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Abstract

With the advance of science and technology, people deal with p%b@ms
A\l |
more precisely and accurately in many fields like Physics, SeismologS/, Aero-
dynamics, Chemistry and so on and so forth. Therefore scientific computing
should be highly concerned. Effective solving sequence of linear systems with
large and sparse matrices plays a very important role in scientific computing.
In early times, people used direct method or iterative method to solve
linear system one by one in the sequence. The direct method will be mis-
erable if the dimension of the linear system is pretty much large. If we use
iterative method to solve linear systems, a powerful preconditioner will be
very helpful. But finding and constructing an almighty preconditioner will
be a very difficult and time-consuming mission. Nowadays, we can use the
information from the previous linear system to the current linear system or
the other systems in order to save time.

In our article, we will take a two-dimensional nonlinear convection-diffusion
model problem to be our example. We present a brief introduction of finite
difference method, Newton-Raphson method and line search method. After
applying these ideas, we will have a sequence of linear systems needed to be
solve.

And then, we will discuss three interesting methods for approximate up-

iv
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dates of factorized preconditioners for solving sequences of linear systerﬁé..
Numerical experiments show that these three method are profitable, thg:tis,
|| ==

they have fewer number of iterations of preconditioned iterative niethodssor
solving sequent systems of a sequence than freezing the preconditioner from
the first system of the sequence. Since the interesting updates mainly cost
less and straightforward, they may substitute for recomputing precondition-
ers which may take lots of time.

To complete our work, we mainly consult [1], [2], [3], [7], [8] and
[10]. And we also redesign and rearrange [7] in order to introduce
everything as explicit as we can.

Keywords: Sequence of linear systems, Preconditioned Iterative

method, Incomplete factorizations, Factorization updates, Gauss-

Jordan transformations, Sherman—Morrison formula
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Chapter 1

Introduction

Sequences of linear systems with large and sparse matrices turns up in a lot
of applications such as kinematics, computational fluid dynamics, structural
mechanics, numerical optimization as well as in solving problems derived
from nonlinear partial differential equations. In more detail, we are going to

face sequences of linear systems
ADg =p@ =1, (1.1)

where A® € R™™ are general nonsingular sparse matrices and b € R™ are

the corresponding right-hand sides in the above applications.
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1.1 Literature Review

These sequences of linear systems can be derived from solving aiis#ysqt.erh:

of nonlinear equations F'(x) = 0 where F' : R” — R". By using Newton Ot

quasi-Newton method, we have a sequence of linear problems

where J(z;) is the Jacobian or approximation to Jacobian in the current
iteration z;.

The Jacobians J(z;) sometimes are expensive so we alternatively compute
their approximations. It is well-known to use Broyden-Fletcher-Goldfarb-
Shanno (BFGS) update which are dense matrices when we compute approx-
imations. At the beginning, Schubert offered a method for updating approx-
imation which makes matrices sparse [5]. Shanno presented a sparse version
of BFGS update.[6]. Toint also proposed an interesting approximation up-
dates which are not only sparse but also symmetric [9]. Lucia tendered a
new quasi-Newton updating formula combined planning for fixed symmetric
and idea from Schubert [4].

Efficient solving sequence of linear systems is a difficult task as we men-
tioned in abstract. We could compute mighty preconditioners MM M®) ...
for each system respectively, but it would be pretty expensive in some cases.

So there is a natural way to enhance the performance, that is to freeze the
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preconditioner which is only computed from the initial systems and reusod”

for the other system matrices. But, in practice, freezing the preconclht%nelf
may not be fast enough for convergence. Hence we need distriBu_t!e: som'elz
information or computational effort from the current system among other
systems in the subsequent linear system. This is what we will mainly intro-
duce [[7] and [§] in this thesis. We discuss three strategies in [[7] for updating
preconditioner which is factorized as LDU =~ A. The updated precondi-
tioner will be used for solving the subsequence of linear systems. Numerical
experiments show that the three kinds of updates are competitive with re-
computing preconditioners in terms of having the similar convergence rates
for subsequence of systems. Furthermore, it is more cheaper to form the
updated preconditioners.

We are going to introduce in Chapter 2 some backgrounds .in [1], [2], [3]
and [10],of constructing a sequence of linear systems from a two-dimensional
nonlinear convection-diffusion model problem. For example, after discretiz-
ing the two-dimensional nonlinear convection-diffusion model problem by
finite difference method, we need the concept of solving nonlinear systems
by Newton-Raphson method with line search method. After these proce-
dures, we will have a sequence of linear systems to solve. In Chapter 3, we

present the idea of three interesting approaches in [[7] for approximation up-

dates of factorized preconditioners in theory and implemention in practice.
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The numerical experiments will be offered and discussed in Chapter.4.

To complete our work, we mainly consult [1], [2], [3], [, [8]

=54
T A
| o :II

[10]. In this thesis, We will discuss the effective triangular preconditio'fler e
dates and the other two updates for sequences of linear systems derived from
nonlinear partial differential equations as explicit as we can. Throughout the

article, || - || denotes an unspecified, arbitrary norm.
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Chapter 2

Preliminary

2.1 Newton-Raphson Method and Line Search

Method

We first introduce Newton-Raphson method in [2] for one nonlinear equa-
tion F'(x) = 0 in single scalar variable x. The systems of nonlinear equations

can be extended by similar ways.

k k

Assume z” is an approximation of x. We hope 2" can be close enough to
x, when k increases, so we have to improve the approximation. And we hope
there is an idea that not only makes procedure easier to implement but also

improves the approximation z*. The idea is to construct a approximation of

F(z) close to z* such that F(z) ~ N(z;2*) where N(x;2%) = 0 is easier to
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solve. The solution of N(x;x*) = 0 is viewed as an improved approximati(;n"--'

of %1 to the root = of F(x) = 0. By using Taylor expansion, N ( af‘ﬁ""}

the linear part of a Taylor-series approximation of F' at the point. of Jé < x"’l-:;

