
國立臺灣大學電機資訊學院電機工程學研究所

碩士論文

Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

以常識對安卓應用程式測試之技術與工具

Techniques and Tools for Android Application Testing with

Common Sense

羅元鴻

Yuan-Hong Lo

指導教授：王凡 博士

Advisor: Farn Wang, Ph.D.

中華民國 104 年 7 月

July, 2015

 i

誌謝

首先誠摯的感謝指導教授王凡博士，老師悉心的教導使我得以一窺軟體測試

領域的深奧，不時的討論並指點我正確的方向，使我在這些年中獲益匪淺。老師對

學問的嚴謹更是我輩學習的典範。

三年裡的日子，實驗室里共同的生活點滴，學術上的討論、言不及義的閒扯、

讓人又愛又怕的宵夜、趕作業的革命情感，感謝眾位學長姐、同學、學弟妹的共同

砥礪，各位的陪伴讓三年的研究生活變得絢麗多彩。

感謝實驗室助理段志奇先生不厭其煩的協助我進行實驗，並不時的提供使用

者角度上的建議、協助我改進整套實驗工具。

最後，謹以此文獻給我摯愛的家人，感謝他們在我背後默默的支持。

 ii

中文摘要

由於行動裝置應用市場的高度競爭，軟體測試逐漸成為一項不可或缺的流程。

作為介於程式開發者與使用者間的第三方測試者，在無法拿到程式源碼、正規或半

正規的規格、或是開發者所撰寫的基礎測試腳本，要對程式進行有效率的測試是非

常困難的。我們希望能提出系統化的方式，將人類對程式的理解應用在程式的測試

上。

為此我們創造了一個叫作「常識」的模型以人類對畫面與動作理解的概念來對

程式行為進行描述。為了統一並減少混淆，我們對各種類的應用程式定義了各自的

統一辭彙來描述程式的畫面與動作。又為了有效率的以人類的概念對程式行為賦

予意義，我們開發了一套圖型化使用者介面工具叫作「ＳｐｅｃＥｌｉｃｉｔｏｒ」

來輔助測試者建立「常識」模型。並且我們提出了兩個依據「常識」模型的演算法，

分別是針對測試案例的產生與測試案例的評估。在章節最後討論了我們對「常識」

模型在應用的最大目標與其可能所需要的技術。

關鍵字：常識、安卓、圖型化使用者介面測試、測試案例的產生、測試案例的

評估

 iii

ABSTRACT

Software testing becoming an inevitable process due to the highly competitive

market of the mobile applications. As a third party between an application developer and

customers, testing an application without source codes, formal or semi-formal

specification, or any testing scripts written by the developer is hard to be efficiency. We

want to find a systematic methodology testing an application by the human understanding

of the application.

We create a structure named “Common Sense” to model an application behavior

with human concepts, and define sets of normalized terms for many kinds of application

to descript concepts of screens and actions. To efficiently extract human concepts into a

common sense model, we develop a GUI tool called “SpecElicitor”. We also present

algorithms generating and evaluating test cases by using common sense models. In the

end, we discuss the ultimate objective and potential needs of techniques to achieve our

goal.

Keywords: common sense, Android application, GUI testing, test case generation,

test case evaluation.

 iv

CONTENTS

口試委員會審定書 ... #

誌謝 .. I

中文摘要 ... II

ABSTRACT .. III

CONTENTS ... IV

LIST OF FIGURES ... VII

LIST OF TABLES .. VIII

CHAPTER 1 INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Purpose .. 2

1.3 Organization ... 2

CHAPTER 2 RELATED WORK .. 3

CHAPTER 3 PRELIMINARIES .. 5

3.1 Graphical User Interface Testing .. 5

3.2 Specification‐based Testing ... 5

 v

3.3 Semantic Network .. 6

3.4 Event‐Flow Graph ... 7

3.5 Android Automated Testing Framework .. 8

CHAPTER 4 COMMON SENSE MODEL AND SPECELICITOR ... 10

4.1 Common Sense Model ... 10

4.2 Normalized Term ... 15

4.3 SpecElicitor .. 17

4.3.1 Screen and Action Abstraction .. 18

4.3.2 Iteration ... 22

CHAPTER 5 APPLICATIONS .. 25

5.1 Test Case Generation ... 25

5.1.1 Algorithm ... 25

5.2 Test Case Evaluation ... 26

5.2.1 Algorithm ... 27

CHAPTER 6 EXPERIMENTS .. 29

6.1 Application under Test ... 29

6.2 Normalized Term ... 30

6.3 Implementation ... 33

6.4 Result .. 34

 vi

CHAPTER 7 CONCLUSION .. 40

7.1 Summary ... 40

7.2 Limitation .. 40

7.3 Future Work .. 41

REFERENCE ... 43

 vii

LIST OF FIGURES

Figure 3.1 An example of a semantic network. ... 6

Figure 3.2 An event-flow graph for a part of MS WordPad. ... 7

Figure 3.3 An integration tree for a part of MS WordPad. ... 8

Figure 4.1 YouTube on Android ... 12

Figure 4.2 An example of a common sense model for nine applications 14

Figure 4.3 An application with Action Bar .. 16

Figure 4.4 SpecElicitor .. 18

Figure 4.5 Two different screens with a similar layout. ... 19

Figure 4.6 SpecElicitor ask for verdict .. 23

Figure 4.7 SpecElicitor ask for normalized terms of the screen 23

Figure 4.8 SpecElicitor ask for normalized terms of the action 24

Figure 6.1 A bug in Omnidroid .. 35

Figure 6.2 Action proportions of Natural Notes .. 36

Figure 6.3 Action proportions of Fo File Manager .. 37

Figure 6.4 A screen comparison of Fo File Manager ... 38

Figure 6.5 Unidentifiable screens of Fo File Manager .. 39

Figure 6.6 Unidentifiable screens of Natural Notes ... 39

 viii

LIST OF TABLES

Table 4.1 Attributes of actionable objects .. 21

Table 6.1 Applications under Test .. 30

Table 6.2 Normalized terms for all Android applications .. 31

Table 6.3 Normalized terms for “File Manager” .. 32

Table 6.4 Normalized terms for “Notepad” .. 33

Table 6.5 Normalized Terms for Omnidroid .. 33

Table 6.6 Result of Test Case Evaluation ... 34

 1

Chapter 1 Introduction

1.1 Motivation

Due to the highly competitive market of the mobile applications, an application need

to be as stable as it could before publishing. Otherwise, the application will rapidly fade

away in the market. There are many good applications with innovative ideas disappear

because of their poor stability. Therefore, software testing becoming an inevitable process

to ensure that an application is steady enough to show up to the public.

