
國立臺灣大學電機資訊學院資訊工程學系

博士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Doctoral Dissertation

可重定目標且高效能之動態二元碼轉譯器框架系統

Retargetable and E�cient Dynamic Binary Translation

Framework

許俊琛

Chun-Chen Hsu

指導教授：劉邦鋒博士

共同指導教授：吳真貞博士

Advisor: Pangfeng Liu, Ph.D.

Co-Advisor: Jan-Jan Wu, Ph.D.

中華民國 104 年 6 月

June, 2015

Acknowledgements

Many people have contributed to this dissertation and I would like to acknowledge

their contributions here. First of all, I thank my advisor, Prof. Pangfeng Liu,

for providing me with the freedom and resources to do high-quality research, for

being a caring teacher, and for teaching me all the fundamentals of being a good

researcher. I want to thank my co-advisor, Dr. Jan-Jan Wu, for her high standards

for research, endless patience and continuous encouragement. My life as a graduate

student would have been very short and unproductive without her advices.

I'd like to give my very special thanks to Prof. Wei-Chung Hsu for always providing

very useful technical insights and advices for my researches and for being a caring

teacher. I thank Dr. Chien-Min Wang who always asks very sharp questions to

polish my thoughts and ideas. I also thank Prof. Pen-Chung Yew for providing

the research direction of this dissertation.

I want to thank members of the Computer System Group in Instituted of Informa-

tion Science, Academia Sinica, and Parallel Distributed Lab in National Taiwan

University. They all have contributed to this dissertation and my life in the past

nine years. I am very appreicated those helpful discussions with Dr. Ding-Yong

Hong in developing research ideas.

Finally, I cannot express with words my indebtedness to my parents and Celia

for giving my their unconditional love and support at every step I have taken in

ii

iii

my life. Even though they will likely not understand much of it, this dissertation

would be meaningless without them.

Hsu, Chun-Chen,

Aug. 2015, Taipei

iii

誌誌誌謝謝謝

許多人對這篇論文有著無比的貢獻，我想在此致上我的感謝之意。 首先，我要感謝的，

是我的博士論文指導教授劉邦鋒老師。我對電腦科學的研究興趣是由劉邦鋒老師所啟發

的， 沒有他我不會來唸博士班。在與他無數的討論過程中我學習到做學問的態度與方

法，他亦是我學術研究上的典範。 我再來要感謝我的共同指導老師，吳真貞老師。沒有

吳真貞老師的督促與無比的耐心以鼓勵就不會有這篇論文的產生。 我要感謝徐慰中老

師，他總是在技術問題上給我珍貴的回饋與建議。我感謝王建民老師，他建立我對問題

的敏銳度。 我亦感謝游本中老師指導了這論文的研究方向。我很感激我在博士研究上有

以上老師的幫忙，無比地感謝。 我也感謝中央研究院的系統實驗室的各個成員以及在臺

大資訊工程所 332 平行分散實驗室的各個成員。我特別感謝洪鼎詠博士，我總是可以在

我們的討論中找到新的研究方向。

還有真慧，感謝妳的陪伴，那總是可以安撫我燥鬱的心情，謝謝妳一起陪我走過博士最

後這幾年。 最後要感謝我的父母，許民先生以及余月玲女士。您們是我很大的精神支

柱，不只是我的博士在我一生的其他時刻也是。

許俊琛，

2015 年 8 月在臺北

iv

Abstract

Dynamic binary translation is one of the core technologies in virtualization to boost

the performace of instruction set architecture (ISA) simulation. The key factors

to the performace of dynamic binary translators are the quality of translated

code and the ability to detect hot regions at runtime. This dissertation builds

a retargetable dynamic binary translator framework and provides two hot region

detection approaches to improve the performance of dynamic binary translators.

The quality of translated code is critical to the performance of a dynamic binary

translator, which implements the semantics of the guest ISA instructions with the

host ISA instructions, so the translated code is often carefully hand-optimized.

However a hand-optimized translator is not retargetabile because it takes tremen-

dous implementation e�orts for software engineers to port it to a new host ISA.

This dissertation �rst proposes an LLVM+QEMU (LnQ) framework for build-

ing high performance and retargetable binary translators with existing compiler

modules. The goal of LnQ framework is to enable the process of building high

performance and retargetable dynamic binary translators with existing industry-

strength compiler optimization passes and code generation backends. Compared to

QEMU, the LnQ shows more than 2X speedup in CINT2006 for ARM-to-x86_64

and x86-to-ARM dynamic binary translators compared to QEMU.

v

vi

Besides the quality of translated code, the ability to detect �hot regions� of guest

applications also determines the performance of dynamic binary translators. Most

dynamic binary translators target traces, i.e. frequently executed code paths, as

code regions to be translated and optimized. The Next-Executing-Tail (NET) trace

formation method is an important example of such techniques. Many existing trace

formation schemes are variants of NET.

This dissertation examines the ine�ciency of NET-like trace formation algorithms.

We found the formed traces may contain a large number of early exits that could

be branched out during the execution. If this happens frequently, the program

execution will spend more time in the slow binary interpreter or in the unopti-

mized code regions than in the optimized traces in code cache. The bene�t of the

trace optimization is thus lost. Traces with frequently taken early-exits are called

delinquent traces.

This dissertation proposes a light-weight region formation technique called Early-

Exit Guided Region Formation (EEG) to improve the e�ciency of traces. It itera-

tively identi�es and merges delinquent regions into larger code regions. It is shown

the EEG achieves 1.23X and 1.11X speedup in CINT2006 for ARM-to-x86_64 and

x86-to-ARM DBTs compared to NET.

This dissertation also studies the procedure-based dynamic binary translator that

detects hot procedures as its compilation (i.e. translation and optimization) unit.

We compare the performance of our EEG region formation algorithm with proce-

dure region.

vi

摘摘摘要要要

動態二元碼翻譯是虛擬化技術的核心技術因為它可用來加速指令集模擬。 對於動態二元

碼翻譯器而言，其關鍵在於所翻譯的二元碼的質量， 以及是否可以在程式執行過程找到

再優化增進效能的程式區段。 在這論文中，我們呈現一個可重置的二元碼翻譯系統，此

系統可產生高效能的動態二元碼翻譯器。 我們另提出二種執行熱區偵查方法來增加動態

二元碼翻譯器的效能。 對一動態二元碼翻譯器而言，其翻譯的二元碼對於效能的影響甚

為重要。故通常我們會對翻譯碼做手動優化。 然而這樣手動優化過的翻譯器是難以重置

到另一系統，因為需要同樣的實作力氣來移植翻譯器到新的平台上。

此論文首先提出一容易重置的二元碼翻譯系統，稱為 LLVM+QEMU (LnQ)， 利用現

有的編譯器技術來產生高效能的動態二元碼翻譯器。與 QEMU 相比， LnQ 在 ARM

到 x86_64 及 x86 到 ARM 的動態二元碼翻譯器上於SPEC CINT2006中有高於2倍的

效能表現。 此外，能否在程式執行過程中偵測出執行程式熱區也是影響效能的一關鍵因

素。 在此論文中我們將指出現今熱區偵測方法不好的地方， 亦即其所偵測的熱區會無法

完全執行，如果這樣的熱區很多的話將會導至效能不佳。 我們首先提出測量此一弱點的

方法來證明此弱點真的存在。進而我們再提出一改進此弱點的方法。 我們在此論文中提

出一輕量級的熱區偵測技術稱為「Early-Exit Guided Region Formation (EEG)」。

EEG 能持續地尋找出無法完全執行的熱區並將它與其他熱區合併來改進效能。 這方

法對於 ARM 到 x86_64 的動態二元碼翻譯器能有效改進之前的方法約23%。對於

x86_64 到 ARM的翻譯器約有11% 我們最後提出另一種以程序為單位的熱區偵測方

法。並比較EEG與此方法的優劣。

vii

Contents

口口口試試試委委委員員員會會會審審審定定定書書書 i

Acknowledgements ii

誌誌誌謝謝謝 iv

Abstract v

摘摘摘要要要 vii

Contents viii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Retargetability of Dynamic Binary Translators 1

1.2 High Performance of Dynamic Binary Translators 3

1.2.1 Delinquent Trace . 4

1.2.2 Solution 1: Early-Exit Guided Region Formation 5

1.2.3 Solution 2: Trace-Guided Procedure-Based Region Formation 6

1.3 Contributions . 7

1.4 Dissertation Organization . 9

2 The LLVM+QEMU (LnQ) Framework 10

2.1 LnQ: Design and Implementation 10

2.1.1 LLVM Intermiediate Representation 11

2.1.2 IR Library and Instruction Description Table 12

2.1.3 LLVM IR Translator . 13

2.1.3.1 Register Mapping 14

viii

Contents ix

2.1.4 Emulation Module . 16

2.2 Runtime Optimizations . 17

2.2.1 Block Linking . 18

2.2.2 Indirect Branch Target Caching 19

2.2.3 Shadow Stack . 20

2.3 Performance Evaluation . 22

2.3.1 Experiment Settings . 24

2.3.2 Performance of LnQ . 24

2.3.3 Performance of LLVM Just-In-Time Compiler 25

2.3.3.1 Execution Time Spent in Code Cache 26

2.3.3.2 Translation Overhead 27

2.3.4 Optimization E�ects of Runtime Optimization 28

2.3.5 Slowdown of LnQ Compared to Native Run 30

2.3.6 Performance of ARM-to-IA32 LnQ 32

2.3.7 Performance of IA32-to-ARM LnQ 32

2.4 Concluding Remarks . 33

3 The Early-Exit Guided Code Region Formation 35

3.1 Region-Based Multi-threaded Dynamic Binary Translator 35

3.2 Early Exit Index and Early-Exit Guided Region Formation 38

3.2.1 Trace Formation Algorithm 38

3.2.2 Early Exit Index . 39

3.2.3 Early-Exit Guided Region Formation 40

3.2.4 Spill Index of a Region . 41

3.2.5 Region Versus Trace . 42

3.3 Performance Evaluation . 44

3.3.1 Performance Results of SPEC CPU2006 46

3.3.1.1 Performance of NET∗ 46

3.3.1.2 Performance of EEG Region Formation 47

3.3.2 Early Exit Index . 49

3.3.3 Performance Pro�les of EEG 52

3.3.4 E�ect of The Threshold of Spill Index 52

3.3.5 Statistics of Selected Traces and Regions 54

3.3.6 Performance Comparison to Native Execution 58

3.3.7 Performance of EEG on IA32-to-ARM LnQ 58

3.4 Concluding Remarks . 58

4 Trace-Guided Procedure-Based Code Region Formation 61

4.1 Architecture of Dynamic Binary Translator 61

ix

Contents x

4.2 Procedure Compilation in Dynamic Binary Translation 65

4.2.1 Call-Return Problem . 66

4.2.2 Code/Data Distinction . 68

4.2.3 Targets of Indirect Branch 69

4.3 Performance Evaluation . 70

4.3.1 Experimental Environment and Settings 70

4.3.2 Experimental Results . 72

4.3.2.1 Overview of the Performance 72

4.3.2.2 Detailed Performance of Procedure-Based DBT . . 73

4.4 Concluding Remarks . 73

5 Related Works 76

5.1 Related Works of Dynamic Binary Translation (DBT) 76

5.1.1 QEMU . 76

5.1.2 Retargetable Dynamic Binary Translators 77

5.1.3 Other Dynamic Binary Translators 79

5.2 Related Works of Region Formation 81

5.2.1 NET . 81

5.2.2 Most Recently Executed Tail2 81

5.2.3 NETPlus . 82

5.2.4 Last-Executed Iteration (LEI) 82

5.3 Related Works of Language Virtual Machines 83

5.3.1 Method-Based Language Virtual Machines 83

5.3.2 Trace-Based Language Virtual Machines 85

6 Conclusion and Future Works 86

6.1 Conclusion . 86

6.2 Future Research Direction . 88

Bibliography 89

x

List of Figures

1.1 An example of delinquent traces of NET in 456.hmmer. 4

2.1 The architecture of LnQ framework 11

2.2 Illustration of the design and execution �ow in LnQ translation
module. 11

2.3 Illustration of the translation process. 13

2.4 Illustration of the control �ow in emulation module. 16

2.5 Illustration of execution steps of block linking optimization. 19

2.6 Illustration of execution steps of indirect branch target caching op-
timization. 20

2.7 Illustration of execution steps of shadow stack optimization. 22

2.8 Speedup factors of LnQ in of SPEC CPU2006 compared with QEMU. 23

2.9 Speedup factors of execution time spent in code cache of LnQ com-
pared to QEMU. The numbers above bars are 26

2.10 Performance of block linking, IBTC, and shaow stack 29

2.11 The reduction of percentage of dispatch time. 30

2.12 The slowdown of LnQ and QEMU compared with native run. . . . 31

2.13 Performance of ARM-to-I32 LnQ 32

2.14 Performance of IA32-to-ARM LnQ 33

3.1 Control �ow of execution threads and optimization threads 36

3.2 Illustration of region formation. 43

3.3 Performance results of NET∗ and EEG compared to NET in IA32
and ARM SPEC CINT2006. 45

3.4 Performance results of NET∗ and EEG compared to NET in SPEC
CFP2006. 45

3.5 Traces/regions generated by NET, NET∗ and EEG for a loop in
function quantum_toffoli of ARM 462.libquantum. 48

3.6 Measured Early Exit Index in NET∗ and the performance improve-
ment of EEG. 50

3.7 E�ect of spill index of IA32 CINT2006. 53

xi

List of Figures xii

3.8 E�ect of spill index of ARM CINT2006 54

3.9 Normalized execution time of EEG compared to native execution. . 57

3.10 Normalized execution time of EEG compared to native execution
on ARM host. 59

4.1 Control �ow of main thread and optimization threads 63

4.2 When a new fragment is generated, we update the mapping table
and the links between the new and old fragments. 65

4.3 Illustration of an example of Call-Return problem. 68

4.4 Overview of performance of Procedure-Based LnQ. 72

4.5 Detailed Performance of Procedure-Based X86-to-X86_64 LnQ. . . 73

4.6 Detailed Performance of Procedure-Based X86-to-ARM LnQ. 74

4.7 Detailed Performance of Procedure-Based ARM-to-X86_64 LnQ. . 74

xii

List of Tables

2.1 Translation overheads of LnQ and QEMU. The number of guest
basic blocks, and total running time and translation time in seconds
are listed for each benchmarks. The numbers in parentheses are the
percentages of translation time versus total running time. 27

3.1 Reduced memory/branch instructions and cache misses of EEG for
CINT2006 benchmarks. 51

3.2 Number of traces/Regions and average blocks in NET∗ and EEG of
IA32 CINT2006. 55

3.3 Number of merges and percentage of execution time of regions in
EEG of IA32 CINT2006. 55

3.4 Number of traces/Regions and average blocks in NET∗ and EEG of
ARM CINT2006. 56

3.5 Number of merges and percentage of execution time of regions in
EEG of ARM CINT2006. 56

xiii

Chapter 1

Introduction

1.1 Retargetability of Dynamic Binary Translators

Dynamic binary translation is a just-in-time (JIT) compilation from binary code

of a guest ISA to a host ISA, which is widely used for transparent performance

optimization [1�4], program instrumentation, security monitoring [5], supporting

legacy applications, and system virtualization [6]. For example, Dynamo [7] uses

dynamic binary translation techniques to improve execution performance. Dy-

namoRIO [8] PIN [9], Valgrind [10], Strata [11, 12], and Umbra [13] uses dynamic

binary translation techniques for program instrumentation.

If the guest ISA is di�erent from the host ISA, we refer to it as a cross-ISA bi-

nary translator. Cross-ISA binary translators enable application to migrate from

one hardware platform to another, or to provide a virtualized platform to run an

application without the speci�c hardware. For example, FX!32 [14, 15] enables

1

Chapter 1. Introduction 2

application to migrate from IA-32 to Alpha, and IA-32EL [16] enables applica-

tion to migrate from IA-32 to Itanium. Other migration examples include [17�

22]. QEMU [23], VmWare [24], and other virtulization systems [25�28] use binary

translation technique to provide server virtualization.

It takes tremendous e�orts to build a cross-ISA translator because a cross-ISA

translator must prepare a carefully hand-optimized translation template [14, 16]

for each guest instruction. As a result it takes the same amount of e�ort to build

a new cross-ISA translator because of the preparation of these carefully hand-

optimized translation templates.

The di�culty in building cross-ISA translators motivates us to develop the LLVM [29]

+ QEMU (LnQ) framework. The goal of LnQ framework is to enable the process

of building high performance and retargetable dynamic binary translators with

existing optimizers and code generation backends. We address the retargetability

issue by translating the guest instructions into a machine-independent interme-

diate representations (IR), which can be used by other compiler modules, e.g., a

code optimizer.

With existing mature optimization techniques available from compiler backend,

the quality of the translated code can be greatly improved. To further improve

performance without sacri�cing retargetability, we show that many binary trans-

lation optimizations can be implemented at the machine-independent IR level, so

that they only need to be implemented once in LnQ and can be applied to every

translator built within LnQ framework thereafter.

2

Chapter 1. Introduction 3

1.2 High Performance of Dynamic Binary Trans-

lators

Dynamic binary translators need to detect hot regions of guest applications at

runtime in order to get high performance. The quality of the detected hot regions

determines the extent and the types of optimization opportunities that can be

exposed to dynamic binary translators, and thus, determines the ultimate quality

of the �nal optimized code.

