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ABSTRACT

HUMANOID walking balance has been a challenging issue in the control field
since the balance can only be achieved by considering the dynamics of the
system. It is found that the modification of the future ZMP trajectory based on
the multiple strategies, which are the adjustment of the control input, the step

size and the step duration, can enhance the robot balance. However, the capacity of the
disturbance compensation is limited due to the fact that the correlation among the strate-
gies is not considered. In this work, the correlation among the three strategies is analyzed,
and the future ZMP trajectory optimization with simultaneous multi-strategy adjustment
for humanoid walking balance is proposed. After defining an energy function for the ro-
bot balance, an optimized trajectory based on the simultaneous adjustment is generated.
By comparing our work with the state-of-the-art future ZMP trajectory modification ap-
proaches, it is shown that our approach can maintain the robot balance under more severe
situations.
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CHAPTER 1

Introduction

H
UMANOID robot walking balance has been a challenging problem. The

challenging issues are described as follows: First, the degree of freedom

(DoF) of the control space is high. In general, an omni-directional hu-

manoid robot has 12 DoFs in its leg, for example, ASIMO (Hirai et al.,

1998) and HPR-2 (Kaneko et al., 2004). Although some robots have less than 12 DoFs, such

as Nao (Gouaillier et al., 2009), the DoFs is still high and makes the control problem diffi-

cult. Second, the balance of the humanoid robot can be only achieved by considering the

robot dynamics. Since most of the time the robot is supported with one foot and its center

of mass is outside the support polygon of the robot, the static balance of the robot cannot be

acquired and the robot must consider its dynamics to maintain balance. Finally, in the real

environment the disturbance occurs everywhere, such as inaccurate motor, uneven terrain

and pushing from external force, and the robot needs to suppress the disturbance to remain

balance. In this thesis, we focus on the third issue, which is the disturbance suppression of

the robot.

The most popular criterion to stabilize the robot is based on the concept of the Zero-

Moment Point (ZMP) (Kajita et al., 2006; Sugihara, 2009; Morisawa et al., 2010). The ZMP

(Vukobratovic et al., 1970) is a concept in which the ground reaction force does not provide

any moment in the horizontal plane. It is widely used in humanoid robot walking, since

the robot can remain balance if and only if the ZMP is inside the support polygon. Since the

ZMP has been introduced, the humanoid robot walking problem has been transfered into

a control problem whose main objective is to keep the ZMP inside the support polygon.

However, in the real robot, the control of the ZMP is hard to realize due to the complex
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dynamics of the robot. Therefore, researchers simplify the control problem of the robot

walking into an inverted pendulum problem, where the robot is assumed to be a point

mass called Center of Mass (CoM). Kajita et al. (Kajita et al., 2001) introduced the idea of

the 3D Linear Inverted Pendulum Mode (LIPM) and showed that given the constraint that

the CoM moves on a plane, the dynamics of the CoM and ZMP can be linearized and the

motion can be decomposed into sagittal plane and lateral plane. Furthermore, the LIPM is

combined with the Optimal Control (Katayama et al., 1985) to provide an optimal control

input given a future ZMP trajectory (Kajita et al., 2003).

Since the optimal control was introduced into the humanoid robot walking, researchers

have found that the adjustment of the future ZMP trajectory can maintain the balance of the

robot. The three strategies for changing the future ZMP trajectory, which are the change of

the reference ZMP inside the sole during a step, the change of the current step duration and

the change of the current step size, is proposed and applied sequentially to maintain the

balance in humanoid walking (Nishiwaki & Kagami, 2010). In addition, a non-divergent

condition (Urata et al., 2011) is introduced and shown that once the future ZMP trajectory

satisfies the condition, the CoM trajectory will not diverge. Then, the condition is combined

with the adjustment of the step size (Urata et al., 2011) to allow the robot to change its step

position rapidly and suppress the disturbance. However, we found that the capability of

the disturbance endurance in their works is relatively small when their works are applied

in the Nao platform. We believe that the capability is limited because the correlation among

the three strategies is not considered.

In this work, first we evaluate the correspondence between the future ZMP trajectory

and the three strategies to show how the future ZMP trajectory is constructed with the three

strategies. Next we analyze the correlation among the three strategies and show that the

three strategies affect each other. In addition, we argue that the adjustment of the reference

ZMP inside the sole during a step can be transfered into the adjustment of the control input;

therefore, the three strategies in our work will be: the adjustment of the control input, the

step size and the step duration of the current step. Then, we transfer the combination

problem of the three strategies into an optimization problem whose target is to minimize

an energy cost function which is composed of the control input and the modification of the

current step size. Our approach is tested in both simulation and real environment to show

the enhancement of the disturbance endurance.

2
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The thesis is organized as follows. First we introduce the related works of the walking

and balance of the humanoid robot in Chapter 2. In Chapter 3, the foundation of our work

is explained in detail. In Chapter 4, the analysis of the correlation among the three strate-

gies and the simultaneous application of the three strategies are proposed. In Chapter 5,

both the simulation and the real environment experiments are demonstrated and explained

in detail. Finally, we summarize and discuss our future work in Chapter 6.

3



CHAPTER 2

Related Work

H
UMANOID robot walking has been a long term research. Since the concept

of the ZMP has been introduced by Vukobratović et al. (Vukobratovic

et al., 1970), researchers has been focusing on how to keep the ZMP in-

side the support polygon when the disturbance occurs. The concept of

the Capture Point (CP) (Pratt et al., 2006; Englsberger et al., 2011), which is a point on

the ground where the robot can step to make itself a complete stop, was introduced and

shown that with this point, the robot can recover balance after a push. Sugihara extended

the idea of the CP and introduced the concept of the Best CoM-ZMP Regulator (Sugihara,

2009), in which the robot is in the standing-stabilizable condition if the state of the CoM

satisfies the standing-stabilizable criteria. Kajita et al. proposed the auxiliary ZMP con-

trol to deal with the challenging environment such as outdoor uneven terrain (Kajita et al.,

2006, 2010). In other approaches, the reactive stepping is also considered to suppress the

disturbance. Morisawa et al. analyzed the foot contact on a terrain and proposed a reactive-

stepping method to balance for different contact times (Morisawa et al., 2010, 2011). San-

tacruz and Nakamura proposed a reactive stepping strategy based on the Neutral Point

and the Boundary Condition Optimization to compensate the disturbance (Santacruz &

Nakamura, 2013). These approaches were tested on the human-size robot and shown to

suppress the disturbance successfully.