In practice, testing applications whether by manually operating mobile devices or

writing testing scripts are both labor-intensive. To reduce the cost for personnel expenses,

there are many algorithms and methodologies to tests applications automatically. For

example, Android provide a random test case generator called “Monkey”[1]. Many

studies are focusing on using a state machine to model an application and testing it by

covering some criteria like simple path coverage.

However, if a tester cannot acquire source codes, formal specification, semiformal

specification, or testing scripts written by the developer, it is not easy to test efficiently.

In our supposition, an application is designed to achieve its goals which means it has main

functionalities and optional features. The major parts of an application should be tested

in a higher priority to ensure a better user experience. However, it is hard to tests the

major parts automatically, because it is not easy to let a computer knows which

functionalities are more important than others without any human interventions. If we can

offer some information about the application like “What screen is it?”, “What action is

it?”, or “Is the screen correct?”, then it might help us in testing.

We want to find a way to test an application applying the understanding of an

application and use the understanding to automatically generate and evaluate test cases.

 2

Furthermore, we want to build a knowledge database storing human understandings to

enhance software testing.

1.2 Purpose

We present a systematic methodology to introduce abstract human concepts into a

graphical model. We develop a tool named “SpecElicitor” to help a tester efficiently

eliciting his/her knowledge of an application and using those knowledge to construct the

common sense model. With our common sense model, we can know what kind of

applications in what situations would do and should bring out what consequences. Based

on these information, we automatically produce test cases corresponding the distribution

in the model to strengthen the intensity of testing and evaluate the result of traces by using

our common sense model.

In our work, we focus on Android applications since Android take almost eighty

percent of the market share of smartphone operating system[2]. Moreover, there are some

basic testing tools can help us developing our techniques quickly.

1.3 Organization

The outline of this paper is narrated in following. Chapter 2 shows related works

including automatic test cases generation, GUI testing tools and techniques, Android

application testing, etc. Chapter 3 lists preliminaries which are our basic knowledge for

constructing our models and developing our tools. Our tools and techniques are depicted

in detail at Chapter 4, and applications are showing in Chapter 5. In Chapter 6, we present

experiments to show abilities of our works. At last we summarize our contributions,

problems we encountered, and future works to improve our tools and techniques.

 3

Chapter 2 Related Work

Most of Android applications are GUI programs and they are event-driven naturally,

the flows of programs are determined by user input or events which are triggered by other

processes or an operating system.

Atif Memon presents new coverage criteria for GUI testing by defining a structure

called “Event-Flow Graph”[3]. An event-flow graph represent a GUI program which

consists of events and relations between events. Then they propose a flexible and

extensible GUI testing tool named “GUITAR”[4]. Application developers and testers can

use GUITAR to customize toolchains, workflows, and measurement tools conducting

GUI testing. They also develop a testing tool for testing mobile applications named

“MobiGUITAR”[5].

There is a tool also aim to test Android applications called “Dynodroid”[6]. They

gather information of user and system events by instrumenting the framework of Android

and guide the next event by monitoring the reaction of the previous event.

A testing GUI framework is showing in[7]. They design a working process by

linking a tester, a test design library, and a test generation engine with standard

commercial capture/replay tools. A tester can use this framework to construct a graphical

model of the SUT, navigate the SUT, edit recorder test scripts, and modify test scenarios.

Sikuli[8] is a capture/replay tool based on computer vision. The tool can take a

picture from a part of an application as the component and then let user write scripts to

trigger the component by image pattern matching. In [9], it shows a GUI testing method

by using Sikuli. A tester can design visual test cases using images.

There are some researches about user behavior modeling, most of them are focusing

on web services. A study use probabilistic models for behavior modeling for Web

 4

users[10]. They introduce a maximum entropy based approach and a first order Markov

mixture based approach for learning behavior models and predicting user behaviors. A

study works on predicting user behavior over time[11]. They construct models of user

activities based on features of current and historical behaviors.

ADAutomation shows an enhanced event-flow graph by using UML activity

diagram to model user behavior on mobile applications[12]. They give meaning to the

activity diagrams and use the diagrams to test applications.

Model-based testing is an approach to automatically generate and execute test cases

based on a formal model that describes the application behavior [13]. By constructing the

model, it can generate application’s inputs. A model-based testing toolset called TEMA,

which reuses high-level models and tests interactions of applications to reveals robustness

issues among different smartphone platforms [14][15].

 5

Chapter 3 Preliminaries

3.1 Graphical User Interface Testing

GUI testing is a process to examine the graphical user interface conforming the

specification of the application. GUI testing can be both functional and non-functional

testing. (Functional testing is aiming to testing what the application does and non-

functional testing is dealing with how well the application does.)

GUI programs are naturally event-driven. It means the program is holding on a state

until some conditions has been satisfied. Functional GUI testing is trying to make sure

that events are handled usage. One difficulty of GUI testing is that some functionality of

the application only accomplished when a sequence of operations occur. It require lots of

labors to create test cases manually.

Because of the natural of GUI programs, which is designed with a beautiful

appearance and smooth operation to attract users, the layout, the colors, or the response

time are also important. Non-functional GUI testing evaluates these design elements to

let the application provides a great user experience.

3.2 Specification-based Testing

Specification-based testing is a minor topic of block-box testing. Black-box testing

exams the application without knowledge of internal implementations, but only considers

input values and output results. Because of lacking information of implementation, black-

box testing only concern about whether the application is executed properly or just

crashed at some circumstances.