Nowadays, most dynamic binary translators target traces, i.e. frequently executed

code paths, as code regions to be translated and optimized. Those dynamic bi-

nary translation systems [4, 8, 30] follow the well-known runtime trace formation

algorithm, called Next-Executing-Tail (NET), developed in HP Dynamo [7]. The

trace-based region formation approaches have also gained much attention in dy-

namic scripting languages [31, 32] and high-level language virtual machines [33�35]

because they provide more optimization opportunities and generate higher quality

codes.

Without expensive path pro�ling at runtime, NET forms a trace by selecting the

basic blocks1 that are most recently executed with minimal pro�ling overhead.

The idea is that when a basic block becomes hot, it is likely that the following

basic blocks are also hot.

1A basic block is a sequence of instructions terminated by a control transfer instruction

3

Chapter 1. Introduction 4

80522be 80522e580522ce

8052280

80522be

80522ce

80522e5

80522ce8052280

early exit

trace head

early exit target
13% 7%9%

81%

26% 20% 28% 52%

18% 98%

(b) Traces generated by NET

(a) CFG of the for−loop in 456.hmmer.

Figure 1.1: An example of delinquent traces of NET in 456.hmmer.

1.2.1 Delinquent Trace

As a hot trace is formed by cascading a sequence of hot basic blocks, there will be a

conditional branch at the end of each member basic block, referred to as the early

exit of the trace. DBTs needs to generate compensation code at each of such early

exits to handle the case when the conditional branch is taken [6]. If early exits are

frequent, then not only will such extra compensation code need to be executed,

but also program execution will spend more time in the slow binary interpreter

or in unoptimized code regions. The bene�t of trace optimization by the DBT is

thus lost. Traces with frequently taken early-exits are called delinquent traces.

Since NET does not use edge pro�ling [7] information to select next basic blocks,

early exits may occur when program behavior changes in di�erent execution phases.

For example, as shown in Figure 1.1(a), the function P7Viterbi in 456.hmmer

4

Chapter 1. Introduction 5

(a SPEC CINT2006 CPU benchmark) contributes most of its execution time.

P7Viterbi updates global variables according to di�erent conditions in a perfor-

mance critical for-loop.

NET splits the for-loop into four traces as shown in Figure 1.1(b). Each large rect-

angle represents a trace. The execution time of each trace, shown as the percentage

of total execution time, is noted on the left top corner of the trace. The probability

of an early exit being taken is also noted on each exit edge. Figure 1.1(b) shows

a trace for a loop starting at 0x80522be. The probability of taking an early exit

during the loop execution is 98%2. Such a high probability for an early exit will

certainly diminish the performance bene�t expected from the loop trace.

1.2.2 Solution 1: Early-Exit Guided Region Formation

To accomplish this, this dissertation proposes a light-weight technique called Early-

Exit Guided (EEG) region formation to detect and merge delinquent regions. For

example, The EEG region formation technique will merge those four traces into a

large code region shown in Figure 1.1(a), which can improve its performance by

68%.

There are two key issues in EEG: (1) which regions should be merged, and (2)

when to merge those regions. A simple approach for the �rst issue is to instrument

counters into all traces. However, this approach is prohibitively expensive. Instead,

we employ hardware-assisted dynamic pro�ling to select hot regions and to avoid

monitoring and merging unimportant regions. To address the second issue, we

2Section 3.3 describes the experiment environment and methodology

5

Chapter 1. Introduction 6

monitor regions by instrumenting counters to detect early exits. When the counter

exceeds a threshold, we merge this region with the region that begins at the branch

target of the early exit. We also employ a heuristic to decide whether it is bene�cial

to merge the selected regions or not. We will not merge regions if it will cause too

much register pressure; i.e. too many store/load operations to spill and �ll values

between registers and the stack (see Section 3.2.4).

We also extent LnQ to a multi-threaded DBT system. In such a system, there

is a pool of compilation threads. Each thread is capable of taking one trace as

a compilation (i.e. translation and optimization) unit. Similar to the work of

Bohm et al. [30], we separate compilation tasks from execution tasks to hide the

compilation overhead. This is especially important because compiling procedures

could induce large overhead if not o� loaded from the execution.

1.2.3 Solution 2: Trace-Guided Procedure-Based Region For-

mation

By forming a larger code region beyond traces to an entire procedure, we can

resolve the ine�ciency issues of delinquent traces since the early exits of traces

will be likely within the same procedure. Furthermore, as hot traces are usually

identi�ed more quickly than hot procedures, we could form and optimize traces

to improve performance before hot procedures are identi�ed. Identifying hot pro-

cedures basically uses the same pro�le information collected for trace formation.

No additional pro�ling overhead is incurred. These advantages motivate us to

integrate trace-guided optimizations into a procedure-based DBT.

6

Chapter 1. Introduction 7

Unlike traces, procedures often contain hundreds of blocks. Such large compilation

scopes can better utilize the power of LLVM backend optimizations, e.g. loop-

based optimizations, for higher quality code. We also identify and resolve issues

that are speci�c to procedure-level compilation in DBT systems. For instance,

information on target blocks of indirect branches are not readily available in binary,

as opposed to high-level language virtual machines in which richer knowledge about

procedures is available to their JIT compilers.

We also identify a Call-Return problem of procedure-based dynamic binary transla-

tion, in which a guest call instruction could make the block at its returned address

unreachable. We solve this problem by making the unreachable block an entry

block of the translated procedure and make it reachable (see Section 4.2.1).

We also propose two feedback-directed optimizations on procedures (see Sec-

tion ??). The �rst optimization is Trace-Guided Block Reordering, in which it

uses frequently-taken paths to order the basic blocks in translated procedures.

The other optimization is Trace-Guided Partial Inlining, in which blocks of the

taken paths in a called procedure are included using hot traces detected during

hot trace-formation, as opposed to using meta-data annotated in byte code in

Java [36].

1.3 Contributions

This dissertation makes the following major contributions:

7

Chapter 1. Introduction 8

• This dissertation presents the design and implementation of the LnQ frame-

work, which can build high performance multi-threaded trace-based/procedure-

based dynamic binary translators. We introduce several novel approaches to

build high performance dynamic binary translators with existing compiler

modules. LnQ dynamic binary translators can o�-load compilation overhead

to other cores and allow more aggressive and sophisticated optimizations

to be done on the larger code regions during execution. We build x86-to-

x86_64, ARM-to-x86_64, x86-to-ARM, ARM-to-ARM binary translators

to demonstrate the performance of LnQ.

• This dissertation identi�es delinquent traces, and shows that many SPEC

CINT2006 benchmarks su�ers from the ine�ciency of traces. Our experi-

mental results show that there is a substantial amount of delinquent traces,

and that more than 100 early exits are taken for every million executed

instructions in 65% of SPEC CINT2006.

• This dissertation presents an Early-Exit-Guided region formation algorithm

(EEG) that uses hardware-assisted dynamic pro�ling and instrumented soft-

ware counters to detect and merge delinquent traces/regions into larger re-

gions to resolve the e�ciency problem of delinquent traces.

• This dissertation also presents thread-guided procedure-based region forma-

tion algorithms in dynamic binary translators. We identify a number of

important issues in such a system and propose promising solutions to these

issues. Two feedback-directed optimizations for procedures are proposed to

leverage runtime pro�le information collected during trace formation and

8

Chapter 1. Introduction 9

optimization. The Trace-Guided Block Reordering approach guides the or-

dering of basic blocks in procedures according to frequently-taken paths de-

tected during trace formation. And Trace-Guided Partial Inlining approach

inlines hot code regions found during trace optimization.

1.4 Dissertation Organization

This dissertation has six chapters. Chapter 2 presents the design and imple-

mentation of LnQ framework including how we implement 3 retargetable runtime

optimizations in LnQ. Chapter 3 shows techniques to detect delinquent traces

and presents the EEG region formation algorithm for delinquent traces. Chap-

ter 4 presents procedure-based region formation algorithms. Chapter 5 describes

related works in dynamic binary translation and region formation. Chapter 6 pro-

vides concluding remarks to summarize our key results and insight presented in

this dissertation, and suggestion for future researches in region formation.

9

Chapter 2

The LLVM+QEMU (LnQ)

Framework

2.1 LnQ: Design and Implementation

This section describes the design of LnQ � a framework that builds high perfor-

mance dynamic binary translators. The LnQ framework consists of two modules

- an emulation module and a translation module, as shown in Figure 2.1. We

use QEMU [37] as our emulation module, and build the translation module with

LLVM [38] compiler infrastructure.

We �rst describe the design and execution �ow of the translation module. Our

translation module contains an LLVM IR translator, IR libraries, and an instruc-

tion description table of guest ISAs, as shown in Figure 2.2.

10

Chapter 2. LnQ Framework 11

Loader
IR Code
Generator

Runtime
Optimizer

System Call
Manager

Exception
Manager

Engine
Dispatch

Guest Mem
Image Cache

TBB CodeGuest CPU
State

IR Translator

LnQ System Architecture

Emulation Module Translation Module

Manager
Code Cache

Guest ISA
IR Library and
Description Table

Figure 2.1: The architecture of LnQ framework

Description
Instruction

Table

101010101

010100110

101011011

010101000

Guest BB

Translator
LLVM IR

LLVM IR Block

Guest ISA Specific

IR Libray

Figure 2.2: Illustration of the design and execution �ow in LnQ translation
module.

2.1.1 LLVM Intermiediate Representation

We choose LLVM virtual instruction set as our intermediate representation (IR)

of guest instructions for the following three reasons. First, the LLVM compiler

infrastructure provides modular and reusable components for building an e�cient

just-in-time (JIT) runtime system. The LLVM infrastructure reduces the time

11

Chapter 2. LnQ Framework 12

and cost to develop LnQ framework. Second, LLVM is an open source project

and is well-documented. We believe that an open source project greatly improves

component interoperability and enables future extension of our research work.

Thirdly, LLVM IR is well-de�ned and can be easily manipulated by a rich set of

API.

2.1.2 IR Library and Instruction Description Table

To support a new guest ISA in LnQ framework, we need to provide LnQ the IR

library and the instruction description table of the guest ISA. The IR library con-

sists of pre-built LLVM IR templates for every guest instruction. These templates

are referred to as translation functions. Each translation function implements

the semantics of a guest instruction in C, and is compiled into LLVM IR with

LLVM-enabled compliers, such as clang, llvm - gcc.

In addition to IR library we also need to provide an instruction description table

that describes the properties of parameters related to the translation function

of each guest instruction. A property of a parameter contains the type of the

parameter (e.g. a constant or a register ID), and how to obtain the parameter

(e.g. from the immediate operand of the decoded guest instruction).

This property approach improves guest ISA retargetability because guest ISA spe-

ci�c IR libraries and instruction description tables can be �plugged into� an LLVM

IR translator. To support a new guest ISA, we only need to implement the se-

mantics of all guest instructions with LLVM IR. Since the translation functions

12

Chapter 2. LnQ Framework 13

are written in C rather than in LLVM IR, it becomes much easier to support a

new guest ISA in our LnQ framework.

2.1.3 LLVM IR Translator

The LLVM IR translator translates guest instructions into LLVM IR one guest

basic block at a time, and passes the LLVM IR to LLVM JIT to generate host

instructions. Figure 2.3 Illustrates all steps of the translation �ow.

inst ()i

inst1
inst2

IR1

IR2 IR2

IRN’

IR1

inst ()i
inst i

instn

...

Guest Register Mapping Table

...

one at a time

Process an

instruction Inline

Update guest

register mapping

...
...

RegisterRegister
LLVMGuest

host binary

Generate

T
ra

n
s.

 B
lo

ck

Fetch
Translation
Function
inst ()i

Guest

Basic

Block

Guest Inst.

IR Library

Figure 2.3: Illustration of the translation process.

First the translator creates an empty LLVM function as the container of the gener-

ated IRs. Then the translator decodes a guest basic block from the starting address

until it encounters a control transfer instruction, such as calls and branches. For

13

Chapter 2. LnQ Framework 14

each decoded instruction the translator fetches its translation function from IR li-

brary and supplies the needed arguments according to the instruction description

table.

The translator creates a call instruction to the translation function after generating

its arguments, inlines the translation function into the function body, then generate

optimized code. After inlining all translation functions of guest instructions in

current guest basic block, the generated LLVM function is sent to an optimization

pass manager for optimization, and then sent to the code generator to generate

host instructions. The LLVM inline API provides several optimizations to the

inlined LLVM IRs, such as Constant Propagation and Unreachable Basic Block

Elimination.

2.1.3.1 Register Mapping

Register mapping maps guest registers to host registers in order to eliminate re-

dundant loads and stores of guest registers. If we map guest registers to host

registers, then we can retrieve guest register values from host registers, and only

need to update guest registers values (kept in memory) when we leave a translated

block.

We map guest registers to LLVM registers, and let LLVM register allocator to map

LLVM registers to host registers. However, LLVM IR must follow Static Single

Assignment (SSA) form in which each LLVM register can only be de�ned once.

As a result we need a mapping table to map each guest register to its current

14

Chapter 2. LnQ Framework 15

LLVM register, so that we can determine which LLVM register has a particular

guest register from the mapping table.

The LLVM IR translator maintains the mapping table as follows. Initially the

mapping table is empty. If we cannot �nd the corresponding LLVM register of a

guest register in the mapping table, then the guest register was not loaded yet. The

translator then creates a load instruction to load the guest register from memory

to an LLVM register, and updates the mapping table so that future references to

that guest register will be mapped to the LLVM register.

The translator looks up the mapping table mainly to determine which LLVM

registers to use when constructing the arguments of a translation function. After

constructing the arguments, the translator inlines the translation function.

If an inlined function, which is compiled by a LLVM-enabled complier, modi�es

guest registers, then according to SSA constraints on LLVM register, the LLVM-

enabled compiler places the new value of the guest register into another LLVM

register. Therefore we need the following information to update the mapping

table correctly � the modi�ed guest registers and the new LLVM register this

guest register should be mapped to.

Our solution is to associate the information of modi�ed guest register and new

LLVM register with every translation function. When the translator inlines the

translation functions, it retrieves these information and will be able to update the

mapping.

15

Chapter 2. LnQ Framework 16

Exception Manager

System Call Manager

Load guest code image

Dispatch
Engine

Lookup TBB Translator

Software Code Cache

Address
Next

Miss

Emit TBBHit

Context Switch

Figure 2.4: Illustration of the control �ow in emulation module.

2.1.4 Emulation Module

Figure 2.4 illustrates the execution �ow of a dynamic binary translator. First

the loader loads the guest application image into memory. The guest code image

consists of basic blocks that end with a control transfer instruction, such as calls,

branches, etc. Currently LnQ uses guest basic block as the unit for translation

and execution. The emulation module then initializes the guest CPU state which

represents the state of the guest machine processors. For example, an x86 guest

CPU state contains program counter, general purpose registers, and the e�ags

register, etc.

After initialization, the dispatch engine tries to locate the translated basic block

of the current guest basic block, pointed by the guest program counter, with a

directory to map the address of guest basic blocks to memory locations of their

16

Chapter 2. LnQ Framework 17

translated blocks in code cache. If the directory reports a hit for the current guest

basic block, the control transfers to the memory location of its translated block

in code cache. If we cannot �nd the translated block for the current guest basic

block, the control transfers to the translation module, which will translate the

current guest basic block and add an entry into the directory.

After the translated basic block is executed, the execution control transfers back

to the emulation engine, which is referred to as context switching. The process is

repeated until program terminates.

2.2 Runtime Optimizations

We can also integrate runtime optimizations that manipulate LLVM IRs to fur-

ther improve the performance in LnQ framework. Those optimizations should be

retargetable and not depend on either guest ISA or host ISA. Retargetability is an

important goal of LnQ framework, and we expect those optimization techniques

can be reused in all binary translators for all ISAs.

To demonstrate this ability, we implemented three classic optimizations that re-

duce the frequency of context switch between emulation engine and code cache.

The three optimizations are block linking, indirect branch target caching, and

shadow stack. We describe each of them in the following sections.

17

Chapter 2. LnQ Framework 18

2.2.1 Block Linking

Block linking [7] links translated blocks in code cache so that program execution

transfers directly from one code block to another so as to eliminate expensive

context switching. Block linking targets at blocks that have a direct branch, a

conditional direct branch, or a direct call instruction as the last instruction. We

use �exit� to refer to these jump or call instruction that are at the end of a block,

and each exit has an unique exit ID, and the destination of an exit is refer to as

branch target.

Block linking can be either proactive or lazy. Proactive block linking links trans-

lated basic blocks whenever a new block is generated. A lazy block linking links

translated basic blocks when a context switch occurs.

We choose lazy block linking for two reasons. First, lazy block linking links trans-

lated basic blocks only when the execution actually goes from one block to another.

Second, when a new block is generated, proactive block linking must update the

branch targets of all exits that go to the newly generated block, therefore we need

a data structure that maps branch address of exits to the starting address of trans-

lated basic blocks. In contrast lazy block linking does not require this extra data

structure, and will not incur extra maintenance overheads. Further comparisons

between proactive and lazy block linkings can be found in [8, 39].

We implement block linking as follows. Before an execution thread leaves a block

it stores the exit ID of the block in a speci�ed thread-private memory location.

Then the emulation engine locates the translated basic block pointed by the branch

target, retrieves the exit ID that we just stored, then uses this exit ID to look into

18

Chapter 2. LnQ Framework 19

#8 0xXXYYZZ

#8
Last Block

Current Block

address

Code Cache1. Save2. Lookup table

3. Find
4.

Insert
jmp

ex
it ID

Exit−ID−To−Address Table

Figure 2.5: Illustration of execution steps of block linking optimization.

an exit-id-to-address mapping table that maps exit id to the address of an exit in

code cache.

