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ABSTRACT

Protein regulatory phosphorylation controls normal and pathophysiological signaling
activities in cell. Recently, great advances in phosphorproteomics, including high-accuracy
mass spectrometry (MS) and phosphopeptide-enrichment techniques, have allowed
identifying site-specific phosphorylation. Development of computational analysis methods is
required to transform large-scaled phosphoproteome data into valuable information of
biological relevance. DynaPho is a web-based tool for analyzing temporal phosphoproteomes.
It combines several algorithms to analyze the phosphorylation profiles as well as
sequence-content of phosphosites and integrates various databases to annotate and uncover
the dynamics of phosphosignaling. DynaPho consists of five major analysis modules: (1)
description and summary of phosphoproteomics data; (2) clustering of phosphorylation
profile; (3) temporal functional enrichment; (4) generation of kinase activation profile; and (5)
temporal protein interaction network. We illustrate DynaPho via an analysis of massive
phosphoproteomics dataset of cell cycle on HeLa cell. Based on the phosphorylation profiles,
these data were divided into eight clusters corresponding to different cell cycle stages. The
analysis of kinase activation profile revealed CDK family play a major role in cell cycle
signaling. For instance, CDK1 is activated in G1, synthesis and G2 stage. The temporal
protein interaction network discoveries RanBP2-ErbB2 signaling across mitosis and G1 stage.
DynaPho can reveal the dynamics of temporal phosphoproteomics data contributing to
improved understanding of complexity of biological systems. DynaPho is freely available at

http://dynapho.hchuang.info/.



CHAPTER 1 INTRODUCTION

Protein phosphorylation is one of the post-translation modifications of protein that is an
important factor in cellular signaling systems. It is a transient reaction which temporarily
alters protein activities or complex responses by the addition of a phosphate. Abnormal
regulation of phosphorylation is related to disease formation and progression, including
cancer. Several drugs have been invented to provide better ways in treatments by targeting
protein phosphorylation, such as Fasudil and Icotinib [1-3]. Site of phosphorylation is crucial
for protein function of its efficiency. For example, different phosphorylation sites in
neuropeptide NPFF, contributed significantly different Ca®* releasing rates [4]. In nature, the
most commonly phosphorylated amino acids contain a hydroxyl group (~ 17% of total
residues which are serine (~8.5%), Thr (~5.7%) and Tyr (~3.0%)). About 700,000 potential
phosphorylation sites exist if it is assumed there are ~10,000 different proteins with ~400
amino acids in average in a typical eukaryotic cell [5]. The increasing number of identified
phosphorylation sites raises fundamental questions about their nature and biological
relevance.

Modern mass spectrometry has provided accurate identification, high resolution and
precise quantification for high-throughput proteomics. [6] Large datasets obtained by these
techniques have been promoted for the development of customized analysis pipelines and
facilitate for interpretation. Most of these pipelines supported large data repositories which
store experimental details, such as PeptideAtlas [7], Human Proteinpedia [8], and NCBI
Peptidome [9]. In recent years, platforms that combine more specific repositories for
phosphorylation data and their compatible analysis tools have emerged, such as
PhosphositePlus [10], Phospho.ELM [11], Scansite [12], and PPSP [13]. Repositories which
stored several types of post-translational modification data have also been developed, such as

SysPTM [14], and PTMScout [15]. To interpret large data from high-throughput experiments



or repositories, customized computational tools were developed, including myProMS [16],
PrestOMIC [17], PeptideDepot [18], ProteoConnections [19], MASPECTRAS2 [20], and
Qupe [21]. Most tools emphasized the processing of MS data, such as peptide identification
and protein searching as well as spectra quantification and general issues of protein
expression. Other tools which were specific to interpret phosphorylation activities included
NetworKIN [22], NetPhorest [23], and KinomeXplorer [24]. These tools are only specialized
in sequence-based kinase signaling network modeling. The tool SELPHI [25] performed the
phosphorylation peptide-based correlation analysis to interpret downstream cellular signaling.
However, such analysis pipeline leaves either huge fortune of biological messages
unexplored or other temporal regulating information behind.

Phosphorylation, a signal system, causes the transient status of protein property to
response the environment change. These signals change as time goes by and represent what
the condition the cell has undergone (Figure 1). Here, we develop DynaPho (Dynamic
Phosphorylation), a web-based analysis platform that facilitates the exploration of global
phosphoproteome datasets. DynaPho performs a data-driven analysis pipeline and
distinguishes itself from other phosphorylation data analysis by focusing on facilitating the
interpretation of temporal biological information. Users can upload their data which are
preprocessed using MS quantification software, such as MaxQuant [26], or are self-calculated
datasets. The data must contain the accession name, the phosphorylation site sequence and
more than three time-coursed data. DynaPho analyzes datasets by using the clustering
algorithm to identify temporally co-expression sets of phosphorylation events among serial
time, using GO term functional enrichment analysis to infer temporal signaling changes,
identifying conserved phosphorylation motifs to potential kinases by PSSM (position-specific
scoring matrix), revealing the temporal activation profile of these kinases, and mapping
modulated phosphosites onto temporal protein interaction network. Since DynaPho integrates

valuable information from plenty of resources, including databases and tools, it can help to



provide detailed phosphoproteomics information.

To demonstrate the ability of DynaPho, we re-analyzed the phosphoproteomics dataset
of the cell cycle on HeLa cell [27]. After DynaPho preprocesses the raw data, 14,703
phosphosites are identified among six continuous stages (mitosis, G1, G1/S, early S, late S
and G2) with high confidence and quantified for analyzing. Eight co-expressed clusters are
identified for dynamic phosphorylation profiles. Function enrichment of these clusters not
only infers the same process with the original result but also reveals temporal signaling
changes of these biological processes. Several key kinases in cell cycle, including CDK1 and
CDKa3, are identified by peptide sequence similarity analysis and their temporal activation
profiles were also inferred. Furthermore, protein interaction network, including
kinase-substrate network, can assist to present the temporal signaling profile among different
proteins as well as infer signaling from RanBP2 to ErbB2 across mitosis and G1 stages.
DynaPho performs series of analyses and strengthens the temporal resolution to interpret the

cellular signaling and dynamic biological information on phosphoproteome dataset.



CHAPTER 2 MATERIALS AND METHODS

2.1 Position in analyzing MS data

Generally, a MS-based experiment starts from a sample preparation. It includes adding
protease and phosphatase (PTPs) inhibitors, extracting proteins, making the reduction of
proteins for unfolding to a linear form, digesting proteins to peptides, labeling peptides on
Lys and Arg based on different conditions, making series fractionation to separating peptides
and enriching phosphorylation peptides by TiO, microbeads or antibodies in advanced [28].
All collected fractions were separated on a reverse-phase liquid chromatography (LC) and
then electrosprayed into a mass spectrometer. The searching engines, such as MaxQuant, can
identify MS spectrum and map onto proteins on the basis of MS spectral databank, such as
MassBank [29]. The input data of DynaPho is the output data of the searching engine.
DynaPho is used to analyze downstream cellular signaling and interprets biological datasets
(Figure 2).
2.2 Input data format

Basically, DynaPho accepted labeling phosphosite datasets. The data format for each
submission must contain accession name, phosphorylation peptides (over seven amino acids)
and at least three labeling ratios on series time (Figure 3). The labeling ratio is not allowed to
be transformed. The null or not detected labeling ratio can be represented by “NA”, “na” or
blank. On the other hand, the label-free dataset can be transformed into ratio-like one for the
submission.
2.3 Phosphosites among six stages of cell cycle in HeLa cell as a case study