Specification-based testing can be both functional testing and non-functional testing.

Specification-based testing is seeking for the application is acting the exactly behavior

 6

and doing efficiently as the requirements described. Generally, test cases of specification-

based testing are generated according specifications, requirements, and designs provided

by the application developer.

3.3 Semantic Network

A semantic network is a graphical structure used for knowledge representation. In

computer science, a semantic network often been used in studies of artificial intelligence.

A node of a network stands for an object, a concept, or a situation. An edge stands for the

relation between nodes. The relation can be “is-(a)”, “has-(a)”, “subset of”, etc. In other

words, it presents a concept by using other concepts. Figure 3.1 shows an example of a

semantic network.

Figure 3.1 An example of a semantic network.

https://en.wikipedia.org/?title=Semantic_network[16].

 7

3.4 Event-Flow Graph

An event-flow graph is a graphical structure to describe execution relationship

between GUI events. The model is proposed by Atif Memon in 2001[3]. Nodes represent

events, and edges represent the execution orders of events. An example of an event-flow

model is shown in Figure 3.2.

To fully describe a GUI application, they not only use an event-flow model, but also

define a structure called an integration tree. A node of integration tree represents a

component of the application, and an edge represents the relation of a component contains

a restricted-focus event that invokes another component. A restricted-focus event means

opening a modal window. An example is shown in Figure 3.3.

Figure 3.2 An event-flow graph for a part of MS WordPad.

Atif Memon, Mary Soffa, Martha Pollack, (2001) Coverage Criteria for GUI Testing,

Page 4[3].

 8

Figure 3.3 An integration tree for a part of MS WordPad.

Atif Memon, Mary Soffa, Martha Pollack, (2001) Coverage Criteria for GUI Testing,

Page 4[3].

3.5 Android Automated Testing Framework

To establish an efficient environment for developing testing tools and techniques for

Android applications, our laboratory create a powerful Android automated testing

Framework. Developers can easily program their algorithms for test case generation, test

case evaluation, or others by using the framework. The framework provides a dynamic

mechanism to generate test cases and perform the test cases on the fly. The decision of

the generation could refer the feedback of the previous test case. At the same time, the

framework build the automata of traces which is produced by performed test cases.

The framework interacts with Android devices through Android Debug Bridge [17]

and UIAutomator [18]. Those tools are developed by Android and have been widely used

in testing Android applications and devices.

The framework supports various functions like “Failure Detection” and

“Abstraction”. “Failure Detection” can exam the application under test is crashed or not.

“Abstraction” is used for filtering out redundant information of a screen. The reason why

a developer needs “Abstraction” is when there exist two screens with very similar layouts

 9

and the developer wants to treat them as a same screen. If the two screens are

“unabstracted”, they would be distinguished by string matching. However, after remove

unnecessary attributes of screens, those two screens would be seen as a same screen if the

abstraction is set-up properly.

Most of our tools and techniques are developed based on this framework. We use the

framework to create a GUI program for construct common sense models. Also, we use

the framework to design our test case generator and experiment on our works.

 10

Chapter 4 Common Sense Model and SpecElicitor

In this chapter, we introduce our common sense model and SpecElicitor in detail.

People expect same kind of applications will perform similar behaviors and get results

alike. We propose a systematic methodology to generalize those similar behaviors, which

is called “Common Sense”, by using normalized terms and develop a tool named

SpecElicitor helping testers construct a model represent the common sense of the

application under test without its specification.

A normalized term represent a concept of a screen or an action for an actionable

object in the screen of the application. A common sense model is a graphical model which

is integrated by normalized terms and relations between each other. SpecElicitor is a tool

extracting knowledge of the application by interacting with tester and using normalized

terms to endow the application human meanings.

In the beginning, a tester would learn miscellaneous information about the

application (e.g. what is this screen, what is this icon means). Later, the tester has gotten

the knowledge about the application, he/she has to list multiple normalized terms. Then

the tester tags the application through SpecElicitor. After the tagging process, tester builds

a common sense model integrated by normalized terms.

4.1 Common Sense Model

To bring human concepts to an application, we want to use a graphical structure to

present the meanings of screens and user actions. There are some structures serve for

representing concepts and relations between them. A semantic network is often used in

artificial intelligence. Traditional semantic networks emphasize the “is-a” relation

between concepts, in other words, to present a concept by other concepts. However, we

 11

do not need the “is-a” relation. We only focus on the meanings of the transition from one

screen to another screen by triggering an event. An example is shown in Figure 3.1.

Constructing an event-flow model is an option, too. Nevertheless, to present a

transition, we have to not only build an event-flow model to picture the execution flow

of events, but also construct an integration tree to form components of a GUI application.

Figure 3.2 and Figure 3.3 show an event-flow graph and an integration tree. There should

be a table to record which event in the event-flow graph can be triggered in which

component in the integration tree. The structure is a little bit complicated.

We define a graphical model to present meanings of GUI components and user

events of GUI applications. On a common sense model, each node stands for a concept

of screens and each edge stands for a concept of actions. The word “action” means a user

event. A concept for screens or actions can use for labeling with more than one screens

and actions. Likewise, a screen or an action can be tagged with multiple concepts.

An example is shown on Figure 4.1. This is YouTube on Android system. We can

see there is a video playing on the top of the screen and a playlist is below the video. In

this case, the tester may want to define a class named “Media Player” and labels this

screen with “Display Screen” and “Playlist”.

The information of an action includes action types (e.g. click, long-click, text, etc.),

action arguments (e.g. a coordinate for clicking and long-clicking, a string for texting,

etc.), and the actionable object which takes the action. Human comments are recording

whether this transition is pass or fail according to the opinion of the tester and reasons

why the transition is fail.

For every application under test, a tester tags it with concepts and builds a common

sense model. For multiple applications with same class, we can easily combine their

models into one big common sense model for the class. Because nodes and edges in

 12

common sense model is represented by concepts, combining models are simply adding

nodes and edges in each model to the new model.

