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Abstract

Let G be a simple finite graph with n vertices and m edges. A labeling
of G is a bijection from the set of edges to the set {1,2,--- ,m} of integers.
Given a labeling of GG, for each vertex, its vertex sum is defined to be the sum
of labels of all edges incident to it. If all vertices have distinct vertex sums,
we call this labeling antimagic. Suppose f is an antimagic labeling of GG, and
for any two vertices u, v with deg(u) < deg(v), if vertex sum of u is strictly
less than vertex sum of v, then we say f is a strongly antimagic labeling of GG.
Furthermore, a graph G is said to be (strongly) antimagic if it has (a strongly)
an antimagic labeling.

The concept of antimagic labeling was first introduced by Hartsfield and
Ringel. In their book, they not only proved that some graphs such as cycles,
paths, wheels, complete graphs etc are antimagic, but also conjectured that all
connected graphs other than K are antimagic. In the past years, graphs with
some restriction were gradually poven to be antimagic, but this conjecture is
still widely open.

In this thesis, we restrict our graphs to spiders, which is a graph with a
core and at least three legs, each leg contains some edges. Since all spiders
have already been proven to be antimagic, we will prove a stronger result here,
that is, all spiders are strongly antimagic. In the last chapter, we will discuss
whether some variation of spiders are antimagic or not.

Keywords: antimagic, strongly antimagic, labeling, spider.
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Chapter 1

Introduction

All graphs in this thesis are finite, undirected, and simple. A labeling of a graph G
is a bijection f from E(G) to the set {1,2,...,|E(G)|}. Given a graph G, the vertex sum
of a vertex v € V(@) is the sum of all labels of edges incident to v. An antimagic labeling
of G is a labeling f such that for any two distinct z, y € V(G), vertex sums of x and y are

different. i.e.

for any x # y in V(G), where E(x) := {e € E(G)| e is incident to x}. Hartsfield and
Ringel [7] first introduced the concept of antimagic labeling of graphs in 1990. They
proved that some special families of graphs, such as paths, cycles, complete graphs, are

antimagic, and put forth the following conjecture:
Conjecture 1.1. Every connected graph other than K, is antimagic.

This conjecture received a lot of attention but is still widely open. The most significant
progress is a result by Alon et al. [2]. They proved that a graph G with minimum degree
d(G) > ClogV(G) (for an absolute constant C') or with maximum degree A(G) >
|V (G)| — 2 is antimagic. In the same paper, they also proved that complete partite graph
other than K is antimagic. In 1999, Alon [1] introduced an algebraic theorem to prove
some combinatorial problems. The so called “Combinatorial Nullstellensatz” was used

in [8, 9] to study antimagic labeling of graphs. Hefetz et al. [9] used this algebraic tool
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to prove that a graph which has p*, p is an odd prime, vertices and admits.a Cp;factor
is antimagic. The problem seems to be a little easier if we reduce the case to=bipartite
graphs. In 2009, Cranston [4] proved that regular bipartite graphs are antir.:n_;ag‘i'c. Few
years later, he put forth the result to general regular graphs of odd degree, it 1s:a joint Wérk
with Liang and Zhu [5]. In Liang’s doctoral dissertation [11], he introduced a concept
to prove that regular graphs of even degree are antimagic. However, there are still some
problems unsolved. But fortunately, his team completed the whole proof this year [3].

Hence antimagicness of regular graphs is wholly completed.

The following conjecture is just the restriction of Conjecture 1.1 to trees.
Conjecture 1.2. Every tree other than K, is antimagic.

The most significant progress of Conjecture 1.2 was obtained by Kaplan, Lev and
Roditty [10]. They proved that a tree with at most one vertex of deg 2 is antimagic. Their
method is zero-sum partitions, which is a partition of integers into pairwise disjoint subsets
such that elements in the same subset sum up to zero modulo n, for some natural number
n. However, their proof contains an error. In 2014, Liang et al. [12] corrected this error
and used a similar technique to find out that some classes of trees are antimagic.

In the study of antimagic labeling of graphs, Hefetz [8] also introduced the concept
of (w, k)-antimagic labeling of graphs, where w is a weight function and £ is a non-
negative integer. A weight function w : V(G) — N is a function from V(G) to a set
of natural numbers. A (w, k)-antimagic labeling is an injection from E(G) to the set
{1,2,3,...,|E(G)| + k} such that all vertex sums are pairwise distinct, where vertex sum
is the sum of labels of all edges incident to that vertex and its initial weight assigned by w.
For any given w, Wong and Zhu [14] proved that a graph which has a vertex adjacent to all
the other ones is (w, 2)-antimagic, the tool they used is the Combinatorial Nullstellensatz,
which was also used to prove that a connected graph on n > 3 vertices is (w, [2!] — 2)-
antimagic for any weight function w.