The entries of exit-id-to-address table is added when LLVM JIT generates host

instructions for exits. Then the emulation engine will be able to patch the branch

target of the exit of the block the execution thread just left. Please refer to

Figure 2.5 for an illustration of our implementation.

2.2.2 Indirect Branch Target Caching

To further reduce the context switches, We use the indirect branch target caching

(IBTC) to fast look up whether the target of the indirect branch has a translated

basic block in code cache without returning to emulation engine. We add a IBTC

lookup function calls at the ends of those blocks that end with indirect jumps and

indirect calls instructions.

The IBTC contains a shared cache as shown in Figure 2.6. The shared cache

is implemented as a direct-access hash table with 1K entry to cache all indirect

19

Chapter 2. LnQ Framework 20

branches. The hash table is indexed by the last 10 bits of the guest target address.

Given a guest target address, we use the last 10 bits as the key to index the shared

cache. If the comparison successes, the control then transfers to the memory

location of the translated basic block. Otherwise, the control transfers back to the

emulation engine, and updates the shared cache after locating the TBB.

Host TargetGuest Target

Emulation Engine
Back to

Find TBBUpdate Cache

L
o

o
k

up Hit
Jmp to Host Target

Ind. br

Trns.

Basic

Block

M
is

s

Figure 2.6: Illustration of execution steps of indirect branch target caching
optimization.

2.2.3 Shadow Stack

Shadow stack (SS) optimizes function return mechanism in binary translation, and

was �rst introduced in FX!32 [14]. Despite that a function return instruction can

be viewed as an indirect branch, it can be optimized without indirect branch cache

lookup. This is because the guest return address is known when the translator

translates a guest call instruction since the call pushes the guest return address

onto the stack.

If the translated basic block of the guest return address exists in code cache,

the translator can push the memory location of the translated basic block onto a

20

Chapter 2. LnQ Framework 21

shadow stack, from which we can fetch the host return address when the function

ends without looking up indirect branch cache or going back to emulation engine.

However, if the block of the guest return address is not translated, we push the

address that goes back to emulation engine.

The details of our implement of shadow stack are as follow. We assign a memory

location, called address box, to each guest call instruction, which stores either

the host return address or the return address back to emulation engine. If the

guest return address does not yet have its translated basic block in code cache,

we marks the address box as untranslated and stores the return address back

to emulation engine in the address box. Then, when the translator generates a

translated basic block, it checks whether there is a address box that should store

the address of this translated block but is marked untranslated. If such address box

is found, the translator marks the address box as translated and stores the address

of translated basic block into the address box. For each guest call instruction, we

insert instructions to push the content of its address box on top of the shadow

stack. Please refer to Figure 2.7 as an illustration.

As for each guest return instruction, we insert pop shadow stack instructions in the

end of the translated block. Note that we need to perform a check to see whether

the guest return address is matched to the one stored on top of the shadow stack.

If they are matched, the execution directly transfers to the address that is popped

from the shadow stack. If the addresses are not matched, we �ush the shadow

stack since the shadow stack is no longer valid, and the execution transfers back

to the emulation engine.

21

Chapter 2. LnQ Framework 22

Trns.

Basic

Block

Trns.

Basic

Block

Call Ret
PopPush Shadow Stack

Read host

: Host return address

return address jump to

Address Box

Figure 2.7: Illustration of execution steps of shadow stack optimization.

2.3 Performance Evaluation

We conduct experiments to evaluate LnQ by building an x86-to-x86_64 dynamic

binary translator with the LnQ framework. We use QEMU version 0.13.0 as the

emulation engine module, and use LLVM version 2.8 to implement the translation

module.

LnQ uses an LLVM class MCDisassembler to disassemble x86 machine instruc-

tions. We use X86GenDisassemblerTables.inc to generate the prototypes of

translation functions and the instruction property table. We also use template

functions to speedup the implementation of translation functions. For example,

we use the add() template function to implement variations of add instructions

for di�erent types of parameters. We have implemented all instructions needed by

SPEC CPU 2006.

We modi�ed the LLVM library slightly to meet the needs of the emulation module.

We instruct the register allocator not to use a speci�ed host register which holds

22

Chapter 2. LnQ Framework 23

0%

50%

100%

150%

200%

250%

300%

462.libquantum

429.mcf

456.hmmer

403.gcc

401.bzip2

473.astar

458.sjeng

445.gobmk

483.xalancbmk

471.omnetpp

400.perlbench

464.h264ref

geo_mean

S
p

e
e

d
u

p

QEMU
LnQ

1.12X 1.17X 1.18X
1.32X

1.43X
1.52X

1.64X
1.74X

2.00X

2.21X
2.33X

2.54X

1.62X

2.8(a): Results of Integer Benchmarks

0%

100%

200%

300%

400%

500%

450.soplex

482.sphinx3

465.tonto

433.milc

434.zeusmp

481.wrf

444.namd

459.GemsFDTD

453.povray

410.bwaves

416.gamess

435.gromacs

437.leslie3d

447.dealII

454.calculix

470.lbm

436.cactusADM

geo_mean

S
p

e
e

d
u

p

QEMU
LnQ

2.2X
2.4X 2.6X

2.7X 2.8X 2.8X 2.9X 2.9X
3.1X 3.2X 3.2X 3.2X 3.3X 3.4X 3.4X 3.5X

4.8X

3.0X

2.8(b): Results of Floating Point Benchmarks

Figure 2.8: Speedup factors of LnQ in of SPEC CPU2006 compared with
QEMU.

the base memory address of the guest CPU state. This is important because

a dynamic binary translator needs one host register to hold the base address of

the guest CPU state during the execution. For example, QEMU uses r14 as the

CPU state register in x86_64 host machine. If the register allocator allocates r14

register, the content of r14 will be overwritten and the application will crash.

23

Chapter 2. LnQ Framework 24

We use the default optimization option provided by LLVM Just-In-Time compiler.

The optimization level invoked by this default option is equivalent to GCC �-O2�.

2.3.1 Experiment Settings

Our experiments were conducted on an Intel Core2 CPU 975 @ 3.33GH machine

with 12GB of memory. The operating system is 64 bit Gentoo distribution Linux.

We use SPEC CPU 2006 as our benchmarks. All benchmarks are compiled with

GCC 4.3.4 with �-O2 -m32� �ags.

We run all benchmarks via the standard SPEC runspec script with con�guration

�les. We run each benchmark three times with reference inputs and take the

average as the experiment result. We compare the performance of our LnQ with

QEMU 0.13.0.

2.3.2 Performance of LnQ

We �rst compare the runtime performance of LnQ with QEMU. The results are

shown in Figure 2.8 where Figure 2.8(a) shows results of integer benchmarks and

Figure 2.8(b) shows results of �oating point benchmarks. The Y-axis is speedup

factor of running time of LnQ compared with QEMU.

As shown in Figure 2.8(a), the speedup factors range from 1.12X to 2.54X, and

LnQ is 1.62 times faster than QEMU on average for integer benchmarks. The

speedup factors improve signi�cantly in �oating benchmarks. For SPEC CFP

24

Chapter 2. LnQ Framework 25

2006 benchmarks, the geometric mean of speedup factors is 3.02X compared to

QEMU. The speedup factors range from 2.24X to 4.8X.

The main reason of this signi�cant improvement is due to insu�cient translation

ability of QEMU. The QEMU translator, called Tiny Code Generator (TCG),

does not support �oating point operations yet [40]. As a result TCG translates all

�oating point instructions into helper function calls. On the other hand, the LLVM

backend used in LnQ could generate host �oating point instructions directly, and

hence we gains much performance improvement than QEMU.

2.3.3 Performance of LLVM Just-In-Time Compiler

In this section, we evaluate the performance of LLVM Just-In-Time (JIT) compiler

used in LnQ. As described in Section 2.1.4, the total running time of a dynamic

binary translator can be divided into three portions: the dispatch time, the trans-

lation time and the execution time spent in code cache. Therefore, in the following

two sections, we �rst evaluate the execution time spent in code cache, and then

we evaluate the translation time of LLVM JIT.

Note that, for the sake of simplicity of presentation, we list only results of repre-

sentative subset of SPEC 2006 as suggested in [41] in following experiments. We,

however, still show the geometric means derived from all benchmarks of SPEC

CINT 2006 and SPEC CFP 2006.

25

Chapter 2. LnQ Framework 26

0%

100%

200%

300%

400%

500%

libquantum

xalancbmk

perlbench

astar
geo_mean

dealII
povray

calculix

leslie3d

lbm cactusADM

geo_mean

S
p

e
e

d
u

p

SPEC CINT SPEC CFP

QEMU
LnQ

1.0X 1.1X 1.2X 1.2X 1.1X 1.1X

1.5X

2.1X

2.9X

3.7X

4.7X

2.4X

Figure 2.9: Speedup factors of execution time spent in code cache of LnQ
compared to QEMU. The numbers above bars are

2.3.3.1 Execution Time Spent in Code Cache

We begin by evaluating the execution time of LnQ and QEMU. To be a fair

comparison, we turn o� all the runtime optimizations used in LnQ and QEMU.

We turn o� Block Linking, IBTC, and Shadow Stack in LnQ, and Block Linking

in QEMU, which is only runtime optimization in QEMU. We pro�le the execution

time by insert timing function before entering code cache and after exiting code

cache. The results are shown in Figure 2.9.

From Figure 2.9, we see the execution time spent in code cache of LnQ improves

about 10% in integer benchmarks and about 135% in �oating point benchmarks.

The signi�cant improvement of �oating point benchmarks is again contributed by

translation ability of LLVM JIT as explained in previous section. The improve-

ment of translation quality in integer benchmarks is not as expected. Thus, the

major improvement of integer benchmarks shown in Figure 2.8 can be contributed

26

Chapter 2. LnQ Framework 27

Benchmarks Blocks
LnQ QEMU

Total Translation Total Trns.

C
IN
T

perlbench 57592 1819 54.8 (3.0%) 4240 0.22
libquantum 2801 1825 3.0 (0.2%) 2051 0.01
astar 7970 1180 11.8 (0.7%) 1798 0.04
xalancbmk 29065 1208 27.6 (2.3%) 2421 0.12
geo. mean of trns. .16% 0%

C
F
P

leslie3d 6074 3147 10.6 (0.2%) 10344 0.03
calculix 14992 9871 18.6 (0.2%) 33622 0.09
cuctusADM 9295 5650 10.6 (0.2%) 27114 0.04
dealII 14976 2017 16.5 (0.8%) 6814 0.07
lbm 2594 2834 2.9 (0.1%) 9841 0.01
povray 12434 1644 14.9 (0.9%) 5111 0.05
geo. mean of trns. 0.35% 0%

Table 2.1: Translation overheads of LnQ and QEMU. The number of guest
basic blocks, and total running time and translation time in seconds are listed for
each benchmarks. The numbers in parentheses are the percentages of translation

time versus total running time.

by runtime optimizations, which we further investigate the e�ects of runtime op-

timizations in Section 2.3.4.

2.3.3.2 Translation Overhead

We now evaluate the translation overhead of LnQ. Table 2.1 compares the numbers

of blocks translated in all benchmarks, the translation time, and the translation

time percentage (in parentheses) of LnQ and QEMU. First, the translation time of

LnQ is approximate 1.16% and 0.35% for integer and �oating point benchmarks,

respectively. It is worth for long running guest applications although the trans-

lation time of LnQ is slower than QEMU. For example, it takes 54.8 seconds to

translate perlbench but saves 1819 seconds in running time compared to QEMU.

27

Chapter 2. LnQ Framework 28

However, the translation overheads of LnQ may become intolerable for small jobs.

For example, the translation overhead of 403.gcc benchmark is 28% of total running

time in average. This is due to that there are large number of guest basic blocks,

about 60,000, in 403.gcc benchmark, and the running time is not long enough

to compensate the translation overhead. We have not addressed this problem in

current LnQ framework. In future work, we may adopt two phase translation

approach similar to IA-32 EL [16] into LnQ framework.

2.3.4 Optimization E�ects of Runtime Optimization

We further investigate the e�ects of each runtime optimization techniques � Block

Linking (BL), IBTC, and Shaow Stack (SS). We use LnQ without any runtime

optimization as our baseline. We then evaluate the e�ect of each optimization

by adding one optimization at a time in the order of Block Linking, IBTC, and

Shadow Stack. Note that it is reasonable to present the optimization e�ects with

BL, BL+IBTC, and BL+IBTC+SS combinations because these three optimiza-

tions aim at di�erent cases as described in Section 2.2. The results are shown in

Figure 2.10.

From Figure 2.10, the improvements of runtime optimizations are signi�cant in

integer benchmarks. We calculate the improvement by subtracting the speedup

factor of each optimization combination with its previous one. The average im-

provements are 432%, 78%, and 236% for Block Linking, IBTC, and Shadow Stack,

respectively. These signi�cant improvements of integer benchmarks are because

the integer benchmarks tend to have more complicated control �ow than �oating

point benchmarks. The average improvements of runtime optimizations in �oating

28

Chapter 2. LnQ Framework 29

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

astar
libquantum

perlbench

xalancbmk

geo_mean

cactusADM

lbm leslie3d

calculix

povray

dealII
geo_mean

S
p

e
e

d
u

p

SPEC CINT SPEC CFP

Base
LnQ-BL

LnQ-BL+IBTC
LnQ-BL+IBTC+SS

Figure 2.10: Performance of block linking, IBTC, and shaow stack

benchmarks are 90%, 43%, and 66% for Block Linking, IBTC, and Shadow Stack

respectively.

Because the purpose of these optimizations is to reduce the frequency of going

back to emulation engine, we further investigate the e�ects of each optimizations

by showing the reduction of percentages of dispatch time. The results are shown

in Figure 2.11.

In Figure 2.11, we can see most benchmarks are bene�t from Block Linking opti-

mization, which explains the 432% improvement of Block Linking. As for IBTC

optimization, only benchmarks using indirect branches have performance gain from

IBTC optimization. For example, astar, libquantum, calculix, leslie3d,

lbm and cactusADM have less improvement from IBTC. Shadow Stack also im-

proves most benchmarks.

Two additional notes, the �rst is although the dispatch time of some �oating point

29

Chapter 2. LnQ Framework 30

0%

10%

20%

30%

40%

50%

60%

70%

perlbench

astar
xalancbmk

libquantum

dealII
povray

calculix

leslie3d

lbm cactusADM

P
e

rc
e

n
ta

g
e

 o
f

D
is

p
a

tc
h

 T
im

e

SPEC CINT SPEC CFP

Base
LnQ-BL

LnQ-BL+IBTC
LnQ-BL+IBTC+SS

Figure 2.11: The reduction of percentage of dispatch time.

benchmarks are reduced dramatically, the improvements may not be that signi�-

cant. This is because the dispatch time is not major part of total running time.

For example, There are little dispatch time in cactusADM and lbm benchmarks.

Section, the optimizations also improve the temporal locality of LnQ in that most

program execution are in code cache.

2.3.5 Slowdown of LnQ Compared to Native Run

In the last experiment, we examine the slowdown factors of LnQ compared to the

native runs. For native runs, we compile SPEC benchmarks only with the �-O2�

option without the �-m32� option. The results are shown in Figure 2.12.

From Figure 2.12, the geometric means of slowdown factors in SPEC CINT2006

are 4.00X and 6.49X in LnQ and QEMU, respectively. The slowdown factors

increase in SPEC CFP2006, which are 6.76X and 20.52X in LnQ and QEMU. The

slowdown factors of �oating point benchmarks are larger than those of integer

30

Chapter 2. LnQ Framework 31

0%

200%

400%

600%

800%

1000%

1200%

1400%

429.mcf

473.astar

401.bzip2

462.libquantum

403.gcc

456.hmmer

471.omnetpp

458.sjeng

445.gobmk

464.h264ref

483.xalancbmk

400.perlbench

geo_mean

S
lo

w
d

o
w

n
 F

a
c
to

r

QEMU
LnQ

6.49X

4.00X

2.12(a): Results of Integer Benchmarks

0%

500%

1000%

1500%

2000%

2500%

3000%

3500%

4000%

410.bwaves

450.soplex

437.leslie3d

459.GemsFDTD

482.sphinx3

433.milc

447.dealII

465.tonto

481.wrf

436.cactusADM

434.zeusmp

435.gromacs

453.povray

416.gamess

444.namd

470.lbm

454.calculix

geo_mean

S
lo

w
d

o
w

n
 F

a
c
to

r

QEMU
LnQ

20.52X

6.76X

2.12(b): Results of Floating Point Benchmarks

Figure 2.12: The slowdown of LnQ and QEMU compared with native run.

benchmarks because the �oating point operations in x86 architecture are stack-

like operations, in which LnQ cannot perform register mapping for �oating point

registers. Results in Figure 2.12 shows that there is room for improvement fro

dynamic binary translates.

31

Chapter 2. LnQ Framework 32

Figure 2.13: Performance of ARM-to-I32 LnQ

2.3.6 Performance of ARM-to-IA32 LnQ

In this section, we compare the performance of ARM-to-x86_64 LnQ to QEMU.Results

are shown in Figure 2.13. On average, LnQ has 2.9X slowdown compared to native

run. Compared to QEMU's 8.1X slowdown, LnQ outperforms QEMU about 3.1X.