Next, we let 251 to be the solution of N(x;2*) = 0. In other words, we

k+1.
)

are going to find the solution of the equation N(z z¥) = 0 with respect

k+1

to x then we have

This is the Newton-Raphson iteration scheme for solving F(x) = 0. The

Convergence rate for Newton-Raphson iteration scheme is quadratic, that is,
|x o xk+1| S C’|x - a:k]2

For the systems of nonlinear equations F(z) = 0, we also construct a
approximating F(x) by N(x;z*) near 2* which is also an approximation to

x. And N(z;2*) similarly satisfies
N(x;2%) = F(2") + J(2")(z — o).

where J = VF is the Jacobian of F. If FF = (Fy,---,F,)" and z =
(1, ,2,)T then entry (i,7) in J is OF;/dz;. Similarly, we solve a linear

system with J as coefficient matrix in order to find the next approximation
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2F1 from N(2*1; 2%). By repeating this process, we have a sequéneé of

which is close to the solution of F(z) = 0. |
|

The stopping criterions are

l2" —a¥| < &g or [FE] < e

or

| PGl

o S €
£ (20)]

||« x
<€, or

[l

Algorithm 2.1.0.1 Newton-Raphson Method

1: Given a initial z° for the solution of F'(z) =0

2: while termination criterion is NOT fullfilled do
3:  Solve J(z%)dx*1 = —F(2%) with respect to dz*+!.
4: Set xFtl = gk 4 §kt!

5. end while

The idea of line search algorithm in [L0] is very simple : given a descent
direction pg, we find a step in that direction that yields an acceptable xy,1,

that is

Algorithm 2.1.0.2 Line Search Method

1: Calculate the descent direction py

2: Set 11 = xp + Appy for some N\, > 0 which makes xp,; an acceptable

for next iteration.

A famous inexact line search condition is the Wolfe conditions satisfying

flan + arpr) < f(@0) + 10wV fil pi (2.1)
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for some ¢; € (0,1). The reduction in f should be proportional to both step

,,._.\I .
(A~ ]

length «y, and the directional derivative V fIpy. Inequality (@) 1ﬂ 'd
U

the Armijo condition. In practice, ¢;is chosen to be equit small and: ﬁésuallgz

to be ¢; = 107%. Sometime, we want a more larger step, we have second

requirement called a curvature condition is introduced

V f (@ 4 arpr) pe > &V il pr (2.2)

where ¢y € (1, 1).

Combine (@) with (@), we have strong Wolfe conditions.

f(@r+ arpr) < f(xr) + cranV [ pr,
|V f(@r + arpr) " pr| < |2V fE il

O<cg<e<l

There are some other conditions, for example : Goldstein Condition,- - -, etc..
When we use line search method, we may face some breakdowns which we
will not discuss here. But we can use the backtracking line search method

below to avoid some of the breakdowns.
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Algorithm 2.1.0.3 Backtracking Line Search Method
1: Choose @ > 0, p, ¢ € (0,1).

NI

2: Set a = @. ]
3: while f(zy + agpr) > f(zr) + craxV fl pr do

4: a = pa

5: end while

6: Terminate with o = a.

We can combine the Newton-Raphson method with line search method to

make more efficiently and more stably.
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2.2 Sherman—Morrison Formula

: f\:-_,, ,'I
| ?—'_'
|
Suppose A is an invertible matrix and u, v are two column Vector[
|
1

we assume that 1 + vT A7 # 0. Then the Sherman-Morrison formula i

that

Aty AT

T\—1 _ 4—-1 __
Atwt) = A" = T,

where uv” is the outer product of the vectors u and v.

Proof.

=T +uwlA = UUTA_llizszz;uvTA—l
=T +uww’A™ — u(l ﬂzf;‘l:;;i)lffl‘l
=I4+w A —w'A =1
Similarly,
<A_1 B %) (A+u’) =1
]

10
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Chapter 3

Preconditioner Update

In this thesis, we are going to present some strategies to update precon-
ditioners from sequences of general, nonsymmetric systems that solved by
preconditioned iterative method. We will also introduce these ways that
updated preconditioner is as powerful as the original one in theory and con-
struct a preconditioner cheap in practice. And this types of updates have
particularly beneficial behavior in [§] under the following three kinds of cir-
cumstances : first, if preconditioner recomputation undergoes instability or
updates have a more stable factorization; second, if the update is dominant,
at the very least structurally or the update covers the important part of
the difference matrix between the current and the other matrix; third, if re-
computed preconditioners is somehow expensive (solving for a long time) in

parallel computations, matrix-free environment.

11
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3.1 Theoretical Analysis

M=) |

| ,—F' | II
In [7], for the purpose of simplifying the notation, we denote tvvﬁl)‘ lifiear
systems of dimension n by Az = b and A*z* = b*. Denote by B the differento.
matrix A — A* and by M the preconditioner of A, respectively. There are

two some information we can get about the quality of the preconditioner M

from a norm of the following matrix.
A-M (3.1)

If we study preconditioning from the left or right, we can get message from

the two norms of matrices, individually.

I-M1A (3.2)
or

I—AM™! (3.3)

We call information from the norm of the matrix (@) accuracy of the
preconditioner M with respect to A. Message from the norms of the matrices
(@) and (@) are said to be stability of M (with respect to A). We let M*
be to a updated preconditioner for A* whose accuracy and stability are close
to the accuracy and stability of M for A. In our thesis, we will consider the
norm of the matrix (@) due to its simplicity.