Figure 4.1 YouTube on Android

Furthermore, we want to not only present the meanings in a common sense model,

but also show which screen or action is important than others. We use a variable called

the reference count of a screen or an action. The reference count of a node means for

every screen which been tagged with this concept has appeared. The reference count of

edges means there is a transition from one node to another node by doing the same action

on the same actionable object. If a node has a higher reference count, the concept of the

node would have been referred more times than other concepts.

 13

There are two factors affecting a reference count. To cover an application, we have

to explore the application as possible as we can. If a screen has many functional buttons,

the screen would appears many time.

It is possible that there will be more than one edge constructed for a single action.

For instance, Figure 4.1 shows that the application is playing a video and listing other

videos. This screen will be tagged with multiple concepts. If tester chooses the “Back”

button, this action will affect whole screen, both “Display Screen” and “Playlist”. Then

there will be two edges been constructed. One is from node represent “Display Screen”

and the other is from node represent “Playlist”. If tester chooses the stop button, there

will only construct one edge which is from node “Display Screen”. An action can be

tagged with multiple concepts, too. Because each edge only represent one concept, there

will be multiple edges been created.

Figure 4.2 shows an example of a common sense model. The equal sign shows the

reference count of a node or an edge. The darker a node is, the more referenced times it

has. The topmost node is represent the initial node of the graphical structure and labeled

with “<dummy>”. Because there might have multiple initial screens for one for more

applications, a dummy node helps us traverse the model slightly easily. The example is

combined with nine applications. Four of them are classified to “Notepad”, four of others

are classified to “File Manager”, and the last one is classified to both classes.

 14

Figure 4.2 An example of a common sense model for nine applications

 15

4.2 Normalized Term

We use a word or a term to express a concept for a screen or an action concretely.

The simplest way is using the string shown on the screen or the button. However, a screen

may not have a title or buttons in different applications have same functionalities but

using different words. For instance, buttons with “Compress”, “Create Zip”, and “Archive”

are used for create a compressed file. To reduce superfluous words or terms and avoid

ambiguous concepts, we must define a normalized term for each concept.

We define sets of classes and classify applications according its design purposes,

functionalities, or features into the classes. For each class we define normalized terms for

screens and actions in the screen.

For instance, we define a class called “Notepad”. In this class, there are normalized

terms for screens, e.g. “Note List” for the screen listing notes, “Note” for the screen

displaying the note, and “Delete Query” for the screen which is popping up a dialog to

verify user’s operation. And for actions, we defined “Create Note” for a button use to

create a note and let user editing the note, “Search” for searching notes, “Configure” for

entering the configuration page, etc.

There will be some normalized terms are generally for all kinds of application. For

example, “Configure” for actions and “Configuration” for screens would appear in many

application. Actually, Android even provide an API named PreferenceActivity that

developers can quickly setup a configuration page by using it. In this case, we defined a

general class of normalized terms. Terms in this class are describing concepts which is

for all Android applications.

Therefore, when the tester need to classify an application, he/she not only chooses a

class by application’s functionality but also chooses the general class. Furthermore, if an

 16

application is designed for many purpose which has lots of functionalities, the tester can

choose multiple classes in this situation.

There are some special terms for particular reasons. “<intermedia_screen>” is for

the screen which is for dedicated some menu screens, showing in Figure 4.3. Android

provide a delicate user interface layout API called Action Bar. When the screen of the

device is wider, buttons on the Action Bar will be displayed directly on the bar, showing

in left side of Figure 4.3. However, buttons might be putted in the menu which is on

leftmost of the Action Bar in a narrow screen, showing in right side of Figure 4.3. It

depends on number of buttons on the Action Bar, width of the resolution of the device,

and the developer’s design. For portability, we use “<intermedia_screen>” to describe the

menu in the Action Bar. Buttons in the menu will be treated as in the screen which

contains the Action Bar.

Figure 4.3 An application with Action Bar

 17

“Other” and “Other Screen” are using for describing some actions and screens that

cannot be described by other terms. If an application has some nontrivial feature, “Other”

and “Other Screen” may come in handy.

To present every concept in each type of class, we need to choose a sufficient number

of normalized terms. However, it will be inefficient and against our goal, finding same

pattern that across multiple applications, if we define too many normalized terms.

Deciding the accuracy of terms is a problem that can be trade-off.

4.3 SpecElicitor

We develop a tool called SpecElicitor to help testers to rapidly tagging test traces

and use tagged traces building a common sense model. The basic layout is shown in

Figure 4.4. SpecElicitor is a “middleman” between an Android device and a tester.

At first, a tester chooses application to test and starts SpecElicitor through our testing

framework developed by my colleague. SpecElicitor get a XML file for the layout and an

image file for the screenshot of the application then display on the GUI. Tester chooses

an action (e.g. click, long-click, swipe, etc.) for an actionable object and tags it with a

normalized term. SpecElicitor return the action to Our Android Testing framework and

wait for Our Android Testing framework performing the returned action on the Android

device. After the device finishing the action, Our Android Testing framework take a

snapshot of the screen, and pass a XML file and an image file to SpecElicitor. When the

tester want to stop tagging traces and end SpecElicitor, he/she presses the “Stop labeling”

button on SpecElicitor then SpecElicitor will tell our Android Testing framework to

terminate and release the Android device. SpecElicitor will loop many turns until all

screens has been tagged and the tester thinks it is enough.

 18

Figure 4.4 SpecElicitor

4.3.1 Screen and Action Abstraction

When applying a common sense model to generate or evaluate test cases, we expect

when we encountering a screen and doing an action, we would know the meaning of the

screen and the action. That means, we have to map the common sense model back to the

screens and actions. There will be some screens have similar layout and functionalities

that can be treated as same screen. So does actions. Even though we tagged a screen

before, as long as the layout XML file of a new screen is not exactly same as the tagged

one, the new screen will be treated as a different screen without tags. We using screen

abstraction which is a function supported by our Android Testing framework to solve this

 19

problem.