For more concept of graph labeling and open problems, see the survey by Gallian [6].

In this thesis, we want to prove a special family of graphs being antimagic. A spider

is formed from the disjoint union of some paths by identifying one endpoint of each path,
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called the core of the spider. These paths are called legs of a spider. A spider.is saidhto’be
regular if all legs have the same length. Note that a spider with at most 2 legs'is-a|path,
and a regular spider with each leg of length 1 is a star. |

In Chapter 2, we will prove that regular spiders and some variations are antimégic
by designing truly antimagic labelings. In Chapter 3, we first introduce the concept of

strongly antimagicness, and use it to rewrite the proof of Shang [13]. In Chapter 4, we

will discuss whether some variations of spiders are antimagic or not.



Chapter 2

Regular spiders are antimagic

Theorem 2.1. Regular spiders except Ko are antimagic.

Proof. Let S be aspider which has n legs ry, 7o, ..., 7, ,eachhaslength k. Foreachr;, ¢ =
1,2,...,n, label the edges from outside to the core by i,n + i,2n +4,...,k(n — 1) + 4.
Then vertex sums of this spiderare 1,2,....n,n+2,n+4,...,3n,3n+2,3n+4, ...,
(2k — 1)n, w Since all vertices have different vertex sums, the labeling is an-

timagic. |

Suppose that GG is a graph with m edges, n + 1 vertices, and one of which is adjacent
to all the other vertices, i.e. an universal vertex, then it is straightforward to see that G
is antimagic. Let v be an universal vertex of G, ey, es, - - - , €, be the edges incident to v,
and vy, vy, - - - , v, be other endvertices. First weuse 1,2, --- ,m — n to label the edges of
GG which aren’t incident to v, and let f be a mapping from V' (G) to N, which denotes the
vertex sums of every vertex at this moment. Without loss of generality, we may assume
that f(v;) < f(v;), for i < j. Then for ey, ey, - ,e,, give e; the label m — n + k,
k=1,2,--- ,n. Therefore the vertex sums of G are f(vy) +m—n+1, f(ve) +m—n+

2,---, f(vp)+m,and %,since f(vp)+m < (m—n+1)+(m—n+2)+---+m =

n(2m—n+1)

5 , G 1s antimagic.

By playing a similar trick we can prove the following corollary:

Corollary 2.2. Suppose G is an n-vertices graph without isolated vertices. For each



vertex v € V(Q), if we attach a path of length k to v, then the resulted graph'G' isyalso

antimagic. =

G G’

Figure 2.1: Example of G and G', n =5, k = 4.

Proof. Suppose GG’ is the graph described as in the theorem. Divide GG’ into 2 parts: spider
part and core part. Suppose furthermore that the spider part has n legs, each has length £.
We have to label G’ by {1,2,...,|E(G")|}. First, label the spider part with {1,2, ..., kn},
by the method shown in the proof of Theorem 2.1. Then label the core part with {kn + 1,

kn+2,...,|E(G")|} arbitrarily, and denote the vertices by vy, va, . .. , v, satisfying:

For distinct ¢ < j, vertex sum of v; is less or equal to v;.

Now attach v; to the leg with the last edge labeled by (K — 1)n + i. Then the vertex sums
of vy, vy, ..., v, form a strictly increasing sequence. Since there’s no isolated vertex in
the core part, degree of vy, vo, . .., v, are all greater than 2, vertex sums of vy, vy, ..., v,
are greater than those of vertices of the spider part. By Theorem 2.1, the spider part with

that labeling is antimagic. Therefore, G’ is antimagic. |

Let GG be a graph with no isolated vertex and .S be any spider. Construct a new graph
G’ by attaching the core of S to each vertex of GG. By a similar trick played in the proof

of Corollary 2.2, we can find an antimagic labeling of G’.
Theorem 2.3. If G,G’, S are defined as above, then G' is antimagic.

Proof. Suppose G has n vertices and m deges, and S has £ legs with lengths rq, 7o, - - -,

), in increasing order. Divide G’ into two parts: G and spider part, where the spider
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Figure 2.2: G’ and GG

part contains n spiders, denoted by Si, S, - -, S,. First we label the spider part with
{1,2,--- ,n|E(S)|}, and for each spider, label first the r;-outermost edges of all legs
with {1,2,--- ,rnk}. For S;, label the outermost edges of all legs from the shortest to
the longest by (i — 1)k + 1, (i — 1)k + 2, - - - , ik, then the next edges by nk + (i — 1)k +
I,nk+ (i—1)k+2,--- ,nk+ 2ik, and so on. After the r;-outermost edges are finished,
ignore them and see all spiders as all their legs are cutted by r; edges. (i.e. Spiders with
k — 1 legs, and lengths are o — 1,73 — r1,--- , 7% — 71.) Repeat the same thing on the
(ro — 11) - outermost edges with {rink + 1,rink +2,--- ,rink + n(re — r)(k — 1)}.
Repeat the process until all legs are labeled.

