved. 

3.1.4  DISCUSSION 

  The Maternal abdominal ECG has been successfully applied to the monitoring of 

FHR clinically [2-7]. However, to monitor FHR using maternal abdominal ECG during 

CS is more challenging, since the ECG pads could not be placed in the usual locations 

leading to low FECG signals. In the current study, we developed a robust method to 
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adaptively subtract maternal ECG and successfully derived FHR from a noisy 

composite ECG during CS. This method potentially could be applied to monitoring 

FHR clinically. 

  A considerable advantage of our method for this composite signal is that, in our 

algorithm, the maternal QRS template is not fixed but is adaptive. Since the ECG signal 

is nonstationary and is subject to many sources of interference, our algorithm 

overcomes the difficulty by generating an orthogonal basis of the QRS template through 

Hilbert transformation. The adaptive combination of these two orthogonal bases can 

accommodate the template to the nonstationary change of maternal QRS waveform 

induced by inconsistent geometrical projection. Through this approach, the maternal 

ECG could be substantially subtracted in a real-time and adaptive manner. As for the 

other application of our proposed method, since the atrial activity is uncoupled to 

ventricular activity during AF, it is also appropriate to apply our proposed method to 

extract the atrial signal by removing the QRS waveform using the ECGs recorded from 

the patients who suffered from the atrial fibrillation (AF) [20]. 

  Tulppo et al [17] fitted an ellipse to the shape of the Poincaré plot and defined two 

standard descriptors of the plot, SD1 and SD2, for quantification of the Poincare plot 

geometry. These standard descriptors represent the minor axis and the major axis of the 

ellipse respectively. SD1 (short term variability) is an indirect measure of 

parasympathetic activity, while SD2 (long term variability) is more strongly related to 

sympathetic activity than parasympathetic activity [25]. The symbolic dynamic analysis 

proposed by Guzzetti et al. [19] can be one alternative to quantify the prevalence of 

sympathetic or parasympathetic cardiac modulation in conditions while the use of a 

linear HRV approach is limited or disputed. An increase in sympathetic activity results 

in an increase in the percentage of 0 V [19]. Our results showed that the percentage 0 V 

was significantly higher 5 minutes before delivery as compared with that in baseline 

stage. Our study showed that during CS, the SD1 of FHR remained similar while the 

percentage of SD2 and V0 increased together with increasing FHR, indicating that the 

sympathetic nerve is activated during anesthesia. 

  The FHR is controlled by the autonomic nervous system. The inhibitory influence on 

the heart rate is conveyed by the vagus nerve, whereas excitatory influence is conveyed 

by the sympathetic nervous system [26]. Stimulations of the peripheral nerves of the 

fetus by its own activity (such as movement) or by uterine contractions cause 
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acceleration of the FHR [26]. Studies have demonstrated that abnormal FHR during 

spinal or epidural anesthesia are primarily the results of uterine hypertonus and maternal 

hypotension [27, 28]. In the current study, the FHR was significantly increased but 

remained within the normal range, which might be attributed to vasodilatation caused 

by spinal anesthesia. 

  There are several potential limitations of the study. First, the study population was 

small. The effective data are difficult to obtain because of the high possibility of 

contamination and interference during the delivery; nevertheless, we try recording three 

additional electrodes simultaneously in order to minimize the weak points. Second, we 

did not validate our algorithm by invasive fetal scalp ECG. Third, no fetal events 

occurred during the study. A larger population study could validate the meaning of the 

derived parameters.  

  In conclusion, we developed a novel method to automatically derive the FHR from 

the maternal abdominal ECG and proved that it is feasible in the challenging clinical 

setting of the cesarean section. 
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3.2 Nonlinear Analysis of Fibrillatory Electrogram Similarity to 

Optimize the Detection of Complex Fractionated Electrograms 

During Persistent Atrial Fibrillation 

 