12
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Easily, we get

[A =Ml = [|A" = (M = B)]|

Hence the norm of the difference matrix A* — M* with M* = M — Bis
the same as the norm of the difference matrix A — M. We will call M* the
tdeal updated preconditioner with respect to A*. Actually, there may be
other preconditioners that are ideal with the norm of A* — M*.For example,

we can consider M* = M — C for some matrices M # B with
[A = M| = [|A" = M*|| = [|A" = M + C|

Since B is usually directly available, we will focus on M* = M — B.

If we use preconditioned iterative method to solve the sequences of linear
systems, we will suffer from multiplying vectors with inverse of the precon-
ditioner M* in each iteration of the linear solver. In some special cases, the
difference matrix B can make (M — B)~! obtain from M~! with low costs.
For instance, if B has small rank, M* = M — B will be directly inverted
by using Sherman-Morrison formula. But in general cases, the ideal pre-
conditioner M* can not be accepted in practice since the multiplications of
vectors with (M — B)~! is very expensive. Instead, we will choose cheaper
approximations of (M — B)™'.

In this thesis, we may assume that M is in the form of a triangular decom-
position, that is, M = LDU ~ A, where L and U have unit main diagonal.

13
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We typically suppose that the approximate updates of factorized pre(:.onél..i- <
tioner that we are going to discuss have strong diagonals. This a,ssulmlﬁqnoln
is in order to do not have a breakdown when we have a simple 1n0(!)mplet'elz
factorization. For instance, if the system matrix is an H-matrix, ILU(0) and
AINV preconditioners are proved to be breakdown-free. We can extend the
breakdown-free property by some modifications which change the decom-
position and make the diagonal stronger, e.g., preliminary shift or global
modification of the decomposition. In the following we presume that ma-
trices are in the form that factors L and U more or less approximate the
identity matrix.

If M — B is invertible, we may use a product of more factors which are
easier to invert to approximate its inverse such as a product of inverses of

triangular matrices and an inverse of a difference of matrices where a diagonal

matrix is used instead of M take the place of (M — B)~1.
(M-B)'=U'D-L'BUY 'L '~U(D-B)'L™, (34)

where we have D — B is nonsingular. Now we believe D — B is a invertible
approximation of D — B which can be inverted inexpensively. Then we can

define a precondtioner M* via the last explication (@) as
M* = L(D-B)U (3.5)

In the symmetric case, that is, L = U. We have M* = L(D — B)LT. If

14
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we choose D — B approximately, we can still preserve the symmetrys Tere: _

we mainly discuss in the nonsymmetric case. We can also get furtherl' %pjné

) !{ =

1%
\

: . ] G
update. For instance, we can approximate as _H

(M—-B)'=(DU~-L'B)y'L '~ (DU - B)'L™* (3.6)

where DU — B is invertible. If DU — B is an easily invertible and nonsingular

approximation of DU — B, then we define M* by
M* = L(DU — B) (3.7)

It appears to be much easier to cope with two factors than three factors

comparing to (@) An analogue of (@) is approximation through
(M-B)'=UYLD-BU Y '~U'LD—-B)™" (3.8)
And the analogue of (@) is
M* = (LD — B)U (3.9)

We will adaptively take approximation between (@) and (@) in our dis-
cussion (we explain this later on) but we only express theoretical results for
the case (@)

The first thing we are interested in is whether the update (@) has the
potential to be much more powerful than the frozen preconditioner M =
LDU for A*. We display the relation of quantity between updated and
frozen preconditioner in the following by using the simple lemma below.

15
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Lemma 3.1. Let |A—LDU|| = ¢||A|| < ||B||. Then the precondj_{;ibné'rufr(;in‘\iz‘

@ . @;’?—-igﬁ .I|
(B.1) satisfies | -éﬂ'f- |
L(DU - DU - B)—-B A Qo
1Bl — [l Al
L||DU - B—-DU - B L—1||||B A
< IElIpy U—B|+|l 1B + <l H-||A*—LDU||
1B —<l|A]

Proof.
Easily, We will have

|A* — M*| = |A - B — L(DU — B)|| = |(A — LDU) + L(DU — DU — B) — B

ST 1Bl = llA]
< (el Al +IL(DU = DU = B) = B|l)im——r 71
1Bl = ellA]
] I(A - LDU) — B|
< (el All + IL(DU = DU — B) — Bl))
IBI[ = ellA]
|L(DU — DU — B) — B|| + || A||
=||A* — LDU||
IBI[ = e[l Al
|L(DU — B— DU — B)+ (L —I)BJ| +¢||A]l
= |[|[A* — LDU||
1Bl — el Al
L|||\DU - B—-DU - B L—1T|||B A
<ja* — oo LEHIPY U= Bl +|[L = I]lIB]l + e[l All
1Bl = e[l Al

]

By Lemma @, if the DU — B is short distance away from DU—B and ||L—1||
is likely to be small then the multipliers of ||A* — LDU|| will be smaller than
one. We take into consideration that preconditioner modifications to improve
the diagonal dominance in practice. When we get a potent preconditioner

M = LDU, the assumption ||[A — LDU|| = ¢||A|| < || B]| will be satisfied.

16
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Lemma @ declares two important informations for us. First; we cin glét

the relation of quantity between updated and frozen preconditione%{%g%%
ond, when ¢||A]| is small enough, DU — B is a approximation which !1|bg008
enough and L is close enough to a diagonal factor, we will have an accurate
preconditioner that may be as powerful as a recomputed preconditioner. Im-
age that we have | A* — M%|| = § = ||A— M]||, where M* is the a recomputed
preconditioner with respect to A*, so we have ||A*— M#|| > ¢ in general. But
Lemma @ do not exclude ||A* — M| < § at all. Hence M* is potential to
be as great as the preconditioner which is recomputed. The update (@) has
a higher convergence rate than a recomputed preconditioner in some cases.
Lemma @ gives a relation with accuracy according to (@) Now we
want to introduce a theorem that is related to (@) or (@) And the the-
orem express that, under some particular assumptions, the quality of up-
dates may be better than recomputed preconditioners if the approximation
DU — B is suitably chosen. For the purpose of simplification, the scaled up-

dated approximate factor D~'(DU — B) will be denoted by U — D~1B and

U~Y(U — D-1B) will be denoted by I — U-1D-1B.