Next label G with {n|E(S)| + 1,n|E(S)| + 2, - ,|E(G)|} arbitrarily, and without
loss of generality, we may assume that vertices of GG are named by vy, vs, - - - , v,, Where
v; has the i-th smallest vertex sum among all vertices of G. Then attach the core of S; to
v;, a labeling of G’ is constructed. We still have to check that this labeling is antimagic.

For all vertices of V(G’) — V(G), observe that by the above construction all vertices
could be ordered so that their vertex sums are strictly monotone increasing, and have
strictly smaller vertex sums than any vertex of V' (G), since each v € V(&) is incident to
an edge which is labeled with one of the largest numbers. Finally, since 5; is attached to v;,

the all cores of S1, .S, - - - , S, have mutually distinct vertex sums, hence G’ is antimagic.ll



Figure 2.3: An example for theorem 2.3.



Chapter 3

General spiders are antimagic

In this chapter, we want to prove our main result, that is, all spiders except K are
antimagic. Actually, Shang [13] has already proven this result. Her technique is simple
and direct. For a specific spider other than K, she assigns it a labeling, and adjusts some
edge labels if necessary to make it antimagic. The labeling looks similar to the one we
used for regular spiders.

Our approach is quite different. We first introduce the concept of strongly antimagic
labeling, which is also an antimaigc labeling and for any two distinct vertices u, v with
deg(u) < deg(v), vertex sum of u is strictly less than vertex sum of v. Then we use
induction hypothesis to prove that all spiders except K are strongly antimagic, and hence
antimagic.

With the concept of strongly antimagicness, we first rewrite the proof of theorem 2.1

as follows:
Theorem 3.1. Regular spiders except Ko are strongly antimagic.

Proof. We prove the theorem by induction on the length of legs. Suppose that S is a
regular spider with & legs. When all legs have length 1, the spider is a star, and it is clearly
strongly antimagic. Suppose that a regular spider whose legs are all of length n has a
strongly antimagic labeling. Now, for a spider G with all its legs of length n + 1, we may
first delete the outermost edges of each legs, the remaining graph is a spider which legs

are all of length n. So by the induction hypothesis, it has a strongly antimagic labeling f.



Then construct a new labeling f’ by adding £ to the labels of each edge. By the’defmition
of strongly antimagicness, since degrees of the outest vertices are the smallest) the vertex
sums are still the smallest after adding n to all edges. Finally, since we havc-to.i'recover
G to a spider with length of legs n + 1 by sticking one more edge to each.legs at-the
outermost, we label the outermost edges by {1,2,..., k} by the method satisfying: for
1 =1,2,...,k, label the edge + when this edge is adjacent to a vertex whose vertex sum
is the sth smallest under the labeling f’. Then the new labeling is still strongly antimagic.

Hence all regular spiders are strongly antimagic. [
Theorem 3.2. A spider with at least two edges is strongly antimagic.

Proof. We will prove the theorem by induction on |E(G)|. For all spiders except K5, we
divide all spiders into three different cases according to the number of legs with length at
least 2. Case 1 consists of spiders with exactly one leg of length at least 2, Case 2 contains
spiders with exactly two legs of length at least 2, and Case 3 are spiders with at least 3

legs of length greater than 2.

) e N\
%

(a) Case 1 (b) Case 2 (c) Case 3

Figure 3.1: Classify all spiders due to the number of their legs of length at least 2.

This classification is based on the induction hypothesis, during which we delete each
leg one edge. After deleting each leg one edge, the degrees of the core are 1, 2 ,and at
least 3 respectively in the above three cases.

Now, given a spider S with k legs of length ry, 75, ... 7%, K > 2. For convenience
assume r; < rg < - - < 1.

Construct a new spider S’ by deleting each leg 1 edge, then S’ has k legs with length
™, Thy . T Where i = 1r; — 1,4 = 1,2, ..., n, note that some r;s may be zero. There

are 3 possible cases for S’ as we discussed above.



NN

(a) Case 1 (b) Case 2 (c) Case 3

Figure 3.2: Spiders whose outermost edges are cut.

Actually, Cases 1 and 2 are primitive cases of all spiders, so they should be discussed
seperately. Hence we prove Case 3 at first. By the induction hypothesis, there is a strongly
antimagic Labeling L' of S" using labels 1, 2,3, ..., |E(S")| = |E(S)|—k. For each leg of
S’, denote the outermost edge €}, €5, ..., e). Letiy,ig, ..., i, € {1,2,...,h} be indices
suchthat L'(ej, ) < L'(e],) < --- < L'(ej, ). Now come back to S, lete;, j € {1,2,...,h}
be the edges adjacent to €; , j € {1,2,...,h}, and €p41, €nta, . . ., €4 be legs of S with
exactly one edge. For convenience, denote the endpoints of e; by u;, v; with deg(u;) = 1,

degv; > 2 and vertex sums of u;, v; by U;, V;. Let L be a labeling of S’ defined as:

L) +k, ifee E(S).
L(e) :=

1, ife=e,i=12,...,k.