The cell cycle is a highly conserved process which results in the duplication of cell’s
content and molecular components. The progress of cell cycle is governed by the complex
network of signaling pathways and also abides by regular time periods. We used the

phosphosite dataset from the Olsen et al. investigation [27], and found total 24,714



phosphorylation events (FDR < 1%). 20,443 events of which were specific to a
phosphorylation residue with high confidence (class I sites). The phosphosites were measured
on six synchronous (by Thymidine and Nocodazole) and continuous stages (mitosis, G1,
G1/S, early S, late S and G2). Furthermore, total 20,443 phosphosites (class | type) were
filtered by the rule of no ratio change on all stages, including one (zero in log2 scaled) or null
value. In the final, 14,703 phosphorylation events, which at least one stage was the
perturbation status, were further analyzed.
2.4 Collect databases

DynaPho contains several databases which are used in different analysis modules,
including function annotation module, kinase activation time profile module and protein
interaction network module. The Gene Ontology (GO) biological process database was
downloaded on 02/10/2015. Both the motif matrix for position specific scoring matrix and the
motif logo repository were downloaded respectively from PhosphoNetworks on 12/10/2014
and 12/18/2014. The protein interaction databases were collected from BioGrid [30], HPRD
[31], InAct [32], CCSB [33] and MINT [34] on 03/20/2015. All the above databases can be
downloaded on the webpage of Dyanpho by FTP, HTTP, or the origin source. The Uniport
database was directly downloaded by the instruction of uniprot.org with MySQL core on
03/20/2015.
2.5 Architecture and Sequential analyzing flowchart

The architecture and workflow of DynaPho is presented in Figure 4. The analyzing
module of DynaPho was composed of six modules, including data preprocessing, statistical
analysis, profile clustering, function enrichment, kinase activation profile, and interaction
network. The uploaded data is first preprocessed by both filtering and filling procedures to
make it reasonable. The statistical analysis is better executed on the next step to present
proportions of each phosphorylation sites and the ratio distribution from total labeling ratios.

The profile clustering module groups co-expressed phosphorylation sites according to ratio



changes on the series time. If phosphorylation events are in the same cluster, the trend or
expression change on the series time is similar for the dynamic regulation. The function
enrichment module annotates phosphorylation sites based on the same cluster or one specific
time point from GO biological process database. DynaPho automatically extracts conserved
patterns by uploading all phosphorylation sequences to motif-x [35]. Furthermore, the kinase
is inferred by conserved patterns with their peptides based on the position specific scoring
matrix which is collected from PhosphoNetworks [36]. Temporal kinase activation profile is
established by fisher’s exact test. The interaction network presents temporal protein-protein
interactions for the dynamics of signaling changes. Customization input parameters of each
analysis module and their default values are listed in Table 1. Public databases or services
integrated in Dyanpho are listed in Table 2.
2.6 Filter and Fill data in data preprocessing

In data preprocessing, DynaPho first filtered missing values, including “NA”, “na”, null
or not detection caused by anthropic error or mechanical limitation, on all labeling events in
one phosphorylation site. A low proportion of missing value was tolerated and also filled by
the machine learning algorithm. DynaPho provided users with customized threshold to filter
phosphorylation events (delete entire phosphorylation site with its ratios). The following

format shows how to filter phosphorylated site in raw data. The set of all phosphorylation

sites is symbolized by | and v;€ 1. J; is all % ratios of phosphorylation site i and V j; € J;.

Total % ratios of phosphorylation site i is n;. T is the threshold defined by user to filter
phosphorylation events.

Ngs.
retains, when i < T; otherwise deletes the phsophorylation event
n;

After DynaPho filters raw data, it fills all missing value in each phosphorylation events
by giving a real number from the other phosphorylation events whose values are not empty

on the same time point. DynaPho provides users with two machine learning methods to fill



missing value, average and k nearest neighbors (KNN). The average method is achieved by
the following mathematical formula. The value of phosphorylation site i on time point j is V;.
For all missing values, DynaPho filled it by averaging all the other values on the same time

point.
I
if Vjj = missing value, V;; = Z(EIVX])
xX=1

K nearest neighbors (KNN) is a supervised classification method in data mining or machine
learning and ‘k’ means the number (= 1,2,3, ..., n, n is a positive integer) of data points close
to obvious one based on the criterion, for example, distance, similarity, etc. In DynaPho,
KNN filled one missing value in a specific time by first calculating euclidean distance with
each one of the other data points whose value existed. Sort the distance in increasing order
and average values from the first k members to fill the missing data. If total nearest member
is less than k, average all the remaining. The k nearest neighbors defined by users is k4. The
euclidean distance list of phosphorylation site i in increasing order is d._ and the number of

member in the listis n(d},).

kg n(diy)
ifn(di,) 2 ko, BV = » 3(d},),; otherwise; 3Vy = > 3(dly)y
x=1 x=1

The vector of phosphorylated site i containing all ratios without time point j is Vll

(di); = { |V} — VK| inincreasing | i,k € Tandk # i},and the distance

ny
2
19 = Tl = D iy = Vig)?5 18y o Big, (Vy = V)2 = 0
y=1,y #j

After average- or KNN-based filling procedure, the data preprocessing is complete due to no

ambiguous value on each phosphorylation site.



2.7 Workflow and methods in basic statistics module

After the data is preprocessed, DynaPho presented users with the status of modified data
and the analyzing flowchart of statistics module in DynaPho is shown on Figure 5. DynaPho
automatically calculated proportion of each phosphorylation site (the ratio of serine,
threonine and tyrosine) and a statistical distribution plot presents the number of total
phosphorylation sites with their centrality degrees for the perturbation degree and more the
analysis potential. If the distribution is more similar with normal distribution, the effect

caused by the perturbation is less in cell and the analyzing potential is also less. DynaPho

Inter—Quartile Range (IQR)
1.35

provides users with two parameters for centrality degree, including

and the standard deviation. All processed labeling ratios in increasing order is R;,. Here V;

is ratio value in Ry,.

Rin
IQR = (Rin)759% — (Rin)25% 11 Z —
= | — V. — R =S.D.
135 Nr - 1|| i mll
i=

If the value of % is more similar with standard deviation, less potential for analyzing and

less fluctuation. The module also provided users with a trend chart of interested
phosphorylation sites selected manually. The statistical analysis module is the foundation
stone of the other analysis modules.
2.8 Workflow and methods in profile clustering module

Most signaling events are temporal regulations so that similar dynamics from different
phosphorylation sites implies similar biological functions or unified biological intentions. In
profile clustering module (Figure 6), DynaPho first calculates the clustering number for
different types of dynamic phosphorylation profiles (phosphorylation changes on sequential
time) or receive the one from the user-defined by field knowledge. Auto detection method for

the clustering number is composed of three calculations, inner sample z-scored normalization,



matrix transformation and trend clustering (Figure 7). Three fixed parameters involved are
inner z-scored standard deviation (1.1 by default), variation threshold for all labeling ratios in
specific time (over 0.01 S.D. by default) and the number threshold for the member in the
cluster (over 1% of all phosphorylation events by default). The z-scored normalization
transforms each labeling ratios in each phosphorylation events into a z-scored matrix. In
single phosphorylation site i, the transformed value from the labeling ratio j is Z;; and the

standard deviation of all ratios is o;.

(Vi — V)

7 =
1 01

i (z — scored normalization)

Z-scored matrix is further transformed into a three-status matrix (1, -1, 0 for up, down or no
change) in each phosphorylation events. The inner z-scored standard deviation is Zgp. The
new status value of each labeling ratio is S;.

ifZ; > Zsp, Sy = LelseifZy < —1x Zgp, Sj = —LelseS;; =0

ij
The status matrix is further processed by filtering specific time if its standard deviation is less
than the variation threshold for removing redundancy information (status diversity of the
specific time is less then variation threshold). The standard deviation of each time points in
status matrix is F; and the variation threshold is Fgp.
remained, if F; > Fgp; removed, if SDTJ. < Fgp the entire status in specific time

In trend clustering, DynaPho collects all trends (status vectors on time-scaled) existing
on the status matrix and counts phosphorylation events of each trends. If the member number
of one group is more than number threshold (proportion), it is seemed as a cluster; otherwise,
ignore it. The remained status of one phosphorylation event i is v, (a vector of all statuses).
The member of all the other phosphorylation events whose vectors are equal to Vl IS n(Vl).
If n(V;) > number threshold, then remained; otherwise, ignored the cluster.