In addition to human-sized robots, recently humanoid Nao robot (Gouaillier et al.,

2009) has gained more attention when talking about robot balance owing to the require-

ment of the walking stableness when the robot is attending a competition, such as RoboCup

Standard Platform League. Unlike human-sized robots, the Nao robot has limited capacity
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of measuring the ZMP since the force sensor resistors are inaccurate. Therefore, the tra-

ditional balance approach cannot be applied for the Nao robot directly. The adjustment

of the CoM trajectory based on the LIPM in real-time by observing the status of the CoM

is proposed (Graf & Röfer, 2012) and the walking abilities of the robot with the approach

is demonstrated in the RoboCup scenario. Czarnetzki et al. proposed an Observer-based

Control for biped robot (Czarnetzki et al., 2009), which is based on optimal control, and

showed that Nao can balance itself by this approach. Urbann and Hofmann (Urbann &

Hofmann, 2014) argued that by modifying the future steps of the robot, the error between

the reference and the system output from the optimal control can be minimized. Xue (Xue

et al., 2012) proposed an Elasticity Modeling Control (EMC) to compensate the disturbance

from the hip roll joint of the robot, and showed that the robot can achieve a higher walking

speed with this approach. Alcaraz-Jimnez et al. argued that when the robot suffers a dis-

turbance that generates an angular momentum, the robot tilts and the ZMP is at the limit of

the support polygon, which may cause the robot oscillate around the rotation axis repeat-

edly (Alcaraz-Jiménez et al., 2013). Therefore, they proposed a angular momentum control,

which consists of a P controller, to suppress the oscillation by observing the rotation of the

torso and adding an increment CoM position to the current state.

Furthermore, researchers have found that the future ZMP trajectory can affect the

stableness of the robot. Nishiwaki and Kagami (Nishiwaki & Kagami, 2010) proposed a

three-strategy-based approach by considering three strategies for changing the reference

ZMP trajectory. The three strategies are the adjustment of the reference ZMP during the

current step, the step duration and the step size of the current step. They showed that

there exists analytical solution for the adjustment of the step duration and the step size,

and the robot can be balanced by adjusting the future ZMP trajectory with the combina-

tion of the three strategies. Then, they (Nishiwaki & Kagami, 2011, 2012) introduced the

Permissible Region (PR) to suppress the change of the ZMP by modifying the control input

of the current step at the moment when the disturbance occurs. In addition, Urata et al.

(Urata et al., 2011) showed that by setting a proper value of the tracking-error weight Q

and the control input weight R in the optimal control (Q >> R), the output ZMP can track

the reference ZMP. Given the assumption above, Urata et al. (Urata et al., 2012) proposed a

heuristic-strategy-based approach that changes the future step size to compensate the dis-

turbance. Both of their approaches were tested on a real robot and showed that the robot

5
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can remain stable under the disturbance. However, in their works, the correlation among

the strategies was not considered. In the traditional three-strategy-based approach, since

only the strategy that adjusts the step size is applied in the sagittal plane, if the output step

size exceed the robot limitation, the robot will fall down. Here we argue that by consid-

ering the correlation between the ZMP reference during the current step and the step size,

the excessive step size can be reduced with the adjustment of the ZMP reference during

the current step. In addition, in the heuristic-strategy-based approach, the step duration is

not modified when there is a disturbance from the opposite side of the support foot of the

robot, and this may result in the robot falling in the lateral plane when the output ZMP is

outside the support polygon. In our approach, the step duration and the control input are

adjusted simultaneously to keep the ZMP inside the support polygon.

6



CHAPTER 3

Foundation

I
N Section 3.1, we will introduce the traditional idea of the Linear Inverted Pendu-

lum Mode (LIPM) and the Optimal Control and show how they can be combined

to generate the walking pattern. In Section 3.2, we will introduce the non-divergent

condition of the ZMP trajectory based on the optimal control for non-divergent

CoM. In Section 3.3 the three strategies for maintaining the robot balance will be carried

out and we will explain how these three strategies affect the robot.

3.1. Optimal Control based on Linear Inverted Pendulum Mode

The Linear Inverted Pendulum Mode (LIPM) proposed by Kajita (Kajita et al., 2001) is

widely used for humanoid robot walking (Sugihara, 2009; Graf & Röfer, 2012; Santacruz &

Nakamura, 2013). It simplifies the dynamics of the robot by assuming that the robot can be

represented as a point mass that stands for the CoM of the robot. The relation between the

ZMP and the CoM are given by:

p = x− zh

g
ẍ (3.1)

where p and x denote the position the ZMP and the CoM, and ẍ denotes the acceleration

of the CoM. zh and g are the height of the CoM and the gravitational acceleration. Here it

is assumed that the movement of the CoM is on a horizontal plane parallel to the ground,

which implies that the height of the CoM is a constant value. Figure 3.1 shows an example

of the LIPM.
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Figure 3.1. Example of the LIPM

Kajita et al. introduce the optimal control theory to the generation of the CoM Trajec-

tory in their work (Kajita et al., 2003), which will be the foundation of this work. Here the

control input u is defined as the time derivative of the p, and the equation is translated into

a dynamic system as follows:

u =
d
dt

p

d
dt

⎡
⎣ x

ẋ
p

⎤
⎦= A0

⎡
⎣ x

ẋ
p

⎤
⎦+B0u

p =
[

0 0 1
]⎡⎣ x

ẋ
p

⎤
⎦

(3.2)

A0 =

⎡
⎣ 0 1 0

g
zh

0 − g
zh

0 0 0

⎤
⎦

B0 =

⎡
⎣ 0

0
1

⎤
⎦

(3.3)

After we discretize the dynamic system (3.2) with the sampling time Δt, the system

will be

8
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x(k+1) = Ax(k)+Bu(k)

p(k) =Cx(k)
(3.4)

a0 = Δt +
g

3!zh
Δt3 +

g2

5!zh
2 Δt5 + . . .

a1 =
g

2!zh
Δt2 +

g2

4!zh
2 Δt4 + . . .

(3.5)

A = I3×3 +A0Δt +
1
2!

A2
0Δt2 +

1
3!

A3
0Δt3 + . . .

=

⎡
⎣ 1+a1 a0 −a1

g
zh

a0 1+a1 − g
zh

a0

0 0 1

⎤
⎦

B = B0Δt +
1
2!

A0B0Δt2 +
1
3!

A2
0B0Δt3 + . . .

=

⎡
⎣ −a0

−a1
1

⎤
⎦

C =
[

0 0 1
]

(3.6)

where x(k) = (x(k), ẋ(k), p(k))� is the state vector of the system.

Given the reference ZMP trajectory, the output ZMP is expected to be close to the refer-

ence ZMP trajectory. Meanwhile, the control input should be as low as possible. Therefore,

a performance index J1 is defined as

J1 =
∞

∑
i=k

{
Qe[p(i)− pre f (i)]2 +Ru2(i)

}
(3.7)

where Qe and R are the losses due to the tracking error and the control input.