To check that L is a strongly antimagic labeling, note that the vertex sum of the core
is still the largest. For w;, + = 1,2,....k, 1 = U; < Uy < --- < Uy = k; for v;,
1=1,2,...,k k+1 <V} < Vi < --- < V. For the remaining vertices, their vertex sums
are also different because all vertex sums are only shifted up by 2k from S’. Therefore
L is a strongly antimagic labeling of S. To complete the proof, we have to find strongly
antimagic labelings for graphs of Cases 1 and 2.

For the Cases 1 and 2, the graphs look like a path after each leg being cutted by one
edge. Although a path is obviously strongly antimagic, but we can’t be sure whether the
core has the largest vertex sum or not. So the above argument may fail sometimes, but we
can still give them strongly antimagic labelings directly.

For Case 1, suppose the spider has & legs of length 1 and a leg of length m, m > 2. We

10



divide m into 2 cases according to the pairity. If m = 2n,n € N, first labelghe lTongest
leg from the core by 2n + k,n,2n+k—1,n—1,....n+k+2,2,n+ k et and
then label the remaining legs by n + k,n+k —1,...,n+ 1. To check that th_e-lafj'eling 18

strongly antimagic, we compute vertex sums of all vertices and make the following table:

Degree of vertices Corresponding vertex sums
1 ILn+1,n+2,....n+k

2 n+k+2,n+k+3,....3n+k
k+1 2n+k+E@2n+k+1)

Table 3.1: Vertex sums of Case 1 when the longest leg is of even length.

.n+1.

_|_
I ptet1 2 ntkt2 .. 2n+k-1 " 2ntk / z
—.ﬁ .

n+k

Figure 3.3: Edge-labeling of Case 1 when the Inogest leg has even length.

Observe that the labeling is antimagic and vertex with larger degree has larger vertex
sums, hence it is strongly antimagic. Next if m = 2n + 1,n € N, we label the spider in
a similar way with just a little difference. The legs of length 1 are labeled by the same
numbers , but the longest leg is labeled from the core by 2n + k + 1,n,2n + k,n —
1,....n+k+3,2,n+k+2,1,n+ k + 1. One can easily see that the labeling is also

strongly antimagic.

Degree of vertices Corresponding vertex sums
1 n+1l,n+2,....n+k+1

2 n+k+2n+k+3,....3n+k+1
k+1 2n+k+1+20@n+k+1)

Table 3.2: Vertex sums of Case 1 when the longest leg is of odd length.

For Case 2, suppose that a spider has % legs of length 1, and the 2 legs of length p, q,
where p, ¢ > 2.Divide p, ¢ into 3 cases due to their pairities: both p and ¢ are even; or

they are both odd; or one of them is even and the other is odd.

11



n+1

+2
ntktl I ntk42 2 ... Inik T Ontk+l B

n+k

Figure 3.4: Edge-labeling of Case 1 when the Inogest leg has odd length.

First suppose p = 2n, ¢ = 2m, label the leg of length 2m from the core by 2n + 2m +
En+m2n+2m+k—1n+m—1,....2n+m+ k + 1,n + 1, the leg of length 2n
by2n+m+kn2n+m+k—1,n—-1,....,n+m+k+ 1,1, and the legs of length 1
byn+m+k,n+m+k—1,...,n4+m+ 1. Then the corresponding vertex sums are

shown in the following table:

Degree of vertices | Corresponding vertex sums
1 Iln+l,n+m+1ln+m+2,....n+m-+k
2 n+m+k+2n+m+k+3,....3n+m+k,3n+m+
k+23n+m+k+3,...,3n+3m+k—1,3n+3m+k
k+2 3n+4Am+2k+2+52n+2m+k+1)

Table 3.3: Vertex sums of Case 2 when the two longest legs are both of even length.

1 ntmtk+1 ) n+m+k+2 ® m+l
Lo . 2n+tm+tk-1
———— . | 2n+m+k
) 11
— n+m-1 B 2m+k
e 3 +2m+
o—e 02 o+ 2mek 17T
2n+m+k+1 n+m+k

Figure 3.5: Edge-labeling of Case 2 when the two longest legs are both of even length.

