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Background and objective

Acute liver failure (ALF) is uncommon but fatal. Current management is based mostly on
clinical experience. Hepatocyte transplantation is a promising alternative to liver
transplantation in patients with acute liver failure. The study is to investigate ALF from
longitudinal population-scale epidemiological analysis, through individual cross-sectional
histopathophysiological observation, ex vivo functional evaluation of hepatocytes, to
preclinical animal experiment of hepatocyte transplantation. To this end, we investigated 1)
the incidence, etiology, outcomes, and prognostic factors of ALF in Taiwan. 2)
pathophysiological expression of regeneration and differentiation in acute failure liver. 3)
whether the uptake and release of indocyanine green (ICG) by hepatocytes could be used as a
rapid in vitro assay for hepatocyte functional assessment. 4) the impact of the rate of
intraportal hepatocyte transplantation on early engraftment and repopulation and to improve
the engraftment and repopulation efficiencies of hepatocyte transplantation for treatment of a

rat model of acute liver failure in a clinically useful way without preconditioning.

Materials and methods

1) For population study, patients with the admission diagnosis of ALF between January 2005
and September 2007 were identified from the Longitudinal Health Insurance Database of
Taiwan. ALF was further confirmed by disease severity based on laboratory orders,
prescriptions, and duration of hospital stay, and acute onset without prior liver disease.
Prognostic factors were identified using Cox regression analysis.

2) For microscopic cross-sectional observational study, a human explant liver from acute
HBYV infection was examined for immunohistochemical expression of progenitors [marker:
CK19, epithelial cell adhesion molecule (EpCAM)], differentiation [NUMB (an inhibitor of
the Notch pathway), carbamoyl phosphate synthetase 1 (CPS-1, urea cycle enzyme), HNF4a,
and HNF1p], and proliferation (Ki-67).

3) For in vitro study, human hepatocytes (1 x 10° cells) isolated from unused donor livers
were incubated at 37°C for 30 min with ICG (0-2 mg/ml) in both cell suspension and on
collagen-coated culture plates. Cells were then incubated in medium without ICG for 3 h
with supernatants collected at 1, 2, and 3 h for measurement of ICG release. Viability of cells

iX
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was determined by trypan blue exclusion, MTT (mitochondrial dehydrogenase activity) and
SRB (cell attachment) assays. HepG2 cells were also used as comparison.

4) For animal study, acute hepatic injury was induced in Sprague-Dawley rats with D-
galactosamine. Hepatocytes (1 x 107/ml) were infused intraportally over 30, 70, or 100

seconds to study early engraftment (2 days) and repopulation (7 days).

Results

1) For population study, during the study period, 218 eligible cases were identified from
28,078 potential eligible ALF patients. The incidence was 80.2 per million person-years in
average and increased with age. The mean age was 57.9+£17.1 years and median survival was
171 days. The most common etiologies were viral (45.4%, mainly hepatitis B virus) and
alcohol/toxin (33.0%). Independent prognostic factors included alcohol consumption (HR
1.67 [1.01-2.77]), malignancy (HR 2.90 [1.92-4.37]), frequency of check-ups per week for
total bilirubin (HR 1.57 [1.40-1.76]), sepsis (HR 1.85 [1.20-2.85]), and use of
hemodialysis/hemofiltration (HR 2.12 [1.15-3.9]) and proton pump inhibitor (HR 0.94 [0.90-
0.98]). Among the 130 patients who survived >90 days, 66 (50.8%) were complicated by
liver cirrhosis. Eight (3.7%) were referred for liver transplantation evaluation, but only one
received transplantation and survived.

2) For cross-sectional study, histological examination of the explant liver showed submassive
necrosis and prominent ductular reaction. The road of hepatocyte differentiation was nicely
shown from the bipotential progenitor cells (thick stained, small cell size, high nuclear-
cytoplasm ratio) and gradually spirally spreading outward to form daughter intermediate
hepatocytes (light stained, larger cell size, lower nuclear-cytoplasm ratio). These
differentiating cells did not proliferate actively, and express EpCAM and transition of NUMB
and CPS-1.

3) For in vitro study, ICG was taken up and secreted by hepatocytes with the release reaching
a plateau level soon after 1 hour. Concentrations of ICG above 1.0 mg/ml, had toxic effects
on hepatocytes. Hepatocytes incubated with 1.0 mg/ml ICG had higher mitochondrial
dehydrogenase activity compared to 0.5 mg/ml ICG or control (0.025 + 0.0004 v.s 0.019 +
0.0008 or 0.020 + 0.002, P < 0.05). Incubation of HepG?2 cells with ICG reduced albumin
production (98.9 + 0.02, 66.6 £ 0.05, 39.1 £+ 0.4 ng/ml for control, 0.5 mg/ml, and 1.0 mg/ml
ICG respectively) and also decreased [°H]-thymidine incorporation in a dose-response

manner.
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4) For animal study, three groups had significant difference in hepatocyte engraftment (P =
0.018) and repopulation efficiencies (P = 0.037) and infusion over 70 seconds produced
superior outcomes. After the 70-second infusion, the transplanted cells immediately
transmigrated the sinusoidal endothelial layer and rarely accumulated in the portal venules,
with improved liver function significantly. The mean first peak pressures, without significant
difference, were 14.8 £ 6.5, 17.7 + 3.7, and 13.6 £ 3.0 mmHg in the 30, 70, and 100-second

groups, respectively.

Conclusion

ALF in Taiwan is mainly due to viral infection. Patients with malignancy and alcohol
exposure have worst prognosis. The use of proton pump inhibitor is associated with
improved survival. Half of the ALF survivors have liver cirrhosis. Prominent ductular
reaction with at-least partially functional hepatocyte differentiation did not guarantee
successful regeneration in acute liver failure and there is demand left for hepatocyte
transplantation. With further refinement of ICG could be used to develop a rapid assay for
assessment of the function of isolated human hepatocytes. Differential hepatocyte transfusion
rate contribute to accelerated early engraftment and repopulation in rats with acute liver
injury. These proof-of-concept findings are of clinical significance because they are easy to
translate into practice. Further studies are needed for improvement of hepatocyte

transplantation for ALF in Taiwan, albeit some problems solved.