Theorem 3.2. Assume that LDU + E = A. for some error matrix F and

let ||[U=*D=1B||y < 1/c¢ < 1 where || - ||2 denotes the Euclidean norm. Further

17
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assume that the singular values o; of
_-ﬁ\l IJ"-\.
| ﬂ.;_'-r.‘l_:'-n] |
-:;—_;: |

M*—A*=L(DU - B)—A*=(I - L)B+ L(DU — B — (DUJFL’iI ﬁ))
P

satisfy

01> 09>+ >0,>20>0441 > >0,

for some integer t,t < n, and some small § > 0. Let (DU — B) have nonzero
main diagonal, and D = diag(dy,--- ,d,). Then there exist matrices F' and

A\ such that the stability of M* with respect to A* satisfies
I— (M 'A*=1— (DU -B) 'L 'A*= A+ F, (3.10)

with rank(A)< t and

C
Fll, < —— —Ll Ut
I1Fll2 < o= max |70

Proof.

We have

L(DU-B)-A*=LMDU+L'E-~B+DU-B~- (DU + L 'E—-B)) - A*
=(I-L)B+L(DU-B— (DU + L 'E — B)).

By assumption, the singular value decomposition of the latter matrix can be

18
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written as

=/, + I, with rank(4;) <t

and
| F1lle = |Wdiag(0,---,0,001, - ,0,)V |2 (3.11)
= ||diag(0,--- ,0,0141,- - ,00) VT2 (3.12)
= ||diag(0,--- ,0, 001, ,0n)]|2 (3.13)
<9 (3.14)

The second equality () is caused by

|Wdiag(0,---,0,001, - ,0,)VE|3
= (Wdiag(0,- -+ ,0,0041, - ,0,) V)T (Wdiag(0,--- 0,011, ,0,)V7)
= Vdiag(0, -+ 0,001, ,0) W Wdiag(0, - ,0,0141,+ ,0,) V"
= Vdiag(0,---,0,001, - ,00)diag(0, -+ 0,001, ,0,) VT

= Hdzag(O, 7070t+17"' aa—n)VT”g

19
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And the third equality () is satisfied by

;i 2
||dz'ag(0,--~ 7070t+17"' 70n>VT||2 'I n;-":lll
[z
- ”n’ﬁaxl HdZag(O, -0, Ot41, """ 7UN)VTIH2 | _ ll
z||o= o, W
= max ||diag(0,---,0,0011, - ,0,.)Yl|2
llyll2=1

<9

Hence
LDU=B)— A" = A+ Fy
then
I— (M 'A*=1—- (DU -B) 'L 'A*= (DU - B)"'L™' A\, +(DU - B) 'L 'F,
By setting
F=(DU-B)'L'F, A=(DU-B)'L'A;
we get (),Where rank(A) < t. The matrix F can be bounded by
1F]l2 < L7l (DU = D1B) |26
hence

)
[E]]s < max ==

S L G

) e
< mngHL_llhllU_leH(I —U'DB)

By assumption, ||[U=1D'B||; < 1/c < 1, and consequently

o .- _ TS\
HFHzﬁmiaXmHL HllUHl2(1 = U D1B]J2)

c )
< —— max

LY IlU 5.
< g max gl 7 el U

20
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If the matrix F in () is a zero matrix then the preconditioned systelfn <

is a rank ¢ update and Krylov subspace methods converges theoretilcé‘l%iiln

at most t + 1 iterations.

3.2 Practical Manipulation

In [7], in this section, we are going to discuss approximations DU — B of
DU — B which can be efficiently computed and make the preconditioners
that are cheap to put in use. More precisely, updated preconditioners are
easily invertible matrices. We will offer three strategies which are classified
into triangular updates or unstructured updates according to the structure of
the preconditioner. Likewise, we only present for the case (@) but all means

can be analogously formulated for (LD — B)U corresponding to (@)

3.2.1 Triangular Update

A strategy which not only is obvious and effective but also preserves the

triangular structure which we consider entries from is to set

DU — B = triu(DU — B) (3.15)
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,where triu denotes the sparsified upper triangular part which also includes:

the main diagonal part, herefore the updated preconditioner will be ii"l
M* = L(DU — triu(B)) v (3:18)

Due to the sparsity pattern of () is triangle, we will call this update
triangular updates. We know that M* can be acquired totally for free because
we just take only one triangular sweep with the triangular part of B, if we
store U and B separately. If the sparsity patterns of triu(B) and U are close

enough then it nearly costs us nothing in practice.

And the analogue of () is
M* = (LD — tril(B))U (3.17)

These two updates (m) and (H?l) are powerful in many problems when one

triangular part of B is clearly dominates the other. we will show this result
in our experiments. However, they only take into account one triangular part
of the difference matrix B, the information from the other part of B will be

lost. This will lead to weak convergence in some applications.