Next suppose p = 2n,q = 2m + 1, label in a similar way but start with the leg of even
length. Give it label from the core by 2n +2m +k+ 1,n+m,2n +2m + k,n+m —
1,...,n+2m+k+ 2,m+ 1. For the leg with odd length larger than 2, label it from the
corebyn+2m+k+1,m,n+2m+km——1,.... n+m+k+2,1,n+m+k-+1. The
ramaing legs are all of length 1 and we assign them n+m+k, n+m-+k—1,... . n+m+1.

It is straightforward to see that the labeling is strongly antimagic.

12



Degree of vertices | Corresponding vertex sums
1 m+1l,n+m+1l,n+m+2,....,.n+m+k#A1
2 n+m+k+2,n+m+k+3,...,n+3m+k+1n43mt
k+3,n+3m—+k+4,...,3n+3m~+k,3n+3m+ K4 1
k+2 An+3m+2k+E@n+2m+k+1) S

Table 3.4: Vertex sums of Case 2 when the two longest legs have lengths of different
pairities.

s 2n+2mtk 2n+2m+k+1/.n+m+1
e oy gl om Aﬁ-z
P —— ;
———.—-"".—-—-. m i
.___...-1-.—— m-1 nomik  Or2mtkt]
n+m+k+1 n+mtk

Figure 3.6: Edge-labeling of Case 2 when the two longest legs have lengths of different
pairities.

Finally, suppose p = 2n + 1,q = 2m + 1, label first the leg of length 2n + 1. We
label the edges of this leg from the core by 2n +2m + k + 2,2n +2m + k,n +m, 2n +
2,+k—1,n+m—1,...,n+2m+ k+ 1, m + 1. For another leg, label it from the core
by2n+2m+k+1,n+2m+kmn+2m+k—1,m—1,... ., n+m+k—+1,1. The
remaining edges are still labeledbyn+m+k,n+m+k—1,...,n+m+ 1. Compute

all vertex sums and one can find that the labeling is strongly antimagic, too. |

Degree of vertices | Corresponding vertex sums

1 Im+1I,n+m+1L,n+m+2,....n+m-+=k

2 n+m+k+2n+m+k+3,...,n+3m+k,n+3m+
k+2,n+3m+k+3,....3n+3m+k,3n+4m + 2k +
1,4n +4m + 2k + 2
k+2 An+4m+2k+3+52n+2m+k+1)

Table 3.5: Vertex sums of Case 2 when the two longest legs are both of odd length.
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Figure 3.7: Edge-labeling of Case 2 when the two longest legs are both of odd length.
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Figure 3.8: An example of strongly antimagic labeling.

14

L e
N
\



Chapter 4

Some variation of spiders

In this chapter, we want to find antimagic labeling of some graphs which are
similar to general spiders. The first example is a kind of graph constructed by attaching
two stars to the endvertices of a path. Denote a graph by SP.S(m, n, k), which means this

graph consists of two stars K ,,, K ,, and a path Pj,; of k£ edges.
Example 4.1. SPS(m,n, 1), m > n, is antimagic.

The proof is straightforward. First label the smaller stars (which has less edges than
another) with the smallest n numbers. Then label the other star with the next m numbers,
and leave the largest number to the edge that connects two stars. It is easy to see that
this labeling is antimagic, because the two cores have the biggest vertex sums, and by our

labeling, the cores of the two spiders also have different vertex sums.

+4 H+7n+2 T 1)
i Al. 3
o R
g 9/ \Q n+m+1 r/ '\4
=+ NI . ces g

Figure 4.1: An antimagic labeling of SPS(m,n, 1) ,with m > n.

Theorem 4.2. Any SPS(m,n, k), m >n > 1and k > 1, is antimagic.

15



Proof. For convenience, denote the vertices of the path, cores of the two starsbyvy, Ve« S0k,
with deg vy < deg vg. First label the two stars as we did in Example 4.1 by usingnumbers
from {1,2,--- ,m+n}. Next use the remaning k£ numbers to label the path: FOr ;Ehe_edge
vi—1v;, ¢ = 1,2, --- |k, label it with m 4+ n + ¢. The vertex sums of thisiabeling are:

1.2,--- n+m,2n+2m+3,2n+2m+5, - -- ,2n+2m+2k—1,@+n+m+

1 m(m+1)

,— 5 — +nm+n+m+ k. If all vertex sums are distinct, then we are done. The

problem may occur only if any of the two cores has the same vertex sum as some vertex
of the path. Therefore we divide all situations into the following three cases: there exists
z,y with1 < x # y < k — 1 such that either vertex sum of v, = vertex sum of v, or
vertex sum of v, = vertex sum of vy; either vertex sum of v,_; = vertex sum of v; or
vertex sum of v; = vertex sum of vy; vertex sum of vy =vertex sum of v;, when the path

iSP3.

& i & : i
n+m+3 n+Hm+2 n+Hm+1

n

Figure 4.2: An labeling of SPS(m,n, k) ,with m > n.