Screen abstraction has to be as precise as possible. If the abstraction is too abstract,

there will be some screens with different functions and design purposes been treated as a

same screen. An example is shown in Figure 4.5. The screen on the left is creating a file

and query for a file name. The screen on the right is renaming a file and query for a new

file name. People can clearly know that they are two different screens cause their

functionalities. Nevertheless, if the abstraction is configured too fuzzy, these two screen

will be treated as a same screen. The tester is unable to choose from normalized terms

from “Rename Query” and “Create Query” for these screens, because the screen on the

left side is “Create Query”, not “Rename Query”, vise versa.

Figure 4.5 Two different screens with a similar layout.

 20

Screen abstraction is hard to be generally configured. Not only since different

applications would have to use different configuration, but also there are some cases is

hard to distinguish whether screens are equal or not. For instance, Figure 4.5 shows two

different screen as mentioned before. However, if we do not take functionality for granted,

these screen can be treated as same screen.

Actionable objects would have same problems. Because objects in layout XML file

does not have a unique identifier for whole application, we can only exam attributes of

actionable objects and action type to guess the meaning of the action. For now we use

“resource-id”, “class”, “package”, “content-desc”, and “text” when class is

“android.widget.EditText” to identify actionable objects because they are more reliable

than the others. All attributes and their information are listed in Table 4.1.

 21

Table 4.1 Attributes of actionable objects

Attribute Type Description

index Integer Index for XML entry

text String Text showing on the object

resource‐id Integer Java class type of the object

package String Java package name of the object

content‐desc String Description of the object

checkable Boolean Flag showing whether the object is checkable

checked Boolean Flag showing whether the object is checked

clickable Boolean Flag showing whether the object is clickable

enabled Boolean Flag showing whether the object is enabled

focusable Boolean Flag showing whether the object is focusable

focused Boolean Flag showing whether the object is focused

scrollable Boolean Flag showing whether the object is scrollable

long‐clickable Boolean Flag showing whether the object is long-clickable

password Boolean Flag showing whether the object is a password

selected Boolean Flag showing whether the object is selected

bounds String Boundary of the object

 22

4.3.2 Iteration

As mentioned previously, a tester using SpecElicitor to generate traces and tag traces

on the fly. An iteration start with giving verdict of the last action, then determine and tag

current screen with one or more normalized terms. After tagging the screen, the tester

chooses an actionable object and chooses an action on the object to tag. All these

operations are performed through SpecElicitor.

At first, Our Android Testing framework will take a snapshot of the screen from

Android device. The snapshot contain many information, including the layout XML file,

the screenshot image file, memory dump, etc. For now, SpecElicitor only require the

layout XML file and the screenshot image file for letting the tester knowing the screen of

the Android device interacting with it.

In the beginning of an iteration, SpecElicitor pop-up a dialog asking tester to give

verdict value which is pass or fail. If the verdict is fail, tester can input the reason why it

fail to the text field. Figure 4.6 shows the GUI.

After the tester giving the verdict, SpecElicitor pop-up a dialog for asking what

normalized terms should be used to tag this screen. As showing in Figure 4.7, the tester

can select multiple normalized terms to describe the screen.

Then SpecElicitor wait for the tester to choose an object in the screen. The tester

choose an action on an object, is there is more than one action and one object. SpecElicitor

will pop-up a dialog for asking normalized terms to describe this action. The GUI is

shown in Figure 4.8.

 23

Figure 4.6 SpecElicitor ask for verdict

Figure 4.7 SpecElicitor ask for normalized terms of the screen

 24

 Figure 4.8 SpecElicitor ask for normalized terms of the action

 25

Chapter 5 Applications

5.1 Test Case Generation

As we mentioned in the motivation, we want to figure out which parts of the

application are important than others.

The weight of a screen or an action is the frequency that it appears in the process of

using SpecElicitor. When a tester uses SpecElicitor to give meanings for an application,

if a screen has many actionable objects in it, a tester should visit the screen many times.

And if an action would lead to a screen with many actionable objects, the action would

be also performed many times. Thus the weight in a single common sense model only

represent the frequency of appearances.

However, if lots of applications has a same action in a same screen, people might

consider the action is an important feature. So, we assume that by overlapping common

sense models, the weight of an action means the quantized value of the importance for

the action.

To testing an application with lacks of time and resources, the main functionalities

or important features should be tested more. We design an algorithm to increase the

strength of testing for relatively important parts of an application.

5.1.1 Algorithm

The method is randomly selecting next step like Monkey[1], but selecting from

weighted actions. The inputs of test case generation is the demanded trace length, the

common sense models which have same type with application under test, and the common

sense model of the AUT.

We overlapping common sense models including the model of AUT and initial

 26

program control variables in the beginning. To generate each step, we capture a snapshot

of the application at first. Then we identify the screen whether it has been graven a

meaning. If we cannot find the meaning of the screen, we randomly choose an action like

Monkey. Otherwise, we find actions in the screen and identify whether the screen has a

meaning and its weight of the meaning in the overlapped common sense model. We

collect these actions and their weight into a list, and randomly select an action from the

weighted list. The pseudocode is shown in below.

Algorithm 1: Test Case Generation
Input: model, modelList, traceLength
1. overlappedModel = Overlap(modelList);
2. traceStep = 0;
3. while traceStep less or equal than traceLength do:
4. screen = CaptureScreen();
5. state = AbstractScreen(screen);
6. stateLabel = model.FindLabel(state);
7. actionList = GetActions(state);
8. if stateLabel is not null then:
9. weightedActionList = [];
10. foreach action in actionList do:
11. actionLabel = model.FindLabel(action);
12. actionWeight = model.GetWeight(action);
13. weightedActionList.append((action, actionWeight));
14. end
15. action = WeightedRandomChoose(weightedActionList);
16. end
17. else:
18. action = RandomChoose(actionList);
19. end
20. PerformAction(action);
21. traceStep += 1;
22. end

5.2 Test Case Evaluation

We use a common sense model to form the behavior of an application. So we can

check whether the trace complies with the model to verify whether every transitions meet

the behavior of the application. If a transition does not meet the model, it might be caused

 27

by a bug or a defect of the model. Also we record a verdict in a common sense model for

every transitions when a tester using SpecElicitor. A trace contains a transition complying

with the model but the verdict of the transition is “Fail” would be evaluated a fail trace.

