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Abstract

Background and Purpose: Postural-suprapostural task is defined as achievement

of a motor or cognitive task performed simultaneously with successful postural control.

Due to limited attentional resource, appropriate task prioritization is required for better

performance during postural-suprapostural task, especially in elderly adults, who may

have decreased attentional capacity and impaired attentional allocation. However,

research on the suitable strategy of task prioritization (posture-first (PF) vs. supraposture-

first (SF)) in younger and older adults is limited and lacks direct neural evidences. The

purpose of this study was to investigate the effects of task-priority strategies on postural-

suprapostural performance and its related cortical activity in younger and older

populations.

Methods: Sixteen younger healthy and sixteen elderly healthy adults were recruited

in this study. Each participant was requested to perform a force-matching precision grip

task (suprapostural task) while maintaining balance on a stabilometer (postural task) with

postural task or suprapostural task as the first-priority task. Both behavioral and cortical

data, including task accuracy (postural error and force-matching error), postural ApEn

(approximate entropy), reaction time of precision-grip, and event-related potentials

(ERPs), including P1, N1, and P2 amplitudes, were recorded.

\



Results and Discussions: With SF strategy, less postural error was found in both

younger and older groups. Furthermore, smaller force-matching error and larger postural

ApEn were observed under the SF condition in the older group. ERP results revealed a

task priority-dependent N1 response, which was smaller in the SF condition, indicating

that SF is an efficient strategy for postural-suprapostural control. In addition, besides N1

and P2 waves, P1 positivity was observed only in the older adults, implying more

facilitation of sensory processing was invested in the initial preparation phase of postural-

suprapostural performance for older adults.

Conclusion: SF strategy may be the adequate strategy for both healthy younger and

older adults, with better postural-suprapostural accuracy and more efficient attentional

allocation than PF strategy. Further study is needed to be confident in this conclusion for

patients with neurological disease, such as Parkinson’s disease.

Significance and Contribution: The study not only provided an optimal task-

priority strategy for healthy adults, especially older adults, to increase their movement

quality of postural-suprapostural task, but also gain a better insight to neural correlates of

concurrent postural and motor-suprapostural tasks.

Keywords: task prioritization; postural balance; dual task; event-related potential; age

effect
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Chapter 1

Introduction

1.1 Overview of Postural-suprapostural Task

1.1.1 Definition

Postural task is defined as the control of body posture in a stable, upright position in
space for the purpose of balance or orientation, such as standing and walking.!? It has
been traditionally considered as an automatic controlled task which required little
attention, but recent evidences have been found significant attentional requirements for
postural control in facilitating multi-sensory integration and generation of motor
execution.® In daily activities, upright stance is rarely undertaken without other tasks.
Any task that is superordinate to the control of posture is defined as a suprapostural task.>*
The evaluation or behavioral goal of the suprapostural task is different from postural
control and information of suprapostural performance cannot be acquired from the value
of postural parameter.*

Performing a postural-suprapostural task is frequent for human being in daily life,

such as using mobile phone while standing on a bus or carrying a bowl of soup while
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walking. When postural task and suprapostural task are performed together, the two
attention-demanding tasks require common attentional resource simultaneously, which
challenges the brain for prioritizing the two tasks.>® Thus, the appropriate allocation of
attention is important when performing a postural-suprapostural task for better

performance of both tasks.

1.1.2 Theoretical Framework of Postural-suprapostural Task

Two theoretical frameworks have been commonly described to explain the allocation
of attention in postural-suprapostural task, which are resource-competition model and
adaptive resource-sharing model.®” According to the resource-competition model,
attention is assumed as a capacity-limited resource. When performing a postural-
suprapostural task, postural task and suprapostural task compete for the same attentional
resource.® With the available attentional capacity, both tasks are well performed. However,
when attentional requirements of both tasks exceed the capacity, the concurrent tasks
interfere with each other and lead to the adverse effect on the both postural and
suprapostural performance.’

Similar to resource-competition model, the adaptive resource-sharing model

postulates that postural task and suprapostural task share the same capacity-limited
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resource, but the concept of cost-benefit in the postural-suprapostural sharing situation is
included in this model. The central system prioritizes between both tasks during postural-
suprapostural task and leads the performance of both tasks to the trade-off results.’
Furthermore, two possible patterns in the adaptive resource-sharing model are proposed
based on some behavioral findings of postural-suprapostural performance, which are
autonomous and facilitatory patterns. The autonomous pattern emphasizes that postural
control would be acted as the primary task (the task gets more attentional resource) and
IS engaged in sway minimization automatically no matter which suprapostural task is
added to a postural task. In contrast, the facilitatory pattern (also called as facilitatory
hypothesis) emphasizes that the postural stability may improve for facilitating the
suprapostural performance, especially when the suprapostural task gets more attentional
resource.®®

Both resource-competition model and adaptive resource-sharing model imply that
the attention is a critical issue for postural-suprapostural control. Specially, how the
attentional allocation (or task prioritization) operates the postural task and suprapostural

task is a worth issue to study.

1.1.3 Age-related Models of Postural-suprapostural Performance



Age-related structural and functional changes have been found in musculoskeletal,
neuromuscular, cardiovascular, and sensory system, which affected the ability of postural
control.%¥® To compensate the deterioration of postural control, older adults need more
attentional requirement for balance comparing to younger adults, even in simple postural
condition.! However, attentional capacity has been found decreased with aging, leading
to greater age-related differences of attentional allocation in postural-suprapostural
tasks.!2

Lacour et al. (2008)*® summarized three age-related models for explaining the poor
postural control in postural-suprapostural task, including the cross-domain competition
model, the nonlinear interaction model, and the task-prioritization model. First, the cross-
domain competition model assumed that the postural task and suprapostural task shared
and competed for the attentional resource, leading to less sufficient resource for postural
control.®* The increase of the age enlarges the adverse effect of posture during the
competition of the both tasks due to reduced attentional capacity.'® Second, the linear
interaction model proposed that the postural performance depended upon the attentional
requirement of the suprapostural task.>!* With adding a low demanding suprapostural
task, postural task improves in both younger and older adults. However, with adding a
high demanding suprapostural task, the beneficial effect of suprapostural task reduces

with aging.™



Different from the two models, the task prioritization model emphasized the
importance of task-priority strategy for older adults while performing a postural-
suprapostural task. Due to decreased attentional resource with aging, the older adults may
tend to select the safer strategy for postural control, allocating more attentional resource
to postural task for responding the age-related decline.®*® The model predicts that
prioritization of postural control, which is also called “posture-first” strategy, is often
selected on postural-suprapostural task in older adults as a compensatory attentional
reallocation."*3 However, if the “posture-first” is the optimal control strategy for older

adults while performing a postural-suprapostural task is not completely lucid.

