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摘要 
 

  本論文主要將討論粒子物理與宇宙中兩個加速膨脹時期的關聯:第一為早期

宇宙中的暴漲模型，第二是晚期宇宙的暗能量模型。關於暴漲模型，我們知道暴

漲理論為現今宇宙物理學一個重要的假說，儘管尚未被觀測所證實，但因暴漲理

論可以良好地解釋一些大爆炸理論未能解釋的宇宙學現象，因此普遍被宇宙學家

所接受。然而暴漲理論本身的來源至今仍未有定論。偉恩伯格博士於 1979 年提

出之漸進安全重力論，該理論認為重力常數跟宇宙常數可能並非常數，而會隨能

量尺度改變而改變的參數，藉由量子場論中重整群的技巧，重力常數等參數將在

高能量時流動到一個固定點，如此一來可以避免量子重力理論所遭遇到在高能量

時發散產生奇異點的問題。等效地來說，漸進重力論是一個高能量完備且可重整

的重力理論。該理論將誘導出一個新的純量場，我們考慮將此純量場作為引發暴

漲的暴漲子，並同時考慮有希格子存在效應下所引發之雙場暴漲模型的物理，包

含宇宙學背景演化、膨脹規模、以及暴漲退場進入輻射支配時期的機制。我們認

為此暴漲子在暴漲末期將衰變成其他粒子，其衰變率由希格子的場值所控制，衰

變結束後，牛頓重力常數及宇宙常數將回歸到符合觀測的觀測值。此外我們也研

究此雙場模型的非線性量子起伏所產生的太初曲率微擾之頻譜與非高斯項，並且

與近期普朗克衛星所發表的資料做比較。雖然觀測資料限制了本模型的參數空間，

但本模型仍然提供了一個可能的關於粒子物理與宇宙學暴漲理論的有趣連結。 

  關於暗能量部份，暗能量主要是解釋我們所觀測到晚期宇宙的加速膨脹現象。

與暴漲理論類似，暗能量的來源至今未有定論。本論文將討論一個可能的解釋暗

能量來源的模型。我們考慮一個非準模型的旋量場，稱作 ELKO 旋量場或暗旋量

場，該旋量場為 2005 年 Dr. Ahluwalia-Khalilova 和 Dr. Grumiller 所提出。

不同於狄拉克旋量場，暗旋量場可以與撓場有更多交互作用，該交互作用即可能

是暗能量的來源。我們考慮暗旋量場在愛因斯坦-卡當重力底下與撓場的交互作

用，並研究其宇宙學演化。儘管假設該場的動能項具有幻能量的形式，我們發現

該模型並不像其他幻能量模型一樣遭遇到各種暗能量奇異點的問題。此模型並且

滿足能量條件定理，因此在量子層面也是穩定的。而我們的研究顯示最終擾場將

消失，宇宙將進入德希特宇宙時期。 

  為求完整性，本論文將儘可能介紹所用到的宇宙學知識，從廣義相對論開始，

接著暴漲理論的基本知識、宇宙學微擾、非高斯性、漸進安全重力論、漸進安全

重力所引發的暴漲模型與普朗克衛星觀測資料的比較、愛因斯坦卡當重力論、暗

能量、暗旋量場及其暗能量模型與觀測之比較等等。最後我們將總結本論文並且

討論其未來相關的發展。 

 

 

關鍵字: 暴漲、希格子、漸進安全重力、暗旋量場、暗能量 



Abstract

In this dissertation, we will study mainly two models, the first one is on
inflation and second is on the dark energy. For the inflationary model, we
consider a model inspired on asymptotic safe gravity which can induce a
scalar field and we identify it as the inflaton. We also study the presence
of another scalar field which can be interpreted as the Higgs field. We as-
sume the reheating of the inflaton is controlled by the Higgs field. Firstly,
we study the background trajectories of this model and it shows that our
model may provide sufficient inflationary e-folds and a graceful exit to a
radiation dominated phase. Then we study the possibility of generating pri-
mordial curvature perturbations through the Standard Model Higgs boson.
This can be achieved under the choice of finely tuned parameters by making
use of the modulated reheating mechanism. The primordial non-Gaussianity
is expected to be sizable in this model. Though tightly constrained by the
newly released Planck cosmic microwave background data, this model pro-
vides a potentially interesting connection between collider and early Universe
physics.

As for the dark energy, we consider a class of dynamical dark energy
models which are constructed through an extended version of fermion fields
called the Elko spinors, which are spin one half with mass dimension one. We
find that if the Elko spinor interacts with torsion fields in a homogeneous and
isotropic universe, then we do not expect quantum instability in this kind
of dark energy model even though the fermion possesses a negative kinetic
energy. In other words, this dark energy model will asymptotically approach
the equation of state w = −1 from above without crossing the phantom
divide. Therefore, the stability is preserved, i.e. no phantom field will be
created. Furthermore, we analyze as well the presence of some pressureless
cold dark matter, and the result is unchanged, in this two components system.
At late time, the torsion fields will vanish as the Elko spinors dilute, the
equation of state will still converge to w = −1 and the Hubble parameter
will approach a constant, the universe will eventually enter a de Sitter phase
with or without the presence of this dark matter.

To make it as self-contained as possible, this dissertation will contain
the essential knowledge and relative important issues about these two mod-
els, including the general relativity, Einstein-Cartan theory, the cosmological
inflation, the cosmological perturbations, the asymptotic safe gravity, the
Higgs-modulated inflation model, the dark energy in cosmology, the Elko
spinors, the dark energy of phantom dark spinor with torsion. Finally, we



will briefly conclude this dissertation and discuss their future perspectives.

Keywords— Inflation, Higgs, Asymptotic safe gravity, Dark spinor, Dark
energy
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Chapter 1

Introduction

1.1 A Brief History of the Universe

First of all, let’s start to briefly review the essential knowledge of the history
of our Universe based on the Big Bang Cosmology, including the speculative
era before nucleosynthesis. The central premise of modern cosmology is that,
at least on large scales, our Universe is homogeneous and isotropic. This is
supported by a variety of observations, most spectacularly the nearly iden-
tical temperature of cosmic microwave background (CMB) radiation coming
from different parts of the sky. Despite the belief in homogeneity on large
scales, it is all too apparent that in nearby regions our Universe is highly in-
homogeneous. The temperature variations of CMB radiation bear testimony
of minute fluctuations in the density of the primordial universe. These fluctu-
ations grew via gravitational instability into the large-scale structures (LSS)
that we observe in the universe today. It is believed that these irregularities
have grown over time from a distribution that was more homogeneous in the
past. Besides, there is undeniable evidence of the expansion of our Universe:
the light from distant galaxies is systematically red-shifted, the observed
abundance of the light elements (H, He, and Li) matches the predictions of
Big Bang Nucleosynthesis (BBN), and the only convincing explanation for
the CMB is a relic radiation from a hot early universe.

From 10−10 seconds to today the history is based on well understood and
experimentally tested theories of particle physics, nuclear and atomic physics
and gravity. We are therefore justified to have some confidence about the
events shaping our Universe during that time. Let us enter the Universe at
100 GeV, the time of electroweak phase transition (10−10). Above 100 GeV
the electroweak symmetry is restored and the Z and W± bosons are massless.
Interactions are strong enough to keep quarks and leptons in thermal equi-
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librium. Below 100 GeV the symmetry between electromagnetic and weak
is broken, Z and W± bosons acquire mass and the cross-section of weak in-
teraction decreases as the temperature of the Universe drops. As a result,
at 1 MeV, neutrinos decouple from the rest of the matter. Shortly after, at
1 second, the temperature drops below the electron rest mass and electrons
and positrons annihilate efficiently. Only an initial matter-antimatter asym-
metry of one part in as billion survives. The resulting photon-baryon fluid is
in equilibrium. Around 0.1 MeV the strong interaction becomes important
and protons and neutrinos combine into the light elements (H, He, and Li)
during BBN (∼ 200s). The successful prediction of the H, He, and Li abun-
dance is one of the most striking consequence of the Big Bang theory. The
matter and radiation densities are equal around 1 eV (1011s). Charged mat-
ter particles and photons are strongly coupled in the plasma and fluctuations
in the density propagate as cosmic “sound waves”. Around 0.1 eV (380,000
yrs) protons and electrons combine into neutral hydrogen atoms. Photons
decouple and form the free-streaming cosmic microwave background. 13.7 bil-
lion years later these photons gives us the earliest snapshot of our Universe.
Anisotropies in the CMB temperature provide evidence for fluctuations in
the primordial matter density.

These small density perturbations, ρ(~x, t) = ρ̄(t)[1 + δ(~x, t)], grow via
gravitational instability to form large-scale structures observed in the late
universe. A competition between the background pressure and the universal
attraction of gravities determines the details of the growth of the structure.
During radiation domination the growth is slow, δ ∼ ln a (where a(t) is the
scale factor describing the expansion of space). Clustering becomes more
efficient after matter dominates the background density (and the pressure
drops to zero), δ ∼ a. Small scales become non-linear first, δ & 1, and
form gravitationally bound objects that decouple from the overall expansion.
This leads to a picture of hierarchical structure formation with small-scale
structures (like stars and galaxies) forming first and then merging into larger
structures (clusters and superclusters of galaxies). Around redshift z ∼ 25
(1 + z = a−1), high energy photons from the first stars begin to ionize the
hydrogen in the inter-galactic medium. This process of “reionization” is
completed at z ≈ 6. Meanwhile, the most massive stars run out of nuclear
fuel and explode as “supernovae”. In these explosions the heavy elements
(C, O, . . . ) necessary for the formation of life are created, leading to the
slogan “we are all stardust”. At z ≈ 1, a negative pressure “dark energy”
comes to dominate the universe. The background spacetime is accelerating
and the growth of structure ceases, δ ∼ const.
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1.2 The First 10−10 Seconds

The history of the universe from 1010 seconds (1 TeV) to today is based on
observational facts and tested physical theories like the Standard Model of
particle physics, general relativity and fluid dynamics, e.g. the fundamental
laws of high energy physics are well-established up to the energies reached
by current particle accelerators (∼ 1 TeV). Before 1010 seconds, the energy
of the universe exceeds 1 TeV and we lose the comfort of direct experimental
guidance. The physics of that era is therefore as speculative as it is fascinat-
ing.

To explain the fluctuations seen in the CMB temperature requires an
input of primordial seed fluctuations. In these lectures we will explain the
conjecture that these primordial fluctuations were generated in the very early
universe (∼ 1034 seconds) during a period of inflation. We will explain how
microscopic quantum fluctuations in the energy density get stretched by the
inflationary expansion to macroscopic scales, larger than the physical hori-
zon at that time. After a perturbation exits the horizon no causal physics
can affect it and it remains frozen with constant amplitude until it re-enters
the horizon at a later time during the conventional (non-accelerating) Big
Bang expansion. The fluctuations associated with cosmological structures
re-enter the horizon when the universe is about 100,000 years olds, a short
time before the decoupling of the CMB photons. Inside the horizon causal
physics can affect the perturbation amplitudes and in fact leads to the acous-
tic peak structure of the CMB and the collapse of high-density fluctuations
into galaxies and clusters of galaxies. Since we understand (and can calcu-
late) the evolution of perturbations after they re-enter the horizon we can use
the late time observations of the CMB and the LSS to infer the primordial
input spectrum. Assuming this spectrum was produced by inflation, this
gives us an observational probe of the physical conditions when the universe
was 1034 seconds old. This fascinating opportunity to use cosmology to probe
physics at the highest energies will be part of the subject of this thesis.
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Chapter 2

General Relativity

General Relativity (GR) is Einstein’s theory of space, time and gravitation.
At heart, it is a very simple subject (compared, for example, to anything
involving quantum mechanics); the essential idea is straightforward: while
most forces of nature are represented by fields defined on spacetime (such
as electromegnatic field, or the short-range fields characteristic of subnuclear
forces), gravity is inherent in spacetime itself. In particular, what we experi-
ence as gravity is a manifestation of the curvature of spacetime. This leads
to a slogan “Gravity is Geometry.” In the context of GR, the dynamical
field giving rise to gravitation is the metric tensor describing the curvature
of spacetime itself, rather than some additional field propagating through
spacetime; this was Einstein’s insight. Follow this insight, we will introduce
the field equation of the metric, which is the Einstein equation. Einstein’s
GR opens a door to the study of gravitation, and cosmology. Therefore, we
will briefly review some basic knowledge of GR.

2.1 The Metric

We will assume our spacetime is a 4-dimensional Riemannian differentiable
manifold, each point of spacetime can be labelled by a coordinate xk with
k = 0, 1, 2, 3. Every Riemannian manifold is equipped with a metric tensor
gµν , which defines the length of line elements:

ds2 = gµνdx
µdxν . (2.1)

For example, in the Euclidean 3-dimensional space, the line element is ds2 =
dx2 + dy2 + dz2, the metric tensor is thus gij = diag(1, 1, 1); similarly, in the
theory of special relativity, Minkowski spacetime is assumed, the line element
is ds2 = −dt2 + dx2 + dy2 + dz2, the metric tensor is gµν = diag(−1, 1, 1, 1).
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In GR, arbitrary metric is allowed, except some few conditions on the metric
tensor is symmetric and (usually, but not always) nondegenerate, i.e. its
determinant g = det (gµν) 6= 0. This allows us to define the inverse metric
gµν via

gµνgνσ = δµσ , (2.2)

where δµσ is the Kronecker delta, δµσ ≡ diag(1, 1, 1, 1), standing for the identity.
The symmetry of gµν implies that gµν is also symmetric. Just as in special
relativity, the metric and its inverse can be used to raise or lower indices on
tensors. Given two vectors V µ and W ν , we can define the inner product of
them by

g(V,W ) = gµνV
µW ν . (2.3)

A simple example of a nontrivial metric is provided by a 4-dimensional
expanding spacetime,

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (2.4)

This describes a universe for which “space at a fixed moment of time” is
a flat three dimensional Euclidean space, which is expanding as a function
of time. This is a special case of a Robertson-Walker metric, one in which
special slices are geometrically flat.

2.2 Geodesics

Given a generic metric gµν for a manifold, one can define the proper time for
a test particle in a curve parameterized by xµ(λ). The proper time (for a
time-like path) is defined by the functional:

τ =

∫ (
−gµν

dxµ

dλ

dxν

dλ

)1/2

dλ, (2.5)

where the integral is over the path. Take variation of the functional, one
obtains

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0. (2.6)

This is the geodesic equation. In other words, the geodesic equation is the
extremum of the proper time. The quantity, Γµρσ, is called the Christoffel
symbols, which is important in defining the connection of a metric. It is
straightforward to solve the Christoffel symbols for the metric, the result is

Γµρσ =
1

2
gµα(∂ρgσα + ∂σgρα − ∂αgρσ). (2.7)
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Next, we will introduce the idea of covariant derivatives which is gener-
alization of partial derivatives in the flat space. An covariant derivative is
an operator that reduces to the partial derivative in flat space with inertial
coordinates, but transforms as a tensor on an arbitrary manifold. In fact,
the need of covariant derivative is obvious; equations such as ∂µT

µν = 0
must be generalized to curved space somehow. We begin by requiring that a
covariant derivative ∇ be a map from (k, l) tensor to (k, l + 1) tensor which
has the following tow properties: (1) Linearity: ∇(T + S) = ∇T +∇S; (2)
Leibnitz rule: ∇(T ⊗ S) = (∇T )⊗ S + T ⊗ (∇S). If ∇ is going to obey the
Leibnitz rule, it can always be written as the partial derivative plus some
linear transformation. That is, to take the covariant derivative we first take
the partial derivative, and then apply a correction to make the result covari-
ant. It means that, for each direction µ, the covariant derivative ∇µ will be
given by the partial derivative ∂µ plus a correction specified by a set of n×n
matrices (Γµ)ρσ. For a vector V ν , we therefore have

∇µV
ν = ∂µV

ν + ΓνµρV
ρ. (2.8)

Notice that in the second term the index originally on V has moved to Γ,
and a new index is summed over. If this is the expression for the covariant
derivative of a vector in terms of the partial derivative, we should be able
to determine the transformation property of Γνµρ by demanding that the left-
hand side be a (1,1) tensor. That is, we want the transformation law to
be

∇µ′V
ν′ =

∂xµ

∂xµ′
∂xν

′

∂xν
∇µV

ν . (2.9)

Combine Eqs. (3.1) and (3.2), we can obtain the transformation rule for the
connection coefficients:

Γν
′

µ′λ′ =
∂xµ

∂xµ′
∂xλ

∂xλ′
∂xν

′

∂xν
Γνµλ +

∂xµ

∂xµ′
∂xλ

∂xλ′
∂2xν

′

∂xµ∂xλ
. (2.10)

This is of course not a tensor transformation law; the second term on the rhs
spoils it. This is because the connection coefficients are not the components
of a tensor. They are constructed in such a way that the combination of Eq.
(3.1) transforms like a tensor, therefore the extra terms in the transforma-
tion law of the partial derivative cancels exactly with the Γ’s. If we further
demand the covariant derivative to have additional two properties, such that:
(3) it commutes with contractions: ∇µ(T λλρ) = (∇T )µ

λ
λρ, and (4) it reduces

to the partial derivative on scalars: ∇µφ = ∂µφ. Then, one can deduce the
covariant derivative of a one-form ων by using the fact that ωλV

λ is a scalar
and ∇µ(ωλV

λ) = ∂µ(ωλV
λ), thus one has

∇µων = ∂µων − Γλµνωλ. (2.11)
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Notice that covariant derivative is not unique in a manifold, that is to say,
given a Riemannian manifold with a metric gµν , there are still many choices of
connection coefficients implying distinct notion of covariant differentiation.
However, if we require that (5) the covariant derivative to be torsion-free:
Γλµν = Γλνµ, and (6) metric compatible: ∇ρgµν = 0, then the covariant deriva-
tive is unique, i.e. only one set of connection coefficients satisfies conditions
(1) (6), such a set of connection coefficients is called the “Levi-Civita” con-
nection. It is straightforward to solve the Levi-Civita connection coefficients
with the metric tensor components:

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgµρ − ∂ρgµν). (2.12)

We see that the Levi-Civita connection coefficients are exactly the same as
the Christoffel symbol (Γ’s) in the geodesic equation, Eq. (), that is why we
use the same symbol for these two coefficients.

Now we can define the directional covariant derivative of a given curve
xµ(λ) to be

D

dλ
=
dxµ

dλ
∇µ. (2.13)

This is a map, defined only along the path, from a (k, l) tensor to a (k, l)
tensor. One can define parallel transport of the tensor T along the path
xµ(λ) to be the requirement that the covariant derivative of T along the
path vanishes: (

D

dλ
T

)µ1...µk

ν1...νl ≡
dxσ

dλ
∇σT

µ1...µk
ν1...νl = 0. (2.14)

This equation is well-defined and known as the equation of parallel transport.
For a vector it takes the form

d

dλ
V µ + Γµσρ

dxσ

dλ
V ρ = 0. (2.15)

If we take V µ to be the tangent vector of the path xµ(λ), which is dxµ/dλ,
then a curve along which the tangent vector is parallel transported will satisfy
the condition:

D

dλ

dxµ

dλ
=
d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0. (2.16)

Then, we see that it is exactly the geodesic equation, Eq. (2.6). Hence, a
curve is geodesic if it parallel-transports its own tangent vector, in fact, this
property is usually taken as the alternative definition of a geodesics.
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2.3 Curvature

Roughly speaking, the concept of curvature is to measure how the “non-
flatness” of a manifold is. In fact, parallel transport around a closed loop
leaves a vector unchanged in a “flat” manifold, however, parallel transport of
a vector around a closed loop in a curved space will lead to a transformation
of the vector; the resulting transformation depends on the total curvature
enclosed by the loop. It would be more useful to have a local description of
the curvature at each point, which is what the Riemann curvature tensor is
supposed to provide. Given two vector fields Aµ and Bν , we imagine taking
parallel transport of a vector V µ by first moving it in the direction of Aµ, then
along Bν , then backward along Aµ, and then Bν , to return to the starting
point. We know the action is coordinate independent, so there should be
a tensor tells us how the vector changes when it comes back to its starting
point; it will be a linear transformation on a vector. Thus, we expect that
this linear map, the change of this vector, δV ρ, will depend on A, B, and V ,
we can write

δV ρ = Rρ
σµνV

σAµBν , (2.17)

where Rρ
σµν is a (1, 3) tensor known as the Riemann tensor. Recall that the

covariant derivative of a tensor in a certain direction measures how much the
tensor changes relative to what it would have been if it had been parallel
transported, since the covariant derivative of a tensor in a direction along
which it is parallel transported is zero. The commutator of two covariant
derivatives, then, measures the difference between parallel transporting the
tensor first one way and then the other, versus the opposite ordering. There-
fore, one obtains that

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ − T λµν∇λV

ρ, (2.18)

= (∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ
λ
νσ − ΓρνλΓ

λ
µσ)V σ − 2Γλ[µν]∇λV

ρ, (2.19)

where we identify the first term as the Riemann tensor

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ, (2.20)

and the second term as the torsion tensor

T λµν = 2Γλ[µν]. (2.21)

For the torsion-free Levi-Civita connection, the torsion tensor simply van-
ishes. We can see that Riemann tensor measures the part of the commutator
of covariant derivatives that is proportional to the vector field, while the tor-
sion tensor measures the part that is proportional to the covariant derivative
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of the vector field; the second derivative doesn’t enter at all. Thinking of the
Riemann tensor as a map from three vector fields to a forth one, we have

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, (2.22)

where ∇X = Xµ∇µ. Similarly, thinking of the torsion tensor as a map from
two vector fields to a third one, we have

T (X, Y ) = ∇XY −∇YX − [X, Y ]. (2.23)

We summarize some properties of the Riemann tensor here (without proof),
firstly, we lower the index, Rρσµν = gρλR

λ
σµν , then Riemann tensor is invari-

ant under interchange of the first pair of indices with the second:

Rρσµν = Rµνρσ, (2.24)

it is antisymmetric in its first and last two indices:

Rρσµν = −Rρσνµ = −Rσρµν . (2.25)

The sum of cyclic permutations of the last three indices vanishes:

Rρσµν +Rρµνσ +Rρνσµ = 0, (2.26)

which is equivalent to
Rρ[σµν] = 0. (2.27)

With some work, we can prove further

R[ρσµν] = 0. (2.28)

With these symmetric properties, the number of independent components of
Riemann tensor is 1

12
n2(n2 − 1). In four dimensions, therefore the Riemann

tensor has 20 independent components.
In addition to the algebraic symmetries, the Riemann tensor also obeys

a differential identity, which constrains its relative value at different points:

∇[λRρσ]µν = 0. (2.29)

This is known as the Bianchi identity. Take trace of the first and third indices
of the Riemann tensor, we can define the Ricci tensor

Rµν = Rλ
µλν . (2.30)
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The Ricci tensor associated with the Levi-Civita connection is automatically
symmetric: Rµν = Rνµ, as a consequence of the Riemann tensor. The trace
of the Ricci tensor is callled the Ricci scalar

R = gµνRµν = Rµ
µ. (2.31)

The Ricci tensor and Ricci scalar contain all information of the trace of the
Riemann tensor, leaving us the trace-free parts. The trace free part of the
Riemann tensor is called the Weyl tensor, which is defined by

Cρσµν = Rρσµν −
2

(n− 2)
(gρ[µRν]σ − gσ[µRν]ρ) +

2

(n− 1)(n− 2)
gρ[µgν]σR.

(2.32)
This messy formula is designed so that all possible contractions of Cρσµν
vanish, while it retains the symmetry of the Riemann tensor:

Cρσµν = Cνρσ, (2.33)

Cρσµν = C[ρσ][µν], (2.34)

Cρ[σµν] = 0. (2.35)

The Weyl tensor is only defined in three or more dimensions, and in three
dimensions it vanishes identically. One of the most important property of
the Weyl tensor is that it is invariant inder conformal transformations. For
this reason, it is often known as the conformal tensor.

