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Abstract

Edit distance, a measure determining the similarity between two strings, is a
criterion that has been used widely. String similarity search finds strings in
a dataset that are similar to a given query string. Edit-distance based string
similarity search is exploited in many fields, e.g., database cleaning, error
detection and correction and data retrieval. Most approaches toward string
similarity search resort to filtering out as many strings in datasets as possible
and verifying the remaining strings. However, these approaches use only one
filtering method throughout the whole procedure, which makes the power of
the method fluctuates during the whole procedure. To overcome this prob-
lem, we propose a data structure integrating different filtering methods and
adopting a more efficient one on each phase. We also give corresponding
algorithms for two important queries of string similarity search, range query
and top-k query. Experimental results show that our approach is competitive

for range query when thresholds are small enough.

Keywords: edit distance, string similarity search, range query, top-k query
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Chapter 1

Introduction

String similarity search is an important operation used in a wide variety of applications,
e.g., error checking, data cleaning, data integration and pattern recognition. It discovers
strings in datasets that are similar to query strings according to a given distance measure.
For example, in error checking, which finds possible typos in a given document, string
similarity search finds words not in a given dictionary and recommends similar words
determined by edit distance.

Various distance measures are used in different fields based on their characteristics [1,
2], and edit distance is one of the most widely adopted distance measures in relevant topics.
It is therefore also employed in our work.

Because of the need of a both time and space efficient solution for answering queries
with small thresholds, which is the case in many applications (e.g., error checking, data
cleaning), we are interested in how to respond to queries efficiently using reasonable space.

Due to the costly complexity, O(|s|@), of verifying whether two strings with length s
have edit distance smaller than or equal to a given threshold @, our approach, like most
other existing ones [3,5,7,8,11-14], tries to filter out as many strings in datasets as possible
to minimize the verification needed.

In this thesis, a query-efficient algorithm using acceptable space is proposed. Given
that various filtering methods outperform others in certain datasets [5], different filtering
methods are integrated in our approach and adopted on different phases respectively. Ex-

periments on real datasets show that our approach outperforms others when the thresholds



are small enough.

1.1 Related Work

Section 1.1.1 introduces recent studies related to the topic of string similarity search.
The algorithms and techniques exploited in our work are explained in the following sub-

sections.

1.1.1 Previous Work

Edit distance, which is also referred to as Levenshtein distance, is one of the research
topics that have been studied for a long period of time. A number of algorithms for com-
puting edit distance have been proposed over the past few decades, and there is usually a
trade-off between time and space complexities. At the moment, to the best of our knowl-
edge, the fastest algorithm has time complexity O(|s|?/log |s|) [16]; on the other hand,
the most space-efficient algorithm has space complexity O(max {|s1], |s2|}) [17].

The research of string similarity search is another topic that has gotten a lot of at-
tention. In contrast with edit distance, various algorithms for efficiently solving string
similarity search problems are still being proposed at the moment. Most of the algorithms
do their best to filter out as many strings in the datasets as possible, so that the verifications
needed, which consume most of the time, are minimized. The filtering methods used can
be roughly categorized into following two groups.

N-gram Based Inverted Index [3—10]: In this approach, a number of inverted lists are
maintained for answering strings in datasets sharing certain number of n-grams with the
query. Obviously, the performance of methods using this approach mainly depends on the
algorithms they use to merge the inverted lists. An efficient merging algorithm is proposed
in [5]. Although it is efficient with a small threshold, its efficiency degrades when query
strings or strings in datasets are short. Also, it suffers from severe space overhead.

BT -tree[14,15]: Itis first advanced by Zhang et al. [14]. An order of strings in datasets

is defined beforehand, which enables the indexes to be stored in a B™-tree. The B -tree



is then used by different algorithms to answer queries. Another efficient string order and
algorithm is proposed by Lu et al. [15] These approaches can usually have good perfor-
mance; however, it suffers from search overhead when inappropriate string orders are

chosen, which vary from one dataset to another.