Key words: acute liver failure, prognosis, population, hepatocyte, progenitor cell,

indocyanine green (ICG), hepatocyte transplantation, engraftment, repopulation

Xi
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Abbreviation

ACLF acute-on-chronic liver failure

ADSC adipose-derived stem cell

AFP Alpha-fetaprotein

ALF acute liver failure

ALT alanine aminotransferase

ANOVA  analysis of variance

Arg-1 arginase 1

AST aspartate aminotransferase

ATP adenosine triphosphate

CBD common bile duct

CK19 cytokeratin 19

CPS-1 carbamoy! phosphate
synthetase 1

CT computed tomography

D-gal D-galactosamine

DMNA dimethylnitrosamine

DMSO dimethyl sulfoxide

DNA deoxyribonucleic acid

DPPIV dipeptidyl peptidase IV

ECM extracellular matrix

EGTA ethylene glycol tetraacetic
acid

ELISA enzyme-linked
immunosorbent assay

EMEM Eagle's Minimum Essential
Medium

EpCAM epithelial cell adhesion
molecule

EtBr ethidium bromide

FDA fluorescein diacetate

GGT gamma-
glutamyltranspeptidase

GMP good manufacturing practice

GTP good tissue practice

HBSS

HBV
HCV
HEPES

HEV
HGF
HNF1p
HNF4o
HR
ICU

IL
IMV
INR
LHID

LT
MRP2

MSC
MTT
NHI
NHIRD

NOTCH

PPI
RNA

SD

SRB
SVF
Thx3
TWEAK
uw
WME

Xii

Hanks' Balanced Salt
Solution
hepatitis B virus

hepatitis C virus

4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid
hepatitis E virus

hepatocyte growth factor
hepatocyte nuclear factor 4 beta
hepatocyte nuclear factor 4 alpha
hazard ratio

intensive care unit

interleukin

inferior mesenteric vein
international normalized ratio

Longitudinal Health Insurance
Database
liver transplantation

Multidrug resistance-associated
protein 2
Mesenchymal stem cell

mitochondrial dehydrogenase activity
National Health Insurance

National Health Insurance Research
Database

neurogenic locus notch homologue
protein

proton pump inhibitor

ribonucleic acid

Sprague-Dawley

sulphorhodamine

stromal vascular fraction

T-box 3

TNF-like weak inducer of apoptosis
University of Wisconsin

Williams’medium E
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Portion of this chapter were previously published as Ho CM, Ni YH, Lee PH. Hepatocyte transplantation
in the therapy of hepatobiliary disease in children. Formosan J Med 2010;14(1):68-71 and have been
reprinted and reproduced with permission. Copyright © 2014 Formosan Medical Association.
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L PIFR B e *"« Eirvaxy #53 Bl e Ffm P2 3% 7 & = IR % (Rutherford et al.
2008) > Bt PRI K ¢ Fods ST ie 3 2 T RGEAFE 4 (Ding etal 2010) 0 {5 H ()
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e 5 PlimE o £S5 RARGEP T A 1L X 3 mbe > A7 X P [flEF %7 (Evarts et al.
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G P B 7 E v w2 foi4 % ductular reaction =B B4 (Elsegood et al. 2015) @ ® E
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e & & E 0k 4o King’s College Criteria (O’Grady et al. 1993) ~ Clinchy criteria
(Bernuau et al. 1986) ~ Japanese criteria (Mochida et al. 2008) » & £_> & {25%% g L §
WA RS PRI HIE > L PP EF REOIGR G R L EEF R o Germani ﬁ*‘uﬁﬁ
LA A R 0 B T e s 4 AL AT - & (Germani et al. 2012) o F ¥
Y € 3142 toxic liver syndrome («& x B MRS~ B % 2B £ eF e % 2B (Ringe et al.
1993) - BT’»% PR %] T AR 25522 18 2 portocaval shunt & 7 o &7 pFAE T £ ik L
¥ 4 2 hemodynamics ; £ ¥ #FFF48 ehis FEEC PSR (Ringe et al. 1988, Henderson
etal. 1994) o 2 2+ 5§ Jut £ e RNk PRedE 2 (Rozgaetal 1993) o ¥ #h ¥ & 129+
FRAFT B A G P AROP G G R RIS R E S B PR 4 S
{8 k2 ¥ LR § o Frd| A et if (van Hoek et al. 1999, Weiner et al. 2015) ° % #h 4o
o SRl A K N BIFHAE R s 0 T AR DB R e i A w2 Aot 3 T
% (Hoetal 2014) « Flpt + B B H Sk (e BH)T{ 35— Bio > T80 2§ ¢
L A o

- e 5 e i B

Fmre e e L E W i]*u”ﬁ 7 A7 8P 8% IR & Crigler-Najjar syndrome 5
B F 4 Gunn ~ & (4 " uridine diphosphate glucuronyltransferase) i {77 5 #%
PR £ 4 1 F 'R MR - 2 (Matas et al. 1976) © Mito » IR Fimre 4 < BUNAR
P T O3 T K (Mitoetal, 1979) o ¥ ¢4 3 IR & D-galactosamin £
dimethylnitrosamine (DMNA) #7342 eng HFF BT < B 7 Fmfe {57 11k
I %% % (Sutherland et al. 1977, Sommer et al. 1979, Makowka et al. 1980) ° & {& &9
1980-90 # & { i =+ 4p R A7 3 224 75 7 (Makowka et al. 1981, Braun et al. 2000,
Kobayashi et al. 2000) > % i > * J endF FH L FAPH i Fwe P F - £ 1 = &
FEET ko B Rk 2R 610.5-1% (Yu 2009) © 38 (7§ = s 4R N T O e A
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w2 375 0% € (Rajvanshi et al. 1996) o 1 ATk v § 47 58 @ * retrorsine *
KA 4o A% 48 7o ¥e e engraftment 225 e0RGE TRk F T2 i F 0 R e A e B R L
EPBTRAE T RT Y DETRE 0 GlAeP FRIS R~ B st E  (Dhawan
2015) ~ &% FR 4 37 “f s Fimre 54 (Jornetal 2015) o e L LB P chi{g s 3
R blder g9 e g F &P endothelin-1 receptor blockade (bosentan, darusentan),
nitroglycerin, prostacyclin ; FE#75 { & fn¥e jjr% < etanercept, thalidomide ; BL3%3&§ p
A m¥e 1§ J 0 cyclophosphamide, doxorubicin, rifampicin/phenytoin ; 7 it stellate cells

1B E extracellular matrix remodeling 7 naproxen, celecoxib % (Forbes et al 2015) ° &
AU LB e g RAOL AT A 2 7 0 engraftment 25 (Ho etal 2015) RI4%

