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ABSTRACT

Multiple-platform analysis has recently become the focus of many genomic
research projects. Such analysis offers an opportunity to account for the interaction
between genetic observations from different platforms. Additionally, it may avoid the
problems encountered in the analysis with single platform genetic markers, such as low
heritability, limited information and failure in reproducing findings.

Another problem faced in association studies is the fact that genetic data are often
high-dimensional, and thus the most common approaches are single-marker tests. These
tests cannot consider gene-gene interaction, and can lead to low statistical power due to
corrections for multiple tests. An alternative is to consider sets of genes such as gene
set-based analysis or pathway analysis. Through pathways, the knowledge as which
genes participate in certain functions and how these genes interact with each other can
then be used to construct the relations between genes in statistical analysis, while
reserving the biological meaning at the same time.

In this thesis, we propose a Bayesian model with a conditional autoregressive
distribution to address the relations among genes in a given pathway. This model also
integrates DNA methylation and RNA expression microarray data to detect influential
genes. We next illustrate this Bayesian model with an ovarian cancer study. Several
influential genes are identified, where some of them have been reported earlier. Finally,
we discuss issues and applicability of this proposed model for genetic association

studies.

Keywords : gene expression, DNA methylation, pathways, microarray
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Introduction

The development of gene technology has progressed rapidly since 1990s. Since
then, the association studies have been one of the major research focuses. These studies
have great contributions to predictions or progression for certain inherited diseases. For
instant, the gene BRCAL and gene BRCA2 are notorious in increasing the risk of breast
cancers. However, most genetic studies concentrate on constructing a relevance between
the target disease and data merely from a single platform (such as RNA expression,
SNPs, or copy number variation), leading to problems including low heritability, limited
information and difficulties in replicating research results. Especially in cancer studies,
the etiology and pathophysiology of cancer are so complicated that it is hard to explain
the mechanism through only the information from one metabolic stage of genome.
Consequently, many researchers have turned their attentions to multiple-platform
analysis.

Multiple-platform analysis has many advantages. First, it contains more
information with more possible biological interpretations. Next, it offers an opportunity
to clarify the interaction between genetic markers from different platforms, which may
play a critical role in the occurrence of diseases. Current integrative analysis can be

divided into three categories (Wang et al., 2013), sequential integration, model
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integration and biological integration. Sequential integration studies, like eQTL, focus
on sequentially screening out relevant genetic markers from different platforms. This
integrative approach may lose important information when conducting filtering at
different stages.

Also, it ignores the interactions between multiple platforms. The second group of
integrative analysis, called model integration, aims at building a statistical model to
combine information from different platforms. Ray et al. (2014) applied joint Bayesian
factor analysis to integrate data from different platforms to detect significant
disease-related genetic markers. But such methods could encounter difficulties in
interpretations, if the biological relationship between different platforms was not
considered when establishing the analytic model. The third group, biological integration
takes the biological pathways and mechanism into account, while including data from
different platforms into analysis. The results of these approaches are more biological
interpretable.

Genetic data are known to be high-dimensional, which also contributes to
difficulties in analysis. Some analysis for association studies considered single marker
tests to detect disease-association genes. As describe earlier, this kind of approaches not
only discarded gene-gene integrations, but were also of low power because of multiple

testings. Another choice is the approach of dimension reduction (here means extract
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information from thousands of variables to fewer components). Though carrying out

dimension reduction could decrease the complexity for analysis, it is hard to interpret

the results from biological viewpoint. In addition, we need to confront with

time-consuming computations. Alternative approach is to consider sets of genes such as

pathways. Pathways can be considered as a map of biology mechanism that has

particular functions in an organism. Through pathways we could understand which

genes participate in this biological activity and how these genes interact with other

genes. With this knowledge, we are able to construct appropriate relations between

genes in analysis and reserve its biology meanings in the meantime. Furthermore, it

reduces largely the number of variables when thousands of genes are classified into

different pathways, which brings the convenience in statistical computation.

Pathway Topology (PT)-Based Approaches (Khatri, 2012), one approach of

pathway analysis, try to incorporate information of pathway topology to detect

disease-related pathways. In the respect, Chang (2014) proposed a model which is able

to consider gene effects in pathways by giving each gene a different weight related to

the number of its neighboring genes. However, this approach treated every gene in the

pathways as equal, and did not consider the interaction between this gene and its

neighbors.

In this thesis, following the spirits to contain the information of pathway topology
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and to consider multi-platform genetic markers, we propose a Bayesian model to

integrate DNA methylation and RNA expression microarray data to detect important

genes. Previous research has showed that the change of DNA methylation serves as a

good biomarker for disease diagnoses and disease progressions in different cancers

(Heyn and Esteller, 2010). Additionally, DNA methylation and RNA expression are

regarded as adjustments in different stages. DNA methylation located on the upstream

of gene performances is the DNA level of epigenetic regulations, while RNA expression

is the downstream of gene performances, indicating different biological functions. In

this model, we use the conditional autoregressive model to describe the interaction

between genes and the effects from DNA methylation on gene expression. In addition,

we illustrate this model with a study of ovarian cancer from The Cancer Genome Atlas

(TCGA). The data contain cases with DNA methylations and RNA expression levels.

The identified influential genes are discussed and compared with earlier findings.

Finally, we discuss issues in this approach and applicability for other genetic association

studies.



Method

For each pathway, we construct a regression model for genes in a given pathway.
Suppose the total number of patients is n and the total number of genes is p. Let Y; be
the clinical outcome of interest for the i subject and X; denote the gene expressions of

the i subject. The expected value of Y; conditioned on X; can be written as

p

g(EDY; [x1) =D BX; +8,, X% ~ MVN(A, 2x)

j=1
t
X, X1 X X b

X = X3 | [ %o %p2

n.p nxp

where X; is composed of xij, indicating the gene expression of the j" genes for the i
subject. It follows a multivariate normal distribution which mean vector A and
covariance matrix )., . Its setting will be described in details later. First, we separate
genes into two groups. One is genes significantly regulated by DNA methylation (genes
whose DNA methylation and gene expression are negative), and the other group
contains genes without direct regulation effects from DNA methylation (genes whose
DNA methylation and gene expression are not negative).