1.1.2 Verifying Algorithm

Verification, which determines whether two strings have edit distance smaller than or
equal to a given threshold, is an intensely used operation in string similarity search. In-
stead of computing the actual edit distance between two strings, a more efficient approach,

Algorithm VerifyED, is proposed in [14].

Algorithm 1 VerifyED (string s, string s», distance threshold 6)
if [|s1| — |s2|| > 0 then
return FALSE
end if
Construct a table 7" of 2 rows and |s2| + 1 columns
for j = 1 to min{|sy| + 1,1+ 6} do

Tyl=j5-1
end for
Setm =60-+1

fori =2to|s;|+ 1do
for j=min{1,i — 0} to min{|sy| + 1,7 + 0} do
di=<i+0)?T[[j]+1 : 6+1
dy=(G>1)TRIj—1+1:60+1
dy =G> 2T =1+ (s1fi— 1] =so[j —1])20 : 1) : 6+1
T2][j] = min{d1, d2, d3}
m = min{m, T[2][j]}

end for
if m > 6 then
return FALSE
end if
for j = 0to |so| + 1 do
T[] = T[2][]
end for
end for
return TRUE

The idea of Algorithm 1 is that only the entries of the dynamic programming table on
the diagonal with offset no larger than the threshold need testing. It is easy to observe that

entries not tested leads to a larger edit distance than 6; therefore, they are simply skipped.



By this algorithm, a verification operation can be finished in O(|s|¢), where s is the shorter

string being verified.

1.1.3 Pruning Technique

A partition based pruning solution is proposed in [15]. Strings in datasets are split
into several partitions. Each partition P; is characterized by a representative reference
string 0;. The minimum edit distance F;./ and maximum edit distance F;.u between o;
and any strings in P; is maintained. Formally, P;.l = min{ed(s,o0;)|s € P}, P.u =
max{ed(s,0;)|s € P;}, where ed(s, 0;) is the edit distance between s and o;. In the rest of
this these, we use ed(sy, s2) to denote the edit distance between s, and s,. When a query
is issued, partitions are pruned according to the following rules:

Given a range query with threshold 6 and query string ¢, a partition P is a prunable
partition if and only if one of the following conditions holds: (1) ed(o,q) — P.u > 6; or

(2) P.l —ed(o,q) > 6.

Pruning Rule 1. If partition P is a prunable partition, then Vs € P,ed(s,q) > 0. Thus,

strings that lie in P do not have to be verified and can be pruned directly.

Given a range query with threshold # and query string ¢, a partition P is a candidate
partition if and only if one of the following conditions holds: (1) P.l < ed(o,q) < P.u;

or (2) Pl — 0 < ed(o,q) < Pl;or(3) Pu<ed(o,q) < Pu-+0.

Pruning Rule 2. Suppose P is a candidate partition. Then, Vs € P, s needs to be verified

if and only if
Ib < ed(o,s) <ub

where b = max{ed(o,q) — 0, P.l}, ub = min{ed(o,q) + 0, P.u}. We refer to range

[lb, ub] as candidate region.

Given a range query with threshold 6 and query string ¢, a partition P is a selectable

partition if and only if the following condition holds: ed(o, ¢) + P.u < 6.



Pruning Rule 3. Suppose that partition P is a selectable partition. Then, Vs € P,
ed(s,q) < 0, and s is reported as a result. We refer to range [P.l, P.u] as selectable
region.

If a partition is prunable or selectable, no further verification on the strings in the
partition is required. If the partition is a candidate partition, then only strings that lie in

the candidate region need to be verified.

1.2 Our Work

In this thesis, we introduce a new approach to string similarity search. Our approach
is based on the fact that different filtering methods outperform others in certain datasets.
Rougher filtering methods are used first, which greatly reduces the candidate strings in
few steps. The more precise filtering methods are then adopted to diminish the candidate
strings further.