An especially important form of the Bianchi identity comes from con-
tracting twice on Eq. (2.29):

∇µRρµ =
1

2
∇ρR. (2.36)

We define the Einstein tensor as

Gµν = Rµν −
1

2
Rgµν . (2.37)

Then, the Bianchi identity, Eq. (2.36) gives

∇µGµν = 0. (2.38)

The Einstein tensor will play the key role in GR and cosmology.

2.4 Einstein’s Equation

Consider a (classical) field theory in which the dynamical variables are a set
of fields φi, the action S generally expressed as in integral of a lagrangian L ,

S =

∫
L (φi,∇µφi)

√
−gdnx. (2.39)
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For example, a scalar field theory φ in the curved spacetime can be written
as

Sφ =

∫ [
−1

2
gµν(∇µφ)(∇νφ)− V (φ)

]√
−gdnx, (2.40)

which would lead to an equation of motion

�φ− dV

dφ
= 0, (2.41)

where the covariant d’Alembertian is � = gµν∇µ∇ν = ∇µ∇µ.
To construct the action for general relativity, note that the dynamical

variable is now the metric gµν . Since we know one can choose a coordinate
such that the metric is in its canonical form and its first derivatives vanish at
each point, the lagrangian scalar should contain at least second order deriva-
tives of the metric for a non-trivial field theory. The Riemann tensor itself is
second order derivative in the metric and we know that the Ricci scalar is the
only independent scalar we can construct from the Riemann tensor. There-
fore, the simplest independent scalar constructed from the metric, which is
no higher than second in its derivatives, is the Ricci scalar. Hilbert proposed
this simplest possible choice foe a lagrangian for GR,

SH =

∫ √
−gR dnx, (2.42)

which is known as the Hilbert action (or Einstein-Hilbert action). The equa-
tion of motion for the Hilbert action come from variation the action with the
metric. By using the facts, gµνδgνρ = −gµνδgνρ, and the trace formula,

det(M) = exp Tr(ln(M)), (2.43)

where M is arbitrary matrix, and the variation of the Christoffel symbol:

δΓσµν = −1

2
[2gλ(µ∇ν)(δg

λσ)− gµαgνβ∇σ(δgαβ)], (2.44)

we obtain the variation of the Hilbert action with respect to the metric:

δSH =

∫
dnx
√
−g
[
Rµν −

1

2
gµνR

]
δgµν . (2.45)

Therefore, we arrive the equation of motion of the Hilbert action, the Einstein
equation in vacuum, is

Rµν −
1

2
Rgµν = 0. (2.46)

11



We derived the Einstein equation in ”vacuum” because we only included
the gravitational part of the action, no additional term for matter part. To
get full Einstein equation, we consider

S =
1

16πG
SH + SM , (2.47)

where SM is the action for matter. Take similar procedure, which leads to

1√
−g

δS

δgµν
=

1

16πG

(
Rµν −

1

2
gµν

)
+

1√
−g

δSM
δgµν

,

then, one obtains the complete Einstein equation:

Rµν −
1

2
gµν = Gµν = 8πGTµν , (2.48)

where the energy-momentum tensor for matter is defined by

Tµν = − 2√
−g

δSM
δgµν

. (2.49)

For example, for the action of the single scalar field Sφ, Eq. (2.40), the
energy-momentum tensor is

T (φ)
µν = ∇µφ∇νφ−

1

2
gµνg

ρσ∇ρφ∇σφ− gµνV (φ). (2.50)

Note that the conservation law ∇µTµν = 0 now is consistent with the Bianchi
identity ∇µGµν = 0.

2.5 Einstein-Cartan Gravity

In this section, we will introduce a simple generalization of GR, the Einstein-
Cartan(-Sciama-Kibble) (EC) theory of gravity. EC theory is one, and maybe
the simplest one of the modified gravitational theories, which is also based
on the Einstein-Hilbert action [184], just like GR. It relaxes, however, the
GR constraint on the affine connection, Γ̃kij, to be symmetric in its lower
two indices. Hence the anti-symmetric part of the affine connection, i.e.
the Cartan torsion tensor Sij

k = Γ̃k[ij] = 1
2
(Γ̃kij − Γ̃kji), which is a dynamical

variable, independent of the Riemannian metric gij is also allowed [184].
The notation [ij] stands for the anti-symmetrization of the tensor indices,
defined by T[ij] = 1

2
(Tij − Tji) for any tensor Tij; similarly, the notation (ij)

means symmetrization of the tensor indices, T(ij) = 1
2
(Tij + Tji). Quantities
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denoted with a tilde always take torsion into account. The torsion tensor
has 24 independent components in general. Note that we still require the
metric compactibility condition ∇̃ρgµν = 0, and the metric compactible affine
connection with torsion can be written as [184]

Γ̃kij = Γkij −Kij
k, (2.51)

where Γkij is the usual Christoffel symbol, defined by Γkij = 1
2
gkl(∂iglj +∂jgil−

∂lgij), and Kij
k is called the contortion tensor, defined by [184]

Kij
k = −Sijk − 2Sk(ij) = −Sijk − Skij − Skji. (2.52)

Note that the Cartan torsion tensor is anti-symmetric in its first two indices,
Sij

k = −Sjik, by definition; however, the contortion tensor is anti-symmetric
in its last two indices, Kij

k = −Ki
k
j. By virtue of the last two equations, the

inverse relation between the torsion and the contortion tensor reads Sij
k =

−K[ij]
k.

After introducing the Cartan torsion and the contortion tensor, we can
now define the action of the Einstein-Cartan theory of gravity which is simply
the Einstein-Hilbert action with torsion and metric which are regarded as
independent variables:

S =

∫
d4x
√
−g
(

1

2κ
R̃ + L̃m

)
, (2.53)

where we set the speed of light to be unity, c = 1, the gravitational coupling
constant κ = 8πG, and L̃m is the lagrangian density of matter minimally
coupled to gravity. Before taking the variation of the action, it should be
noted that the independent variables are the metric tensor gij and the torsion
tensor Sij

k, the contortion tensor Kij
k actually depends on the metric since

we lower and rise some indices via gij [184]. Even though, in principle we
should do the variation with respect to the metric and the torsion tensors, it is
more convenient to vary with respect to the contortion tensors instead, since
the affine connection can be separated into the torsion-free Christoffel symbol
and the contortion tensor, and the relation between torsion and contortion is
only algebraic. Thus, we will vary the total action with respect to the metric
and the contortion tensors, and we obtain two field equations:

R̃ij −
1

2
R̃gij = κΣ̃ij, (2.54)

Sijk + δikS
j
l
l − δjkS

i
l
l = κτ ijk, (2.55)

where the first field equation is similar to the original Einstein equation, we
define G̃ij ≡ R̃ij− 1

2
R̃gij, which is the Einstein tensor with torsion, Σ̃ij is the
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canonical energy-momentum tensor, and the second one is called the Cartan
equation. Note that in general, R̃ij is no longer symmetric, so as the G̃ij

due to the fact that affine connection is asymmetric Γ̃kij 6= Γ̃kji. We define the

modified torsion tensor to be T ijk ≡ Sijk + δikS
j
l
l − δjkSill. The right hand

side (rhs) of Eq.(2.5) is the spin tensor τ ijk, which is defined by

τk
ji =

δL̃m

δKij
k
. (2.56)

The canonical energy-momentum tensor is given by

Σ̃ij = σ̃ij +
(
∇̃+Klk

l
) (
τij

k − τjki + τ kij
)
, (2.57)

where σ̃ij is the metric energy-momentum tensor, defined by

σ̃ij =
2√
−g

δ
(√
−g L̃m

)
δgij

, (2.58)

and the second term in Eq. (2.7) is the correction to the energy-momentum
tensor generated by spin-torsion interaction. Since the Cartan equation is,
in general, a set of 24 algebraic equations rather than differential relations
between torsion and spin fields, it means that there would be no torsion
outside matter distribution with spin source. In other words, torsion cannot
propagate through the spacetime outside the matter distribution with spin
source [184]. Furthermore, we are able to substitute the torsion everywhere
by the spin and eliminate the torsion from the formalism. It then leads to
the so-called Einstein-Cartan equation,

Gij = κσ̂ij, (2.59)

where the effective energy-momentum tensor on rhs is given by [184, 226]

σ̂ij ≡ σ̃ij + κ
(
−4τi

k
[lτ|j|

l
k] − 2τi

klτjkl + τ kliτklj
)

+
1

2
gij
(
4τm

k
[lτ

ml
k] + τ klmτklm

)
≡ σ̃ij + κuij, (2.10)

which is symmetric and obeys the usual conservation law ∇jσ̂ij = 0. In fact,
note that the Einstein-Cartan equation can be rewritten without including
any torsion term by simply substituting all the torsion terms with the spin
tensor terms. For example, Eq. (2.10) can be rewritten without any torsion
term as the metric energy-momentum tensor can be split as a pure metric
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term plus a spin tensor term. One can interpret Eqs. (2.9) and (2.10) as
that the geometry is a result from the contribution of the matter field plus
some spin-spin interaction. In summary, all the torsion terms disappear in
both side of Eq. (2.9), however, torsion exists on both sides of Eq. (2.4).
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Chapter 3

A Review of Inflation in
Standard Cosmology

3.1 Big Bang Puzzles

In the conventional Big-Bang model, the universe is taken to be radiation-
dominated at early times and matter-dominated at latter times, with a very
late transition to vacuum-domination, as we have mentioned in the intro-
duction. Although the Big-Bang model is successful in interpretation of
observational data, such as BBN and CMB, one may still ask a philosoph-
ical question whether initial conditions giving rise such a universe we see
now. The conventional Big-Bang model requires precisely such a fine-tuned
set of initial condition to allow the universe to evolve to its current state.
Within the conventional picture, the early universe need finely tuned to in-
credible precision to arrive our current status. In particular, two features of
our universe seem highly nongeneric: its spatial flatness, and its high degree
of isotropy and homogeneity. One of the major achievements of inflationary
scenario provides such a mechanism that it explains the initial conditions
of the universe. Via inflation, the universe could grow out of generic initial
conditions. Before discussing inflation, we first describe three puzzles of the
Big-Bang model which the inflation claims to solve.

3.1.1 The homogeneity problem

A first question is why the approximation of homogeneity and isotropy turns
out to be so good. Indeed, inhomogeneities are unstable, because of gravita-
tion, and they tend to grow with time. It can be verified for instance with the
CMB that inhomogeneities were much smaller at the last scattering epoch
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than today. One thus expects that these homogeneities were still smaller
further back in time. How to explain a universe so smooth in its past ?

3.1.2 The flatness problem

The flatness problem comes from considering the Fredmann equation (which
is the Einstein equation in the FRW metric, we will introduce latter) in a
universe with matter and radiation but no vacuum energy, which can be
written as

H2 =
1

3mp

(ρR + ρM)− κ

a2
, (3.1)

where ρR and ρM are the energy densities for the radiation and the matter,
respectively, and κ/a2 is called the curvature term and κ is a constant taking
the values 1, 0, or −1. The curvature term is proportional to a−2, while
the energy density is proportional to the scale factor a(t), ρM ∝ a−3 and
ρR ∝ a−4. This raises the question of why the ratio (κa−2)/(ρ/3mp) is not
much larger than unity, given that a has increased by a factor of 1030 since
the Planck epoch. In other words, the density parameter Ω = 1 is a repulsive
fixed point in a matter/radition dominated universe, so why do we observe
Ω ∼ 1 today?

3.1.3 The horizon problem

In FRW cosmology, the particle horizon is defined as the maximum distance
that light can propagate between an initial time t1 to some later time t:

χp(t) =

∫ t

ti

dt

a(t)
. (3.2)

The physical size of the particle horizon is dp(t) = a(t)χp. The particle
horizon exists because there is finite amount of time since the Big-Bang
singularity, and thus only a finite distance that photons can travel within the
age of the universe. Assume, for simplicity, we are in a matter-dominated
universe, for which a ∝ t2/3, assume a0 = 1. The Hubble parameter is
therefore given by H = 2

3
t−1 = a−3/2H0. Then the photon travels a comoving

distance
4r = 2H−1

0 (
√
a2 −

√
a1). (3.3)

The comoving horizon size at any fixed value of the scale factor a = a∗ is the
distance a photon travels since the Big-Bang,

rhor(a∗) = 2H−1
0

√
a∗. (3.4)
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The physical horizon size at some a∗ is simply dhor(a∗) = a∗rhor(a∗) = 2H−1
∗ .

The horizon problem is simply the fact that CMB is isotropic to a high
degree of precision, even though widely separated points on the last scattering
surface are completely outside each other’s horizons. When we look at the
CMB we are observing the universe at the scale factor aCMB ∼ 1/1200, the
comoving distance between a point on the CMB and an observer on Earth is

4r = 2H−1
0 (1−

√
aCMB) ≈ 2H−1

0 . (3.5)

However, the comoving horizon distance for such a point is

rhor(aCMB) = 2H−1
0

√
aCMB ≈ 6× 10−2H−1

0 . (3.6)

Hence, if we observe two widely separated parts of the CMB, they will have
non-overlapping horizons; distinct patches of the CMB sky were causally
disconnected at recombination. Nevertheless, they are observed to be at the
same temperature at high precision. To question then is, how did they know
ahead of time to coordinate their evolution in the right way, even though
they were never in causal contact?

3.2 The Physics of Inflation

A solution to the horizon problem and to the other puzzles is provided by
the inflationary scenario, which we will examine in the this section. The
basic idea is to “decouple” the causal size from the Hubble radius, so that
the real size of the horizon region in the standard radiation dominated era
is much larger than the Hubble radius. Such a situation occurs if the co-
moving Hubble radius decreases sufficiently in the very early universe. The
corresponding condition is

ä > 0, (3.7)

i.e. the Universe undergoes a phase of acceleration.

3.3 The FRW Universe

Recall that modern cosmology is based on the theory of general relativity,
according to which our Universe is described by a four-dimensional geometry
g that satisfies Einsteins equations, Eq. (2.48),

Gµν = Rµν −
1

2
Rgµν = 8πGTµν . (2.48)
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One of the main assumptions of cosmology, which has been confirmed by
observations so far, is to consider, as a first approximation, the universe as
being homogeneous and isotropic. Note that these symmetries define implic-
itly a particular “slicing” of spacetime, in which the space-like hypersurfaces
are homogeneous and isotropic. A different slicing of the same spacetime
would give space-like hypersurfaces that are not homogeneous and isotropic.

Homogeneity and isotropy turn out to be very restrictive and the only
geometries compatible with these requirements are the FRW (Friedmann-
Robertson-Walker) spacetimes, with metric

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (3.8)

where κ = 0, 1, 1 determines the curvature of spatial hypersurfaces: respec-
tively flat, elliptic or hyperbolic. Moreover, the matter content compatible
with homogeneity and isotropy is necessarily characterized by an energy-
momentum tensor of the form

T µν = diag(−ρ(t), p(t), p(t), p(t)), (3.9)

where ρ stands for the energy density and p for the pressure.
Substituting the metric, Eq. (3.8) and the energy-momentum tensor, Eq.

(3.9) into Einsteins equations gives the Friedmann equations,(
ȧ

a

)
=

8πGρ

3
− κ

a2
, (3.10)(

ä

a

)
= −4πG

3
(ρ+ 3p) , (3.11)

which govern the time evolution of the scale factor a(t).
An immediate consequence of the two above equations is the continuity

equation
ρ̇+ 3H(ρ+ p) = 0, (3.12)

where H ≡ ȧ/a is the Hubble parameter. The continuity equation can also
be obtained directly from the energy-momentum conservation ∇µT

µ
ν = 0.

The cosmological evolution can be described by the equation of state for the
matter once it is specified. Let us define

p = wρ, (3.13)

with w constant, which includes the two main types of matter that play an
important role in cosmology, namely non relativistic matter (w ' 0) and a
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gas of relativistic particles (w = 1/3). The conservation equation can be
integrated to give

ρ ∝ a−3(1+w). (3.14)

For κ = 0, one finds

a ∝ t
2

3(1+w) , (3.15)

which implies a(t) ∝ t1/2 for relativistic matter and a(t) ∝ t2/3 for non-
relativistic matter. The present cosmological observations seem to indicate
that our Universe is currently accelerating. The simplest way to account for
this acceleration is to assume the presence of a cosmological constant Λ in
Einsteins equations, i.e. an additional term λgµν on the left-hand side of Eq.
(2.48). By moving this term on the right hand side of Einsteins equations
it can also be interpreted as an energy-momentum tensor with equation of
state P = ρ, where ρ is time-independent. This leads, for κ = 0 and without
any other matter, to an exponential evolution of the scale factor

a(t) ∝ exp(Ht). (3.16)

In our universe, several species with different equations of state coexist, and
it has become customary to characterize their relative contributions by the
dimensionless parameters

Ω(i) ≡
8πGρ

(i)
0

3H2
0

, (3.17)

where the ρ
(i)
0 denote the present energy densities of the various species, and

H0 is the present Hubble parameter. The first Friedmann equation, Eq.
(3.10), evaluated at the present time, implies

Ω0 = Σ(i)Ω(i) = 1 +
κ

a2
0H

2
0

(3.18)

One can infer from present observations the following parameters: Ωm '
0.3 for non-relativistic matter (which includes a small baryonic component
Ωb ' 0.05), ΩΛ ' 0.7 for a “dark energy” component (compatible with a
cosmological constant), Ωγ ' 5 × 105 for the photons, and a total Ω0 close
to 1, i.e. no detectable deviation from flatness.

3.4 Inflation

The broadest definition of inflation is that it corresponds to a phase of ac-
celeration of the universe,

ä > 0. (3.19)
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In this sense, the current cosmological observations, if correctly interpreted,
mean that our present universe is undergoing an inflationary phase. It is
worth noting that many of the models suggested for inflation have been
adapted to account for the present acceleration. We are however interested
here in an inflationary phase taking place in the early universe, thus char-
acterized by very different energy scales. Another difference is that inflation
in the early universe must end to leave room to the standard radiation dom-
inated cosmological phase. Cosmological acceleration requires, according to
the second Friedmann equation, Eq. (3.10), an equation of state satisfying

p < −1

3
ρ, (3.20)

condition which looks at first view rather exotic. A very simple example
giving such an equation of state is a cosmological constant, corresponding to
a cosmological fluid with the equation of state

p = −ρ. (3.21)

However, a strict cosmological constant leads to exponential inflation forever
which cannot be followed by a radiation era. Another possibility is a scalar
field, which we now discuss in some details.

3.4.1 Single scalar field inflation

Recall that the dynamics of a scalar field minimally coupled to gravity is
governed by the action

Sφ =

∫
d4x
√
−g
(
−1

2
∂µφ∂µφ− V (φ)

)
, (3.22)

where g det(gµν) and V (φ) is the potential of the scalar field. The correspond-
ing energy-momentum tensor, obtained by varying the action Eq. (3.22) with
respect to the metric, is given by

Tµν = ∂µφ∂νφ− gµν
(

1

2
∂σφ∂σφ+ V (φ)

)
. (3.23)

In the homogeneous and isotropic geometry Eq. (3.8), the energy-momentum
tensor is of the perfect fluid form, with the energy density ρ = 1

2
φ̇2 + V (φ),

where one recognizes the sum of a kinetic energy and of a potential energy,
and the pressure p = 1

2
φ̇2 − V (φ). The equation of motion for the scalar

field is the Klein-Gordon equation, obtained by taking the variation of the
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above action Eq. (3.22) with respect to the scalar field, ∇µ∇µφ = dV
dφ

, which
reduces to

φ̈+ 3Hφ̇+ V ′ = 0 (3.24)

in a homogeneous and isotropic universe. The system of equations governing
the dynamics of the scalar field and of the cosmological geometry is thus
given by

H2 =
8πG

3

(
1

2
φ̇2 + V (φ)

)
, (3.25)

φ̈+ 3Hφ̇+ V ′ = 0, (3.26)

Ḣ = −4πGφ̇2. (3.27)

The last equation can be derived from the first two and is therefore redun-
dant.

3.4.2 The slow-roll conditions

The dynamics of Eqs. (3.25) (3.27) does not always give an accelerated
expansion but it does so in the so-called slow-roll regime when the potential
energy of the scalar field dominates over its kinetic energy. More specifically,
the slow-roll approximation consists in neglecting the kinetic energy of the
scalar field, φ̇2, in Eq. (3.25) and its acceleration, φ̈, in the Klein-Gordon
equation, Eq. (3.25). One then gets the simplified system

H2 ' 8πG

3
V, (3.28)

3Hφ̇+ V ′ ' 0. (3.29)

Let us now examine in which regime this approximation is valid. From Eq.
(3.29), the velocity of the scalar field is given by

φ̇ ' − V ′

3H
. (3.30)

Substituting this relation into the condition (φ̇2/2) � V yields the require-
ment

εV ≡
m2
p

2

(
V ′

V

)2

� 1, (3.31)

where we have introduced the reduced Planck mass mp ≡ 1/
√

8πG Alterna-
tively, one can use the parameter

ε ≡ − Ḣ

H2
, (3.32)
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which coincides with εV at leading order in slow-roll, since ε = φ̇2/(2m2
pH

2).

Similarly, φ̈ � V implies, after using the time derivative of Eq. (3.30) and
(3.28), the condition

ηV ≡ m2
p

V ′′

V
� 1. (3.33)

In summary, the slow-roll approximation is valid when the conditions εV , ηV �
1 are satisfied by the potential, which means that the slope and the curvature
of the potential, in Planck units, must be sufficiently small.

3.4.3 Number of e-folds

Inflation must last long enough, in order to solve the problems of the Hot Big
Bang model. To investigate this question, one usually introduces the number
of e-folds before the end of inflation, denoted N , and simply defined by

N = ln
aend
a
, (3.34)

where aend is the value of the scale factor at the end of inflation and a is a
fiducial value for the scale factor during inflation. By definition, N decreases
during the inflationary phase and reaches zero at its end.

In the slow-roll approximation, it is possible to express N as a function
of the scalar field. Since dN = d ln a = Hdt = (H/φ̇)dφ, one easily finds,
using Eqs. (3.30) and (3.28), that

N(φ) '
∫ φend

φ

V

m2
pV
′dφ. (3.35)

Given an explicit potential V (φ), one can in principle integrate the above
expression to obtain N in terms of φ. This will be illustrated by our model
for inflation. Let us now discuss the link between N and the present cosmo-
logical scales. If one considers a given scale characterized by its comoving
wavenumber k = 2π/λ, this scale crossed out the Hubble radius, during
inflation, at an instant t∗(k) defined by

k = a(t∗)H(t∗). (3.36)

To get a rough estimate of the number of e-foldings of inflation that are
needed to solve the horizon problem, let us first ignore the transition from
a radiation era to a matter era and assume for simplicity that the inflation-
ary phase was followed instantaneously by a radiation phase that has lasted
until now. During the radiation phase, the comoving Hubble radius (aH)−1
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Figure 3.1: Evolution of the comoving Hubble radius λH = (aH)−1 , during
inflation, radiation dominated era and matter dominated era. The horizontal
dashed lines correspond to two different comoving lengthscales: the larger
scales cross out the Hubble radius earlier during inflation and re-enter the
Hubble radius later in the standard cosmological era.

increases like a. In order to solve the horizon problem, the increase of the co-
moving Hubble radius during the standard evolution must be compensated
by at least a decrease of the same amount during inflation. Since the co-
moving Hubble radius roughly scales like a1 during inflation, the minimum
amount of inflation is simply given by the number of e-folds between the end
of inflation and today

ln(a0/aend) = ln(Tend/T0) ∼ ln(1029(Tend/1016GeV )), (3.37)

i.e. around 60 e-folds for a temperature T ∼ 1016GeV at the beginning of
the radiation era. As we will see later, this energy scale is typical of inflation
in the simplest models.