If a transition contain an unidentifiable screen or an unidentifiable action, it will be

reported to the tester.

5.2.1 Algorithm

The input of test case evaluation is the model of the application and a trace generated

by any test case generation algorithm. We initialize the label of the previous action and

screen to null and the trace step to zero.

To verify each transition, we find the screen of the current step of the trace, and

identify the screen to get the meanings of the screen. If the labels of the screen cannot be

figure out, it will be reported to the tester. It will be reported when the labels of the current

screen is “Crash”. Then we identify the previous screen and action, too. If the labels of

the previous screen and action is null, it will be reported.

After we get the labels of the previous screen, the previous action, and the current

screen, we check whether the transition exists in the model. If the transition does not exist

or the verdict of the transition is “Fail”, it will be shown on the report. Followings are the

pseudocode of our test case evaluation.

 28

Algorithm 2: Test Case Evaluation
Input: model, trace
1. traceStep = 0;
2. preActionLabel = null;
3. preScreenLabel = null;
4. while traceStep less or equal Length(trace) do:
5. screen = GetScreen(trace, traceStep);
6. state = AbstractScreen(screen);
7. curScreenLabel = model.FindLabel(state);
8. if curScreenLabel is null then:
9. ReportError(trace, traceStep, “Unidentifiable Screen”);
10. traceStep += 1;
11. end
12. if curScreenLabel is “Crash” then:
13. ReportError(trace, traceStep, “Crash”);
14. traceStep += 1;
15. end
16. if preActionLabel is null and traceStep not equal zero then:
17. ReportError(trace, traceStep, “Unidentifiable Action”);
18. traceStep += 1;
19. end
20. else:
21. if preScreenLabel is not null then:
22. verdict = model.GetVerdict(preScreenLabel,

 preActionLabel,
 curScreenLabel);

23. if verdict is null then:
24. ReportError(trace, traceStep, “No Verdict”);
25. traceStep += 1;
26. end
27. if verdict is “Fail” then:
28. ReportError(trace, traceStep, “Fail”);
29. traceStep += 1;
30. end
31. end
32. end
33. action = GetAction(trace, traceStep);
34. preActionLabel = model.FindLabel(action);
35. preScreenLabel = curScreenLabel;
36. traceStep += 1;
37. end

 29

Chapter 6 Experiments

To show the ability of our common sense model and the algorithm for test case

generation, we choose three applications and define three classes of normalized terms.

We investigate three issues:

1. The results of evaluating traces generated by our test case generator.

2. The proportions of actions in traces produced by our algorithm are in accordance with

the distribution of the weights of the actions.

3. The appearance times of unlabeled screens.

We generate test cases by using our algorithm mentioned in Section 5.1, and evaluate

these traces as we described in Section 5.2. For each application, we run a hundred traces

for each application and twenty steps for each trace.

6.1 Application under Test

We download eight applications from Google Play. Four of them are classified to

“Notepad”, and others are classified to “File Manager”. We choose two applications in

each class type, and the others are used for constructing our common sense database.

We also choose an application named “Omnidroid”[19], which is an open source

project. Omnidroid is an automated event manager make users to automate system

functions.

All of applications are listed in Table 6.1. The names of applications are similar, so

we use package name to identify each other. The italics in Table 4.1 are the applications

using in the experiments.

 30

Table 6.1 Applications under Test

Application Class

1 MiniNote Notepad

2 Natural Notes Notepad

3 Ultimate Notepad Notepad

4 My Notes – Notepad Notepad

5 ES 檔案瀏覽器 File Manager

6 Fo File Manager File Manager

7 File Manager File Manager

8 Root Explorer File Manager

9 Omnidroid *Omnidroid

6.2 Normalized Term

We define four sets of normalized terms for general applications, “Notepad”, “File

Manager”, and a special set for Omnidroid. For applications classified with “Notepad”,

we use normalized terms of general applications and “Notepad” to present their concepts.

For applications classified with “File Manager”, we apply normalized terms of general

applications and “File Manager”. For the application classified with both “Notepad” and

“File Manager”, we employ all four sets of normalized terms. The four sets of normalized

terms are listed in Table 6.2, Table 6.3, , and Table 6.5.

 31

Table 6.2 Normalized terms for all Android applications

For screens For actions

1 <intermediate_screen> <intermediate>

2 Drawer Yes_and_leave_screen

3 Configuration_screen No_and_leave_screen

4 APP_information_screen Enter_screen

5 Other_screen Leave_screen

6 Other_app Enter_app

7 Crash Leave_app

8 Open_drawer

9 Close_drawer

10 Change_tab

11 New_tab

12 Close_tab

13 Configure

14 APP_information

15 Select_text_field

16 Others

 32

Table 6.3 Normalized terms for “File Manager”

For screens For actions

1 Folder Change_folder

2 Create_query Open_file

3 Search_query Create_file

4 Compress_query Create_folder

5 Delete_query Search_file_or_folder

6 Rename_query Select_all

7 Copy_query Select_file_or_folder

8 Cut_query Deselect

9 Paste_query Compress_file_or_folder

10 Move_query Delete_file_or_folder

11 Bookmark_screen Rename_file_or_folder

12 Item_information Copy_file_or_folder

13 Cut_file_or_folder

14 Paste_file_or_folder

15 Move_file_or_folder

16 Refresh

17 Bookmark

18 Item_information

 33

Table 6.4 Normalized terms for “Notepad”

For screens For actions

1 Note Save_note

2 Note_list Create_note

3 Save_query Open_note

4 Delete_query Edit_note

5 Search_query Delete_note

6 Note_information Search_note

7 Send_note

8 Note_information

Table 6.5 Normalized Terms for Omnidroid

For screens For actions

1 Main Create_rule

2 Event_list Select_event

3 Event_screen Add_filter

4 Option_list Add_action

5 Filter_setting Select_option

6 Rule_list View_rules

7 Log_screen View_log

6.3 Implementation

Our tools and techniques are developed based on our Android testing framework

which is introduced in Section 3.5. We program our tools and algorithms with Python

 34

3.4.3 and use wxPython Phoenix for constructing graphical user interfaces.