In this thesis, we make following contributions:

We propose an indexing structure that integrates several filtering methods.

We propose algorithms for string similarity search based on the structure.

A trade-off between query efficiency and memory consumption is provided, which

makes it feasible to deal with tremendous datasets.

We conduct experiments to evaluate the performance of our approach and compare

1t with others.

The rest of this thesis is structured as follows. Chapter 2 gives the background and for-
mal definitions of string similarity search problem. Chapter 3 gives details of the approach
we propose. Chapter 4 presents the experiments we conducted, and Chapter 5 concludes

this thesis.



Chapter 2

Preliminaries

In this chapter, some preliminary knowledge and problem definitions are presented.
In the rest of this thesis,

denoted by |s|, and the iy, letter is denoted by s[i], where s[i| € X and 1 < i < |s|. The

we assume Y a finite alphabet. For string s, the length of it is

notation used in the rest of this thesis are summarized in Table 2.1.

Table 2.1: Notation.

| Notation | Explanation
by the alphabet
S a string consists of letters in >
|s] the length of string s
si] the iy, letter of string s
sli, jl the substring of s from the iy, letter to the jy, letter
q a query string
0 a threshold of edit distance
ed(q,s) | the edit distance between ¢ and s
c(s,l) | the number of occurrences of letter [ in s
h(n) the height of the tree containing node n
d(n) the level of node n
v(n) the value of node n.
l(n) the letter implied by nodes with level equal to n.
p(n, k) | the ancestor of n with level equal to k.




2.1 Preliminary Knowledge

2.1.1 Edit Distance

There are three edit operations on string s: insertion, deletion and substitution. An
insertion operation inserts a character z € ¥ into s, which forms a new string s’ = s[1,7—1]
x s[i, |s|] with length |s|+ 1. A deletion operation removes a letter s[i| from s, which forms
anew string s’ = s[1,7—1] s[i+1, |s|] with length |s| — 1. A substitution operation replaces
a letter s[¢] with a character = € %, which forms a new string s’ = s[1,i — 1] z s[i + 1, |s]]

with length |s|. The edit distance is defined as follow:

Definition 2.1 (Edit Distance). Given two strings s; and s;, the edit distance between s;
and s;, denoted by ed(s;, s;), is defined as the minimum number of edit operations needed

to transform s; to s;.

2.1.2 Computations of Edit Distance

Besides Verification, of which Algorithm VerifyED gives an efficient solution, the
computation of exact edit distances is also needed in our approach for both constructing
indexing structures and answering queries. It can be computed using dynamic program-

ming. Algorithm 2 gives details of the computation using dynamic programming.

Algorithm 2 ED (string sy, string so, int len_sy, int len_ )

if len_s; == 0 then
return [en_so

end if

if [en_s; == 0 then
return len_s;

end if

if si[len_s; — 1] == sy[len_sy — 1] then
cost =0

else
cost =1

end if

return minimum( ED(sy, so, len_s; — 1, len_s9)+1,
ED(s1, s9, len_sy, len_sy — 1)+1,
ED(s1, s, len_s; — 1, len_so — 1)+cost )




2.2 Problem Definition

We can then give the definitions of string similarity queries based on edit distance.
Section 2.2.1 and 2.2.2 give formal definitions of range query and top-k query, which are

the most frequently considered queries respectively.

2.2.1 Range Query

Range query is one of the most important query types of string similarity. In many
cases, it returns more meaningful results than top-£ query, which sometimes returns results

that deviate from query strings too much.

Definition 2.2 (Range Query). Given a query string q and a string set S = {s1, 52, ..., 5|5},
a range query returns a subset S’ of S with edit distance to q no larger than 0, i.e.,

S" = {s; € Sled(s;,q) < 0}.

2.2.2 Top-k Query

Top-k query, another important query type of string similarity, returns £ strings that

are the most similar to query strings.