For Case 1, change the labels of v v, 1 and vy vk_o, then vertex sums of vy_3, Vg2, Vg1, Vg
becomes 2m + 2n + 2k — 5,2m + 2n + 2k — 2,2m + 2n + 2k — 1,2m + 2n + 2y. any
other vertices still have the same vertex sums. Since the vertex sum of v;, becomes even,
it is different from the one of v,, which is 2m + 2n + 2y + 1, an odd number. Furthermore,
if vertex sum of vyp= v, , change the labels of vyvand vyvy ,then among all vertices, only
the vertex sums of vy, vy, vy, v3 are changed, and they become 2m + 2n + 2x + 2, 2m +
2n + 3,2m + 2n + 4,2m + 2n + 7. Again by the same argument of vy, we find that the
new labeling is also antimagic.

For Case 2, first suppose vertex sums of vy and vy are equal (i.e. m+n+2 = W).
The original labels of v, vs, v9v3, are m+n+ 2, m+n—+ 3, if we exchange the labels of the
two edges mutually, then vertex sums of vy, vy, v3 become 2m—+2n-+4, 2m+2n+5, 2m+

2n+ 6, and the remaining vertex sums are still the same. Since vertex sum of vy becomes

16
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31._ n+m+k- I n+m+k n+m+k-2 n+m+3 n+m+l n+m2 4_.
n+m = . '

Figure 4.3: Adjustment about Case 1.

2m+2n+-3, which has the smallest vertex sum among all vertices of the path. Furthermore,

suppose vertex sums of v;_; and vy are equal (i.e. m+n+k—1= @ +nm). Then,
similarily, exchange mutually the labels of v;_3svx_o and vy _ovr_;. The vertex sums of
Vk—3, Ur—2, Up—1 become 2m + 2n + 2k — 4, 2m + 2n + 2k — 3, 2m + 2n + 2k — 2, since

vy still has the largest vertex sum, so all vertices have distinct vertex sums.

+4Y7n+2 ! 9
.Tl".'ﬁ_-. & B > 2 @ —

1 nrmk nemrk -2 k-1 n+m+2 n+m+3 n+m+1\ 4..

n+m n

Figure 4.4: Adjustment about Case 2.

For Case 3, denote the vertices of the path by v, vy, v, where v, v, are also the cores

of the spiders and degvy, > deguvy. If m > 2, observe that the vertex sum of vy is

mn + m("TLH) + m + n + 2, which is strictly larger than the one of vy and 2m + 2n + 3.

If m = n = 1, it is just a path, and by our labeling it is antimagic. Therefore the problem
may occur when vy and v; have the same vertex sum, that is, m +n + 2 = w We

could just exchange the labes of the two edges of the path, then vertex sums of this path

become ™) 4y 442 = 2m+4-2n+4, 2m+2n+3, nm+ 2D 4 441, which
2 2

are all distinct and the largest of this graph. Hence there exists an antimagic labeling. W

+4 n+3 fn+2 1 o)
N A 3
n+35 ® ° ®

T ®
m+n+1 m+n+2 .
n+m n

Figure 4.5: Adjustment about Case 3.
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The next step we want to do is to extend the restriction of Theorem 4.2¢st0 géneral

spiders. In other words, the two “S” of a SPS can be replaced by genera}ﬂ:,spiders..

1] .l'!_
So by a SPS(ly,la, ... Ik, ly1s -5 Ly ks K), where I < I <0t S ilkilkz&_ we

define a graph constructed by two spiders 51, 5S> and a path Py, where:two" spiders

are connected by attaching each endpoint of P, to one core of S;,.5;. Furthermore,

Liyloy ool ety - -y Uiy 4k, means S and Ss have ki +ko legs with length 1y, Do, ooy Lk Ly a1y - -y Uiy kg -
Without loss of generality, we suppose S, contains the leg with length Iy, ;«,. And for con-

venience, we will follow the notation of Shang [13].

Given a graph G := SPS(l1,lo, ..., Uy lky 41y - -+ Ly +ko3 k), We denote the cores
of S1, 52 by a,b. And for a leg of length [;, i € {1,2,...,k + ko}, let e; j,v;,] €
{1,2,...,1;} denote the j-th edge and vertex of this leg from the outermost, and for the
path Py, lete,,r € {1,2,..., k}, denote the r-th edge from a to b, and vy, va, ..., Vk_1
denote the vertices of this path from a to b except a, b.

Suppose G has m edges, we now design a partial labeling of G as follows. For the
edges of Sy, S, define an order among them as follows. We say e; ; < ey j if and only if
j<j,orj=jandi <. Itis easy to see that < is a linear order among these edges. In
fact,e11 < eg1 < -+ < kel < €12 < €22 < 0 < Choy iz iy 4 kg Then label e; ; with
n if e; ; is at the n-th position under this linear order. With this partial labeling, we have

the following observation:

Observation 4.3. Except the vertices of the path Py 1, vertex sums of V (G) form a strictly
monotone increasing sequence, and the difference between any two consecutive vertex

sums of degree-2 vertices is at least 2.