1.2 Related Literature

1.2.1 Task Prioritization on Postural-suprapostural Performance

In a postural-suprapostural task, accomplishing the suprapostural goal and keeping
balance as well is the basic purpose of the task. To achieve the better performance,
appropriate task prioritization becomes an important issue in postural-suprapostural task.
Recently, some previous studies manipulated participants’ major attention between

postural and suprapostural tasks by verbal instruction to examine the effect of attentional
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allocation. Some studies showed that allocating major attention on suprapostural task
would result in better postural-suprapostural performance. For example, in Siu et al.’s
study (2007), the participants were requested to perform a visual spatial memory task
while standing with feet together with focusing on the memory task or their balance.
Participants had significantly shorter response time when prioritizing the memory task
compared to prioritizing postural task and no postural sway difference between the two
prioritizing conditions.!® Also, in the research of Jehu et al. (2015), subjects were asked
to perform a choice reaction time task while standing on a force platform with prioritizing
the choice reaction time task or the postural task. Both less postural sway and shorter
reaction time were observed under prioritizing the choice reaction time task.!’ In Kelly et
al.’s study (2013),!8 participants were asked to perform a auditory Stroop task while
walking. The results showed that with a cognitive-focus instruction, both cognitive and
walking performance would not decrease, but with a walking-focus instruction, the
performance of cognitive task deteriorated significantly but the walking speed did not
improve, indicating focusing on a postural task may not a suitable strategy in a postural-
suprapostural task.

However, the study of Yogev-Selignmann et al. (2010) had opposite results,
reporting that a worse postural-suprapostural performance was observed under

prioritization of a cognitive task.'® In this study, participants were asked to perform a

6



verbal fluency task while walking with focusing on the verbal fluency task or on walking.
The results showed that the number of words generated in verbal fluency task was similar
between the two conditions. But with focusing on the verbal fluency task, the walking
speed decreased relative to focusing on walking. In addition, in study of Yogev-
Seligmann et al. (2012), both word-generation number and walking speed improved when
subjects focused on walking.?° Taken together, the inconsistency in current empirical
literature on postural-suprapostural task suggests that the effects of task prioritization on

postural-suprapostural performance merits further scrutiny.

1.2.2 Age Difference on Postural-suprapostural Performance

Age-related change on postural-suprapostural dual tasking has been found in clinic
and been examined in many studies. In clinic, we may observe that older adults stop
walking while talking. In attention-related studies, impaired attention functions and
impaired working memory have been evident in older adults.*? Specially, aging-related
declines in attentional capacity and resource processing efficiency are noted in multiple-
tasking conditions, such as postural-suprapostural task.>?!2* Besides, decreased
flexibility and optimality of attentional allocation across tasks are also presented in aging

studies.?®?* For instance, Doumas and Krample (2013)?* found that when performing a
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auditory n-back task with standing on a sway-reference platform, the performance of
postural task decreased in older adults, but not in younger adults. Huxhold et al. (2006)3
showed that increased center of pressure displacement was found in older adults when
performing more demanding cognitive task with postural task , but not in younger adults.
Moreover, it had similar findings while older adults need to walk with performing a
suprapostural task. Hollman et al. (2006)? found slower gait velocity in older adults than
younger adults when spelling five-letter words in reverse and walking across the walkway
concurrently. Also, comparing to younger adults, older adults had less word-generation
number and less walking distance when performing a word-fluency task concurrent with
walking on a narrow track.!® All these studies showed deterioration of both postural and
suprapostural performance in support of the view of more limited attentional capacity and

attentional control ability in older adults.

1.2.3 Limitation of Previous Study About Postural-suprapostural Task

The results about task prioritization of postural-suprapostural tasks still exited
inconsistency. The inconsistency was probably due to the instruction of how the subjects
should focus their attention and the nature of suprapostural task (cognitive-supraposture

or motor-supraposture).?® The lack of specification in instruction of prioritization has
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been considered a major limitation of postural-suprapostural related studies,*®1° and little
difference of the instruction may significantly affect the performance.’” Most previous
studies only instructed the primary task to subjects, such as “focus on the cognitive task
and perform it as quickly and accurately as possible”, or “focus on your posture and keep
balance as still as possible”, and even did not tell subjects the focused task is the primary
task. Without specific instruction for both primary and secondary tasks, subjects may
allocate their attention between the primary and secondary tasks differently and result in
inconsistency performance. Hence, the instruction of how to allocate their attention
between postural and suprapostural tasks should be more specific and clear to avoid
discrepancy in attentional allocation between subjects.

On the other hand, the type of suprapostural tasks is also one of the critical factors
that may affect the interaction between postural and suprapostural tasks. Most previous
literatures used cognitive tasks to be the suprapostural task, such as Stroop task or verbal-
fluency task.'®2” However, growing literatures suggested that combination of motor task
and postural task may increase the sensitivity to detect the attentional resource
capacity.?®?° Due to similar nature of postural control and motor task, motor task and
postural task compete for the same input and output resources, resulting in larger
interference between postural balance and motor-suprapostural performance compared

with a traditional dual tasking with a posture-cognition setup. Moreover, the greater
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interference between postural task and motor task was found in older adults than in
younger adults, due to age-related ability decline to manipulate two similar motor tasks
concurrently.?3° Thus, postural task combined with motor task may be the proper design
to observe the interaction between postural and suprapostural tasks, especially in older
adults.

Next, most of previous studies about task prioritization of postural-suprapostural
control just focused on the behavioral outcome but very were limited to examine the
related cortical activation for central resource allocation in a postural-suprapostural task.
However, only behavioral evidence is unable to well explain the brain organization for
attentional allocation between postural and suprapostural tasks.3*? Thus, it appears that
the cortical activity and behavioral measurement must be integrated to examine the
interaction between postural and suprapostural tasks for providing comprehensive

information of postural-suprapostural control.

1.2.4 Characterization of Cortical activity with Event-related Potentials

Event-related potential (ERP), derived from electroencephalogram (EEG), is a
common electrophysiological technique for investigating information processing of

cognitive or motor task.>® As a stimulus-locked cortical potential, ERP would be labeled
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as “N” or “P” waveform for representing negative-going or positive-going component
respectively. The number following the label represents the peak latency of the
waveform,®* such as N1 represents the negative waveform which peaks around 100 ms
after stimulus and P2 represents the positive waveform which peaks around 200 ms after
stimulus. Recently, because of precise temporal resolution, ERP components have been
used in dual tasks for investigating attention shift between the two tasks and the stage of
neural information processing.3:323537

In dual-task paradigm, early ERP (P1, N1, and P2) and late ERP (P300) amplitudes
have been known as an index of resource allocation of cognitive processing.323°3¢ P1
amplitude was reported associated with sensory input to attended task and arousal.®%%
For postural-suprapostural dual tasking, it was found that N1 amplitude was associated
with the information processing of postural control®>®" and P2 amplitude was related to
suprapostural (a precision-grip force-matching task) control.®? Both Huang and Hwang
(2013)*2 and Little and Woollacott (2015)%" reported that the amplitude of N1 increased
when posture demand increased. Besides, P2 amplitude would be modulated by
suprapostural difficulty. With high difficulty of suprapostural task, P2 amplitude would
be decreased, representing more attentional resource allocated to the suprapostural task.>?
Based on previous studies, P1, N1 and P2 amplitudes were known to play an important

role on attention processing in postural-suprapostural task. Therefore, both P1, N1 and
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P2 amplitudes were focused in the ERP analysis for representing attentional allocation

between postural and suprapostural tasks in the present study.