By - BTRE T ORY s R o
i e A5 e GRS &

Fnre & o) X G 20-30pm, B F IR AR Ao F S o) 8 5 6um (Yu 2009)
A F T e F 3t iF S o) 9 5 100 nm (Gandillet et al. 2003) o A 3 i i &
3 iwPe [ 0 tight junction % 4] m = FIZk k> SR ERE O w2 B E AR
B2 MR R EFP o Mok Bk 5 i~ parenchyma ¥ e e F]pt X 3RS 4E e
MmO - X 2P BARUETR kS fj‘u ¢ 4% Kupffer cells *7i} /= 72 & (Yu2009) - ¥
I BT E AR TR FIAS f e + B G514 44 & LB R (ischemia-reperfusion)
»2 & > §1 i Kupffer cells 7 i* & $# 41 tumor necrosis factora > i = 7§ feat & i 3 13t
FoRES 3 F LS Ao BN A RFEPRAE DY T 0 RS ATk E S B
% (Guptaetal. 1999) o i&» = 7 "Fim* 5 {8 engraftment B A 5 & X B F B3R - &
Fara) € > (= | F)ad Tl iR ia e 2 FRF R - Afd 7% B~
BE A4 HEFPPRFE 54 ~= (Yuetal 2004) - i » % e « B i
* P43 L tumor necrosis factoro #r 4 #| (etanercept) & ¥ 3 v 45 48 dm P g i £
engraftment (Viswanathan et al. 2014) - /' & &% = & > AP FlEd P % ﬁea] ER kY
ihte %Y O VERBEIFmeE TREFN T RIF L IV RS
FIE eghdehiAz (G20 % I §, Chapter 5, Figure 36) » % o g ¥ & ShfF) 5 & i
BrstiE RPFRT F 2 (Hoetal. 2015) FPP%/R 4 chgit % 5 AL [ R w I HE
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A RL o BEAETZ 4R de Ak A BGR 0 B A R B%F MaFEdk 545 597 %% engraftment ¥ -
B RIFTEES R o

A mre Rk i F AR 0T — B2 & § ~ liver parenchyma. i ¥ & f©
125 % g BB Fwmie fo i 4 7w Do 84 € (¢ 7 gap junction %
bile canalicular network) (Gupta et al. 1995, Slehria et al. 2002, Forbes et al. 2015) © /& it
stellate cells € %%’ d % 3 matrix metalloproteinases % tissue inhibitors of

metalloproteinases § 2% f » chiE A2 ¢ % *h B T (extracellular matrix)*7 % & g% &2

¥ i (Benten etal. 2005) ° 3% + > 5= # ?ﬁ”*ﬁm’??—?—\’ﬁ WA e 4 0 ¢ RIFLIFN
;em 3 4 (Forbes etal. 2015) o A A F SkPLE I IR § Boo B LR R A i

el 4 > BRI T2 € 5 P AR eoi 4 % o Font-Burgada ¥ A R om0
¥R £ - PR E AR R AL F] (4o Sox-9) 0 H A W4 B 0 X A RFA A T

% #iE w2 kR (Font-Burgada et al. 2015) °
bk M im e 5 g B

ER = }}%i B % £ p & Mito ** 1992 # = # 3 £ (Mito et al. 1992) o "+ w2 5
fo H R e pAF R —‘ﬁ a PAR S NI SEC BRI i <R N N ’-"iﬂis?]‘}i » %P ‘ﬁ
NI E'L'rﬁw—‘gmsieﬁ,ﬁ » AT %ﬁré v Nl L R G TN o 23R T D e T} AZiE A~
PTG X R 5 fe L X 5% 05 > 4o Crigler-Najar Syndrome type I » urea
cycle defects (ornithine transcarbarmylase deficiency ~ argininosuccinate lyase deficiency *
carbamoylphosphate synthase type 1 deficiency ~ citrullinemia) > factor VII deficiency -
hemophilia A » glycogen storage disease type I * argininosuccinate lyase deficiency *
Refsum disease > al antitrypsin deficiency * familial hypercholesterolemia * maple syrup
disease ’ neonatal hemochromatosis » progressive familial intrahepatic cholestasis type 2 °
&M% B WA P 972 acute-on-chronic "FE X X o 4p R chds 4 WOV L ARP)GE
(Weber et al. 2009) » 4 spf-ash mice (ornithine transcarbamylase deficiency) (Michel et al.
1993) » fumarylacetoacetate hydrolase knockout mice (tyrosinemia) (Overturf et al. 1997) »

mdr2 knockout mice (progressive familial intrahepatic cholestasis) (De Vree et al. 2000) °
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hypercholesterolemic Watanabe rabbit (Wiederkehr et al 1990) - H & & F_iz & 3 b ¥4+
R OIS EIFR BN ARR o iEa f R T E B 32 B
oo e AR BRET Bl 0 H A OIREH s B e R BEAE S :'Eﬁ%]‘}i
wre (FIBR- =ta K2 fffelme £ 5 L2 £ 5 ﬁi%ﬁ%'}iﬁ’!ﬁm’?é #\ﬁﬂ: ok O U
AL F B T ) e 3 A A R E D EHRTFIEE R Rk I RRI) G T
wmie i 0 XM H P § A2 ¥ donor hepatocytes 1372 #4ll (de novo donor-
specific antibody) (Jorns et al. 2015) > A& # #/% . % 5 & (humeral immune response) %
F v m e }%‘ FLRE B Bt B g ok Rk lwPe ek i (alloantibody-dependent, complement-
independent cell mediated cytotoxicity) (Horne et al. 2008, Zimmerer et al. 2015) T & 4
POoTRERFED AP BRI LIRNFIFe PR EL > HA AL 2 RS T
T FRE TR B G AR AR S e F o 2K 212008 # 2 0 3 King’s
College Hospital & 12 g/ "2 45 48 4p B 2%3L (Figure 2) - & < 2 }I?c PiT 1/3 23
CARER A iR g g fiw (Dhawan 2015) - 3 ¥ f ,T* LR A e 5 e L 0 - B
AMAE

it & R TRR B R Fww A RAE A

Tk Blmie A NP R E T R L fAwre A Bt 2 WG o BELE et d
Eﬁ??—im%&ﬁ%ﬁﬁ%%a@mﬁmoﬁw%aamw@ggmﬁgigj