When the reference ZMP trajectory can be previewed for NL future sampling frames,

the control input (Katayama et al., 1985) that minimizes the performance index J1 is

u(k) =−Gxx(k)+
NL

∑
i=1

Gd(i) · pre f (k+ i) (3.8)

where Gx and Gd are the state gain and the preview gain calculated from the weights Qe

and R, and K is the solution of the algebraic Riccati equation

9
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Gx = (R+B�KB)−1B�KA

Gd(i) = (R+B�KB)−1B�
[
(A−BK)�

]i−1
C�Qe

(3.9)

K = A�KA−A�KB(R+B�KB)−1B�KA+C�QeC (3.10)

In order to select a proper value of NL in Eq. (3.8), we need to analyze the relation

between the future sampling frames and the preview gain. Since the values of Gd cannot be

observed directly, we draw all the values along the preview time to see the property of Gd .

Figure 3.2 shows the relation between the preview time and Gd . We can see that the preview

gain Gd approaches to zero dramatically as the preview sampling frame increases, and Gd

is approximate to 0 when the preview sampling frame is at time 2 seconds. Therefore, we

only preview 2 seconds ahead. In addition, in the real situation the environment changes

continuously, and it is important to keep the movement of the robot flexible. Thus, only 1

step command ahead is queued, and the rest of the future step command is generated by

repeating the same velocity as the current velocity. Finally, since the equation of the ZMP

and the CoM in the lateral plane is the same as in the sagittal plane, the control in the both

planes can be generated by Eq. (3.8).

Figure 3.2. Preview Gain Gd (Δt = 10 ms, z = 255 mm, Qe = 1, R = 10−10)

10
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3.2. Non-divergent Condition

Researchers have found that the adjustment of the future ZMP trajectory can affect the

robot balance. By combining Eq. (3.6) and Eq. (3.8), the output ZMP p(k+1) at time k+1

is

p(k+1) =Cx(k+1)

=CAx(k)+CBu(k)

=CAx(k)+CB(−Gxx(k)+
NL

∑
i=1

Gd(i) · pre f (k+ i))

=C(A−BGx)x(k)+CB ·
NL

∑
i=1

Gd(i) · pre f (k+ i)

(3.11)

We can see that the output ZMP p(k + 1) is composed of the current state x(k) and

the future ZMP trajectory pre f (k+ i). However, whether the CoM diverges with the given

future ZMP trajectory should be considered. Urata et al. (Urata et al., 2011) argue that in the

optimal control the output ZMP must track the reference ZMP inside the support polygon

to prevent the robot from falling down, and the control input, which is the velocity of the

ZMP, does not always have severe restrictions. Therefore, they proved that if Qe >> R, the

maximum tracking error at time k occurs at time k+ 1, and if the tracking error is zero at

time k+ 1, there will be no tracking error in the whole preview time. Since the tracking

error is defined as p(k)− pre f (k), to eliminate the whole tracking error, it is assumed that

p(k+1)− pre f (k+1) = 0, which means that the tracking error at time k+1 is zero. According

to the derivation above, this implies that p(k+ i)− pre f (k+ i) = 0 for all i > 0, which means

that p(k+ i) = pre f (k+ i) for all i > 0. They called this the non-divergent condition of ZMP

trajectory. Given Eq. (3.11), the non-divergent condition is derived as

pre f (k+1) = p(k+1) =C(A−BGx)x(k)+CB ·
NL

∑
i=1

Gd(i) · pre f (k+ i) (3.12)

For the sake of simplicity, we define the preview gain Gr(i) as follows:

Gr(i) =

{
CBGd(1)−1 if i = 1
CBGd(i) if i ≥ 1

(3.13)

11
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By combining Eq. (3.12) and Eq. (3.13), we obtain the non-divergent condition:

C(A−BGx)x(k)+
NL

∑
i=1

Gr(i) · pre f (k+ i) = 0 (3.14)

Therefore, once the trajectory satisfies the non-divergent condition, the output ZMP

will be equal to the reference ZMP in the whole preview time, and the robot will remain

balance if and only if the reference ZMP trajectory is inside the support polygon. Figure 3.3

shows the relation between the preview time and Gr. We can see that the preview gain Gr

is a negative series which approaches to zero dramatically as the preview sampling frame

increases and the minimum value appears at Gr(1).

Figure 3.3. Preview Gain Gr (Δt = 10 ms, z = 255 mm, Qe = 1, R = 10−10)

The advantage of the non-divergent condition is that first, since in optimal control one

of the main objective is to minimize the tracking error, the non-divergent condition can

provide a constraint that there is no tracking error in the whole preview time, which is the

original expectation of the optimal control. Second, in the real environment the disturbance

occurs in anytime, the tracking error will be accumulated and may cause the robot fall

down in the future. Therefore, it is desirable that the tracking error can be compensated in

every timestamp.

12
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3.3. Three Strategies for Maintaining Robot Balance

Nishiwaki and Kagami proposed a three-strategy-based approach by adjusting the

reference ZMP trajectory to maintain the robot balance (Nishiwaki & Kagami, 2010). In

their work, the reference ZMP trajectory is modified to compensate the disturbance by

considering three strategies as follows:

1. Adjusting the reference ZMP inside the sole during a step.

2. Adjusting the current step duration.

3. Adjusting the current step size.

For the second and the third strategies, a close-form solution is provided to suppress

the disturbance. Later, three strategies is combined to modify the future ZMP trajectory to

maintain the robot balance. The combination can be expressed as follows:

1: Consider if the generated ZMP is inside the supporting polygon. If it is true,

adopt the generated ZMP and break; otherwise go to 2.

2: Adjust the current step duration if the disturbance is opposite outside of the cur-

rent stepping position in the lateral plane

3: Adjust the current step size

However, in their work, the correlation between the three strategies is not considered.

For example, when a disturbance occurs in the sagittal plane of the robot, only the step size

is adjusted to compensate the disturbance. Nevertheless, not only the step size but also

the reference ZMP inside the sole and the step duration affect the output ZMP. Therefore,

we believe that by considering the correlation of the three strategies, the capability of the

disturbance endurance can be enhanced.

13



CHAPTER 4

Trajectory Optimization with Simultaneous Multi-Strategy
Adjustment

I
N this chapter, we will describe the main contribution of our work. In Section 4.1 the

construction of the future ZMP trajectory will be described, and the correspondence

between the ZMP trajectory and the three strategies will be analyzed. In Section 4.2

the correlation among the three strategies will be evaluated and shown that the

three strategies affect each other. In Section 4.3, we will define a minimum energy cost for

the robot to maintain balance and show that by considering the control input, step size and

step duration of the current step, the robot can generate an optimized ZMP trajectory that

has the minimum energy cost and allows the robot remain balance. Finally, in Section 4.4,

our approach will be compared with the traditional approaches, and we will show that

with our approach, the robot can endure more disturbance and remain balance.