Our programs can be executed on every operating systems supported Python and

wxPython. We executed SpecElicitor and created common sense models on Windows 7

and Ubuntu 14.04. Then we generate test cases on Windows 7. We use a virtual device[20]

and HTC Desire 820[21] through our experiments.

6.4 Result

We did not find any bugs neither in Natural Notes nor Fo File Manager, but we found

twelve crashes in Omnidroid. Results are listed in Table 6.6. The reason why Omnidroid

has twelve crashes is triggered by clicking a button showing in Figure 6.1.

Table 6.6 Result of Test Case Evaluation

AUT Total

Traces

Crash Failed

Transition

Invalid

Transition

Total Bugs

Natural Notes 100 0 0 0 0

Fo File

Manager

100 0 0 0 0

Omnidroid 100 12 0 0 12

 35

Figure 6.1 A bug in Omnidroid

We show the porportions of actions in Figure 6.2 and 錯誤! 找不到參照來源。.

The ordinate lists actions concating with the screen which the action is triggered at, and

the abscissa shows the percentage of an action. For example, at the screen with label

“Search_query” in Natural Notes, we can do “leave_screen”, “text”, “back”, or “enter”.

The test case generator randomly choose an action from these four actions by their weight.

So the summation of the percentage for the four actions is one hundred percent. We can

see that most of proportions of actions will be similar with the proportions in the model.

However, in Fo File Manager, we can see that there is an action “Change_folder” in screen

“Folder” has been triggered more times then other actions. The reason is there are many

differet screens are labeled with “Folder”, but some screens may not contain actions like

 36

“Create_Folder” or “Back”. Therefore the test case generator can only perform other

actions. Figure 6.4 shows an example of two screens both are labeled with “Folder”. The

left screen is does not have a button to create folder.

Figure 6.2 Action proportions of Natural Notes

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

<intermediate_screen>/<back>

<intermediate_screen>/APP_information

<intermediate_screen>/Configure

<intermediate_screen>/Others

APP_Information/<back>

APP_Information/Leave_screen

Configuration_screen/<back>

Configuration_screen/Leave_screen

Note/<back>

Note/<text>

Note/Leave_screen

Note/Save_note

Note/Select_text_field

Note_list/<back>

Note_list/<intermediate>

Note_list/Create_note

Note_list/Leave_screen

Note_list/Search_note

Save_query/No_and_leave_screen

Save_query/Yes_and_leave_screen

Search_query/<back>

Search_query/<enter>

Search_query/<text>

Search_query/Leave_screen

Natural Notes

Overlapped Model Trace

 37

Figure 6.3 Action proportions of Fo File Manager

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Folder/<back>

Folder/Change_folder

Folder/Create_folder

Folder/Leave_app

Folder/Others

Folder/Search_file_or_folder

Search_query/<back>

Search_query/<text>

Search_query/No_and_leave_screen

Search_query/Search_file_or_folder

Search_query/Yes_and_leave_screen

Create_query/<back>

Create_query/<text>

Create_query/Create_folder

Create_query/No_and_leave_screen

Create_query/Yes_and_leave_screen

Fo File Manager

Overlapped Model Trace

 38

Figure 6.4 A screen comparison of Fo File Manager

At last, as we mentioned in introducing SpecElicitor, test case generation, and test

case evaluation, identifying a screen or an action is a basic but important function in our

works. Currently, we use abstraction to filter out redundant information of a screen and

actionable objects, then compare the rests to identify a screen or an action. Nevertheless,

if an application frequently changes its layout, abstraction might not be able to abstract

every similar screens into one abstracted screen. For instance, Fo File Manager has

various layouts, so there are almost fifty percent of steps are chosen randomly, since a

screen cannot be identified. Layouts of Natural Notes are more simple than Fo File

Manager, there are only five percent of actions are chosen randomly. Figure 6.5and Figure

6.6 show the results of Natural Notes and Fo File Manager. The ordinate is a number of

 39

cumulated steps or actions choosed randomly. The abscissa is a number of traces.

Figure 6.5 Unidentifiable screens of Fo File Manager

Figure 6.6 Unidentifiable screens of Natural Notes

0

500

1000

1500

2000

1 11 21 31 41 51 61 71 81 91

Trace

Fo File Manager

Cumulated Steps Random Action

0

500

1000

1500

2000

1 11 21 31 41 51 61 71 81 91

Trace

Natural Notes

Cumulated Steps Random Action

 40

Chapter 7 Conclusion

7.1 Summary

We define a new graphical structure to model an application. By using sets of

normalized terms, we give descriptions for each screen and action in an application then

use the transition from a screen to another screen to form the program behavior. Based on

human understanding of the normalized terms and the application, we call the new

graphical structure “Common Sense” model.

To elicit the human common sense of an application, we develop a GUI tool. The

tool is a middle man between a tester and an application. By interacting with the tester,

SpecElicitor construct the common sense model step by step for each operation.

SpecElicitor produces a common sense model to model the behaviors that the tester

performed in the end.

According to our assumption, we find important features of a type of application by

overlapping their common sense models. To test these important feature in higher

intensity, we design an algorithm by randomly selecting weighted actions. We also design

a test case generator output test cases following the algorithm and a test case executor

runs these test cases and produce a test report. The test report contain not only the result

of running test cases, but also a simple evaluation according to whether the traces are

passed, failed, or indicating that our common sense model is inadequately to model the

application.