I R PEE R hood F5F A B & | 100 & F ORI o 0 Rk chimee - &
% GTP (good tissue practice)/GMP (good manufacturing practice) & ¥ TR 5 T & 4t ~ 4
AR A B/E o AR B BIEAHFUE ART b RS oA

fmre f5 e £ pEenld v A2 B (Figure 2) % 77 o

- HOFERR R A & E A AT L e i B R IR e AR
R R S ",% F BT e Pl TR RGBT Rk MOBERNE > &
ERTEIR AT O MELRF 0T AR T L GAT - LEEER R340 HBSS
(Hanks' Balanced Salt Solution), EMEM (Eagle's Minimum Essential Medium) , UW
solution(University of Wisconsin solution) ~ 3# % 4~ EGTA (ethylene glycol tetraacetic
acid), collagenase, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), DMSO
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(dimethyl sulfoxide), 50% glucose, acetylcysteine) ~ & 7K ~ agar plates % i j 33 & g &
$4 - HHAF » 7 (Figure 3B) o & r BB mie A B E 0 R KiEA IR 0 B AR
%é@iﬁ’@ﬁﬁﬁﬁﬁ%&o
CEFASBEZEETEEEF 0T R R ERE o REEAERR (RIE
W B R pure HBSS 72 41§ f ke %« P ®E %3 0 £ HBSS + EGTA » HBSS + CaClz
$7 %7 %2 ¥ 0 tight junction * EMEM + HEPES + Collagenase 3% ‘¥z % 3 basement
membrane) ; 2 = o B AL JJEIFER 5 & AT ,Pil‘fjl BN FIRL R S
cannulation » * cannulated i F ¥ 23 UM P o NI LR ITY R 2 o £ F
FEEANRER T PRERFL FFFRDEAFKRE - FRGJZR AT
pump £ § - L (Figure 3C) o ¢ PFRARSF S + | (A F PRI E 5 - AF 200-
300 5 ¥k 5 %) - %% 500 ml HBSS ; Collagenase =ik & ¥ 0.5¢/500 ml EMEM (4.7 F
ROBERD ) o 2ARTIIENER  WALZFI > E T L3 o §EF T 255
FEHREIREP Rk o I AL BEREIR 0 Bl SRt ¥ R FY Y
W > BNk 0 BEFET - 2o
Rk B TR ) A oI B A fEehg d B B o TR b 37N
B ARG Y R R > 3 m f 2t jee-cold EMEM ¥ (Figure 3D) © BE W Ae 1 Y F iy
FERT o O B g ¢ 50g M 3w (Figure 3EF) © o = (8 “31“% BN R E
WA 4 0 A4~ EMEM D 453 0 How o £ RIS E FI FREGF S L o 0
B F o PR mBRAHE o APt 9w A 0 AR 1 4~ trypan blue 0 E
** hemocytometer > 3+ 8 /F fm %% Fck 1 b o & 2N e fiy/ml=3 8 B x 2x 10%x
dilution factor » ¥ fp N iLimie fc2 A & (Yield) (B lw?e /T E £) o mie & dHjie

Td R o T RE el LS P’H}’#'F’m"?@]ﬂ v h A Fﬁéﬁﬁ_ﬁ» °

FREEIEE 3o e T 3B R 60%) 0 e TS Ry o
PRAEZFERERY « B3R UW 24> &% w% kR 5 107/ml > &% DMSO k&
10% > B8 § 5 HBER 5% M RS e ¥ 3R & KB4t o (Figure 3G) & %K1t

%o {0 REWIX T step-rate freezing freezer 4v 124 ik 3 -140°C 13 o
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HA A Fmie W o ML e B B R 2370 = 20 L EMEM & @A
BLI-BHA REHDT > MERCT A4 P~ 7 UWsolution fr DMSO £t
oo Bt AT L KBS e b2 g > 71017 B 40 TM-1 (transplant

(:w

(=i

media) + — & 120% Albumin ;& & & 4c 14 ime E B 107/ml ¥ %33 fice-cold B B
g o

Tk i B LS L Y 5%

o A B fo— CE A oo BB JE T S IMV (inferior mesenteric vein) ¥
2 %53k e catheter T 48 ¢F 2 1Y ﬁ?‘]‘}ifm *z » g« d umbilical vein catheter 3= » o @?]‘}ié“f* is 2R
Pl edd Gk 2 PR gt > 0 Iml/min # B ¥ ¥ 'ﬁ%l)\ y ¥4 G
#@okh g B (Figure 3H) o & = e %]ﬁ £ %) 100 millions/kg » ¥ %4 ‘&8P 5 FIfE 1
Bprl 2 fod e - Rt R B o R S B & 0 m #£ § 0 LA vital signs
R M HRRIPE R & EFOTER RN o PR
- P £ R Tl 0 B RITRA RN R R iF i o

Stéphenne ¥ A § P "Fiwmfe {5 ¥ - B 3 & B 3 argininosuccinate lyase
deficiency fﬁa @ FF g5 - & T3 R (Stéphenne 2006) o 1 &~ FimRE chixd g il
¥ B 9 B * {2 BrbrE > (Dhawan 2015) » 3¥-mehf FIE 2 £ o ¥ 0 e £ 21

2

engraftment £ & % F| £ & & siersc# 13 B % (Dhawan 2015) o

Tl ¥ 7o #5 E eHFL TR

SR REEGIA L 5 QT A4 100 BT o SBED T AL A
B o TS FATRERKIREL R Y o BRI A4 2 R iR RS X G
P ORGSR FEGFTFRE T EEN B BACEIBEDT GEDFG F e
# i (Mitry et al. 2002) - 32 b > F {7+ w2 38 5% ¥ 43 * (Dhawan 2015) ° 7
W AR e A Vi F & TL 5340 7 iR Fh 4 BEXEFimre
1 (Strom 1999) » J ff crigsk 2 3758 sy (6 & frrbin k6 T 0TS £
R BAEEPILF 3549 4 (Dhawan 2015) © 2009 # e if 5T R T mie B RE L 3 €
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#*k4p 113 e centers chim e WAZZ §RAk protocols & AFim e oo i R IRELI At g
(Puppi et al. 2012) o F]* » 3+ ¥ & iR 2 it~ protocol — I 1t 2 4eie B 4r £ 48 4l
2 th7 & (repopulation) = 7 -k ehdE & %A (Puppi et al. 2012) ©

BRG] AR R AR RIS R - 0 R Wﬂ? &
Lt B SRR K EF A Y TR (Hoetal 2015) > A & e imme § B p &2
@ﬁﬁ%ﬁﬁwamWWQM$’%u%%z&ﬁ%?%&%"mﬁiﬁﬁ |~ 2
B F A Fmie o Flpt o M e fm e e g DR iR A - 0 & kAR
(Hoetal. 2012) » % = ¥ #3fmitih o doP Bd b P il » B 5% = 2 #3325 &