4.1. Correspondence between the Future ZMP Trajectory and the Three Strate-
gies

In order to analyze the correlation among the three strategies, first we need to know

the correspondence between the construction of the future ZMP trajectory and the strate-

gies. Since the basic component of the trajectory of a humanoid robot is the foot steps, the

ZMP trajectory of the robot is composed of several future steps, and for each step all the

reference ZMPs should be lied inside the support polygon. Here it is assumed that all the

ZMPs of the following steps after the current step are placed at the center of the support

polygon, and the duration of the following steps after the current step is constant. The step

size is fixed for the following steps except for the current step. To simplify the trajectory,



4.1 CORRESPONDENCE BETWEEN THE FUTURE ZMP TRAJECTORY AND THE THREE STRATEGIES

it is assumed that there is no double support phase in the trajectory. The trajectory pre f (i)

can be defined as:

pre f (k+ i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pre f (k+ i) if 1 ≤ i ≤ sc

mc if sc +1 ≤ i ≤ sc + s
mc +m if sc + s+1 ≤ i ≤ sc +2s
...

...

(4.1)

where m is the step size of the following step, mc is the step size of the current step, s is the

sampling frame of the duration of the following steps, and sc is the sampling frame of the

remaining duration of the current step.

In Section 3.2, we have mentioned that the output ZMP p(k) is equal to the reference

ZMP pre f (k) under the non-divergence condition. Therefore, given CA = C, CB = Δt in

Eq. (3.6) and the non-divergence condition in Eq. (3.14), the relation between every two

consecutive ZMP references is

pre f (k+1) = p(k+1)

=Cx(k+1)

=CAx(k)+CBu(k)

= p(k)+Δt ·u(k)
= pre f (k)+Δt ·u(k)

(4.2)

By considering Eq. (4.2), Eq. (4.1) can be rewritten as

pre f (k+ i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pre f (k)+Δt ·
i−1

∑
j=0

u(k+ j) if 1 ≤ i ≤ sc

mc if sc +1 ≤ i ≤ sc + s
mc +m if sc + s+1 ≤ i ≤ sc +2s
...

...

(4.3)

In the three-strategy-based work, the first strategy is to adjust the ZMP reference in-

side the sole during a step. However, in Eq. (4.3) we can see that the adjustment of the

ZMP reference is equal to the adjustment of the control input u. Therefore, in our work, the

three strategies are:
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4.2 CORRELATION AMONG THE THREE STRATEGIES

1. Adjusting the control input of the current step.

2. Adjusting the current step duration.

3. Adjusting the current step size.

Given the Eq. (4.1), the correspondence between the three strategies and the construc-

tion of the future ZMP trajectory is described as follows:

1: u(k+ i) for 1 ≤ i ≤ sc corresponds to the control input of the current step.

2: sc corresponds to the current step duration

3: mc corresponds to the current step size

4.2. Correlation among the Three Strategies

In the previous section, the correspondence between the three strategies and the con-

struction of the future ZMP trajectory is demonstrated. However, how the three strategies

affect each other is unknown. Therefore, now we want to show the correlation among the

three strategies. We define pre f ′ as the modified future ZMP trajectory, and u′, m′
c and s′c as

the control input, the step size and the step duration after the adjustment. In addition, we

define Δu(k+ i), Δmc and Δsc as

Δu(k+ i) = u′(k+ i)−u(k+ i)

Δmc = m′
c −mc

Δsc = s′c − sc

(4.4)

First we analyze the correlation between the control input and the step size. Given Eq.

(4.3), the future ZMP trajectory after the adjustment of the control input u(k+ i) and the

step size mc should be

C(A−BGx)x(k)+
NL

∑
j=1

Gr( j)pre f ′(k+ j)

=C(A−BGx)x(k)+
NL

∑
j=1

Gr( j)pre f (k+ j)+Δt ·Δu(k+ i) ·
sc

∑
j=i

Gr( j)+Δmc ·
NL

∑
j=sc+1

Gr( j)

(4.5)

Since both the original and the modified future ZMP trajectories should satisfy the

non-divergent condition, by combining Eq. (3.14) and Eq. (4.5) the correlation between the

control input and the step size is
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4.2 CORRELATION AMONG THE THREE STRATEGIES

Δt ·Δu(k+ i) ·
sc

∑
j=i

Gr( j) =−Δmc ·
NL

∑
j=sc+1

Gr( j) (4.6)

Figure 4.1 shows an example of the correlation between the control input and the step

size. We can see that the increase of m′
c stands for the decrease of u′(k+ i) and vice versa,

and it is summarized that the correlation between the control input and the step size is

negative.

Figure 4.1. Correlation between Δu(k+ i) and Δmc (Δt = 10 ms, sc = 25 Δt, NL = 200)

Next we analyze the correlation between the control input and the step duration. Sim-

ilar to the analysis between the control input and the step size, the future ZMP trajectory

after the adjustment of the control input u(k+ i) and the step duration sc is

C(A−BGx)x(k)+
NL

∑
j=1

Gr( j)pre f ′(k+ j)

=C(A−BGx)x(k)+
NL

∑
j=1

Gr( j)pre f (k+ j)+

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δt ·Δu(k+ i) ·
s′c
∑
j=i

Gr( j)−mc ·
sc

∑
j=s′c+1

Gr( j) if s′c < sc

Δt ·Δu(k+ i) ·
sc

∑
j=i

Gr( j)−mc ·
s′c
∑

j=sc+1
Gr( j) if sc < s′c

(4.7)
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4.2 CORRELATION AMONG THE THREE STRATEGIES

By applying the non-divergent condition, the correlation between the control input

and the step duration is

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δt ·Δu(k+ i) ·
s′c
∑
j=i

Gr( j) = mc ·
sc

∑
j=s′c+1

Gr( j) if s′c < sc

Δt ·Δu(k+ i) ·
sc

∑
j=i

Gr( j) = mc ·
s′c
∑

j=sc+1
Gr( j) if sc < s′c

(4.8)

Figure 4.2 shows the correlation between the control input and the step duration. We

can see that when the sign of Δsc and mc is the same, the correlation between the control

input and the step duration is negative. In contrast, if the sign of Δsc and mc is opposite,

the correlation is positive.