Definition 2.3 (Top-k Query). Given a query string q and a string set S = {s1, 52, ..., 5|5/},
a Top-k query returns a subset S’ of 'k strings in S with edit distance to q no larger than

that of any other string in S — S'.



Chapter 3

Complex-Tree Based Solution

The idea of our approach is to adopt different filtering methods on each phase, which
optimizes the power of pruning strings. We make efforts on choosing the filtering methods
used on each phase and how to integrate them into our structure. Section 3.1 gives the
properties of filtering methods used. We then demonstrate how to build a complex-tree
integrating these filtering methods in Section 3.2. Finally, we present efficient algorithms

for answering both range and top-k queries using complex-tree in Section 3.3.

3.1 Filtering Methods

We present three filtering methods in this section, which are string length, letter count

and reference string respectively.

Table 3.1: Running example.

] String \ String Content \ |s] \ g1 \ g \ g3 ‘
q Li Zongyo 91213 |4
51 LiZongyong |11 | 2 | 5 |4
S Li Zou 6 | 21113
S3 Liu Zongtian |12 | 4 | 5 |3
S4 Liu Zongyu 10|43 |3
S5 Xi Zongyue 104313
56 Xi Zoleyue 104115
S7 Xing Zouxl 10| 4|33




3.1.1 String Length

String length is one of the most intuitive ways to filer out strings, Property 3.1 gives

an accurate way to do it.

Property 3.1 (String Length Pruning). Given a range query with query string q and thresh-

old 0, strings in the dataset with length larger than |q|+ 0 or less than |q| — 0 are prunable.

Consider the sample query string and dataset shown in Table 3.1. Given that the thresh-
old is 2, both string s, and s3 are prunable due to the excess of |¢| + 6, 11, or the insuffi-

ciency of |g| — 6, 7, in length.

3.1.2 Letter Count

Letter count is another filtering method that is intuitive but efficient. Property 3.2 gives

a simple solution; however, it is refined further when we integrate it into our structure.

Property 3.2 (Letter Count Pruning). Given a range query with query string q and thresh-
old 0. For string s, let b; be the sum of every difference between c(s,a;) and c(q, a;),
where a; is each letter in s satisfying that c(s,a;) > c(q,a;), i.e, by = Y c(s,a;) —
c(q,a;)|a; € s,c(s,a;) > c(q,a;), and let b, be the sum of every difference between
c(q,a;j) and c(s, a;), where a; is each letter in q satisfying that c(q,a;) > c(s,a;), i.e.,

b, =Y clq,a;) —c(s,aj)|a; € q,c(q,a;) > c(s,a;). If by > 0 or b, > 0, s is prunable.

Consider the sample query string and dataset shown in Table 3.1. Given that the thresh-
old is 2, string sy with b, = 4, s3 with b; = 5, s5 with b, = 3, sq with b; = 5 and s; with

b; = 4 are prunable.

3.1.3 Reference String
Similar to the technique mentioned in Section 1.1.3, we can filter strings out based on
their edit distance to another specific reference string.

Property 3.3 (Reference String Pruning). Given a reference string r and a range query
with query string q and threshold 0, if string s satisfies that |ed(s,r) — ed(r,q)| > 0, s is

prunable.

10



Consider the sample query string and dataset shown in Table 3.1. Given that the thresh-

old is 2 and the reference string is s4, both string s, and s; are prunable.

3.2 Index Construction

Once the filtering methods used are determined, we can build complex-trees based on
these filtering methods. Unlike general search trees, a complex-tree has different criteria
for traversing on different levels, which are string length, letter count and the edit dis-
tance to a specific reference string respectively. Algorithm 3 and Algorithm 4 describe
the details of construction. To choose the desired reference string, Algorithm 3 should be

followed by Algorithm 4.