3.2.1  INTRODUCTION 

  Atrial fibrillation (AF) is the most common type of tachyarrhythmia encountered in 

clinical practice.1 Pulmonary vein isolation (PVI) has become the mainstream catheter 

ablation technique for AF.2 For persistent AF, substrate modification with complex 

fractionated atrial electrogram (CFE) ablation is considered to be necessary in patients 

who have not responded to PVI.2,3 Recently, a randomized controlled trial demonstrated 

that termination of persistent AF by CFE ablation is not simply the result of atrial 

debulking. Ablating certain types of CFEs increases the cycle length of AF, suggesting 

that they were important in maintaining AF.4 Currently, the identification of CFEs is 

mostly based on cycle lengthderived algorithms or a dominant frequency (DF) 

analysis.5-7 However, the data regarding the characteristics of the electrogram 

morphology and their consistency over time in the prediction of the efficacy of CFE 

ablation are still limited. We proposed that a temporal variation in the electrogram 

morphology was able to reflect the substrate nature and was helpful to localize critical 

regions. However, the fibrillation electrogram often exhibits the unpredictability and a 

waveform analysis based on a linear assumption of the signal only could give 

suboptimal results.8 We therefore tried to apply a nonlinear waveform analysis to study 

the morphological features of fibrillation electrograms The aims of this study were: (1) 

to develop a novel nonlinear technique to identify the locally meaningful activations of 

fibrillation electrograms and quantify their waveform similarity; (2) to investigate the 

waveform similarity among the local activations of fibrillatory electrograms by the 

nonlinear method in both CFE and non-CFE atrial regions in comparison with other 

conventional linear parameters of fibrillatory electrograms; (3) to optimize the 

algorithm of targeting important CFEs based on the fibrillatory electrogram similarity 

quantified by our nonlinear method. The importance of the different types of CFEs was 

determined by procedural AF termination and long-term follow-up of freedom from 

atrial arrhythmias. 
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3.2.2  METHODS 

Patient Characteristics 

  This study enrolled 100 symptomatic drug-refractory nonparoxysmal AF patients 

who received radiofrequency ablation guided by a NavX system (St. Jude Medical, Inc., 

St. Paul, MN, USA). The AF patients who had spontaneous termination of AF before 

ablation were excluded from this study.4 

Electrophysiological Study 

  After acquiring the LA geometry, a 4-mm tip catheter was selected as the “roving” 

catheter for sequential contact mapping.9 The points in each region were similar in 

number and were nearly equally distributed.9 

  High-density mapping during AF performed in each patient was acquired and 

characterized by the linear analysis modalities and nonlinear analysis modalities. Linear 

analysis recording techniques were mostly based on a priori basis and time-dependent 

derivatives, including a frequency-domain analysis (DF and harmonic index [HI]) and 

time-domain analysis (fractionation interval [FI]). That is, frequency domain analyses 

commonly use a Fourier transform to reconstruct the raw signals with multiple 

continuous sinusoidal waves with fixed amplitudes and frequencies whereas the mean 

FI calculates the average length of the intervals between the CFE deflections. Both 

parameters are generated by linear operations. Regarding the frequency analysis, each 

intra-atrial recording was filtered with a second-order, zerophase Butterworth filter at 

40–250 Hz.10,11 A second-order, zero-phase filter at 20 Hz was then applied to the 

absolute value of the resulting signal. The method of QRS-T subtraction was described 

previously.12,13 The final step of the process involved the frequency analysis. A fast 

Fourier transform (FFT) with a Hamming window was performed for each 6.82-second 

continuous segment from the multiple recording sites. Concerning the duration for the 

FFT analysis, a longer analysis interval (6.8 seconds; 1200 Hz, resolution 0.14 Hz) 

might have resulted in spectral noise, which could have interfered with the identification 

of the DF.11 The ratio of the power of the DF and its harmonic peaks to the total power 

was defined as the HI, representing the organization and local temporal regularity of the 

AF.14,15 

  The interval analysis was performed by using the builtin software of the NavX. The 



65 
 

CFE-mean (mean FI) was an interval-analysis algorithm that measured the average 

index of the fractionation at each site and in combination with 3-D mapping of the 

atrium, it could produce a color map representative of the CFE distribution in the atrium. 