(a) mc = 50 (b) mc = -50

Figure 4.2. Correlation between Δu(k+ i) and Δsc (Δt = 10 ms, sc = 25 Δt, NL = 200)

Finally, we analyze the correlation between the step size and the step duration. The

future ZMP trajectory after the adjustment of the step size mc and the step duration sc is
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4.2 CORRELATION AMONG THE THREE STRATEGIES

C(A−BGx)x(k)+
NL

∑
j=1

Gr( j)pre f ′(k+ j)

=C(A−BGx)x(k)+
NL

∑
j=1

Gr( j)pre f (k+ j)+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δmc ·
NL

∑
j=sc+1

Gr( j)+m′
c ·

sc

∑
j=s′c+1

Gr( j) if s′c < sc

Δmc ·
NL

∑
j=sc+1

Gr( j)−m′
c ·

s′c
∑

j=sc+1
Gr( j) if sc < s′c

(4.9)

After applying the non-divergent condition, the correlation between the step size and

the step duration is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δmc ·
NL

∑
j=sc+1

Gr( j) =−m′
c ·

sc

∑
j=s′c+1

Gr( j) if s′c < sc

Δmc ·
NL

∑
j=sc+1

Gr( j) = m′
c ·

s′c
∑

j=sc+1
Gr( j) if sc < s′c

(4.10)

Figure 4.3 shows the correlation between the step size and the step duration. We can

see that when the sign of mc is positive, the correlation between the step size and the step

duration is positive. In contrast, if the sign of mc is negative, the correlation is negative.

Figure 4.3. Correlation between Δmc and Δsc (Δt = 10 ms, sc = 25 Δt, NL = 200)
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4.3 TRAJECTORY OPTIMIZATION WITH SIMULTANEOUS MULTI-STRATEGY ADJUSTMENT

Figure 4.4 shows the correlation among the three strategies. It is shown that the three

strategies are not independent and will affect each other.

Figure 4.4. Correlation among the Three Strategies

4.3. Trajectory Optimization with Simultaneous Multi-Strategy Adjustment

In Section 3.3 how the strategies affect the future ZMP trajectory has been described

and in Section 4.2 we have identified the correlation among the three strategies. Therefore,

now the question would be: Given the current state and the future steps, how can we find

a proper trajectory by applying the three strategies simultaneously?

According to the LIPM theory, without the control input, the movement of the CoM

is only driven by the gravity. Thus, the control input stands for the additional energy

consumption. In addition, in humanoid walking, the modification of the preplanned foot

placement is often undesirable since the modified foot placement may cause the swinging

foot collide with other obstacles. Therefore, the distance of the modification of the foot

placement should be as small as possible. Due to the fact that the optimization of the step

duration is complex, we discretize the step duration into the integer multiple of the motion

cycle. For the reason above, the energy cost J2 is defined as follows:

J2(s′c) = α
s′c−1

∑
i=0

u′(k+ i)2
+β (m′

c −m)
2 (4.11)

For the continuous values, the Lagrange Multiplier method is applied to solve the

optimal value of u and m′
c. Later, for every discrete time sample of s′c, an optimized J2 is
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4.3 TRAJECTORY OPTIMIZATION WITH SIMULTANEOUS MULTI-STRATEGY ADJUSTMENT

calculated. At the end, the optimal value of u′, m′
c and s′c that minimize J2 is selected to

generate the future ZMP trajectory.

The advantage of this energy function is that first, the correlation between the control

input and the step size is considered. Since in Section 4.2 we have shown that the correla-

tion is negative, in the energy cost function, the modification of the step size can be reduced

by selecting a higher value of β , which means that the modification of the step size can be

compensated by the control input. In addition, the strategy that adjusts the step size in the

three-strategy-based approach can be represented in this function by setting β = 0, which

means that it is a subset of our problem. Second, since the optimization of the function

is done for every discrete sample time, the time sample that causes the energy function

generating improper ZMP trajectory, such as the ZMP outside the support polygon, can be

eliminated. In the three-strategy-based approach, after adjusting the step duration, if the

adjustment of the step size exceeds the limitation of the robot, the step duration cannot be

redesigned. However, in our approach since there are multiple combinations of the control

input, the step duration and the step size, it is more possible to find a proper combination

among the three strategies.

Due to the fact that the selection of α and β is not intuitive, we apply Monte Carlo

experiment to select the proper value. Figure 4.5 shows an example of the experiment

result which is based on the physical model of our robot. We can see that when the ratio of

α and β is about 10−4, the highest success rate is reached. Therefore, we select α = 1 and

β = 10−4 for our robot. Since the selection of α and β depends on the physical constraint

of the robot, each robot should run its own simulation experiment to find out the proper

value.

In order to minimize Eq. (4.11), first we describe the construction of the trajectory

in more detail. Since we know that the future ZMP trajectory should not cause the CoM

diverge, by combining Eq. (3.14) and Eq. (4.3) we can get

C(A−BGx)x(k)+
NL

∑
i=1

Gr(i)pre f ′(k+ i)

=C(A−BGx)x(k)+ l0 + l1 + l2 + l3 + . . .

= 0

(4.12)

where ln is
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4.3 TRAJECTORY OPTIMIZATION WITH SIMULTANEOUS MULTI-STRATEGY ADJUSTMENT

Figure 4.5. Selection of α and β

ln =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s′c
∑
i=1

(
Gr(i) · (pre f (k)+Δt ·

i−1

∑
j=0

u′(k+ j))

)
if n = 0

(m′
c +(n−1)m) ·

s′c+ns

∑
i=s′c+(n−1)s+1

Gr(i) if n ≥ 1

(4.13)

Eq. (4.13) can be rewritten as

ln =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pre f (k) ·
s′c
∑
i=1

Gr(i)+Δt ·
s′c−1

∑
j=0

(
u′(k+ j) ·

s′c
∑

i= j+1
Gr(i)

)
if n = 0

(m′
c +(n−1)m) ·

s′c+ns

∑
i=s′c+(n−1)s+1

Gr(i) if n ≥ 1

(4.14)

Since m, s, s′c and x(k) are known at the time when optimizing the continuous values,

Eq. (4.12) and Eq. (4.14) can be rewritten as

c̄+Δt ·
s′c−1

∑
j=0

(
u′(k+ j) ·

s′c
∑

i= j+1
Gr(i)

)
+m′

c ·
NL

∑
i=s′c+1

Gr(i) = 0 (4.15)

where c̄ is the constant value of the optimization
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4.3 TRAJECTORY OPTIMIZATION WITH SIMULTANEOUS MULTI-STRATEGY ADJUSTMENT

c̄ =C(A−BGx)x(k)+ pre f (k) ·
s′c
∑
i=1

Gr(i)+
nmax

∑
n=1

l̂n

l̂n = (n−1)m ·
s

∑
i=1

Gr(s′c +(n−1)s+ i)

nmax =

⌊
NL − s′c

sc

⌋
(4.16)

The Lagrange Multiplier equation that solves u′ and m′
c with the given s′c can be ex-

pressed as follows:

2α ·u′(k)+Δt ·
s′c
∑
i=1

Gr(i) ·λ = 0

...