The clustering number is the parameter for clustering the phosphorylation profile by fuzzy

c-means algorithm implemented in R named Mfuzz package [37]. Fuzzy c-means algorithm



clusters phosphorylation events for similar profiles (similar status vectors). Fuzzy c-means
algorithm is one kinds of soft clustering that one data vector is no more definitely belonging
to one center but to use values ranging from 0 to 1 representing levels how it is related to
centers. The relation between each data vector and each cluster center is a membership matrix.
[38] Mfuzz first normalizes all labeling ratios in each phosphorylation events by z-scored
with one standard deviation (similar with the auto-detection method). The C is aset of all m
centers and c; is a center in C with i =1 ... m. The V is a set of all n phosphorylation
status vectors and v; isavectorin V withj=1 .. n.

m
My, is the belonging level, and Z Meyy; = 1, and Vj=1 ..n

x=1

For each status vector, the summary of all relationship levels with each center is 1. Initial step
is to randomly generate the p matrix fitting the above definition and it would be changed
iteratively in order to find the optimized membership. The objective function F is defined as
the following formula. The fuzzification value ranging from 1to o is M and the M value
is 1.25 by default.

n m

Fy= ) ) (i)™ dist(v; = )’

j=1 i=1
The distance function used in fuzzy c-means clustering is the Euclidean distance (the same in
Mfuzz). If optimize the objective function, the function of each center with membership and

status vector is the following formula.

]n=1(|"l'CiV]')MV]'

G = o
' Z]p=1(|vlciv]-)M

The membership value between each center and each data vector is the following.
1

HCiVJ' = L
) (dist(xj - ci)>(M—1)
x=1\dist(xj — cx)

In each iterator, calculate each center c; (€ C) and then calculate new membership Heyv,

10



between each center and each data vector. The converged condition of fuzzy c-means
clustering is new value of objective function less than a threshold, or say it is much less than
the previous value of objective function. In the Mfuzz, function mfuzz is main execution
body and its output value, membership, presents the level how status vectors are related with
the clustering centers. In each cluster, the member with low relationship is colored as blue; on
the contrary, one with high relationship is colored as red. From the result calculated from
fuzzy c-means clustering, clusters can be enriched with functions by gene ontology to
interpret the signaling information.
2.9 Workflow and methods in function annotation module

The function of a set of proteins represents specific biological information in the cell and
several mechanisms evidenced previously for responding to the perturbation collaboratively
and effectively. For example, MyD88 and TRIP, activate different downstream
phosphorylation signaling, ERK and JUK, to cooperatively respond to the infection in the
beginning of the inflammation caused by lipopolysaccharide (LPS) [39]. Besides, opposite
signaling taken by different sets of proteins may also achieve the same goal (one type of
synergistic effects), for example, bufalin up-regulated DR4/DR5 and down-regulated Cbl-b
for TRAIL-induced apoptosis in the breast cancer cell [40]. The cooperative mechanism is
uncovered by the profile clustering module and the opposite one is revealed by filtering
specific time profile. Users can directly process clusters from profile clustering module or set
the threshold of fold change or standard deviation to the specific time profile for function
enrichment analysis. In specific time profile analysis, the phosphorylation events are first
filtered by fold change or standard deviation and then map onto uniprot session names
without repeat ones. The function of selected proteins or clusters is enriched by GO analyzing
and the hypergeometric test is used with the background selected by users from GO
biological process database or the total non-repeated proteins (input). (Figure 8) The specific

GO term is g. The protein number of the background is N. The number of non-repeated

11



proteins is n. The number of proteins in the background with current GO term is M. The
number of non-repeated proteins with current GO term is i.
M) /N-M
( i )( n—i
N
(n)

After hypergeometric testing, use Benjamini and Hochberg method to justify each p-values

Hypergeometric Probability: P(E = g) =

for false discovery rate (FDR) [41]. The total p-values of GO terms is m. The list of all m
p-values in increasing order is P.,. The P is adjusted i™ p-value in Pi,.
P, = ming_; {min (% Py, 1)}

The smaller adjusted p-value, the GO term is much possibly involved in the biological
process. The function network analyzing links two related GO terms by the number of
proteins involved in both (the node is GO term and the edge is intersected number of proteins)
for the core activities. Furthermore, DynaPho provides users with the dynamics of biological
progresses (GO terms) for deeply recovering complete signaling changes among temporal or
cluster-based events in the cell. The dynamics is achieved and adjusted p-values is
transformed by z-scored normalization.

2.10 Workflow and methods in kinase activation profile module

Kinases are keys in the phosphorylation signaling and also dynamic in temporal profiles.
In this module, Dyanpho first finds conserved motif patterns by motif-x from
phosphorylation sequences, compares the kinase PSSM with PhosphoNetworks databases
evidenced in microarray platforms, clusters conserved patterns for similar kinases, and then
constructs the temporal activation profile from these clusters by the fisher’s exact test (Figure
9). In the beginning, DynaPho collects three sets of phosphorylation sequences based on
different central phosphosites, uploads each one of them into motif-x server with user-defined
parameters, including occurences, significant threshold and reference (default values on

Dyanpho is the same in motif-x, others parameters are also the same in motif-x but fixed and
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hidden in DynaPho) and then fetches the result. Motif-x conducts a statistical analysis by the
binomial theorem possibility distribution to find successive significant residues. The core
result contains several conserved motifs in different center phosphosites and their
corresponding phosphorylation peptides. The PSSM is generated for each conserved motifs
based on their sequence members and composed of each amino acid in x-axis, position
relative to center phosphorylation site in y-axis (from -7 to 7 when the sequence length is 15)
and percentages in the content. (Figure 10) The PSSM profile is further compared with the
evidence-based database in PhosphoNetworks by pearson or spearman correlation analysis to
discovery potential kinases. The PSSM database based on different phosphosites is Py, p IS
one of them (Vp € Py,) and p'is further ranked in increasing order. The calculated PSSM
based on conserved motifs is P,, u is one of them (vu € P,) and u’ is further ranked in
increasing order. Total percentages in PSSM without the profile of center phosphosite are T
(center phosphosite which is certainly high correlation causes the bias) and assume the length
of phosphorylation sequence is 15, T; is (15 — 1) * 20 = 280.

covariance(p,u) %5, (pi— P)(u; — 1)

TSt - e - 2

cor(p, Wpearson =

6 XIS (d)? / /

cor(p’,u')spearman = 1— Wg_l); where d; = p{ — y;

The correlation matrix reveals potential kinases involved but it is necessary to be
simplified because different phosphorylation peptides possibly belong to the same kinases
(due to short length of phosphorylation sequence). DynaPho automatically calculates
clustering number by iteratively resampling to cluster conserved motifs and implements it by
R package “clusterCons”. ClusterCons calculates the area under the curve (AUC) from the
dataset in different clustering number, finds the largest change of AUC (the quantity AK),
and then merges consensus clustering results from different algorithms [42]. Follow the

instruction, clustering algorithms implemented in DynaPho is k-means, agglomerative
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nesting (agnes) and partitioning around medoids (pam) with fifty resampling. The clustering
number determines groups of potential kinases by dividing the hierarchical clustering from
conserved motifs in the correlation matrix. After DynaPho groups the conserved motifs into
several clusters which kinase correlation profiles are similar, the fisher’s exact test is taken to
analyze the correlation probabilities between the temporal profile and kinase clusters. In each
time profile, DynaPho maps kinase clusters back to conserved motifs, extracts labeling ratios
whose phosphorylation sequence belongs to these motifs and filters ratios by fold change or
standard deviation to construct the contigency table. The number of labeling ratios crossing
the threshold in the kinase cluster on the specific time is a and the other is ¢ (not crossing the
threshold). The number of labeling ratios crossing the threshold not in current kinase cluster
on the specific time is b and the number of the other is d (not crossing the threshold). The n
represents all number of labeling ratios (n =a+b + c+d). The C represents all clusters
calculated from “clusterCons”, and c is one of cluster in C (Vc € C). The T represents all

time profiles and t is one specific time (vt € T).