For the first group, we construct its x;; through the steps below: Given a gene j, its

gene expression level is influenced by its adjacent genes in the pathway. The definition



of adjacent genes is genes which have one branch with gene j in pathway maps. And the
regulation can be divided into upstream activation, upstream inhibition, downstream
activation and downstream inhibition. Among all the neighbors (numbered from 1 to
Na+Ng+Nc+Np) suppose Na neighbors are upstream activation, associating with an
effect y*; Ng neighbors are upstream inhibition, associating with an effect y7; N¢
neighbors are downstream activation, associating with an effect §*; Np neighbors are
downstream inhibition, associating with an effect &°. In this group, genes are
significantly modulated by their DNA methylation levels. So we add m;, the DNA
methylaiton level of gene j, with a parameter 1 to model the effect from DNA
methylation. Therefore, x;; would follow a normal distribution with the mean p equaling

7" (geney, +...+gene,, )+ 7~ (gene, +...+gene, )
N,+Ng+Ne+Ny+1

5+(geneNCl +...+ geney_ )+5‘(geneNm+...+ gene,,_ )+77mj
N,+Ng+N:.+Ny+1

+

and variance o* equaling G*/(N,+Ng+N. +Ng +1).

For the second group, the rule for model construction is similar, but this group
includes genes that are not significantly modulated by their DNA methylation levels.
Therefore, the parameter n with the effects m;;becomes null. And x;; would follow a

normal distribution with p equaling



7" (geney, +...+gene, )+ »~ (gene,, +...+gene, )
N,+Ng+N;+Nj

5+(geneNC +..+ geneNCl)+5_(geneND+...+ geneND!)
N,+Ng+N.+Ny

+
and o?is G®/(N,+Ng+Nc+Np).

The complete model can be expressed as

T|x ~ Weibull (shape , 4, )

A= e (X 4%

X, X1 X Xp
X3 | | X Xy

Xt Xn,l
X ~ MVN (A, 2x)
X; [%_; ~ N A+B+nm; xM(x;) [/num;, G*/num; )
A=y" Z X+ 7 Z X;

jeCrali) jeCony (J)
B=5" > X+ D X

j€Cys.a (1) jeCysi (1)

num; = Ny, + N + Ny, + Ny + M (X))

NP loxp

ds.a

where

T is the survival time of the i" patient
Ci is the censoring time of the i patient
Yi is the minimum of T; and C;
Zi=I(Ti<G),i=1,...,n

Xi is the i" person’s gene expressions

n is the number of total cases (patients), p is the number of total genes



B is a vector with dimension p by 1

xij means the gene expression of j" gene in i patient

Cusa(j) denotes the set of upstream activation genes of ™ gene
Cusi(j) denotes the set of upstream inhibition genes of j™ gene
Casa(j) denotes the set of downstream activation genes of ™ gene
Casi(j) denotes the set of downstream inhibition genes of j™ gene
Nus.a denotes the number of upstream activation genes of j gene
Nus.i denotes the number of upstream inhibition genes of j™ gene
Ngs.2 denotes the number of downstream activation genes of j gene
Ngsi denotes the number of downstream inhibition genes of j™ gene

M(x;) =I(x; belongs to genes that significantly regulated by DNA methylation)

The prior distributions are

shape ~ gamma(3, 2)
B, ~N(0,1), jfrom1toP

7" ~N(0,1),
7~ ~N(0,D),
5" ~N(0,1),
5 ~N(0,),
1~ N(=1,100),

G? ~ gamma(2,5)

Toy example

Following we provide an example to demonstrate the procedures when



constructing our model:

Suppose there are A, B,...... H genes and 10 patients. Defind the  gene expression

levels x;; for these patients as

Xoa X Xy
X2,A X2,B th
X= y j=A,B,C, ...... H, forthei™ (i=1,2,......
ij
Xi0,A Xio.H 108

patients

Given the pathway in Figure 1 (a), the model is written as:
X%~ N7 (

IB|xI B~N([ +(XIA)+77miBJ/2,G /(0+0+0+1+1))
IC|xI " N([6+(xIA +77mic]/2,GZ/(O+O+O+1+1))
ID|xI o ~N(5"(%,),G*/(0+0+0+1+0))

Xe % e ~ N3 (%4),G?/(0+0+0+1+0))

Xe % ¢ ~N(* (%) ,G*/(1+0+0+0+0))

X % 6 ~N(7 (%) +6" (%) ]/2.G*/(0+1+1+0+0))

X [% - ~ N (%) ,G*/(1+0+0+0+0))

Given the pathway in Figure 1 (b), the model is written as:

XiA‘Xi,—A~ N([5*(XID) 5 ( IF)+17m,A]/3G /(0+0+1+1+1))

X |X, s ~ N8~ (Xp ) +7My |/2, G*/(0+0+0+1+1))

X % ¢ ~ N8 (Xe)+1me |12, G*1(0+0+0+1+1))

.D‘X. 5 N([;/ (Xp+X%e) + 7 (%) + 6 (X )}/4 G*/(2+1+0+1+0))
iE‘xiﬁE~N([ “(Xe) t (% )]/2 G*/(0+1+1+0+0))

Xe % e ~ N7 (%) + 57 (%6) /2, G*/(0+1+1+0+0))

X % o ~N( 7" (Xp+%c) + 07 (%)]/3, G*/(2+0+1+0+0))

X % ~ N (X ), G*/(1+0+0+0+0))

% +X'C+X'D)+ . ( IE)+ §+(XiF)+ 57(XiG)+77miA]/7!G2/(3+1+1+1+1))



In this model, we take the gene expression of the j™ gene’s neighbors to establish
the distribution of the j™ gene. There exist some highly expressed genes with small
variation across samples. These genes often belong to house-keeping genes, which is
not likely to be our target genes (disease-related genes). They may enlarge the mean of
the distribution, and lead to misleading influence of genes. To solve the problem, we
consider the coefficient of variation (CV) of each gene at first. If the CV of gene
expression is larger than a certain value, then we directly utilize its value of gene
expression. Here we use the 10" quantile of CV from all samples as the threshold.
Detailed descriptions are stated in the result section. If the CV is smaller than the
threshold and the values of gene expression are comparably high across all genes (here
we use the 90™ quantile of mean of all samples as a threshold), we substitute its value

with the median value across all genes and all samples.