2.3.7 Performance of IA32-to-ARM LnQ

In this section, we compare the performance of IA32-to-ARM LnQ to QEMU. We

conduct experiments on the Odroid-XU board with ARM Cortex-A15 1.7GHz dual

core CPU and 2GB memory. Results are shown in Figure 2.14. On average, LnQ

has 3X slowdown compared to native run. Compared to QEMU's 6.7X slowdown,

LnQ outperforms QEMU about 2.23X. The results also show LnQ do keep its high

performance in di�erent host CPUs.

32

Chapter 2. LnQ Framework 33

0%

100%

200%

300%

400%

500%

600%

400.perlbench

401.bzip2
403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.lib
quantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

GeoMean

Sl
ow

do
w

n
Ra

tio

QEMU LnQ

17.5X 4.8X 7.0X 2.0X 9.7X 5.3X 10.0X 1.9X 13.8X 8.6X 4.5X 12.0X 6.7X

3.8X

2.4X

5.0X

1.9X

5.2X

2.6X

4.6X

1.6X

3.5X

2.8X

1.9X

3.7X

3.0X

Figure 2.14: Performance of IA32-to-ARM LnQ

2.4 Concluding Remarks

This chapter introduces the LnQ (LLVM+QEMU) framework by which one can

build high performance and retargetable dynamic binary translators with existing

optimizers and code generation backends. In this chapter, we explain the design

and implementation of LnQ framework. We use LLVM compiler infrastructure to

design the IR library and the IR translator in the translation module. We also

describe how to build IR library and the translation process of the IR transla-

tor. We also show how we perform register mapping and retargetable runtime

optimizations in the IR translator.

We evaluate the performance of LnQ by building an x86-to-x86_64 dynamic binary

translator with LnQ framework. The experimental results show 1.62X speedup for

33

Chapter 2. LnQ Framework 34

SPEC CINT2006 and 3.02X speedup for SPEC CFP2006 in average compared to

QEMU. The translation overhead of LnQ is 1.16% of total running time. Also,

the ARM-to-x86_64 LnQ has 3.1X speedup compared to QEMU, and the IA32-

to-ARM LnQ has 2.23X speedup compared to QEMU.

34

Chapter 3

The Early-Exit Guided Code Region

Formation

3.1 Region-Based Multi-threaded Dynamic Binary

Translator

In this section, we describe the design of our region-based multi-threaded dynamic

binary translator, called LnQ [42]. We have implemented the EEG scheme in LnQ.

LnQ uses QEMU [37] as the front-end emulation engine, and uses LLVM [38]

compilation infrastructure to handle its back-end code optimization and target

code generation. We implement our EEG scheme using this framework. Fig-

ure 3.1 shows the major components and the control �ow of our region-based

multi-threaded dynamic binary translator.

35

Chapter 3. Early-Exit Guided Code Region Formation 36

Chunk 2 Chunk 3 Chunk 4Chunk 1

Initialization

execution

dispatch
Translate

Block Translate

Traces/Regions

Optimization

Threads

EEG Region

Formation

NET* Trace

Formation

Feedback

Profile Data

miss

Execution Threads

hit

Shared Code Cache

Collect Runtime Data

From Code Cache
Profiling
Thread

Task Queue

Figure 3.1: Control �ow of execution threads and optimization threads

We use code segments to refer basic blocks and traces/regions, and use code frag-

ment to refer a translated code segment by DBT. Therefore, there are basic block

fragments and trace/region fragments. Each code fragment has a prologue to load

the guest architecture states, such as the content of the guest registers, from the

memory to the host registers before execution. Also, each code fragment has an

epilogue to store modi�ed machine states back to memory before leaving the code

fragment. Each code fragment has its own register mapping decided by the LLVM

register allocator.

LnQ uses execution threads and optimization threads. Execution threads are re-

sponsible for translating basic blocks and executing translated code fragments.

That is, if an execution thread reaches a new guest basic block during execution,

the execution thread generates a basic block fragment using LLVM. Optimization

36

Chapter 3. Early-Exit Guided Code Region Formation 37

threads generate optimized traces and regions fragments also using LLVM. Execu-

tion threads compile blocks with �O0� optimization level to minimize compilation

overhead. On the other hand, optimization threads compile traces and regions

with �O2� to generate optimized code. All execution threads share one software

code cache. As shown in Figure 3.1, we partition the code cache into sections,

and each thread has its own section to store the translated code fragments so that

threads can generate code concurrently.

The DBT system separates trace compilation from program execution. By running

optimization threads concurrently on other cores, the execution threads are not

disrupted. Execution threads may create region compilation tasks and send them

to a Task Queue (see Figure 3.1) when traces or regions are formed as described

in Section 3.2. We use a lock-free concurrent FIFO queue [43] to implement the

task queue so that execution threads can insert trace/region compilation tasks into

the queue while the optimization threads take those tasks from the queue without

locks.

When an optimization thread generates a new trace or region, it dispatch execu-

tion threads to the newly generated code fragment by atomically patching jump

instructions in the code cache. To do this in IA32, we need to align the patched in-

structions to 4-byte alignment, and use the self-branch technique mentioned in [44]

to patch jumps atomically.

37

Chapter 3. Early-Exit Guided Code Region Formation 38

3.2 Early Exit Index and Early-Exit Guided Re-

gion Formation

In this section, we �rst describe the NET algorithm used in our system. We then

de�ne an early exit index to quantify how often early exits are taken in a trace.

Finally we describe our early exit guided region formation technique.

3.2.1 Trace Formation Algorithm

We adopt a modi�ed NET algorithm called NET∗, which is similar to [30], to builds

traces. The di�erence is that NET∗ considers all basic blocks as potential trace

head candidates, while NET only considers blocks which are targets of backward

branches as trace head candidates in that they may form potential loops.

The NET∗ algorithm has two advantages. First, the NET algorithm [7] was de-

signed for DBT systems in which a single DBT thread is responsible for both

execution and trace building. To reduce the overhead of building traces, NET

needs to be very selective in potential traces. In contrast, NET∗ can take advan-

tage of modern multi-core platforms to o�oad the overhead of building traces.

Hence, it can a�ord to try all basic blocks as potential trace heads.

Second, NET may not identify all loops by only considering targets of backward

branches. By considering all basic blocks as possible trace heads, NET∗ can dis-

cover more hot traces than NET can. As reported in Section 3.3.1.1, NET∗ achieves

12% and 5% performance improvement on average over NET for SPEC CINT2006

and CFP2006 benchmarks, respectively.

38

Chapter 3. Early-Exit Guided Code Region Formation 39

Our NET∗ algorithm works as follows. We instrument software counters to record

the number of times each block is executed. A block becomes a trace head when

the number of times the block has been executed exceeds a threshold value. NET∗

forms a trace by appending blocks along the execution path until one of the fol-

lowing terminal conditions is met: (1) A branch to the trace head is taken, (2) The

number of blocks exceeds a threshold, (3) The next block is the head of another

trace, or (4) A guest system call instruction is encountered.

3.2.2 Early Exit Index

We �rst de�ne an early exit of a trace. A trace can be a straight-line execution

path or a cycle. If a trace is a straight-line path, then all exit edges along the path

are early exits except the exit edge of the last basic block in the trace. If a trace

is a cycle, all exit edges are early exit.

We de�ne an Early-Exit Index (EEI) to measure the frequency of early exits taken

in traces. More speci�cally, EEI is the number of early exits being taken for

every million instructions executed in traces. It can be formally de�ned as in the

following equation.

EEI =

∑
i∈Γ ni × ρi
N

where Γ is the set of traces, ni is the number of times early exits being taken

in trace i, ρi is the percentage of instructions executed in trace i, and N is the

number of million instructions executed.

39

Chapter 3. Early-Exit Guided Code Region Formation 40

3.2.3 Early-Exit Guided Region Formation

In this section, we describe our proposed Early-Exit Guided (EEG) region forma-

tion scheme. It detects and merges regions that have frequently taken early exits.

The key issues in EEG are (1) how to e�ciently detect delinquent regions; and (2)

when to merge them at runtime. We address them as follows.

The simplest approach to address the �rst issue is to instrument counters in all

traces and regions. However, this approach is ine�cient and may merge too many

regions that are not frequently executed. Instead, we use a dynamic pro�ling

approach with the help of on-chip hardware performance monitor (HPM) to select

hot regions.

We create a pro�ling thread called pro�ler at the beginning of execution to perform

dynamic pro�ling. The pro�ler collects program counters periodically for every

million instructions retired. When a threshold number of samples are collected,

the pro�ler accumulates the sample counts for each trace to determine the degree

of hotness of each trace. The hotness of a trace is measured by the following

equation.

HT = max{α, β}

Here, α is the percentage of instructions executed in the trace during the last

sampling period, and β is the percentage of instructions executed in the trace

during the entire execution. Intuitively, α represents the hotness of the trace

40

Chapter 3. Early-Exit Guided Code Region Formation 41

during the last period, and β represents the accumulated hotness during the entire

execution. We choose the maximum of α and β as its hotness measure.

When the hotness of a trace exceeds a threshold, we start monitoring the trace

by instrumenting counters to its early exits. Currently, we only monitor the early

exits of conditional branches. If a counter exceeds a pre-de�ned threshold, it means

the control leaves the region through the corresponding early exit very frequently.

Then, we merge the monitored region with the target region of the early exit. We

translate and optimize the merged region with our LLVM-based DBT, and replace

the monitored region with the merged region.

We argue that the overhead of the instrumentation is negligible because early exits

should be rarely taken. A frequently taken early exit would have triggered region

formation when the counter exceeded the threshold.

3.2.4 Spill Index of a Region

The bene�ts of EEG region formation come from eliminating the overhead caused

by frequently taken early exits, and potential optimization opportunities from a

larger code region. Despite the fact that we can mostly eliminate the overhead of

frequently taken early exits via region merging, we may not always have potential

optimization opportunities from the merged region. In particular, if the quality of

the translated code of a region is not good enough, it is not bene�cial to merge

such a region.

We de�ne an index, called Spill Index, to assess the quality of the code generated by

the LLVM compiler for a region formed by the EEG technique. A spill instruction

41

Chapter 3. Early-Exit Guided Code Region Formation 42

is an instruction for load/store operations between registers and stack. The Spill

Index is the percentage of spill instructions in the translated code fragment. When

the Spill Index of a code fragment exceeds a threshold, that region should not be

further merged because a high percentage of spill instructions often forestalls good

performance due to improper register allocation of the LLVM compiler.

3.2.5 Region Versus Trace

By creating larger regions, we reduce the amount of specialization that the com-

piler can do for traces. As we know, the bene�t of traces comes from the instruction

scheduling within traces [45].

However, we need to limit the instruction scheduling optimizations when we com-

pile traces in dynamic binary translation, because we have to rematerialize full

guest state in case a hardware exception or a signal was raised.

The main advantage of EEG region formation is that it can improve DBT perfor-

mance by removing transition overhead among traces, such as removing redundant

loads/stores of guest state among traces.

We use Figure 3.2 as an example to illustrate our region formation strategy. Fig-

ure 3.2(a) is the control �ow graph (CFG) of a hot region in a guest application.

During execution, each block is �rst translated as shown in Figure 3.2(b). Then

NET∗ forms three traces as in Figure 3.2(c). Trace A would be the �rst selected

for early exit detection (see Figure 3.2(c)) since a loop is likely to become hot.

Thus the early exit of A, marked by a dashed arrow from the trace started with

42

Chapter 3. Early-Exit Guided Code Region Formation 43

A

C

B D

EF

G

(a)

A

D

E

GG

C

B

F

G

A

DB

C E

G

F

G

(d)

A

B

F C E

G

(c)

(b)

D

Figure 3.2: Illustration of region formation.

A (enclosed by the dotted rectangular) to the trace started with B, is monitored

with an instrumented software counter.

We merge Trace A and Trace B to form a code region when the early exit is

taken frequently. A code region, called Region A and is enclosed in the dotted

rectangular in Figure 3.2(d), that consists of traces A and B is formed. After the

code fragment of Region A is formed, we replace Trace A and Trace B with Region

A so that Trace F now branches to Region A rather than to Trace A. Note that

Region A will not be monitored because the spill index of Region A exceeds the

threshold.

43

Chapter 3. Early-Exit Guided Code Region Formation 44

3.3 Performance Evaluation

In this section, we evaluate the performance of Early-Exit-Guided region formation

algorithm in our LLVM-based parallel DBT systems. We start by describing our

measurement methodology.

We evaluate the performance with SPEC CPU 2006 benchmarks on a 3.3GHz

quad-core Intel Core i7 machine. The machine has 12 GB main memory and the

operating system is 64-bit Gentoo Linux with kernel version 2.6.30. We use the

LnQ [42] dynamic binary translation framework to build two translators which

translate IA32 and ARM guest ISAs to x86_64 host ISA. For CFP2006 bench-

marks, we only compile them into IA32 binaries because most CFP2006 bench-

marks are written in Fortran and the ARM tool chain we use does not provide

cross-compilation for Fortran. The result of ARM 464.h264ref is not reported

because the SPEC runspec tool reports a mis-match error even when it runs

464.h264ref in a native ARM machine.

The benchmarks are compiled with GCC 4.3.4 for IA32 binaries and GCC 4.4.1

for ARM binaries. For all benchmarks, �-O2� �ag is used. For IA32 bench-

marks, we use �-m32� to generate IA32 binaries. For CFP2006, we use �-msse2

-mfpmath=sse� extra �ags to generate SSE vector instructions. We use runspec

script provided by SPEC to run benchmarks and report the median of 5 runs for

all performance metrics.

We compare three region formation strategies in our experiments, which are NET,

NET∗ and EEG as described in Section 3.2. In EEG strategy, we �rst use NET∗

to select traces, and use EEG to merge traces into regions. We set block count

44

Chapter 3. Early-Exit Guided Code Region Formation 45

80%

100%

120%

140%

160%

180%

462.libquantum

456.hm
m

er

458.sjeng

445.gobm
k

483.xalancbm
k

400.perlbench

473.astar

401.bzip2

403.gcc

464.h264ref

429.m
cf

471.om
netpp

G
eoM

ean

471.om
netpp

462.libquantum

458.sjeng

400.perlbench

483.xalancbm
k

429.m
cf

445.gobm
k

401.bzip2

473.astar

403.gcc

456.hm
m

er

G
eoM

ean

S
p
e
e
d
u
p
 R

a
ti
o

127% 123%

172%

149%
EEG
NET*
NET

SPEC CINT2006- IA32 SPEC CINT2006 - ARM

Figure 3.3: Performance results of NET∗ and EEG compared to NET in IA32
and ARM SPEC CINT2006.

80%
90%

100%
110%
120%
130%

447.dealII

454.calculix

453.povray

416.gam
ess

450.soplex

444.nam
d

465.tonto

482.sphinx3

435.grom
acs

434.zeusm
p

433.m
ilc

481.w
rf

436.cactusAD
M

410.bw
aves

470.lbm

437.leslie3d

459.G
em

sFD
TD

G
eoM

ean

S
p
e
e
d
u
p
 R

a
ti
o

EEG
NET*
NET

145%
131%

107%

SPEC CFP2006- IA32

Figure 3.4: Performance results of NET∗ and EEG compared to NET in SPEC
CFP2006.

threshold to 50 and allow at most 16 blocks in a trace. For EEG strategy, the

threshold of spill index is set to 15%, i.e. regions cannot be further merged when

the percentage of spill instructions in the translated fragment exceeds 15%.

We use Perfmon2 [46] for hardware-assisted dynamic pro�ling to collect runtime

information for every one million retired instructions. The early exit threshold is

set to 1000 and we use two optimization threads to compile traces and regions in

all experiments.

45

Chapter 3. Early-Exit Guided Code Region Formation 46

3.3.1 Performance Results of SPEC CPU2006

The performance results of SPEC CPU2006 are shown in Figure 3.3 and Fig-

ure 3.4. For clearness of presentation, the benchmarks in both �gures are sorted

in decreasing order of speedup ratio so that it is easier to see the maximum, the

minimum, and the geometric average of the results. We explain the results in the

following sections.

3.3.1.1 Performance of NET∗

The performance of NET∗ algorithm compared to NET in SPEC CINT2006 bench-

marks is shown as red bars in Figure 3.3. For CINT2006 benchmarks, NET∗

achieves an average improvement of 12% and 10% for the IA32 and ARM bench-

marks, respectively, with up to 53% and 46% for IA32 456.hmmer and ARM

471.omnetpp. The results show that NET∗ discovers more hot traces than NET

does by considering all blocks as possible trace heads, and our DBTs do not incur

signi�cant overhead because the compilation overhead is o�oaded to optimization

threads.

We notice that only ARM 462.libquantum has 8% slowdown. We compare traces

generated by the two algorithms and show the di�erence, in Figure 3.5, among

traces generated by NET and NET∗ for a hot loop in function quantum_toffoli

of 462.libquantum.

As shown in Figure 3.5 (a) and 3.5 (b), both NET and NET∗ have the same trace

T-d10c, but NET∗ splits trace T-d094 of NET into T-d094 and T-d0b4 because

46

Chapter 3. Early-Exit Guided Code Region Formation 47

NET∗ generates T-d0b4 before T-d094. The transition between traces T-d094 and

T-d0b4 in NET∗ results in 8% slowdown compared to NET.

However, both NET and NET∗ have the delinquent trace T-d10c with frequently

taken early exit to T-d094 due to an unbiased branch in block d10c. In the next

section, we show that EEG can merge the delinquent trace T-d10c into one region

as shown in Figure 3.5(c) and improves the performance of NET∗ by 54%.