Previously, we demonstrated that the continuous CFEs were defined by an averaged FI 

of ≤60 milliseconds over 5 seconds.12 Variable CFEs were defined as having a mean FI 

between 60–120 milliseconds. The non-CFEs were defined as having a FI of >120 

milliseconds.12 

Nonlinear Waveform Analysis of Fibrillation Electrogram Similarities 

  Nonlinear analysis was performed by calculating bipolar repetitiveness from a 

continuous recording of 6 seconds from each of the intracardiac recordings (exported 

from the NavX mapping system). The step-by-step nonlinear analysis used to quantify 

the waveform similarity of the local fibrillation electrogram is demonstrated in Figures 

1-3 and the details of the algorithm are described in the supplementary material. 

 

Figure 1. The left panel shows the flow chart of the nonlinear waveform analysis processing 

procedure and the right panel shows the schematic examples of the envelope function to detect 

the local activity waveform (LAW). 

 
Briefly, first, the fibrillation electrogram was band-passed filtered for preprocessing 
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(40–250 Hz), and then the associated envelope was obtained by a proposed 

order-statistic filter which intensify the important activation of local electrograms. 13 

Second, to determine the critical components of the fibrillation electrogram, local 

activation waveforms (LAWs) were identified by the location where the peaks of the 

electrogram and envelope coincide. Third, the normalized electrograms within the 

LAWs could be regarded as the multidimensional vector; we used the nonlinear method 

to determine the functional distance between every vector (LAW) pair, as proposed by 

Faes et al.16 The percentage of LAWs pairs with functional distance below the threshold, 

indicating how many pairs of LAWs are similar, can be quantified as the similarity 

index (SI). It is worth noticing that the regularity, calculated by the conventional 

accumulation of each activated-wave deviation from the averaged template, could be 

serious degraded owing to the infrequent false detection of nonactivated waves. 

Meanwhile, this newly proposed algorithm (see Fig. 2) will minimize the influences of 

infrequent false detection and, therefore, is more robust than the conventional one. 

 

Figure 2. A 3-D example of the waveform comparison (A) and distance calculation (B) and 

finding an optimal threshold distance ε for the similarity index ρ (C). Panel (A) gives 3 

waveform pair comparisons of LAWs, and the green circles indicate samples at 3 different time 

points in LAWs, and the sampled amplitude values of each waveform can be mapped to the 

magnitude in the x, y, and z directions, respectively. The left panel in (B) illustrates the 

mapping vectors corresponding to the waveforms in (A). Note that in these 3 paired LAWs, the 

sampled values of the LAWs were the closest between the red and black LAWs, which can be 

quantified by the functional distance between LAW pairs. The right panel in (B) gives a 

zoom-in picture, the radian between each vector pair is defined as the distance between each 

waveform pair, and ρ can be calculated from the ratio of the number of similar LAW pairs 

(distances of the pairs less than ε) to the total number of LAW pairs in the analyzed recording. 

(C) Shows the box-and-whisker plot of the average values of the ρ calculated from the total of 



67 
 

all the patients with atrial fibrillation as a function of the threshold distance ε. The error bars of 

the plot indicate the 10th and 90th percentile of ρ and the 2 black dots stand for the 5th and 

95th percentile of ρ. The distribution was different for a ε ranging from 0.1 to 3.14 (ANOVA), 

with a maximal significance of ε = 1.1. 

 

 Furthermore, 2 specific modifications from the previous method16 were implemented 

to diminish the interferences of far field contamination. The most crucial step of the 

regularity algorithm identification of LAWs from nonstationary background fibrillation 

was performed by a nonlinear strategy, an order-statistic filter. The envelope of the 

fibrillation electrogram can be constructed adaptively by local features of the 

electrograms by an order-statistic filter, and can, therefore, identify the nonlinear LAWs 

more accurately than the traditional linear low-pass filter (Fig. 3). Moreover, for the 

activated waves with very short wavelengths (e.g., sites of continuous CFAEs), we 

aligned the waveforms with their maximum peaks to improve the statistical regularities. 

In this study, continuous CFEs (mean FI ≤ 60 milliseconds in the LA and coronary 

sinus [CS]) were targeted, and the endpoint was procedural AF termination. We 

investigated the predictors of various signal characteristics of the CFEs on procedure 

termination and AF recurrence in a long-term follow-up. 

 

Figure 3. Performance comparison of the envelop generated from low-pass filter (A) and 

order-statistic filter (B) for a 6-second recording at a complex fractionated atrial electrogram 

site and both figures are zoomed in for the last 2 seconds. The order-statistic filter achieved a 

better performance for the LAW peak detection (red circle) related to the atrial activation 

waves. 