S AREH T SRR CEH DRI R FATRETY FOERF R AR R
BLRE Tk Fm e ey Az® (Figure 10) » & > BE I X3P F 9 %2 %F (Hoet
al. 2015) - T # ¥ i&- ¥ %ﬁ“é SRRy Tk AR el o RO B R TR REZ A
oA gErfrdagi- fA I B Tee 25 TR ETRE &R SR L

% o

-%g

* Rk

Fhwm> MBS 2 JFHH ¥ 50 Figure 4 - JGpk BLEAF T W8 33 o 8%
PAFHRBILR > JIF EEFTHRESE Y 2 M 1 EEA S PEESOS ) 2 .
Acute-on-chronic **% i RArk [EAF % B L ek 2 o 0 L in b
Mt P 155 5 (Dhawan 2015) > 3% ¢ 82 k350 i 5 > # future perspective # 4c 12
Pt o AR 4 2 i SRiziw e cp M AH T T &% = & (Chapter 3):E 74531 0 T & BB
A RFFHFEF o WA Fme sy (R (B o Rt L R - BRER P o TR
USSR & 0 F IR E S0 Sk SR RN XN S Satirs 1o !
A7 EE 2t ET%,? Ao e BT BIRk me n s AE RS2 BB ‘“’ftﬁléé*‘f%imﬁ?'
Brie R H e
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Acute liver failure: Clinical perspective

Acute liver failure (ALF) is a syndrome characterized of multiple organ functional
deterioration rapidly induced by massive hepatocyte necrosis and liver decompensation. The
mortality of ALF can be as high up to 50 % and can be caused by viral infection (eg, hepatitis
virus A, B or E), toxin or drug (eg, acetaminophen), ischemia, malignancy infiltration,
venous obstruction (eg, Budd-Chiari syndrome), Wilson disease, or heat stroke (Bernal et al.
2013). The etiology of ALF varied in geographic regions and indeterminate or unknown
etiology occur in many circumstances. The definition is based on the coagulopathy and
hepatic encephalopathy in a previously healthy liver (Polson et al. 2005). ALF occurs rarely
in the developed countries, estimating about less than 10 cases per million person-years. In
our epidemiological nationwide study (Chapter 2), however, it was estimated about 80 cases
per million person-years (Ho et al. 2014). We can expect our target population of interest

based on this analysis.

Acute liver failure: regenerative perspective

Liver regeneration is triggered when massive hepatocyte necrosis or apoptosis
(Rutherford et al. 2008). ALF occurs when the balance tilts toward the injury instead of
regeneration. Hepatocytes proliferate fully to recover in the model of liver regeneration of
massive physical loss of liver volume or in living donor liver resection (Higgins et al. 1931,
Ho et al. 2007). Earlier studies of liver generation pay more attention on the hepatocyte and
its related cytokines (Michalopoulos et al. 1997). Recent research found that the hepatocyte
near the central vein was actually contributing to the house-keeping cell renewal in daily cell
loss (Wang et al. 2015). The hepatocyte near the portal vein, instead, contributes to the
replacement of cell loss by injury (Font-Burgada et al. 2015). Interaction between the
hepatocyte and the non-parenchymal cells was ever better understood. For example, the
regeneration of sinusoidal endothelial cells (Ding et al. 2010) and biliary cells (Chen et al.
2015), and transfer for growth factors by exosome (Nojima et al. 2015) and RNA by platelets
(Kirschbaum et al. 2015). In Chapter 5, we used D-galactosamine induced acute liver failure
in rats as the animal model of hepatocyte transplantation because D-galactosamine is a

common and stable agent that cause reproducible acute liver injury.
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Acute liver failure: perspective of progenitor cells

Recovery from acute liver failure by injury generally is not as complete as the living
liver donor (Ho et al. 2014). In many cases, there is not enough hepatocytes to meet the
demand of regeneration. Ductular reaction occurs in these circumstances. Liver progenitor
cells, or known as oval cells, were first discovered by Farber (Farber et al. 1956). They
express markers of CK-7, 8, 9, OV-6, glutathione-S-transferase, connexin 43, mouse A6
antigen, AFP, gamma-glutamyltranspeptidase (GGT), muscle pyruvate kinase, CD90, c-kit,
CD34, sca-1 and can differentiate into hepatocytes or cholangiocytes (Yu 2009). They are set
to differentiate toward cholangiocytes by default and will shift toward hepatocytes under the
action of wnt 3 released by activated macrophages (Boulter et al. 2012, Elsegood et al. 2015).
NUMB played a central role in the transition. Clinically, we observed the differentiation of
the progenitor cells (marked by CK19) toward hepatocytes with the expression of NUMB in
Chapter 3 (Ho et al. 2015). The spared mechanism of rescue clinically usually still end up
with host death or liver transplantation (Katoonizadeh et al. 2006).

Acute liver failure: Immunologic perspective

Massive hepatocyte necrosis will over activate the innate immunity, which later induce
inflammatory substances (such as HMGBI1, TNFa, and IL-1) in whole liver and overflow
through systemic circulation around the host. It induce sterile inflammatory response
syndrome systematically (Possamai et al. 2014). Anti-inflammatory substances (such as IL-
10 and secretory leukocyte protease inhibitor) will be induced locally in the liver and spread
out of liver in the later round, which cause immune paralysis of monocytes and susceptible to
sepsis (microbial invasion) (Antoniades et al. 2014). It can result in immune chaos when the
insulting triggers continues to be existed (Possamai et al. 2014). Macrophage polarization
between M1 (pro-inflammation) and M2 (pro-resolution) is important in the perturbation and

modulation of the microenvironment of acute liver failure and needs further studies.

Acute liver failure: Therapeutic perspective
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Specific agents for acute liver failure are limited and etiology-dependent. Most
treatment strategies are supportive in organ dysfunction due to the systemic inflammatory
response (Mark et al. 2015). Liver transplantation is the gold standard of treatment. These
patients are usually weak and could not tolerate the procedure. Hepatocyte transplantation
plays an alternative critical role in the rescue of acute liver failure when there is acute paucity
of enough mature hepatocytes. Hepatocyte transplantation can either bridge to liver

transplantation or help native liver regenerate in these circumstances.