Figure 3.4 shows the speedup ratio of NET∗ algorithm with NET as baseline

performance for the SPEC CFP 2006 benchmarks. NET∗ achieves signi�cant

improvement only in 447.dealII, 453.povray, and 454.calculix (31%, 18% and 12%

respectively), and it gains 4.9% improvement on average in CFP2006 benchmarks.

Most CFP2006 benchmarks spend their time in small number of hot loops, which

can all be identi�ed by NET and NET∗. Thus, there is little di�erence between

traces of NET and NET∗ in these benchmarks.

3.3.1.2 Performance of EEG Region Formation

The performance of EEG compared to NET in SPEC CINT2006 benchmarks is

shown in Figure 3.3. For CINT 2006 benchmarks, EEG achieves an average im-

provement of 27.5% and 23% for the IA32 and ARM benchmarks, respectively,

with up to 71.7% and 49% for IA32 456.hmmer and ARM 471.omnetpp. Merg-

ing traces can reduce the prologue and epilogue code executed hence the tran-

sition overhead among di�erent traces/regions are reduced. As we will see in

Section 3.3.3, the execution with EEG has less memory and branch operations

compared to NET.

47

Chapter 3. Early-Exit Guided Code Region Formation 48

d12c d084 d170 d0b4

d0fc d148 d0d8 d15c

(c) Region merged by EEG.

d12c d084

d170

d15cd0d8d148

d15c d0d8 d148 d0fc

d12c d170

d0fc d148 d0d8 d15c

(a) Traces generated by NET.

(b) Traces generated by NET*.

d084

d0fc

d10c

d094

d0b4

d10c

d170 d0b4 d0d8 d148 d0fcd094

d10c d0b4

d0b4

d094

Figure 3.5: Traces/regions generated by NET, NET∗ and EEG for a loop in
function quantum_toffoli of ARM 462.libquantum.

We now take a closer look at IA32 456.hmmer and ARM 462.libquantum to give

more insight of the bene�t of EEG. In 456.hmmer, the hottest function is P7Viterbi,

which updates global variables according to di�erent conditions in a performance

critical for-loop. NET∗ splits this loop into four traces as shown in Figure 1.1(a).

Consequently, the transition among four traces results in signi�cant overhead.

Through early exit detection, EEG merges four traces into one region containing

the loop as shown in Figure 1.1(b). The merged region achieves 70% performance

48

Chapter 3. Early-Exit Guided Code Region Formation 49

improvement because of the elimination of the transition overhead among traces.

For 462.libquantum, NET∗ splits a for-loop of function quantum_toffoli into

three traces as shown in Figure 3.5(b). As described in the previous section, trace

T-d10c is a delinquent trace with a frequently taken early exit to trace T-d094

due to an unbiased branch in block d10c. EEG improves performance by 54% by

merging the two traces into one region as shown in Figure 3.5(c).

As shown in Figure 3.4, EEG improves NET∗ by 4.8% to 7% on CFP2006. The

improvement is minor because there are few early exits in these �oating point

benchmarks. In the next section, we measure the early exit index and show the

relation between the number of early exits and the performance improvement.

We also observe that EEG loses 2.7% and 2.9% performance compared to NET in

437.leslie3d, and 459.GemsFDTD respectively. In 437.leslie3d, the time is spent

in a small number of nested loops in the procedure EXTRAPI of �le tml.f. The

regions generated by EEG contain nested loops while each trace generated by NET

contains only the innermost loop. Therefore, in 437.leslie3d and 459.GemsFDTD,

the translated code for traces is better than translated code for regions. As a

result, EEG loses about 2.7% performance compared to NET.

3.3.2 Early Exit Index

In this section, we measure the Early Exit Index (EEI) of benchmarks with the

NET∗ strategy. We insert counters at each side exit to collect the number of early

exits taken in each trace, and we measure the execution frequency of traces by

sampling program counters per one million retired instructions. We calculate EEI

49

Chapter 3. Early-Exit Guided Code Region Formation 50

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

4
5
6
.h

m
m

e
r

4
6
2
.lib

q
u
a
n
tu

m

4
7
3
.a

sta
r

4
2
9
.m

cf
4
7
1
.o

m
n
e
tp

p

4
0
1
.b

zip
2

4
0
0
.p

e
rlb

e
n
ch

4
5
8
.sje

n
g

4
6
4
.h

2
6
4
re

f
4
0
3
.g

cc
4
4
5
.g

o
b
m

k
4
8
3
.xa

la
n
cb

m
k

4
6
2
.lib

q
u
a
n
tu

m

4
2
9
.m

cf
4
7
3
.a

sta
r

4
0
1
.b

zip
2

4
0
0
.p

e
rlb

e
n
ch

4
5
8
.sje

n
g

4
8
3
.xa

la
n
cb

m
k

4
5
6
.h

m
m

e
r

4
0
3
.g

cc
4
7
1
.o

m
n
e
tp

p

4
4
5
.g

o
b
m

k
4
5
4
.ca

lcu
lix

4
4
7
.d

e
a
lII

4
7
0
.lb

m
4
5
0
.so

p
le

x
4
1
0
.b

w
a
ve

s
4
3
3
.m

ilc
4
1
6
.g

a
m

e
ss

4
3
5
.g

ro
m

a
cs

4
5
3
.p

o
vra

y
4
4
4
.n

a
m

d
4
8
2
.sp

h
in

x3
4
6
5
.to

n
to

4
8
1
.w

rf
4
3
4
.ze

u
sm

p
4
5
9
.G

e
m

sF
D

T
D

4
3
7
.le

slie
3
d

4
3
6
.ca

ctu
sA

D
M

0%
8%
16%
24%
32%
40%
48%
56%
64%
72%
80%

E
a

rl
y
 E

x
it
 I

n
d

e
x

Im
p

ro
v
e

d
 P

e
rf

o
rm

a
n

c
eSPEC CINT2006- IA32 SPEC CINT2006 - ARM SPEC CFP2006 - IA32

EEI
Improved Performance

Figure 3.6: Measured Early Exit Index in NET∗ and the performance im-
provement of EEG.

with the collected numbers as described in Section 3.2.2. The results are shown in

Figure 3.6. The Y-axis on the left side shows the measured early exit indices; the

Y-axis on the right side shows the performance improvement of EEG compared to

NET∗.

In Figure 3.6, we observe that integer benchmarks are likely to have high EEI

values. For example, 65% of CINT2006 benchmarks have EEI values larger than

100, which means there are over 100 early exits per million instructions in those

benchmarks in NET∗. CINT 2006 benchmarks also show positive correlation be-

tween early exit index and performance improvement. The correlation coe�cient

of IA32 CINT2006 and ARM CINT2006 are 0.78 and 0.93.

For CFP2006 benchmarks, all the EEI values are relatively small compared to

those in integer benchmarks. Only 35% of the benchmarks have EEI values larger

than 100. The correlation coe�cient of early exit index is 0.43 in CFP2006. Small

EEI values are due to the fact that �oating point benchmarks usually spend most

of their time in simple loops with fewer early exits. We also notice that some

benchmarks with small EEI values achieve good performance improvements, such

as 445.sjeng and 445.gobmk, which improve 20% and 17%, with EEI values as

50

Chapter 3. Early-Exit Guided Code Region Formation 51

IA32 CINT2006
Improved Reduced Instructions or Misses

Ratio
MemInst BrInst

L1 ICache
Misses

456.hmmer 69.9% 52.8% 36.9% 31.0%
473.astar 25.5% 35.4% 20.4% 3.3%
458.sjeng 20.4% 29.9% 17.0% 43.7%
445.gobmk 17.1% 18.2% 7.6% 29.2%
462.libquantum 12.1% 33.6% 9.3% 0.7%
429.mcf 9.9% 33.9% 14.7% 18.2%
401.bzip2 9.3% 18.8% 11.8% 19.0%
471.omnetpp 8.2% 17.2% 7.1% 46.2%
400.perlbench 4.2% 9.5% 4.1% 15.1%
403.gcc 1.9% 5.6% 1.8% 9.8%
464.h264ref 1.0% 1.3% 2.5% 18.6%
483.xalancbmk 0.0% 6.8% -3.5% 3.0%

ARM CINT2006
Improved Reduced Instructions or Misses

Ratio
MemInst BrInst

L1 ICache
Misses

462.libquantum 54.0% 69.0% 15.8% -1.3%
429.mcf 20.5% 45.5% 17.3% 59.4%
458.sjeng 19.2% 17.9% 11.5% 35.5%
473.astar 13.3% 21.1% 10.7% 3.7%
401.bzip2 12.2% 26.8% 13.9% 20.4%
445.gobmk 6.1% 6.5% 5.3% 17.6%
400.perlbench 4.1% 3.3% 6.3% 13.2%
471.omnetpp 1.8% -0.8% 1.6% 7.8%
456.hmmer 1.7% 0.2% 0.7% 59.7%
483.xalancbmk 0.7% 1.5% 7.2% 2.9%
403.gcc -0.6% 0.1% 2.4% 4.7%

Table 3.1: Reduced memory/branch instructions and cache misses of EEG for
CINT2006 benchmarks.

low as 143 and 36 respectively. In the next section, we collect performance pro�les

to further analyze the sources of improvement.

51

Chapter 3. Early-Exit Guided Code Region Formation 52

3.3.3 Performance Pro�les of EEG

In this section, we collect the number of memory, branch instructions and the L1

instruction cache misses of NET∗ and EEG through hardware performance mon-

itoring. We calculate the percentage of reduced memory/branch operations and

cache misses in EEG compared to NET∗. We focus on the pro�les of CINT2006,

which are shown in Table 3.1.

As shown in Table 3.1, benchmarks with large improvement tend to have high per-

centage of reduced operations or L1 instruction cache misses. For example, IA32

456.hmmer reduces 52.8%, 36.9% and 31% of memory, branch instructions and L1

i-cache misses, and achieves 70% improvement over NET∗. There are also signi�-

cant percentage of reduced instructions and misses in 458.sjeng and 445.gobmk,

which contributes to the improvement of these two benchmarks. The pro�ling

data show that EEG can not only reduce the memory and branch instructions but

also reduces L1 instruction cache misses by merging delinquent traces into regions.

3.3.4 E�ect of The Threshold of Spill Index

In this section, we study the e�ect of the threshold of spill index, described in

Section 3.2.4, on the performance of EEG. In both Figure 3.7 and Figure 3.8,

the X-axis of each plot is the improvement ratio using the performance of 5%

threshold as the baseline, and the Y-axis is the threshold of spill indices ranged

from 5% to 25%. As shown in Figure 3.7, the performance of EEG is less sensitive

to the threshold of spill index for IA32 benchmarks except 471.omnetpp. The

results show that the register pressure is not a problem in the region fragments of

52

Chapter 3. Early-Exit Guided Code Region Formation 53

-8%

0%

8% 400.perlbench 401.bzip2 403.gcc

-8%

0%

8% 429.mcf 445.gobmk 456.hmmer

-8%

0%

8% 458.sjeng 462.libquantum 464.h264ref

-8%

0%

8%

5% 10% 15% 20% 25%

471.omnetpp

5% 10% 15% 20% 25%

473.astar

5% 10% 15% 20% 25%

483.xalancbmk

Figure 3.7: E�ect of spill index of IA32 CINT2006.

IA32 benchmarks because the IA32 guest architecture has only 8 general purpose

registers while there are 16 registers on x86_64 host architecture.

For 471.omnetpp, the performance degrades by 13.5% when the threshold changes

from 15% to 20%. The reason is that when threshold changes from 15% to 20%,

the spill index of the hottest fragment changes from 18% to 36% because that

fragment merges one more region and its CFG becomes complex when threshold

is set to 20%. As a result, the extra spill instructions degrade the performance of

471.omnetpp.

For ARM benchmarks, the performance of EEG is more sensitive to the threshold

of spill index as shown in Figure 3.8. This is because there are 16 general purpose

registers in ARM guest architecture, and register pressure becomes a problem

53

Chapter 3. Early-Exit Guided Code Region Formation 54

-8%

0%

8% 400.perlbench 401.bzip2 403.gcc

-8%

0%

8% 429.mcf 445.gobmk 456.hmmer

-8%

0%

8% 458.sjeng

10%

30%

50% 462.libquantum

-8%

0%

8% 471.omnetpp

-8%

0%

8%

5% 10% 15% 20% 25%

473.astar

5% 10% 15% 20% 25%

483.xalancbmk

5% 10% 15% 20% 25%

464.h264ref(N/A)

Figure 3.8: E�ect of spill index of ARM CINT2006

when translating ARM instructions to x86_64 instructions. Consequently, if we

allow regions with high spill indices, i.e., high percentage of spill code in the

translated code, to be merged, the performance tends to degrade. For example, in

ARM 456.hmmer, a 12% degradation is observed when the threshold of spill index

increases from 15% to 20%.

3.3.5 Statistics of Selected Traces and Regions

Table 3.2 and Table 3.4 shows the statistics of selected regions in NET, NET∗ and

EEG for CINT2006. First, the number of traces in NET∗ increase by 54% and

59% on average compared to NET for IA32 and ARM benchmarks respectively.

The average numbers of blocks per trace are similar in NET and NET∗.

54

Chapter 3. Early-Exit Guided Code Region Formation 55

IA32 CINT2006
NET

#Traces Avg.Blks

400.perlbench 6646 4.1
401.bzip2 583 3.8
403.gcc 23058 4.0
429.mcf 239 4.7
445.gobmk 9468 2.9
456.hmmer 424 3.8
458.sjeng 1216 3.3
462.libquantum 200 2.5
464.h264ref 2434 3.3
471.omnetpp 2918 5.0
473.astar 613 5.2
483.xalancbmk 4453 5.9

Geometric Mean 3.9

NET∗

#Traces Avg.Blks

8966 5.9
894 5.0

34019 3.9
605 3.5

10961 3.9
687 3.6
1749 4.7
326 2.2
3974 4.3
4859 5.5
942 4.5
8355 4.4

4.2

EEG
#Regions Avg.Blks

13.5 1.6
14.4 1.8
12.2 1.6
15.1 2.7
13.3 1.7
25.5 4.5
18.9 2.5
8.4 1.8
11.9 1.8
12.1 1.4
24.3 5.3
11.4 1.3

2.1

Table 3.2: Number of traces/Regions and average blocks in NET∗ and EEG
of IA32 CINT2006.

IA32 CINT2006
Merges %Time Spent in

Avg. Max Trace Region

400.perlbench 1627 16 45.3% 51.6%

401.bzip2 206 6 19.2% 79.4%

403.gcc 2728 17 27.1% 37.0%

429.mcf 83 5 1.2% 95.3%

445.gobmk 2258 20 20.9% 71.6%

456.hmmer 61 6 1.5% 97.8%

458.sjeng 764 43 15.2% 84.5%

462.libquantum 20 4 17.6% 82.2%

464.h264ref 781 11 22.0% 73.3%

471.omnetpp 345 11 29.0% 69.6%

473.astar 185 7 2.3% 96.8%

483.xalancbmk 538 12 37.0% 59.1%

Geometric Mean 12.4% 72.3%

Table 3.3: Number of merges and percentage of execution time of regions in
EEG of IA32 CINT2006.

55

Chapter 3. Early-Exit Guided Code Region Formation 56

ARM CINT2006
NET

#Traces Avg.Blks

400.perlbench 7839 5.1
401.bzip2 672 4.7
403.gcc 24703 3.7
429.mcf 362 3.6
445.gobmk 14175 3.5
456.hmmer 847 4.8
458.sjeng 1299 4.6
462.libquantum 606 8.6
471.omnetpp 4584 3.5
473.astar 959 3.9
483.xalancbmk 4844 5.1

Geometric Mean 4.1

NET*
#Traces Avg.Blks

10438 5.1
1125 4.7
36710 3.7
726 3.6

16587 3.5
1378 4.8
1811 4.6
951 8.6
7163 5.1
1432 4.6
8690 3.9

4.6

EEG
#Regions Avg.Blks

1860 12.8
205 16.4
2595 12.1
125 22.3
3071 11.9
58 10.8
760 14.7
85 12.0
364 12.2
180 13.6
559 11.9

13.4

Table 3.4: Number of traces/Regions and average blocks in NET∗ and EEG
of ARM CINT2006.

IA32 CINT2006
Merges %Time Spent in

Avg. Max Trace Region

400.perlbench 1.6 12 32.9% 62.2%
401.bzip2 1.7 5 22.1% 75.0%
403.gcc 1.5 10 13.1% 32.5%
429.mcf 2.9 6 1.2 % 96.8%
445.gobmk 1.6 19 28.8% 60.9%
456.hmmer 1.4 7 52.9% 46.7%
458.sjeng 2.5 35 19.8% 79.6%
462.libquantum 2.4 11 41.0% 58.4%
471.omnetpp 1.4 12 57.0% 41.6%
473.astar 1.6 10 25.6% 72.8%
483.xalancbmk 1.3 8 49.1% 45.9%

Geometric Mean 1.7 23.0% 58.4%

Table 3.5: Number of merges and percentage of execution time of regions in
EEG of ARM CINT2006.