Catheter Ablation 
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  The stepwise procedure of the catheter ablation of persistent AF involved isolation of 

the PVs, a continuous CFAE ablation, and non-PV ectopy elimination. The details of 

the ablation procedure in nonparoxysmal AF have been described elsewhere15,16 and in 

the supplementary material. 

Follow-Up of AF Recurrence 

  After discharge, the patients underwent follow-up (2 weeks after the catheter ablation, 

then every 1–3 months thereafter) at our cardiology clinic or with the referring 

physicians where routine ECGs were obtained during each follow-up, and 

antiarrhythmic drugs were prescribed for 8 weeks to prevent any early recurrence of AF. 

When the patients experienced symptoms suggestive of a tachycardia after the ablation, 

24-hour Holter monitoring and/or cardiac event recording with a recording duration of 1 

week were performed to define the cause of the clinical symptoms.4 The endpoint for 

the follow-up was clinically documented recurrence of any atrial arrhythmia. 

Statistical Analysis 

  All continuous data were presented as the mean value ±standard deviation (SD). A 

chi-square test with Fisher’s exact test was used for the categorical data. The means of 

continuous data of 2 groups were compared with the Student’s t-test. Comparisons of 

more than 2 groups were performed with a one-way ANOVA. A Pair t-test was used for 

comparison of the substrate properties before and after PVI. Variables selected to be 

tested in the multivariate analysis were those with a P value < 0.2 in the univariate 

models. All statistical significances were set at a P < 0.05. 

 

3.2.3  RESULTS 

Ablation Procedure 

  A total of 100 consecutive persistent AF patients received catheter ablation. In the 

step 1 ablation procedure, PVI could not terminate the AF in these 79 patients (79%). 

After PVI, substrate modification was performed targeting continuous CFEs in the LA 

and CS, and AF was terminated in 27 patients (39% of 69 patients, 10 patients received 

cardioversion before the CFE ablation). The procedural AF termination sites were 

located in the LA in 21 patients (78%), CS in 4 (15%), and RA in 2 (7%). After the CFE 

ablation, AF directly converted to sinus rhythm in 17 patients and to organized atrial 
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tachycardia (AT) in 7, including 3 with RA typical atrial flutter, 2 with LA 

roof-dependent reentry, and 2 with focal AT from the PV ostium. All organized ATs 

were mapped and responded to focal ablation and/or LA linear ablation without electric 

cardioversion.  

  In Table 1, patients with termination had a smaller LA, less hypertension, and heart 

failure history. These patients had a higher long-term single procedure success rate, and 

higher multiple procedure success rate, compared to the patients without termination. 

Electrogram Characteristics of the CFEs Versus Non-CFEs 

  A total of 9,558 fibrillatory electrograms were analyzed in this study (139 ± 30 sites 

per patient in the LA). Table 2 shows the electrogram characteristics in the continuous 

CFE, noncontinuous CFE, and non-CFE sites. The electrogram similarity was higher in 

the continuous CFE compared to the noncontinuous CFE and non-CFE sites (P < 0.05), 

indicating less variability of the LAW in the continuous CFEs (Table 2). 
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Electrogram Characteristics in Patients Who Did or Did Not Respond to CFE 

Ablation 

Substrate mapping of the global atria 

  Comparison of the electrogram characteristics of the entire LA in the patients who 

did and did not respond to CFE ablation in terms of procedural AF termination and 

longterm AF recurrence is shown in Figure 4. Patients with atrial substrate 

characteristics harboring rapid activity and more fractionated electrograms were less 

likely to respond to CFE ablation, as indicated by a higher DF (P < 0.05), and higher 

proportion of CFEs in the LA (P < 0.01). 

Correlation of ablation outcome and electrogram characteristics 

  In Table 3, the electrogram characteristics of the targeted CFEs (continuous CFEs: 

17% of LA) did not differ based on the linear analysis modalities (DF, HI, and FI) 

between the patients who responded and did not respond to theCFE ablation. In contrast, 

the averaged SI of the targeted CFEs was higher in patients with successful procedural 

AF termination and in AF recurrence-free patients. Such a disparity in the similarity 

was not observed in the noncontinuous CFEs (0.51 ± 0.09 vs 0.51 ± 0.11; P = NS) 

and non-CFEs (0.41 ± 0.13 vs 0.44 ± 0.11; P = NS) sites in the patients with and 

without termination, respectively. 