1.3 Rationales

1. There is inconsistency on advantage and defects between posture-first (PF) strategy
and supraposture-first (SF) strategy. It is valuable to realize which task-priority
strategy is the suitable strategy when performing a postural-suprapostural task.

2. Because appropriate attentional allocation or attentional shift is a critical factor for
successful postural-suprapostural execution, ERP signals could be helpful to identify
the neural mechanism of critical level in different task-priority strategies. The
understanding of cortical activation of postural-suprapostural execution may facilitate
innovative and pertinent treatment strategy for people who are multi-tasking
disturbances and prevent them from falling.

3. Comparing to younger adults, older adults may suffer from decreased attentional
capacity and impaired attentional allocation,® and this may affect the applicability of
task-priority strategy between younger and older adults. In this study, both younger
and older adults would be included to investigate the effects task prioritization on

postural-suprapostural tasks.
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4. The instruction affects the way participants allocating their attention in a postural-
suprapostural task.!” Unclear instruction may confuse the participants, leading to
different attentional allocation between subjects. In the present study, the “optimum-
maximum method™*® would be used for instructing subjects and enhancing the
guidance of task prioritization.

5. Most postural-suprapostural studies use a cognitive task as the suprapostural task.
However, a motor-suprapostural task can increase the phenomenon of resource-
competition or resource-sharing.?®2° Besides, a motor-suprapostural task is very
common in our daily life, such as cooking on moist floor or texting on the bus. In the
present study, we would choose a motor task, precision-grip task, as the suprapostural

task.

1.4 Purpose and Significance

The purpose of this study was to investigate the effects of different task prioritization
(PF vs. SF) on postural-suprapostural performance and its related cortical activity in
younger and older populations. The significance of the present study was addressed in the
academic and clinical aspects. In the academic aspect, this study provided a better insight

of the behavioral results and neural mechanism of attentional allocation under different
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task prioritization in both younger and older populations. Especially, through this study;,

we could clarify the applicability of “facilitatory hypothesis” or “posture-first principle”

with behavioral and cortical evidences (Figure 1). In clinical aspect, the results may

provide the clinical value for the physical therapists to instruct older adults who have

multi-tasking difficulty with a suitable movement strategy in their daily life and prevent

them from falling.

1.5 Hypotheses

1. Both postural and suprapostural performance are different between a postural-

suprapostural task with PF or SF strateqy. In addition, the suitable task-priority

strategy for younger and older adults is different. These hypotheses would be

systematically tested by postural and suprapostural accuracy, postural regularity and

reaction time of the suprapostural task. We expected that optimal postural-

suprapostural overall performance was found with SF strategy in younger adults,

whereas optimal postural-suprapostural overall performance was found with PF

strategy in older adults.

2. Attentional resource allocation between postural and suprapostural tasks is different

depending the participants performing a postural-suprapostural task with PF or SF

14



strategy. This hypothesis would be tested by P1, N1, and P2 amplitudes of ERP
signals, for representing the allocated attention for posture and supraposture
respectively. We expected that P1, N1, and P2 amplitudes were significantly affected
between PF and SF strategies. Moreover, frontal area was found related to
information processing of working memory under dual-task condition and motor-
type suprapostural task was found related to parietal area.3*42 Therefore,
significant effects were expected found in frontal and parietal areas when adopting

PF and SF strategies.
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Chapter 2

Methods

2.1 Participants

Thirty two healthy right-handed volunteers (16 younger adults, mean age: 24.4 + 4.6
years; 16 older adults, mean age: 69.1 + 2.7 years) without history of neurological,
vestibular, orthopedic, or cardiovascular disorders were recruited in this study. All
subjects had normal or corrected-to-normal vision. For older subjects, they were able to
ambulate independently without walking aids and had no history of falling. Besides, Mini
Mental State Examination (MMSE) score was measured for older adults and only the
subjects with more than 24 points were included (Appendix 1). Because the subjects were
asked to perform an suprapostural task while standing on a stabilometer (67-cm length x
50-cm width x 24-cm height, anterior-posterior tilting angle: 0-100 degrees), the subjects
who were pregnant, had prior experience with tasks, unable to maintain balance on the
stabilometer for at least 80 seconds, or took any medications that could affect balance
were excluded from this study. Telephone interview with the subjects was done before
recruiting. Table 1 is the demographic data of both younger and older groups.

The protocol was approved by the research ethics board at the National Taiwan
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University Clinical Trail Center (Appendix 2). Study procedure was explained by the

researcher for each subject and an inform consent was signed by the subjects prior to

participating in this experiment.

2.2 System Set-up and Data Recording

The experiment consisted of postural task and suprapostural task. Participants were

requested to perform a force-matching precision grip task with their right index and thumb

(suprapostural task) while standing on a stabilometer (postural task) (Figure 2). For the

postural task, participants were asked to maintain their balance on the stabilometer (67-

cm length x 50-cm width x 24-cm height, anterior-posterior tilting angle: 0-100 degrees)

with an inclinometer (Model: FAS-A, MicroStrain, USA) mounted on the center of the

stabilometer plate to measure the tilting angle of the stabilometer. The maximal anterior

tilting was recorded for each participant before the experiment and the 50% of the

maximal anterior tilting angle was set as the target angle for the postural task. For the

suprapostural task, participants were asked to execute a force-matching task, and the level

of force output was recorded with a load cell (15-mm diameter x 10-mm thickness, net

weight = 7 grams; Model: LCS, Nippon Tokushu Sokki Co., Japan). Maximum voluntary

contraction (MVC) of precision grip was also recorded before the experiment and the

17



50% of the MVC force was set as the target force for the suprapostural task. The

participants needed to execute the thumb-index precision grip task in response to auditory

cues. The auditory cues consisted of 80-second sequences of tone pips, with a total of

fifteen warning-executive signal pairs. The interval between a warning tone (frequency:

800 Hz, duration: 100 ms) and an executive tone (frequency: 500 Hz, duration: 100 ms)

was 1.5 seconds for the first three warning-executive pairs, but was random presented at

different intervals of 1.5, 1.8, 2.1, 2.4, 2.7 or 3.0 seconds form the fourth to fifteenth

warning-executive pairs. The interval between the executive tone and the next warning

tone was 3.5 seconds. Participants performed a quick thumb-index precision grip (force

impulse duration < 0.5 second) to couple the peak precision force with the force target

when receiving the executive tone. In order to determine the reaction time (RT) of force-

matching, the initial activation of the first dorsal interosseous (FDI) muscle was recorded

with surface electromyogram (EMG) in a bipolar arrangement (Ag/AgCl, 1.1 cm in

diameter, Model: F-E9M-40-5, GRASS) and an AC amplifier (gain: 5000, cut-off

frequency: 1 and 300 Hz; Model: QP511, GRASS).