56

Chapter 3. Early-Exit Guided Code Region Formation 57

100%

200%

300%

400%

500%

600%

462.libquantum

456.hm
m

er

473.astar

429.m
cf

401.bzip2

458.sjeng

464.h264ref

483.xalancbm
k

471.om
netpp

400.perlbench

445.gobm
k

403.gcc

G
eoM

ean

429.m
cf

462.libquantum

473.astar

401.bzip2

456.hm
m

er

458.sjeng

483.xalancbm
k

400.perlbench

403.gcc

471.om
netpp

445.gobm
k

G
eoM

ean

436.cactusAD
M

437.leslie3d

435.grom
acs

434.zeusm
p

444.nam
d

433.m
ilc

454.calculix

482.sphinx3

410.bw
aves

459.G
em

sFD
TD

447.dealII

470.lbm

450.soplex

416.gam
ess

481.w
rf

453.povray

465.tonto

G
eoM

ean

N
o
rm

a
liz

e
d

E
x
e
c
u
ti
o
n
 T

im
e SPEC CINT2006- IA32 SPEC CINT2006 - ARM SPEC CFP2006 - IA32

Native NET EEG

235%
184%

261%
212% 165%

155%

Figure 3.9: Normalized execution time of EEG compared to native execution.

13.6% and 11.5% of traces in NET∗ are merged into regions by EEG for the IA32

and ARM benchmarks respectively, which indicates that our HPM-based region

formation approach described in Section 3.2.3 can e�ectively select hot traces to

be merged. The average numbers of blocks per region are 14.4 and 13.4 for the

IA32 and ARM benchmarks respectively, which are 3.4X and 2.9X larger than the

traces generated by NET∗.

We also compute the number of merges in EEG as shown in the �rst two columns

of Table 3.3 and Table 3.5. There are 2.1 and 1.7 merges per region on average

in IA32 and ARM benchmarks, which indicates that most regions become stable

after few number of merges. The last two columns of Table 3.3 and Table 3.5

are percentage of execution time spent in traces and regions. On average, our

DBTs spend 72.3% and 58.4% execution time in regions for the IA32 and ARM

benchmarks respectively.

57

Chapter 3. Early-Exit Guided Code Region Formation 58

3.3.6 Performance Comparison to Native Execution

In this section, we compare the performance of EEG to native execution whose

executables are compiled into x86_64 instructions. As shown in Figure 3.9, EEG

achieves 1.84X and 2.12X slowdown compared to native execution in IA32 and

ARM CINT2006 benchmarks, as opposed to 2.35X and 2.61X slowdown using the

NET scheme. For IA32 CFP2006 benchmarks, EEG can achieve 1.55X slowdown

compared to native execution. EEG has less slowdown in �oating benchmarks

because the SSE vector instructions can be translated into LLVM vector IRs,

which can be e�ciently translated into vector instructions on the host machine.

3.3.7 Performance of EEG on IA32-to-ARM LnQ

In this section, we measure the performance of EEG on IA32-to-ARM LnQ. We

conduct experiments on the Odroid-XU board with ARM Cortex-A15 1.7GHz

dual core CPU and 2GB memory. As shown in Figure 3.10, the Region bars are

the results of EEG on IA32-to-ARM LnQ DBT. On average, EEG achieves 1.97X

slowdown compared to the native runs, while the NET∗ gets 2.21X slowdown.

Overall, EEG outperforms NET∗ 12% on IA32-to-ARM LnQ DBT.

3.4 Concluding Remarks

We have identi�ed and quanti�ed the delinquent trace problem in the popular

Next-Executing-Tail (NET) trace formation algorithm. Delinquent traces contain

frequently taken early exits which cause signi�cant overhead. Motivated by this

58

Chapter 3. Early-Exit Guided Code Region Formation 59

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

400.perlbench

401.bzip2
403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.lib
quantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

GeoMean

Sl
ow

do
w

n
Ra

tio

Trace Region

2.50X

1.68X

4.37X

1.35X

3.82X

1.86X

3.31X

1.01X

3.15X

2.03X

1.55X

2.34X 2.21X2.29X

1.53X

4.55X

1.19X

3.09X

1.84X

2.35X

0.87X

2.97X

1.77X

1.30X

2.26X 1.97X

Figure 3.10: Normalized execution time of EEG compared to native execution
on ARM host.

problem, we develop a light-weight region formation strategy called Early-Exit

Guided region formation (EEG) to improve the performance of NET by merging

delinquent traces into larger code regions. The EEG algorithm is implemented in

two LLVM-based parallel dynamic binary translators (DBT), the IA32-to-x86_64

and ARM-to-x86_64 DBTs.

Experiment results show that EEG achieves performance improvement of up to

72% (27% on average), and up to 49% (23% on average) in IA32 and ARM SPEC

CINT2006 benchmarks respectively. The pro�ling results show that EEG can

reduce memory and branches instructions by up to 53% and 37% respectively

because the transition overhead among traces is eliminated by merging delinquent

traces. It also reduces the L1 instruction cache misses by up to 43.7% in CINT2006

59

Chapter 3. Early-Exit Guided Code Region Formation 60

benchmarks. We also implement EEG on IA32-to-ARM LnQ DBT, and EEG

outperforms NET∗ 12% on ARM host.

60

Chapter 4

Trace-Guided Procedure-Based

Code Region Formation

4.1 Architecture of Dynamic Binary Translator

Without lose of generality we assume that our guest program contains symbol

table information. If the symbol table was �stripped� o� from a guest program,

we can always use unstripped [47] to recover the symbol table information. From

the symbol table information we will be able to determine the boundary addresses

of functions in the guest program.

This chapter uses blocks, traces, and procedures to refer to blocks, traces and pro-

cedures of the guest program. A block is a consecutive sequence of guest assembly

instructions that spans from its starting address to the �rst control transfer in-

struction encountered. A trace is a set of blocks that form either a path or a cycle.

61

Chapter 4. Procedure-Based Dynamic Binary Translation 62

A procedure is a segment of assembly instructions that correspond to a procedure

in the guest program. The address of this segment can be found in the symbol

table of the guest program. We also use call blocks and return blocks as blocks

which have calls and returns as their last instruction.

A fragment is a code segment translated by our binary translator, therefore we have

block fragment, trace fragment, and procedure fragment, which are the translation

results of a block, a trace, or a procedure.

We use LnQ [42] dynamic binary translation framework developed by Hsu et al.

to build our procedure-based multi-threaded dynamic binary translation system.

LnQ uses LLVM [38] compilation infrastructure to build the backend just-in-time

compilers, and uses QEMU [37] as the emulation engine. We inherit the retar-

getability of LnQ, and extend the framework to accommodate a optimization

thread pool. We also develop a trace-guided procedure optimizations on top of

this framework.

Our dynamic binary translation system has execution threads and optimization

threads. Initially there is only one execution thread. When the main execution

thread encounters thread creating system call like vfork in linux, new execution

threads are created so that one execution thread emulates one guest application

thread.

Both execution thread and optimization thread can call LLVM JIT compiler func-

tions. The execution thread sets JIT compilation �ag to �O0� in order to enable

62

Chapter 4. Procedure-Based Dynamic Binary Translation 63

fast instruction selection (�enable-fast-isel� option in LLVM) and minimize compi-

lation overhead. The optimization thread sets JIT compiler �ag to �O2� in order

to get better code quality for traces and procedures.

A software code cache holds translated fragments. The software code cache consists

of �x-sized chunks of 4MB. Both JIT compilers generate codes into their own

chunks, but the execution threads can transfer among all chunks in the software

code cache. When JIT compilers run out of chunks, they dynamically allocate

more chunks from host operating system.

Each fragment has prologues to load the guest architecture states, such as guest

CPU registers, to host registers before execution. Also, we have epilogues to store

modi�ed dirty states into memory before leaving fragments. Note that prologues

and epilogues are necessary because, for the sake of retargetability, we do not

speci�c register binding between guest architecture states and host architecture

states. Each fragment has its own register binding scheme decided by the LLVM

register allocator. We use the LLVM default linear register allocator.

dispatch

execution translate block

formation
begin function send to procedure

queue

handle exception

emulation
system call

Initialization

trace formed, send to trace queue

trace threshold exceededprocedure threshold exceeded

forming trace

Optimization Pool

Optimization Threads

probe compilation tasks.

tasks in procedure queue

Execution Threads

new execution thread

dispatcher

b
ac

k
 t

o

misshit
*syscall may create

linking among
fragments

has higher priorityget procedure info.

Trace Queue

Procedure Queue

Figure 4.1: Control �ow of main thread and optimization threads

63

Chapter 4. Procedure-Based Dynamic Binary Translation 64

We use two lock-free concurrent FIFO queues [43], procedure queue and trace queue

as communication channels between execution threads and optimization threads.

When an execution thread wants to build a trace it insert a request for trace

compilation into the trace queue. Similarly if an execution thread has identi�ed

a hot procedure, it insert a request for procedure compilation into the procedure

queue. Every millisecond an optimization thread probes the procedure queue then

the trace queue for requests. The optimization probes the procedure queue �rst

in order to give those procedure compilation requests a higher priority than those

trace compilation requests.

We describe the control �ow of execution threads and optimization threads as

follow. The execution thread �rst looks for the translated fragment of the current

guest block in the code cache. If the corresponding fragment is found, the execution

thread executes the fragments in the code cache. If the execution thread cannot

�nd the corresponding fragment, it starts translating the current guest program

block. If this block happens to be a candidate of starting point of a trace or an

entry block of a procedure, we insert pro�ling code to record the execution count of

this blocks. If the execution count of the current guest block exceeds a prede�ned

threshold, a trace/procedure compilation task is initiated and a request is inserted

into the trace/procedure queue. Please refer to Figure 4.1 for an illustration.

We must make two adjustments after adding a new fragment. First, we use a

mapping table to keep track of the mappings between guest code segments and

translated fragments. When a new trace or procedure fragment is generated, we

must add an entry into the mapping table to map the starting address of the guest

trace/procedure to the newly generated fragment. Second, we need to update

64

Chapter 4. Procedure-Based Dynamic Binary Translation 65

Previous

linked

fragments

NewOld

Software Code Cache

Mapping Table
New link

Old link

Figure 4.2: When a new fragment is generated, we update the mapping table
and the links between the new and old fragments.

the control �ow in other fragments so that they can reach the new fragment if

necessary. We apply the block linking technique [6] to link the new fragment

with other existing fragment in the code cache. Please refer to Figure 4.2 as an

illustration.

4.2 Procedure Compilation in Dynamic Binary Trans-

lation

Pro�ling code is inserted in the entry block of a procedure to count the number of

times the procedure is invoked. When the counter exceeds a prede�ned threshold,

the execution thread inserts a request for procedure compilation into the procedure

queue. We compile a procedure as follows. Since we know the boundary of the

65

Chapter 4. Procedure-Based Dynamic Binary Translation 66

procedure, we �rst construct a control �ow graph for the procedure. For each

block in the procedure, we create a block of LLVM IRs as described in [42]. We

then encapsulate these blocks with an LLVM function, and generate and optimize

the procedure. Several complications arise when we compile a procedure in during

dynamic binary translation � call-return, code discovery, and targets of indirect

branch.

4.2.1 Call-Return Problem

Before describing the Call-Return problem, we �rst describe how the execution

thread goes through code blocks in our dynamic binary translation. First, in the

dispatch mode, we use a mapping table to map a starting guest address to a

fragment in the code cache, so that the control can reach a fragment if it is there.

Second, a fragment is transferred to another fragment via a direct branch on a

host machine even in a call block (i.e. the last instruction of the guest block is

a call) because the return from the call will be to a di�erent guest block, i.e. a

return block (it starts at the return address of a call block). This technique is used

in QEMU [37]. Since we use a branch rather than a call on the host machine, the

Call-Return problem arises.

We describe the Call-Return problem as follows.The call instruction of a call block

will transfer the control outside a procedure fragment unless the call is recursive.

Note that we use a branch instruction, instead of a call instruction, on the host

machine to transfer execution to the called procedure. Hence, we need to redirect

the execution back to the guest return block using another branch instruction

after the called procedure �nishes. However, we cannot jump into the middle of

66

Chapter 4. Procedure-Based Dynamic Binary Translation 67

a procedure. It will violate the protocol of a procedure call. This is where the

Call-Return problem arises.

To resolve this problem, we �rst need to make the return block accessible from

other fragments. Recall that we use a branch instead of a call instruction for a call

block, there will be no link from the call block to the return block in the control

�ow graph, as indicated in Figure 4.3. Since LLVM only allows one entry block per

LLVM function (we cannot jump into the middle of a function as noted before),

we create a pseudo entry block that only contains a switch statement, and make it

the entry block of this LLVM function. The real entry block and all return blocks

become the di�erent cases of this switch statement. We also add a prologue block

before each of these cases. This switch statement is never executed and its sole

purpose is to make the return blocks reachable from the entry block of this LLVM

function, so that they will not be eliminated by LLVM optimization. Please refer

to Figure 4.3 for an illustration of the pseudo entry block.

When the generated code is placed in code cache, we can locate the addresses

of these return blocks via BasicBlockAddressMap data structure in the LLVM

compiler. After making the return blocks accessible from other fragments, we also

need to update the mapping table and the related branches. For each return block,

we obtain its address in the code cache as described above, and update the entries

indexed by the guest return addresses in the mapping table. Finally we update

the links of code fragments in code cache that will branch back to these return

blocks.

67

Chapter 4. Procedure-Based Dynamic Binary Translation 68

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
����
����
��������

����
����
����

����
����
����
����

from other fragments

becomes accessible

The return block

CFG of Fragment

Call Block Return Block

Prologue Epilogue Enter

Entry Block

Transform

Exit

CFG of Procedure

Pseudo Entry

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

Figure 4.3: Illustration of an example of Call-Return problem.

4.2.2 Code/Data Distinction

When we compile a procedure in to a fragment we need to distinguish code from

data in guest program. For example, if we found unreachable nodes in control

�ow graph, we eliminate them because they are data mistaken as instructions. It

does not a�ect the correctness of the translated code because the execution never

reaches those mis-disassembled instructions.

For ARM guest code we use the characteristic of ARM instruction set to detect

data in procedures. Arm instructions use a relative addresses (to program counter)

to access data. For example a load instruction ldr r1, [pc, #1936] the data

is stored at the address of pc + 1936. Thus, we know the memory address pc +

1936 is a datum, not an instruction. Detecting this kind of instructions is easy for

ARM instructions set because ARM only uses load instructions to access data.

68

Chapter 4. Procedure-Based Dynamic Binary Translation 69

When we compile a procedure into a fragment, we need to distinguish code from

data (e.g. the data on a call stack) in the guest program. For example, if we found

unreachable nodes in control �ow graph, we eliminate them because they are data

mistaken as instructions. It does not a�ect the correctness of the translated code

because the execution never reaches those data locations. For ARM guest code,

we use the idiosyncrasies in ARM instruction set to detect data in procedures.

ARM instructions use a relative addresses (to program counter) to access data.

For example, for a load instruction ldr r1, [pc, #1936], the data is stored at

the address of pc + #1936. Thus, we know the memory location pc + #1936 is

a datum, not an instruction. Such detection is easy on ARM because ARM only

uses load instructions to access data.

4.2.3 Targets of Indirect Branch

Indirect branches pose a serious challenge when compiling a procedure. Unlike the

case of a high-level language virtual machines, such as JVM of Java, we do not

have any information about the target address in a guest indirect branch. For such

an indirect branch, we may have to go back to the dispatcher and determine the

fragment this guest target address belongs to. However, after leaving a fragment,

the execution thread could look up the mapping table to �nd the fragments of the

guest target. The control would be directed to the block or trace fragment of the

guest target address.

Fortunately, binaries generated by most compilers use jump table to store the

target addresses of indirect branches. By recognizing and locating indirect jump

tables, we can determine possible guest target addresses and add them as edges

69

Chapter 4. Procedure-Based Dynamic Binary Translation 70

in the control �ow graph. For example, x86 binary compiled by GCC 4.3.4 uses

indirect branches such as jmp *0x8065a3c(, %eax, 4) to access a jump table

for target addresses. Therefore, for an indirect branch, we �rst check the pattern

of the memory addresses to determine whether it accesses a jump table for the

target address or not. If so, we obtain those target addresses from the jump table.

Otherwise, we just leave the procedure fragment and go back to the dispatcher.

4.3 Performance Evaluation

In this section, we evaluate our procedure-based optimization, and two trace

guided optimizations. In the following we �rst describe our experiment environ-

ment and settings.

4.3.1 Experimental Environment and Settings

Experiment Environment. We conduct our experiments on an Intel Core2

CPU 975 @ 3.33GHz machine with 12GB of memory. The operating system is 64

bit Gentoo distribution Linux. We use SPEC CPU 2006 as our benchmarks. All

x86 benchmarks are compiled with GCC 4.3.4 with �-static -O2 -m32� �ags. All

ARM benchmarks are compiled with GCC 4.4.2 with �static -O2� �ags. We run all

benchmarks via the standard SPEC runspec script with con�guration �les. We

run each benchmark three times with reference inputs and take results reported

by runspec as the experiment result.

70

Chapter 4. Procedure-Based Dynamic Binary Translation 71

Procedure-Based DBT System. We use LnQ [42] dynamic binary translation

framework to build our binary translators and extend the framework to accommo-

date an optimization thread pool. We build two binary translators � one translates

ARM guest ISA to x86 64 host ISA, and the other from i386 to x86 64.

We are able to run part of the benchmarks using the three translators. For ARM

guest code we can run all SPEC CINT2006 benchmarks. However the SPEC run-

spec tool reports mis-match error when it runs h264ref benchmark. Nevertheless

we notice that the runspec tool also reports mis-match error it when runs h264ref

in native ARM host environment, so we will not report the results of h264ref.