3.2.2 Unstructured Update

In this section, for the purpose of avoiding the information from each

triangular part of the difference matirx B, we will propose two strategies to

22



3.2. Practical Manipulation Page 23

get the same idea of updated preconditioner which is easily to'get ifiverse: _

matrix. But these two strategies give rise to matrix which is gerera lﬁi‘[ﬂr&‘q

triangular.
Denote the matrices diag(DU — B) by D, and D~(D — DU — B) by B,

respectively. We have zero diagonal on the main diagonal of B and
DU — B = D(I — B) (3.18)

For the first strategy, we are motivated by Sherman-Morisson formula. For
example, when B = Beie]T for some 1 < 4,5 < n,i # j,and remember that
we assume DU — B is nonsingular, so is I — B. Then ,by Sherman-Morisson

formula, we have

_ 56,@?
(1—ele;)

J

I+ Bee] =1+ B (3.19)

From (), we know the inverse of (I — B) is the identity matrix which is
modified by an off-diagonal entry /3 at the position (7, j), so it costs nothing
and is fill-in free. And we know (I — B) is a particular Gauss-Jordan transfor-
mation. According to this motivation, we are going to find approximations

DU — B of DU — B such that the scaled matrix I — B can be transformed

by a product of Gauss-Jordan transformations

([ — eilbi1*>([ — 62'2bi2*) cee (I — eikbiK*>7 K S n—1 (320)
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where B = (b);;. We denote by row(i) the sparsity structure of a oW 7 of Bl

"

(with zero diagonal). It is very cheap for multiplication of (I — B)_?‘;ﬁ’%h
I

a given vector v, as we can see from Observation @

Observation 3.3. The number of operations for multiplying a vector by a

matrix of the form () or its inverse is at most 2 Z]K=1 [row(i;)|.

Proof.

The number of element in each row of the matrix which can be written
as () is |row(ij)| elements. Every element in the i;-th row needs to
multiply a element in the given vector so there will be Zjil |row(i;)| opera-
tions. And the number of operations for summing up the products is at most

Z]K:l |row(i;)|. Hence the total number of operations is 22;;1 |row(i;)|.

]

We know that () is special case of () because of the well-known fact
that unit upper triangular matrix I — B from () can be trivially written
as the product R, ;---R; of n — 1 elementary triagular matrices ,where
Ry =1 — e, for i = 1,---,n — 1. In the following theorem, we discuss

a necessary and sufficient condition for the existence of a decomposition of

I — B of the form ()
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Theorem 3.4. Let [ — B =1 — Zjl:l:17m7K eﬂgjl*. Then

( n\:;l':rll
- - - - - ||
I - B = (I - eilbil*)(I - eizbig*) st ([ — eiKbiK*) H(S‘I:qu
s l
if and only if
-1
i ¢ | Jrow(iy) for 2<1<K (3.22)

k=1

for all iy,--- ,ig such that {j1, - ,jx} = {i1, - ik}

Proof.

The equivalence of () and () follows from the orthogonality of the

unit vector e;, with respect to all sz* for k<[, 1<I<K. O]

Now, we are going to introduce the first strategy for finding the approxi-
mation DU — B with I — B satisfying ().In algorithm (), we first
initialize a candidate rows R by {1,--- ,n}. In each step, after choosing
a row 4, we update the candidate rows R by removing all the rows j € R
for which b;; # 0. At the end of the algorithm (), we will have a se-
quence of row indices i1, --ix, where K < n — 1, which are made from the

algorithm.
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Algorithm 3.2.2.1 Find matrix DU — B such that it, scaled by its di@gonaly<

can be written in the form () E"S:' .
I Set R={1,--- ,n},K=0 H L1\ .

1

|
| |
i \)

2: for k=1,---,ndo

3: Set row(k) = {ili # k N |(DU — B)g;| # 0}

4 Seb pr = ic o (DU — Bl

5. end for

6: while R # 0 do

7: Choose a row © € R maximizing p; — Zje'Rﬂrow(i) D;
8: Set K = K+ 1,i,, =1, R = R\{row(ix) Ui}

9: end while

We can use the row indices i1, -1 determined from the algorithm to
construct the approximation in (B.18) with [ — B which can be written as
the product () The heuristic criterions in step (B) and (E) not only are
the point in finding the row of DU — B with largest entries but also spur
the choice of a row to remove the candidate rows R with small entries. To

equalize the two heuristics,we may perform a weighting parameter w when

running the algorithm and substitute step (H) with the new step ()

7 Choose a row i€ R mazrimizing p; —w - Z p;  (3.23)
JERNrow(i)

It may be happen that, if there are fewer nonzero entries in the hunted
rows, we may have more factors of () Hence we may introduce a drop-

tolerance tol into step () and replace step () with
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3 Set row(k)={ili £k A|(DU — B)y| > tol} : || (d24)

Other than tolerance dropping, we can also sparsify the structure éf the
matrix DU — B had a foothold on the given mask in order to enhance the effi-
cientibility of the strategy. Sparsification stimulates the the chosen candidate
rows R covering as much rows as possible by Gauss-Jordan transformation
as well as gives rise to less expensive matvecs (matrix-vector computations)
with the inverse of ()

The second strategy, we introduce below, for finding the approximation
DU — B based on Gauss-Jordan transformation will be more systematic and
beautiful, is characterized by bipartite graph model.We define the bipartite
graph of (DU — B) as G(DU — B) = (R,C,E), where R = {1,--- ,n},
C={1l,---,n'}and E = {(4,5")|(DU — B);j» # 0}. The following Theorem
(@) give us a first glance through this idea.

Theorem 3.5. Assume that T' = (Vr, E7) is a spanning forest of G(DU — B)

such that {(i,7)|1 < i < n} C Er where Vr is the vertices of T and Er is

the edge of T. We define entries of the matrix DU — B € R"*" by

(DU = B)y; if (i,j') € Er
(DU - B)ij =

0 otherwise
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scaled by its diagonal entries as in (B.1§). Then DU — B can be exprésséd'---'

as a product of the form ()

Proof.

There are two kind of T', connected or unconnected. If 7" is unconnected
then T is a spanning forest. Then the spanning forest 1" will be pieces of
connected parts. Each connected part associates a block diagonal submatrix
of DU — B, and submatrices corresponding to individual connected parts can
be mutually multiplied in any order. And it lead the same result and causes
no fill-in. So we can only take 7" is connected into consideration without loss
of generality.