Hepatocyte transplantation as the treatment for acute liver failure (see Chapter 4-1 and

Chapter 5-1 for more information)

Mechanism of engraftment

The size mismatch between hepatocytes (20-30um), the lumen of portal venule or
sinusoidal endothelium (6pm), and the sinusoidal fenestration (100nm, Gandillet et al. 2003)
argues against hepatocyte transfer into parenchyma (Yu 2009). The current hypothesis of
engraftment, therefore, describes the breakage of endothelium by Kupffer cells after
ischemia-reperfusion injury induced by transplanted cells occupying the vessels (Gupta et al.
1999). Portal hypertension by obstruction can be fetal if it is persisted in the rat model of
acute liver failure receiving hepatocyte transplantation (Yu et al. 2004). In Chapter 5, we
found that donor hepatocytes can migrate out of sinusoidal endothelium into the parenchyma
shortly after transplantation in adequate speed of transfusion. The obstruction was more often
observed in slow rate of infusion. Portal pressure was back to pre-transplant status most of
the time in the adequate speed of transfusion. It is a novel finding with translational
significance and mechanistic revolution. After entering into parenchyma, donor cells need to
reorganize the membrane structure around (such as gap junction and bile canalicular
network) and stellate cells will reshape the extracellular matrix (Benten et al. 2005).Donor
hepatocytes will not proliferate actively unless suppressing the proliferative ability of native
hepatocyte in experiment. It is another area of interest that needs to be solved in order to

achieve widespread clinical application of hepatocyte transplantation.
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Framework of the study

The overall study framework is illustrated in Figure 4. We will start to investigate the
epidemiologic features of acute liver failure in Taiwan by using the nationwide coverage of
the National Health Insurance database and realize the size and characteristics of the potential
population of interest (Chapter 2). Acute-on-chronic liver failure, shared some common
features with acute liver failure, is also among the potential population of interest regarding
hepatocyte transplantation and will be described in perspective (Chapter 6). Liver
regeneration and progenitor cell biology is going to be explored in Chapter 3 by
demonstrating the microscopic real-word appearance of acute liver failure and will be
continuing in the near future. Functional evaluation of ex vivo hepatocytes before transplant
is another important issue and will be addressed in Chapter 4. Animal model of hepatocyte
transplantation with clinical translational impact is of paramount status and is detailed in
Chapter 5. Modification of the cell isolation procedure to meet clinical needs is undergoing
and briefly described in Chapter 6. We hope that the overall study design is feedback to

clinical application and benefit the patients in suffer.
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Acute liver failure in Taiwan

Population study
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Portions of this chapter were previously published as Ho CM, Lee CH, Wang JY, et al. Nationwide
longitudinal analysis of acute liver failure in Taiwan. Medicine 2014;93(4):e35, and have been reprinted
and reproduced with permission under the Creative Commons Attribution Liscense 4.0. Copyright ©
2014 Wolters Kluwer Health Lippincott Williams & Wilkins.

19

d0i:10.6342/NTU201600315



(1) Background

Acute liver failure (ALF) is an uncommon clinical syndrome that often has a course
associated with rapidly progressive multi-organ failure and devastating complications like
coagulopathy and encephalopathy in patients without previous liver disease. Its etiologies
include a multitude of infectious, immunologic, infiltrative, or metabolic diseases, and have
considerable geographical and ethnic variations (Bernal et al. 2010). In developing countries,
viral causes predominate, whereas drugs or toxins are recognized as common causes in the
United States and United Kingdom (Bernal et al. 2010). Reports estimate an overall
incidence of fewer than 10 cases per million persons per year in developed countries (Bower
et al. 2007, Escorsell et al. 2007, Bernal et al. 2013). Because ALF is an orphan disease, large
clinical trials are extremely difficult and its management is currently based on clinical
experience rather than on solid evidence (Polson et al. 2005, Lee et al. 2012, Bernal et al.
2013). Conclusions are also very difficult to reach even in a systemic review (Wlodzimirow
et al. 2012) because of the varying definition of ALF among studies. As such, mortality rate
remains high at 60-80% (Shalimar et al. 2013).

The most widely accepted definition of ALF includes evidence of coagulation
abnormality and a degree of mental alteration (encephalopathy) in a patient without pre-
existing liver disease (Bernal et al. 2010, Lee et al. 2012). No single institute has established
considerable case series except Kings College Hospital (Bernal et al. 2013), while most
currently available reports are multi-center collaborations (Brandsaeter et al. 2002,
Ostapowicz et al. 2002, Larson et al. 2005, Escorsell et al. 2007, Kim et al. 2013, Oketani et
al. 2013).

As the mandatory universal health insurance program offering comprehensive medical
care coverage, the National Health Insurance of Taiwan has covered up to 99% of residents in
Taiwan for several years since 1996 (Bureau of National Health Insurance, 2011). With a
longitudinal follow-up of more than twenty-million subjects and validated diagnoses of
catastrophic illness (Chen et al. 2011; Wu et al. 2012), the National Health Insurance
Research Database (NHIRD) provides a very suitable research material to explore the
outcome of a rare disease or clinical entity. The aim of this study is to analyze the incidence,
characteristics, hospital course, prognosis, and complications of ALF in Taiwan using the

longitudinal cohort information of the NHIRD.
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(2) Methods

The institutional review board of National Taiwan University Hospital, Taipei, Taiwan
approved this study (NTUH REC: 201212001W). As a retrospective study using an
encrypted database, the institutional review board waived the need for informed consent.
Data source

The Longitudinal Health Insurance Database (LHID) 2005, a subset database of the NHI
program, contains the entire original claim data from 1996 to 2007 of 1,000,000 beneficiaries
randomly sampled from the year 2005 Registry for Beneficiaries of the NHI program.
Patient selection

From the LHID 2005, patients who were admitted due to ALF for the first time from
January 1, 2005 to September 30, 2007 were identified. Patients with possible ALF was
identified based on in-patient records with compatible diagnoses, laboratory orders for
ammonia and international normalized ratio (INR), and prescription of lactulose (regardless
to the route of administration) and stayed in hospital for >7 days to ensure severe liver injury.
The compatible diagnoses of ALF included ICD-9-CM (International Classification of
Diseases, Ninth Revision, Clinical Modification) code for acute liver failure (570.0), hepatic
coma (472.2), autoimmune hepatitis (571.42), acute alcoholic hepatitis (571.1), hepatitis
unspecified (573.3), jaundice (782.4), viral hepatitis (070.0-070.9), and hepatitis B carrier
(V02.61).