Real application

The data of ovarian cancer were downloaded from The Cancer Genome Atlas

(TCGA) (http://cancergenome.nih.gov/), a NIH website that contains genomics datasets

for over 20 types of cancers. In our analysis, we adopt the gene expression (BI
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HT_HG-U133A, Level 2) and DNA methylation data (JHU-USC HumanMetylation27,
Level 3) of ovarian cancer. Only samples that have both gene expression and
methylation data are included in our study. There were 585 cases in total. The steps for
data management are described in the following and displayed in Figure 5:

(1) we removed samples with Recurrent Solid Tumor (17 cases) and samples with
Solid Tissue Normal (8 cases). The remaining 560 cases were samples with
Primary Solid Tumor. A case with duplicate 1D was found in the 560 cases,
which might indicate that this person has her tissue scanned by microarray
twice. However, these two results of scanning were generally consistent, so we
deleted one of these cases. It led to 559 cases.

(2) Qutliers detection
The signals of gene expression Level 2 data downloaded from TCGA had been
already normalized per probe or probe set for each participant's tumor sample.
Therefore, our quality control step only aimed at DNA methylation data. First,
outliers in each probe were detected and tagged with “1”” with boxplot. We
defined outliers as data points that were larger than 1.5 times IQR above the

75™ quartile or smaller than 1.5 times IQR below the 25™ quartile. Next, we
calculated how many tags there were for each case. If the case had an

extremely large number of tags, say larger than 1.5 times IQR beyond the third
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quartiles, the case would be removed (Chang, 2014). (we defined outliers as
data points that were larger than 1.5 times IQR above the 75" quartile or
smaller than 1.5 times IQR below the 25" quartile.) This excluded 76 samples
with extreme “outlying numbers”. At this step, there were 483 cases left.

(3) Quantile normalization (batch effect), clinical information check
In order to eliminate batch effects in DNA methylation, we used quantile
normalization aimed at DNA methylation by normalize.quantiles function in
preprocessCore package in R. Next, we matched remaining cases to clinical
data, where the clinical data were updated on March 9, 2015. We removed 1
cases without clinical data, 4 cases whose tumor_tissue_site were not Ovary
and 32 cases that missed either information of race, vital_status or
clinical_stage. At this step, there were 446 cases left.
Because the races and the clinical stage might have impacts on gene levels, we
tabulate the frequency tables of race and clinical stages in the 446 cases. We
found that a high percentage of cases was white and in high stage. We next
narrowed down our analysis to cases that were white and whose stages are
between I11A to VI. This leads to 377 cases for further analysis.

(4) Match gene and gene expression, gene and DNA methylation

In the downloaded DNA methylation data, probes were arranged by their gene

12



codings. If a gene corresponds to multiple probes, we took the average of all
listed probes to be the DNA methylation level of this gene. For gene expression
data, the gene coding was referred to the index provided by Affymetrix

(http://www.affymetrix.com/support/technical/byproduct.affx?product=hqu133

). Similarly, if a gene corresponded to multiple probes, we took the average of
all related probes to be the RNA level of this genes. After arrangement, DNA
methylation dataset contained 14310 genes; RNA expression dataset contained
14117 genes. We excluded the genes that only appear in either dataset. Finally,
there were 10282 identical genes that could be used in further analysis.

The pathway maps can be downloaded from KEGG. Details about how we arrange
pathway information are described in Appendix 2. Here we choose the cell cycle
pathway (hsa04110) to demonstrate our model. The reason why we select this pathway
is that the pathway has been reported to be associated with ovarian cancer in Fu’s study
(Fu and Wang, 2013). Also, it has significant pathway effects in Chang’s model (Chang,
2014).

Noticed that previously we separate genes into two groups, genes having strong
negative association with its DNA methylation, and genes not. The cutoff point is
whether the correlation between DNA methylation level and gene expression for this

gene is smaller than -0.1. If the correlation is smaller than -0.1, then we classify this
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gene to the group in which genes have strong negative association with its DNA
methylation. The aim of the classification is to model the biological assumption of DNA
methylation mechanism. Increasing DNA methylation level would reduce gene
expression owing to the difficulties of RNA polymerase’s binding due to DNA
methylation (Chen and Pikaard, 1997). That is, the correlation between DNA
methylation level and gene expression is supposed to negative. However, when we
examine the correlations of each gene, about 40 percent is positive. This may indicate
that there exists other regulation effect that cannot be explained only by DNA
methylation effects. Since we consider only pure effects resulting from DNA
methylation, only those with correlation smaller than -0.1, their DNA methylation are
included into our model.
Computation

The final data included 377 ovarian cancer case and 41 nodes (can be regards as 41
genes or gene complex) in the cell cycle pathway. Our dependent variables were
survival times of each patient, and correspondingly our link function was survival
functions. If the variable “Death_days_to” of the i"" person is available, then the survival
time (T;) would be the value of “Death_days_to”; on the contrary, if the variable
“Death_days_to” of the i person is not available, then we define the case is censor and

take the value of the variable “Last_contact_days_to” to be the censoring time (C;) of
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the i person. Additionally, we use Weibull distribution to fit likelihood functions.

The computation process was carried out by R package version 3.1.2. The posterior
samples of parameters were derived from Markov chain Monte Carlo (MCMC)
algorithm using R20penBUGS package in R. We simulate one chain, 30000 iterations.
After burn-in 5000 samples, every 1 in 20 posterior sample was filtered for further
analysis. We have compared the results of simulating 30000 iterations and 50000
iterations (Figure 7.) and found the coefficients of beta are very similar. Thus, the
consequences of 30000 iterations are presented in this article. The computation time of
30000 iterations was around three to 11 hours for one pathway. The R codes are in

Appendix 3. The convergence was checked by MC errors and trace plots.

Results

The density plots of posterior samples of y*, v, 8*, 8", n are displayed in Figure 6.
It shows that y*, v, 8*, & are all positive but with different scales and centers, indicating
that the data support the four categories of relations in pathways. The coefficient ) is
supposed to be negative because it represents the relations between methylation levels

and gene expression levels. However, the posterior samples of n ranges from -0.2 to 0.4.
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As previously described, when the correlation between DNA methylation level and gene

expression for a specific gene is smaller than -0.1, we would put the methylation level

of the gene into our model. But if the node is a complex, the principle is depicted below:

assumed that a gene complex contains three genes A, B and C. If the correlation in gene

Aand in gene B are smaller than -0.1, while that in gene C is not, then we would take

the mean of the DNA methylation levels of gene A and gene B as the methylation level

of this complex; if the correlation only in gene A is smaller than -0.1, then we would

take the DNA methylation levels of gene A as the methylation level of this complex.