In the following of the proof, we will present how to find the indices of the
Gauss-Jordan transformations from the left to the right for 7" is connected.

Due to {(i,7)|1 < i <n} C Ep and T is connected, T contains at most
n — 1 edges (i,7') with ¢ # j. We can find a free row vertex i € R in T
which is in T incident only to the edge (7,;’) such that there is an edge
(k,j’) € Er for some k. Set i; = i. Then remove from T the vertices
i € R, 7 € C and all edges incident to them. Again, there exists a free
row vertex in the updated tree T. We reduplicate choice of free row vertices
and update T in this way, we will get the sequence of indices i1, -« ,%,_1

for I — B = (I — e;,b;,4)(I — €3,bip4) -+ (I — ;. b; ) which is scaled the

28



3.2. Practical Manipulation Page 29

diagonal entries from DU — B. | " D

[ =iz |
| 2=
We marshal theorem (@) to the algorithm (B.2.2.2) which eould i'f]ingil___\

al
|

\ : |
approximation DU — B of DU — B. At the end, DU — B would be written

as a product of Gauss-Jordan transformations.

Algorithm 3.2.2.2 Approximate DU — B such that (B.21) is satisfied based

on a bipartite graph of DU — B
1: Find spanning forest T' = (Vp, Er) of G(DU — B) of maximum weight

with edge weights w;; = |[(DU — B);j| for (i,j') € Er such that
{(i,7)|1 <i<n} C Er.

2: Find the entries of B (and corresponding entries of DU — B) as well as
a feasible ordering of Gauss-Jordan factors for 1, -+ ;4,1 in () with
Theorem (@)

3: For each k =2,--- n add to DU — B all entries (DU — B);,; of DU — B
such that I € {iy, -+ ,ig_1}.

The last step of algorithm () will put much more nonzero entries than
the 2n— 1 entries given by the weighted spanning forest into DU — B. This is
an allowed procedure which still can be written as a product of Gauss-Jordan
transformations because of Theorem (@) The computational complexity of
weighted minimum spanning forest for the Kruskal algorithm (But actually,
here, we are applying weighted maximum spanning forest) is O(m log m) and
for the Prim algorithm is O(n+m log m), where m is the number of edges

in the graph GG. Note that we begin with the partial spanning tree with
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the set of edges {(,i')[1 <4 < n} in the Kruskal algorithm. The fruskal

—

algorithm in some cases will be time-consuming but this algorithm pFF*E-';Eield

% | | \
us powerful updates. In order to save time, we can do the same .tlllings 1hI

Algorithm () We can sparsify DU — B by omitting entries smaller
than a pre-given drop tolerance tol. This idea decreases not only the number
of edges m but also the complexity.

We know that, from Lemma (@), the quality of the preconditioner DU —
B will play an important role in the power of the preconditioner M* =
L(DU — B). For the purpose of using the most effective type of update, we
switch between the equality () and the equality () adaptively in our
experiments. The criteria for switch is in terms of the weighting of both
triangular parts of B. We will use the the triangular part of B which has the
bigger weight.

Despite of the truth that the updated preconditioner loses some informa-
tion on the system matrix, it is a preconditioner that is sometimes better than
the recomputed preconditioner. For instance, as we have shown theoretically
in Lemma (@) and Theorem (@), the updated preconditioner has the po-
tential to be better that preconditioner which is recomputed. It occasionally
occurred that updated preconditioner is related to previous decomposition
which is more diagonally dominant than a recomputed preconditioner. The

updated precondtioner can inherit the property of stable and may also sta-
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bilizes the less stable factors.

compare all the ideas that we introduced in chapter 3.
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Chapter 4

Numerical Result

To finish our work, we mainly consult [1], [2], [3], [7], [8] and [10].
In this thesis, we only use our own Matlab code to complete our
experiments comparing to the code , in [7], which is a combination
of Matlab and Fortran. We also optimize our Matlab code so that
the numerical results have excellent behavior in some cases and are
also reliable. The Matlab is a new version 8.0 and the computer is
nearly high standard as compared with [7]. However, the updates
are still fantastic for these facilities in some cases.

In this chapter, we will present numerical results for our experiments with
preconditioned krylov subspace methods for solving a sequence of linear sys-
tems and compare the strategies that we introduce in chapter (B) with re-

computed preconditioners and frozen preconditioners. We also give the nu-
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merical results with many kinds of incomplete LU-decompositions o shows

the circumstances that we will meet.

\\IB®|
All of the tests were performed by Matlab version 8.0. The codeé.w'ér_e run .

on a computer with Xeon E5160, 3.0GHz processor, 2 cores, 4M L2 cache,
32GB RAM memory. BICGSTAB iterative method with left preconditioning
was used to be our accelerator. Iterations were stopped when the Euclidean
norm of residual was decreased by ten orders of magnitude.

Our test problem is a two-dimensional nonlinear convection-diffusion model

problem. It has the form

—Au + Ru(% + g—Z) =2000z(1 — z)y(1 —y)

on the unit square, discretized by 5-point finite differences with natural order-
ing on a uniform 70 x 70 grid. The initial approximation is the discretization
of up(z,y) = 0. And we choose R = 50. Then we have a sequence of matrices
with 24220 nonzeros each. In the following tables, the number of nonzero
is denoted by nnz and the average number of nonzero of preconditioner is
represented by psize.