D)D) @+D)c+d @+ ol b+ d)!
Gy @) (bH(chH(dH(nh)

P(Vc,Vt) =

The potential kinase activation or deactivation profile is generated by iteratively calculating
p-values from up- or down-expression contigency table. The more significant p-value
represents that high probabilities potential kinases in the specific cluster are possibly involved
in the specific time. DynaPho also transforms p-values into —1 X log10 scaled and colors
them for the dynamic profile.
2.11 Workflow and methods in interaction network module

The phosphorylation signaling is composed of several proteins from upstream to
downstream and achieved by their interactions to transfer chemical groups. However
constraints to the experiment design, its results lose a part of important interaction messages

and in some cases, transient interactions are the key of the signaling system. In interaction
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network module, DynaPho focuses on these two issues, one is to connect direct interactions
based on the specific time and the other is to link intermediary interactions for simulating the
transient signaling. DynaPho first filters labeling ratios based on fold change or standard
deviation on each time profile map them back into a set of uniprot names. Two
non-redundancy proteins are connected by searching evidenced-based interaction databases
whether the interaction exists and further annotating their functions and types from Uniprot
database, including kinase, transcription factor, phosphatase and the other protein (Figure 11).
The intermediary interaction are established when two proteins do not interacted with each
other, but they have the same hub protein which is over the threshold on the other time profile.
After DynaPho constructs the interaction network, the global view of temporal
phosphorylation signaling presents how the perturbation affects the phosphoproteome in the
cell and how phosphorylation proteins influence another one to pass biological messages.
2.12 DynaPho implementation

DynaPho is constructed in LAMP (Linux 3.10.0 x86_ 64, Apache 2.4.6, MySQL 5.5.40,
and PHP 5.4.16) system. It is composed of five sub-systems, including web interface, job
deployment, task recording, base framework, and administration. The base framework
subsystem as an information center stores all types of settings, the configuration, meta
information, and used images. The setting and configuration are mainly related to available
network location or the physical path. The meta information stores titles and details of each
module. This subsystem also constructs the base framework of the web interface, including
the composition of all webpages. In addition, it integrates jQuery EasyUl
(http://www.jeasyui.com/) to achieve the tab-based operation. The base framework subsystem
as a checkpoint examines the availability of the task ID (after a successful uploading and
preprocessing raw data) or session ID (each analysis). Furthermore, it also checks the status
of raw data and generates a unique ID to a task or a session.

The job deployment subsystem controls analyzing procedures of five modules. Each
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module contains three branches which are cooperative to achieve every analysis session. One
is the task monitor which controls the progression of analysis (by two scripts progress.php
and progress_body.php in each module). Second one is the collection of analyzing programs
which combine several languages (Perl 5, Python 2.7.5, and R 3.1.1) and techniques (such as
parallel computing, multi-task) into a hybridization computing for the better performance.
The other is the web presentation which is specific to each analysis result. In addition, this
subsystem deletes the task, which is not executed over seven days, by the job scheduling
method.

The web interface subsystem integrates lots of resources, including Plotly
(https://plot.ly/) used in statistics module, jQuery Flot (http://www.jqueryflottutorial.com/)
used in statistics module, jQuery EasyUl (http://www.jeasyui.com/) used in the whole
subsystem, and Cytoscape.js [43] used in functional enrichment module and interaction
network module. The main architecture consists of html, CSS and javascript (including
jQuery) for presenting analyzed results.

The recording subsystem stores available tasks, execution sessions, error (or warning)
logs, and analyzed results. The subsystem is independent from the other three ones. It means
that DynaPho allows users to execute analyses derived from different tasks.

The administration subsystem stores the contact information of users. The subsystem is
operated under the authorization. DynaPho is a module-based platform so that it is potential
for extending new analyzing module in the future. Detailed composition of DynaPho with

their physical path is listed in Table 5.
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CHAPTER 3 RESULTS

3.1 Data quality status monitors changes over the cell cycle

After DynaPho preprocesses raw data, 14,703 phosphorylation events (class |
phosphosites) are remained and 5,740 ones were filtered. The proportion of each
phosphosites to these events is presented in Figure 12. The proportion of serine, threonine
and tyrosine are respectively 78%, 19% and 3%. The phosphosite number of serine, threonine
and tyrosine are 11,526, 2,742 and 435 respectively (no ambiguous phosphosite exists). The
ratio between three phosphosites is similar with previous study [5], but tyrosine-based
peptides are discovered more than it. Different phosphosites play discrepancy roles in
phosphorylation signaling; for instance, phosphorylation of tyrosine was stringently regulated
than others. Its phosphorylation was related to cellular regulatory function and its signaling
pathway which is the major role in complex organisms [28].

All labeling ratios from these phosphorylation events are further transformed into log2
scale in a distribution chart (Figure 13). There are total of 88,218 labeling ratios, 81,913 are
under 2 S.D., 4,216 are between 2 S.D. and 3 S.D., and 2,089 are over 3 S.D. About seven
percentages of total ratios is potential analyzing and distributes over 14,703 phosphorylation
events. These ratios are under -3 (labeling change is 0.125) and over 4 (labeling change is 16)
in log2 scale. The parameter (interquartile range (IQR) / 1.35) is about 0.541 and is dissimilar
with standard deviation. These descriptive statistics parameters represent the analyzing
potential in the cell cycle.

3.2 Dynamic phosphorylation profiles reveal unified biological information

Eight co-expression clusters are identified by the analysis of profile clustering module.
(Figure 14) Eight clusters stand for eight different purposes and signaling systems in the cell
cycle. More precisely, there are nine clusters because preprocessing procedure filters

phosphorylation events which all labeling ratios are not changed. Ninth cluster may relate to
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housekeeping, homeostasis functions or is unallied to the cell cycle. The result of each cell
cycle stage contains the dynamic phosphorylation profile, the member number of
phosphorylation events in each cluster, and the analysis of biological process (GO) by
function enrichment module. The table of each cluster presents biological processes whose
p-values in 1og10 scale are the top. The member number among these eight clusters is similar
except that fifth cluster contains 6,394 phosphorylation events (43.488%). The dynamic
profile of this cluster is that labeling ratios are highly changed in mitosis stage, but no
changed in the other ones. The biological process analysis of the cluster presents most
phosphorylation events are involved in mitosis cell cycle process, including nucleic acid
organization (chromatin organization) and cytoplasmic component organization (organelle
organization, cytoskeleton organization, macromolecular complex assembly, cytoplasmic
transport, protein complex assembly, single-organism intracellular transport). These processes
coincide with not only mitosis stage but also the original article. Both show that about half
the peptides are phosphorylated in mitosis phase.