Algorithm 3 Construction (string s, Complex-tree node N, alphabet size )
if d(N) == 0 then
if IV has no child n, such that v(n.) = |s| then
Add node n. with value = |s| into N’s children.
end if
Construction(s, n..)
end if
if 1 <d(N) <t—1then
if IV has no child n, such that v(n.) = c(s,{(d(NN))) then
Add node n. with value = ¢(s,[(d(N))) into N’s children.
end if
Construction(s, n..)
end if
if d(N) ==t then
Add node n, with value = s into N’s children.
end if

3.2.1 String Length

Strings in datasets are first categorized by their length. That is, for a complex-tree, if
node n, satisfies that d(n.) = 1, the strings indexed by descendants of d(n.) have length

equal to v(n,).

11



Algorithm 4 ChoosingReference (Complex-tree node NV, alphabet size t)
if d(N)! =t then
for each n, € children of N do
ChoosingReference(n.)
end for
else
Find the child of N, n., that v(n.) maximizes the standard deviation of the edit
distance between it and all other siblings.
for each n, € children of NV do
if 7. has no child n, such that v(n.) = ed(n., ny) then
Add node n, with value = ed(n., nq) into n.’s children.
end if
Add a node with value = ny into n.’s children.
if ng! = n. then
Delete node ng.
end if
end for
end if

3.2.2 Letter Count

Strings are then categorized by each amount of different letters they contains. That is,
for a complex-tree, if node n,. satisfies that 2 < d(n.) < h(n) — 3, letter [(d(n.)) appears
v(n.) times in each string indexed by descendants of n...

We may, intuitively, enumerate all letters used in datasets when constructing complex-
trees. However, it suffers from severe memory consumption, which is too expensive for
many machines. To ease this situation, we use a hash function to map the alphabet into a
smaller universe, which is variable in size to fit in different memory capacity.

Consider the sample dataset shown in Table 3.1 and the mapping function shown in
Table 3.2. Giventhat((2) = g1, 1(3) = g2 and [(4) = g3, because s; consists of two letters
mapped to gy, five letters mapped to g, and five letters mapped to g3, the ancestors of the
node indexing s; on level 2, 3 and 4 should have values 2, 5 and 5 respectively.

However, there is no need to record the letter count of the last group, which is inferable
by deducting all letter counts of other groups from the string length. As we can see in
the structure example shown in Figure 3.1, which is constructed according to the dataset
shown in Table 3.1 and the mapping function shown in Table 3.2, the letter count of g3,

which can be computed by deducting the values of corresponding nodes on level 2 and

12



Table 3.2: Mapping example.

| Group | Letter |

i
t
u
g1 X
y
X
a
g
g2 0
(space)
e
1
0
g3 p
L
Z

string length

count of g,

count of g,

reference string r

ed(s,r)

Figure 3.1: Structure example.

13



level 3 from the value of corresponding node on level 1, is not recorded.

3.2.3 Reference String

Table 3.3: Reference string choosing example.

| String | ed(x,s4) | ed(x, s5) | ed(x,s7) | standard deviation

54 0 3 7 2.87
S5 3 0 7 2.87
S7 7 7 0 3.30

After above categorizations are finished, we then choose a string in each set as refer-
ence string. The string that makes the edit distances between it and all other strings have
the largest standard deviation is chosen.

Consider the strings computed in Table 3.3. The edit distance between each string and
the others are computed first, and the standard deviation of them are then calculated. The
string making the largest standard deviation, which is s7 in the example, is chosen as the
reference string.

Once the reference string is decided, all strings are then categorized by the edit distance
between it and the reference string.

As we can see in Figure 3.1, once s; is chosen as the reference string, s4 and s; are

then indexed by its child with value 7. Also, s; is indexed by its child with value 0.

3.3 Query Algorithms

Once the structure is constructed, we can efficiently respond to queries with the struc-

ture.