For recording cortical activation, electroencephalogram (EEG) data was recorded

from a 32 Ag-AgCl scalp electrodes with a NuAmps amplifier (NeuroScan, El Paso, TX).

The placement of the EEG electrodes was according to the 10-20 International System at

the following locations: Fpis2, Fz, Faua, Fus, FT7s, FCz, FCaua, FCrs, Cz, Caia, CPz, CPap,
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Pz, P3ia, T3, TP78, O, and O1p. The ground electrode was placed along the midline ahead

of F; and the recording references were placed on the mastoids of the both sides. In

addition, two electrodes were attached above the arch of the left eyebrow and below the

eye to monitor eye movements and blinks. The impedances of all electrodes were

maintained below 5 kQ, and data was recorded with a band-pass filter set at 0.1 to 100

Hz with a notch filter at 60 Hz to remove the noise from the environment. Both behavioral

and cortical signals, including stabilometer movement, precision grip force, EMG of FDI

muscle, and EEG data, were synchronized with a sampling rate of 1 kHz.

2.3 Experimental Conditions and Procedures

This study was conducted in two separate days with one-week apart. Participants in

both age groups were randomly assigned to either PF or SF conditions in the first day and

to the other in the second day (Figure 3). In each experimental day, participants were

requested to perform three experimental tasks, including one postural-suprapostural task,

and two corresponding control tasks (a single corresponding postural task and a single

corresponding suprapostural task). There were six trials for each experimental task.

In most previous researches related to task prioritization, the lack of specification

instruction for how participants directing their attention when performing dual tasks was
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a major limitation.’® For the better improvement of task prioritization instruction, a
procedure derived from “optimum-maximum method” proposed by Navon (1990) was
used in this study for manipulating task prioritization.*> The optimum-maximum method
was used to guard subjects’ attention with specific instruction for both high-priority and
low-priority tasks.?3*3 With this method, the high-priority task was designed the “to-be-
optimized” task, and low-priority task was the “to-be-maximized” task. Participants were
instructed to execute the high-priority task with their “optimum” level and to perform
their best on the low-priority task. Such a procedure required participants to optimize the
high-priority task and not to “give up” on the low-priority task. Besides, individually
determined performance standard and performance feedback were provided in the high-
priority task but not for low-priority task. Therefore, in this study, visual feedback about
the target and performance of stabilometer movement or force-matching task was used
for enhancing the prioritization of the attention (Figure 4). For example, participants in
the PF condition were instructed to pay their primary attention on the postural task with
maintaining the tilting angle of the stabilometer at the target angle precisely, and to
maximize the precision of force-matching task. Visual feedback of stabilometer target
angle and instantaneous stabilometer tilting angle was provided in the PF condition, but
visual information about the force-matching target and force output was not provided.

Because the visual feedback was only provided for postural performance, the
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corresponding control tasks of the PF condition were that 1) performing the postural task

on the stabilometer with visual feedback and did not execute the force-matching task, and

2) performing the force-matching task without visual feedback on a stable box (67-cm

length x 50-cm width x 24-cm height). In contrast, participants in the SF condition were

instructed to pay their major attention on the precision grip task with coupling the force

peak with the target precisely, and to maximize the precise tilting angle of the stabilometer.

Visual feedback of the force-matching target and force output was provided in the SF

condition, but visual information about the stabilometer and its target angle was not

provided. The corresponding control tasks of the PF condition were that 1) performing

the postural task on the stabilometer without visual feedback and did not execute the

force-matching task, and 2) performing the force-matching task with visual feedback on

a stable box (67-cm length x 50-cm width x 24-cm height). Besides, in order to remind

the force-matching target for the PF condition and the tilting angle target for the SF

condition, the visual feedback about the first 3 force-matching performances and the first

10-second stabilometer tilting angle with their target was provided in each trial for the PF

and the SF conditions, respectively. All the visual information was displayed on a 22-inch

computer monitor with 60 cm in front of the subjects at eye-level.
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2.4 Data Analysis

2.4.1 Behavioral Data

For postural performance, the inclinometer data was conditioned with 6-Hz low-pass
filter and the units were converted to degrees. The inclinometer data from every executive
tone to next warning tone was selected for calculation of absolute postural error and
absolute postural approximate entropy (ApEn). The absolute postural error was presented
by calculating the root mean square (RMS) of the mismatch between the target angle and

the stabilometer tilting angle and then divided by the target angle, presenting as

RMS(SA-TA)

A x100% (SA: stabilometer tilting-angle, TA: target angle). The absolute

postural ApEn of the stabilometer tilting angle’s trajectory was used to represent the
variability property of the postural performance. According to previous study, the
calculation of postural ApEn was calculated after the trajectory of stabilometer tilting
angle normalized with standard deviation of time series, presenting as ApEn (m, r) =
10g[Cm(r)/Cm-+1(r)].** Where m represents the length of the compared time windows and r
represents the tolerance range of the regularity.** If a completely predictable time-series
with high regularity, value of Cm(r) will be very close to Cm+1(r), yielding a log-probability

(ApEN) of zero.** In this study, m equaled 2 and the tolerance range of r was 0.15x the
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standard deviation of the time series**. The value of the ApEn was between 0 and 2. An
ApEn value of closer to 2 represented higher irregularities, or larger complexity of the
postural movement changes. In contrast, an ApEn value of closer to O represented greater
regularity.*’

For suprapostural performance, the absolute force-matching error was presented as
@MOO% (PPF: peak precision-grip force, TF: target force). The absolute force-
matching RT of suprapostural task was recorded by calculating the time delay from the
presentation of executive tone to the EMG onset of FDI muscle. All behavioral

parameters of postural-suprapostural task were normalized in reference to its

corresponding control task.

normalized value = absolute Value_purat-sprposra x100%
absolute value

_ corresponding control

2.4.2 ERPs Data

The manipulation of Event-related potentials (ERPs) data mainly referred to the
previous ERP study.®? The recorded EEG data was processed with NeuroScan’s 4.3
software (NeuroScan Inc., El Paso, TX, USA) and the off-line analysis was used for the

analysis. The DC shift of each channel on entire EEG data was corrected with third-order
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correction. The eye movements and blinks were removed from the EEG data. After eye
movements were removed, the EEG data was low-pass filtered with cut-off frequency of
40 Hz (48 dB/octave), and segmented into epochs of 700 ms, including a 100 ms before
the onset of executive signals. The 100 ms-data prior the executive signals was used for
the baseline correction of each EEG epoch. A visual inspection for each epoch was
applied, and those epochs with artifacts, including excessive drift, eye movements or
blinks, were removed from analysis. Those epochs with adequate responses were
averaged. ERPs from the six trials of each task were group averaged separately at each
condition for each subject. According to the previous ERP studies, P1 amplitude was
reported associated with sensory input to attended task®®, N1 was associated with the
attention modulation related to postural control, and P2 was associated with the attention
modulation related to perceptual-motor suprapostural task,®?* Therefore, in the present
study, we analyzed the peak amplitudes of P1 (70-110 ms), N1 (80-150 ms), and P2 (150-
240 ms) components across all EEG electrodes to characterize the attention allocation

between postural and precision-grip tasks.