The dynamic profile of each cluster perfectly coincides with each cell cycle stages do
not include first and eighth cluster. The mitosis, G1, G1/S, early S, late S, and G2 stages are
respectively to fifth, second, fourth, third, seventh, and sixth clusters. In function enrichment
analyses of these six clusters, it is not hard to understand biological processes involved in
specific cell cycle stage. For example, fourth cluster (in G1/S) is mainly related to synthesis
processes that prepare for DNA replication, including chromosome organization, gene
expression and chromatin organization. The dynamic profile of eighth cluster is a sub-group
which should be a part of mitosis stage (fifth cluster) in the original article because the
labeling is highly changed in mitosis stage but a lightly down changed on early S and late S
stages. And its biological process analysis presents highly related to the mitosis stage and
homeostasis (including regulation functions). It means that some phosphorylation events are

up-regulated in mitosis stage but down-regulated in S stage for homeostasis or regulation
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purpose. The dynamic profile of the first cluster is that labeling changes are high in both
mitosis and G1 stages. This cluster is also a sub-group which should be a part of G1 stage
(second cluster) in the original article due to its result in Fig 3A. The biological process
analysis indicates functions involved in both stages, including mitotic cell cycle process,
microtubule-based process, and cytoskeleton organization. It implies that some
phosphorylation events are in transition functions from mitosis to G1 stage. DynaPho
strengthens the temporal resolution of phosphorylation events rather than transitional
analyses. Also, DynaPho provides users more precise analysis algorithms to perform better
clustering so that two more detailed co-expression sets are discovered.

3.3 Cellular signaling in temporal function profiles

After the analysis of function enrichment module, DynaPho summarizes core processes
over all cycle stages in a functional network that nodes and edges are respectively biological
processes (GO terms) and the proportion of intersection proteins. (Figure 15) Detailed
biological processes with their adjusted p-values are listed in Table 4. In the functional
network, each sub-network represents a set of biological processes for one or more cellular
signaling (purposes). More precisely, these sub-networks correspond with stages in cell cycle.
For example, the sub-networks located on the bottom and right are mitotic chromosome
condensation, mitotic nuclear division and chromatin organization. These processes present
biological functions involved in the mitosis stage. Besides, sub-network in the center is
mainly for homeostasis and contains lots of biological processes.

DynaPho analyzes core and detailed processes which are presented respectively in a
network and a list on each temporal profile (on each cell cycle stage). The list contains
biological processes which their adjusted p-values in 1og10 scale are the top. (Figure 16A - F).
It is easy to map the detailed processes into the summarized network on each temporal profile.
For example, in Figure 16D, several biological processes, including cellular protein complex

assembly, cellular protein localization, DNA packaging, and regulation of chromosome
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segregation are highly related to synthesis stage. These processes are further summarized into
two functional networks located on the upper right and bottom.

DynaPho reinforces the dynamic analysis with a temporal heatmap profile. Summarize
all biological processes with their adjusted p-values in a heatmap. The adjusted p-values are
first transformed into log10 scale and further normalized by z-score. (Figure 17) In the
temporal heatmap, DynaPho embraces all biological processes and their dynamic signaling
among all cell cycle stages. For example, the processes which the regulation of chromosome
segregation and regulation of microtubule polymerization or depolymerization are mainly
involved in early S stage (time 4). The processes for nuclear envelope disassembly, chromatin
organization and cytoskeleton organization are mainly in mitosis (time 1). DynaPho provides
comprehensive analyses rather than transitional bioinformatics analyses.

3.4 Regulated phosphoproteome by potential kinases

DynaPho uncovers dynamic activation profiles of kinases after the analysis of kinase
activation profile module. The phosphorylation sequences are sent to motif-x service based
on different phosphosites and then DynaPho fetches several conserved motifs. (Table 3)
Seventy-three serine-based motifs are found, twelve threonine-based ones are found, but no
conserved motif exists when the phosphosite is tyrosine. Tyrosine-based motif is not found
are the parameter settings (occurrences and significance) in motif-x due to maintenance of a
low false positive rate.

The conserved motifs with their contribution sequences are valuable information for
kinase sequence profiles. The evidenced sequence profiles maintained by PhosphoNetworks
are further compared with ones generated by DynaPho from motif-x. The kinase similarity
between PhosphoNetworks databases and sequence profiles from motif-x is presented in a
heatmap. (Figure 18) The x-axis is the conserved motif whose phosphosite is serine or
threonine, and the y-axis is the kinase. The text in white with grey background on the top of

heatmap presents the cluster of conserved motifs whose kinase profiles are similar. The
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darker red represents higher similarity between conserved motifs and kinases; in the contrary,
the light green represents lower similarity. Three sections on the heatmap are relatively higher
similarity. The corresponding conserved motifs and kinases are listed in Figure 19.

In the top of Figure 19, the temporal profiles of kinase activation and deactivation are
also presented (the same with Figure 11). The adjusted p-values are transformed into log10
scale and the value is further multiplied by -1. The cluster 1 contains sixteen Kinases,
including cell cycle-related CDK family. The dynamic profile presents that kinases in cluster
1 are potential activation in G1, early S and G2 stages. The result is similar to the previous
study that CDK1 was involved in G1 and G2 stages [44]. The cluster 2 contains thirteen
kinases and most of them are related with cellular homeostasis or regulation. For example,
both AKT1 and PAK4 were involved in homeostasis functions [45, 46]. Therefore, the
activation and deactivation profile of cluster 2 are not significantly changed. DynaPho
strengthens the analysis of phosphoproteome on potential kinases rather than transitional
pathway analyses.

3.5 Phosphorylation signaling in cell cycle by protein interaction network

In interaction network module, DynaPho links sequential phosphorylation events across
all cell cycle stages for the comprehensive signaling. Networks on Figure 20 A, B, C, D, E,
and F are respectively the interaction network on mitosis, G1, G1/S, early S, late S, and G2
stage. Four shapes, including triangle, rectangle, hexagon, and circle, are respectively
transcription factor, phosphatase, kinase, and the other protein type. The nodes and edges are
respectively proteins (in gene name) and interactions. The interaction is composed of two
types that are linking in the same stage (solid line) and linking across different stages (dashed
line). The color of protein stands for its labeling ratio. The proteins in grey represented their
labeling ratios that are filtered in the stage.

The interaction means the signaling event; for example, in G1 stage (Figure 20B) kinase

EGFR phosphorylates transcription factor STAT3. Such signaling was evidenced by previous
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study that EGFR-STAT pathway is involved in liver regeneration on G1/S stage [47]. In
advanced, DynaPho links signaling information across cell cycle stages. For example, the
interaction is linked between RanBP2 (Nup358) and ErbB2 across mitosis (Figure 20A) and
G1 (Figure 20B) stage. In previous study, the cell membrane-embedded ErbB2 activates
P13K-signaling pathways which constitute important regulation in G1 stage. It migrates from
the cell surface to the nucleus through endocytosis process by interacting with a nuclear pore
protein RanBP2 as a traffic light [48-50]. DynaPho reinforces the analysis to construct a
dynamic network across different cell cycle stages for further validation rather than the

analysis in single stage.
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CHAPTER 4 DISCUSSION

DynaPho is the integrated analysis platform for the dynamic signaling. DynaPho is
distinguishable from other phosphoproteome analysis pipelines by focusing on facilitating the
interpretation of temporal biological signaling. On the timeline of interpreting MS data, many
well-known tools, including myProMS [16], PrestOMIC [17], and PeptideDepot [18], were
developed to solve problems for identification and quantification, or their derived issues, such
as differential expression. Nearly a decade, several tools were developed to extract biological
information, such as ProteoConnections [19]. Furthermore, tools aimed to specific issues
were also developed; for example, NetPhorest [23] focused on the study of kinome, and
KinomeXplorer [24] highlighted modeling kinase-substrate interactions. DynaPho takes
another approach to discovery dynamic biological signaling and further to interpret them.
DynaPho implements the trend detection and further soft clustering to group co-expression
phosphorylation events on temporal profiles. These groups (clusters) are probably related in
biological functions so that their biological processes are further analyzed by GO in the
function enrichment module. Besides, the temporal changes of biological processes present
when GO term is highly involved. DynaPho constructs an interaction network across the
whole time (all cell cycle stages in the article) to present the complete signaling, including the
one across different time points (stages in the article). Certainly, another service, named
SELPHI [25], takes similar approaches to function enrichment module to infer the dynamics
of pathways or similar networks. For instance, SELPHI constructs different types of networks,
including kinase-kinase, and kinase-phosphatase. There are essential differences; for example,
SELPHI focused on pathway comparisons among several experiments, or it conducted
correlation analysis between different kinase phosphopeptides (or phosphatase
phosphopeptides) and their associated phosphopeptides. In general, DynaPho is a brand-new