To ensure no preexisting liver disease, patients were excluded if they had any of the
following diagnoses within 3 years prior to the index admission: [1] chronic hepatitis (ICD-9-
CM 571.4); [2] hepatic stone (ICD-9-CM 574.5); [3] hepatocellular carcinoma (ICD-9-CM
155.0); [4] intra-hepatic cholangiocarcinoma (ICD-9-CM 155.1); [5] gall bladder cancer (ICD-
9-CM 156.0); [6] extra-hepatic bile duct cancer (ICD-9-CM 156.1); [7] malignant neoplasm
of the pancreas or Ampulla of Vater (ICD-9-CM 157.9, 156.2); [8] liver metastasis (ICD-9-CM
197.7); and liver cirrhosis (ICD-9-CM 571.2, 571.5, 571.6). Those admitted after October 1,
2007 were excluded to ensure a minimal follow-up duration of 3 months. Summary list of
the inclusion and exclusion criteria were shown below.

Inclusion criteria: either or the following

1. Admission due to ACUTE HEPATIC FAILURE (ICD-9: 570), or HEPATIC COMA
(ICD-9: 572.2)
2. Admission for liver-associated diagnosis (defined below) plus either of the

following two conditions
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1) any of the parameters, including PT, PT INR, total bilirubin, direct bilirubin,
AST, or ALT, been checked >= 4 time in 2 weeks during admission
i1) NH3 ben checked >= 4 times in 2 weeks during admission - and  receiving

lactulose >= 1000 mL in 2 weeks during admission

Liver-associated diagnoses:

(1) SYSTEMIC INFLAMMATORY RESPONSE SYNDROME DUE TO NON-
INFECTIOUS PROCESS WITH ACUTE ORGAN DYSFUNCTION (ICD-9: 995.94)

(2) DISSEMINATED INTRAVASCULAR COAGULOPATHY (DIC) SYNDROME
(ICD-9: 286.6)

(3) AUTOIMMUNE HEPATITIS (ICD-9: 571.42)

(4) ACUTE ALCOHOLIC HEPATITIS (ICD-9: 571.1)

(5) CONTAMINATED OR INFECTED BLOOD, OTHER FLUID, DRUG, OR
BIOLOGICAL SUBSTANCE (ICD-9: E875)

(6) HEPATITIS unspecified (ICD-9: 573.3)

(7) JAUNDICE (ICD-9: 782.4)

(8) VIRAL HEPATITIS (ICD-9: 070.0 — 070.9)

(9) HEPATITIS B CARRIER (ICD-9: V02.61)

Exclusion criteria: previous liver disease (defined below) within previous 3 years
Previous liver disease

(1) liver-associated diagnoses

(2) chronic hepatitis (ICD-9: 571.4)

(3) hepatic stone (ICD-9: 574.5)

(4) HCC (ICD-9: 155.0)

(5) cholangiocarcinoma, intrahepatic (ICD-9: 155.1)

(6) malignant neoplasm of gall bladder (ICD-9: 156.0)

(7) malignant neoplasm of extrahepatic bile ducts (ICD-9: 156.1)

(8) malignant neoplasm of ampulla of vater (ICD-9: 156.2)

(9) malignant neoplasm of pancreas (ICD-9: 157.9)

(10) liver metastasis (ICD-9: 197.7)
For every enrolled patient, the demographic data, laboratory tests, medications, clinical

procedures, and outcomes were retrieved from the LHID 2005 and the possible etiology of
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acute hepatic failure was determined.
Demographic data

Demographic information including sex, age, underlying co-morbidity (i.e. diabetes
mellitus, chronic obstructive pulmonary lung disease, end-stage renal disease, autoimmune
disorder, acquired immune deficiency syndrome, and malignancy), and low income were
collected as in a previous report (Lee et al. 2012).
Laboratory tests, medications, and procedures

The frequency of laboratory tests, including INR, total bilirubin, direct bilirubin,
aspartate aminotransferase (AST), alanine aminotransferase (ALT), and ammonia were
calculated. Prescriptions of medications, including lactulose, diuretics, vasopressin
(glypressin, somatosatin, and sandostatin), and proton pump inhibitors, were converted from
the claims data according to the defined daily doses (DDD) and grouped according to their
pharmacologic categories (World Health Organization, 2011). The performance of
procedures (intubation for ventilator, plasmapheresis, hemodialysis, hemofiltration, upper
gastrointestinal panendoscopy, echo-guided fluid tapping, and blood transfusion),
transplantation-associated laboratory test (human leukocyte antigen), or liver transplantation
procedure were recorded. Transfusion of fresh frozen plasma >30 units in a week or >100
units during the whole course of index admissions were considered as plasmapheresis.
Etiologic contribution

The etiology of ALF was based on the priority of virus infection, alcohol, and metabolic
causes, and then hepatotoxin (see descriptions below for potential hepatotoxins), if ever.
Malignant infiltration was attributed to the presence of malignancy and the lack of the

etiologies mentioned above.

Potential Hepatotoxin

Potential hepatotoxins included paracetamol, anti-tuberculosis drugs (isoniazid, rifampin,
rifabutin, and pyrazinamide), non-steroidal anti-inflammatory drugs, antibiotics or anti-viral
agents (ketoconazole, terbinafine, tetracycline, amoxicillin, erythromycins, clindamycin,
trimethoprime, ritonavir, indinavir, saquinavir, nelfinavir, zidovudine, didanosine, abacavir,
nevirapine, stavudine, and efavirenz), lipid-lowering drugs (atorvastatin, lovastatin,
simvastatin, pravastatin, gemfibrozil, and ezetimibe), anti-epileptics (carbamazepine,
valproate, and phenytoin), anti-psychotics (chlorpromazine, risperidol, quetiapine,
olanzapine, clozapine, bupropion, fluoxetine, paroxetine, sertraline, trazodone, mirtazapine,
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imipramine, and amitriptyline), immune modulators (sulfasalazine, azathioprine,
methotrexate, adalimumab, and etanercept), anti-hypertensives (lisinopril, enalapril,
captopril, losartan, and irbesartan), steroid derivatives (danazol, fluoxymesterone,
nandrolone, oxymetholone, stanozolol, and testosterone), methyldopa, nicotinamide,

nicotinic, allopurinol, amiodarone, baclofen, clopidogrel, and Chinese herbal therapy.