2.5 Statistical Analysis

The task prioritization conditions (PF condition, SF condition) and age groups
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(younger group, older group) effects on behavioral and electrophysiological parameters
of postural and suprapostural tasks, including the normalized force-matching error,
normalized force-matching RT, normalized postural error, normalized postural ApEn, and
ERP amplitudes of P1, N1, and P2 components were compared with 2 x 2 mixed analysis
of variance (ANOVA). When necessary, post hoc least significant difference (LSD)
comparisons were performed. The level of significance was set at p < 0.05. Signal
processing of behavioral data and statistical analysis was completed by using MatLab v.
R2008a (Mathworks, Natick, MA, USA) and the statistical package for SPSS statistics V.

17.0 (SPSS Inc., Chicago, IL, USA).
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Chapter 3

Results

3.1 Behavioral Performance

3.1.1 Error and Regularity of Postural Performance

Figure 5 shows the absolute and normalized postural error of SF and PF conditions
in the younger and older groups. ANOVA results suggested that normalized postural error
was subject to task prioritization (F1,30=12.99, p <0.01) and age difference (F1,30=11.28,
p < 0.01) without interaction (F, 30 = 0.30, p = 0.59). Larger normalized postural error
was observed in the PF condition than that in the SF condition for both younger and older
groups (p < 0.05). Besides, normalized postural error was larger in the older group than
that in the younger group across task prioritization conditions (p < 0.05). The normalized
postural error of SF condition in the younger group was below 100% (84.51 + 3.86%),
but the others were above 100%, indicating that younger adults had better postural
performance during the postural-suprapostural dual-task condition than that during the
single postural task condition. For postural regularity, Figure 6 displayed the absolute and

normalized postural ApEn results of SF and PF conditions in the younger and older
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groups. ANOVA results showed a significant main effect of task prioritization (Fz, 30 =

4.41, p < 0.05) and age difference (Fz, 30 = 18.82, p < 0.001) on the normalized ApEn

values without a significant interaction (Fy, 30 = 2.21, p < 0.15). Post-hoc testing showed

a larger normalized ApEn in the younger group than that in the older group (PF condition:

younger (102.87 + 1.58%) > older (92.16 = 1.65%)), p <0.01; SF condition: younger

(103.87 £ 1.70%) > older (97.99 £ 2.12%), p <0.05), indicating that younger adults had

higher postural irregularity when performed a postural-suprapostural task than older

adults. Also, we noted that normalized ApEn was above 100% in the younger for both PF

and SF conditions, but was below 100% in the older group, indicating that addition of the

force-matching task led to an opposite effect on postural regularity between younger and

older groups. On the other hand, the task prioritization effect on normalized ApEn was

only shown in the older group with larger value in the SF condition than that in the PF

condition (p < 0.05).

3.1.2 Error and Reaction Time of Force-matching Task

For suprapostural performance, force-matching error of PF and SF conditions in

younger and older groups is shown in Figure 7. ANOVA results suggested that normalized

force-matching error was subject to task prioritization (F1,30=12.31, p < 0.01), but not to
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age effect (F1, 30 = 2.25, p = 0.14) with no significant interaction effect (Fy,30=1.69, p <

0.20). Post-hoc evaluation revealed that normalized force-matching error in older group

was higher in PF condition than that in SF condition (p < 0.05). Besides, all normalized

force-matching errors were above 100% (younger group: PF condition = 118.90 + 5.63%,

SF condition = 103.16 + 5.49%; older group: PF condition = 139.88 + 11.57%, SF

condition = 105.65 = 5.31%), indicating that force-matching error tended to increase

when subjects were requested to perform a force-matching task and kept their balance on

a stabilometer concurrently compared to perform the force-matching task in a stable

posture (stand on a stable box).

Figure 8 displays the RT of force-matching task of PF and SF conditions in younger

and older groups. Similar as force-matching error, all normalized force-matching RT

values were above 100% (younger group: PF condition = 110.79 = 3.50%, SF condition

= 107.70 £ 1.87%; older group: PF condition = 102.51 + 4.12%, SF condition = 102.36

+ 2.80%), indicating that RT would be longer when subjects were requested to perform a

force-matching task and kept their balance on a stabilometer concurrently compared to

perform the force-matching task in a stable posture. However, the RT of force-matching

did not vary with either task-priority strategy or age difference (task-priority effect: F =

0.48, p = 0.50; age effect: F = 3.15, p = 0.09).
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3.2 ERP Amplitudes

Figure 9 displays the typical ERP waveforms of younger group and older group in
postural-suprapostural tasks. It is interesting to find that the ERP characteristics were
different between the younger and older groups. In the younger group, only the N1 and
P2 waves presented after the presentation of the executive signals across postural-
suprapostural conditions (Figure 9(a)); however, the P1, N1, and P2 waves were all
observed in sequence after the presentation of the executive signals in the older group
(Figure 9(b)). Therefore, for statistical analysis of ERP amplitude, N1 and P2 amplitudes
were analyzed via a 2 (task prioritization: PF vs. SF) x 2 (age: younger vs. older) mixed
ANOVA, with repeated measure on the first variable, while P1 amplitudes was analyzed

via a paired t-test to examine the task prioritization effect for the older adults.

3.2.1 Task Prioritization Effect on ERP Amplitudes

Figures 10(a-e) are typical ERP recordings showing the effects of task prioritization
P1, N1, and P2 amplitudes. ANOVA results suggested that in the younger group, the N1
amplitudes of most electrodes around left frontal (Fs: F1,30=9.34, p <0.01; FC3: F1,30=

9.05, p < 0.01), central (Cs: F1,30=8.93, p < 0.01) and parietal (CPs: F1,30=21.26, p <
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0.001; Ps: Fy,30=16.36, p < 0.001) cortices, and midline electrodes (FCz: F1,30=4.37, p

< 0.05; C;: F1,30=6.61, p < 0.05) were subject to a significant task prioritization effect.