2α ·u′(k+ s′c −1)+Δt ·
s′c
∑
i=s′c

Gr(i) ·λ = 0

2β ·m′
c +

NL

∑
i=s′c+1

Gr(i) ·λ = m

Δt ·
s′c−1

∑
j=0

(
u′(k+ j) ·

s′c
∑

i= j+1
Gr(i)

)
+

NL

∑
i=s′c+1

Gr(i) ·m′
c = −c̄

(4.17)

Let us define Gsum and Gsqr as

Gsum( j,k) =
k

∑
i= j

Gr(i)

Gsqr( j) =
j

∑
i=1

(Gsum(i, j))2

(4.18)

Therefore, the closed-form solution of u′ and m′
c can be expressed as:

m′
c =

Δm

Δmλ
(4.19)

u′(k+ i) =− 1
2α

·Δt ·Gsum(i+1,s′c) ·λ (4.20)

where
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4.3 TRAJECTORY OPTIMIZATION WITH SIMULTANEOUS MULTI-STRATEGY ADJUSTMENT

λ =
Δλ

Δmλ

Δmλ =
β ·Gsqr(s′c) ·Δt2

α · s′c
+(Gsum(s′c +1,NL))

2

Δm =
β ·Gsqr(s′c) ·Δt2 ·m

α · s′c
−Gsum(s′c +1,NL) · c̄

Δλ =
2 ·β · (m ·Gsum(s′c +1,NL)+ c̄)

s′c

(4.21)

By selecting proper values of α and β in Eq. (4.11), the minimum-energy ZMP trajec-

tory can be generated by the optimal solution of u′, m′
c and s′c. Since Gr, Gsum, Gsqr can be

calculated and stored before the whole process, the optimization of Eq. (4.11) can be solved

in linear time.

In the energy cost function, the output ZMP is not guaranteed to stay inside the sup-

port polygon. In order to know whether the robot will fall down in the future or not, we

need to check if all the output ZMPs are outside the support polygon. In Section 3.2 it is

shown that given the non-divergent condition, all the output ZMPs are equal to the refer-

ence ZMPs. Therefore, instead of examining all the output ZMPs, we examine the whole

future trajectory, which is

pre f
l (i)≤ pre f (i)≤ pre f

u (i), i = 1, · · · ,NL (4.22)

where pre f
l (i) and pre f

u (i) are the lower bound and the upper bound of the support polygon.

Since in Section 4.1 we assume that all the ZMPs of the following steps after the current

step are placed at the center of the support polygon; therefore, only the ZMPs in the current

step should be considered. In addition, since all the values of Gr are negative and Gsum is

the sum of Gr, all the values of Gsum are also negative. Thus, all the values of u′(k+ i) from

Eq. (4.20) have the same sign. This implies that if the last reference ZMP of the current step

is inside the support polygon, all the reference ZMP of the current step is also inside the

support polygon. The last reference ZMP is composed of pre f (k) and u′ as

pre f (s′c) = pre f (k)+Δt ·
s′c−1

∑
i=0

u′(k+ i) (4.23)
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If the optimal values m′
c and u′ from the current discrete time sample of s′c result in

pre f (s′c) outside of the support polygon, the energy cost J2(s′c) is added with a sufficient

large number in order to prevent J2(s′c) from being selected if there exists a solution where

the ZMP trajectory remains inside the support polygon. Even though our approach cannot

guarantee that the output ZMP is always inside the support polygon, the solution that

generates a ZMP trajectory which is inside the support polygon for the whole preview

time will be selected in priority. However, if all the solutions generate a ZMP trajectory

that leads to the ZMP exceeding the support polygon in the future, the m′
c, u′ and s′c that

minimize the energy cost function is still selected as the optimal solution. In this case, the

robot may fall down in the future.

The main difference between our approach and the three-strategy-based approach is

that in our work, the correlation among the strategies is considered through the optimiza-

tion of the energy function, and the excessive adjustment caused by one strategy can be

compensated by the other strategies. In addition, in the heuristic-strategy-based approach,

the step duration strategy is not considered. Since in our work all the three strategies are

considered, we can prevent the falling condition which can only be solved by adjusting the

step duration.

4.4. Comparison with the Three-strategy-based and the Heuristic-strategy-based
Approaches

Since our work is based on the three-strategy-based and the heuristic-strategy-based

approaches, we want to analyze the performance between ours and their works. In this

section, we assume that if the robot tilts, it will fail down immediately because in their

work, they do not consider the balance recovery when the robot tilts. Here we compare

our work with three-strategy-based approach first. In their work, when the output ZMP

exceeds the support polygon, first the ZMP is checked if it is opposite outside of the next

step position in the lateral plane. If so, the step duration strategy is applied to increase

the duration of the current step. Later, the step size strategy is applied in both the sagittal

and lateral planes to keep the ZMP at the center of the support polygon. This may cause a

problem when the disturbance is large, the step adjustment in the sagittal plane from the

analytical solution may exceed the step size limit of the robot. After clipping the excessive
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step size to the robot limit, the output ZMP may exceed the support polygon and the robot

may fail down.

(a) Our Approach (b) Three-strategy-based Approach

Figure 4.6. Example of Our Approach and the Three-strategy-based Approach in
the Sagittal Plane

(a) Our Approach (b) heuristic-strategy-based Approach

Figure 4.7. Example of Our Approach and the Heuristic-strategy-based Approach
in the Lateral Plane

Figure 4.6 gives an simulation example of the difference between our work and their

work. A robot with constant CoM height z = 255 mm walking with step size 30 mm and step

duration 250 ms. The step size limit of the robot in the sagittal plane is 90 mm. At time 2360

ms, a disturbance with a CoM position error 11 mm and a CoM velocity error 0.1 mm/ms

occurs in the sagittal plane. We can see that with our approach the output ZMP is inside

the support polygon, while with three-strategy-based approach the robot falls down.

Second we compare our work with the heuristic-strategy-based approach. In their

work, only the step size is modified when the robot encounters a disturbance. However, if
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the output ZMP is opposite outside of the next step position, the step size is not modified

because the moving foot cannot cross its own support foot, which means that when the

support foot is the left foot, the maximum step size is 0 mm. Similarly, if the support foot

is the right foot, the minimum step size is 0 mm. Figure 4.7 gives an simulation example

of the difference between our work and their work. The setting of the robot is the same

as the previous example. At time 2360 ms, a disturbance with a CoM position error 10 mm

and a CoM velocity error 0.05 mm/ms occurs in the lateral plane. We can see that with our

approach the output ZMP remains inside the support polygon, while with their approach

the robot falls down.