Characteristics of the Procedural AF Termination Sites 

  The raw electrograms and CFE deflections (Fig. 5A) as well as their overlapped 

normalized LAW electrograms and the top 6 LAWs with closest functional distances 

(Fig. 5B) were shown based on the different levels of similarity. In addition to high 

morphological waveform similarity, the CFE deflections were temporally well aligned 

in high similarity areas. Figure 6A shows an example of procedural AF termination in 

the posterolateral LA, where a high level of SI was compatible with the maximal CFEs. 

In contrast, in Figure 6B, ablation of the maximal CFE in the lateral mitral annulus and 

LA septum could not terminate AF. A subsequent roofline ablation (with a mean FI of 

76 milliseconds; SI = 0.81) terminated AF without any AF recurrence during the 

long-term follow-up. 

The Optimal Detection Algorithm for CFEs 
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  Within all the CFE regions, a univariate analysis showed that shorter mean FI and 

higher SI were both associated with procedural AF termination. The DF value, HI value, 

and electrogram voltage did not correlate with the termination (P > 0.05). A multivariate 

regression analysis showed that only a higher SI (≥0.57; odd ratio [OR] = 4.9; 95% CI = 

1.33–18.0; P = 0.017) predicted procedural AF termination. Sites with a shorter mean FI 

did not predict procedural termination (<70 milliseconds; OR = 1.69; 95% CI = 

0.61–4.67; P = 0.31). 

 

3.2.4  DISCUSSION 

Main Findings 

  This study demonstrated that patients with a high level of electrogram morphology 

similarity at the CFEs sites, quantified by a novel nonlinear technique, were more likely 

to respond to substrate modification by targeting continuous CFEs. Regional disparities 

in the electrogram characteristics of patients with persistent AF between the important 

CFE/CFEs and bystander CFEs were difficult to identify by the interval analysis, DF 

value, and temporal variation in the DF peak. Targeting sites with a high level of 

electrogram similarity in the fractionated electrograms in the LA was associated with 

procedural AF termination and a better long-term outcome after the first ablation 

procedure. 

 

Figure 4. Summary of the signal analysis, including the mean dominant frequency (Panel A) 

and proportion of the continuous CFEs (Panel B) of the left atrium for predicting AF procedural 

termination, recurrence after the first ablation procedure, and recurrence after the final 

procedure. 
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Fractionated Electrograms by the Time-Domain Signals 

  Since the work of Nademanee et al., ablation of CFEs has become a standard 

component for substrate modification of persistent AF. The efficacy of adjunctive CFE 

ablation in addition to circumferential PVI has been confirmed in patients with 

persistent AF, irrespective of the definition of a CFE.2,3 Automatic algorithms for 3-D 

mapping systems have provided a rigorous quantitative analysis enabling the 

identification of the CFEs and continuous CFEs as well as the stability of the CFE 

distribution over time. Different definitions of CFE may partly explain the different 

results of catheter ablation. Previous studies demonstrated that certain types of CFEs 

could be the AF drivers, and some types may represent passive wavefront collision.4,17 

Simply based on time-domain electrograms, it is difficult to distinguish which type of 

CFEs may play an active role in persistent AF. Previously, ablating sites with a greater 

percentage of continuous activitywas associated with slowing the AF or procedural AF 

termination in patients with chronic AF.18 Several studies examined the stability of 

fractionated electrogram, and demonstrated that the consistency of the interval was 

higher in the CFEs sites as compared to the non-CFE sites.12,19 Sander’s laboratory and 

Chen’s laboratory demonstrated that the maximal fractionated sites were observed at or 

adjacent to these high DF sites.20 Recently, Narayan classified fractionated electrograms 

into different types, and a small proportion of CFE sites exhibited rapid, discrete, and 

organized recordings consistent with an AF driver.21 Therefore, the of the CFE that 

maintains AF should be continuous, fast, and stable over time. 