This determines roughly the number of e-folds N(k0) between the mo-
ment when the scale corresponding to our present Hubble radius k0 = a0H0
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exited the Hubble radius during inflation and the end of inflation. The other
lengthscales of cosmological interest are smaller than k−1

0 and therefore exited
the Hubble radius during inflation after the scale k0, whereas they entered
the Hubble radius during the standard cosmological phase (either in the ra-
diation era for the smaller scales or in the matter era for the larger scales)
before the scale k0 (see Fig. (3.1)).

A more detailed calculation, which distinguishes between the energy scales
at the end of inflation and after the reheating, gives for the number of e-folds
between the exit of the mode k and the end of inflation

N(k) ' 62− ln
k

a0H0

+ ln
V

1/4
k

1016GeV
+ ln

V
1/4
k

Vend1/4

+
1

3
ln
ρ

1/4
reh

V
1/4
end

. (3.38)

Since the smallest scale of cosmological relevance is of the order of 1 Mpc,
the range of cosmological scales covers about 9 e-folds. The above number of
e-folds is altered if one changes the thermal history of the universe between
inflation and the present time by including for instance a period of so-called
thermal inflation.

3.5 Reheating

After inflation ends the scalar field begins to oscillate around the minimum
of the potential. During this phase of coherent oscillations the scalar field
acts like pressureless matter

dρ̄φ
dt

+ 3Hρ̄φ = 0. (3.39)

The coupling of the inflaton field to other particles leads to a decay of the
inflaton energy

dρ̄φ
dt

+ (3H + Γφ)ρ̄φ = 0. (3.40)

The coupling parameter Γφ depends on the model of physical processes. In
our thesis, we will consider a reheating mechanism called Higgs modulated
reheating, which the decay rate of the inflaton is controlled by the Higgs
boson. Eventually, the inflationary energy density is converted into standard
model degrees of freedom and the hot Big Bang commences.
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3.6 Quantum Fluctuations and Cosmological

Perturbations

In cosmology, inhomogeneities grow because of the attractive nature of grav-
ity, which implies that inhomogeneities were much smaller in the past. As
a consequence, for most of their evolution, inhomogeneities can be treated
as linear perturbations. The linear treatment ceases to be valid on small
scales in our recent past, hence the difficulty to reconstruct the primordial
inhomogeneities from large-scale structure, but it is quite adequate to de-
scribe the fluctuations of the CMB at the time of last scattering. This is the
reason why the CMB is currently the best observational probe of primordial
inhomogeneities. In this section, we concentrate on the perturbations of the
inflaton and show how the accelerated expansion during inflation converts its
initial vacuum quantum fluctuations into“macroscopic” cosmological pertur-
bations. In this sense, inflation provides us with “natural” initial conditions.
We will also see how the perturbations of the inflaton can be translated into
perturbations of the geometry.

Let us now move to the perturbed inflaton field living in a perturbed
cosmological geometry. In fact, Einsteins equations imply that scalar field
fluctuations must necessarily coexist with metric fluctuations. A correct
treatment, either classical or quantum, must therefore involve both the scalar
field perturbations and metric perturbations. We thus need to resort to the
theory of relativistic cosmological perturbations

3.6.1 Metric perturbation

The most general linear perturbation about the homogenous metric can be
expressed as

ds2 = a2{−(1 + 2A)dτ 2 + 2Bidx
idτ + (δij + hij)dx

idxj}, (3.41)

where we have assumed, for simplicity, a spatially flat background metric1.
We have introduced a time plus space decomposition of the perturbations.
The indices i, j stand for spatial indices and the perturbed quantities defined
in Eq. (3.41) can be seen as three-dimensional tensors, for which the indices
can be lowered (or raised) by the spatial metric δij (or its inverse). It is very
convenient to separate the perturbations into three categories, the so called

1This is all the more justified given that the metric in the early Universe was closer to
a spatially flat metric than our present metric, which is itself indistiguishible from a flat
geometry, according to observations.
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“scalar”, “vector” and “tensor” modes. For example, a spatial vector field Bi

can be decomposed uniquely into a longitudinal part and a transverse part,

Bi = ∂iB + B̄i, ∂iB̄
i = 0, (3.42)

where the longitudinal part is curl-free and can thus be expressed as a gra-
dient, and the transverse part is divergenceless. This yields one “scalar”
mode, B , and two “vector” modes B̄i (the index i takes three values but
the divergenceless condition implies that only two components are indepen-
dent). A similar procedure applies to the symmetric tensor hij, which can
be decomposed as

hij = 2Cδij + 2∂i∂jE + 2∂(iEj) + Ēij, (3.43)

with Ēij transverse and traceless (TT), i.e. ∂iĒ
ij = 0 (transverse) and

δijĒ
ij = 0 (traceless), and Ei transverse. The parentheses around the indices

denote symmetrization, namely 2∂(iEj) ≡ ∂iEj +∂jEi. We have thus defined
two scalar modes, C and E, two vector modes, Ei, and two tensor modes,
Ēij.

Coordinate Transformations

The metric perturbations, introduced in Eq. (3.41), are modified in a coor-
dinate transformation of the form

xα → xα + ξα, ξα = (ξ0, ξi). (3.44)

It can be shown that the change of the metric components can be expressed
as

δgµν → δgµν − 2∇(µξν), (3.45)

using the symbol ∇ for the four-dimensional covariant derivative, where the
variation due the coordinate transformation is defined for the same old and
new coordinates (and thus at different physical points). The above variation
can be decomposed into individual variations for the various components of
the metric defined earlier. One finds

A→ A− ξ0′ −H ξ0, (3.46)

B → Bi + ∂iξ
0 − ξ′i, (3.47)

hij → hij − 2
(
∂(iξj) −H ξ0δij

)
, (3.48)

where H ≡ a′/a. The effect of a coordinate transformation can also be
decomposed along the scalar, vector and tensor sectors introduced earlier.
The generator xiα of the coordinate transformation can indeed be written as

ξα = (ξα, ∂iξ + ξ̄i), (3.49)

27



with ξ̄i transverse, which shows explicitly that ξα contains two scalar com-
ponents, ξ0 and ξ, and two vector components, ξ̄i. The transformations Eqs.
(3.47) and (3.48) are then decomposed into:

B → B + ξ0 − ξ′, (3.50)

C → C −H ξ0, (3.51)

E → E − ξ, (3.52)

B̄i → B̄i − ξ̄i′, (3.53)

Ei → Ei − ξ̄i. (3.54)

The tensor perturbations remain unchanged since ξα does not contain any
tensor component. To summarize, the whole system scalar field plus gravita-
tion is described by eleven perturbations. They can be decomposed into five
scalar quantities: A, B, C and E from the metric and δφ; four vector quanti-
ties B̄i and Ēi; two tensor quantities: the two polarizations of ETT

ij . However,
these quantities are physically redundant since the same physical situation
can be described by different sets of values of these perturbations, provided
they are related by the coordinate transformations described above. One
would thus like to identify the true degrees of freedom, i.e. the physically in-
dependent quantities characterizing the system. One can reduce the effective
number of degrees of freedom by using the four coordinate transformations,
which consist of two scalar transformations and two vector transformations
as we saw earlier. Moreover, Einsteins equations contain nondynamical equa-
tions, i.e. constraints, which are also the consequence of the invariance by
coordinate transformations. They can be decomposed into two scalar con-
straints and two vector constraints. By taking into account the coordinate
changes and the constraints, one finds three true degrees of freedom: two
polarizations of the gravitational waves and one scalar degree of freedom. If
matter was composed of N scalar fields, one would get N scalar degrees of
freedom in addition to the two tensor modes.

In a coordinate transformation, the scalar field perturbation is also mod-
ified, according to

δφ→ δφ− φ′ξ0. (3.55)

In single-field inflation, there are thus two natural choices of gauge to describe
the scalar perturbation. The first is to work with hypersurfaces that are flat,
i.e. C = 0, in which case we will denote the scalar field perturbation by Q,
i.e.

Q = δφC=0. (3.56)

The other choice is to work with hypersurfaces where the scalar field is uni-
form, i.e. δφ = 0, in which case the scalar degree of freedom is embodied by
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the metric perturbation Cδφ = 0. In other words, the true scalar degree of
freedom can be represented either as a pure matter perturbation or a pure
metric perturbation. In the general case, we have

Q = δφ− φ′

H
C, (3.57)

which is a gauge-invariant combination (often called the Mukhanov-Sasaki
variable.

3.6.2 Quantizing the scalar degree of freedom

In order to quantize the true scalar degree of freedom, one needs the action
that governs its dynamics. Let us first note that the linearized equations
of motion for the coupled system (gravity + scalar field) are obtained from
the expansion of the full action at second-order in the perturbations. Indeed
the equations for the linear perturbations correspond to the Euler-Lagrange
equations derived from a quadratic Lagrangian. In our case, the difficulty is
that there are several scalar perturbations that are not independent. In order
to quantize this coupled system, one can work directly with the second-order
Lagrangian, or resort to a Hamiltonian approach.

The modern approach, introduced by Maldacena to study perturbations
beyond linear order, is based on the Arnowitt-Deser-Misner (ADM) formal-
ism. In the ADM approach, the metric is written in the form

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt), (3.58)

where N is called the lapse function and N i the shift function. The full
action for the scalar field and gravity

S =

∫
d4x
√
−g
[(
−1

2
∂µφ∂

µφ− V (φ)

)
+
m2
p

2
R

]
(3.59)

becomes, after substitution of Eq. (3.58),

S =

∫
d3xdt

√
hN

[
V 2

2N2
− 1

2
hij∂iφ∂jφ− V (φ)

]
+
m2
p

2

∫
dtd3x

√
h

N

(
EijE

ij − E2
)
,

(3.60)
where h = dethij,

V ≡ φ̇−N j∂jφ. (3.61)

and the symmetric tensor Eij, defined by

Eij ≡
1

2
ḣij −N(i|j), (3.62)
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(the symbol | denotes the spatial covariant derivative associated with the
spatial metric hij) is proportional to the extrinsic curvature of the spatial
slices.

The variation of the action with respect to N yields the energy constraint,

V 2

2N2
+

1

2
hij∂iφ∂jφ+ V (φ) +

m2
p

2N2
(EijE

ij − E2) = 0, (3.63)

while e the variation of the action with respect to the shift N i gives the
momentum constraint,

m2
p

(
1

N
(Ej

i − Eδ
j
i )

)
|j

=
V

N
∂iφ. (3.64)

In order to study the linear perturbations about the FRW background,
we now restrict ourselves to the flat gauge, which corresponds to the choice

hij = a2(t)δij. (3.65)

The scalar fields on the corresponding flat hypersurfaces can be decomposed
as

φ = φ̄+Q, (3.66)

where φ̄ is the spatially homogeneous background value of the scalar field
and Q represents its perturbation (on flat hypersurfaces). In the following,
we will often omit the bar and simply write the homogeneous value as φ,
unless this generates ambiguities.

We can also write the (scalarly) perturbed lapse and shift as

N = 1 + α, Ni = β,i, (3.67)

where the linear perturbations α and β are determined in terms of the scalar
field perturbation Q by solving the linearized constraints. At first-order, the
momentum constraint implies

α =
φ̇

2m2
pH

Q, (3.68)

while the energy constraint gives ∂2β in terms of Q and Q̇.

3.6.3 Second order action

We now expand the action, up to quadratic order, in terms of the linear
perturbations. This action can be written solely in terms of the physical

30



degree of freedom Q by substituting the expression Eq. (3.68) for α (it turns
out that β disappears of the second order action, after an integration by
parts). The second order action can be written in the rather simple form

S(2) =
1

2

∫
dtd3x

[
Q̇2 − 1

a2
∂iQ∂

iQ−M 2Q2

]
, (3.69)

with the effective (squared) mass

M 2 = V ′′ − 1

a3

d

dt

(
a3

H
φ̇2

)
. (3.70)

As we did earlier, it is convenient to use the conformal time τ and to introduce
the canonical degree of freedom v = aQ which leads to the action

Sv =
1

2

∫
dτd3x

[
v′2 + ∂iv∂

iv +
z′′

z
v2

]
, (3.71)

with z = a φ
′

H
. This action is analogous to that of a scalar field in Minkowski

spacetime with a timedependent mass.
The quantity we will be eventually interested in is the comoving curvature

perturbation R, which is related to the canonical variable v by the relation
v = zR. The power spectrum for v is given by

2π2k−3Pv(k) = |vk|2, (3.72)

the corresponding power spectrum for R is found to be

2π2k−3PR(k) =
|vk|2

z2
. (3.73)

In the case of an inflationary phase in the slow-roll approximation, the
evolution of φ and of H is much slower than that of the scale factor a.
Consequently, one gets approximately

z′′

z
' a′′

a
, (slow − roll) (3.74)

and all results obtained previously for u apply directly to our variable v in the
slow-roll approximation. This implies that the properly normalized function
corresponding to the Bunch-Davies vacuum is approximately given by

vk '
√

~
2k
e−ikτ (1− i

kτ
). (3.75)
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In the super-Hubble limit k|τ | � 1 the function vk behaves like

vk ' −
√

~
2k

i

kτ
' i

√
~
2k

aH

k
, (3.76)

where we have used a ' 1/(Hτ). Consequently, combining (113), (110) and
(115) and reintroducing the cosmic time gives the power spectrum for R, on
scales larger than the Hubble radius,

PR '
~

4π2

(
H4

φ̇2

)
k=aH

=
~

2m2
pε∗

(
H∗
2π

)2

, (3.77)

where we have used ε ≡ Ḣ/H2 in the second equality, and the subscript ∗
means that the quantity is evaluated at Hubble crossing (k = aH). This is the
main result for the spectrum of scalar cosmological perturbations generated
from vacuum fluctuations during a slow-roll inflation phase.

3.6.4 Covariant approach

Instead of the traditional metric-based approach, we use here a more geomet-
rical approach to cosmological perturbations, which will enable us to recover
easily and intuitively the main useful results, not only for linear perturba-
tions but also for non-linear perturbations. Let us consider a spacetime with
metric gab and some perfect fluid characterized by its energy density ρ, its
pressure P and its four-velocity ua. The corresponding energy momentum-
tensor is given by

Tab = ρuaub + P (gab + uaub).(123) (3.78)

Let us also introduce the expansion along the fluid worldlines,

Θ = ∇au
a, (3.79)

and the integrated expansion

α =
1

3

∫
dτpΘ, (3.80)

where τp is the proper time defined along the fluid worldlines. In a FRW
spacetime, one would find Θ = 3H. Therefore, in the general case, one can
interpret Θ/3 as a local Hubble parameter and S = exp(α) as a local scale
factor, while α represents the local number of e-folds. Then, the conservation
law for the energy-momentum tensor, ∇aT

a
b = 0, implies that the covector

ζa ≡ ∇aα−
α̇

ρ̇
∇aρ (3.81)
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satisfies the relation

ζ̇a ≡ Luζa = − Θ

3(ρ+ p)

(
∇ap−

ṗ

ρ̇∇aρ

)
, (3.82)

where a dot denotes the time derivative defined as the Lie derivative along
ua2. This result is valid for any spacetime geometry and does not depend on
Einsteins equations.

The covector ζa can be defined for the global cosmological fluid or for
any of the individual cosmological fluids. Using the non-linear conservation
equation

ρ̇ = −3α̇(ρ+ p), (3.83)

which follows from ub∇aT
a
b = 0, one can re-express ζa in the form

ζa = ∇aα +
∇aρ

3(ρ+ p)
. (3.84)

If w ≡ P/ρ is constant, the above covector is a total gradient and can be
written as

ζa = ∇a

[
α +

1

3(1 + w)
ln ρ

]
. (3.85)

On scales larger than the Hubble radius, our definition agrees with the non-
linear curvature perturbation on uniform density hypersurfaces which is de-
fined as

ζ = δN −
∫ ρ

ρ̄

H
dρ̃
˙̃ρ

= δN +
1

3

∫ ρ

ρ̄

dρ̃

(1 + w)ρ̃
, (3.86)

where N = α. The above equation is simply the integrated version of Eq.
(3.81), or of Eq. (3.84).

3.6.5 Linear conserved quantities

Let us now introduce a coordinate system, in which the metric (with only
scalar perturbations) reads

ds2 = a2{−(1+2A)dτ 2+2∂iBdx
idτ+[(1 + 2C) δij + 2∂i∂jE] dxidxj}. (3.87)

We decompose the fluid four-velocty as

uµ = ūµ + δuµ, δuµ = {−A/a, vi/a}, vi = ∂iv + v̄i, (3.88)

2For scalar quantities, this is equivalent to an ordinary derivative along ua (e.g. ρ̇ ≡
ua∇aρ), but for ζa, one has ζ̇a ≡ ub∇bζa + ζb∇au

b
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where v̄i is transverse. At linear order, the spatial components of ζa are
simply

ζ
(1)
i = ∂iζ

(1), ζ(1) ≡ δα− ᾱ′

ρ̄′
δρ, (3.89)

where a prime denotes a derivative with respect to . Linearizing Eq. (3.82)
implies that the curvature perturbation on uniform-energy-density hypersur-
faces, defined by

ζ = C −H
δρ

ρ′
= C +

δρ

3(ρ+ p)
, (3.90)

obeys the evolution equation

ζ ′ = − H

ρ+ p
δPnad −

1

3
∇2 (E ′ + v) , (3.91)

where δPnad d is the non-adiabatic part of the pressure perturbation, defined
by

δPnad = δP − c2
sδρ. (3.92)

Note that ζ(1) differs from ζ but they coincide when the spatial gradients can
be neglected, for instance on large scales. The expression Eq. (3.91) shows
that ζ is conserved on super-Hubble scales in the case of adiabatic perturba-
tions. Another convenient quantity, which is sometimes used in the literature
instead of ζ , is the curvature perturbation on comoving hypersurfaces, which
can be written in any gauge as

R = −C − H

ρ+ p
δq, ∂iδq ≡ δ(s)T

0
i , (3.93)

where the subscript (S) denotes the perturbations of scalar type. For a
perfect fluid, δq = (ρ + P )v, where v has been defined in Eq. (3.88). One
can relate the two quantities ζ and R by using the energy and momentum
constraints, which were derived earlier in the ADM formalism. Linearizing
Eq. (3.63) and Eq. (3.64) yields, respectively,

3H 2δN + aH ∂2β = − a3

2m2
p

δρ, (3.94)

H δN = − a3

2m2
p

δq. (3.95)

Combining these two equations yields the relativistic analog of the Poisson
equation, namely

∂2Ψ =
a2

2m2
p

(δρ− 3H δq) ≡ a2

2m2
p

δρc, (3.96)
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where we have replaced β by the Bardeen potential Ψ ≡ −C−H (B−E ′) =
−H β and introduced the comoving energy density δρc ≡ δρ− 3H δq. Since

ζ = −R +
δρc
ρ+ p

= −R − 2ρ

3(ρ+ p)

(
k

aH

)2

Ψ, (3.97)

one finds that ζ and R coincide in the super-Hubble limit k � aH.

3.7 Initial Conditions for Standard Cosmol-

ogy

In standard cosmology, the initial conditions for the perturbations are usually
defined in the radiation dominated era around the time of nucleosynthesis,
when the main cosmological components are restricted to the usual photons,
baryons, neutrinos and cold dark matter (CDM) particles. The scales that are
cosmologically relevant today correspond to length-scales much larger than
the Hubble radius at that time. Before the invention of inflation, “initial”
conditions were put “by hand”, with the restriction that their late time
consequences should be compatible with observations. Inflation now provides
a precise prescription to determine these “initial” conditions3 . Since several
species are present, one needs to specify the density perturbation of each
species. A simplification arises in the case of single field inflation, since
exactly the same cosmological history, i.e. inflation followed by the decay
of the inflaton into the usual species, occurs in all parts of our Universe, up
to a small time shift depending on the perturbation of the inflaton in each
region. As a consequence, even if the number densities of the various species
vary from point to point, their ratio should be fixed, i.e.

δ (nA/nB) = 0, (3.98)

for any pair of species denoted A and B. This is not necessarily true in
multi-field inflation, as the perturbations in the radiation era may depend on
different combinations of the scalar field perturbations. The variation in the
relative particle number densities between two species can be quantified by
the quantity

SA,B ≡
δnA
nA
− δnB

nB
, (3.99)

3although one must be aware that present cosmological scales can correspond to scales
smaller than the Planck scale during inflation, suggesting the possibility of trans-Planckian
effects
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which is usually called the entropy perturbation between A and B. When the
equation of state for a given species is such that w ≡ P/ρ = const, one can
reexpress the entropy perturbation in terms of the density contrast, in the
form

SA,B =
δA

1 + w
− δB

1 + wB
. (3.100)

It is convenient to choose a species of reference, for instance the photons, and
to define the entropy perturbations of the other species relative to it. The
quantities

Sb ≡ δb −
3

4
δγ, (3.101)

Sc ≡ δc −
3

4
δγ, (3.102)

Sν ≡ δν −
3

4
δγ, (3.103)

thus define respectively the baryon, CDM and neutrino entropy perturba-
tions.

For single field inflation, all these entropy perturbations vanish, Sb =
Sc = Sν = 0, and the primordial perturbations are said to be adiabatic. An
adiabatic primordial perturbation is thus characterized by

1

4
δγ =

1

4
δν =

1

3
δb =

1

3
δc. (3.104)

Only one density constrast needs to be specified. However, since it is a gauge-
dependent quantity, it is better to use the gauge-invariant quantity ζ , i.e. the
uniform density curvature perturbation, which is also equivalent to R, since
we are on super-Hubble scales here. Note that the adiabatic mode, which is
directly related to the curvature perturbation, is also called curvature mode.
By contrast, the entropy perturbations can be non-zero even if the curvature
is zero, and the corresponding modes are called isocurvature modes.

3.8 Modulation

In the multiple fields inflation, a scenario is called modulation when the pri-
mordial perturbations are due to the perturbations of a scalar field, which
has never dominated the matter content of the universe but has played a cru-
cial role during some cosmological transition, while in the curvaton scenario
the curvaton dominates the energy density of the Universe at some epoch in
order to give the main contribution to the primordial perturbations.
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The best example is the modulated reheating scenario where the decay
rate of the inflaton, Γ , depends on a modulaton σ, which has acquired clas-
sical fluctuations during inflation. The decay rate is thus slightly different
from one super-Hubble patch to another, which generates a curvature per-
turbation. A simple way to quantify this effect is to compute the number
of e-folds between some initial time ti during inflation, when the scale of
interest crossed out the Hubble radius, and some final time tf . The curva-
ture perturbation is then directly related to the fluctuations of the number
of e-folds.

For simplicity, we will assume that, just after the end of inflation at time
te, the inflaton behaves like pressureless matter (as is the case for a quadratic
potential) until it decays instantaneously at the time td characterized by
Hd = Γ. At the decay, the energy density is thus ρd = ρe exp [3 (Nd −Ne)]
and is transferred into radiation, so that, at time tf , one gets

ρf = ρde
−4(Nf−Nd) = ρee

−3(Nf−Ne)−(Nf−Nd). (3.105)

Using the relation Γ = Hd = Hf exp[2(NfNd)] to eliminate (NfNd) in Eq.
(3.105), we finally obtain

Nf = Ne −
1

3
ln
ρf
ρe
− 1

6
ln

Γ

Hf

. (3.106)

If one ignores the inflaton fluctuations, the final curvature perturbation is
therefore

ζ = N,σδσ∗ = −1

6

Γ,σ
Γ
δσ∗, (3.107)

which yields the curvature power spectrum

Pζ =
1

36

(
Γ,σ
Γ

)2(
H∗
2π

)2

. (3.108)

The dependence on the modulaton can alternatively show up in the mass of
the particles created by the decay of the inflaton. The modulaton can also
affect the cosmological evolution during inflation, as in the modulated trap-
ping scenario, which is based on the resonant production of particles during
inflation (see also for other recent scenarios based on particle production). If
the inflaton is coupled to some particles, whose effective mass becomes zero
for a critical value of the inflaton, then there will be a burst of production
of these particles when the inflaton crosses the critical value. These particles
will be quickly diluted but they will slow down the inflaton. This effect,
which increases the number of e-folds until the end of inflation, can depend
on a modulaton, for example via the coupling between the inflaton and the
particles, and a significant curvature perturbation might be generated.
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3.9 Non-Gaussianities

One of the most promising probes of the early Universe, which has been
investigately very actively in the last few years, is the non-Gaussianity of the
primordial perturbations. Whereas the simplest models of inflation, based on
a slow-rolling single field with standard kinetic term, generate undetectable
levels of non-Gaussianity, a significant amount of non-Gaussianity can be
produced in scenarios with i) non-standard kinetic terms; ii) multiple fields;
iii) a non standard vacuum; iv) a non slow-roll evolution.