analysis platform to comprehensively model dynamic signaling in the cell.
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There are still several improvements. DynaPho is a data-driven analysis tool so that the
status of original dataset is important. In the article, there is the bias or noise in raw data,
even after preprocessing, because the average of total labeling ratios is slightly away from 0
and some of them are extremely high or low. The phosphorylation information is hardly
unique or highly specific to one protein or sequence. This common phenomenon is caused by
MS techniques or searching engines so that it makes the validation hard to proceed. It also
makes users confused on ambiguous sequences or proteins. The bias or noise probably
influences the construction of interaction network. General issues about GO term analysis are
non-specific and redundancy information. These conditions also exist in DynaPho. Taking
more GO terms into considerations is better for comprehensive analyses. In kinase activation
module, sequence information does imply potential kinases, but similar sequence profile is
not enough for similar functions of different kinases; for example, CDK1 and CDK2. The
future work can focus how to analyze kinase activation profiles without redundancy sequence
information. DynaPho integrates lots of resources and is implemented by plenty of
programming techniques in order to provide users with better performance not only in the
execution time but also in the web-based interaction. Hardware constraint or inadequate
software skills also cause worse performance when extremely large scaled dataset is analyzed.
DynaPho will continue to extend or enhance the phosphoproteome analysis by integrating or

replacing analysis module for more services to non-bioinformatics experts in the future.
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CHAPTER 5 CONCLUSIONS

DynaPho is a web-based and user-friendly platform to comprehensively analyze
temporal phosphoproteome datasets. It consists of one preprocessing and five sequential
analyzing modules to infer the dynamic phosphorylation signaling. In human HelLa cell cycle
dataset, statistical analysis reveals that seven percentage of labeling ratios (6,305 ratios over 2
S.D.) are potential for analyzing and distribute over 14,703 phosphorylation events. After the
analysis of profile clustering, eight co-expression profiles are identified. They are further
analyzed by function enrichment module. It not only reveals unified biological information
but also resolves more deep into the dynamic phosphorylation profiles. After the analysis of
function enrichment, DynaPho summarizes core processes over all cycle stages in a
functional network and also reveals detailed biological processes. Besides, DynaPho also
embraces all biological processes and their dynamic signaling among all cell cycle stages in a
heatmap. After the analysis of kinase activation profile module, DynaPho finds potential
kinases and further presents the temporal profiles of both activation and deactivation. For
instance, both AKT1 and PAK4 are involved in homeostasis functions and CDK1 involved in
Gl, S, and G2 stage. In the interaction network module, DynaPho links sequential
phosphorylation events across all cell cycle stages for the comprehensive signaling, such as
EGFR-STAT pathway in G1/S stage and the signaling from RanBP2 to ErbB2 in mitosis/G1
stage. DynaPho improves many shortages of traditional analyses and strengthens the analysis
of phosphoproteome. The advancement of modern mass spectrometry technology and the
integrity of bioinformatics analyses, to make the analysis of dynamic signaling cell is

possible.
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Figure 1 Dynamic signaling represents what conditions the cell had undergone.

The example RAS-RAF-MEK-ERK pathway is activated by epidermal growth factor (EGF).
After the cell is simulated by EGF, kinases transfer a phosphate group from GTP to RAS
protein. The signaling starts from RAS protein to extracellular-signal-regulated kinases
(ERK). The phosphorylated ERK activates different types of transcription factors. The
activated transcription factor starts downstream gene expression. If experiment on sequential
time points under control and test conditions, it is highly possible to capture the dynamics of
multiple proteins from MS data. These dynamics are the best interpreter what the cell had

undergone.
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Figure 2 DynaPho interprets biological information on the downstream of analyzing.

The control and test samples are first prepared on multiple steps in order to get linear
phosphorylation peptides as more as possible. The phosphorylation peptides are separated by
liquid chromatography (LC) and then identified by mass spectrometry (MS). The spectrum of
peptides and their corresponding proteins can be identified or mapped back by searching
engine on the basis of spectral databases (for example MassBank). The raw data generated by
the searching engine contains temporal labeling ratios, protein session names and phosphosite

sequences, etc. Such raw data can be processed into the original data for DynaPho. DynaPho

is located on the downstream of flow of MS data interpreting.
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Figure 3 The basic format of the upload file

The format accepted by DynaPho is a table prepared by processing the raw phosphosite data
from MSQuant or manually generating from non-labeling datasets. Constraints on the dataset
include more than fifteen phosphorylated events. Each one contains more than one uniprot
accession name, more than seven amino acids on phosphorylation sequence and more than
three labeling ratios. The uniprot accession name or phosphorylation sequences can be

multiple in the same column and be separated by a semicolon (;).
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Figure 4 The architecture and workflow of Dyanpho

Users can start analyzing data from new upload file or the historical one. Each new upload
file must be preprocessed first. Suggested analysis flow starts from statistical analysis, profile
clustering, function enrichment, kinase activation profile and then interaction network.
Crossing analysis also exists in DynaPho, the result from profile clustering module can be

further analyzed by function enrichment module.
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Figure 5 The analyzing flow of statistics module
The statistics module is composed of two separated analyses, one is the proportion of each
phosphorylated site and the distribution chart of total labeling ratios, and the other one is

plotting labeling ratio changes of interested phosphorylation events selected by users.
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Figure 6 The analyzing flow of profile clustering module

The flow consists of two steps, generating clustering number and clustering the co-expression
phosphorylation events. The clustering number is determined either by users or the detection
algorithm in Dyanpho. Fuzzy c-means clustering takes the clustering number as a parameter

and clusters phosphorylation events whose trends are similar.
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Figure 7 The example of auto detection method for determining clustering number

Parameter of the example is the same with defaults (inner z-scored S.D. is 1.1, variation

threshold in specific time is 0.01 S.D. and the number threshold is 1%). There are five

different trend profiles for five clusters labeled with different colors in the example.
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Figure 8 The analyzing flow of function enrichment module

The non-repeated protein session names are selected from temporal analyzing by fold change

or standard deviation or from the cluster calculated by profile clustering module. Selected

proteins and total uniprot proteins are analyzed by the hypergeometric test with the biological

processes database of Gene Ontology. The function enrichment network and the dynamics of

biological processes are further analyzed to present core and detailed functions.
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Figure 9 The analyzing flow of kinase activation profile module

All phosphorylation sequences are separated into 3 sets based on the center phosphosite. Each
set is sent to motif-x separately and then DynaPho fetches the conserved motif information.
DynaPho further generates a PSSM table for each conserved motif. The correlation between
PSSMs and PhosphoNetworks databases shows potential kinases. Conserved motifs are
reduced into smaller clusters by clusterCons algorithm. Temporal profiles of both kinase

activation and deactivation are generated by fisher’s exact test.
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TITSESSPGKREK -1 0.03846 0.0
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RIPRPLSPTELLP 3 0.07692 0.0

EIFDDASPGREQEE 6 0.11338 00

Figure 10 The example of generating the PSSM table of each conserved motifs

The conserved motif, . I...SP.K..”, is obtained from motif-x. The following 26 sequences
are members contributing to the motif and each one is composed of 13 different amino acids.
Start from the center phosphosite, the number -6 to -1 and 1 to 6 are relative sequence
positions on both sides of it. The x-axis in PSSM consists of total amino acids and y-axis is
the relative position. The number in PSSM is the proportion of the amino acid in current

position.