With this observation, we can start to prove the main result of this chapter. Here we
define a new verb. Given a graph GG and a labeling of it, for u,v € V(G), we say u
conflicts with v if their vertex sums are identical. The following theorem is true when the
path is K5. And when the path is K3 or longer, the following argument only assures that
the graph is 2-antimagic.

Theorem 4.4. SPS(ly,la, ... Uk 4ky; 1), k1 ke > 2,1 > 1,0 € {1,2,... k1 + ko}, is
antimagic.

18



Proof. First label the edge of the path by m. And let the vertex sums of a;b denoted by
A, B. According to the relation of A, B, we have the following 3 cases:| A S=8, A =
B,A<B. |

A > B: Since b is incident to two edges with the largest labels, vertex.sum of; b 1s
larger than all the other vertices with degree less than or equal to 2 in V(G). Furthermore,
since a has vertex sum larger than that of b, the labeling is antimagic.

A = B: Exchange the labels of e, and ey, 1, 5, ,,,, then vertex sums of a, b become
A — 1, B. For any other vertex, its vertex sum is at most 2m — 2, which is less than A — 1
because A — 1 = B — 1 > 2m — 1. Therefore, the labeling is antimagic.

A < B: At this time, b has the largest vertex sums. If vertex sum of a conflicts with

some other vertex, then exchange the labels of e; and ey, 4, It is easy to check the

Uy ko

new labeling is antimagic. |

Theorem 4.5. SPS(ll,l27...,lk1+k2;2>, kl,]{ig Z 2, lz Z 1,Z S {1,2,...,]€1 + ]{?2}, is

l-antimagic.

Proof. First label ey, eo with m — 2, m and replace the label of Chrtha i 1y by m — 1.
Now let A, B denote the vertex sum of a,b. As above, divide all situations into 3 cases
according to the relation of A, B.

A > B : Note that the largest vertex sum of degree-2 vertex are 2m — 2. Since A >
B > 2m, the vertex sum of b is larger than any other vertex of degree 2. So by observation
4.3, the labeling is antimagic.

A = B : Replace the labels of e, es, Chiy+ha iy 1y by m — 1, m + 1, m. Then vertex
sums of a,b become A + 1, B + 2. Since B+ 2 > A+ 1 > 2m, and the largest vertex
sum of all the other vertices is 2m. Hence by observation 4.3, the labling is antimagic.

A < B :If A =2m—1, then it is straightforward to see that the labeling is antimagic.
Furthermore, suppose A # 2m — 1 and A conflicts with vertex sum of some vertex, then

replace the labels of ey, €2, €, 44, by m — 1, m + 1, m. The vertex sum of a become

ey +kq

A+ 1,since A+ 1 # 2m, a can’t conflict with v;. If A + 1 = 2m — 3 (i.e. a conflicts

with v, 4 ,, ), then exchange the labels of e; and e, 4, The vertex sums of

Uiy ko Uiy ko *

A, V1, Uky 4k g, 1 become 2m — 3,2m — 1,2m — 2, since b has vertex sum larger than
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2m + 2, hence by observation 4.3 the labeling is 1-antimagic. If a still confliets with any
other vertices other than v, Vky+ka iy 45> this means that there exist two Verticesgndegree
2 which have consecutive vertex sums, but it contradicts to the observation_4.37:._E T%ius_,_ this
graph is 1-antimagic. .I |

Finally, we want to discuss the case when the path is K3 or longer. Let G:=SPS(ly, [, .
ki,ke > 2,k >3,1; > 1,i € {1,2,...,k + ko}. For the two spiders of G, assign them
a labeling as the previous paragraph. And for the path of G, label ey, e,,.. ., e, with
m—k,m—k+1,...,m—1, and replace the label of ey, 1, 1, ,, by m. For convenience,

denote the vertex sums of a, b, Vi, 4k, by A, Band V.

Uy +hy

Theorem 4.6. Let G, A, B be defined as above, according to the relation of A, B, we have
the following results:

(a) if A > B, G is antimagic.

(b) if A = B, G is 1-antimagic.

(c) if A < B, G is 2-antimagic.

Proof of (a). Note that v,_; and vy, 1, can’t conflict. So the only problem may

Uiy ko

oceur if vy, 4, conflicts with some vertex on the path. When the conflict happens,

Uiy +ieg
exchange the labels of e;, and ey, 44, by tky® Then similar to the last 2 theoremes, it is straight-
forward to check that the labeling is antimagic.