3.9.1 Higher order correlation functions

The most used estimate of non-Gaussianity is the bispectrum defined, in
Fourier space, by

〈ζk1ζk2ζk3〉 ≡ (2π)3δ(3)(Σiki)Bζ(k1, k2, k3), (3.109)

where the Fourier modes are defined by

ζk =

∫
d3xe−ik·xζ(x). (3.110)

Equivalently, one often uses the so-called fNL parameter, which can be de-
fined in general by

Bζ(~k1, ~k2, ~k3) =
6

5
fNL[Pζ(k1)Pζ(k2) + 2 perm], (3.111)

where Pζ is the power spectrum5 defined by

〈ζk1ζk2〉 = (2π)3δ(3)(k1 + k2)P (k1). (3.112)

The fNL parameter was initially introduced for a very specific type of non-
Gaussianity characterized by

ζ(x) = ζG(x) +
3

5
fNLζ

2
G(x), (3.113)

in the physical space, where ζG is Gaussian and the factor 3/5 appears be-
cause fNL was originally defined with respect to the gravitational potential
Φ = (3/5)ζ, instead of ζ. In this particular case, fNL, as defined in Eq.
(3.111), is independent of the vectors ki. In general, fNL is a function of the
norm of the three vectors ki (which define a triangle in Fourier space since
they are constrained by k1 + k2 + k3 = 0 as a consequence of homogeneity),
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and the shape of the three-point function is an important characterization of
how non-Gaussianity was generated. In the context of multi-field inflation,
the so-called δN -formalism is particularly useful to evaluate the primordial
non-Gaussianity generated on large scales. The idea is to describe, on scales
larger than the Hubble radius, the nonlinear evolution of perturbations gen-
erated during inflation in terms of the perturbed expansion from an initial
flat hypersurface (usually taken at Hubble crossing during inflation) up to a
final uniform-density hypersurface (usually during the radiation-dominated
era). Using the Taylor expansion of the number of e-folds given as a function
of the initial values of the scalar fields,

ζ '
∑
I

N,Iδφ
I
∗ +

1

2

∑
IJ

N,IJδφ
I
∗δ
J
∗ , (3.114)

in Fourier space,

〈ζk1ζk2ζk3〉 = ΣIJKN,IN,JN,K〈δφIk1
δφJk2

δφKk3
〉 (3.115)

+
1

2
ΣIJKLN,IN,JN,KN,L〈δφIk1

δφJk2
(δφK ? δφL)k3〉+ perms.

The first term on the right hand side corresponds to non-Gaussianities aris-
ing from nonvanishing three-point function(s) of the scalar field(s). This is
the case for models with non-standard kinetic terms, leading to a specific
shape of non-Gaussianities, usually called equilateral, where the dominant
contribution comes from configurations with three wave vectors of similar
length k1 ' k2 ' k3.

The terms appearing in second line of Eq. (3.115) can also lead to sizable
non-Gaussianities. Indeed, substituting

〈δφIk1
δφIk2
〉 = (2π)3δIJδ

(3)(k1 + k2)
2π2

k3
1

P∗(k1), P∗ ≡
H2
∗

4π2
, (3.116)

in Eq. (3.115), one finds

6

5
fNL =

N,IN,JN
,IJ

(N,KN ,K)2
, (3.117)

where we use Einsteins summation convention for the field indices, which
are raised with δIJ . This corresponds to another type of non-Gaussianity,
usually called local or squeezed, for which the dominant contribution comes
from configurations where the three wavevectors form a squeezed triangle.

Extending the Taylor expansion Eq. (3.114) up to third order, one can
compute in a similar way the tri-spectrum, i.e. the Fourier transform of the
connected four-point function defined by

〈ζk1ζk2ζk3ζk4〉 ≡ (2π)3δ(3)(Σiki)Tζ(k1, k2, k3, k4). (3.118)
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Assuming the scalar field perturbations to be quasi-Gaussian, the trispectrum
can be written in the form

Tζ(~k1, ~k2, ~k3, ~k4) =τNL[P (k13)P (k3)P (k4) + 11 perms] (3.119)

+
54

25
gNL[P (k2)P (k3)P (k4) + 3 perms],

with

τNL =
NIJN

IKNJNK

(N,LN ,L)3
, gNL =

25

54

NIJKN
INJNK

(NLNL)3
, (3.120)

and where k13 = |k1 + k3|.
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Chapter 4

Asymptotic Safe Gravity

4.1 Asymptotic Safety

A useful and efficient way of analyzing quantum effects on the low energy
scale physics is the renormalization group (RG). An effective theory is ob-
tained by integrating out the quantum fluctuations with higher energy scales
than a certain cutoff scale. It contains a number of parameters that run
along with the cutoff scale, called the RG flows. One can then incorporate
the quantum effects using classical equations of motion from the effective
action. The main problem in applying the RG approach to cosmology is
that we do not know the complete quantum gravity theory that governs
the UV (Planck) scale physics. The notion of asymptotic safety was intro-
duced by Weinberg in 1979 and is connected with the fact that the coupling
parameters quantum field theory are energy-dependent due to renormaliza-
tion. In this scenario the renormalization group (RG) flows approach a fixed
point in the UV limit, and a finite dimensional critical surface of trajecto-
ries evolves to this point at short distance scales. This picture suggests a
nonperturbative UV completion for gravity, where the metric fields remain
the fundamental degrees of freedom. Moreover, the low energy regime of
classical general relativity is linked with the high energy regime by a well-
defined, finite, RG trajectory. A theory is called asymptotically safe if all
essential coupling parameters gi approach a non-trivia fixed point for ener-
gies k →∞. The scenario of AS gravity has been studied extensively in the
literature [5, 139, 140, 142, 9, 143, 146, 55, 13, 14]. There is evidence that
black hole solutions in an AS gravity with Einstein-Hilbert truncation may
be nonsingular [15, 16, 17]; however, the study of black hole physics in an
AS gravity theory including higher derivative terms [145] showed that, while
the metric factor may be everywhere finite, curvature invariants may still di-
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verge at the origin. The implications of AS gravity with Einstein truncation
and Friedmann-Robertson-Walker (FRW) cosmologies were analyzed with re-
spect to late time cosmological acceleration in Refs. [19, 141, 21, 106, 24, 22].
The relation between Brans-Dicke theory and AS gravity was discussed in
[25]. It is also possible that AS gravity might drive inflation at early times
[138, 26, 27, 28].

A covariant gravitational effective theory (for simplicity matter will be
ignored here) involving running coupling with a cutoff p can be expressed as

Sp[gµν ] =

∫
d4x
√
−g[p4g0(p) + p2g1(p)R + O(R2) + · · · ], (4.1)

where g is the determinant of the metric gµν and R is the Ricci sclalr. The
coefficients gi(p), (i = 0, 1, . . .) are dimensionless coupling parameters and
are functions of the dimension-full UV cutoff. In particular, we have

g0(p) = − Λ(p)

8πG(p)
p−4 , g1(p) =

1

8πG(p)
p−2 , (4.2)

where G(p) and Λ(p) are the quantum corrected gravitational and cosmolog-
ical constants. The couplings satisfy the following RG equations,

d

d ln p
gi(p) = βi[g(p)] . (4.3)

According to Ref. [2], all beta functions vanish when the coupling param-
eters gi approach a fixed point g∗i in the scenario of asymptotical safety. If
g∗i = 0, the fixed point is Gaussian; if g∗i 6= 0, the fixed point is Non-Gaussian
(NG). For the NG fixed point, all the coupling parameters are fixed, the cut-
off p becomes irrelevant as p → ∞, and the theory is adequately described
by a finite number of higher order counter-terms included in the effective
action. Near the fixed point we may Taylor expand the beta functions in a
matrix form

βi[g] =
∑
j

Bij(gj − g∗j ) , (4.4)

where the elements of the matrix are defined by Bij ≡ ∂βi[g]
∂gj

∗
at the fixed

point. Solving the RG equations (4.3) in the neighborhood of the fixed point
we find

gi(p) = g∗i +
∑
m

eni

(
p

M∗

)vn
, (4.5)
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where en and vn are the suitably normalized eigenvectors and corresponding
eigenvalues of the matrix Bij. Since B is a general real matrix with symmetry
determined by a particular gravity model, its eigenvalues can be either real
or in pairs of complex conjugates. As a consequence, the dimensionality of
the UV critical surface is equal to the number of eigenvalues of the matrix
B, of which the real parts take negative values. The above solution involves
an arbitrary mass scale M∗. By requiring the largest eigenvector of order
unity, M∗ is typically identified with the energy scale at which the coupling
parameters are just beginning to approach the fixed point.

The low energy effective action can, in principle, be obtained from the RG
equation. This is however a highly nontrivial functional differential equation
with respect to the RG scale k [29] that is virtually impossible to solve
exactly. As a simple approximation, we (in agreement with much of the
literature) shall adopt the Einstein-Hilbert truncation [30] in the gravity
part by neglecting higher derivative terms. In the matter part, the kinetic
term of the scalar field is taken to be canonical (i.e. no running since there is
no coupling parameter) while the potential is allowed to vary as the RG scale
k changes. In this approximation, the practical effect of RG flow is then an
evolution of the gravitational coupling Gk (generalizing Newton’s constant)
and the scalar field potential Vk(φ). In particular the equations of motion
will take the same form as the classical ones.

4.2 Functional Renormalization Group

Whether or not a non-trivial fixed point is realised in quantum gravity
can be assessed once explicit renormalisation group equations for the scale-
dependent gravitational couplings are available. To that end, we recall the
set-up of Wilsons (functional) renormalization group, which is used below
for the case of quantum gravity. Wilsonian flows are based on the notion
of a cutoff effective action k, where the propagation of fields with mo-
menta smaller than k is suppressed. A Wilsonian cutoff is realised by adding
∆Sk = 1

2

∫
ϕ(−q)Rk(q)ϕ(q) within the Schwinger functional

ln Zk[J ] = ln

∫
[Dϕ]ren. exp

(
−S[ϕ]−∆Sk[ϕ] +

∫
J · ϕ

)
(4.6)

and the requirement that Rk obeys (i) Rk(q) → 0 for k2/q2 → 0, (ii)
Rk(q) > 0 for q2/k2 → 0, and (iii) Rk(q) → ∞ for k → Λ (for examples
and plots of Rk, see [82]) Note that the Wilsonian momentum scale k takes
the role of the renormalisation group scale µ introduced in the previous sec-
tion. Under infinitesimal changes k → k − ∆k, the Schwinger functional
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obeys ∂t lnZk = −〈∂t∆Sk〉J ; t = ln k. We also introduce its Legendre trans-
form, the scale-dependent effective action Γk[φ] = supJ

(∫
J · φ− lnZk[J ]

)
−

1
2

∫
φRkφ, φ = 〈ϕ〉J . It obeys an exact functional differential equation intro-

duced by Wetterich [83]

∂tΓk =
1

2
Tr
(

Γ
(2)
k +Rk

)−1

∂tRk , (4.7)

which relates the change in Γk with a one-loop type integral over the full
field-dependent cutoff propagator. Here, the trace Tr denotes an integra-
tion over all momenta and summation over all fields, and Γ

(2)
k [φ](p, q) ≡

δ2Γk/δφ(p)δφ(q). A number of comments are in order:

• Finiteness and interpolation property. By construction, the flow
equation 4.7 is well-defined and finite, and interpolates between an ini-
tial condition ΓΛ for k → Λ and the full effective action Γ ≡ Γk=0. The
endpoint is independent of the regularisation, whereas the trajectories
k → Γk depend on it.

• Locality. The integrand of 4.7 is peaked for field configurations with
momentum squared q2 ≈ k2, and suppressed for large momenta [due
to condition (i) on Rk] and for small momenta [due to condition (ii)].
Therefore, the flow equation is essentially local in momentum and field
space [82, 85].

• Approximations. Systematic approximations for Γk and ∂tΓk are
required to integrate 4.7. These include (a) perturbation theory, (b)
expansions in powers of the fields (vertex functions), (c) expansion in
powers of derivative operators (derivative expansion), and (d) combi-
nations thereof. The iterative structure of perturbation theory is fully
reproduced to all orders, independently of Rk [86, 87]. The expansions
(b) - (d) are genuinely non-perturbative and lead, via 4.7, to coupled
flow equations for the coefficient functions. Convergence is then checked
by extending the approximation to higher order.

• Stability. The stability and convergence of approximations is, addi-
tionally, controlled by Rk [82, 84]. Here, powerful optimisation tech-
niques are available to maximise the physics content and the reliability
through well-adapted choices of Rk [82, 84, 85, 89, 80]. These ideas
have been explicitly tested in e.g. scalar [88] and gauge theories [89].

• Symmetries. Global or local (gauge/diffeomorphism) symmetries of
the underlying theory can be expressed as Ward-Takahashi identities
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for n-point functions of Γ. Ward-Takahashi identities are maintained
for all k if the insertion ∆Sk is compatible with the symmetry. In
general, this is not the case for non-linear symmetries such as in non-
Abelian gauge theories or gravity. Then the requirements of gauge
symmtry for Γ are preserved by either (a) imposing modified Ward
identities which ensure that standard Ward identities are obeyed in
the the physical limit when k → 0, or by (b) introducing background
fields into the regulator Rk and taking advantage of the background
field method, or by (c) using gauge-covariant variables rather than
the gauge fields or the metric field [90]. For a discussion of benefits
and shortcomings of these options see [76, 80]. For gravity, most im-
plementations presently employ option (b) together with optimisation
techniques to control the symmetry [53, 54].

• Integral representation. The physical theory described by Γ can be
defined without explicit reference to an underlying path integral repre-
sentation, using only the (finite) initial condition ΓΛ, and the (finite)
flow equation 4.7

Γ = ΓΛ +

∫ 0

Λ

dk

k
frac12 Tr

(
Γ

(2)
k +Rk

)−1

∂tRk . (4.8)

This provides an implicit regularisation of the path integral underlying
4.6. It should be compared with the standard representation for Γ via
a functional integro-differential equation

e−Γ =

∫
[Dϕ]ren. exp

(
−S[φ+ ϕ] +

∫
δΓ[φ]

δφ
· ϕ
)

(4.9)

which is at the basis of e.g. the hierarchy of Dyson-Schwinger equations.

• Renormalisability. In renormalisable theories, the cutoff Λ in 4.8
can be removed, Λ → ∞, and ΓΛ → Γ∗ remains well-defined for ar-
bitrarily short distances. In perturbatively renormalisable theories, Γ∗
is given by the classical action S, such as in QCD. In this case, illus-
trated in a), the high energy behaviour of the theory is simple, given
mainly by the classical action, and the challenge consists in deriving
the physics of the strongly coupled low energy limit. In perturbatively
non-renormalisable theories such as quantum gravity, proving the ex-
istence (or non-existence) of a short distance limit Γ∗ is more difficult.
b), experiments indicate that the low energy theory is simple, mainly
given by the Einstein Hilbert theory. The challenge consists in identify-
ing a possible high energy fixed point action Γ∗, which upon integration
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matches with the known physics at low energies. In principle, any Γ∗
with the above properties qualifies as fundamental action for quantum
gravity. In non-renormalisable theories the cutoff Λ cannot be removed.
Still, the flow equation allows to access the physics at all scales k < Λ
analogous to standard reasoning within effective field theory [69].

• Link with Callan-Symanzik equation. The well-known Callan-
Symanzik equation describes a flow k d

dk
driven by a mass insertion

∼ k2φ2. In 4.7, this corresponds to the choice Rk(q
2) = k2, which

does not fulfill condition (i). Consequently, the corresponding flow is
no longer local in momentum space, and requires an additional UV
regularisation. This highlights a crucial difference between the Callan-
Symanzik equation and functional flows 4.7. In this light, the flow equa-
tion 4.7 could be interpreted as a functional Callan-Symanzik equation
with momentum-dependent mass term insertion [91].

Now we are in a position to implement these ideas for quantum gravity
[139]. A Wilsonian effective action for gravity Γk should contain the Ricci
scalar R(gµν) with a running gravitational coupling Gk, a running cosmolog-
ical constant Λk (with canonical mass dimension [Λk] = 2), possibly higher
order interactions in the metric field such as powers, derivatives, or func-
tions of e.g. the Ricci scalar, the Ricci tensor, the Riemann tensor, and,
possibly, non-local operators in the metric field. The effective action should
also contain a standard gauge-fixing term Sgf , a ghost term Sgh and matter
interactions Smatter. Altogether,

Γk =

∫
ddx
√

det gµν

[
1

16πGk

(−R + 2Λk) + · · ·+ Sgf + Sgh + Smatter

]
,

(4.10)
and explicit flow equations for the coefficient functions such as Gk, Λk or
vertex functions, are obtained by appropriate projections after inserting 4.10
into 4.7. All couplings in 4.10 become running couplings as functions of the
momentum scale k. For k much smaller than the d-dimensional Planck scale
M∗, the gravitational sector is well approximated by the Einstein-Hilbert
action with Gk ≈ Gk=0, and similarily for the gravity-matter couplings. At
k ≈ M∗ and above, the RG running of gravitational couplings becomes im-
portant. This is the topic of the following sections.

A few technical comments are in order: To ensure gauge symmetry within
this set-up, we take advantage of the background field formalism and add a
non-propagating background field ¯gµν [139, 76, 92, 93, 94, 95, 96]. This
way, the extended effective action Γk[gµν , ¯gµν ] becomes gauge-invariant under
the combined symmetry transformations of the physical and the background
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field. A second benefit of this is that the background field can be used to
construct a covariant Laplacean −D̄2, or similar, to define a mode cutoff
at momentum scale k2 = −D̄2. This implies that the mode cutoff Rk will
depend on the background fields. The background field is then eliminated
from the final equations by identifying it with the physical mean field. This
procedure, which dynamically readjusts the background field, implements
the requirements of “background independence” for quantum gravity. For a
detailed evaluation of Wilsonian background field flows, see [95]. Finally, we
note that the operator traces Tr in Eq. (4.7) are evaluated using heat kernel
techniques.
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Chapter 5

Higgs Modulated Reheating of
RG improved Inflation

In this chapter, we will study the inflationary cosmology of asymptotically
safe gravity with Einstein-Hilbert truncation taking into account the renor-
malization group (RG) running of both gravitational and cosmological con-
stants. We also consider the dynamics of a scalar field which can be inter-
preted as the Higgs field. The Higgs plays a role of modulating the decay rate
of reheating. The background trajectories of this model can provide sufficient
inflationary e-folds and a graceful exit to a radiation dominated phase. Due
to the compatibility with general relativity (GR) requires some constraints
on the running constants and their contributions to the stress energy tensor
can be taken into account in the perturbation analysis.

5.1 A Model of Asymptotic Safe Gravity

We start from a RG inspired effective gravitational Lagrangian with Einstein-
Hilbert truncation,

LAS =
R− 2Λ(p)

16πG(p)
, (5.1)

where p is the RG cutoff scale. Just like the ordinary effective field theory,
quantum fluctuations beyond the cutoff scale are integrated out. By asymp-
totic safe, we assume the effective lagrangian automatically connects with
ordinary Einstein gravity in the IR regime where the gravitational and cos-
mological constants flow to some present values that can be constrained by
observations. In the UV limit, these “constants” flow to a UV fixed point ac-
cording to their beta functions. Quantum corrections are therefore described
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by the evolution of the coupling constants as functions of the cutoff scale p,
whose beta functions can be extracted from the RG equations.

We first define the dimensionless gravitational and cosmological constants
as follows:

g(p) ≡ p2

24π
G(p), λ(p) ≡ Λ(p)

p2
. (5.2)

If we had known the exact forms of RG equations, we can follow the flows of
g and λ along with the cutoff scale and obtain a fixed point in the UV limit.
The AS scenario suggests that this UV fixed point is attractive. Note that the
explicit forms of beta functions depend on the choice of the cutoff function
and the relevant gauges. In Ref. [138], it was observed that the UV fixed
point often corresponds to a de Sitter solution; however neither the energy
scale of the background nor the amplitude of quantum fluctuations provide
a successful application to early Universe inflationary cosmology [150].

If the RG improved gravity theory is viable, its RG trajectory should
connect smoothly with standard Einstein gravity in the IR limit so as to
be consistent with astronomical and cosmological observations. We would
therefore like to study the RG improved gravity theory in the regime that
is sufficiently close to GR while still retaining some quantum corrections by
the beta functions at linear order. To begin with, we assume the linearized
beta functions for dimensionless coupling constants as follows:

βλ ≡ p∂pλ = −2λ+ 2αg, (5.3)

βg ≡ p∂pg = 2g − 2β2g2/3, (5.4)

which include next-to-leading order corrections to g. The coefficients α and
β are cutoff function dependent. Under this parametrization, one can obtain
approximate forms of the dimensionless couplings, which are given by

g(p) ' 3GNp
2

72π + β2GNp2
, (5.5)

λ(p) ' ΛIR

p2
+

3α

β2
− 216πα

β4GNp2
ln

(
72π

GN

+ β2p2

)
, (5.6)

where GN and ΛIR are Newtons constant and the cosmological constant
in the infrared limit and thus correspond to those in GR. The above two
couplings approach nonvanishing constant values in the p � Mp limit and
therefore have the expected AS behavior. Note also that the parameters α
and β should in principle be calculated from the theory of quantum theory
of gravity rather than free model parameters. However, because it is not
known how to do this calculation, there can be many different possibilities
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and thus we can treat them as free parameters effectively. The corresponding
parameter choice can determine the way g and λ approach their fixed point,
and thus could impose a possible constraint on the theory. Therefore, we can
choose the values of α and β such that our model can fit the observational
data.

The corresponding RG improved gravitational and cosmological constants
obey the following relations:

G(p) ' GN

1 + ξGp2
, (5.7)

Λ(p) ' ΛIR + ξΛp
2 − ξΛ

ξG
G−1
N ln

(
1 + ξGGNp

2
)
, (5.8)

where ξG and ξΛ are the model parameters determined by RG flow coefficients
through

ξG =
β2

72π
and ξΛ =

3α

β2
. (5.9)

When p → 0, approach the classical values determined by observations and
thus GR is recovered in the IR limit. Conversely, in the extreme UV regime
the value of G approaches zero, which implies a weakly coupled gravitational
system at extremely high energy scale. In between, we expect a period of
sufficiently slow variation of Λ and thus the occurrence of an inflationary
phase at early times of cosmological evolution. We note that if ξG is chosen
to be much smaller than unity, one can Taylor expand the last term of Eq.
(6.8) and the simplified expression

Λ ' ΛIR +
1

2
ξΛξGGNp

4, (5.10)

even if p is of order Mp. We will find that this condition is necessary in order
to achieve a viable inflationary phase.