Post-hoc analysis further indicated that the N1 amplitudes on these electrodes (Fs, FCs,

FC;, Cs, Cz, and CPs,) in the PF condition was generally greater than that in the SF

condition (p < 0.05)(Figure 11(a)). On the other hand, a significant supraposture effect on

P2 amplitude was noted in the left temporal (Ts: F1, 30 = 6.32, p < 0.05) and parietal (P.:

F1,30 = 4.68, p < 0.05) cortices. Besides, some electrodes had significant interaction

between task prioritization and age factors on P2 amplitudes (Ts: F1, 30 = 4.90, p < 0.05;

Ps: F1,30=4.28, p < 0.05; O1: F1,30=4.47, p < 0.05). Further post-hoc analysis indicated

that P2 amplitudes on Ts, P3, Pz, and O1 electrodes were greater in the SF condition than

that in the PF condition (p < 0.05)(Figure 11(b)).

For the older group, paired t-test revealed that compared to with PF strategy, P1

amplitudes were larger at frontal (FCsand Fg), central (Czand Cz), parietal (CP3, CPz, Pz

and Ps), and right temporal (FTgand T4) areas with SF strategy (p < 0.05)(Figure 11(c)).

ANOVA results suggested that the N1 amplitudes of the electrodes around parietal (CPa:

F1,30=21.26, p < 0.001; CPz: F1,30=8.97, p < 0.01; P3: F1,30=16.36, p < 0.001; Pz: Fy,

30 = 7.39, p < 0.05) and temporal (Ts: Fy, 30 = 10.81, p < 0.01) areas were subject to a

significant task prioritization effect. Post-hoc testing showed that N1 amplitudes on these

electrodes (Ts, CP3, CPz, P3, and Pz) were larger in the PF condition than that in the SF
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condition (p < 0.05)(Figure 11(d). On the other hand, the P2 amplitudes of electrode FTs
had a significant main effect of task prioritization (F1, 30 = 5.16, p < 0.05). Besides, some
electrodes showed significant interaction effect between task prioritization and age
factors around right frontal (Fs: F1, 30 = 4.39, p < 0.05; FTg: F1,30=5.26, p < 0.05) and
temporal (Ts: F1,30 = 4.63, p < 0.05) areas. Further post-hoc analysis indicated that Fsg,
FTs, and T4 electrodes had larger P2 amplitudes in the PF condition than that in the SF

condition (p < 0.05)(Figure 11(e)).

3.2.2 Age Effect on ERP Amplitudes

The age effect on N1 and P2 amplitudes is displayed in Figures 12(a)-(b). For the
PF condition, ANOVA results revealed a significant main effect of age difference on N1
amplitudes at frontal (Fz: F1,30=5.60, p < 0.05; FCs: F1,30=4.86, p < 0.05), central (Cs:
F1,30=5.14, p < 0.05), and parietal (CP3: F1,30=4.86, p < 0.05; CPz: F1,30=4.22, p <
0.05; P3: F1,30=4.95, p <0.05) areas. Post-hoc evaluation showed that the N1 amplitude
of these electrodes (Fs, FCs, C3, CP3, CPz, and Ps) in the older group was generally greater
than that in the younger group (p < 0.05)(Figure 12(a)). However, the P2 amplitude was
independent of the age effect for all cortical areas in the PF condition (p > 0.05)(Figure

12(h)).
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For the SF condition, ANOVA results revealed the a significant main effects of age

groups difference on N1 amplitudes at left fronto-parietal cortex (Fs: F1,30= 5.60, p <

0.05; FCs: F1,30=4.86, p < 0.05; C3: F1,30= 5.14, p < 0.05; CP3: F1,30= 4.86, p < 0.05;

Ps: F1,30=4.95, p < 0.05) with larger N1 amplitudes in the older group (Figure 12(c)). On

the other hand, ANOVA results showed a significant main effects of age difference on P2

amplitudes at occipital area (O1: F1,30=4.40, p < 0.05; Oz: F1,30=6.94, p < 0.05; O2: Fy,

30=4.55, p <0.05) and a significant interaction between task prioritization and age factors

at P, electrode (F1,30=4.47, p < 0.05)(Figure 12(d)). Post-hoc analysis indicated that P2

amplitudes on these electrodes (Pz, O, and O) were greater in the younger group than

that in the older group (p < 0.05).

Figure 13 displays the topological plots of the younger and older groups in each

postural-suprapostural condition. It seems that task prioritization affected the activation

duration of N1 and P2 waves in the younger and older groups respectively. In the younger

group, with activation duration of N1 wave was shorter in the SF condition and P1

activation of the older group seemed earlier in the SF condition than in the PF condition.

In addition, the age difference also affected the activation of N1 and P2, with greater

activation intensity and area of N1 wave in the older group but greater activation intensity

and area of P2 wave in the younger group.
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Chapter 4

Discussions

4.1 Improved Task Accuracy with SF Strategy

The results showed significant task prioritization effect on postural and
suprapostural tasks in both younger and older adults. First, better postural/ suprapostural
performance was found in both age groups when paying major attention on force-
matching task in postural-suprapostural task (Figures 5, 7), which in line with some
studies related to task prioritization.!”*® Burcal et al. (2014) showed greatest postural
improvements when focusing on suprapostural task compared with focusing on balance
and no focusing instruction.*® Jehu et al. (2015) also reported that less postural sway was
observed when prioritizing reaction time task than prioritizing posture.’ These researches
suggested that focusing on suprapostural task allowed attention shifted attention away
from control of posture, leading to more automatic and efficient postural control. The
results may also support the constrained-action hypothesis, which proposed that
consciously controlling posture or movement close to the body may interfere with the
automatic control processes and thus negatively affected postural performance.®® In

addition, the postural improvement with SF strategy was also consistent with the
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facilitatory pattern in adaptive-resource sharing model, which proposed that postural
stability may get improved in order to facilitate suprapostural performance.®® The
facilitatory effect was especially dominant in the older adults, because both force-
matching error and postural error was less in the SF condition than that in the PF condition
(Figures 5, 7). However, Yogev-Seligmann et al.’s study (2010) reported the opposite
results.!® In the study, subjects (younger and older adults) were requested to perform a
cognitive task (verbal fluency task) during walking with different attention instruction,
including no specific prioritization instructions, prioritization of gait and prioritization of
the verbal fluency task. They found that gait speed was reduced when prioritization was
given to the verbal fluency task in both age groups, indicating that SF strategy might
decreased postural performance. The discrepancy between our results and Yogev-
Seligmann et al.’s finding may result from different type of suprapostural task. With a
motor suprapostural task, such as force-matching, attentional resource would be enforced
to integrate for optimal outcome.