After the arrangement, we once again check the correlations between the gene

expression level and DNA methylation level of every gene (or gene complex). For all

genes that we consider with methylation effects, only one correlation is positive, the

others are negative, as expected. Therefore, the arrangement may not be the reason why

n ranges from -0.2 to 0.4, and not in the negative domain. Another explanation may be

that when we are calculating the correlations, we consider the marginal distribution of

gene expression and DNA methylation level. In contrast, in the model the DNA

methylation effects are added in the conditional distributions of x (the gene expressions).

The approach to average methylation effects is intuitive and easy for analysis. Such

calculation, however, may lose focus of any individual methylation levels. How to

consider the DNA methylation level in a complex needs more discussions.

16



The estimated posterior probabilities P(8; > 0| 8) and P(B; < 0| 6) are listed in
Table 3. And the 95% credible intervals of each B; are drawn in Figure 3. For the seven
genes (or gene complex) with the corresponding posterior probabilities larger than 0.95,
the strength of evidence that these genes are likely to associate with patients’ survival
time is strong. We have tried -0.1 and -0.05 as the cutoff values when determining the
inclusion of DNA methylation effects, and the results of the posterior probabilities B; do
not alter drastically. Here we only display the results with -0.1, other results are in
Appendix 4.

The significant genes include CDKN1A, MDM2, gene complex APC/C /CDC20,
ATM/ATR, complex E2F4/E2F5/RBL1/TFDP1/TFDP2, RB1 and ZBTB17. Among them,
many are consistent with reports from previous literatures. CDKNZ1A has been proved to
associate significantly with the increase the hazard of breast cancer patients in Gyorffy’s
study (2010), which is a strong evidence because the breast cancer is categorized to
gynecological diseases, the same as our target ovarian cancers. And by Ma et al. (2011),
CDKNZ1A also has been detected to associate with the survival of non-small cell lung
cancer. It has been reported that CDC20 predicts poor prognosis in non-small cell lung
cancer patients (Kato et al., 2002), colorectal cancer patients (Wu et al., 2013) and
patients with breast cancer (Karra et al., 2014); the expression of ATM/ATR will

increase after DNA damage, which is an important checkpoint in cell cycle pathway
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(Reinhardt et al., 2007). Furthermore, Ye et al. (2007) found that expression patterns of

gene ATM associate with breast cancer survival, and Grabsch et al. (2006) reported that

expression of gene ATM predicts patient survival in colorectal cancer. Speaking to the

complex E2F4/E2F5/RBL1/TFDP1/TFDP2, the E2F family plays a crucial role in the

control of cell cycle G2 phase and repress the expression of gene MYC, an important

regulator in cycle progression and having proved to associate with patients survival in

breast cancers (Xu et al.,2010) and lung cancer (Borczuk et al., 2004). Additionally,

pervious literatures have shown that over-expressed TFDP1 associates with progression

of hepatocellular carcinomas (Yasui et al., 2003). RB1 is a famous tumor suppressor

gene and functions as a negative regulator in cell cycle pathway. In addition, it has been

shown to associate with poor prognosis in patients with non-small cell lung cancer

(Zhao et al., 2012).

On the other hand, there is no research report about the association between the

expression of ZBTB17 and complex MDM2 and cancer survival time. However, it has

been reported that ZBTB17 is involved in the regulation gene MYC (Staller et al., 2001);

and MDM2 promotes tumor formation by targeting tumor suppressor proteins like TP53

(Haupt et al., 1997).

The position of significant genes in the pathway is shown in Figure 5. Generally,

they are located at upstream or midstream of the target pathway.
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We constructed a survival regression with the same data, as expressed below:

h(t) = hy(t) exp(zlgjxj)
ho (t) =Ax Shape % tShpaefl

where

t is the survival time

B; is the coefficient of x;

Xj, means the gene expression of | genes

The coefficients of the four genes (CDKN1A, GSK3B, RB1 and MYC) were
significant. In this and the above model, RB1 and CDKN1A were significant. Other
significant genes in multiple regression model included MYC and GSK3B. The
coefficient of MYC in our model also has high posterior probability (0.94). However, as
we examine the position of GSK3B in the cell cycle pathways, we found GSK3B inhibits
the complex CCND/CDKA4,6, where this complex is regulated by many other genes,
such as CDKN2A, CDKN2B, CDKN2C, CDKN2D and PCNA. It indicates that multiple
regression approach may detect significant genes, but cannot detect important genes

when we consider the pathway information.
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Discussion

In summary, our proposed model has two advantages. First, it is flexible in'in
defining functions for the links in pathways. Second, it can be applied to different
interested outcomes. In addition to the survival function as demonstrated here, the
model can be applied to binary outcomes, such as case control studies or effectiveness
studies of medicines, by just changing to logit link or others. Thirds, it efficiently
exploits the information in pathways, which may find important disease markers in the
biological functions.

Different criteria for trimming data

As previously described, to avoid some house-keeping genes dominating the
average value, the gene expression levels may be replaced if its CV is smaller than a
certain value. In the model, if the CV of a gene is smaller than the 10" quantile of all
samples and the mean gene expression level is larger than the 90™ quantile of all
samples, its gene expression level is replaced with the median across all genes and all
samples. We have checked that both house-keeping genes ACTB and GAPDH are
trimmed with the criteria adopted here.

With this criteria, there is one gene (SKP1) being trimmed in cell cycle pathway.

We also tried to trim with the 5™ quantile of CV of all samples, the results are similar to
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that with the 10" quantile as the cutoff point. Additionally, we have tried to run the
program with non-trimmed data. The only difference is the coefficient 3 of the complex
SKP1/SKP2/CUL1/RBX1. However, its significance is not changed.
The criteria for outlier detection

For preliminary data process, we choose boxplots to detect outliers. We have also
compared the excluded samples by other methods, such as hampel identifier and
standardization method (Ben-Gal, 2005; Rousseeuw and Hubert, 2011). The results did
not differ much.
Quantile normalization

We have considered the quantile normalization to eliminate batch effects across
samples. Some people will trim off five to ten percent data when doing quantile
normalization for avoiding using extreme values (Kroll and Wolf, 2002). However, we
have excluded the cases with extreme outlier numbers before we did quantile
normalization. Therefore, we did not trim data further when doing quantile

normalization.