Given the comparison above, we show that our approach solves the failure conditions

of the three-strategy-based approach in the sagittal plane and the heuristic-strategy-based

approach in the lateral plane. Therefore, with our approach, the robot can endure more

disturbance in both the sagittal and lateral planes and remain balance.
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CHAPTER 5

Experiment Result

I
N this chapter the experiment results are constructed by two parts: the simulation

results and the real environment results. In Section 5.1, we perform a simulation

experiment with a robot that only consists of a CoM point and two massless feet,

and the robot is tested with three types of disturbances. In Section 5.2, our approach

is implemented in a humanoid robot Nao and is tested with different situations in the real

environment. We will show that with our approach the robot can remain stable under

various disturbances.

5.1. Simulation Experiment

5.1.1. Configuration of the Simulated Humanoid Robot

In the simulation experiment, a robot that consists of one CoM and two massless feet

is simulated with a constant CoM height z = 255 mm, and the maximum step size of the

robot is 90 mm per step in the sagittal plane and 60 mm per step in the lateral plane. The

support polygon of the robot is a 100 mm×60 mm rectangle and the origin of the polygon is

at the center of the rectangle. The robot walks with a step size 30 mm per step in the sagittal

plane and 30 mm per step in the lateral plane. The step duration is 250 ms per step and the

motion cycle of the robot is 10 ms per cycle. Because the robot cannot cross it’s leg in the

lateral plane, the step size in the lateral plane is 0 mm when the support foot of the robot is

its left foot. For the optimal control in the three approaches, NL = 200 is used, which means

that 2 seconds of the future ZMP trajectory is considered. In our approach, we use α = 1

and β = 0.001 for Eq. (4.11).



5.1 SIMULATION EXPERIMENT

5.1.2. Experiment with Various Cycles of Disturbance

According to the optimal control theory, the tracking error is zero if there is no distur-

bance during the robot walking. Figure 5.1 shows that the ZMP is equal to the reference

ZMP in both the sagittal and lateral planes when there is no disturbance.

(a) Sagittal Plane (b) Lateral Plane

Figure 5.1. ZMP Trajectory without Disturbance

First we simulate a single-cycle disturbance at time 2360 ms, where the CoM distur-

bance is 2 mm and the ZMP disturbance is 3 mm in both the sagittal and lateral planes. Since

the support foot at that time is left foot, the step size in lateral plane cannot be more than 0

mm due to the fact that the right foot of the robot cannot cross its left foot. In Figure 5.2, 5.3

and 5.4, we compare the reaction of the disturbance of our approach against the traditional

three-strategy-based and heuristic-strategy-based approaches, and we can see that all the

approaches can keep the ZMP in the support polygon, which means that the robot will

not fall down when encounter such disturbance. Table 5.1 shows the detail of the three

approaches after the disturbance occurs.

Without Our Nishiwaki Urata et al.Disturbance Approach and Kagami
Support Foot Left Foot Left Foot Left Foot Left Foot

Step Duration (ms) 250 260 270 250
Step Size Sagittal (mm) 30 33.4441 39.1815 37.2165
Step Size Lateral (mm) 0 -0.1167 0 0

Table 5.1. Comparison with Single-Cycle Disturbance
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(a) Sagittal Plane (b) Lateral Plane

Figure 5.2. Our Approach with Single-Cycle Disturbance

(a) Sagittal Plane (b) Lateral Plane

Figure 5.3. Nishiwaki and Kagami’s Approach with Single-Cycle Disturbance

(a) Sagittal Plane (b) Lateral Plane

Figure 5.4. Urata et al.’s Approach with Single-Cycle Disturbance
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In the real environment, the disturbance such as pushing often lasts more than one

cycle. Therefore, we simulate a multiple-cycle disturbance from time 2360 ms to time 2440

ms, where the CoM disturbance is 2 mm and the ZMP disturbance is 3 mm in both the sagittal

and lateral planes, which are the same as in the previous experiment. In Figure 5.5, 5.6 and

5.7, we compare the reaction of the disturbance of our approach against the traditional

approaches and we find out that with our approach, the ZMP of the robot is inside the

support polygon for the entire time of the disturbance and the robot remains stable. In

contrast, with the traditional approaches, the ZMP is outside the support polygon and the

robot will fall down. Table 5.2 shows the detail of the three approaches after the disturbance

occurs.

Without Our Nishiwaki Urata et al.Disturbance Approach and Kagami
Support Foot Left Foot Left Foot Left Foot Left Foot

Step Duration (ms) 250 310 430 250
Step Size Sagittal (mm) 30 55.5321 90 81.3713
Step Size Lateral (mm) 0 0 0 0

Table 5.2. Comparison with Multiple-Cycle Disturbance

In the three-strategy-based approach, the step duration strategy is first applied if the

output ZMP is opposite outside of the next step position, and step size strategy is applied

last. Since the step duration is enlarged due to the disturbance in the lateral plane, the step

size in the sagittal plane should be enlarged to keep the generated ZMP inside the support

polygon. Nevertheless, because the step size of the robot in the sagittal plane is limited at

90 mm per step, the step size strategy cannot guarantee the ZMP inside the support polygon

when the generated step size from the strategy is larger than 90 mm. For example, in Figure

5.6, the generated step size in the sagittal plane at time 2400 ms is 90.1476 mm. After we clip

the step size into 90 mm, the generated ZMP is 51.3778 mm, which is outside the support

polygon and leads to the robot falling down.

In the heuristic-strategy-based approach, the step size is not modified because the step

size cannot be more than 0 mm when the support foot is left foot. Therefore, the modifica-

tion of the step size cannot keep the ZMP inside the support polygon if the output ZMP is

opposite outside of the next step position. For example, we can see that in Figure 5.7, the

step size in the lateral plane from 2250 ms to 2500 ms is 0 mm due to the limitation of the
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(a) Sagittal Plane (b) Lateral Plane

Figure 5.5. Our Approach with Multiple-Cycle Disturbance

(a) Sagittal Plane (b) Lateral Plane

Figure 5.6. Nishiwaki and Kagami’s Approach with Multiple-Cycle Disturbance

(a) Sagittal Plane (b) Lateral Plane

Figure 5.7. Urata et al.’s Approach with Multiple-Cycle Disturbance
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robot. As the result, the ZMP is outside the support polygon and the robot fall down at

time 2410 ms.