On the other hand, postural performance was found to be significantly better in the
younger group than that in the older group for both PF and SF conditions. Age-related
decline of postural performance in older adults may represent the inability to adequately
allocate attentional resource between two tasks and inefficient postural control in older

adults.*>* With aging, overall structural and functional decline resulted in decreased
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attentional capacity and increased attentional requirement in postural control.%10:12
Therefore, adding a seconding task secondary task to postural task may increase the
attention load and reach the limit of attentional capacity to allocate in older adults, which
consistent with the opinion of cross-domain competition model.*?* In addition, when
adding a secondary task, younger adults may shift part of attention to the secondary task
and allow more automatic control of posture. However, older adults were unable to
efficiently shift attention away from posture, which lead to interference of postural
control.>®

Second, for postural variability, the results showed a higher value of normalized
postural ApEn in the SF condition than that in the PF condition (Figure 6), which
represents more irregularity of postural control. 4”51 Postural regularity has been found to
be positive correlated with amount of attention allocated in postural control, with higher
regularity (or lower ApEn value), more attentional resource is devoted to the postural
control. 4 Thus, combination of the results of postural error and normalized postural
ApEn values, it could be interpret as less amount of attention required to keep postural
balance when adopting SF strategy in postural-suprapostural task, and also reflects SF
strategy could be have more efficient and automatic postural control.*”>! In addition, the
value of normalized postural ApEn was significantly greater in the younger group than

that in the older group when performing postural-suprapostural task, indicating that
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younger adults could use more automatic control for keeping postural balance, and this
phenomenon may partly explain the better postural performance in the younger group

than that in the older group.

4.2 Facilitated P1 Wave in the Older Group in SF Condition

The present study appears to be the first to assess electrophysiological
correlates (P1, N1, and P2) for postural-suprapostural tasks with different task
prioritization between younger and older adults. One of our novel finding is different ERP
waves facilitated during postural-suprapostural task between age groups, with P1, N1,
and P2 waves in the older adults, whereas only N1 and P2 waves in the younger adults
(Figure 9). Specially, the facilitated P1 waves were more dominant in the SF condition
than that in the PF condition (Figure 13). According to previous literatures, although P1
and N1 were associated with sensory gain control, they reflected different aspect of
attention.> P1 was thought to reflect the facilitation of sensory processing of task-related
stimuli. 52°* In addition, enhanced P1 positivity was found associated with increased
sensory input to attended task and increased arousal,*®2° related to high activation level
of emotion, mental and physiological system.>® Hence, facilitated P1 wave may imply

that more sensory processing facilitation and arousal were involved at the initial
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preparation phase of postural-suprapostural task in older adults for compensating
decreased information processing or reduced attentional capacity. In this study, the greater
P1 positivity was observed across left primary motor cortex, sensorimotor cortex, and
frontal-parietal and right frontal-temporal area in the SF condition indicated that older
adults with SF strategy showed more arousal and sensory input facilitation than with PF
strategy (Figure 11(c)). According to previous researches, frontal-parietal cortical region
was reported related to recognition of postural instability and right frontal-temporal
cortical region was related to modulation of finger force scaling.®®*’ The finding indicates
that SF strategy facilitated higher sensory processing for both upcoming balance and
force-matching task and results in better behavioral outcomes.

The other important finding in the present study was that N1 amplitude increased in
the PF conditions for both younger and older groups. N1 was also reported associated
with sensory processing for postural control.®” Enhance N1 negativity was found related
to high perceptual load, reflecting increased perceptual resource of sensory processing®6-*8
and reduction of N1 amplitude was associated with automatic postural control.%’
According to our results, under PF conditions, N1 negativity was greater at left frontal-
parietal area in the younger group and at left central-parietal regions in the older group
respectively (Figures 11(a), (d)). Frontal-central cortical region has been found related to

action monitoring and detection of error, and activation of parietal region has been found
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related to postural instability.®® In addition, left hemisphere was reported a dominant role
in the control of movement and motor skills that are carried out with those that require
bimanual coordination.® Therefore, increased N1 amplitude in these areas may imply
that more attention was required for executing postural task under the PF conditions.
However, more attention devoted to the postural task was not necessary to result in better
postural performance. According to the results of postural error, the PF conditions had
more postural error indicating that PF strategy is an ineffective strategy for postural
control in both younger and older adults.

On the other hand, it is interesting to find that there was an opposite task
prioritization effect on P2 positivity between the younger and older groups. P2 was found
related early attentional allocation for initial conscious awareness for the task® and
suprapostural difficulty.®? Reduction of P2 amplitude was found representing more
attentional allocation to suprapostural task.®? In younger adults, greater P2 positive
around left temporal-parietal-occipital region (Ts, P3, Pz, and O1), in the SF condition
(Figure 11 (b)), indicating that less attention for multimodal sensory integration was
allocated (or required) for the suprapostural task under SF condition than PF condition.
Although, less attention was required to perform the suprapostural task, no suprapostural
performance decline was found in behavioral results (Figure 7). Moreover, the topological

plots also showed an earlier activation of P2 wave in the SF condition than that in the PF
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condition in younger adults (Figure 13). The early P2 activation may reflect more
effectiveness of the attention shifted from postural task to the force-matching task.
Oppositely, SF strategy would lead to less P2 positivity on right frontal-temporal cortex
in the group of older adults (Figure 11 (e)), which represents more attention allocated to
the suprapostural task in the SF condition. Right frontal-temporal cortex was reported
acting an important role in finger force scaling and right hemisphere was related constant
motor output.®” The results may imply that more attention was devoted for better force-
matching accuracy in older adults with SF strategy to compensate the decreased ability
of force scaling.%! Therefore, according to behavioral and ERP results, SF strategy may

be the better strategy for both younger and older adults than PF strategy.

4.3 Age Effect on ERPs in Postural-suprapostural Tasks

Besides, N1 negativity was observed around frontal-parietal area in older adults than
in younger adults for both PF condition and SF condition (Figures 12 (a), (c)). The fact
indicates that more attentional resource was required for older adults to keep their balance
because of less automatic postural control in older adults (smaller ApEn value, Figure 6).
The topological plots also support this argument by longer activation duration and longer

activation area of N1 wave in the older group (Figure 13). Age-related changes were
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reported in left premotor and sensorimotor cortices, which was related to postural control
and internal representation of body in space,®>>® especially for skilled movement.>* On
the other hand, enhanced P2 positivity on occipital area was found in the younger adults
under SF condition (Figure 12(d)), indicating that less attentional resource was required
for performing the suprapostural task in younger adults. An functional magnetic
resonance imaging study showed that the occipital area was related to sensory
processing.3® Hence, the results may represent increased attentional requirement of

suprapostural task in older adults for compensating the decline of sensory processing.