5.2 The f (R) Correspondence

We consider minimal coupling between the AS gravity and the matter field,

SAS =

∫
d4x
√
−g[LAS + Lm], (5.11)

where Lm is the Lagrangian of the matter field. As the gravitational con-
stant varies along the cutoff scale p which can be a function of spacetime,
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taking variation of the Lagrangian with respect to the metric gµν yields the
generalized Einstein equation

Rµν −
1

2
Rgµν + Λgµν = 8πGT (m)

µν +G (∇µ∇ν − gµν�)G−1, (5.12)

where we have introduced the covariant derivative ∇µ with respect to gµν by
∇µV

ν = ∂µV
ν + ΓνµλV

λ, and the affine connection is

Γλµν ≡
1

2
gλρ (∂µgνρ + ∂νgµρ − ∂ρgµν) .

We also define the operator � ≡ gµν∇µ∇ν . We see that, Eq. (6.12) is the
same as the Einstein equation in classical general relativity, plus an extra
contribution due to the RG running of the gravitational constant. Since
both G and Λ are no longer constants but functions of the cutoff scale p,
it is important to specify the distribution of p in AS gravity. One way
to achieve this is by writing down the generalized Bianchi identity of AS
gravity. Assuming the conservation of the stress energy tensor of matter
fields ∇µT

(m)
µν = 0, we can derive the following useful equation requiring the

running of the cutoff scale to obey the constraint

R− 2Λ(p)

G(p)
∇µG(p) +∇µΛ(p) = 0. (5.13)

Since ∇µG(p) = G,p · (∇µp), and ∇µΛ(p) = Λ,p · (∇µp), we can simplify the
above equation to

R− 2Λ(p)

G(p)
G,p + Λ,p = 0, (5.14)

if ∇µp 6= 0.
The continuity equation of energy density determines the dynamics of

matter components and allows derivation of the equations of motion by vary-
ing the Lagrangian with respect to matter fields. Therefore, the dynamics of
this cosmological system are completely determined. Inserting the forms of
RG modified gravitational constant G ,Eq. (6.7) and cosmological constant
Λ ,Eq. (6.10) into Eq. (6.14), one can identify the relation between the Ricci
scalar and the cutoff scale,

p2 ' R− 2ΛIR

2ξΛ

− 3ξGGNR
2

8ξ2
Λ

. (5.15)

We see that the original theory may be reformulated as an effective f(R)
model, where LAS is replaced by

f(R) = − Λ,p

8πG,p

R ' R− 2ΛIR

16πGN

+
ξG

32πξΛ

(R− 2ΛIR)2 . (5.16)
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The subscript , p denotes the derivative with respect to p. In general, the
correspondence between the AS gravity and f(R) theory holds if the Einstein-
Hilbert truncation is applied. However, the detailed expression of f(R) de-
pends strongly on the specific forms of RG functions as well as the identifica-
tion between the cutoff scale and Ricci scalar. We refer to [152] for a general
discussion on this issue.

5.3 Classical Equivalence to the JBD Theory

The Jordan-Brans-Dicke (JBD) theory is one of a scalar-tensor theory in
which the gravitational interaction is modified by introducing a scalar field
coupled to the tensor field of general relativity. In the JBD theory, the gravi-
tational constant G is allowed not to be a constant but instead is replaced by
a scalar field which can vary from place to place and with time. Compared to
classical GR, this theory contains an extra dimensionless constant, ω, which
is the so-called Brans-Dicke parameter. The JBD theory with a scalar degree
of freedom ϕ and potential U(φ) can be described by the action

SJBD =

∫
dx
√
−g
[
ϕ2R− ω∂µϕ∂µϕ

16πϕ
− U(ϕ) + Lm

]
. (5.17)

If ϕ varies slightly from point to point in spacetime, it would be interpreted
as a spacetime-dependent Newton’s constant. This theory could include a
variety of gravitational theory by different choices of ω and U(ϕ). In our AS
gravity, since the gravitational constant also varies with spacetime points, we
expect that it would correspond to some kind of the JBD theory. Varying
with the metric, we obtain the generalized Einstein equation

Rµν −
1

2
Rgµν =

8π

ϕ

(
T (m)
µν − U(ϕ)gµν

)
+ ϕ−1 (∇µ∇ν − gµν�)ϕ

+
ω

ϕ2

(
∇µϕ∇νϕ−

1

2
gµν∇ρϕ∇ρϕ

)
. (6.18)

Varying with ϕ, we obtain the equation of motion of ϕ

R− 16U,ϕ +
2ω

ϕ
�ϕ− ω

ϕ2
∇ρϕ∇ρϕ = 0, (5.19)

where the subscript , ϕ represents differentiation with respect to ϕ. Combine
Eqs. (6.18) and (6.19), and take the trace, one gets

(2ω + 3)�ϕ− 8πT (m) + 32πU − 16πϕU,ϕ = 0. (5.20)
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where T (m) is the trace of the stress energy tensor of matter components.
Now, we can see our AS theory is equivalent to one class of JBD theory if
we set

ϕ = G−1, ω = 0, U(ϕ) =
Λ(p)

8πG(p)
. (5.21)

Making use of Eq. (6.14) and the trace of Eq. (6.12), we find

�G−1 =
8π

3
T (m) − 2Λ

3G
− 2Λ,p

3G,p

. (5.22)

We see that Eq. (6.22) is consistent with Eq. (6.20) if we substitute Eq.
(6.21) into Eq. (6.20). Therefore, we have shown that the AS gravity is
equivalent to one class of the JBD theory. This equivalence provides a conve-
nient way of studying the cosmology of the AS gravity and telling us whether
us or not the AS gravity is a viable theory of gravity.

5.4 R2 Inflationary Cosmology

In a standard cosmological model, the value of ΛIR is determined by obser-
vations pertaining to late-time acceleration which are typically of the order
O(10−121Mp). Since we are considering the inflation occurring in early uni-
verse when the typical energy scale is O(10−3Mp), the contribution of ΛIR to
the early Universe background dynamics is totally negligible. For the time
being, we neglect it and our model reduces to an R2 inflationary cosmology
[116], which is

f(R) =
R

16πGN

+
ξG

32πξΛ

R2. (5.23)

In addition, for the matter field Lagrangian we focus on the SM Higgs
scalar. We use the unitary gauge for the Higgs boson and temporarily neglect
all gauge interactions. As a consequence, the Lagrangian of the matter field
is given by

Lm ⊃ −
1

2
∂µh∂

µh− V (h)− Vint, (5.24)

where V (h) is the potential of the Higgs boson and Vint represents the in-
teractions between the Higgs and other particles in the Standard Model of
particle physics. Without considering interactions with other particles, the
form of the potential is approximately,

V (h) ' λ

4
(h2 − v2)2, (5.25)

in which v is the vacuum expectation value (VEV) of the Higgs boson, with
associated Higgs mass, mH =

√
2λv.
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5.5 Background Evolution

Now we turn our attention to inflationary solutions. Recall the action of our
theory is now Eq. (6.11) with matter Lagrangian given by in Eq. (6.24):

SAS =

∫
d4x
√
−g
(
R− 2Λ(p)

16πG(p)
− 1

2
∂µh∂

µh− V (h)

)
.

It is convenient to perform a conformal transformation into the Einstein
frame:

gµν → g̃µν = Ω2gµν , (5.26)

where Ω is the conformal factor and we can define a new introduce scalar
field φ as follows:

Ω2(φ) ≡ GN

G
≡ e

2φ√
6Mp . (5.27)

As a result, the original AS system is equivalent to a two-scalar-field system
minimally coupled to Einstein gravity without RG running, for which the
effective Lagrangian in the Einstein frame is given by

L ⊃ R̃

16πGN

− (∇̃φ)2

2
− (∇̃h)2

2Ω2(φ)
− Ṽ (φ, h), (5.28)

with

Ṽ (φ, h) = U(φ) +
V (h)

Ω4(φ)
, (5.29)

where the potential of the new scalar field takes the form

U(φ) = 2πM4
p

ξΛ

ξG

(
1− e−

2φ√
6Mp

)
. (5.30)

This potential is sufficiently flat in the regime where φ � Mp and has the
quadratic form around φ = 0. This scalar field φ can thus play the role of
the inflaton under a careful selection of RG running parameters.

We consider an isotropic and homogeneous universe, described by the flat
Friedmann-Robertson-Walker (FRW) metric,

ds2 = −dt2 + a(t)2d2x, (5.31)

then the Fredmann and Raychaudhuri equations are

H2 =
1

3M2
P

ρ̃, (5.32)

Ḣ = − 1

2M2
P

(ρ̃+ P̃ ), (5.33)
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where H ≡ ȧ
a

and the dot denotes the time derivative in the Einstein frame.
The energy density and the pressure in the Einstein frame (we dropout the
tilde) are

ρ =
1

2
φ̇2 +

1

2Ω2(φ)
ḣ2 + U(φ) +

V (h)

Ω4(φ)
, (5.34)

P =
1

2
φ̇2 +

1

2Ω2(φ)
ḣ2 − U(φ)− V (h)

Ω4(φ)
. (5.35)

By varying the Lagrangian with respect to φ and h, we obtain the equations
of motion for the scalar fields:

φ̈+ 3Hφ̇+ U,φ − 2
Ω,φ

Ω5
V +

Ω,φ

Ω3
ḣ3 = 0, (5.36)

ḧ+ 3Hḣ− 2
Ω,φ

Ω
φ̇ḣ+

V,h
Ω2

= 0. (5.37)

5.6 Slow-roll Inflation

Equations (6.36) and (6.37) show that the inflaton and the Higgs fields are
coupled with each other and the system is rather complicated. Fortunately,
the coupling terms can be greatly suppressed during inflation by using the
slow-roll condition. We now introduce the series of slow-roll parameters

ε ≡ − Ḣ

H2
, εφ ≡

φ̇2

2MpH2
, ε ≡ ḣ2

2Ω2M2
pH

2
, (5.38)

ηφ ≡
Ṽ,φφ
3H2

, ηh ≡
Ṽ,hh
3H2

, ηφh ≡
Ṽ,φh
3H2

, (5.39)

for a cosmological system of coupled double fields. We note that the potential
of φ becomes very flat when φ is larger than Mp and in comparison the
parameters εφ and ηφ are relatively small. Simultaneously, other parameters
are also very small due to the suppression by the large value of the conformal
factor Ω.

As a consequence, under the slow-roll conditions, the background dynam-
ics are determined by the following solutions:

φ̇ ' −U,φ
3H

, ḣ ' − V,h
3Ω2H

, H2 ' U

3M2
p

, (5.40)

which implies a quasi-exponential expansion at early times. Since inflation
ends when the slow-roll condition breaks, i.e., εφ = 1, the substitution of the
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background solution for φ̇ in Eq. (6.39) into the slow-roll parameter εφ in
Eq. (6.38) yields the value of φ at the end of inflation:

φf =

√
6

2
Mp ln(1 +

2√
3

). (5.41)

As the contribution of the Higgs field during inflation is negligible, the num-
ber of e-folding of inflation mainly depends on φ through the relation

N = −
∫ f

i

U

M2
pU,φ

dφ,

which is given by

N(φ) ' 3

4
e

2φ√
6Mp − 3

2

φ√
6Mp

− 1.04 (5.42)

It is easy to achieve N = 60 if initially the inflaton is placed at φi ≈ 5.46Mp.
Applying the slow-roll condition, one obtains the Hubble rate

HI '

√
2πξΛ

3ξG
Mp, (5.43)

during inflation.
Moreover, the slow-roll parameters for the Higgs field h are automati-

cally small due to the suppression of the large value of the conformal factor
Ω ∼ O(10). Thus during inflation h also varies slowly. As is well known,
the inflationary phase is an attractor solution in an expanding Universe,
and thus it is expected that other matter fields would be dominant in the
pre-inflationary phase. Thus, in our model, we assume the Universe was
dominated by the Higgs field in the pre-inflationary era and at that moment
the slow-roll condition was not satisfied. As a result, the parameter ηh can be
larger or of order of unity. Then, we can make use of the relation ηh ' 1 to
estimate the amplitude of the Higgs field at the initial moment of inflation,
which requires

ηh =
V,hh

3H2Ω4
. 1.

Therefore, one can estimate the initial amplitude of the Higgs at the begin-
ning of inflation as

hi '
Ω2
i√
λ
HI . (5.44)

At the end of inflation there is no more suppression on slow-roll parameters
of h and the values of ηh becomes of the order of unity simultaneously. As a
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consequence, by using Eq. (6.41), the conformal factor at the end of inflation
is Ω2

f ' 2, and the amplitude of the Higgs field at the end of inflation is
estimated as

hf '
2√
λ
HI . (5.45)

Combining Eqs. (6.44) and (6.45), we easily verify that during inflation the
Higgs boson hI is required to satisfy the inequality

hf < hI < hi. (5.46)

Note that the Higgs field during inflation is not required to be less than
the Hubble rate since its background energy density contributed is suppressed
by the large value of the conformal factor. Our model therefore evades the
theoretical constraint suggested in [159], where they study the inflation which
model Higgs field plays as a source for the primordial curvature perturbation,
in the curvaton and modulated reheating scenario and conclude that the
contribution of the Higgs field to the primordial curvature perturbation must
be less than 8%. We will see that this is the key to realizing Higgs modulated
reheating.

In the above, we presented analytic solutions to inflationary dynamics.
We now verify the results with numerical computations. The results are
shown in Figs. 6.1, 6.2 and 6.3. Figure 6.1 shows that the Hubble parameter
varies very slowly in the middle region, which corresponds to the inflationary
period. On the other hand, the Higgs boson oscillates dramatically at the
beginning of the evolution, which implies that the Universe is dominated by
the Higgs field in the pre-inflation phase. The transition from the Higgs dom-
inated pre-inflation phase to the inflation phase follows an attractor solution
that does not strongly depend on the choice of initial conditions. However,
this result also implies that such a scenario has to meet the big bang singu-
larity if one traces backwards in the cosmic evolution. From Fig. 6.1, one
can see that inflation ends when the value of φ decreases below Mp. The cor-
responding e-folding number is roughly 65. Subsequently, the inflaton field
oscillates around φ = 0 which corresponds to an IR fixed point of AS gravity.
Therefore, GR is recovered at the end of inflation.

Figures 6.2 and 6.3 show the evolutions of slow-roll parameters defined in
Eqs. (6.38) and (6.39) along with the cosmic expansion. In Fig. 2, the back-
ground slow-roll parameter ε almost coincides with that for inflaton, εφ, it is
not surprising since inflation is driven by the inflaton φ which areinduced ef-
fects of RG-modified gravitational and cosmological constants. Among those
parameters associated with the Higgs boson, the value of ηh is the first to
break the slow-roll condition after inflation. Consequently, the method of de-
termining the value of h during inflation by requiring εφ ' 1 is reliable. By
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Figure 5.1: Evolution of the Hubble parameter H and two scalar fields φ
and h as functions of the e-folding number N . In the solutions, the model
parameters are ξG = 0.72 and ξΛ = 10−10ξG. The parameters of the potential
for the Higgs are taken as λ = 0.13 and v = 246 GeV according to particle
physics observations. Initial field values are taken as φi = 5.46Mp and hi =
10−2Mp. Planck units are adopted in the figure.
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substituting the parameter choices provided in Fig. 6.1 into the expression
Eq. (6.46), we find it consistent with the numerical result shown in the lower
panel of Fig. 6.1.

5.7 Higgs Dependent Decay after Inflation

After the inflaton field rolls below the critical value φf , it starts to oscillate
around its fixed IR point which corresponds to the GR limit. One can perform
a Taylor expansion of the potential in Eq. (6.29) around φ = 0 up to the φ2

order:

Ṽ (φ, h) ' 1

2
M2

φφ
2 + V (h) + Vint

(
1− 4φ√

6Mp

+
4φ2

3M2
p

)
+ O(φ3) (5.47)

In the above expression, we have introduced an effective mass for the inflaton
defined by

M2
φ ≡

2π

3
M2

p

ξΛ

ξG
. (5.48)

The last term of Eq. (6.48) shows that φ interacts with other particles
through the expansion of the conformal factor. Thus, if Vint contains interac-
tions of the Higgs boson with other particles, the same interactions provide
channels for the inflaton to decay into them and the corresponding decay rate
is expected to be a function of the Higgs field value. A reheating mechanism
of such scenario is called Higgs modulated reheating.

In our case, the last term of Eq. (6.47) is responsible for the Higgs
dependent inflaton decay. Following Ref. [165], one can generally take the
following Higgs dependent interactions:

V φ
int ⊃ ya(h)φψ̄aψa +Ma(h)φχ2

a + ga(h)φ2χ2
a, (5.49)

where χa and ψa are the scalar and spinor fields which constitute radiation
in the early Universe; the subscript a represents the species of particles. The
oscillations of the inflaton can be regarded as periodically oscillating external
field on the χa and ψa fields. The energy is stored in the oscillation of the
inflaton. This oscillating inflaton can produce χa or ψa particles out of the
vacuum, i.e. it decays into χa or ψa. To achieve the modulated reheating
scenario in our case, the coupling constants ya, Ma, and ga must be functions
of the Higgs field. Under this assumption the decay rate of the inflaton to
the lowest order in coupling constants is given by

Γ(h) =
y2
a(h)

8π
Mφ +

M2
a (h)

8πMφ

+
g2
a(h)

16π3M3
φ

ρφ, (5.50)
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Figure 5.2: Evolution of the slow-roll parameters ε, εφ and εh as functions
of the e-folding number N . The model parameters and initial conditions for
this plot are the same as those for Fig. 5.1.
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Figure 5.3: Evolution of the slow-roll parameters ηφ ηh, and ηφh as functions
of the e-folding number N. The model parameters and initial conditions for
this plot are the same as those for Fig. 5.1.
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where the quadratic potential for φ has been applied. Once we obtained the
decay rate of the inflaton, we can calculate the time when the inflaton field
decays completely into other particles, then the Universe enters the radiation
dominant phase. In the following, we consider a specific example to illustrate
one possible way of these decay processes. We consider

V φ
int ⊃

κ

M2
p

h2χ2φ2, (5.51)

which could arise from the term Vintφ
2/M2

p appearing in the last term of Eq.
(6.47). The corresponding decay rate is given by [? ]

Γ(h) ' κ2h4

16πM3
φM

4
p

ρφ. (5.52)

When the inflaton domination phase turns into the radiation domination
phase, the expansion rate is at the same order of the decay rate of inflaton,
thus we have the condition H ' Γ. At this reheating surface, ρφ ' 3M2

pΓ2.
By making use of Eq. (6.45), we obtain the value of inflaton decay,

φD '
√

3λ2ξG
2κξΛ

M2
p , (5.53)

at the reheating surface. In order to connect the reheating phase with the
inflationary phase smoothly, we expect φD ≤ φf . As a consequence, it im-
poses an additional severe constraint, which requires the coefficient κ needs

to be finely tuned to satisfy κ ≥ λ
√

ξG
ξΛ

. One may take into account the first

and second terms in the interaction (39) as well. The corresponding values
of inflaton decay are estimated as

c2
1ξ

2
Λ

λ2ξ2
G

M2
p , and

c2
2ξΛ

λ2ξG
M2

p ,

respectively, with c1 and c2 being the coefficients in front of these interaction
terms. We can easily find that both values are much smaller than the result
obtained in (6.53) due to the fact that ξΛ

ξG
� 1. Therefore, one can conclude

that the decay channel through the term (6.51) is generally dominant.

5.8 Adiabatic and Entropy Perturbations Dur-

ing Inflation

In this section, we briefly review the standard calculations of the primordial
power spectrum, the bispectrum and the trispectrum for the mechanism of
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modulated reheating, with the assumption that the inflaton φ decays with
a variable decay rate. Then, we will apply this mechanism to our model in
which the decay rate is a function of the Higgs field and study its cosmological
implications.

We analyze primordial perturbations in a double-field inflation model in-
volving kinetic couplings. We refer to [166, 167, 168] for earlier studies of
inflation models in terms of kinetically mixed double fields and [169, 170] for
the paradigm of double-field inflation. Also, the topic of primordial pertur-
bations in multiple-field inflation models was recently reviewed in [171, 172].

During inflation, it is convenient to decompose the field space of our
model to directions parallel and orthogonal to the trajectory of background
evolution. Along these two directions, one can define the adiabatic field, σ,
and the entropy field, s, as follows:

σ̇ = cos θφ̇+ Ω−1 sin θḣ, (5.54)

ṡ = − sin θφ̇+ Ω−1 cos θḣ, (5.55)

where the rotation angle is given by

cos θ =
φ̇√

φ̇2 + Ω−2ḣ2

, sin θ =
Ω−1ḣ√

φ̇2 + Ω−2ḣ2

. (5.56)

After that, we can perturb the metric and fields up to linear order. One can
introduce the field fluctuations along the adiabatic and entropy directions as
follows:

δσ = cos θδφ+ Ω−1 sin θδh, (5.57)

δs = − sin θδφ+ Ω−1 cos θδh. (5.58)

The potential can also be decomposed as

Vσ = Vφ cos θ + ΩVh sin θ, (5.59)

Vs = −Vφ sin θ + ΩVh cos θ. (5.60)

When θ̇ = 0, the adiabatic and entropy perturbations decouple. During
inflation, by using the slow-roll conditions, we have θ̇ ' 0. Therefore, we can
neglect interactions between these two modes, then we solve for the amplitude
of entropy perturbation, δs∗ = H∗/2π, during inflation and therefore the field
fluctuation for the Higgs boson, which is given by

δh∗ = Ω∗δs∗ = Ω∗
H∗
2π
. (5.61)

where the subscript ∗ denotes the moment of Hubble crossing.
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Figure 5.4: An illustration of the decomposition of an arbitrary perturbation
into an adiabatic δσ and entropy δs component. The angle of the tangent to
the background trajectory is denoted by θ. The usual perturbation decom-
position, along the σ and χ axes, is also shown.
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5.9 Higgs Modulated Reheating

The generation of curvature perturbation via Higgs modulated reheating in
a canonical model was recently suggested in [160, 161], and soon it was
pointed out in [159] that the Higgs dependent interaction potential of the
inflaton would be severely constrained by an upper bound on the value of
the Higgs during inflation. In the present paper, we extend the paradigm
into the noncanonical model under consideration. We show that this upper
bound can be greatly relaxed by the relatively large value of the conformal
factor and thus the corresponding parameter space is dramatically enlarged.
Our scenario is easily extended to nonminimal inflation models.

In the treatment of local non-Gaussianity, the curvature perturbation can
be expanded order by order as follows:

ζ(x) = ζ1(x) +
3

5
fNLζ

2
1 (x) +

9

25
gNLζ

3
1 (x) + O(ζ4

1 (x)),

= Σ∞n=1

ζn(x)

n!
, (5.62)

where ζ1(x) is the Gaussian fluctuation and ζn(x) are the non-Gaussian com-
ponents of order ζn1 . The relation between ζn and the non-Gaussian param-
eters yields the following non-Gaussian estimators:

fNL =
5

6

ζ2

ζ2
1

, gNL =
25

54

ζ3

ζ3
1

. (5.63)

The correlation functions are defined as〈
ζ(~k1)ζ(~k2)

〉
= (2π)3P (k1)δ3

(
2∑

n=1

~kn

)
,

〈
ζ(~k1)ζ(~k2)ζ(~k3)

〉
= (2π)3B(~k1, ~k2, ~k3)δ3

(
3∑

n=1

~kn

)
,

〈
ζ(~k1)ζ(~k2)ζ(~k3)ζ(~k4)

〉
= (2π)3T (~k1, ~k2, ~k3, ~k4)δ3

(
4∑

n=1

~kn

)
,

(5.64)

where P (k1) is related to the dimensionless power spectrum as

Pζ(k1) ≡ k3

2π2
P (k1). (5.65)
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Inserting the ansatz Eq. (6.60) into Eq. (6.62), one can relate the bispectrum
B and the trispectrum T with P as follows:

B(~k1, ~k2, ~k3) =
6

5
fNL[P (k1)P (k2) + 2 perm], (5.66)

T (~k1, ~k2, ~k3, ~k4) =
54

25
gNL[P (k1)P (k2)P (k3) + 3 perm]

+ τNL[P (k1)P (k2)P (|~k1 + ~k2|) + 11 perm]. (5.67)

Note that if we neglect the nonlinear perturbations induced by self-interactions
during inflation, which will be treated, there exists, in this case, a simple re-
lation τNL = 36

25
f 2
NL.