7.2 Limitation

The meaning of a word might be various for different persons. So either defining

normalized terms or using them could be ambiguous. If the common sense models of a

 41

kind of applications are built by different testers, the overlapped model of these models

will be meaningless in worst. Moreover, if a tester chooses a wrong term to describe a

screen or an action, it will cause the same circumstance. So labor training and fault

tolerance would becoming a problem.

Another limitation is identification of screens and actions. We use abstraction to

filter out redundant information and comparing remain for now. Nevertheless, if a screen

has a very slightly difference and cannot be gotten rid of by abstraction, the screen would

be treat as a new, different screen. This will acquire more labor works to give meanings

to the screen and actions.

7.3 Future Work

One of future works is trying to make SpecElicitor more powerful and efficiency.

For now there are some technical problems could not be solved. For instance, scrolling

the Android device is one of the problems. We can perform a user input through ADB[17]

as touching down at one position, moving to another position in a predefined number of

seconds, then lifting the finger. However, the scrolling distance in the application is

considering the speed of moving. It is not easy to set a suitable number for the time of

moving. Therefore we do not support the scrolling action in SpecElicitor. It would let

SpecElicitor skip some functionalities and build an incomplete common sense model.

Let the user of SpecElicitor can alter the normalized terms of a labeled screen or

action can reduce wastes of labors. It is nearly impossible to ensure that two snapshots

between sequences of user input have equal status. Because internal changes may not be

revealed in the screen. That makes re-doing an action being more complicated. If a user

chooses normalized terms mistakenly and SpecElicitor has no mechanism for

 42

modification, the common sense model will contain incorrect concepts. A modification

mechanism can help users prevent producing a wrong common sense model and re-

labeling the application intermediately.

Another improvable component is usages of our common sense database. Because

we already get the meanings for each screen and action, we might be able to make a

sequence of transition meaningful, too. Then use skills of data mine to find the valuable

sequences of transition which might be able to correspond user behavior in real-life. For

example, a process for “Login” consist of many user inputs and different screens. To

successfully login an account, it has to input specific sequence of actions. The sequence

would be a critical function in applications containing “Login” feature.

Our ultimate goal of using common sense models is automatically or semi-

automatically identification applications. For example, we know the type “Notepad” has

“Note”, “Note List” for screens. If there is a new application, we can simply set the type

of the application as “Notepad”. There will be an algorithm automatically identify which

screen is “Note” and which screen is “Note List”. And we can test the application based

on common sense without any intervention from labors. It may require knowledge of

machine learning, natural language processing, and computer vision.

 43

REFERENCE

[1] “UI/Application Exerciser Monkey.” [Online]. Available:

http://developer.android.com/tools/help/monkey.html.

[2] D. Olenick, “Apple iOS And Google Android Smartphone Market share Flattening:

IDC,” 2015. [Online]. Available:

http://www.forbes.com/sites/dougolenick/2015/05/27/apple-ios-and-google-

android-smartphone-market-share-flattening-idc/.

[3] A. M. Memon, M. Lou Soffa, and M. E. Pollack, “Coverage criteria for GUI

testing,” ACM SIGSOFT Softw. Eng. Notes, vol. 26, no. 5, p. 256, 2001.

[4] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “GUITAR: An innovative

tool for automated testing of GUI-driven software,” Autom. Softw. Eng., vol. 21,

no. 1, pp. 65–105, 2014.

[5] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. Ta, and A. Memon,

“MobiGUITAR -- A Tool for Automated Model-Based Testing of Mobile Apps,”

IEEE Softw., pp. 1–1, 2014.

[6] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: an input generation system for

Android apps,” Proc. 2013 9th Jt. Meet. Found. Softw. Eng. - ESEC/FSE 2013, p.

224, 2013.

[7] T. Ostrand, A. Anodide, H. Foster, and T. Goradia, “A visual test development

environment for GUI systems,” ACM SIGSOFT Softw. Eng. Notes, vol. 23, no. 2,

pp. 82–92, 1998.

[8] “Sikuli.” [Online]. Available: http://www.sikuli.org/.

[9] T.-H. Chang, T. Yeh, and R. C. Miller, “GUI testing using computer vision,” Proc.

28th Int. Conf. Hum. factors Comput. Syst., no. Figure 1, pp. 1535–1544, 2010.

 44

[10] E. Manavoglu, T. Building, and C. L. Giles, “Probabilistic User Behavior Models,”

2003.

[11] K. Radinsky, K. Svore, S. Dumais, J. Teevan, A. Bocharov, and E. Horvitz,

“Modeling and predicting behavioral dynamics on the web,” Proc. 21st Int. Conf.

World Wide Web - WWW ’12, p. 599, 2012.

[12] A. Li, Z. Qin, M. Chen, and J. Liu, “ADAutomation : An Activity Diagram Based

Automated GUI Testing Framework for Smartphone Applications,” IEEE Int. Conf.

Softw. Secur. Reliab., pp. 68–77, 2014.

[13] M. Utting, A. Pretschner, and B. Legeard, “A Taxonomy of Model-Based Testing,”

no. April, pp. 1–18, 2006.

[14] “TEMA.” [Online]. Available: http://tema.cs.tut.fi/index.html.

[15] T. Takala, M. Katara, and J. Harty, “Experiences of system-level model-based GUI

testing of an android application,” Proc. - 4th IEEE Int. Conf. Softw. Testing, Verif.

Validation, ICST 2011, pp. 377–386, 2011.

[16] “Semantic Network - Wikipedia.” .

[17] “Android Debug Bridge.” [Online]. Available:

http://developer.android.com/tools/help/adb.html.

[18] “UIAutomator.” [Online]. Available: https://developer.android.com/tools/testing-

support-library/index.html#UIAutomator.

[19] “Omnidroid.” [Online]. Available: https://code.google.com/p/omnidroid/.

[20] “Genymotion.” [Online]. Available: https://www.genymotion.com/.

[21] “HTC Desire 820.” [Online]. Available: http://www.htc.com/tw/smartphones/htc-

desire-820-dual-sim/.