There are issues that need to be addressed. First, other ways to deal with the DNA
methylation level of gene complex can be applied. For example, if the gene complex

contains three genes, then the determination of whether the complex is DNA-methylated
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needs clarification. One way is to examine the minimum correlation between any pair of

DNA methylation level and gene expression. Other choices may be the correlation

between the average methylation level and expressions. There is no common guideline

In current practice. Second, in the current model we assume that the DNA methylation

of a gene can only influence its own gene expression level. This excludes the case

where the DNA methylation may affect other genes. A more general formulation of the

autoregressive model to accommodate this phenomenon is possible. However, it may

come with the price of computational burden. Third, how to model other regulation

effects such as phosphorylation can be considered. In our current model, all activation

activities are treated equally. In the future, one can consider whether to distinguish these

activation effects with different parameters. Fourth, pathway information is one kind of

interactions between genes. To completely understand and model the gene-gene

interactions, pathways information may not be enough. If there are different types of

data which can convey more interaction information between genes, this should be

incorporated into analysis.

The proposed model is designed to be used in the case where the detection of

important genes in a given pathway is of interest. This pathway can be selected based on

previous analysis, such as the online pathway analysis DAVID or KEGG, or from

previous knowledge. If one is interested in incorporating several pathways at the same
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time, the current model needs further modifications. For example, the mean structure of
each gene expression can contain information from multiple pathways. That is, the
pathway effects can be additive. However, the computational loading will increase, and

a more efficient algorithm would be worth pursuing.
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Tablel. Background information of clinical data

excluded Remaining
Race
American Indian or Alaska Native 0 3(0.01)
Asian 4 (0.05) 15 (0.03)
Black or African America 4 (0.05) 20 (0.04)
Native Hawaiian or other Islander 1(0.01) 0 (0.00)
White 67 (0.88) 414(0.92)
Missing 0 30
Vital_status
Alive 32 (0.42) 238 (0.50)
Dead 44 (0.58) 242 (0.50)
Missing 0 2
Clinical stage
Stage 1A 0 (0.00) 3(0.01)
Stage IB 1(0.01) 2 (0.01)
Stage IC 0 (0.00) 10 (0.02)
Stage 1A 0 (0.00) 3(0.01)
Stage 11B 0 (0.00) 4 (0.01)
Stage IIC 1(0.01) 19 (0.04)
Stage I11A 0 (0.00) 8 (0.02)
Stage 111B 0 (0.00) 24 (0.05)
Stage I1IC 61 (0.80) 336 (0.70)
Stage IV 13 (0.17) 69 (0.14)
Missing 0 4

Note: 1 case does not contain no clinical info; values in parentheses are percentages by
column (no content missing)

Table2. Summary statistics of age and survival time

Excluded Remaining
Age 60.7 (11.2) 59.6 (11.6)
Last_contact_days_to 897.7 (757.6) 991.6 (825.0)
Death_days_to 1002.3 (774.5) 1097.6 (737.4)

Note: Values in parentheses are standard deviations
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Table 3. Selected posterior probabilities of individual gene effects

Gene P(B;>0|0) P(B;<0|6) HR (p-value)’
CDC25A 0.74 0.23 1.22 (0.342)
CDC6 0.37 0.58 0.92 (0.542)
CDKN1A 0.99 0.01 1.20 (0.031)
CDKN2A 0.26 0.65 0.99 (0.905)
CDKN2B 0.18 0.81 1.11  (0.657)
CDKN2C 0.45 0.46 1.00 (0.983)
CDKN2D 0.95 0.05 1.35 (0.231)
EP300 0.10 0.88 0.92 (0.505)
ESPL1 0.74 0.23 0.92 (0.476)
GSK3B 0.77 0.20 1.34 (0.030)
MAD1L1 0.59 0.34 1.02 (0.780)
MDM2 0.03 0.97 143 (0.401)
MYC 0.94 0.04 118  (0.005)
N.APCCDC20" 0.01 0.99 122 (0.820)
N.APCCFZR1 0.29 0.69 091 (0.926)
N.ATMR 0.03 0.96 0.87 (0.387)
N.CCNACDK 0.66 0.30 1.00 (0.992)
N.CCNDCDK 0.36 0.58 0.98 (0.841)
N.CCNECDK 0.21 0.78 0.98 (0.907)
N.CCNHCDK 0.16 0.81 091 (0.441)
N.CDC14 0.69 0.29 1.32 (0.234)
N.CDC25BC 0.67 0.31 1.19 (0.270)
N.CDKN1B1C 0.92 0.05 1.24  (0.055)
N.CHEK 0.56 0.39 1.01 (0.968)
N.E2F45 0.98 0.01 133 (0.233)
N.GADD 0.06 0.92 0.78 (0.127)
N.MADBUB 0.32 0.60 0.99 (0.975)
N.PPTG12 0.44 0.53 0.96 (0.856)
N.RBL12 0.21 0.78 095 (0.774)
N.SKP 0.06 0.93 0.99 (0.967)
N.SMAD 0.36 0.62 107  (0.728)
N.SMC 0.09 0.90 0.87 (0.561)
N.TGFB 0.22 0.76 123 (0.384)
PCNA 0.58 0.38 0.97 (0.824)
PLK1 0.06 0.93 0.89 (0.369)
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PRKDC 0.93 0.06 1.04  (0.797)
RB1 0.98 0.01 1.44  (0.020)
SFN 0.56 0.35 1.11  (0.113)
TP53 0.52 0.36 1.01 (0.816)
TTK 0.35 0.56 0.97 (0.722)
ZBTB17 0.04 0.96 0.79 (0.374)
Note:

1. If the node in the pathway is a complex, then the gene name starts with “N.”
2. HR(hazard ratio) were derived from the multiple survival regression model.

Table 4. Identified influential genes

Gene or complex Posteri_on_’ Coefficient f§ hazqrd
probabilities (p-value) ratio
CDKN1A 0.97 -0.183 (0.031) 1.20
MDM2 0.97 -0.356 (0.401) 1.43
APC/C /CDC20 0.99 -0.202 (0.820) 1.22
ATM/ATR 0.96 0.142 (0.387) 0.87
E2F4/E2F5/RBL1/TFDP1/TFDP2 0.98 -0.289 (0.233) 1.33
RB1 0.98 -0.363 (0.020) 1.44
ZBTB17 0.96 0.240 (0.375) 0.79

Note: The coefficient B (p-value) and HR (hazard ratio) were derived from multiple

survival regression model.
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Figure 1. Examples of pathways.
Yellow circle refer to genes whose correlation between DNA methylation and gene
expression is negative
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Figure 2. Examples of nodes in KEGG pathways
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Figure 3. The 95% credible intervals of the coefficients beta
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Figure 4. Flowchart of the data management procedure
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labeled in yellow color; and genes not incorporated in our data analysis are labeled in

whose posterior probabilities larger than 0.94 but lower than (or equal to) 0.95 are
gray color.