3.3.1 Range Query

Algorithm 5 gives the details of how to answer range queries with a complex-tree. As
the procedure of building the index, every query is processed with three phases, which are

string length, letter count and reference string respectively.

14



Algorithm 5 RangeQuery (string g, threshold 6, Complex-tree node N, int b;, int b,.)
if d(N) == 0 then
for each n, € children of N do
if [¢| — 0 < v(n.) <|q| + 0 then
RangeQuery(q, 0, n., min{0,0 — (v(n.) — |q|)}, min{6, 0 — (|g| —=v(n.))})
end if
end for
end if
if 1 <d(N) < h(N)— 3 then
for each n. € children of N do
if (g, 1(d(N))) — by < v(n,) < (g, [(d(N))) + b, then
RangeQuery(q, 6, n, min{by, by — (c(q. [(d(n))) — v(nc))},
min{b,, b, — (v(ne) — c(g, 1(d(n))))})

end if
end for
end if
if d(N) == h(n) — 2 then
for each n, € children of N do
if ED(q,v(N),lql; |[v(n)]) =0 < v(ne) < ED(q,v(N), |q],[v(n)]) + 0 then
for cach ny € children of n. do
if VerifyED(q, v(ng), 0) then
Add v(ny) into query result
end if
end for
end if
end for
end if

For query string ¢, we first traverse the subtrees with strings indexed having length
between |¢| — 0 and |¢| + 0 based on property 3.1.
However, we can restrict the number of subtree traversed further by denoting the left

and right boundary of subtrees to traverse in each iteration.

Property 3.4 (Boundary Restriction). Given a range query with query string q and thresh-
old 0, if string s is a result string, s lacks at most min{0,0 — (|s| — |q|)} letters in q and

has at most min{60, 0 — (|q| — |s|)} additional letters besides those in q.

Given the query with query string ¢ = Lee Lie and 6 = 2. Without loss of generality,
consider the letter count of letter ‘e’, Table 3.4 lists all possible combination of |s| and
c(s,e). We can find that there is no result string s containing less than min{2,2 —(|s| —7)}
e or more than min{2,2 — (7 — [s|)} e.

The algorithm then determines the subtrees to traverse based on each letter count of

15



Table 3.4: Boundary restriction example with 6 = 2.

| Is] | c(s.e) | s |
7 Lee Lie (query string)
Le Li, L Lie
5 Lee L, Le Le

Leee, eeLe, ...

Le Lia, Le Lib, ...

Lee La, Lee Lb, ...

Lee Le, Lee Ae, ...

Lee ee, ee Lee, ...

Lea Lia, Lae Lia, ...
Lee Laa, Lee Lab, ...
Lee Lie, Lee Lae, ...
Lee Lee, Lee ace, ...
Lee eee, Leeelee, ...
Lee Liaa, Lee Liab, ...
Lee Liea, Lee Laea, ...
Lee Leea, Lee Leea, ...
Lee Leee, LeeeLiee, ...
Lee Lieaa, Lee Liaea, ...
Lee Lieea, Lee Lieae, ...
Lee Leeea, Leee Liee, ...

~
N B W N B WN N R WP R W~ W —| W
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q and the parameter b; and b,., which denotes the left bound and right bound respectively.
Every children n.. of the processed node N satisfying that c(q, ((d(NV))) — b < v(n.) <
c(q,l(d(N))) + b, is traversed. For each iteration, if any quota of b, or b, is used, it is
deducted in the following iteration.

We then traverse the subtrees indexing strings having edit distance to reference strings

between ed(q,v(N)) — 0 and ed(q,v(N)) + 6. All strings indexed by nodes in these

subtrees are considered candidate strings.

Finally, for each candidate strings, we use Algorithm 1 to verify whether it is a result

string or not. If it is, we add it into a result set.