In the modulated reheating scenario, the decay of the inflaton occurs on
a spatial hypersurface with a varying local decay rate Γ, which is assumed
to be a function of the Higgs boson in our model. Thus, the local Hubble
parameter on the slice of modulated decay satisfies the condition H = Γ(h)1.
On super-Hubble scales, the curvature perturbation arising from modulated
decay can be written as

ζh(x) ' −Θ1
δh

h
− 1

2
Θ2

(
δh

h

)2

− 1

6
Θ3

(
δh

h

)3

|D, (5.68)

where the subscript D denotes the moment of modulated decay. In our model
the potential is dominated by its mass term after inflation, as shown in Eq.
(6.47). We therefore obtain the coefficients as follows:

Θ1 =
h

6

Γ,h
Γ
, (5.69)

Θ2 =
h2

6

(
Γ,hh
Γ
−

Γ2
,h

Γ2

)
, (5.70)

Θ3 =
h3

6

(
Γ,hhh

Γ
− 3

Γ,hΓ,hh
Γ2

+ 3
Γ3
,h

Γ3

)
. (5.71)

At linear order in the curvature perturbation, the coefficient Θ1 is typically
of the order O(1) and thus ζ is mainly determined by δh/h at the moment
of modulated decay. In the conventional scenario of modulated reheating,
one can approximately take δhD to be the amplitude of entropy field at the

1Within the framework of the multi-field inflationary cosmology, there exist many in-
teresting scenarios for generating primordial curvature perturbation based on different
choices of decay slices, such as the modulated curvaton decay mechanism [173, 174, 175]
and the uniform curvaton decay mechanism [176]. All these scenarios are well established
based on the validity of the δN formalism.
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moment of Hubble-crossing during inflation. However for the model of AS
inflation, the Higgs boson and the inflaton are coupled through a conformal
factor in front of its kinetic term. Making use of Eq. (6.59), one finds

δhD =
ΩD

Ω∗
δh∗ =

ΩDH∗
2π

. (5.72)

Moreover, the value of the Higgs at the slice of modulated decay can be
related to the Hubble-crossing value by introducing a general function

hD = g(h∗), (5.73)

where its detailed form is determined by the explicit potential of the entropy
field. For example, in the model under consideration, g(h∗) ∝ h∗ ∼ hI . For
simplicity, we assume that g(h∗) is linear.

As a consequence, the power spectrum of curvature perturbation due to
modulated reheating is given by

Pζh = Θ2
1

δh2
D

h2
D

' Θ2
1Ω2

D

H2
∗

4π2h2
∗
, (5.74)

where we have applied the field fluctuation Eq. (6.70) to obtain the second,
approximate equality, expression.

5.10 Observables at Linear Order

If we further neglect the variation of the Hubble parameter during inflation,
then we can obtain an approximate power spectrum from Higgs modulated
reheating,

Pζh '
λ

8π2
Θ2

1

Ω2
D

Ω4
I

, (5.75)

by inserting the approximate relation Eq. (6.44). Note that the usual decay
rate is a power-law function of the Higgs boson such as that in Eq. (6.52),
considered in the previous section. Thus Θ2

1 is typically of the order O(0.01 ∼
1). The coefficient ΩD is totally determined by φD as provided by Eq. (6.53),
and it therefore depends only on λ and κ; numerically ΩD is of the order
O(1). Finally, we note that the power spectrum generated from the Higgs
modulated reheating is determined by the Higgs coupling λ, the interaction
coupling κ, and the conformal factor during inflation ΩI (or, equivalently,
the value of inflaton φI).
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In addition to the curvature perturbation generated by modulated re-
heating, there exists the intrinsic curvature perturbation due to the inflaton
fluctuation, which takes the form

Pζφ =
H2
I

8π2εM2
P

. (5.76)

It is convenient to define a Higgs-to-curvature ratio

qh =
Pζh

Pζh + Pζφ
=

ελΘ2
1Ω2

DM
2
p

ελΘ2
1Ω2

DM
2
p + Ω4

IH
2
I

, (5.77)

to characterize the relative contribution of Higgs fluctuations. If the main
contribution to generating primordial curvature perturbation is due to the
modulated reheating, then we expect gh ' 1. By choosing a group of values
for the model parameters such as that provided in Fig. 1 and the decay rate
given by Eq. (6.52), one finds ε ∼ 10−4, ΩI ∼ 10, ΩD ∼ 1, Θ2

1 ∼ 0.10,
and λ ∼ 0.13. Under this particular parameter choice, we find that the
mechanism of Higgs modulated reheating dominates as long as H2

I < 10−9M2
p

without any fine-tuning.
These two power spectra actually show different signatures on their spec-

tral indices. Specifically, their spectral indices are given by

nζφ − 1 = −6ε+
2U,φφ
3H2

, (5.78)

nζh − 1 = −2ε+
2V,hh

3Ω4
IH

2
, (5.79)

which are calculated at the moment of Hubble-crossing. In addition, the pri-
mordial tensor perturbations are only dependent on the inflationary Hubble
parameter, whose spectrum is given by

PT =
2H2

I

π2M2
p

. (5.80)

As usual, the spectral tilt is given by

nT = −2ε. (5.81)

In the modulated reheating scenario the conventional tensor-to-scalar ratio
rT is now defined as

rT ≡
PT

Pζh + Pζφ
= 16ε(1− qh), (5.82)

which indicates that the amplitude of a primordial gravitational wave is dou-
bly suppressed in the Higgs modulated reheating mechanism since both ε
and 1− qh are small quantities.
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5.11 Non-Gaussianities

In contrast to the prediction of a canonical single-field inflation model [177],
a salient feature of the modulated reheating mechanism is that sizable am-
plitudes of primordial non-Gaussianities can be obtained under suitable pa-
rameter choices. In this section we study the curvature perturbation beyond
linear level. As we expected, the curvature perturbation is mainly sourced
by the Higgs fluctuations. For the time being, we ignore the nonlinear ef-
fects of inflaton, which are generally suppressed by slow-roll parameters. For
the nonlinear fluctuations seeded by the Higgs fluctuations, there exist two
categories of seeds, with one being proportional to the connected correlators
of the Higgs and the other being an intrinsically non-Gaussian distribution
[161].

5.11.1 Non-Gaussianities from modulated reheating

The first type of non-Gaussianity originates from the field fluctuations at
super-Hubble scales during the process of postinflation modulated reheating.
In this era the Higgs field is considered Gaussian while the non-Gaussianity is
induced by the nonlinear conversion from δh to ζ. One can insert the second
and third order curvature perturbations in Eq. (6.66) into the non-Gaussian
estimator Eq. (6.61) and obtain this part of the “universal” nonlinearity
parameters:

f localNL,un = 5q2
h

(
1− ΓΓ,hh

Γ2
,h

)
, (5.83)

glocalNL,un =
50

3
q3
h

(
2− 3

ΓΓ,hh
Γ2
,h

+
Γ2Γ,hhh

Γ2
,h

)
, (5.84)

which are of local type.
In particular, for the interaction term considered in Eq. (6.51), the decay

rate is proportional to h4 and qh ' 1 can be obtained under a reasonable set
of values of model parameters. As a consequence, one obtains f localNL,un ' 5

4
and

glocalNL,un ' 25
12

. These nonlinear parameters are sizable when compared with
those in slow-roll inflation models, but the corresponding non-Gaussianities
are still difficult to test observationally.
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5.11.2 Non-Gaussianities from Higgs self-interaction dur-
ing inflation

The second type of non-Gaussianity originates from the nonquadratic poten-
tial of the lighter field, which in our model corresponds to the Higgs potential:
V ' λh4/4. In fact, this self-interaction of the scalar field can also generate
primordial non-Gaussian fluctuations during inflation.

Following from [161] (see also [178]), the n-point correlation function of
δh is evaluated by〈

δh~k1
(τ)δh~k2

(τ) · · · δh~kn(τ),
〉

= −i
〈∣∣∣∣∫ τ

−∞
adτ ′

[
δh~k1

(τ)δh~k2
(τ) · · · δh~kn(τ), H

(n)
int (h(τ ′))

]∣∣∣∣〉 , (5.85)

where Hn
int int is the nth order interaction Hamiltonian and 〈· · · 〉 is the

ensemble average. Here by nth order we mean the part of Hint that is of
the order O(δhn). In our model the Higgs field is conformally coupled to the
inflaton due to the RG running gravitational constant. The corresponding
field fluctuation is expressed as

δh~k =
iΩH√

2k3
(1 + ikτ)e−ikτ , (5.86)

during inflation. In addition, the interaction Hamiltonian of the Higgs field
takes the form

H
(n)
int =

∫
d3xa3H (n)

int ,

=

∫
d3xa3 Ω−4(φ)

1

n!
V (n)(h)δhn, (5.87)

where V (n)(h) ≡ ∂nV
∂hn

is the nth derivative of the potential V (h) with respect
to the field h, and V (h) as well as Ω(φ) are given by Eqs. (6.25) and (6.27),
respectively.

We perform the integrals appearing in the correlation functions and find

〈
δh~k1

(τ)δh~k2
(τ) · · · δh~kn(τ)

〉
=

(Ω∗H∗)
2n−4 V

(n)
∗ K3∏n

i=1(2k3
1)

δ3

(
n∑
i=1

~ki

)
× (2π)3In(~k1, ~k2, . . . , ~kn) (5.88)

where a kernel integral function has been introduced as follows:

In ≡ 2Re

[
−i
∫ τend

−∞
d3x

dτ ′

K3τ ′4

n∏
i=1

(1− ikiτ)eiKτ

]
, (5.89)
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with K defined as K =
∑n

i=1
~ki. For 3− and 4−point correlation functions

which are of observable interest, we identify, according to the definitions in
Eq. (6.62), the following expressions:

Bn−un
δh (~k1, ~k2, ~k3) =

Ω2
∗H

2
∗V

(3)
∗ K3∏3

i=1(2k3
i )

I3,

=
3λh∗Ω

2
∗H

2
∗K

3

4
∏n

i=1 k
3
i

[
8

9
−

2
∑

i<j kikj

K2
− 2

3
(γE +Nk)

∑
i k

3
i

K3

]
,

(5.90)

and

T n−unδh (~k1, ~k2, ~k3, ~k4) =
Ω4
∗H

4
∗V

(4)
∗ K3∏4

i=1(2k3
i )

I4,

=
3λΩ2

∗H
2
∗K

3

8
∏n

i=1 k
3
i

[
8

9
−

2
∑

i<j kikj

K2
+ 2

∏
i ki
K4

− 2

3
(γE +Nk)

∑
i k

3
i

K3

]
,

(5.91)

where γE ' 0.58 is the Euler-Masheroni constant and NK is the e-folding
number for the perturbation mode with a fixed K crossing the Hubble radius
until the end of inflation τend. As introduced in the previous section, the
subscript ∗ indicates the values at Hubble-crossing.

We first calculate the non-Gaussianities of equilateral type. One can
estimate the correlation functions Bn−un

δh and T n−unδh under the particular
limit that all the ki’s are of the same value. As a result, substituting Eqs.
(6.88) and (6.89) into the expressions Eq. (6.62) yields the nonlinearity
parameters of equilateral type as follows:

f equil
NL,int ' −

5λh2
∗

3Θ1Ω2
∗H

2
∗
q2
h(Nk + ΓE − 3), (5.92)

gequil
NL,int ' −

25λh2
∗

27Θ2
1Ω2
∗H

2
∗
q3
h(Nk + ΓE −

169

48
). (5.93)

Next we study the non-Gaussianities originating from the self-interaction
of the Higgs field during inflation in the squeezed limit where we assume
k1 � k2, k3 (for bispectrum) ,and k1 � k2, k3, k4 (for trispectrum). The
same scenario in the framework of GR was discussed in [161]. Here we
directly calculate the correlation function of the curvature perturbation and
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then derive the nonlinearity parameters:

f equil
NL,int ' −

5λh2
∗

3Θ1Ω2
∗H

2
∗
q2
h(Nk + ΓE −

7

3
), (5.94)

gequil
NL,int ' −

25λh2
∗

27Θ2
1Ω2
∗H

2
∗
q3
h(Nk + ΓE − 3). (5.95)

From the above results, we can immediately see that the primordial non-
Gaussianities due to the self-interaction of the Higgs field during inflation are
negative. This is a novel feature in the Higgs modulated reheating scenario.
A similar feature was observed in [161] in the framework of standard GR,
but in our model the amplitude of nonlinearity parameters involves a new
parameter which is the conformal factor Ω.

Consider for the moment the primordial curvature perturbation due solely
to the modulated reheating, qh ' 1. By choosing a group of reasonable values
for the model parameters such as that provided in the previous section, we
find ε ∼ 10−4, ΩI ∼ 10, ΩD ∼ 1, Θ2

1 ∼ 0.10, and λ ∼ 0.13. In addition,
there is a theoretical lower bound: hI >

2HI√
λ

. By assuming NK ∼ 50, one

obtains f local
NL,int . −10 We see that this particular parameter choice appears

to be incompatible with the newly released Planck data. This points to the
necessity of performing an analysis of the observational constraints on our
model. This is the main content of the next section.

5.12 Constraints on Model Parameters by Planck

We compare our results with Planck mission has released data on CMB
anisotropy. The results highly constrain cosmological parameters with un-
precedented accuracy. Specifically, the amplitude and spectral index of pri-
mordial curvature perturbation are determined to be 109Pζ = 2.23±0.16, and
ns = 0.9603 ± 0.0073 (68% C.L.) at the pivot scale k = 0.002Mpc−1 [120].
Moreover, there is no significant evidence for primordial curvature pertur-
bation deviating from Gaussian distribution. In particular, the bounds on
nonlinearity parameters are quoted as f local

NL = 2.7 ± 5.8, f equal
NL = −42 ± 75

(68% C.L.) [121]. In addition, the upper bound on the tensor-to-scalar ratio
is given by rT < 0.11 at 2σ level. In our model of RG improved Higgs modu-
lated reheating, there are eight model parameters. Among these parameters,
H∗ Ω∗ ε are associated with the background model; h∗ and λ are are related
to the details of the Higgs model; and Θ1 Θ2 and Θ3 are determined by
specific forms of the decay process, respectively. To be more explicit, λ is
basically constrained by particle physics experiments such as those at LHC,
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Figure 5.5: Observational and theoretical constraints on h∗ andH∗ for qh = 0.
The viable parameter space is within the red region (C.L. 68%) and the light
red region (C.L. 95%).

which have determined that λ ' 0.13. At present the Planck data has not
yet imposed strong constraints on the trispectrum and thus Θ3 is free free.
We therefore only need to analyze the combined constraints on the remaining
parameters.

Allowing all plausible values for ε and Θ1, we obtain a combined constraint
on the inflationary Hubble rate H∗ and the amplitude of the Higgs field h∗
for different choices of qh as depicted in Figs. 6.5, 6.6, and 6.7. One can read
from the figures that H∗ is constrained to be of the order O(10−5 ∼ 10−6)Mp

and h∗ is allowed to vary between 10−4Mp and 10−2Mp during inflation. One
can also see from the figures that the larger qh is, the smaller the central
value of H will be, consistent with the definition of qh, namely Eq. (6.75).
This indicates that the more Higgs contributes to the final power spectrum,
the lower scale inflation we can get.
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Figure 5.6: Observational and theoretical constraints on h∗ and H∗ for qh =
0.9. The viable parameter space is within the blue region (C.L. 68%) and
the light blue region (C.L. 95%).
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Figure 5.7: Observational and theoretical constraints on h∗ and H∗ for qh =
0.5. The viable parameter space is within the green region (C.L. 68%) and
the light green region (C.L. 95%).
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Chapter 6

A Review of Dark Energy in
Cosmology

It has been shown that our universe is spatially flat and started accelerating
in the recent past. This conclusion has been backed up by many observa-
tional data such as type Ia supernovae [192], baryon acoustic oscillation [193],
cosmic microwave background radiation [194]. To explain the recent accel-
erated expansion, an unknown component with negative pressure is usually
assumed, and called dark energy. In the last years, answering what dark
energy really is has become one of the most challenging questions in cosmol-
ogy. The simplest candidate for dark energy is a small positive cosmological
constant Λ which gives the equation of state w ≡ p/ρ = −1 where p stands
for pressure and ρ for the dark energy density. Although the cosmological
constant with cold dark matter; i.e. ΛCDM model, can explain pretty well
the observational data, it suffers, however, from fine-tuning and coincidence
problems, in other words, why the cosmological constant is so small and only
became dominating almost at present? To address these issues, cosmologists
have considered dynamical dark energy models, such as quintessence [195],
phantom [196], quintom [197]. In these models, the equation of state w is not
necessarily a constant and may evolve with time. Most dark energy models
are constructed by scalar fields, having w ≥ −1, converging to w = −1,
and the quantum stability of such theories is guaranteed by the energy con-
ditions [198]. However, recent models with equation of state w < −1 and
converging to w = −1 from below, generally referred to as phantom, have
drawn lots of attention. The equation of state w < −1 is usually realized
by a negative kinetic energy, and this counter intuitive assumption violates
all the energy conditions, resulting usually in singularities, such as the big
rip [199, 200, 196, 201, 202], the sudden [203, 204, 205, 206] the big freeze
[205, 206, 208, 209], the type-IV singularity [205, 207, 208, 209, 210, 211],
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the little rip [212, 213, 214, 215].
In this chapter we briefly review a number of approaches that have been

adopted to try and explain the remarkable observation of our late time ac-
celerating Universe. In particular we discuss the arguments for and recent
progress made towards understanding the nature of dark energy. We re-
view the observational evidence for the current accelerated expansion of the
universe and present a number of dark energy models in addition to the con-
ventional cosmological constant, paying particular attention to scalar field
models such as quintessence, phantom, and Quintom.

6.1 The Cosmological Constant

The cosmological constant Λ, was originally introduced by Einstein in 1917
to achieve a static universe. After Hubble’s discovery of the expansion of the
universe in 1929, it was dropped by Einstein as it was no longer required.
From the point of view of particle physics, however, the cosmological constant
naturally arises as an energy density of the vacuum. Moreover, the energy
scale of Λ should be much larger than that of the present Hubble constant
H0, if it originates from the vacuum energy density. This is the “cosmological
constant problem” and was well known to exist long before the discovery of
the accelerated expansion of the universe in 1998.

The Einstein tensor Gµν and the energy momentum tensor T µν satisfy
the Bianchi identities ∇νG

µν = 0 and energy conservation ∇νT
µν = 0. Since

the metric gµν is constant with respect to covariant derivatives (∇αg
µν = 0),

there is a freedom to add a term Λgµν in the Einstein equations Then the
modified Einstein equations are given by

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (6.1)

By taking a trace of this equation, we find that −R+4Λ = 8πGT . Combining
this relation with Eq. (6.1), we obtain

Rµν − Λgµν = 8πG

(
Tµν −

1

2
Tgµν

)
. (6.2)

Let us consider Newtonian gravity with metric gµν = ηµν + hµν , where
hµν is the perturbation around the Minkowski metric ηµν . If we neglect the
time-variation and rotational effect of the metric, R00 can be written by a
gravitational potential Φ, as R00 ' −(1/2)∆h00 = ∆Φ. Note that g00 is
given by g00 = −1 − 2Φ. In the relativistic limit with |p| � ρ, we have

77



T00 ' −T ' ρ. Then the 00 component of Eq. (6.2) gives

∆Φ = 4πGρ− Λ . (6.3)

In order to reproduce the Poisson equation in Newtonian gravity, we re-
quire that Λ = 0 or Λ is sufficiently small relative to the 4πGρ term in
Eq. (6.3). Since Λ has dimensions of [Length]−2, the scale corresponding to
the cosmological constant needs to be much larger than the scale of stellar
objects on which Newtonian gravity works well. In other words the cosmo-
logical constant becomes important on very large scales.

In the FRW background, the modified Einstein equations give

H2 =
8πG

3
ρ− K

a2
+

Λ

3
, (6.4)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (6.5)

This clearly demonstrates that the cosmological constant contributes nega-
tively to the pressure term and hence exhibits a repulsive effect.

Let us consider a static universe (a = const) in the absence of Λ. Setting
H = 0 and ä/a = 0 in Eqs. (6.4) and (6.5), we find

ρ = −3p =
3K

8πGa2
. (6.6)

Equation (6.6) shows that either ρ or p needs to be negative. When Einstein
first tried to construct a static universe, he considered that the above solution
is not physical1 and so added the cosmological constant to the original field
equations, Eq. (2.48).

Using the modified field equations (6.4) and (6.5) in a dust-dominated
universe (p = 0), we find that the static universe obtained by Einstein cor-
responds to

ρ =
Λ

4πG
,

K

a2
= Λ . (6.7)

Since ρ > 0 we require that Λ is positive. This means that the static
universe is a closed one (K = +1) with a radius a = 1/

√
Λ. Equation (6.7)

shows that the energy density ρ is determined by Λ.
The requirement of a cosmological constant to achieve a static universe

can be understood by having a look at the Newton’s equation of motion
(??). Since gravity pulls the point particle toward the center of the sphere,
we need a repulsive force to realize a situation in which a is constant. This

1We note however that the negative pressure can be realized by scalar fields.
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corresponds to adding a cosmological constant term Λ/3 on the right hand
side of Eq. (??).

The above description of the static universe was abandoned with the
discovery of the redshift of distant stars, but it is intriguing that such a
cosmological constant should return in the 1990’s to explain the observed
acceleration of the universe.

Introducing the modified energy density and pressure

ρ̃ = ρ+
Λ

8πG
, p̃ = p− Λ

8πG
, (6.8)

we find that Eqs. (6.4) and (6.5) reduce to the original Fredmann Eqs. In the
subsequent sections we shall use the field equations (3.10) and (3.11) when
we study the dynamics of dark energy.

6.1.1 fine-tuning problem

If the cosmological constant originates from a vacuum energy density, then
this suffers from a severe fine-tuning problem. Observationally we know that
Λ is of order the present value of the Hubble parameter H0, that is

Λ ≈ H2
0 = (2.13h× 10−42 GeV)2 . (6.9)

This corresponds to a critical density ρΛ,

ρΛ =
Λm2

pl

8π
≈ 10−47 GeV4 . (6.10)

Meanwhile the vacuum energy density evaluated by the sum of zero-point
energies of quantum fields with mass m is given by

ρvac =
1

2

∫ ∞
0

d3k

(2π)3

√
k2 +m2

=
1

4π2

∫ ∞
0

dk k2
√
k2 +m2 . (6.11)

This exhibits an ultraviolet divergence: ρvac ∝ k4. However we expect that
quantum field theory is valid up to some cut-off scale kmax in which case the
integral (6.11) is finite:

ρvac ≈
k4

max

16π2
. (6.12)

For the extreme case of General Relativity we expect it to be valid to just
below the Planck scale: mpl = 1.22× 1019 GeV. Hence if we pick up kmax =
mpl, we find that the vacuum energy density in this case is estimated as

ρvac ≈ 1074 GeV4 , (6.13)
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which is about 10121 orders of magnitude larger than the observed value given
by Eq. (6.10). Even if we take an energy scale of QCD for kmax, we obtain
ρvac ≈ 10−3 GeV4 which is still much larger than ρΛ.

We note that this contribution is related to the ordering ambiguity of
fields and disappears when normal ordering is adopted. Since this procedure
of throwing away the vacuum energy is ad hoc, one may try to cancel it by
introducing counter terms. However this requires a fine-tuning to adjust ρΛ

to the present energy density of the universe. Whether or not the zero point
energy in field theory is realistic is still a debatable question.