The update techniques are, in particular, beneficial when it is expensive to
recompute preconditioners. We begin with ILU (incomplete LU decomposi-
tion) with threshold 0.1. This kind of ILU is very expensive in Matlab, i.e.it

takes lots of time to compute ILU(0.1). Note that, in Matlab, loop is much
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slower that array operation but there are some operations thatwe can 10t

use array operations due to data dependency so we are much more Cogféi;n%'q
I = ||

| \
to the numbers of BICGSTAB iterations in our experiments. o _l']-;;'

In table (@), we present the numbers of BICGSTAB iterations which is
needed to solve individual linear systems for several preconditioning strate-
gies we introduced in Chapter B, and time including solving the sequence of
linear systems and constructing the preconditioners. In the second row, the
"Recomp’ represents that the preconditioner ILU(0.1) will be recomputed for
each matrix separately. The method "Freeze’ displays that the preconditioner
will be computed only once at the first linear system and reused for the other
linear systems. "Triangular’ denotes the triangular updated we introduced in
in Chapter . Algorithm and Algorithm in Chapter B are just
denoted by the ’Algorithm ’ and ’Algorithm ’. We use Kruskal
algorithm to construct our spanning forest for’ Algorithm ’.

In table (@), we can see that ILU(0.1)-decomposition gives the test prob-
lem a very powerful preconditioner but computing ILU(0.1)-decomposition
costs a lot. Thought freezing the ILU(0.1)-decomposition can reduce the
computational time and bring much higher number of BiCGSTAB itera-
tions, the overall time to solve these matrices is still shorter. Triangular
updates has a wonderful performance in this table. Note that we choose the
triangular part adaptively based on the magnitudes of the difference matrix
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B. While the numbers of iterations for triangular updates are all Fut IE:iS

.-—\

low as the iteration number of recomputation, and most 1mp0rtan§‘o§'&ﬂ'

we save some significant time comparing to recomputed precondl’clor;e&T The
iteration numbers for Algorithm are a little higher than triangular

updates but obviously lower that frozen preconditioners. Iteration counts for

Algorithm are comparable to triangular updates.
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Table 4.1.
Numbers of iteration for individual linear systems and
totally elapsed time with ILU(0.1)
ILU(0.1), psize ~ 24000
Matrix | Recomp | Freeze | Triangular | Algorithm Algorithm
A© 42 42 42 42 42
AW 34 45 36 38 39
A® 27 51 34 34 37
AB) 27 60 35 36 36
AW 26 77 34 37 37
A® 22 82 31 36 37
A©® 22 83 31 35 35
AD 19 66 27 29 28
Elapsed 1.273s | 1.021 s 0.732 s 9.812 s 26.104 s
time
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As we can see in Table @, the elapsed times for ’Algorithm ; aﬁd\:‘

N 7\
| \ | 1

"Algorithm ’ are really pessimistic. There are two explanation | hrgthﬁi#

= ||
phenomenon. First, as we have already said, some procedures inﬁ-lg&rith;ﬁh
and Algorithm are data dependency so we have no choice
but to use loop in our code. For example, the loop from step(a) to step(@)
in the Algorithm . And the loop in Matlab costs much more time.
Second, the unstructured updates from Algorithm and Algorithm
may not be triangular forms which can not be competitive with the
highly optimized operations for back-substitution and forward-substitution
in Matlab. Hence the elapsed time for Algorithm and Algorithm
are somehow not comparable to the other strategies. So, in Table @,
we focus on the numbers of iterations of Algorithm and Algorithm

than the elapsed times of them.

Using the drop tolerance has an influence on the number of nonzeros and
the computational time as well in Algorithm and Algorithm .
In Algorithm 7 We can not overestimate or underestimate the drop
tolerance. If we underestimate this parameter, the updated preconditioner
will be pretty sparse because we have only a small number of factors of the
form () When we overestimate it then the updated preconditioner will
be very sparse as well since small number of nonzero entries are covered
by Gauss-Jordan transformations. For Algorithm the case is more
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simple, we set the tol to choose the 2n — 1 largest entries and as few ot hew: -

' /

| /\;_-__.._.II.:I‘.l |
| 2—'_; | |I

| J‘(i\ ¢

I | a= ||

We have optimized the tolin Algorithm between one ordéf.s;- 'df_ me_gU

entries as necessary to construct the spanning forest.

nitude and choose tol = 1 in order to get the smaller numbers of iterations,
leading to an overall time of 32.075 seconds. We do not choose a perfect tol
in Algorithm but choose the same value of tol = 1 because this value
produces a scaled system matrix to keep reasonable number of nonzeros in
a row in Matlab which makes the smaller number of factors due to the most
of the whole elapsed time is to find the indices iy, - - - ,ix which takes much
more time.

Apart from the sensitivity of dropping-tolerance tol, the omega w is not
easy to be affected in this test problem. In Figure @, we show the total
number of BICGSTAB iterations for solving the eight linear systems for the
values of w. We can see that the overall number of iterations do not change
a lot from w = 0.6 to 2. For the values smaller than 0.6, criterion (H)
of Algorithm overemphasize the weight of the chosen candidate row

which lead to a bad approximation of DU — B. In all our experiments, we

use w = 2 for Algorithm .
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Figure 4.1. Iteration counts for Algorithm in dependency of w

In Table @ and Table @, we present the accuracies [|[A® — M*|z and
|DU — B — DU — B||r, respectively, where || - || represents the Frobenius
norm. ||A® — M*||r tells how far between the linear systems and the precon-
ditioners for each strategies. |DU — B — DU — B||r gives the information
about the difference of DU — B and our approximations DU — B(equality
of DU — B). For this test problem, we do not meet any problem of stabil-
ity of the preconditioner. From these two Table, we can see that the values

correspond to the numbers of BICGSTAB iterations.
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Table 4.2.