40



time

labeling ratios on series time points

BioGrid
HPRD \ 9

fold change | | standard deviation 3
® O LX)
© 0 @0
Phosphosites @ @) O @)
—
OXV) @)
| @0 ‘ .
o unique protein set
/% v ©9

- - InAct
- g CCSB \V’ \V’
e~ T MINT
PPI Databases uniprot
network

Figure 11 The analyzing flow of interaction network module

Phosphorylation events are filtered by the standard deviation or the fold change. Map all
phosphorylation sequences back into proteins and prevent repeated ones. These proteins
construct a interaction network. If two proteins are not interacted in the specific time,
DynaPho links both them with intermediary proteins which are connected to each one but are

not significant expression in the current time.
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Figure 12 The number and proportion of each phosphorylation sites
The pie chart presents the proportion of three phosphosite, serine (S), threonine (T) and
tyrosine (Y) with their numbers in the sequence pool. The dashed ‘-’ presents the number of

phosphosites which are not S, T or Y in the sequence.
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Figure 13 The distribution of all labeling ratios in log2 scaled
The space of each column in x-axis is 0.2. Blue, green and orange respectively stand for
ratios in 2 S.D., more than 2 S.D. and less than 3 S.D., and over 3.S.D. The plot is generated

by R script with Plotly.
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Figure 14 Co-expression clustering of dynamic phosphorylation profiles

Fuzzy c-means is a soft clustering algorithm, trends of phosphorylation events which are
colored in the light green stand for the outlier of the cluster. On the contrary, ones which are
colored in darker red mean the core of the cluster. The number under the plot presents the
number of phosphorylation events in the cluster. The “adj. P” is the abbreviation of adjusted

p-value.
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Figure 15 The summary of core functions over all cell cycle stages

mRNA metabolic process

The node and edge in the network respectively represents a GO term and the proportion of

joint proteins. The size of each GO term is directly proportional to the background protein

frequency. Current layout in the enrichment network analysis is implemented that parameter

of similarity and style is respectively 0.3 and Cose.
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Figure 16 Function enrichment analyses on the temporal profile

A, B, C, D, E, F respectively represents the cell cycle stage on mitosis, G1, G1/S, early S, late
S and G2. Each function enrichment analysis is presented by both a summary network and a
table. The table lists biological processes whose p-values in log transformation are the top.
Execution parameters in function enrichment module are the same with default settings
without late S stage (E). The enrichment analysis of late S stage is processed by parameters
that S.D. and p-value respectively are 2.0 and 1e-10. The network layouton A, B, C, D, E, F
is cose style and similarities (for edge) of A, B, C, D, E, F are respectively 0.3, 0.9, 0.96, 0.65,

0.3, and 0.97.

55



-3 -log{10}(adjp) in Z-scroed 3

GO term time 1 time 2 time 3 time 4 time 5 time 6

1 » | regulation of cellular localization

3 i cell development ]
15 i~ cardiac muscle tissue regeneration | |

16 | negative regulation of protein metabolic process

22 v ¢ regulation of peptidyl-cvsteine S-nitrosylation

24 v tissue development ]
28 ¢ regulation of transporter activity

44 v ¢ regulation of transmembrane transport

72 ¢ regulation of ion transport
99 4 cell cycle process
100 i+ mitotic chromosome condensation

101 4 : mitotic cell cycle process

102 mitotic chromosome condensation
103 mitotic nuclear envelope disassembly
104 i mitotic cytokinesis

105 i mitotic nuclear envelope disassembly
106 i eytokinesis

107 ©» | DNA packaging
110 4 | chromosome organization

111 4 chromosome condensation

13 mitotic chromosome condensation

113 4 | nuclear envelope organization

114 4 nuclear envelope disassembly

115 mitotic nuclear envelope disassembly

116 membrane disassembly

119 - central nervous system morphogenesis | |

120 | negative regulation of organelle organization _

121 © ; regulation of homeostatic process

128 © | second-messenger-mediated signaling

134 | regulation of system process

144 . regulation of heart contraction

149 ©» | chromatin organization

151 © | anatomical structure arrangement

154 © | cellular homeostasis

156 © | anatomical structure homeostasis

158 © | cytoskeleton organization

160 » | nucleobase-contamnmg compound transport
164 © | establishment of RNA localization

167 |- transcription from RNA polymerase II promoter

168 v | localization

179 © | regulation of membrane potential

| positive regulation of transport

- negative regulation of odontogenesis

- canontcal Wt signaling pathway involved in negative regulation of apoptotic process
canonical Wat signaling pathway involved in positive regulation of apoptotic process
receptor metabolic process

negative regulation of gene expression

negative regulation of cellular macromolecule biosynthetic process

regulation of chromosome segregation

regulation of cell adhesion

regulation of protein phosphorylation

negative regulation of phosphorus metabolic process

i negative regulation of epithelial cell proliferation involved in prostate gland development
negative regulation of microtubule polymerization or depolymerization

regulation of microtubule depolymerization

negative regulation of protein complex disassembly

i~ gene expression

cell cycle

i mitotic cell eycle

negative regulation of RINA metabolic process
RNA processing

protein complex assembly

cellular macromolecular complex assembly
interspecies interaction between organisms

multi-organism cellular process

metaphase/anaphase transition of cell cyele

mRNA metabolic process

56



Figure 17 The temporal profile of biological processes

Time points 1, 2, 3, 4, 5, 6 indicate mitosis, G1, G1/S, early S, late S, and G2 stage,
respectively. The adjusted p-values in the same biological process are transformed by
z-scored normalization. The collapsed biological processes mean that all of their inherited
ones show the same dynamics. Execution parameters in function enrichment module are the

same with default settings.
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Kinase similarity profile
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Figure 18 Conserved motifs imply potential kinases
The number on the top of heatmap is the cluster determined by clusterCons. Execution

parameters in the analysis of kinase activation profile are the same with default settings.
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Figure 19 Dynamics to both kinase activation and deactivation time profiles

The number on each conserved motifs is the fetching order from motif-x.
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Figure 20 Biological signaling presented by the protein-protein interaction network
The text of each node is the gene name of the protein, if one with the prefix of “acc_”, the

protein has not been assigned a gene name yet, but to present its uniprot accession name. The

parameter of S.D. as threshold is 1.5.
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TABLES

Table 1 Analysis customization input parameters and their default values.

All results in the article are executed on these parameters.

Analysis module

Parameters (default)

Description

Data preprocessing

Statistical analysis
Profile clustering

Functional enrichment

Kinase activation profile

Interaction network

NA ratio: 30%
KNN: k=5

NONE
Number: auto-detection
Method: mfuzz

Filter: 3.0 S.D.

Reference: GO database
Cutoff p-value: 1e-15
Occurences: 20

motif-x p-value: 0.000001
Reference: Human
Correlation: pearson
Cutoff Similarity: 0.5
Filter: 2.0 S.D.

Profile p-value: 0.05

Filter: 2.0 S.D.

The upload file must be
preprocessed first. The filling
procedure can use either KNN or
average.

View the quality of processed data.
The clustering number can be
determined by the wuser or by
auto-detection.

The reference can be GO biological
process database or the sample
input.

The p-value in motif-x must be
float type, not scientific notation.
All the other parameters not
showed are the same with defaults
of motif-x. The “background” in
motif-x is IPI human proteome. The
correlation method can be either
pearson or spearman.

Construct dynamic network relied
on protein interaction information.
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Table 2 Public databases integrated in Dyanpho

Database/Service Update Description

motif-x [35] NONE Online service finds conserved patterns from a large
sequence dataset by an iterative statistical approach.

PhosphoNetworks 12/10/2014  Protein microarray-based database contains 4,191

[36] proteins and 3,656 kinase-substrate relationships by
performing 289 human phosphorylation reactions.

Gene Ontology [51] 02/10/2015 In DynaPho, only biological process database is
involved.

BioGrid [30] 03/20/2015 Online dataset searches 44,978 publications for
826,051 proteins and genetic interactions from
well-known model organism species

HPRD [31] 03/20/2015 Online database contains 30,047 proteins and
41,327 protein-protein interactions from existing
literature.