Genes whose posterior probabilities larger than 0.95 are labeled in red color; genes

Figure 5. Selected genes in the cell cycle pathway
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Figure 6. Density plots of coefficients y*, vy, 8, &
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Figure 7. The 95% credible intervals for the coefficients beta derived from30000 (red)
or 50000 (blue) iterations
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Appendix.1
Comparison between the remaining samples and excluded samples

Table 1 indicates the frequency of clinical information between remaining samples
and excluded samples. First, excluded outliners a little tend to be high-stage patients.
Especially in stage I1IC, it differed by 10 percent (89.49-70.13) between excluded
outliners and remaining cases.

Second, the remaining cases of five categories in races were 0.01, 0.03, 0.04, 0.00,
0.92, and on the other hand, those of excluded outliners were correspondently 0.00, 0.05,
0.05, 0.01, 0.88, which indicates the distribution of races between excluded outliners
and remaining cases are very similar.

Third, the percentage of vital_status of remaining cases were 0.50, 0.50, and on the
other hand, those of excluded outliners were correspondently 0.42, 0.58, which
indicates the distribution of vital_status between excluded outliners and remaining cases
are very similar,

The summary statistics of continuous variables are listed in table 2. The mean and
standard deviation of age in remaining cases were 59.6 and 11.6, on the other hand,
those of excluded samples were 60.7, 11.2, which indicates the distribution of ages
between two groups are very similar. The mean and standard deviation of death_days_to
between two groups are very similar. Also, the mean and standard deviation of
last_contact_days_to between two groups are very similar. In conclusion, there are no
specific attributes in excluded samples.

Preliminary analysis: Relation between gene expression and DNA methylation

We calculated Pearson correlations between gene expression and DNA methylation
level in each gene. The result was shown in Figure S1. Majority of correlations were
negative values, which fitted the image that increasing DNA methylation levels will
decrease the performance of RNA expression. Conversely, for those genes that had
positive relations between gene expression and DNA methylation, we expected there are
other mechanisms to regulate the gene’s RNA expression.
Figure S1. Correlations between gene expression and DNA methylation level
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Appendix.2
Assignment of nodes and lines from pathway maps
Arrangement of nodes

The pathway maps were downloaded from KEGG. Following we will describe the
principles when we arrange the relations of gene in pathways. In KEGG pathway map,
rectangle figures represent a gene product of a specific gene or a gene set which

contents several genes with similar functions. If the rectangle figure represents a gene
set, the expression of this node will be replaced with the average of gene expression
levels of this gene set. Notice that we will skip the genes in the gene set which are no
information in our data when calculate the average value of this gene set.

Second, if more than one rectangle figures are attached to each other, it is on behalf
of a complex, which means these gene products have strong association and they only
work when these gene products combine to each other. Thus, in our analysis, the
complex will be regarded as a single node, and its expression value will be represented
as the average of gene expression levels of these genes.

Third, if the data of the specific gene in pathways are missing, we would exclude
the gene in our analysis. And the branches (connection to other genes) of these nodes
will be ignored. Fourth, we only focus on the gene that is regulated by other genes and
the genes binding with other genes (like Abl in Figure S2) and not regulating other
genes or not regulated by other genes will be also ignored.

Arrangement of lines

The branches (connection to other genes) are divided into two categories, one
group is activation (symbol black array) and the other is inhibition (symbol _). Except
symbol black array and symbol perpendicular, other relations between genes (such as

pure straight line, cross shaped, and pure dotted line) in pathways are ignored. Notice
that all kind of black array (including activation, phosphorylation, expression, indirect
effects (symbol dotted line with black array), and so on) are seen as activation. For
every node, we will record that which genes activate it, which genes inhibit it, which
genes are activated by it and which genes are inhibited by it. Please be attention that if a
gene A is directed to a molecule, and the molecule is directed to other gene B, we all
consider that A is directed to B. When finish the arrangement, a pathway map can be
organized to one table, like the Table S1. below.

Finally we can use the information of this table to construct the conditional
distributions of X. The detail notations of KEGG pathway map can be found at
http://www.genome.jp/kegg/document/help_pathway.html.
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Table S1.

Node u.a u.i. d.a d.i
PCNA N.GADD N.CCNDCDK
PLK1 N.CDC25BC
PRKDC TP53
SFN TP53
EP300,PRKDC,N.ATMR, MDM2 CDKN1A,N.GADD,
TPS3 N.CHEK SFN
TTK MADI1L1
ZBTB17 MYC CDKN2B

Note: u.a. means upstream activate gene; u.i. means upstream inhibition gene; d.a.
means downstream activate gene; d.i. means downstream inhibition gene.
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Figure S2. Examples of nodes in KEGG pathways

SCF L

Skp2 Rb  J=-4 Abl

Complex binding

The expression level of complex SCF, skp2 would be the average value of their
gene expression level; Gene Ab1l binds to Rb, but don’t have other regulation
connection with other genes. So gene Ab1 would be ignored in our analysis.
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Appendix.3

R code

#R code for KEGG has04110 pathway

#data

# N = 377; the number of cases

# P = 41; the number of genes in a specific pathway

#t.obs[i] ; time period from death to initial pathologic diagnosis of ith person

#t.cen[i] ; time period from censor to initial pathologic diagnosis of ith person

#num[1:P] ; the number of neighbors and whether has strong correlation with DNA

methylation of a specific gene
#x[i,1:P] ; the gene expression of i'" person
#MTi,1:P] ; the DNA methylation level of i" person

#parameter

#beta[1:P] ; effect of genes in a specific pathway

#tau[1:P] ; variance of 1 to P genes

#al ; the effect coming from upstream activation genes
#a2 ; the effect coming from upstream inhibition genes
#a3 ; the effect coming from downstream activation genes
#a4 ; the effect coming from downstream inhibition genes
#a5 ; the effect DNA methylation

#shape; the shape of Weibull distribution

Model <- function()