  Previously, there was a paucity of data regarding the consistency of consecutive 

fibrillatory electrogram morphologies, and it is rarely applied in clinical mapping.22 In 

this study, we applied the nonlinear envelope function to magnify the detection of each 

of the fibrillatory electrograms (LAW) and a comparison of the consecutive LAWs was 

performed. The measurementwas based on the assumption that the repetitive waveforms 

of similar electrogram morphologies were near the potential AF maintainers. Consistent 
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wavefront dynamics and activation patterns were emanating from the AF sources and 

caused repetitive and similar electrogram morphologies. This study demonstrated that a 

higher level of the electrogram SI at the sites with continuous CFEs was more likely to 

respond to substrate modification and it could provide an alternative mapping tool to 

guide substrate modification. 

Definition of Fractionated Electrograms by Spectral Morphology 

  The fast Fourier analysis has been used to estimate the fibrillation cycle length by the 

DF and the irregularity of the fibrillation electrograms.23 The DF value represents the 

average fibrillation cycle lengths during AF. However, the regional DF value may not 

be reliable because of the limited gradient of the regional DF in patients with 

long-lasting persistent AF.6,20,24-27 Investigators have also applied the organization or HI 

to quantify the degree of fractionation.28 These factors may represent the irregularity of 

the cycle length, fractionation electrograms, or even background noise. In fact, 

theindices of the spectral morphology, i.e., the DF and HI, may be easily compromised 

by the presence of chaotic signals. In seemingly chaotic fibrillatory signals, the DF 

peaks are less prominent, and might not accurately reflect the local fibrillation cycle 

length.29 In this study, we found no disparities in the degree of organization of AF 

between the culprit CFEs and bystander CFEs when quantifying the organization of the 

fibrillation, the HI, an indicator of the complexity of the fibrillation electrogram based 

on frequency spectra. This result indicated that it is difficult to optimize the CFE 

detection by comparing the indices derived from the spectral morphology. 
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Figure 5. Analysis of the electrogram similarity with different types of continuous complex 

fractionated electrograms (CFE). Typical bipolar fractionated electrograms including rapid 

activity and continuous electrograms with high, medium, and low similarity (Panel A) and the 

top 6 LAWs with the closest functional distances of the continuous CFE sites with a different 

similarity (Panel B) are demonstrated. In panel A, the envelop function of the filtered data 

(green dotted line), centers of the LAWs (magenta triangle), and start points of the CFE 

deflections (red triangle) are shown. Each LAW consists of multiple deflections and some of 

those might be CFE deflections. The upper 3 tracings in panel B, from left to right, demonstrate 

the top 6 LAWs with the closest functional distances at high, medium, and low similarity sites, 

and the bottom tracings are the normalized electrograms of all the LAWs overlapping with their 

center peaks and corresponding similarity index. 

Advantage of a Similarity Analysis by a Nonlinear Waveform Analysis 

  The waveform similarity of the time-domain fractionated electrograms during AF 

was complex and difficult to analyze because of the variable amplitude and electrogram 

morphology. Especially for bipolar eletrograms, the deflections could have either 

positive, negative or polyphasic polarties. In this study, we applied the nonlinear 

envelope function to intensify the detection of the electrogram peaks over the 

background interference, rather than depicting the peak deflections. After the important 

peaks of the fibrillatory electrograms were identified, the segments of the LAWs could 

be derived with a predefined window size. Instead of using one single deflection, 

multiple deflections were found within the window and could be covered when we 
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calculated the SI. Moreover, after alignment of the LAWs with their peaks, the 

amplitude of each LAW was normalized by the SD of the local activated wave and the 

value of the SI was, therefore, irrelevant to the change in the amplitude of the 

deflections among different identified windows. In addition, the functional distances, 

obtained from each of 2 waveforms within the segmented window, were used to 

calculate the SI rather than the summation of the deviation from the averaging template 

as a linear calculation. 