4.4 Methodological Issues and Limitation

First, in the current experimental paradigm, a force-matching task with 50% MVC
force was used as the suprapostural task. In order to choose an adequate level of force
target, we executed a pilot study to examine the variability of force output in different
force-intensity and the effects of force-intensity on postural balance. With the same
apparatus and postural-suprapostural task design as the current experiment, twelve
healthy right-handed volunteers (4 males, 8 females; mean age: 24.5 + 3.0 years)
without past neurological or neuromuscular impairment were recruited to perform a

force-matching task with 25%, 50% and 75% of MVC force while standing on a
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stabilometer with keeping their balance at 50% of the maximal anterior tilt angle. The
twelve subjects of the pilot study were different to that of the main experiment. Subjects
were instructed to performed both postural and force-matching tasks as precision as
possible with providing online visual feedback of both targets and their performance.
Coefficient of variance of peak precision grip force (CV_PPF) and postural error were
measured in each condition. A one-way repeated-measures analysis of variance with
Bonferroni adjustments were used to contrast force-matching variability (CV_PPF) and
postural error differences among 25%, 50%, and 75% of MV C force conditions. The
level of significance was set as p < 0.05. ANOVA statistics suggested that CV_PPF
differed among the force-intensity conditions (F2, 2= 24.18, p < 0.01), and CV_PPF was
greatest in the 25% MVC condition (p < 0.01)(Figure 14 (a)). ANOVA statistics also
suggested that the postural error was not significantly different among three force-
intensity conditions (F2, 22=0.03, p = .97)(Figure 14 (b)). These facts indicated that
postural error was not significantly affected by force-intensity of the force-matching
task and force-matching with 50% or 75% of MV C force would have less within-
subject variability of force output. Also, Slifkin and Newell (1999) reported that optimal
signal to noise ratio is in about 50% of maximal force output that subjects can
produce.®? Besides, for avoiding possible fatigue effect result from higher force-

intensity output (75% of MVC), we chose the 50% of MV C force as the target of the
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force-matching task in the main experiment.

Second, the experiments were conducted in two separate days with one-week apart

in order to avoid the potential fatigue or learning effect. In this study, participants of

both younger and older groups were assigned to either the PF or SF conditions on the

first experimental day and executed the other condition on the second experimental day.

On the first experimental day, half participants in both age groups were assigned to the

PF condition and the others were assigned to the SF condition. Moreover, all behavioral

parameters of postural-suprapostural task were normalized to their corresponding

control task measured in the same experimental day, avoiding the results from the effect

of different baseline conditions between two experimental days. In order to test the

potential learning effect, all behavioral parameters, including normalized postural error,

normalized postural ApEn, normalized force-matching error, and normalized force-

matching RT, were compared between the participants who conduct the SF condition on

the first experimental day and the participants who conduct the PF condition on the first

experimental day via student t-test. The results showed no significant difference

between these two groups in both conditions (Table 2), indicating there was no

significant learning effect on behavioral performance.

Third, both younger and older adults performed the same postural task and

suprapostural task in the present study. The task difficulty may be different between the
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younger and older adults since older adults might have less capability of balance control
or force scaling than younger adults.>?%* And the differences of relative task difficulty
might vary central resource allocation and affect the optimal strategy selection and
performance of postural and suprapostural tasks. However, we could not quantify the
real perception of task difficulty in postural and suprapostural task for younger and
older adults and it is beyond the scope of this study. Further investigation is needed by

considering different task difficulty level of postural and suprapostural tasks.
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Chapter 5

Conclusion

This study first presented three ERP components (P1, N1, and P2) in a
postural-suprapostural task with a perceptual-motor goal to investigate the effects of
task prioritization in younger and older adults. Significant task prioritization benefit was
found with SF strategy, with better task accuracy and attentional resource allocation. In
healthy older adults, P1 positivity was enhanced for achieving optimal postural and
force-matching performance, especially under the SF condition. Our behavioral and
neurophysiological data suggested that SF strategy may be the adequate strategy for
both younger and older adults in a postural-suprapostural task, with more automatic
postural control and optimal resource allocation between postural and suprapostural
tasks (Figure 15). However, neurological disease is a critical factor to affect postural-
suprapostural performance, especially for balance control. Some researchers argued that
posture-first might be a safe strategy for patients with Parkinson’s disease. Therefore,
the appropriateness of task priority strategy in patients with neurological disease, such
as Parkinson’s disease, requires further investigation for providing optimal attentional

strategy clinically.
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Figure 10. Task prioritization effect on ERP waveforms of (a) N1 amplitude of
younger group, (b) P2 amplitude of younger group, (c) P1 amplitude of older
group, (d) N1 amplitude of older group, and (e) P2 amplitude of older group in

postural-suprapostural tasks.
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Figure 11. Task prioritization effect on grand-averaged ERP topological plots of (a)
N1 amplitude of younger group, (b) P2 amplitude of younger group, (c) P1
amplitude of older group, (d) N1 amplitude of older group, and (e) P2 amplitude of
older group in postural-suprapostural tasks. Filled squares represent the electrode
had a significant difference in ERP amplitudes between the SF and PF conditions
in ERP amplitudes (p < 0.05).
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Figure 12. Age effect on grand-averaged ERP topological plots of (a) N1 amplitude
in the PF condition, (b) P2 amplitude in the PF condition, (c¢) N1 amplitude in the
SF condition, and (d) P2 amplitude in the SF condition in postural-suprapostural
tasks. Filled squares represent the electrode had a significant difference in ERP

amplitudes between the SF and PF conditions in ERP amplitudes (p < 0.05).
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Figure 13. Population means of topological plots of all task priority condition (PF
and SF conditions) and age groups (younger and older groups) in postural-
suprapostural tasks.
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Figure 14. Force CV and postural error of pilot study.
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Tables

Table 1. Baseline characteristics of the participants.

Younger Group (n=16) Older Group (n=16)

Age (yrs) 244+ 46 69.1+2.7
Gender, M/F 8/8 6/10

Height (cm) 168.7 + 9.3 1559+ 7.6
Weight (kg) 64.4 + 14.0 60.1 + 9.2

MMSE score - 29.3+15
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Table 2. Comparison of collected normalized postural error, postural ApEn, force-
matching error, and force-matching RT between the first and second experimental

days.
NPE (%) NPApPEN(%) NFE(%) NFRT(%)
Collected Day
(a) PF condition
1% day 105.37+2.15 97.89+249 13532+9.95 109.65+4.70
2" day 110.14+6.27 97.15+168 123.45+8.75 103.66 + 2.86
(p=0.48) (p=0.81) (p=0.37) (p =0.29)
(b) SF condition
1% day 92.19+5.25 101.05+1.83 97.75+435 105.48 + 2.65
2" day 95.28+4.80 100.82+2.28 111.06+5.80 104.58 +2.29
(p =0.67) (p =0.94) (p =0.08) (p =0.80)

NPE: normalized postural error

NPApEN: normalized postural ApEn

NFE: normalized force-matching error

NFRT: normalized force-matching reaction time
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