{

shape ~ dgamma(3,2)
for (j in 1:P) {

beta[j] ~ dnorm(0,1)
tau[j] <- numlj]/G

}

for (iin 1:N){

HRx[i] <- exp(inprod(x[i,1:P],betal]))

lamdali] <- HRx[i]

t.obs[i] ~ dweib(shape,lamdali])%_%l(t.cen[i],)

mull[i,1]<- (a2*(x[i,24])+a3*(x[i,19]+x[i,17]+x[i,18]))/num[1]

mu2[i,2]<- (a2*(x[i,17]))/num[2]
41

#pB in our model

#y+ in our model
#y- in our model
#6+ in our model
#6- in our model

#n in our model



mu3[i,3]<- (a1*(x[i,31]+x[i,39])+a2*(x[i,30])+a4*(x[i,19]+x[i,17])+a5*M][i,3])/num][3]
mudl[i,4]<- (a2*(x[i,12])+a4*(x[i,18]))/num[4]

mu5[i,5]<- (a1*(x[i,41]+x[i,31])+ad*(x[i,18]))/num[5]

mu6[i,6]<- (a4*(x[i,18])+a5*M[i,6])/num[6]

mu7[i,7]<- (a4*(x[i,18])+a5*M[i,7])/num[7]

mu8[i,8]<- (a3*(x[i,39])+a5*M[i,8])/num[8]

mu9[i,9]<- (a2*(x[i,28])+a4*(x[i,32])+a5*M[i,9])/num[9]

mu10[i,10]<- (ad4*(x[i,18]))/num[10]

mull[i,11]<- (a1*(x[i,40])+a3*(x[i,27]))/num[11]

mu12[i,12]<- (a2*(x[i,4])+a4*(x[i,39]+x[i,37]))/num[12]

mul3[i,13]<- (a2*(x[i,25]+x[i,31])+ad*(x[i,41]))/num[13]

mu14[i,14]<- (a2*(x[i,27])+a4*(x[i,28])+a5*M[i,14])/num[14]

mu15[i,15]<- (a1*(x[i,21])+a5*M[i,15])/num[15]

mul6[i,16]<- (a3*(x[i,39]+x[i,24])+a5*M][i,16])/num[16]

mul7[i,17]<-
(@2*(x[i,1]+x[i,20])+a2*(x[i,23]+x[i,3])+ad*(x[i,37]+x[i,2])+a5*M[i,17])/num[17]
mu18[i,18]<-
(a1*(x[i,1])+a2*(x[i,10]+x[i,4]+x[i,5]+x[i,6]+x[i,7]+x[i,34])+ad*(x[i,37]+x[i,29])+a5*M[i,1
8])/num[18]

mul9[i,19]<- (a1*(x[i,1]+x[i,20])+a2*(x[i,23]+x[i,3]+x[i,30])+a4*(x[i,37]))/num[19]
mu20[i,20]<- (a3*(x[i,17]+x[i,19])+a5*M][i,20])/num[20]

mu21[i,21]<- (a3*(x[i,15])+a5*M[i,21])/num[21]

mu22[i,22]<- (a1*(x[i,35])+a2*(x[i,24]))/num[22]

mu23[i,23]<- (a2*(x[i,30]+x[i,19])+ad*(x[i,17]+x[i,19])+a5*M[i,23])/num[23]
mu24[i,24]<- (a1*(x[i,16])+a3*(x[i,39])+ad*(x[i,22]+x[i,1])+a5*M[i,24])/num[24]
mu25[i,25]<- (ad*(x[i,13])+a5*M[i,25])/num[25]

mu26[i,26]<- (a1*(x[i,39])+a3*(x[i,34])+a5*M[i,26])/num[26]

mu27[i,27]<- (a1*(x[i,40])+ad*(x[i,14]))/num[27]

mu28[i,28]<- (a2*(x[i,14])+ad*(x[i,9])+a5*M[i,28])/num[28]

mu29[i,29]<- (a2*(x[i,18])+a5*M[i,29])/num[29]

mu30[i,30]<- (ad*(x[i,3]+x[i,23]+x[i,19])+a5*M[i,30])/num[30]

mu31[i,31]<- (a1*(x[i,33])+a3*(x[i,5]+x[i,3])+ad*(x[i,13])+a5*M[i,31])/num[31]
mu32[i,32]<- (a2*(x[i,9])+a5*M[i,32])/num[32]

mu33[i,33]<- (a3*(x[i,31])+a5*M][i,33])/num[33]

mu34[i,34]<- (a1*(x[i,26])+ad*(x[i,18]))/num[34]

mu35[i,35]<- (a3*(x[i,22]))/num[35]

mu36[i,36]<- (a3*(x[i,39]))/num[36]

mu37[i,37]<- (a2*(x[i,12]+x[i,18]+x[i,19]+x[i,17]))/num[37]
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mu38[i,38]<- (al*(x[i,39])+a5*M[i,38])/num[38]
mu39[i,39]<-
(a21*(x[i,8]+x[i,36]+x[i,16]+x[i,24])+a2*(x[i,12])+a3*(x[i,3]+x[i,26]+x[i,38])+a5*M][i,39])/
num[39]

mu40[i,40]<- (a3*(x[i,11]))/num[40]
mu4l[i,41]<- (a2*(x[i,13])+a3*(x[i,5]))/num[41]
x[i,1]~dnorm(mul[i,1],tau[1])
x[i,2]~dnorm(mu2[i,2],tau[2])
x[i,3]~dnorm(mu3([i,3],tau[3])
x[i,4]~dnorm(mud4[i,4],tau[4])
X[i,5]~dnorm(mu5[i,5],tau[5])
x[i,6]~dnorm(mu6li,6],tau[6])
X[i,7]~dnorm(mu7[i,7],tau[7])
x[i,8]~dnorm(mu8[i,8],tau[8])
X[i,9]~dnorm(mu9[i,9],tau[9])
X[i,10]~dnorm(mu10[i,10],tau[10])
X[i,11]~dnorm(mul1[i,11],tau[11])
X[i,12]~dnorm(mu12[i,12],tau[12])
X[i,13]~dnorm(mu13[i,13],tau[13])
x[i,14]~dnorm(mu14[i,14],tau[14])
X[i,15]~dnorm(mu15[i,15],tau[15])
x[i,16]~dnorm(mu16[i,16],tau[16])
X[i,17]~dnorm(mu17[i,17],tau[17])
X[i,18]~dnorm(mu18Ji,18],tau[18])
X[i,19]~dnorm(mu19[i,19],tau[19])
xX[i,20]~dnorm(mu20[i,20],tau[20])
X[i,21]~dnorm(mu21[i,21],tau[21])
X[i,22]~dnorm(mu22[i,22],tau[22])
x[i,23]~dnorm(mu23[i,23],tau[23])
x[i,24]~dnorm(mu24[i,24],tau[24])
xX[i,25]~dnorm(mu25[i,25],tau[25])
x[i,26]~dnorm(mu26[i,26],tau[26])
X[i,27]~dnorm(mu27[i,27],tau[27])
X[i,28]~dnorm(mu28Ji,28],tau[28])
x[i,29]~dnorm(mu29[i,29],tau[29])
x[i,30]~dnorm(mu30[i,30],tau[30])
x[i,31]~dnorm(mu31[i,31],tau[31])