Morphological Features of CFEs with a High SI 

  By the aforementioned algorithm, the morphological change in regard to the temporal 

distribution of the different types of deflections either positive or negative, total 

duration of the discrete electrograms, and intervals between consecutive deflections 

within the segmented windows were all contributed to the calculation of the SI. With 

the proposed nonlinear analysis for the similarity between the LAWs, the culprit CFEs 

were identified with a high degree of repetitive waveform morphology patterns that 

coincided with the same sequence of the CFE deflections. For example, the trace with a 

higher SI presented a more consistent interval between the CFE deflections and LAW 

alignment (Fig. 5). Accordingly, the degree of organization of the AF was quantified by 

the temporal distribution of the fibrillation electrogram morphology complexity, 

irrespective of the distribution of the fibrillation cycle length. This provides an 

alternative mapping tool to guide substrate modification. 
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Figure 6. Examples of a 3-D similarity map and fractionation map in a patient with (Panel A) 

and a patient without (Panel B) procedural AF termination. In panel A, the maximal fractionated 

sites were identified with the high similarity index in the lateral mitral isthmus region. The 

similarity index locally was 0.71, whereas the similarity index of the CFEs in the anterior wall 

was 0.38. In panel B, the maximal CFE was not associated with the high similarity index. The 

highest similarity near the border of the continuous CFEs was identified in the roof region. In 

this patient, ablation in the roof region terminated the AF with final sinus rhythm maintenance 

during the long-term follow-up. 
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3.2.4  CONCLUSIONS 

  This study introduced a novel nonlinear technique to quantify the repetitiveness of 

consecutive fibrillation electrograms in patients with persistent AF, irrespective of the 

intervaldependent variables. Within the continuous CFEs, conventional linear signal 

analysis could not differentiate the termination sites from nontermination sites. 

Targeting CFE sites in the presence of a high level of electrogram similarity of the 

fractionated electrograms in the LA was correlated with the procedural AF termination 

and freedom from AF recurrence after the index procedure. This study suggested that 

sites with a high level of fibrillation electrogram similarity at the CFEs are important for 

AF maintenance. 

Study Limitations 

  First, the high SI sites outside the continuous CFEs were not targeted. However, this 

study demonstrated that most of the high SI sites were located within the continuous 

CFEs. 

  Second, the CFE ablation was not based on the SI. However, in this study, the 

continuous CFEs (mostly the highest similarity sites) were targeted first and procedural 

AF termination was the endpoint of procedure. After procedural termination, sites with 

lesser degree of continuous CFEs were not targeted. A recent study demonstrated that 

the proportion of the lesions causing termination was not affected by the order of 

ablating the targeted CFE sites.4 

 

  



78 
 

REFERENCES 

1. Nattel S: New ideas about atrial fibrillation 50 years on. Nature 

2002;10;415:219-226. 

2. Hayward RM, Upadhyay GA, Mela T, Ellinor PT, Barrett CD, Heist EK, Verma A,  

Choudhry NK, Singh JP: Pulmonary vein isolation with complex fractionated atrial  

electrogram ablation for paroxysmal and nonparoxysmal atrial fibrillation: A meta- 

analysis. Heart Rhythm 2011;8:994-1000. 

3. Calkins H, Brugada J, Packer DL, Cappato R, Chen SA, Crijns HJ, Damiano RJ Jr, 

Davies DW, Haines DE, Haissaguerre M, Iesaka Y, Jackman W, Jais P, Kottkamp H, 

Kuck KH, Lindsay BD, Marchlinski FE, McCarthy PM, Mont JL, Morady F, 

Nademanee K, Natale A, Pappone C, Prystowsky E, Raviele A, Ruskin JN, Shemin 

RJ: HRS/EHRA/ECAS expert Consensus Statement on catheter and surgical 

ablation of atrial fibrillation: Recommendations for personnel, policy, procedures 

and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on catheter 

and surgical ablation of atrial fibrillation. Heart Rhythm 2007;4:816-861. 

4. Hunter RJ, Diab I, Tayebjee M, Richmond L, Sporton S, Earley MJ, Schilling RJ: 

Characterization of fractionated atrial electrograms critical for maintenance of atrial 

fibrillation: A randomized, controlled trial of ablation strategies (the CFAE AF trial). 

Circ Arrhythm Electrophysiol 2011;4:622-629. 