3.3.2 Top-k Query

Algorithm 6 TopkQuery (string ¢, int k, Complex-tree node V)
nonrepeating set R = ()
threshold 6 = 0
while |R| < k do
RangeQuery(q, 6, N, 6, 0)
add the result into R
0=0+1
end while
return the £ strings in R inserted first

Algorithm 6 gives the details of answering Top-k Queries. To answer top-k queries,
we make a series of range query and increase the threshold gradually. In each iteration,
we add the result into a non repeating set 12 to make sure that result strings having smaller

edit distance to the query string are added first.
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Chapter 4

Experimental Evaluation

In this chapter, we give the results of experiments we have conducted. Both range and

top-k queries are evaluated.

4.1 Setup

In the experiments, real datasets are used. We use the data of Author from DBLP!.

The data, which may become larger with time, is drawn on January 24, 2015. For each

query, we average the response time for 100 query strings, which are generated by keeping

random sampling until a set with difference between the average and variance of it and the

dataset is less than 1. Table 4.1 shows the information of the dataset and the query string

we generate.

Table 4.1: Dataset statistics.

] Dataset \ Cardinality \ Min. \ Max. \ Avg. \ Var. ‘

Author

1529933

3 78 15 5

Query

100

6 41 15 5

In the experiments, we compare our approach, denoted by CT, to B“-tree [14] with

two different string orders it proposes, denoted by BD and BGC respectively.

'http://dblp.uni-trier.de/db/
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All programs are compiled by G++ 4.9.2. Experiments are conducted on a machine
running Linux and equipped with Xeon Processor E5-2620 and 128 GB main memory.
The index construction time spent by the methods is listed in Table 4.2. The index

should be constructed only once for each dataset.

Table 4.2: Index construction time in second.

| | CT | BD | BGC |
| Author [ 19 | 46 | 21 |

4.2 Space Consumption

We first test the space used for building the indexing structure. The space used on

every layer are listed in Table 4.3.

Table 4.3: Space consumption for index construction in MB.

| String Length | Letter Count | Reference String | Total |
| 0.00002 | 16851 | 78.86 | 247.38 |

4.3 Comparison with Other Approaches

In this section, we compare the results of our approach with others. Range and top-%

queries are evaluated in subsections 4.3.1 and 4.3.2 respectively.

4.3.1 Range Query

In Figure 4.1, we compare the average response time for range queries with different
thresholds on the author data from DBLP. The results show that our approach outper-
forms others significantly for small thresholds and is more efficient when thresholds are
smaller than 5. Complex-tree is more efficient than other approaches for small threshold

because its pruning power does not degrade with the change of level. When threshold is
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Figure 4.1: Average response time for range query.

small (1 and 2), Complex-tree can almost response queries immediately. Although the
strings to verify in Complex-tree expand faster than that in other approaches do, it keeps

its advantage for a long period.

4.3.2 Top-k Query
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Figure 4.2: Average response time for top-k query.

Figure 4.2 shows the average response time for top-k queries with different thresholds

on the author data from DBLP. From the result, we can find that Complex-tree bests other

20



approaches only when £ is less than 2. However, we argue that it is mainly caused by the
result strings that have large edit distance to query strings, which are usually meaningless

in many cases.
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Chapter 5

Conclusions and Future Work

In this chapter, we conclude what we achieve in this thesis in Section 5.1. We also
suggest some directions for future work, which make the approach more powerful and

practical.

5.1 Conclusions

In this thesis, we propose an indexing structure integrating different filtering methods
and algorithms using this structure to answer range queries and top-% queries. The exper-
imental results show that our approach outperforms others when the thresholds are small

enough.

5.2 Future Work

One direction to enhance our approach would be to integrate more powerful filtering
methods into the indexing structure. It could be either compatible to the present structure
or more powerful than an old filtering method used.

Another progress to make is to generalize the hash function mapping the alphabet into
another universe. The hash function in our implement supports only ASCII now. Making

it support Unicode enables the algorithm to deal with more datasets and be more practical.
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