x[i,32]~dnorm(mu32[i,32],tau[32])
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x[i,33]~dnorm(mu33[i,33],tau[33])
x[i,34]~dnorm(mu34]i,34],tau[34])
x[i,35]~dnorm(mu35[i,35],tau[35])
x[i,36]~dnorm(mu36[i,36],tau[36])
x[i,37]~dnorm(mu37[i,37],tau[37])
x[i,38]~dnorm(mu38Ji,38],tau[38])
x[i,39]~dnorm(mu39[i,39],tau[39])
x[i,40]~dnorm(mu40[i,40],tau[40])
x[i,41]~dnorm(mu41[i,41],tau[41])
}

al ~dnorm(0,1)

a2 ~dnorm(0,1)

a3 ~dnorm(0,1)

a4 ~dnorm(0,1)

a5 ~dnorm(-1,100)
G~dgamma(2,5)

}
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Appendix.4
Different cutoff values in methylation effect

Figure S3. Density plot of coefficients y*, y, 8%, 8 n
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Note:
Red lines represent the result using cutoff point -0.1 (present model in article)
Blue lines represent the result using cutoff point -0.05
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Table S2. Selected posterior probabilities of individual gene effect using cutoff point

-0.05

Gene P(Bj>0|6) P(B;<0|0) Gene P(B;>0|6) P(B;<0|0)
CDC25A 0.69 0.28 N.CDC25BC 0.98 0.02
CDC6 0.26 0.70 N.CDKN1B1C 0.94 0.06
CDKN1A 1.00 0.00 N.CHEK 0.37 0.58
CDKN2A 0.25 0.67 N.E2F45 0.68 0.30
CDKNZ2B 0.27 0.71 N.GADD 0.07 0.93
CDKN2C 0.44 0.46 N.MADBUB 0.61 0.35
CDKN2D 0.55 0.42 N.PPTG12 0.52 0.46
EP300 0.16 0.81 N.RBL12 0.58 0.38
ESPL1 0.38 0.58 N.SKP 0.36 0.60
GSK3B 0.94 0.05 N.SMAD 0.18 0.79
MAD1L1 0.55 0.38 N.SMC 0.04 0.96
MDM2 0.26 0.73 N.TGFB 0.20 0.79
MYC 0.96 0.03 PCNA 0.10 0.87
N.APCCDC20" 0.00 0.99 PLK1 0.10 0.87
N.APCCFZR1 0.42 0.54 PRKDC 0.65 0.33
N.ATMR 0.01 0.99 RB1 0.91 0.08
N.CCNACDK 0.91 0.06 SFN 0.62 0.30
N.CCNDCDK 0.40 0.56 TP53 0.37 0.49
N.CCNECDK 0.41 0.56 TTK 0.20 0.73
N.CCNHCDK 0.03 0.95 ZBTB17 0.11 0.87
N.CDC14 0.59 0.37

Note:

If the node in pathway is complex, the front of gene’s name would be “N.”

46



Appendix.5
Sensitivity analysis

The prior setting 1 is what we present in the article. And in the prior setting 2, we
changed the mean of v*, v", 8", § n by using the median of y*, vy, §*, 8 ,n generated by
using the prior setting 1. Detail of setting is shown in the formula below:

Prior setting 1

shape ~ gamma(3, 2)

B; ~N(0,1), jfrom1toP
7" ~N(03),

y~ ~N(0.,1),

0" ~N(0,2),

o ~N(0,2),

n ~ N(-1,100),

G? ~ gamma(2,5)

Prior setting 2 (we take the median of y*, y, 8", & n in prior setting1)
shape ~ gamma(3, 2)

B; ~N(0,1), jfrom1toP

y"~N(0.9,1),

y~ ~N(1.1D),

0" ~N(1.2,),

0 ~N(.22),

n ~ N(0.1,100),

G? ~ gamma(2,5)

The results are shown in following tables and figures.
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Figure S4. Density plot of coefficients y*, y, 8%, 8 n
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Note:

Red lines represent the result using prior setting 1 (present model in article)
Blue lines represent the result using prior setting 2

The distribution of y*, vy, 8", & are all similar to the density of prior setting 1,
which indicates y*, y, 8", & are not sensitive to different priors; on the other hand, in
prior setting 1, we have given n a comparably high-information prior. Therefore, it’s not
surprising that the distribution of n will move after changing the prior.
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Table S3. Coefficient of beta
Gene P(B;>0/6) P(B;<0/6) Gene P(B; >0|0)

N.CDKN1B1C

CDKN2A 0.43 0.47 N.E2F45 0.99(0.95) 0.01

CDKN2C 0.38 0.52 N.MADBUB 0.27 0.71

EP300 0.01 0.98(0.88) N.RBL12 0.48 0.51

GSK3B 0.94 0.05 N.SMAD 0.38 0.59

MDM2 0.39 0.61 N.TGFB 0.10 0.88

N.APCCDC20! 0.29 0.70 PLK1 0.25 0.72

N.ATMR 0.01 0.99(0.96) RB1 0.91 0.08

N.CCNDCDK 0.33 0.61 TP53 0.41 0.47

N.CCNHCDK 0.14 0.84 ZBTB17 0.13 0.85

Note:
Values in the parentheses is the posterior probability derived from prior setting 1
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Figure S5. Coefficients of beta

coefficients of beta

genelbeta)

Note:
Red lines represent the result using prior setting 1 (present model in article)
Blue lines represent the result using prior setting 2

Despite the significant genes (P(B; > 0| 8) >0.950r P(B; < 0| 6) >0.95)
differ in prior setting 1 and 2, their posterior probabilities and 95% credible interval are
very similar. And the average differences of posterior probabilities between prior setting
1 and 2 are smaller than five percent.
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