In addition, we want to evaluate our approach with multiple-cycle random distur-

bance. Here the disturbance is simulated as a multivariate gaussian distribution with zero

mean value and different variance value in both the sagittal and lateral planes. There are

total 5 variance values in this experiment, which are from 1 mm to 5 mm for both CoM and

ZMP, and for each variance value, there are 1000 cases with the disturbance occurring for

1500 ms, which is about 6 step cycles of the robot. Similar to the previous simulation set-

ting, the robot walks with a step size 30 mm per step in the sagittal plane and 30 mm per

step in the lateral plane. Since the robot falls when its ZMP is outside the support polygon,

we mark the case to be a success case when the ZMP remains inside the support polygon

in the whole occurrence of the disturbance and mark the case to be a failure case whenever

the ZMP is outside the support polygon. Table 5.3 shows the success cases of each variance

and Figure 5.8 shows the result of the multiple-cycle random disturbance simulation. We

can see that all of the approaches succeed when the variance is 1 mm. However, as the vari-

ance increases, the number of the success case of the three-strategy-based approach and the

heuristic-strategy-based approach drops dramatically and our approach remains a higher

number of the success case.

Variance Our Approach Nishiwaki and Kagami Urata et al.
1 (mm) 1000 1000 1000
2 (mm) 978 692 917
3 (mm) 810 71 396
4 (mm) 506 1 102
5 (mm) 236 0 13

Table 5.3. Comparison with Multiple-Cycle Random Disturbance

5.2. Real Environment Experiment

In the real environment experiment, our approach is implemented on the humanoid

robot Nao, which is developed by Aldebaran Robotics Company (Gouaillier et al., 2009).

The robot is 573 mm tall and weighs 5.2 kg. It has 21 degree of freedoms (DoF), 2 of which

are in its neck, 4 of which are in each arm and 5 of which are in each leg. The remaining DoF

is at its hip, which can control the yaw joints of both legs with only one actuated joint. Since
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5.2 REAL ENVIRONMENT EXPERIMENT

Figure 5.8. Multiple-Cycle Random Disturbance

Nao has 11 DoFs for the two legs, the inverse kinematics is more complicated than usual.

Here we apply the inverse kinematics provided by Graf to overcome this issue (Graf et al.,

2009). For each actuated joint, there is a magnetic rotary encoder inside to measure the

position. In addition, the robot has a 3-axis accelerometer and a 2-axis gyrometer (sagittal

and lateral plane) at its torso, and 4 force sensor resistors at each sole.

In this experiment, only the joint encoder is used as the feedback sensor. To acquire

the current status of the CoM and the ZMP of the robot, we use Kalman Filter to estimate

the state with the given dynamics of the system. In addition, the trajectory of the moving

foot is based on the traditional approach (Graf et al., 2009). The height of the CoM of the

robot is 255 mm and the step duration is 250 ms, which are the same as in the simulation

experiment. Similarly, the motion cycle is 10 ms.

The environment setting of the experiment is similar to Alcaraz-Jimnez’s work (Alcaraz-

Jiménez et al., 2013) and is described as below: a stepping robot is hit by a soccer ball car-

ried by a plastic string which is first hanged from a certain height and is released later. The

soccer ball weighs 460 g and its diameter is 200 mm. For the sagittal plane, the height of

the contact point is set to be 255 mm from the ground, and the ball is raised 705 mm from

the ground and then is released to hit the robot. For the lateral plane, the height of the

contact point is set to be 320 mm from the ground, and the ball is raised 770 mm from the
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5.2 REAL ENVIRONMENT EXPERIMENT

ground and then is released to hit the robot. Therefore, the potential energy of the ball in

both the sagittal and lateral planes is about 2.03 J. The reason why the contact points are

different in two planes is that at first the disturbance is set to occur at the same height as

the CoM. However, in the lateral plane, when the hand is hit by the ball, the disturbance is

compensated by the hand first because there exists a space between the hand and the torso.

Therefore, the height of the contact point is increased to 320 mm to avoid the compensation

of the disturbance from the hand. We test the balance of the robot in both the sagittal and

lateral planes and see whether our approach works in both planes. For each plane, the

robot receives 10 hits with our approach. In the end, the robot remains stable in all the 10

tests in both planes. Figure 5.9(a) and Figure 5.9(b) show how the environment is set in the

sagittal plane and the lateral plane.

(a) Experiment Setting in Sagittal Plane (b) Experiment Setting in Lateral Plane

Figure 5.9. Real Environment Experiment Setting

First we discuss the result in the sagittal plane. Figure 5.10 shows one of the result

of the experiment. Here the soccer ball hits the robot around time 2700 ms. Before the

disturbance occurs, the ZMP moves around the center of the support polygon. When the

ball hits the robot, the control input and the current step size are adjusted to compensate

the disturbance. Since the ball only affects the robot in the sagittal plane, the disturbance

in the lateral plane is relatively small. From the figure we can see that with our approach,

the ZMP remains in the support polygon in the whole experiment.

Second we discuss the result in the lateral plane. Similarly, Figure 5.11 shows one

of the result of the experiment. Here the soccer ball hits the robot around time 2900 ms.

Since the disturbance occurs on the opposite side of the current support foot, the step size
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5.2 REAL ENVIRONMENT EXPERIMENT

cannot be modified and only the step duration and the control input can be adjusted to

compensate the disturbance. In this experiment, the step duration is enlarged about 200

ms and the ZMP is set near to the limit of the support polygon. From the figure we can see

that with our approach, the ZMP remains in the support polygon in the lateral plane.

(a) Sagittal Plane (b) Lateral Plane

Figure 5.10. Sagittal Plane Experiment

(a) Sagittal Plane (b) Lateral Plane

Figure 5.11. Lateral Plane Experiment
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CHAPTER 6

Conclusion and Future Work

B
ALANCE is a critical issue in humanoid robot walking. In this work, we propose

the future ZMP trajectory optimization with simultaneous multi-strategy ad-

justment for humanoid walking balance to enhance the capacities of the dis-

turbance compensation. First we evaluate the correspondence between future

ZMP trajectory and three strategies. Next the correlation among the three strategies is an-

alyzed. We show that the correlation exists and the three strategies affect each other. To

apply the strategies simultaneously, we define an energy cost function based on the sum

of the control input and the modification of the current step size. Given the non-divergent

condition, the three strategies and the cost function, for every discrete sampling time, an

analytical solution of the control input and the step size is solved, and the optimized step

duration can be found by selecting the discrete sampling time with the least cost of the

energy function. We show that with our approach, the robot can compensate more distur-

bances than the three-strategy-based and the heuristic-strategy-based approaches. We also

implement our approach on a humanoid Nao robot and show that our approach not only

works in the simulation experiment, but also enhances the stability of the robot in the real

environment.

As for future work, we believe that since the uncertainties exist in the real world, we

should consider the influence when the estimations of the state and the observation are

uncertain. Therefore, the probabilistic approach of the state estimation, such as Kalman

Filter, will be considered in the future. In addition, we would like to test our robot in more

difficult scenarios, for example, pushing the robot when it is walking.
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