6.2 Quintessence

Quintessence is described by an ordinary scalar field φ minimally coupled to
gravity, but as we will see with particular potentials that lead to late time
inflation. The action for Quintessence is given by

S =

∫
d4x
√
−g
[
−1

2
(∇φ)2 − V (φ)

]
, (6.14)

where (∇φ)2 = gµν∂µφ∂νφ and V (φ) is the potential of the field. In a flat
FRW spacetime the variation of the action (6.14) with respect to φ gives

φ̈+ 3Hφ̇+
dV

φ
= 0 . (6.15)

The energy momentum tensor of the field is derived by varying the action
(6.14) in terms of gµν :

Tµν = − 2√
−g

δS

δgµν
. (6.16)

Taking note that δ
√
−g = −(1/2)

√
−ggµνδgµν , we find

Tµν = ∂µφ∂νφ− gµν
[

1

2
gαβ∂αφ∂βφ+ V (φ)

]
. (6.17)

In the flat Friedmann background we obtain the energy density and pressure
density of the scalar field:

ρ = −T 0
0 =

1

2
φ̇2 + V (φ) p = T ii =

1

2
φ̇2 − V (φ) . (6.18)

Then the Fredmann eqs yield

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
, (6.19)

ä

a
= −8πG

3

[
φ̇2 − V (φ)

]
. (6.20)
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We recall that the continuity equation is derived by combining these equa-
tions.

From Eq. (6.20) we find that the universe accelerates for φ̇2 < V (φ).
This means that one requires a flat potential to give rise to an accelerated
expansion. In the context of inflation the slow-roll parameters

ε =
m2

pl

16π

(
1

V

dV

dφ

)2

η =
m2

pl

8π

1

V

d2V

dφ2
, (6.21)

are often used to check the existence of an inflationary solution for the model
(6.14). Inflation occurs if the slow-roll conditions, ε � 1 and |η| � 1, are
satisfied. In the context of dark energy these slow-roll conditions are not
completely trustworthy, since there exists dark matter as well as dark energy.
However they still provide a good measure to check the existence of a solution
with an accelerated expansion. If we define slow-roll parameters in terms of
the time-derivatives of H such as ε = −Ḣ/H2, this is a good measure to
check the existence of an accelerated expansion since they implement the
contributions of both dark energy and dark matter.

The equation of state for the field φ is given by

wφ =
p

ρ
=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (6.22)

In this case the continuity equation can be written in an integrated form:

ρ = ρ0 exp

[
−
∫

3(1 + wφ)
da

a

]
, (6.23)

where ρ0 is an integration constant. We note that the equation of state for
the field φ ranges in the region −1 ≤ wφ ≤ 1. The slow-roll limit, φ̇2 � V (φ),
corresponds to wφ = −1, thus giving ρ = const from Eq. (6.23). In the case
of a stiff matter characterized by φ̇2 � V (φ) we have wφ = 1, in which case
the energy density evolves as ρ ∝ a−6 from Eq. (6.23). In other cases the
energy density behaves as

ρ ∝ a−m 0 < m < 6 . (6.24)

Since wφ = −1/3 is the border of acceleration and deceleration, the universe
exhibits an accelerated expansion for 0 ≤ m < 2.

It is of interest to derive a scalar-field potential that gives rise to a power-
law expansion:

a(t) ∝ tp . (6.25)
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The accelerated expansion occurs for p > 1, we obtain the relation Ḣ =
−4πGφ̇2. Then we find that V (φ) and φ̇ can be expressed in terms of H and
Ḣ:

V =
3H2

8πG

(
1 +

Ḣ

3H2

)
, (6.26)

φ =

∫
dt

[
− Ḣ

4πG

]1/2

. (6.27)

Here we chose the positive sign of φ̇. Hence the potential giving the power-law
expansion (6.25) corresponds to

V (φ) = V0 exp

(
−
√

16π

p

φ

mpl

)
, (6.28)

where V0 is a constant. The field evolves as φ ∝ ln t. The above result shows
that the exponential potential may be used for dark energy provided that
p > 1.

In addition to the fact that exponential potentials can give rise to an
accelerated expansion, they possess cosmologicalscaling solutions in which
the field energy density (ρφ) is proportional to the fluid energy density (ρm).
Exponential potentials were used in one of the earliest models which could
accommodate a period of acceleration today within it, the loitering universe.

The above discussion shows that scalar-field potentials which are not steep
compared to exponential potentials can lead to an accelerated expansion. In
fact the original quintessence models are described by the power-law type
potential

V (φ) =
M4+α

φα
, (6.29)

where α is a positive number (it could actually also be negative) and M is
constant. Where does the fine tuning arise in these models? Recall that
we need to match the energy density in the quintessence field to the current
critical energy density, that is

ρ
(0)
φ ≈ m2

plH
2
0 ≈ 10−47 GeV4 . (6.30)

The mass squared of the field φ is given by m2
φ = d2V

dφ2 ≈ ρφ/φ
2, whereas

the Hubble expansion rate is given by H2 ≈ ρφ/m
2
pl. The universe enters a

tracking regime in which the energy density of the field φ catches up that of
the background fluid when m2

φ decreases to of order H2. This shows that the
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field value at present is of order the Planck mass (φ0 ∼ mpl), which is typical

of most of the quintessence models. Since ρ
(0)
φ ≈ V (φ0), we obtain the mass

scale

M =
(
ρ

(0)
φ mα

pl

) 1
4+α

. (6.31)

This then constrains the allowed combination of α and M . For exam-
ple the constraint implies M = 1 GeV for α = 2. This energy scale can be
compatible with the one in particle physics, which means that the severe
fine-tuning problem of the cosmological constant is alleviated. Neverthe-
less a general problem we always have to tackle is finding such quintessence
potentials in particle physics.

The Quintessence field must couple to ordinary matter, which even if
suppressed by the Planck scale, will lead to long range forces and time de-
pendence of the constants of nature. There are tight constraints on such
forces and variations and any successful model must satisfy them.

6.3 Phantom

Recent observational data indicates that the equation of state parameter w
lies in a narrow strip around w = −1 and is quite consistent with being
below this value. The scalar field models discussed in the previous subsec-
tions correspond to an equation of state w ≥ −1. The region where the
equation of state is less than −1 is typically referred to as a being due to
some form of phantom (ghost) dark energy. Specific models in braneworlds
or Brans-Dicke scalar-tensor gravity can lead to phantom energy. Meanwhile
the simplest explanation for the phantom dark energy is provided by a scalar
field with a negative kinetic energy. Such a field may be motivated from
S-brane constructions in string theory.

Historically, phantom fields were first introduced in Hoyle’s version of the
steady state theory. In adherence to the perfect cosmological principle, a
creation field (C-field) was introduced by Hoyle to reconcile the model with
the homogeneous density of the universe by the creation of new matter in
the voids caused by the expansion of the universe. It was further refined and
reformulated in the Hoyle and Narlikar theory of gravitation. The action of
the phantom field minimally coupled to gravity is given by

S =

∫
d4x
√
−g
[

1

2
(∇φ)2 − V (φ)

]
, (6.32)

where the sign of the kinetic term is opposite compared to the action (6.14)
for an ordinary scalar field. Since the energy density and pressure density are
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given by ρ = −φ̇2/2+V (φ) and p = −φ̇2/2−V (φ) respectively, the equation
of state of the field is

wφ =
p

ρ
=
φ̇2 + 2V (φ)

φ̇2 − 2V (φ)
. (6.33)

Then we obtain wφ < −1 for φ̇2/2 < V (φ).
As discussed in previous sections, the curvature of the universe grows

toward infinity within a finite time in the universe dominated by a phantom
fluid. In the case of a phantom scalar field this Big Rip singularity may be
avoided if the potential has a maximum, e.g.,

V (φ) = V0

[
cosh

(
αφ

mpl

)]−1

, (6.34)

where α is constant. Due to its peculiar properties, the phantom field evolves
towards the top of the potential and crosses over to the other side. It turns
back to execute a period of damped oscillations about the maximum of the
potential at φ = 0. After a certain period of time the motion ceases and the
field settles at the top of the potential to mimic the de-Sitter like behavior
(wφ = −1). This behavior is generic if the potential has a maximum. In the
case of exponential potentials the system approaches a constant equation of
state with wφ < −1.

Although the above behavior of the phantom field is intriguing as a “clas-
sical cosmological” field, unfortunately phantom fields are generally plagued
by severe Ultra-Violet (UV) quantum instabilities. Since the energy density
of a phantom field is unbounded from below, the vacuum becomes unstable
against the production of ghosts and normal (positive energy) fields. Even
when ghosts are decoupled from matter fields, they couple to gravitons which
mediate vacuum decay processes of the type: vacuum → 2 ghosts + 2γ. It
was shown by Cline et al. that we require an unnatural Lorenz invariance
breaking term with cut off of order ∼ MeV to prevent an overproduction of
cosmic gamma rays. Hence the fundamental origin of the phantom field still
poses an interesting challenge for theoreticians. covering various cosmological
aspects of phantom fields.

6.4 Chaplygin Gas

So far we have discussed a number of scalar-field models of dark energy.
There exist another interesting class of dark energy models involving a fluid
known as a Chaplygin gas [180]. This fluid also leads to the acceleration of
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the universe at late times, and in its simplest form has the following specific
equation of state:

p = −A
ρ
, (6.35)

where A is a positive constant. The equation of state for the Chaplygin gas
can be derived from the Nambu-Goto action for a D-brane moving in the
D + 1 dimensional bulk. For the case of the moving brane (via the Born-
Infeld Lagrangian), the derivation of the Chaplygin gas equation of state was
first discussed in the context of braneworld cosmologies in [181].

With the equation of state (6.35) the continuity equation can be inte-
grated to give

ρ =

√
A+

B

a6
, (6.36)

where B is a constant. Then we find the following asymptotic behavior:

ρ ∼
√
B

a3
, a� (B/A)1/6 , (6.37)

ρ ∼ −p ∼
√
A a� (B/A)1/6 . (6.38)

This is the intriguing result for the Chaplygin gas. At early times when a
is small, the gas behaves as a pressureless dust. Meanwhile it behaves as a
cosmological constant at late times, thus leading to an accelerated expansion.

One can obtain a corresponding potential for the Chaplygin gas by treat-
ing it as an ordinary scalar field φ. Using Eqs. (6.35) and (6.36) together
with ρ = φ̇2/2 + V (φ) and p = φ̇2/2− V (φ), we find

φ̇2 =
B

a6
√
A+B/a6

, (6.39)

V =
1

2

[√
A+B/a6 +

A√
A+B/a6

]
. (6.40)

We note that this procedure is analogous to the reconstruction methods
we adopted for the quintessence and tachyon potentials. Since the Hubble
expansion rate is given by H = (8πρ/3m2

pl)
1/2, we can rewrite Eq. (6.39) in

terms of the derivative of a:

κ√
3

dφ

da
=

√
B

a
√
Aa6 +B

. (6.41)

This is easily integrated to give

a6 =
4Be2

√
3κφ

A(1− e2
√

3κφ)2
. (6.42)
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Substituting this for Eq. (6.40) we obtain the following potential:

V (φ) =

√
A

2

(
cosh

√
3κφ+

1

cosh
√

3κφ

)
. (6.43)

Hence, a minimally coupled field with this potential is equivalent to the
Chaplygin gas model.

Chaplygin gas provides an interesting possibility for the unification of
dark energy and dark matter. However it was shown that the Chaplygin
gas models are under strong observational pressure from CMB anisotropies
(see Ref. [182]). This comes from the fact that the Jeans instability of per-
turbations in Chaplygin gas models behaves similarly to cold dark matter
fluctuations in the dust-dominant stage given by (6.37) but disappears in
the acceleration stage given by (6.38). The combined effect of the suppres-
sion of perturbations and the presence of a non-zero Jeans length gives rise
to a strong integrated Sachs-Wolfe (ISW) effect, thereby leading to the loss
of power in CMB anisotropies. This situation can be alleviated in the gener-
alized Chaplygin gas model with p = −A/ρα, 0 < α < 1. However, even in
this case the parameter α is rather severely constrained, i.e., 0 ≤ α < 0.2 at
the 95% confidence level.
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Chapter 7

Dark Energy Model by Dark
Spinor with Torsion

In this chapter, we propose a dark energy model with the phantom dark
spinor in Einstein-Cartan theory. We will first introduce the definition of the
dark spinor and regard it as the origin of dark energy, then we analyze the
cosmological evolution of this kind of dark energy model in the existence of
torsion.

7.1 The ELKO Spinors

In this section, we will briefly summarize the essential definitions and proper-
ties of the ELKO spinors 1. As mentioned in the introduction, ELKO spinors
are the eigenspinors of the charge congugation operator in momentum space
with spin one half. To be explicit, we define the ELKO spinor as [185, 186]

λ(p) =

(
±σ2φ

∗
L(p)

φL(p)

)
, (7.1)

where σ2 is the second Pauli matrix, σ2 =

(
0 −i
i 0

)
, φL is the left-handed

Weyl spinor, and φ∗L is its complex conjugate. Recall that the left-handed
and right-handed Weyl spinors are 2-dimensional objects in the (1

2
, 0) and

(0, 1
2
) representation of Lorentz group, which transform under the infinitesi-

1Readers who are interested in more details, please consult Refs [185, 186]
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mal rotations θ and boosts β as [227]

φL → (1− iθ · σ
2
− β · σ

2
)φL,

φR → (1− iθ · σ
2

+ β · σ
2

)φR.

The charge conjugation operator is given by

C =

(
0 iΘ
−iΘ 0

)
K, (7.2)

where Θ =

(
0 −1
1 0

)
is called the Wigner time reversal operator for spin

one-half fields and K is an operator that complex conjugates any Weyl spinor
that appears on its right. Then the ELKO spinor satisfies the eigenstate
equation:

Cλ(p) = ±λ(p). (7.3)

The plus sign is called the self-conjugate spinor, denoted by λS(p) and the
minus sign is called the anti-self-conjugate spinor, denoted by λA(p) [228].
The helicity is defined as the component of the spin angular momentum
in the direction of the three momentum. Thus, the helicity operator can
be written as σ · p̂, where σ are the Pauli matrices σ = (σ1, σ2, σ3) with

σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
and p̂ is the unit vector of the three

momentum. If we choose a Weyl spinor φL(kµ) in its rest frame to be the
eigenspinor of the helicity operator, that is

σ · p̂φ±L(kµ) = ±φ±L(kµ), (7.4)

where kµ =
(
m, limp→0

p
p

)
and p = |p|, then from the property [185]

ΘσΘ−1 = −σ∗, (7.5)

we have
σ · p̂ (Θ[φ±L(kµ)]∗) = ∓(Θ[φ±L(kµ)]∗). (7.6)

This shows that Θ[φ±L(kµ)]∗ has an opposite helicity to φ±L(kµ), or equiv-
alently, due to σ2 = iΘ, σ2[φ±L(kµ)]∗ also has opposite helicity to φ±L(kµ).
Therefore, we have two helicity states of the Weyl left-handed spinors, one
has positive helicity φ+

L , the other has negative helicity φ−L , both of them
are eigenspinors of the helicity operator. Hence, for each self-conjugate and
anti-self-conjugate ELKO spinor, this would give us two classes of spinors
which can be explicitly defined as
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λS{−,+}(k
µ) = +

(
σ2[φ+

L(kµ)]∗

φ+
L(kµ)

)
, (7.7a)

λS{+,−}(k
µ) = +

(
σ2[φ−L(kµ)]∗

φ−L(kµ)

)
, (7.7b)

and

λA{+,−}(k
µ) = +

(
−σ2[φ−L(kµ)]∗

φ−L(kµ)

)
, (7.7c)

λA{−,+}(k
µ) = −

(
−σ2[φ+

L(kµ)]∗

φ+
L(kµ)

)
. (7.7d)

By using the boost operator in the (1
2
, 0)⊕ (0, 1

2
)-representation for any given

four-momentum pµ,

eiκ·ϕ =

(
e

1
2
σ·ϕ 0

0 e−
1
2
σ·ϕ

)
, (7.8)

where ϕ is the boost parameter, defined by coshϕ = E
m

, sinhϕ = p
m

, and
ϕ̂ = p̂ = p

|p| , then we are able to boost the rest spinor λ(kµ) to its moving
frame,

λ(pµ) = eiκ·ϕλ(kµ). (7.9)

To be explicit, we define the self-conjugate and anti-self-conjugate ELKO
spinors as follows:

λS{−,+}(p
µ) =

√
E +m

2m

(
1− p

E +m

)
λS{−,+}(k

µ), (7.10a)

λS{+,−}(p
µ) =

√
E +m

2m

(
1 +

p

E +m

)
λS{+,−}(k

µ), (7.10b)

and

λA{+,−}(p
µ) =

√
E +m

2m

(
1 +

p

E +m

)
λA{+,−}(k

µ), (7.10c)

λA{−,+}(p
µ) =

√
E +m

2m

(
1− p

E +m

)
λA{−,+}(k

µ). (7.10d)

Note that the double-helicity structure of the ELKO spinor is the crucial
character different from the standard Majorana spinor, which is a set of two
Weyl spinors, and both of them are the eigenspinors of the charge conjugation
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operator with eigenvalue being unity. It means Majorana spinor is only self-
conjugate under the charge conjugation operator, where as the ELKO spinors
contain both the self-conjugate and the anti-self-conjugate eigenspinors of
charge conjugation operator. Therefore the ELKO spinors could form a basis
for the (1

2
, 0)⊕ (0, 1

2
)-representation of spin one-half particles.

Next, note that if one uses the usual Dirac dual, ψ̄ = ψ†γ0, for the ELKO
spinors, one will obtain imaginary norms in some combinations of the four
ELKO spinors, for instance, λ̄S{+,−}(p)λS{−,+}(p) = 2im. In order to construct
the lagrangian, one needs a dual for the ELKO spinors to yield real norms.
From this point of view, one defines a new dual for the ELKO spinors, which
is similar to the Dirac dual [185]:

¬
λα(p) = iεβαλ

†
β(p)γ0, (7.11)

with the antisymmetric symbol ε
{−,+}
{+,−} = −1 = ε

{+,−}
{−,+}. Equation (3.11) holds

for self-conjugate as well as anti-self-conjugate λ(p). The new dual is unique
and has the following properties: (i) it yields an invariant real definite norm,
and, (ii) it yields a positive-definite norm for two of the four ELKO spinors,
and negative-definite norm for the remaining two. With the definition of the
new dual for the ELKO spinors, one has [185]:

¬
λSα(p)λSα′(p) = 2mδαα′ , (7.12a)
¬
λAα (p)λAα′(p) = −2mδαα′ , (7.12b)
¬
λSα(p)λAα′(p) = 0, (7.12c)
¬
λAα (p)λSα′(p) = 0, (7.12d)

where α takes two possibilites, {−,+} and {+,−}. Both self-conjugate and
anti-self-conjugate ELKO spinors constitute a complete basis for the four-
component spinors in (1

2
, 0)⊕(0, 1

2
)-representation. The completeness relation

is given by [185]

1

2m

∑
α

(
λSα(p)

¬
λSα(p)− λAα (p)

¬
λAα (p)

)
= 1. (7.13)

Since the Dirac spinors also form a complete basis of the four-component
spinors, the ELKO spinors can be expressed as a linear combination of the
Dirac spinors. Projecting the ELKO spinors onto the Dirac spinors and by
means of the field equation of the Dirac spinors, i.e. the Dirac equation, one
can deduce the equations of motion for the ELKO spinors (in momentum
space) [185]:
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(
γµp

µδβα + im1εβα
)
λSβ(p) = 0, (7.14a)(

γµp
µδβα − im1εβα

)
λAβ (p) = 0. (7.14b)

To obtain the field equation in the configuration space, we make the substi-
tution pµ → i∂µ, and define

λS/A(x) = λS/A(p) exp [εS/A · (ixµpµ)], (7.15)

where, by Eqs. (7.14a) and (7.14b), εS = −1 and εA = +1, we have(
iγµ∂

µδβα + im1εβα
)
λ
S/A
β (x) = 0. (7.16)

From Eq. (7.14) and (7.16), it is clear that the presence of the anti-symmetric
symbol εβα in the mass term makes the ELKO spinors not satisfying the
Dirac equation as opposed to that for the Dirac and the Majorana spinors.
Nevertheless, since one can “square” the equation of motion, Eq. (7.14),
(γµp

µδβα + im1εβα)(γµp
µδβα − im1εβα) = (pµp

µ−m2)1δβα, the ELKO spinors do
satisfy the Klein-Gordon equation (in momentum space):(

ηµνp
µpν −m2

1
)
λS/A(p) = 0. (7.17)

Or equivalently, in field configuration space, we have:(
ηµν∂

µ∂ν +m2
1
)
λS/A(x) = 0. (7.18)

Based on this field equation, one may construct the action of the free
ELKO spinors in flat spacetime as:

S[
¬
λ(x), λ(x)] =

∫
d4xL

(¬
λ(x), λ(x)

)
,

=

∫
d4x

(
1

2
∂µ

¬
λ(x)∂µλ(x)− 1

2
m2

¬
λ(x)λ(x)

)
.

(7.19)

Although one may read off directly from the above action that the ELKO
spinor has the dimension of mass, it should be noted that it is not a rigorous
proof about the dimensionality. For a careful discussion see Refs. [185, 228].

7.2 A Dark Energy Model of Phantom ELKO

Spinors with Torsion

In this section, we consider a dynamical dark energy model constructed from
the ELKO spinors in Einstein-Cartan theory. To begin with, since it is
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sometimes more convenient to work in an orthonormal basis, let us introduce
the vielbein eµa , defined by

gµνe
µ
ae
ν
b = ηab, (7.20)

where gµν is the spacetime metric and ηab is the metric of the local inertial
frame given by ηab = diag(1,−1,−1,−1). The Greek letters (µ, ν, . . .) take
values (t, x, . . .) and are called the holonomic indices representing the space-
time frame, the Latin letters (a, b, . . .) taking values (0, 1, . . .) are called the
anholonomic indices representing the local inertial (orthonormal) frame. We
choose the anholonomic γ-matrices, γa, in the Weyl representation [188]

γ0 =

(
O 1

1 O

)
, γi =

(
O −σi
σi O

)
, γ5 =

(
1 0

0 −1

)
, (7.21)

where i = 1, 2, 3, and γ5 = iγ0γ1γ2γ3. The γ-matrices satisfy

{γa, γb} = 2ηab. (7.22)

We define γµ = eµaγ
a, then {γµ, γν} = 2gµν . The anti-commutator of two

matrices is defined as: {A,B} = AB+BA while the commutator as [A,B] =
AB −BA.

The covariant derivatives of the ELKO spinor λ and its (ELKO) dual
¬
λ

in the local inertial frame are defined in the same way as for the ordinary
spinors, i.e.