We set LLVM JIT compilation �ag to �O0� and enable fast instruction selection

to minimize compilation overhead of execution threads. We set JIT compilers

of optimization threads to �O2� option to get better code quality for traces and

procedures. We observe that there is no signi�cant performance gain when �O3�

option is turned on when compared to the �O2� option. Execution count thresholds

for trace and procedure are set to 30 and 40 respectively. We make the procedure

threshold larger than the trace threshold so that there will be a large number of

traces to use when hot procedures are identi�ed and compiled.

We compare the procedure-based DBT with EEG region-based DBT as described

in Chapter 3. We use the performance of native run as the baseline and all

performance data of LnQ DBTs are normalized to the native run, that is, the

results are slowdown factors compared to the native run.

71

Chapter 4. Procedure-Based Dynamic Binary Translation 72

0%

50%

100%

150%

200%

250%

300%

350%

400%

X86-to-X86_64 ARM-to-X86_64 X86-to-ARM

Sl
ow

do
w

n
Ra

tio

SPEC CINT2006

Trace Region Procedure

2.25X

2.85X

2.21X
2.03X

2.58X

1.97X2.00X

2.95X

1.92X

Figure 4.4: Overview of performance of Procedure-Based LnQ.

4.3.2 Experimental Results

4.3.2.1 Overview of the Performance

Figure 4.4 shows overall performance of 3 region formation algorithms. The

Trace/Region represent NET∗ and EEG Region formation.

As shown in Figure 4.4, the Procedure-based approach has similar performance as

EEG region formation on X86-to-X86_64 and X86-to-ARM LnQ DBTs while it

has bad performance on ARM-to-X86_64 LnQ. On average, the Procedure-based

approach achieves 2.0X, 2.95X and 1.92X on X86-to-X86_64, ARM-to-X86_64,

and X86-to-ARM LnQ DBTs, the lower the better.

72

Chapter 4. Procedure-Based Dynamic Binary Translation 73

0%

50%

100%

150%

200%

250%

300%

350%

400%

400.perlbench

401.bzip2
403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.lib
quantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

GeoMean

Sl
ow

do
w

n
Ra

tio

Region Procedure

2.43X

1.73X

3.99X

1.14X

2.68X

1.64X

2.20X

1.60X

2.81X

1.78X

1.37X

2.37X

2.03X
2.23X

1.76X

3.91X

1.31X

2.10X

1.75X

1.71X

1.69X

2.57X

1.91X

1.45X

2.65X

2.00X

Figure 4.5: Detailed Performance of Procedure-Based X86-to-X86_64 LnQ.

4.3.2.2 Detailed Performance of Procedure-Based DBT

Figure 4.5, Figure 4.6 and Figure 4.7 show the performance of Procedure-based

DBT.

4.4 Concluding Remarks

In this chapter, We present a retargetable procedure-based multi-threaded dy-

namic binary translation system. We describe how to solve Call-Return problem

and other issues in procedure-based compilation.

A prototype was built to study various design issues, and the experimental results

show that, in the SPEC 2006 integer benchmark, On average, the Procedure-based

73

Chapter 4. Procedure-Based Dynamic Binary Translation 74

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

400.perlbench

401.bzip2
403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.lib
quantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

GeoMean

Sl
ow

do
w

n
Ra

tio

Region Procedure

2.29X

1.53X

4.55X

1.19X

3.09X

1.84X

2.35X

0.87X

2.97X

1.77X

1.30X

2.26X
1.97X2.28X

1.41X

4.04X

1.25X

2.34X

2.03X

1.83X

0.86X

2.96X

2.00X

1.42X

2.47X
1.92X

Figure 4.6: Detailed Performance of Procedure-Based X86-to-ARM LnQ.

0%

100%

200%

300%

400%

500%

600%

400.perlbench

401.bzip2
403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.lib
quantum

471.omnetpp

473.astar

483.xalancbmk

GeoMean

Sl
ow

do
w

n
Ra

tio

Region
Procedure

3.32X

1.70X

4.09X

0.97X

4.12X

2.79X 2.91X

1.81X

4.34X

1.66X

3.46X

2.58X

3.81X

1.72X

4.52X

1.17X

4.28X

3.16X

3.67X

2.00X

5.67X

1.71X

4.43X

2.95X

Figure 4.7: Detailed Performance of Procedure-Based ARM-to-X86_64 LnQ.

74

Chapter 4. Procedure-Based Dynamic Binary Translation 75

approach achieves 2.0X, 2.95X and 1.92X on X86-to-X86_64, ARM-to-X86_64,

and X86-to-ARM LnQ DBTs.

75

Chapter 5

Related Works

5.1 Related Works of Dynamic Binary Translation

(DBT)

5.1.1 QEMU

The most popular retargetable binary translator is QEMU [23]. Prior to QEMU

verion 0.10, QEMU translated guest instructions into a series of micro operations.

Each micro operation is implemented by C and is compiled into host machine

instructions by gcc. There are two disadvantages of this approach. First, the

generated host instructions can only be blindly pasted into TBB, and is di�cult to

be further optimize according to the context of guest basic block, such as registers

mapping. Second, the approach is tightly bound to a speci�ed version of gcc so

that the micro operation can be compiled correctly.

76

Chapter 5. Related Works 77

LnQ framework does not have these two shortcomings. First, the Just-In-Time

compiler can load LLVM IRs at runtime and further optimize them according to

the context of current guest basic block, applying optimization passes such as con-

stant propagation, unreachable basic block elimination, etc. Second, the generated

IR follows LLVM semantics and can be understood by LLVM components, so it

is not restricted to any speci�c version of LLVM-enabled compilers.

QEMU then uses its own tiny code generator (TCG) after version 0.10. As before,

the guest instructions are split into several TCG operations, then the TCG parses

those micro operations and generates machine code. However, TCG is designed

for compilation speed and is di�cult to implement sophisticated transformation

in TCG. For example, it is di�cult to change the layout of basic blocks in TCG.

This is why TCG has only two simple optimizations: liveness analysis and simple

instruction simpli�cation. Also, the translation ability of TCG currently is still

insu�cient. For example, TCG does not support �oating point operations yet [40],

which results in poor performance in �oating point benchmarks.

5.1.2 Retargetable Dynamic Binary Translators

Chipounov et al [48] use LLVM to compile micro operation functions of QEMU

version 0.9. This approach is basically translating the intermediate representation

generated by QEMU into LLVM IR and then generate host binary. The advantage

of this approach is it can support all guest ISA supported by QEMU since it use

QEMU to decode the guest instructions. The disadvantages of this approach is

its ine�cient as reported in [48]. Possible causes may be there are redundant IRs

generated from micro functions and the insu�cient translation ability of QEMU

77

Chapter 5. Related Works 78

as mentioned above. LnQ translates each guest instruction directly into LLVM

instructions, and this approach can achieve much better performance as shown in

Section 2.3.

Hong et al [49] also use LLVM to optimize translated code. In HQEMU, TCG is

translated into LLVM IR to achieve retargetability. While HQEMU bene�ts from

the retargetability of TCG, it is also limited by the ability of TCG. For example,

due to lack of SIMD vector and �oating-point IR in TCG, HQEMU can only use

helper functions to implement the semantics of those guest instructions. Of course

HQEMU can inline those helper functions to improve performance, which is the

translation function approaches used in LnQ to implement the semantics of guest

SIMD instructions and �oat-point instructions.

As for region formtion, HQEMU uses NET to detect hot regions and merges hot

traces within loops. That is, HQEMU uses hardware performance monitors to

detect hot traces. Once HQEMU detects hot traces, it check if these traces could

form a loop. If yes, those traces within the loop will be merged into a larger region.

There are two di�ereces between HQEMU's trace merging and LnQ's EEG region

formtion. First, the merged regions in HQEMU may still su�er the ine�ciency of

early exists because HQEMU only analyzes the control-�ow graph of traces and

speculatively merges those traces as long as there is a loop found without checking

if the loop will be actually executed. On the other hand, EEG merges two regions

only if it detects frequent transfers between them. Second, the merged region will

not be merged again. On the other hand, in EEG, regions could evolve over time.

That is, regions could be merged again as long as frequent early exists are detected

in that region.

78

Chapter 5. Related Works 79

Walkabout [17] is a retargetable binary translation framework developed by Uni-

versity of Queensland and Sun Microsystems. It uses a machine dependent inter-

mediate representation to translate and execute binary code from a source machine

on a host machine. Walkabout uses machine speci�cations to describe the syn-

tax and semantics of source and host machine instructions, and how to select hot

paths. The performance reported in [17] is a slowdown factor of 139. Even with

PathFinder on SPARC.V9 the slowdown factor was 0.6 to 15.

5.1.3 Other Dynamic Binary Translators

The most relevant works in dynamic binary translation are Ha et al. [50] and

Bohm et al. [30]. Both works propose the strategy of spawning one or multiple

optimizations threads for JIT trace compilation so that concurrent interpretation

and JIT trace compilation can be achieved. Their di�erence with our work is

that our system use emulation rather than interpretation. Furthermore, we use

optimization threads to compile not only traces but also procedures, and we use

traces to further improve procedure compilation.

Dynamic binary translation (DBT) is widely used to support legacy binary code to

run on a new architecture such as IA-32EL [16], DAISY [19], and Transmeta [51].

IA32-EL is a process virtual machine that enables IA32 applications to run on Intel

Itanium. IA32-EL uses hyper-blocks as its unit of optimization in the hot code

translation phase. A hyper block is a set of predicated basic blocks with a single

entry and multiple exits. IA32-EL forms hyper blocks based on the execution

counts of basic blocks and edge counters collected collected during the cold code

execution.

79

Chapter 5. Related Works 80

DAISY and Transmeta are system virtual machines, where DAISY supports IBM

PowerPC applications to run on VLIW processors and Transmeta supports IA-32

applications to run on a proprietary VLIW processor. Transmeta did not revealed

details about how to �nd hot code regions. IBM DAISY uses tree groups as the

translation unit. Tree groups have a single entry point and multiple exit points.

No control �ow joins are allowed within a tree group. Control �ow joins can only

occur on group transitions. Like IA32-EL, DAISY also uses pro�ling information

collected during interpretation for tree group formation. Both hyper-blocks and

tree groups have little advantage to non-VLIW machines, such as x86_64, since

they are primarily designed to maximize instruction-level parallelism in VLIW

architectures. Therefore we do not apply their approach in our system.

Moreover, DAISY, Transmeta, and IA32-EL handle early exits with chaining, i.e.

the execution directly transfers to another code region. The transition overhead in

those systems is not as high as in LnQ because most guest architecture states are

mapped to the host architecture in these systems. For example, IA32-EL maps

the state of IA-32 guest registers directly to Itanium registers. On the other hand

LnQ, a retargetable dynamic binary translator, does not make any assumption

about the guest and host ISAs. Consequently LnQ has to load guest states in

the prologue of code fragments, and save them back to memory in the exit stubs,

which incurs transition overheads.

80

Chapter 5. Related Works 81

5.2 Related Works of Region Formation

5.2.1 NET

ADORE [52] and Dynamo [7] are same-ISA dynamic binary optimizers, which

means the input and the output instructions are from the same instruction set

architecture. Both ADORE and Dynamo use traces, i.e. super-blocks, as the unit

of optimization.

ADORE uses Hardware Performance Monitor (HPM) sampling approach to collect

path pro�les from the Branch Target Bu�er (BTB) hardware performance counters

in Itanium. It forms traces based on the collected path pro�les.

Dynamo was the �rst trace-based dynamic optimizing compiler that used the Next-

Executing-Tail (NET) algorithm. Dynamo pioneered many early concepts of trace

formation and trace runtime management. Many DBT systems [8, 30, 49, 53] and

just-in-time compilers [32, 34, 54, 55] use NET or its variants to form traces.

5.2.2 Most Recently Executed Tail2

StarDBT [53] uses Most Recently Executed Tail (MRET)2 [56], which improves

NET by increasing the completion rate of traces. MRET2 �rst uses NET to select

a potential trace, then it clears block execution counters and restarts NET to select

another potential trace. Both potential traces share the same starting address but

may have di�erent tails. MRET2 then improves the completion rate by selecting

the common path of both potential traces as a hot trace.

81

Chapter 5. Related Works 82

5.2.3 NETPlus

Another improvement of NET is proposed by Davis et al. [55] called NETPlus.

NETPlus �rst forms traces just like NET, and when a NET tracce is formed, the

NETPlus performs a forward search for loops back to the trace head by analyzing

the control-�ow graph.

5.2.4 Last-Executed Iteration (LEI)

Hiniker et al. [4] proposed Last-Executed Iteration (LEI) and a trace combina-

tion algorithm, which needs to interpret each taken branches to form trace and

requires every taken branch to be added to a circular history bu�er. This results

in signi�cant overhead of execution. Thus LEI has never been implemented in a

real system.

The main di�erence between the proposed EEG and previous works is that EEG

expands the existing regions and re-optimizes them during execution. The process

of region expansion in EEG can be divided into three stages. The �rst stage is

to decide how to form the initial region. The second stage is to decide when to

expand the region. The third stage is to decide which blocks are to be merged.

Previous trace formation algorithms, such as NETPlus and MRET2, could be used

in the �rst stage of EEG to build the initial regions. Therefore, the proposed EEG

can be used e�ectively in most trace-based dynamic binary translators.

82

Chapter 5. Related Works 83

5.3 Related Works of Language Virtual Machines

5.3.1 Method-Based Language Virtual Machines

Region expansion is widely used in method-based JIT systems, e.g., HotSpot Java

VM [57]. These JIT systems compile methods as follows. When a method-based

JIT system compiles a method for the �rst time, it only compiles those basic blocks

whose execution counts exceed a threshold during interpretation. If the execution

frequently leaves a region from side exits, the JIT system expands this region to

include those basic blocks that are the destinations of these side exits.

Our EEG and method-based JIT systems use similar heuristics to decide when

to expand regions during the second stage of region expansion, but they are very

di�erent in the �rst stage and the third stage of region expansion in terms of

motivation and the type of blocks they merge.

The major di�erence between EEG and those systems in the �rst stage is the

motivation in forming the initial regions. EEG uses traces as initial regions for

two reasons. First, traces represent those frequently executed paths that may span

across several methods. Second, it takes less time to optimize traces because of

their simple control �ow graph and small numbers of basic blocks. For example,

we found only 4.2 blocks per trace in EEG. On the other hand, method-based JIT

systems build initial regions by selecting blocks from hot methods, and excluding

those blocks that are rarely executed. For example, HotSpot JVM excludes blocks

that are never executed during interpretation.

83

Chapter 5. Related Works 84

The major di�erence between EEG and method-based JIT systems in the third

stage is the type of blocks they merge. In the third stage EEG merges traces that

contains frequently executed paths. However, in the third stage method-based

JIT systems will only merge blocks that are rarely executed in the �rst stage,

since those frequently executed blocks in the �rst stage have already been merged.

Another di�erence between method-based JIT and this dissertation is that we

integrate trace-guided optimization into procedure-based DBT.

Although procedure-based JIT compilation has been widely studied in language

virtual machines [36, 58], it has not been studied adequately outside of the JVM

community.

Suganuma et al. [36] investigate how to use region-based compilation to improve

the performance of method-based Java Just-In-Time compilation. They use region-

based compilation to partially inline procedures, instead of using traditional method

inlining techniques. They collect execution counts of basic blocks in order to un-

derstand program runtime behavior, and they apply static code analysis on the

Java bytecode to identify those rarely executed code blocks, such as those han-

dle exception. They use these information to identify and optimize those often

executed code blocks only, without optimizing the entire method.

In our case it is di�cult to identify those rarely executed regions by a static code

analysis, as they did for Java bytecode. Therefore we cannot apply their approach

in our system.

84

Chapter 5. Related Works 85

5.3.2 Trace-Based Language Virtual Machines

Trace-based compilation has gained popularity in dynamic scripting languages [32,

59] and high level language virtual machines [34, 35, 54, 60] in recent years. Wu et

al. [54] and Inoue et al. [34, 60] investigate the performance of several variations

of NET on trace-based Java virtual machines.

Gal et al. [32] propose merging loop traces into a trace-tree. Their approach

requires adding annotation while compiling JavaScript into bytecode, and thus

cannot be applied in our case.

In contrast, our EEG merges delinquent traces/regions, which are not necessarily

loop traces. EEG uses hardware monitoring to identify often executed code traces,

then determines whether they have many side exits, and �nally merges those

often executed code regions that have many side exits to avoid early exits from a

region, EEG also uses spill index to prevent generating regions which may degrade

performance.

85

Chapter 6

Conclusion and Future Works

6.1 Conclusion

The performance of dynamic binary translators is determined by the quality of

translated code and the ability to detect hot regions at runtime. The retargetabil-

ity also reduce the e�ort of reimplementation dynamice binary translators with

high performance. This dissertation presents the design and implementation of

the LLVM+QEMU (LnQ) framework, which can build retargetabile and high per-

formance multi-threaded trace-based/procedure-based dynamic binary translators

in Chapter 2. We show how to use LLVM compiler infrastructure to design the IR

library and the IR translator in the translation module on LnQ. We also show how

we perform register mapping to remove redundant loads and stores of guest archi-

tecture states, and how to implement dynamic binary translation optimizations in

LnQ which can be used in all translators built from LnQ.

86

Chapter 6. Conclusion and Future Works 87

In Chapter 3, this dissertation has identi�ed and quanti�ed the delinquent trace

problem in the popular Next-Executing-Tail (NET) trace formation algorithm.