Accuracies of [|A® — M*||z

ILU(0.1), psize ~ 24220

Matrix | Recomp | Freeze | Triangular | Algorithm Algorithm
A 28.51 | 28.51 28.51 28.51 28.51
A 27.51 | 37.20 37.51 78.66 78.41
A® 26.58 | 44.00 43.09 79.81 79.57
AB) 26.61 | 52.70 49.88 81.15 80.91
A® 28.45 | 62.91 57.78 82.73 82.49
AB) 28.17 | 66.71 60.74 83.35 83.11
A©) 28.21 | 66.57 60.64 83.33 83.09
A 28.21 | 66.57 60.64 83.33 83.09
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Table 4.3.

Accuracies of |DU — B — DU — Bl||r

ILU(0.1), psize ~ 24220
Matrix | Triangular | Algorithm Algorithm
A 16.93 23.90 26.61
AP 23.78 33.52 35.50
AB) 31.49 44.32 45.84
AW 39.92 56.08 57.29
AB) 42.96 60.31 61.44
A 42.84 60.16 61.29
A 42.84 60.16 61.29
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In Table @, we can see that triangular updates gives more po_werfui ands”

"

efficient preconditioner than the other preconditioners. But this*is n?“c -:ér'(ieét
| _\J_ | f

|| = '.I

in Table @ We use ILU-factorization with drop tolerance 0.005' a3 la_n jn_j"_]

tial preconditioner in Table @ The tolerance tol in Algorithm and
Algorithm are still 1. Although the elapsed time of Algorithm
and Algorithm are much longer than Triangular updates in Matlab,
Algorithm will be quicker than Triangular updates in Fortran(cf. [[7]).
There are two explanations to these issues. First, it is caused by the loop in
Matlab. We have already told that the loop comparing to vector operations
in Matlab may be expensive. And The computational complexity of Algo-
rithm and Algorithm are not very high because it is just linear
in the number of matrix nonzeros so Algorithm may be faster than
Triangular updates in Fortran(cf. [[7]) or C. Second reason is that the num-
bers of BICGSTAB iterations is much smaller that the Triangular updates.
This is caused by the truth that Triangular updates take only one part of
information and the updates from Algorithm will take larger entries
which has more important information. In the following, we will describe the
second reason in more detail. We randomly choose a difference matrix from
the middle of the sequence B = A® — A®_ For other choice of matrices A®,
we have similar phenomenon. Though the nonzeros are evenly distributed
over both triangular parts of LD — B, ||stril(LD — B)||r ~ 142.95 and
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[|striu(DU — B)||r ~ 39.39 , where stril(-) and striu(-), represent the Striet’

N

lower and upper triangular part, respectively. According to the*two |' ﬁ&eé',
I3 | [

[|= ||

the lower triangular part dominates the upper part. But there mdiz-]o'é_sorr;:g
important entries in upper part and they are neglected by the Triangular up-
dates. On the contrary, unstructured updates consider both triangular parts.
This is reflected by, in the Frobenius norms, ||stril(LD — B)||r ~ 142.95 and
|striu(LD — B)||r ~ 39.39 for the approximation LD — B from Algorithm
,and |[stril(LD — B)||r ~ 142.43 and ||striu(LD — B)||r =~ 39.39 for
the approximation LD — B from Algorithm . Since the step 3 of Algo-
rithm inserts more nonzero entries, the values of ||striu(LD — B)| ¢
and ||stril(LD — B)||r will be bigger in some other cases. In our experiments,
this phenomenon is not obvious since we are more conerned the numbers of
iterations which leads both the unstructure updates contain more nonzero
entries. Also note that the number of nonzeros of triangular updates is
more or less 61500 nevertheless unstructured updates have smaller number
of nonzeros, around 61000, which may let Algorithm and Algorithm
more cheaper. This gap will increase when tol is overestimated or
underestimated as we have said before.

Algorithm needs more elapsed time to implement in Matlab but it
will be faster than Triangular method when it is performed in Fortran.(cf.
[ )with this kind of preconditioner.
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A=Y :1‘.‘1 “

Table 4.4.
Numbers of iteration for individual linear systems and

totally elapsed time with ILU(0.005)

ILU(0.005), psize ~ 61486

Matrix | Freeze | Triangular | Algorithm Algorithm
A 17 17 17 17
AM 46 28 29 29
AP 66 33 32 32
AB) 89 54 34 34
AW 128 118 34 38
AB) 136 136 34 37
A©) 144 135 32 34
A 136 125 31 30

Elapsed | 1.493 s 1.317 s 9.485 s 32.075 s
time
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There is another situation we will meet. when the recomputed precbncii—

"

tioners is straightforward and cheaper then most of the updates mayl' é}*—ﬁé
= > I|:[I

efficient. In Table @, we use ILU-decomposition with level one (1e ItU(l)H)]
as the initial preconditioner. The number of nonzeros of the initial precondi-
tioner is approximately 33000. Elapsed time to compute the ILU(1) is very
small, the most of overall time is taken on solving with BICGSTAB. Note
that the iteration counts for Triangular is also a little worse than recompu-

tation. We have the same results for ILU-decomposition with level zero (i.e.

ILU(0)) in Table @ as well.
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Numbers of iteration for individual linear systems and

Table 4.5.

totally elapsed time with ILU(1)

ILU(1), psize ~ 33742

Matrix | Recomp | Freeze | Triangular
A0 28 28 28
AW 22 44 29
A®) 17 52 27
AB) 16 69 33
A® 14 92 45
AB) 11 105 48
A©) 12 92 44
A 9 94 42

Elapsed | 0.295s | 0.813 s 0.507 s
time
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A=Y :1‘.‘1 “

Table 4.6.
Numbers of iteration for individual linear systems and

totally elapsed time with ILU(0)

ILU(0), psize ~ 24220

Matrix | Recomp | Freeze | Triangular
A0 41 41 41
AW 34 45 36
A® 27 50 34
AB) 25 60 35
A® 22 76 34
AB) 21 79 31
A©) 19 77 31
A 16 68 27

Elapsed | 0.345s | 0.694 s 0.506 s
time
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