∇µλ = ∂µλ− Γµλ, (7.23a)

∇µ

¬
λ = ∂µ

¬
λ+

¬
λΓµ, (7.23b)

where Γµ is called the spin connection which is used to make the covariant
derivative of a spinor transform correctly under both local Lorentz trans-
formation and general coordinate transformation. By further requiring that
∇µe

a
ν = 0, the relation between the spin connection and the affine connection

can be obtained in the following form [188, 224]

Γµ =
i

2
ωabµ fab, (7.24a)

ωabµ = eaν∂µe
νb + eaνe

σbΓνµσ, (7.24b)

where fab = i
4
[γa, γb] is the generator of the local Lorentz group. Within

the presence of torsion fields, we now need to extend the definition of the
covariant derivatives on spinors to include torsions. According to Eq. (2.51),
we may separate the non-torsion free affine connection into a torsion-free
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Christoffel symbol plus a contortion tensor. Applying this relation into the
spin connection Eq. (7.24) and after some algebra, we obtain:

∇̃aλ = ∇aλ+
1

4
Kabcγ

bγcλ. (7.25)

Since
¬
λλ is a real scalar, the covariant derivative on the dual spinor

¬
λ can be

obtained from the Leibnitz rule. We obtain then

∇̃a

¬
λ = ∇a

¬
λ− 1

4
Kabc

¬
λγbγc. (7.26)

After defining the covariant derivatives of the ELKO spinors with torsion,
we can construct our dark energy model by considering the ELKO spinors
with a negative kinetic energy in an Einstein-Cartan theory, here we define
our lagrangian density to be

L̃ELKO = −1

2
gab∇̃(a

¬
λ∇̃b)λ− V (

¬
λλ), (7.27)

where V (
¬
λλ) is an arbitrary potential. Notice the different definitions of the

kinetic term in Eqs. (7.19) and (7.27). Besides, we should mention that the
main difference between Ref. [189] and our work is that here we consider a
negative kinetic term regarding it as a dynamical dark energy model and we
analyze if the model would lead to instabilities or not. Note that if we only

use gab∇̃a

¬
λ∇̃bλ in our lagrangian, after taking the variation with respect to

the metric, we have the term ∇̃a

¬
λ∇̃bλ, which is not necessarily symmetric

since the spin connection does not commute with each other in general, i.e.
ΓaΓb 6= ΓbΓa, even if there is no torsion. Therefore, we have to symmetrize
the kinetic term to ensure the symmetric property of the field equation.
Although the lagrangian density is somewhat similar to the one of a complex
scalar field, we emphasize that a complex scalar field is a spin-0 field, and
hence cannot interact with torsion as a spinor field does. Taking the variation
with respect to the metric, we obtain the metric energy-momentum tensor

σ̃ij = −2∇̃(i

¬
λ∇̃j)λ− gijL̃ELKO. (7.28)

The spin tensor can be obtained by taking the variation of the action
with respect to the contortion tensor:

τ kji =
δL̃ELKO

δKi
jk

= −1

4
∇̃i

¬
λγjγkλ+

1

4

¬
λγjγk∇̃iλ, (7.29)
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which can be separated into torsion-free and non-torsion free parts,

τ ijk =− 1

4
∇k

¬
λγjγiλ+

1

4

¬
λγjγi∇kλ+

1

16
Kkab

¬
λγaγbγjγiλ

+
1

16
Kkab

¬
λγjγiγaγbλ, (7.30)

where the first two terms on rhs in Eq. (7.30) are torsion free while the last
two terms are non-torsion free. From this, we can see that the spin angular
momentum tensor indeed depends on the contortion tensor and cannot be
expressed as an axial vector of the torsion tensor as the Dirac spinor does [184,
190]. Therefore, the ELKO spinor can possibly couple to all the irreducible
parts of the torsion tensor, and give richer implications in Einstein-Cartan
cosmology than the ordinary Dirac spinors [188].

From Sec. 2.5, we know that the gravitational action in Einstein-Cartan
theory is similar to GR, the difference lies in the Ricci scalar R̃, where we
treat the metric and the non-torsion free affine connection to be independent
variables. It follows that the full action of our model reads

S =

∫
d4x
√
−g
(

1

2κ
R̃ + L̃ELKO

)
. (7.31)

In a spatially homogeneous and isotropic universe, we use the flat Friedman-
Lemâıtre-Robertson-Walker (FLRW) metric

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (7.32)

where a(t) is the scale factor. Accordingly, the vielbein eµa are easy to obtain

eµ0 = δµ0 , e
µ
i =

1

a
δµi , (7.33a)

and the inverse vielbein eaµ reads

ea0 = δa0 , e
a
i = aδa0 . (7.33b)

In this background, the non-vanishing torsion free Christoffel symbols are
[189]

Γxtx = Γyty = Γztz =
ȧ

a
, (7.34a)

Γtxx = Γtyy = Γtzz = aȧ, (7.34b)

where the dot denotes differentiation with respect to the cosmic time t. The
corresponding spin connection coefficients in the holonomic frame Γµ can be
obtained by Eq. (7.24), which are [189, 224]

Γt = 0, Γxi = −1

2
(aȧ)γtγx

i

, xi = x, y, z. (7.35)
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It follows that we can compute the spin connection in the anholonomic frame,
Γa, the non-vanishing terms are

Γ0 = 0, Γi = −1

2

(
ȧ

a

)
γ0γi, i = 1, 2, 3. (7.36)

If the cosmological principle is assumed, it can greatly reduce the degrees
of freedom of the torsion, in other words, the only not necessarily vanishing
components torsion tensor in the anholonomic frame are [189]

Sijk = f(t)εijk, (7.37a)

Si0i = −h(t), i = 1, 2, 3, (7.37b)

where f(t) and h(t) are called the torsion functions, which depend only on
t due to the homogeneous and isotropic assumption, and εijk is the anti-
symmetric Levi-Civita symbol with ε123 = 1.

With the above expression, once we know the non-vanishing torsion terms,
we can obtain the non-vanishing contortion terms by means of Eq. (2.52).
Then, by using Eq. (2.1) we can determine the connection Γ̃λµν and finally

compute the Einstein tensor with torsion G̃ij directly using the definition of
the Ricci tensor, R̃σµ = ∂µΓ̃µνσ − ∂νΓ̃

ν
µσ + Γ̃µµλΓ̃

λ
νσ − Γ̃µνλΓ̃

λ
µσ, and the Ricci

scalar, R̃ = gµνR̃µν . Then, we obtain [189]

G̃tt = 3

(
ȧ

a

)2

+ 12

(
ȧ

a

)
h+ 12h2 − 3f 2, (7.38)

G̃xx = a2

[
−2

(
ä

a

)
− ȧ

a

(
ȧ

a
+ 8h

)
− 4ḣ− 4h2 + f 2

]
, (7.39)

G̃xx = G̃yy = G̃zz. (7.40)

On the other hand, to obtain the complete field equation, one also has
to know the energy-momentum tensor, the rhs of Eq. (2.54), Σ̃ij. Since the
cosmological principle has to be applied not only to the geometrical side but
also to the matter side, the matter distribution should be also homogeneous
and isotropic. Therefore, we can assume that the ELKO spinor fields in our

model depend only on time, t, writing λ(t) = ϕ(t)ξ and
¬
λ = ϕ(t)

¬
ξ, where

ϕ(t) is a real function and ξ is a constant ELKO spinor and its ELKO dual
¬
ξ is defined by Eq. (3.11). Since the cosmological principle implies the off-
diagonal components of the Einstein tensor to vanish, for example G̃tx =
G̃xy = 0, it naturally constrains the energy-momentum tensor on the rhs of
the field equation, Eq. (2.54). That is to say, the off-diagonal components of
the energy-momentum tensor should also vanish even in absence of torsion.
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To be precise, this means that the ELKO spinor is required to satisfy the
condition that the off-diagonal components of the metric energy-momentum
tensor should also vanish, i.e. σ̃tx = σ̃xy = 0. The simplest way to satisfy this
condition is to assume the so-called dark ghost spinor which is the ELKO

spinor with zero norm,
¬
λλ = 0 [229]. The word “ghost” refers to the fact that

it has no contribution to the metric energy-momentum tensor and thus has no
effect on the curvature of spacetime in the absence of torsion [230, 231, 232].
A cosmological dark ghost spinor can be given by [189, 229]

λ = ϕ(t)ξ, ξ =


0
±i
1
0

 (7.41)

with its corresponding dual spinor

¬
λ = ϕ(t)

¬
ξ,

¬
ξ = i (0, i,±1, 0) . (7.42)

Since the norm of the dark ghost spinor vanishes, the potential V which is a

function of
¬
λλ plays a role similar to that of the cosmological constant. How-

ever, a standard ELKO spinor with non-vanishing norm may also satisfy the
condition that the off-diagonal components of the metric energy-momentum
tensor vanish, in that case, higher order self-interactions are allowed.

The Cartan equation (2.55) is in general a set of 24 algebraic equations,
however, using Eq. (7.18), it reduces to two independent equations relating
torsion and spin tensors. Using Eq. (7.22), we can solve the torsion functions
in terms of the matter field ϕ(t). Indeed, after some lengthy calculation we
get

h(t) = −1

4
κϕ2f = −

1
2
κ2ϕ4

4 + κ2ϕ4

(
ȧ

a

)
, (7.43)

f(t) =
2κϕ2

4 + κ2ϕ4

(
ȧ

a

)
. (7.44)

Here, we can see that the dark ghost spinor indeed has non-trivial contribu-
tions to both the spatial axial components and to the temporal components of
the torsion tensor as compared with the Dirac spinor which has only a contri-
bution to the spatial axial vector components of the torsion tensor [190, 188].
Moreover, the non-trivial components of the spin angular momentum tensor
in our model are τ123 = 1

2
ȧ
a
ϕ2 + hϕ2 and τ101 = −1

2
fϕ2 = τ202 = τ303, which

are of ocurse homogeneous and isotropic in agreement with the cosmolog-
ical principle. To obtain the canonical energy-momentum tensor, we need
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to compute the contributions of the spin angular momentum taking into ac-
count the torsion interactions, (∇̃k + 2Skl

l)(τij
k − τj

k
i + τ kij). Finally, we

obtain that the non-vanishing components reads

Σtt = V0 + 3

(
ȧ

a

)
fϕ2 + 6fhϕ2, (7.45)

Σxx = −a2V0 − a2ϕ2f

(
6h− 2

ϕ̇

ϕ
− ḟ

f

)
, (7.46)

Σxx = Σyy = Σzz, (7.47)

where V0 = V (0). We will analyze the dynamics of our dark energy model
in the next section.

7.3 Cosmological Evolution of the Phantom

ELKO Spinor

The evolution of the Hubble parameter, H = ȧ/a, can be determined from
Einstein equation (2.54). The corresponding Friedmann and Raychaudhuri
equations read

H =

√
κV0

2
√

3

4 + κ2ϕ4√
4− 3κ2ϕ4

, (7.48)

Ḣ = −κV0

12

20κ2ϕ4 + 3κ4ϕ8

4− 3κ2ϕ4
. (7.49)

The evolution of the matter field ϕ(t) can be obtained by taking the time
derivative of Eq. (7.48) and equating it to Eq. (7.49), then

ϕ̇

ϕ
= −
√
κV0

4
√

3

20 + 3κ2ϕ4

20− 3κ2ϕ4

√
4− 3κ2ϕ4. (7.50)

Eq. (7.48) gives the evolution of the matter field, combining it with Eq.
(7.49), one obtains a differential equation for the scale factor in terms of the
matter field ϕ(t)

d ln a

d lnϕ
= −2

4 + κ2ϕ4

4− 3κ2ϕ4

20− 3κ2ϕ4

20 + 3κ2ϕ4
. (7.51)

Solving the above differential equation we obtain

a(ϕ) =
a0

ϕ2

[
(4− 3κ2ϕ4)4

20 + 3κ2ϕ4

] 1
9

, (7.52)
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Figure 7.1: Numerical plot of ϕ(t) in Eq. (7.3) from t = 0 to t = 5 with
ϕ(0) = 1, and κ = V0 = 1.

where a0 is an integration constant.
As we previously mentioned, the Einstein-Cartan equation (2.59) can be

interpreted as that the geometry is the result from the contribution of the
matter fields plus some spin-spin interaction. Therefore for a homogeneous
and isotropic Universe, we can define for example an equation of state for dark
energy, wd, related to the ELKO spinor from the metric energy-momentum
tensor given in Eq. (2.58) where σ̃ij = diag(ρd,−pd,−pd,−pd), and wd ≡
pd/ρd, then we have

wd = −1 +
2κ2ϕ4

12− 3κ2ϕ4
. (7.53)

This equation of state does not take into account the spin-spin interaction;
i.e. the energy momentum tensor uij defined in Eq. (2.60). We could equally
define a spin-spin effective equation of state related to uij which we omit here
for simplicity.

Since ϕ is constrained by Eq.(7.53) to satisfy the condition 0 ≤ ϕ2 <√
4

3κ2 , the time derivative of ϕ is always negative ( please c.f. again Eq.

(7.53)), then ϕ will decrease. In fact, ϕ will monotonically decrease to
its lower bound, ϕ = 0, as time goes to infinity, as we next show in Eq.
(7.58). Then, wd goes to −1 asymptotically, the Hubble parameter is almost
a constant, and the scale factor expands as a(t) ∝ exp(Ht), therefore our
universe enters a de Sitter phase at late time. From the positivity of the
second term on rhs in Eq. (7.53), we see that the equation of state will
be always larger than -1. And if we consider the contribution of spin-spin
interaction, we can define the total equation of state wtot ≡ ptot/ρtot from
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σ̂ij = diag(ρtot,−ptot,−ptot,−ptot), then

wtot = −1 +
2

3

20κ2ϕ4 + 3κ4ϕ8

(4 + κ2ϕ4)2
. (7.54)

Since both definitions of equation of state show that our dynamical dark
energy model does not cross the phantom divide, we do not expect quantum
instabilities even though the kinetic energy is negative, cf. Eq. (7.27). Note
that in a finite cosmic time, ϕ will never become zero, therefore, neither the
Hubble parameter nor its time derivative diverge at a finite cosmic time,
hence this model is free from the big rip singularity [199, 200, 196, 201, 202].
Indeed, the universe would be asymptotically de Sitter in this model.

We can expand Eqs. (7.48) and (7.50) around ϕ = 0 to the first few
orders to see its qualitative behavior,

H =

√
κV0

2
√

3

(
1 +

5

4
κ2ϕ4 + O(ϕ8)

)
, (7.55)

ϕ̇

ϕ
= −
√
κV0

2
√

3

(
1− 3

40
κ2ϕ4 + O(ϕ8)

)
. (7.56)

Solving these differential equations to the first order, we obtain

a(t) = a0 exp

(√
κV0

2
√

3
t

)
, (7.57)

ϕ(t) = ϕ0 exp

(
−
√
κV0

2
√

3
t

)
. (7.58)

We see that as time goes to infinity, ϕ(t) exponentially decays, so do the
torsion functions h and f ; cf. Eqs. (7.43) and (7.44). It is not surprising
because as the spin sources dilutes the torsion will vanish accordingly [189].

We next consider the existence of some kind of cold dark matter given by
a perfect fluid of a spin-0 particle with the energy-momentum tensor given
by σ(m)

µ
ν = diag(ρm, 0, 0, 0), where ρm is its energy density. Since it has

spin zero, it has no extra contribution to the torsion by the Cartan equation,
Eq.(2.55), it only has an additive contribution to the total energy-momentum
tensor, σ̂ij in Eq. (2.59), that is

σ̂ij = σ
(m)
ij + σ̃

(de)
ij + κuij, (7.59)

where σ̃(de) is the metric energy-momentum tensor of the ELKO spinor de-
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fined in Eq. (2.58). Then Eqs. (7.48) and (7.50), are modified as

H2 =
κV0

12
(1 + β)

(4 + κ2ϕ4)2

4− 3κ2ϕ4
, (7.60)

ϕ̇

ϕ
= −
√
κV0

4
√

3

1√
1 + β

20 + 3κ2ϕ4

20− 3κ2ϕ4

√
4− 3κ2ϕ4

− 1

4

(4 + κ2ϕ4)(4− 3κ2ϕ4)

20κ2ϕ4 − 3κ4ϕ8

β̇

1 + β
, (7.61)

where β ≡ ρm
V0

while Eq. (7.49) remain unchanged. We define the total equa-

tion of state of the universe by using again σ̂ij = diag(ρtot,−ptot,−ptot,−ptot),
which gives

wtot ≡
ptot
ρtot

= −1 +
2

3

20κ2ϕ4 + 3κ4ϕ8

(4 + κ2ϕ4)2
(1 + β)−1. (7.62)

The conservation of the energy-momentum tensor ∇iσ
(m)i

j = 0 reads

β̇

β
= −3

(
ȧ

a

)
. (7.63)

Substituting ȧ
a

using Eq. (7.60) into Eq. (7.63), we get

β̇ = −
√

3κV0

2

4 + κ2ϕ4√
4− 3κ2ϕ4

β
√
β + 1. (7.64)

To see the stability of the late time behavior, we analyze the autonomous
(ϕ, β) system , which is

ϕ̇ = −
√
κV0

4
√

3

ϕ
√

4− 3κ2ϕ4

√
1 + β

20 + 3κ2ϕ4

20− 3κ2ϕ4

+

√
3κV0

8

ϕ(4 + κ2ϕ4)2
√

4− 3κ2ϕ4

20κ2ϕ4 − 3κ4ϕ8

β√
1 + β

, (7.65)

β̇ = −
√

3κV0

2

4 + κ2ϕ4√
4− 3κ2ϕ4

β
√
β + 1. (7.66)

The only fixed point is (ϕ0, β0) = (0, 0). We linearize the system around the
fixed point, by expanding (ϕ, β) = (ϕ0 + δϕ, β0 + δβ), and we obtain that(

δϕ̇

δβ̇

)
=

√
κV0

2
√

3

(
−1 0
0 −6

)(
δϕ

δβ

)
. (7.67)
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The linearized system is automatically diagonal, one can easily read off its
eigenvalues, both are real and negative. Therefore, (ϕ, β) = (0, 0) is an
attractive fixed point, and this would give us wtot → −1 in the future. As
the universe expands, the torsion will vanish. When both ϕ and β are small,
the Hubble parameter will be nearly constant, the scale factor a(t) grows
exponentially which means the universe will again enter a de Sitter phase.

The numerical evolution of the equation of state, wtot(z), and the Hubble
parameter H(z) of the universe with redshift z ≡ −1 + a0

a
shown in Fig. 2

and 3 respectively where a0 stands for the present value of the scale factor.
Note that for σ̃(de)i

j = diag(ρde,−pde,−pde,−pde), the conservation equa-
tion, ∇i(σ̃

(de)i
j + κuij) = 0, can be interpreted as the continuity equation of

the energy density of the ELKO spinor with a source term, ρ̇de + 3H(ρde +
pde) = Q where Q > 0 means energy is transferred from torsion to ELKO
fields, and Q = 0 means no interaction between torsion and ELKO fields.

We can as well define an equation of state for dark energy again as wde ≡
pde
ρde

, then2

wde = −1 +
2κ2ϕ4(1 + β)

3(4− 3κ2ϕ4) + 6κ2ϕ4(1 + β)
. (7.68)

We can as well define an effective equation of state for dark energy weffde ≡
pde
ρde
− Q

3Hρde
, then

weffde = −1 +
2βκ2ϕ4

4− (1− 2β)κ2ϕ4

+
8

3

(6− 3β)κ4ϕ8 + (40− 24β)κ2ϕ4 + 48

(4 + κ2ϕ4)(4− (1− 2β)κ2ϕ4)(20− 3κ2ϕ4)
. (7.69)

The term, Q, is equally present when β = 0; i.e. in the absence of dark
matter. The numerical evolution of wde and weffde with redshift z are given

in Figs. 4, and 5. Note that at early time, weffde < wde which means Q > 0,
thus energy is transferred from torsion to the ELKO fields, and at late time,
weffde ≈ wde which means Q ≈ 0 as is expected since torsion will eventually
vanish.

2Please note that Eq. (7.68) is different from Eq. (7.53). The reason is that by adding
cold dark matter into the model, we modify the spin connection Eq. (7.35) and (7.36),
therefore we modify the ELKO enengy momentum tensor in Eq. (7.28).
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Figure 7.2: wtot(z) defined in Eq. (7.62) from z = 1 to z = −1 with ϕ(1) =
0.1, β(1) = 0.01, κ = 1, and Ωm0 ≈ 0.3.
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Figure 7.3: H(z) gievn in Eq. (7.60) from z = 1 to z = −1 with ϕ(1) = 0.1,

β(1) = 0.01, and κ = 1. The asymptotic line is H(z) =
√

3
3
≈ 0.577, and

Ωm0 ≈ 0.3.
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Figure 7.4: wde(z) given in Eq. (7.68) from z = 1 to z = −1 with ϕ(1) = 0.1,
β(1) = 0.01, κ = 1, and Ωm0 ≈ 0.3.
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Figure 7.5: weffde (z) given in Eq. (7.69) from z = 1 to z = −1 with ϕ(1) = 0.1,
β(1) = 0.01, κ = 1, and Ωm0 ≈ 0.3.
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Chapter 8

Conclusions and Future
Perspectives

In this chapter, we summarize the main conclusion of this thesis. We studied
the RG improved inflationary cosmology where the decay rate of inflaton
is modulated by a second scalar field, which we identified as a Higgs. In
this model the background evolution is driven by a RG running cosmolog-
ical constant and gravitational constant with their RG flows satisfying the
AS behavior. By choosing Einstein-Hilbert truncation, we find this model is
classically equivalent to a model of R2 gravity. The elegant property of this
model is that it can give rise to a sufficiently long inflationary phase at high
energy scale and smoothly exit to standard GR after inflation. Moreover, a
RG running gravitational constant can provide a second scalar field to vary
slowly without an extremely flat potential since the slow-roll parameters asso-
ciated with this field are greatly suppressed by a large value of the conformal
factor. As a consequence, this scalar field seeds isocurvature perturbations
during inflation which can be converted into primordial curvature perturba-
tion under a suitable mechanism. We consider this mechanism as the process
of modulated reheating. Based on this mechanism, we performed a detailed
analysis on the power spectrum and non-Gaussianities of primordial cosmo-
logical perturbations. We then confronted our model with the Planck data
and concluded that a viable parameter space exists, although it is highly
constrained. Although this model suffers from the fine-tuning problem, the
scenario under present study points to a new possible connection between
particle physics and early Universe cosmology. We conclude by mentioning
that the mechanism of Higgs modulated reheating can be generalized to an
arbitrary nonminimal inflationary model or a model of f(R) inflation. By re-
laxing theoretical requirements of AS gravity, the parameter space available
to such a mechanism is increased.
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As for the dark energy model, we consider Einstein-Cartan theory which
is a simple generalization of ordinary general relativity, incorporating the tor-
sion fields as the anti-symmetric part of the affine connection. In this theory,
there are two field equations, one is like the traditional Einstein equation
and the other is an algebraic relation between the torsion fields and the spin
fields of the matter sources. We introduce a new kind of spin one-half par-
ticle called the Elko spinor or dark spinor which is the eigenspinor of the
charge conjugation operator, and different from the Majorana spinor due
to the double-helicity structure [186]. The equation of motion of the Elko
spinor is the Klein-Gordon equation rather than the Dirac equation. Then,
we propose a dark energy model with a negative kinetic energy constructed
from the Elko spinor which is interacting with the torsion fields in the FLRW
universe. Although the kinetic energy is negative, the equation of states wde
and wtot do not cross the phantom divide and approaches to −1 asymptot-
ically, satisfying the weak energy condition, hence we expect the model to
be stable at the quantum level. No big rip singularity will occur at a finite
cosmic time in this setup. And torsion will vanish at late time, the Hubble
parameter will become nearly a constant. Furthermore, we consider the ex-
istence of some cold dark matter which is assumed to be a pressureless scalar
particle without contribution to the torsion fields. In this two components
system, we find that there is a unique attractive fixed point, which is simply
(ϕ, β) = (0, 0), and all of the equations of state wtot, w(de), and weff(de) will
converge to −1 from above no matter what the initial condition is. There-
fore, the universe will eventually enter the de Sitter phase at late time with
or without dark matter.
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[221] C. G. Böehmer and J. Burnett, Mod. Phys. Lett. A 25 (2010) 101
[arXiv:0906.1351 [gr-qc]].

[222] A. Basak, J. R. Bhatt, S. Shankaranarayanan, JCAP 2013 (2013)
[arXiv:1212.3445]

[223] L. Fabbri and S. Vignolo, Int. J. Theor. Phys. 51 (2012) 3186
[arXiv:1201.5498 [gr-qc]].

122
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