InAct [32] 03/20/2015 Online database contains 526,612 protein-protein
interactions from existing 13,562 literatures.

CCSB [33] 03/20/2015 A protein-protein interaction database for a number
of different organisms.

MINT [34] 03/20/2015 A database stores data on functional interactions

between proteins and contains 4,568 interactions
and 782 indirect or genetic interactions.
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Table 3 Conserved motifs from motif-x services

Serine (S) Threonine (T) Tyrosine (Y)

0 vunn.. SP.K. 1 .R.R..SP..... 0 vunn.. TPP -
2 i SP K 3 ... SP...K 1 oo, TP.K
4 ... .. SP..K.. 5 ...... SP...RR 2 ...... TP...K
6 .P.SP..... T oo SP.R 3 P.TP.....
8 K..... SP..... 9 ...R..SP..... 4 ...... TP.....

10 ...G..SP..... 11 ... SP..... 5 SPT......

12 .R..S.SP... 13 ...RR.S.S 6 v TSP

14 ..., S.SP.K. 15 ...R..S.S 7 SP.T......

16 ...... SDDE. 17 SPSK..... 8 v..... T...K.

18 ...... SDEE 19 SPS...... 9 ...... T.SP

20 ... RS.SP. 21 ..., SEDE 10 ... TD.E

22 ..., SDSE 23 ... S.SP 11 ...... T K.

24 ... .. SEEE 25 ...RR.S...... 12 ..R...T......

26 ... S..EED. 27 ...... SD.E

28 ...... S...SP. 29 ...... SSP. .K

30 ... SDED 31 .R.RS.S......

32 ..., SSP 33 ..., S.ED.

34 ...... SDSD. 35 ...... SE.ED

36 .R.R..S...... 37 ...KR.S......

38 ...... S.DE. 39 R..S.E.

40 ...... S.D...E 41 ...... S..E.E

42 R..S..S...... 43 P.S..K

44 ... .. DSDD 45 RRS......

46 ... .. DS..D. 47 ..., S.E..D

48 ...R..S.D.. 49 ...... SG.K
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Table 4 Detailed biological processes with their adjusted p-values on all stages

Biological process (GO)

-log10 (adj. P)

mitotic cell cycle process

regulation of peptidyl-cysteine S-nitrosylation

olfactory nerve structural organization

establishment of glial blood-brain barrier

regulation of skeletal muscle contraction by regulation of release of
sequestered calcium ion

muscle cell cellular homeostasis

positive regulation of sodium ion transmembrane transporter activity
regulation of cardiac muscle contraction by regulation of the release of
sequestered calcium ion

chromosome organization

neurotransmitter receptor metabolic process

regulation of voltage-gated calcium channel activity

nucleus localization

cardiac muscle cell action potential

regulation of ryanodine-sensitive calcium-release channel activity
myotube cell development

regulation of intracellular transport

protein complex assembly

positive regulation of cell-matrix adhesion

skeletal muscle tissue development

cellular macromolecular complex assembly

DNA conformation change

MRNA metabolic process

viral process

RNA splicing

negative regulation of RNA metabolic process

gene expression

single-organism intracellular transport

microtubule cytoskeleton organization

regulation of organelle organization

regulation of cell cycle

regulation of catabolic process

cellular component disassembly

membrane organization

cellular response to DNA damage stimulus
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72.40
69.64
69.50
68.83

68.57

67.00
66.40

64.54

63.36
62.78
61.39
59.10
58.69
56.79
51.37
51.00
49.94
47.71
44.13
42.67
31.55
31.44
30.60
28.26
27.30
27.18
27.16
26.38
25.74
23.36
21.37
20.46
20.40
20.20



mitotic nuclear envelope disassembly

mitotic cytokinesis

mitotic chromosome condensation

ATP catabolic process

MRNA transport

purine ribonucleoside monophosphate catabolic process
positive regulation of microtubule polymerization
mitotic cell cycle phase transition

cell migration

negative regulation of protein depolymerization
metaphase/anaphase transition of mitotic cell cycle
mitotic nuclear division

establishment of protein localization to membrane

20.05
19.76
18.22
18.22
17.97
17.88
17.86
17.81
16.96
16.52
16.38
15.49
15.11
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Table 5 Detailed composition of DynaPho

directory

description

fadministrator

/config

[core

/databases

/function

/kinase

/libs

/network

/profile

[results

[statistics

/upload
/index.php

An independent subsystem stores the contact information from users. The
operation must be authorized. This subsystem is constructed by LAMP.

It stores lots of information about configuration and setting, such as the
network location, SELinux policy. Besides, scripts related to system
maintenance or the availability of the task are also stored here. For
example, scripts in Python work with the job scheduling in Linux to delete
tasks which no more analysis was submitted over seven days.

Scripts are related to main framework of web interface, preprocessing
module, and task recording subsystem.

It contains three key databases, which are used in function enrichment,
kinase activation time profile, and interaction network module. In
addition, a part of GO databases is independent constructed on MySQL.

It contains scripts which are available to access MySQL databases.
MySQL core stores biological process databases of GO. Scripts are
designed in parallel computing and multi-task techniques. It also contains
webpages for browser presentation.

It contains scripts which are available to access PhosphoNetworks
databases. Furthermore, scripts in PHP can automatically link motif-x
service for the conserved motif analysis. It also contains webpages for
browser presentation.

It contains CSS and javascript libraries (including jQuery, Cytoscape, etc.)
which are used in webpage presentation. It also contains documents; for
example, posters.

It contains scripts which are available to access summarized protein
interaction databases. It also contains webpages for browser presentation.
It contains scripts which are related to auto-detection method and mfuzz.
Scripts are also designed in parallel computing and multi-task techniques.
It also contains webpages for browser presentation.

It is the task- and session-based directory. The hierarchy is the order
which starts from task ID, analysis module, session ID, to analysis results.
Scripts in R can automatically link Plotly service for the ratio distribution
analysis. Two main analyses are executed on the uploading procedure. It
also contains webpages for browser presentation.

Scripts are related to preprocessing and designed in parallel computing.

It is an access to DynaPho service. It includes the framework of web
interface and checks whether the task or the session is available or not.
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Recently, great advances in phosphorproteomics, » Upstream to downstream signalling regulations
including high-accuracy mass spectrometry (MS) » Network-like scales between kinase and substrate
and phosphopeptide-enrichment techniques, have
allowed identifying site-specific phosphorylation. RESULTS
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phosphorylation profiles as well as sequence-content
of phosphosites and various databases to uncover the
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analysis; (2) phosphorylation profile clustering; (3) Figure.2 Results of . "
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interpreting dynamic phosphorylation signalling.

» Dynapho provides services analyzing from upstream
raw data into downstream valuable information,
including profile clustering, functional annotation,

BE kinase-substrate network, etc. to make analyzing
) phosphoproteome more easily.
Preprocessin Data status checking modules
SVS't)em ° K nearest neighbors filling modules REFERENCES

- o * Chia-Wei Hu, Miao-Hsia Lin, et al. (2012) Journal of
L Ratio of each phosphorylation sites
Statistics System £ ion ch i ol sitee bagad . proteome research.
xpression changed of sites basedontime  ,  pathiey Courcelles, Se bastien Lemieux, et al.

Phosphoylated Distance-based clustering (2011) Proteomics.
Profile Clustering Trend of sets from clustering results
Phosphorylated Sites Annotation based on kinase consensus POSTER WEBSITE

Functional Annotation motifs, protein domains, binding motifs, etc. http://ppt.cc/5DgF http://ppt.cc/VfPD

Kinase Activation From annotations, kinase activation profile
Profile enrichment with databases is possible
Kinase Substrate From kinase profile, network-like regulation

Interaction Network  of interaction show signalling dynamics

70