5. Atienza F, Almendral J, Jalife J, Zlochiver S, Ploutz-Snyder R, Torrecilla EG, 
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Chapter 4  Conclusion  

  Physiological data, from simple to complex, as mentioned earlier, are usually 

considered as the results of a running dynamic systems. The normal healthy state of any 

living system is in homeostasis, which is not static, but dynamically change in time, 

which exhibits high degree of complexity and highly orders. For biomedical signal 

processing, such complex systems is difficult to deal with, and hard to be described 

through limited clinical data. In this point, complex theory has been used, many 

nonlinear methods were then proposed in recent years, trying to describe and identify 

such complex phenomena on limited data. Base on these, this dissertation proposed 

several robust methods on quantization the multi-scale correlation and attracting orbits, 

try to extend the usage of nonlinear methodology and fulfill certain requirements. 

Quantization of Multi-scale correlation 

  The multi-scale correlation on reconstructed phase space can quantify the complexity 

of a time series, however, the coarse-graining steps will result in less number of point in 

larger scale for reliable calculation. By rearrange the coarse-graining steps, the data 

points on large scale can be extended and hence increase the reliability. The cost for this 

would be the larger volume of computation. The results shows, by utilize the novel 

sMSE approach for PWV signal analysis, the time for data acquisition can be 

substantially reduced from 30 minutes to 10 minutes with remarkable preservation of 

sensitivity in differentiating among the healthy, aged, and diabetic populations 

compared with the conventional MSE method.  

  On the other hand, sample-entropy based calculation of correlation need a criteria for 

neighborhood which is easy to be effected by extreme value of outliers, as well as the 

coarse-graining steps are easy to be interfered by frequency happen outliers. Therefore, 

all previous complexity analyses require heartbeat signals without outliers or ectopic 

beats. Removing outliers or ectopic beats is not trivial, not only requiring specific 

expertise in ECG waveforms but also being very time-consuming. However, how the 

automatic filtering affects complexity measures is not known. In addition, the procedure 

works well in the signals with the occasional and isolated ectopic beats but may not be 

applicable in the data with numerous and often continuous ectopic beats as occurred in 

ECG data of ECMO patients. By utilize the symbolic dynamics method and replace the 

mean with median on the coarse-graining steps, the results demonstrated the recursive 



82 
 

automatic filtering only slightly attenuate the effect of outliers in MSE. Moreover, 

ectopic beats in certain patients such as the ECMO patients occur so frequently that no 

continuous heartbeat recordings can be obtained after removing all ectopic beats. The 

proposed MSSE was specially designed to resolve these problems. With its reliability 

and high resilience to outliers, the method gives the hope of applying the theory of 

complexity in clinical practice. Further validation of the method using a large sample 

size is warranted.  

Quantification of Attracting Orbit 

  The attracting orbits reflect the real dynamics of a system, but the underlying rules 

are not easy to figure out. The Poincaré plot provides basic statistic information of cycle 

length which is important for HRV, however, need a method to identify each cycle at 

first. For the continuous monitoring FHR through HRV during CS, extracting from the 

maternal abdominal ECG remains a challenge since the electrodes cannot be placed 

properly. Moreover, the CS procedure would introduce large motion artifacts and 

myopotential interference which are difficult to deal with by using traditional methods. 

The proposed algorithms successfully identify each cycle of heart beat and demonstrate 

that abnormal FHR during spinal or epidural anesthesia are primarily the results of 

uterine hypertonus and maternal hypotension. The FHR was significantly increased but 

remained within the normal range, which might be attributed to vasodilatation caused 

by spinal anesthesia. The effective data are difficult to obtain because of the high 

possibility of contamination and interference during the delivery. As a result, the study 

population was small which need a larger population study in the future that could 

validate the meaning of the derived parameters.  

  On the other hand, identify the periodic orbit cycle in very complex dynamics system, 

such as determine the LAWs of the fibrillation electrogram in AF patient, is hard and 

crucial. Through the proposed nonlinear method, the LAWs as well as each periodic 

cycle were identified. Moreover, through the correlations of each identified orbits, the 

percentage of LAWs pairs indicating how many pairs of orbits are similar, can be 

quantified as the similarity index (SI). It is worth noticing that the regularity, calculated 

by the conventional accumulation of each activated-wave deviation from the averaged 

template, could not differentiate the termination sites from nontermination sites. This 

study also suggested that sites with a high level of fibrillation electrogram similarity at 

the CFEs are important for AF maintenance. 