Proof of (b). Note that a, b have the largest vertex sums of all vertices. Here we have

two subcases due to the conflict of Ok iy 4 1y First, if vy, 41, conflicts with some

Uiy ko
vertex on the path, then replace the label of Chy+hz b, 4k by m + 1. Observe that then
Uky+ka by, 41, 0Nt conflict with any vertices on the path anymore, and vertex sums of a, b
become A and B + 1. This shows that the graph is 1-antimagic.

For the case that vy, 4, doesn’t conflict with any other vertex in this graph,

Uiy +kg
change the label of e into m + 1. It is also straightforward to show that all vertices
have distinct vertex sums. This means that the graph is 1-antimagic.

Proof of (c¢). Since vy, 1, may conflict with other vertex, we divide all situations

Ik ko
into two cases.

(1) First suppose vy, 1k, 4, ,,, conflicts with a vertex on the path. And for convenience

20
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divide all situations into three subcases according to the relation of V' and A;
A >V :If a doesn’t conflict with any other vertex and A # 2m — 2, then exchange

the labels of ey, ek, 11,

1 |'!_
i, - One can easily find out that the labeling is anﬁimégig. If

a conflicts with some vertex of the graph, then for the edges labeled by m — "k, ny'—
k 4+ 1,...,m, replace the labels by adding 1 to each label. Then vertex sums of a and
Vky+ho i, 41, DECOME A + 1 and V' 4 1. Since vertex sums of vertices on the path are
shifted by 2, and b still remains the largest vertex sum, so a and v will not conflict with
vertices on the path. Therefore, the labeling is 1-antimagic.

A=V IfA =V =2m—2k+1, replace the labels of e, eq, ..., e, by m—k+1, m—
k+2,...,m—1,m~+1. Thenthe vertex sums of a, v1, va, ..., vx_1, b, Vky -+ iy 44, become
2m—2k+2,2m—2k+3,2m —2k+5,...,2m—3,2m, B+2,2m —2k+ 1. They are the
largest vertex sums and are all different, so the labeling is 1-antimagic. If A =V = 2m —
2k+2a+1,a € {1,2,...,k—2},replace the labels of eq 11, €at2, - - -, €k, €y ko i, 11, DY
m—k+a+1, m—k+a+2,...,m, m+1. Thenthe vertex sums of a, Vo, Vat1, - - - s Vk—1, 0, Uy ks g 11,
become 2m — 2k +2a+1,2m — 2k + 2a, 2m — 2k + 2a+ 3, 2m — 2k + 2a+5, . .., 2m —

1, B+ 2,2m — 2k 4+ 2« + 2. Again, they are the largest vertex sums and are all different,
so the labeling is 1-antimagic.

A <V :If adoesn’t conflict with any other vertex, then replace the label of ey, 11, ;. 1.,
by m + 1. If a also conflicts with some vertex in this graph, by observation 4.3, we can
avoid conflict by adding 1 to the labels of a and vy, 1,4, ,,,- By replacing the labels of
€1,€2, -y €k, Chythy i, 1y, DY M —k+1,m—Fk+2 ..., m+1,since all vertex sums of
vertices on the path except a are shifted by 2, and b still has the largest vertex sum, a and
Vky+ha i, 11, WOt conflict with any other vertex in this graph anymore. Hence the graph

is 1-antimagic.

(i1) Next we suppose that under this labeling, vy, 1, 1, ,,, doesn’t conflict with any other
vertex in this graph. Since V' is larger than vertex sum of any other vertices except those on
the path, there exist 5 € {1,2,...,k — 2} such that vertex sums of vg, ks ki Ly 41y > VB+1

are three consecutive integers. As usual, we divide all situations into the following three
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subcases.

A >V : Suppose a conflicts with some vertex of this graph, then replace thesfabols of .
€1,€9,..., e, bym—k+1,m—k+2,...,m—1,m+ 1. Since vertex sumot:!".;a i'llé:shi:fted
by 1 but vertex sums of all the other vertices on the path except b are shifted:by 2. Aﬁd b
still has the largest vertex sum of this graph. So by observation 4.3, a doesn’t conflict in
this graph under the new labeling.

A =V : Replace the label of e, 4, by m + 2. It is straightforward to check that

Uy ko
there’s no conflict under this labeling.

A <V : Suppose a conflicts with some other vertex of this graph. Then we can avoid
this conflict by shifting the vertex sum of @ by 1. But it may produce new conflict since
V could be A + 1. So, we may replace the labels of ey, eq, ..., e, Chy+ho b, +k,y by m —
E+1,m—k+2,....m—1,m,m+2 Since A+1< V' +2, aand vg, 4, 1, 4, don’t

conflict. By observation 4.3, this new labeling contains no conflict. Since the edge set we

used is {1,2,...,m + 2}, the graph is 2-antimagic. [ |
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