Delinquent traces contain frequently taken early exits which cause signi�cant over-

head and limit the performacne of dynamic binary translators. Motivated by this

problem, in this dissertation, we develop a light-weight region formation strat-

egy called Early-Exit Guided region formation (EEG) to improve the performance

of NET by merging delinquent traces into larger code regions. The EEG region

formation does not only improve NET performance but all other trace forma-

tion approaches where traces are su�ered from the ine�ciency of early exits. We

also show how to o�-load compilation overhead to other CPUs to fully utilize the

computation power of multi-core CPUs.

In this dissertation, we further study region formation in a more large granular-

ity: a whole procedure. In Chapter 4 we present a trace-guided procedure-based

region formation algorithm for dynamic binary translation. We describe how to

solve Call-Return problem and other issues that only happen in dynamic binary

translation.

A prototype was built to study various design issues, and the experimental results

show that, in the SPEC 2006 integer benchmark, On average, the Procedure-based

approach achieves 2.0X, 2.95X and 1.92X slowdown compared to the native run

on X86-to-X86_64, ARM-to-X86_64, and X86-to-ARM LnQ DBTs.

87

Chapter 6. Conclusion and Future Works 88

6.2 Future Research Direction

Based on the evaluation in Section 4.3, procedure-based region formation shows

good performance compared to NET. We believe a good future research direction

will be using ahead-of-time (AOT) compilation in procedure-based region forma-

tion approaches. Similar to static binary translation, procedures can be analyzed

and compiled before program execution. Traces, on the other hand, cannot be

known before program execution. Hence, traces are not suitable targets for AOT

compilation. There are several advantages for AOT compilation. First, the com-

pilation overhead of procedures is completely eliminated. Second, more aggressive

optimizations are possible for AOT compilation to compile procedures. For exam-

ple, we may be able to collect path pro�ling information as the input to feedback-

directive optimizations in AOT compilation. However, there are challenges for

AOT compilation for procedures. The �rst challenge will be striped applications

which have no symbol table information. The second challenge is how to integrate

traces into pre-compiled procedures since traces are usually identi�ed more quickly

than procedures. Forming traces can improve performance before hot procedures

are identi�ed.

88

Bibliography

[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic

optimization system. In Proc. PLDI, pages 1�12, 2000.

[2] J. Lu, H. Chen, P.-C. Yew, and W.-C. Hsu. Design and implementation

of a lightweight dynamic optimization system. Journal of Instruction-Level

Parallelism, 6:1�24, 2004.

[3] S. Sridhar, J. S. Shapiro, E. Northup, and P. P. Bungale. HDTrans: an

open source, low-level dynamic instrumentation system. In Proc. VEE, pages

175�185, 2006.

[4] David Hiniker, Kim Hazelwood, and Michael D. Smith. Improving region

selection in dynamic optimization systems. In MICRO 38: Proceedings of

the 38th annual IEEE/ACM International Symposium on Microarchitecture,

pages 141�154, Washington, DC, USA, 2005. IEEE Computer Society. ISBN

0-7695-2440-0. doi: http://dx.doi.org/10.1109/MICRO.2005.22.

[5] F. Qin, C. Wang, Z. Li, H.-S. Kim, Y. Zhou, and Y. Wu. LIFT: A low-

overhead practical information �ow tracking system for detecting security

attacks. In Proc. Annual Microarchitecture Symposium, pages 135�148, 2006.

[6] James E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms for

Systems and Processes. Morgan Kaufman, 2005.

[7] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a trans-

parent dynamic optimization system. In PLDI '00: Proceedings of the ACM

89

Bibliography 90

SIGPLAN 2000 conference on Programming language design and implemen-

tation, pages 1�12, New York, NY, USA, 2000. ACM. ISBN 1-58113-199-2.

doi: http://doi.acm.org/10.1145/349299.349303.

[8] Derek Bruening. E�cient, Transparent, and Comprehensive Runtime Code

Manipulation. Ph.d. thesis, Massachusetts Institute of Technology, Cam-

bridge, MA, Sep 2004.

[9] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geo� Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.

Pin: building customized program analysis tools with dynamic instrumen-

tation. In PLDI '05: Proceedings of the 2005 ACM SIGPLAN conference

on Programming language design and implementation, pages 190�200, New

York, NY, USA, 2005. ACM. ISBN 1-59593-056-6. doi: http://doi.acm.org/

10.1145/1065010.1065034.

[10] Nicholas Nethercote. Dynamic Binary Analysis and Instrumentation. A dis-

sertation submitted for the degree of doctor of philosophy, University of Cam-

bridge, November 2004. URL http://valgrind.org/docs/phd2004.pdf.

[11] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and M. L.

So�a. Retargetable and recon�gurable software dynamic translation. In CGO

'03: Proceedings of the international symposium on Code generation and opti-

mization, pages 36�47, Washington, DC, USA, 2003. IEEE Computer Society.

ISBN 0-7695-1913-X.

[12] K. Scott, N. Kumar, B.R. Childers, J.W. Davidson, and M.L. So�a. Overhead

reduction techniques for software dynamic translation. In Parallel and Dis-

tributed Processing Symposium, 2004. Proceedings. 18th International, pages

200�, April 2004. doi: 10.1109/IPDPS.2004.1303224.

[13] Qin Zhao, Derek Bruening, and Saman Amarasinghe. Umbra: e�cient and

scalable memory shadowing. In CGO '10: Proceedings of the 8th annual

IEEE/ACM international symposium on Code generation and optimization,

pages 22�31, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-635-9. doi:

http://doi.acm.org/10.1145/1772954.1772960.

90

http://valgrind.org/docs/phd2004.pdf

Bibliography 91

[14] Anton Cherno�, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin,

Tony Tye, S. Bharadwaj Yadavalli, and John Yates. Fx!32: A pro�le-directed

binary translator. IEEE Micro, 18(2):56�64, 1998. ISSN 0272-1732. doi:

http://dx.doi.org/10.1109/40.671403.

[15] Raymond J. Hookway and Mark A. Herdeg. Digital fx!32: combining emu-

lation and binary translation. Digital Tech. J., 9(1):3�12, 1997. ISSN 0898-

901X.

[16] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Yun Wang, and

Y. Zemach. Ia-32 execution layer: a two-phase dynamic translator designed to

support ia-32 applications on itanium R©-based systems. In Microarchitecture,

2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International Sym-

posium on, pages 191�201, Dec. 2003. doi: 10.1109/MICRO.2003.1253195.

[17] Cristina Cifuentes, Brian Lewis, and David Ung. Walkabout - a retargetable

dynamic binary translation framework. In In Proceedings of the 2002 Work-

shop on Binary Translation, 2002.

[18] Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald, Paolo Faraboschi, and

Joseph A. Fisher. Deli: a new run-time control point. In MICRO 35: Pro-

ceedings of the 35th annual ACM/IEEE international symposium on Microar-

chitecture, pages 257�268, Los Alamitos, CA, USA, 2002. IEEE Computer

Society Press. ISBN 0-7695-1859-1.

[19] Kemal Ebcioglu, Erik Altman, Michael Gschwind, and Sumedh Sathaye. Dy-

namic binary translation and optimization. IEEE Transactions on Comput-

ers, 50(6):529�548, 2001.

[20] Jianjun Li, Chenggang Wu, and Wei-Chung Hsu. An evaluation of mis-

aligned data access handling mechanisms in dynamic binary translation

systems. In CGO '09: Proceedings of the 2009 International Symposium

on Code Generation and Optimization, pages 180�189, Washington, DC,

USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3576-0. doi: http:

//dx.doi.org/10.1109/CGO.2009.22.

91

Bibliography 92

[21] David Ung and Cristina Cifuentes. Machine-adaptable dynamic binary trans-

lation. SIGPLAN Not., 35(7):41�51, 2000. doi: http://doi.acm.org/10.1145/

351403.351414.

[22] David Ung and Cristina Cifuentes. Dynamic binary translation using run-time

feedbacks. Sci. Comput. Program., 60(2):189�204, 2006. ISSN 0167-6423. doi:

http://dx.doi.org/10.1016/j.scico.2005.10.005.

[23] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX

Annual Technical Conference, FREENIX Track, pages 41�46, 2005.

[24] S. DEVINE, E. BUGNION, and M. ROSENBLUM. Virtualization system

including a virtual machine monitor for a computer with a segmented archi-

tecture. United States Patent 6,397,242.

[25] Chen Yu, Ren Jie, Zhu Hui, and Shi Yuan Chun. Dynamic binary translation

and optimization in a whole-system emulator -skyeye. In Parallel Processing

Workshops, 2006. ICPP 2006 Workshops. 2006 International Conference on,

pages 8 pp.�336, 0-0 2006. doi: 10.1109/ICPPW.2006.32.

[26] Matthew Chapman, Daniel J. Magenheimer, and Parthasarathy Ran-

ganathan. Magixen: Combining binary translation and virtualization.

http://www.hpl.hp.com/techreports/2007/HPL-2007-77.html, 2007.

[27] Z. Wang, R. Liu, Y. Chen, X. Wu, H. Chen, W. Zhang, and B. Zang.

COREMU: a scalable and portable parallel full-system emulator. In Proc.

PPoPP, 2011.

[28] J.-H. Ding, Y.-C. Chung, P.-C. Chang, and W.-C. Hsu. PQEMU: A parallel

system emulator based on QEMU. In 1st International QEMU Users Forum,

2011.

[29] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong

program analysis & transformation. In CGO '04: Proceedings of the interna-

tional symposium on Code generation and optimization, page 75, Washington,

DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2102-9.

92

Bibliography 93

[30] I. Bohm, T.J.K. Edler von Koch, S.C. Kyle, B. Franke, and N. Topham.

Generalized just-in-time trace compilation using a parallel task farm in a

dynamic binary translator. In Proc. PLDI, 2011.

[31] J. Ha, M. R. Haghighat, S. Cong, and K. S. McKinley. A concurrent trace-

based just-in-time compiler for javascript. In Workshop on Parallel Execution

of Sequential Programs on Multi-core Architectures, 2009.

[32] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin,

Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky,

Jason Orendor�, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael

Bebenita, Mason Chang, and Michael Franz. Trace-based just-in-time type

specialization for dynamic languages. In PLDI, pages 465�478, 2009.

[33] D. Merrill and K. Hazelwood. Trace fragment selection within method-based

jvms. In Proceedings of the 4th ACM SIGPLAN/SIGOPS international con-

ference on Virtual execution environments, pages 41�50, 2008.

[34] H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. A trace-based java jit

compiler retro�tted from a method-based compiler. In CGO'11, pages 246�

256, 2011.

[35] H. Hayashizaki, P. Wu, H. Inoue, M. J. Serrano, and T. Nakatani. Improving

the performance of trace-based systems by false loop �ltering. In ASPLOS,

pages 405�418, 2011.

[36] Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. A region-based

compilation technique for a java just-in-time compiler. In PLDI '03, pages

312�323. ACM, 2003. ISBN 1-58113-662-5. doi: 10.1145/781131.781166. URL

http://doi.acm.org/10.1145/781131.781166.

[37] QEMU. http://qemu.org.

[38] Low Level Virtual Machine (LLVM). http://llvm.org.

[39] Apala Guha, Kim hazelwood, and Mary Lou So�a. Dbt path selection for

holistic memory e�ciency and performance. SIGPLAN Not., 45(7):145�156,

2010. doi: http://doi.acm.org/10.1145/1837854.1736018.

93

http://doi.acm.org/10.1145/781131.781166

Bibliography 94

[40] Tiny Code Generator (TCG) Documentation.

http://wiki.qemu.org/Documentation/TCG.

[41] Aashish Phansalkar, Ajay Joshi, and Lizy K. John. Analysis of redundancy

and application balance in the spec cpu2006 benchmark suite. SIGARCH

Comput. Archit. News, 35:412�423, June 2007. ISSN 0163-5964. doi:

http://doi.acm.org/10.1145/1273440.1250713. URL http://doi.acm.org/

10.1145/1273440.1250713.

[42] Chun-Chen Hsu, Pangfeng Liu, Chien-Min Wang, Jan-Jan Wu, Ding-Yong

Hong, Pen-Chung Yew, and Wei-Chung Hsu. Lnq: Building high performance

dynamic binary translators with existing compiler backends. In ICPP, pages

226�234, 2011.

[43] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and

blocking concurrent queue algorithms. In 15th Annual ACM Symposium on

Principles of Distributed Computing, 1996.

[44] Vijay Sundaresan, Daryl Maier, Pramod Ramarao, and Mark Stoodley. Expe-

riences with multi-threading and dynamic class loading in a java just-in-time

compiler. In CGO '06, pages 87�97, Washington, DC, USA, 2006. IEEE

Computer Society. ISBN 0-7695-2499-0. doi: 10.1109/CGO.2006.16. URL

http://dx.doi.org/10.1109/CGO.2006.16.

[45] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang,

Nancy J. Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E.

Hank, Tokuzo Kiyohara, Grant E. Haab, John G. Holm, and Daniel M. Lav-

ery. The superblock: an e�ective technique for vliw and superscalar compi-

lation. J. Supercomput., 7(1-2):229�248, May 1993. ISSN 0920-8542. doi:

10.1007/BF01205185. URL http://dx.doi.org/10.1007/BF01205185.

[46] perfmon. perfmon2. http://perfmon2.sourceforge.net.

[47] unstrip tool. unstrip tool in dynamic instrumentation library.

http://www.paradyn.org/html/tools/unstrip.html.

94

http://doi.acm.org/10.1145/1273440.1250713
http://doi.acm.org/10.1145/1273440.1250713
http://dx.doi.org/10.1109/CGO.2006.16
http://dx.doi.org/10.1007/BF01205185

Bibliography 95

[48] Vitaly Chipounov and George Candea. Dynamically Translating x86 to LLVM

using QEMU. Technical report, 2010.

[49] Ding-Yong Hong, Chun-Chen Hsu, Pangfeng Liu, Chien-Min Wang, Jan-Jan

Wu, , Pen-Chung Yew, and Wei-Chung Hsu. Hqemu: A multi-threaded and

retargetable dynamic binary translator on multicores. In CGO '12: Pro-

ceedings of the 10th annual IEEE/ACM international symposium on Code

generation and optimization, 2012.

[50] J. Ha, M.R. Haghighat, S. Cong, and K.S. McKinley. A concurrent trace-

based just-in-time compiler for single-threaded javascript. In Workshop on

Parallel Execution of Sequential Programs on Multicore Architectures, 2009.

[51] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson,

Thomas Kistler, Alexander Klaiber, and Jim Mattson. The transmeta code

morphingTMsoftware: using speculation, recovery, and adaptive retranslation

to address real-life challenges. In CGO '03: Proceedings of the international

symposium on Code generation and optimization, pages 15�24, Washington,

DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1913-X.

[52] Jiwei Lu, Howard Chen, Pen-Chung Yew, and Wei chung Hsu. Design and

implementation of a lightweight dynamic optimization system. Journal of

Instruction-Level Parallelism, 6:2004, 2004.

[53] Cheng Wang, Shiliang Hu, Ho-Seop Kim, Sreekumar R. Nair, Mauricio Bre-

ternitz Jr., Zhiwei Ying, and Youfeng Wu. Stardbt: An e�cient multi-

platform dynamic binary translation system. In ACSAC'07, pages 4�15, 2007.

[54] Peng Wu, Hiroshige Hayashizaki, Hiroshi Inoue, and Toshio Nakatani. Re-

ducing trace selection footprint for large-scale java applications without per-

formance loss. In OOPSLA '11, pages 789�804, New York, NY, USA,

2011. ACM. ISBN 978-1-4503-0940-0. doi: 10.1145/2048066.2048127. URL

http://doi.acm.org/10.1145/2048066.2048127.

95

http://doi.acm.org/10.1145/2048066.2048127

Bibliography 96

[55] Derek Davis and Kim Hazelwood. Improving region selection through loop

completion. In ASPLOS Workshop on Runtime Environments/Systems, Lay-

ering, and Virtualized Environments, RESoLVE, Newport Beach, CA, March

2011.

[56] Chengyan Zhao, Youfeng Wu, J. Gregory Ste�an, and Cristiana Amza.

Lengthening traces to improve opportunities for dynamic optimization. In

Proceedings of the Workshop on Interaction between Compilers and Computer

Architectures, 2008.

[57] Michael Paleczny, Christopher Vick, and Cli� Click. The java hotspot(tm)

server compiler. In In USENIX Java Virtual Machine Research and Technol-

ogy Symposium, pages 1�12, 2001.

[58] Hotspot parallel collector. In Memory Management in the Java HotSpot Vir-

tual Machine Whitepaper.

[59] Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco Logozzo,

Wolfram Schulte, Nikolai Tillmann, and Herman Venter. Spur: a trace-based

jit compiler for cil. SIGPLAN Not., 45:708�725, October 2010. ISSN 0362-

1340. doi: http://doi.acm.org/10.1145/1932682.1869517. URL http://doi.

acm.org/10.1145/1932682.1869517.

[60] Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani. Adap-

tive multi-level compilation in a trace-based java jit compiler. In Proceedings

of the ACM international conference on Object oriented programming systems

languages and applications, OOPSLA '12, pages 179�194, New York, NY,

USA, 2012. ACM. ISBN 978-1-4503-1561-6. doi: 10.1145/2384616.2384630.

URL http://doi.acm.org/10.1145/2384616.2384630.

96

http://doi.acm.org/10.1145/1932682.1869517
http://doi.acm.org/10.1145/1932682.1869517
http://doi.acm.org/10.1145/2384616.2384630