Follow-up and outcome

The patients were followed-up until death, withdrawal of health insurance, or December
31, 2007. The date of death was obtained from the Cause of Death Data included in the LHID
2005. Based on the discharge diagnosis (ICD-9-CM), intra-hospital complications were
noted, including hemorrhage (gastrointestinal [GI] tract: 578.9, 531.4, 532.4, 530.82; brain:
431,432.0,432.9, 852.0-4, 767.0, 772.2; unspecified: 459.0), sepsis (995.91, 995.92),
pneumonia (481, 482, 484, 486), extra-hepatic organ damage (renal insufficiency: 584.5-9,
572.4; respiratory failure: 518.81, 518.84, 786.0, 799.1), and seizure (345.0-4).

Statistical analysis

Data were expressed as means + standard deviation, median (inter-quartile range [IQR]),
or number (percentage) when appropriate. The Student’s ¢ test or x? test was used for inter-
group comparison. The survival curves of different etiologic groups were generated using the
Kaplan-Meier method and compared using the log-rank test. The Cox’s proportional hazard
model was used to identify independent prognostic factors. The p value in each variable was
derived from the Wald test in the Cox’s model and was used to predict and identify
independent prognostic factors. Sensitivity analyses were further performed in the sub-
population who had no concomitant malignancy, since it was difficult to attribute the etiology
of ALF accurately in patients with concomitant malignancy. Risk factors for intra-hospital
complications were analyzed using logistic regression analysis. A two-sided p < 0.05 was
considered significant. All analyses were performed with the Statistical Package for Social

Sciences (SPSS)® version 18.0 (IBM Corporation, Armonk, NY, USA).
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(3) Results
Demographic Characteristics of the ALF Cohort

A total of 28,078 potentially eligible admissions for acute liver failure were identified
from the 2,719,680.2 person-years of follow-up since 2005 in LHID 2005 (Figure 5). Among
them, 14,482 admissions before 2005 were excluded, as well as 9,880 with prior history of
liver diseases within 3 years, 3,430 without records of INR, ammonia, or lactulose, and 50
with hospital stay less than 7 days. Another 14 admissions were excluded to guarantee an
observation time >3 months. Four were also excluded due to non-first admissions. The
remaining 218 patients were enrolled in this study.

The 218 ALF patients (150 males) had a mean age of 57.9+17.1 years and median age
of 57.3 years (range, 45.4-72.5 years). The incidence was 80.2 per million person-years (218
cases in 2,719,680.2 person-years) and this increased with age (Figure 6). The median
follow-up duration was 171 days (range, 7-1059 days). Attributable etiologic exposures were
viral infection (45.4%, mainly hepatitis B virus), chemicals (alcohol or toxin) (33.0%),
infiltrative malignancy (4.6%), miliary tuberculosis (1.4%), and others (metabolic or
pregnancy: 2.3%; indeterminate: 13.3%) (Figure 7).

The primary site of concomitant malignancy and etiologic exposure of ALF patients
were listed in Table 1. The most common malignancy was hepatocellular carcinoma (63%),
followed by colorectal cancer, lung cancer, and head and neck cancer (7% each).

The clinical characteristics were presented in Table 2. Of the 218 patients, 88 (40.4%)
died within 90 days after admission, with a median survival of 29 (IQR, 7-93) days. Eighty-
one (37%) died during their index admission. Among the 130 patients who survived >90
days, the median follow-up duration was 458.5 (IQR, 45-1059) days. The former group was
statistically significantly older (60.0 vs. 56.5 years; p=0.018) and had longer hospital stay
(p=0.020), higher probability of intensive care unit (ICU) admission (p=0.018), and higher
prevalence of concomitant malignancy (47% vs. 14%; p<0.001).

Severity and In-hospital Complications of the ALF Cohort

Compared to those who survived >90 days, the patients who died within 90 days after
admission received more frequent check-ups of total bilirubin (1.9 vs. 0.4 per week; p<0.001)
and ammonia (1.4 vs. 1.0 per week; p=0.008), and were more likely to receive
plasmapheresis (15% vs. 8%, p=0.045) (Table 3). There were no differences between the two
groups regarding the presence of ascites and esophageal varices, frequency of check-up for

AST, ALT, direct bilirubin, and INR levels, and proportion of patients who underwent
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procedures (i.e. panendoscopy, computed tomography, or brain magnetic resonance imaging).

Compared to those who survived >90 days, patients who died within 90 days after
admission were more likely to be complicated by sepsis (39% vs. 20%; p=0.003), require
more frequent transfusion of fresh frozen plasma (8.1 vs. 3.6 units/week; p<0.001), use
vasopressin (24% vs. 12 %; p=0.025), and require renal replacement therapy (18% vs. 5 %;
p=0.001) and ventilator support (50% vs. 27%; p=0.001) (Table 3).

Logistic regression analysis revealed that peptic ulcer (hazard ratio [HR] [95%
confidence interval] 6.96 [2.87-16.91]; p<0.001) and respiratory failure (HR: 3.20 [1.30-
7.85]; p=0.011) were independent risk factors of in-hospital hemorrhage complication. For
the occurrence of sepsis, renal insufficiency (HR 2.55 [1.15-5.65]; p=0.021), computed
tomography (HR 2.61 [1.27-5.34]; p=0.009), and frequency of check-ups per week for total
bilirubin (HR 1.35 [1.05-1.72]; p=0.019) were risk factors.

Long-term Sequelae

Among the 130 patients who survived >90 days after admission, 66 (51%) were
complicated by liver cirrhosis, including 22 with encephalopathy, and 21 with ascites. During
follow-up, 20 (15%) required vasopressin in subsequent admissions and 29 (22%) underwent
panendoscopy. Sixty-four (49%) patients, including 10 without liver cirrhosis, received
lactulose whereas 72 (55.4%), including 19 without liver cirrhosis, received diuretics.
Survival Analysis

The one- and two-year survival probabilities were 49.3% and 45.9%, respectively. Eight
were referred for liver transplantation (LT) evaluation. Among them, three survived without
LT and one survived with LT. Kaplan-Meier analysis revealed that the survival of 59 patients
with concomitant malignancy were significantly worse than that of the 159 without
malignancy (p<0.001) (Figure 8, which illustrated the survival curves of ALF patients
stratified according to the status of concomitant malignancy). In the latter group, the one- and
two-year survival rates were 61.9% and 57.3%, respectively, and were 14.6% and 14.6%,
respectively, in the former group. Among patients without malignancy, the Kaplan-Meier
survival curves for different etiologic groups were shown in Figure 9.

The results of multivariate Cox regression revealed that in patients with ALF, the
independent factors associated with poor survival were alcohol consumption (HR 1.67 [1.01-
2.77]; p=0.046), malignancy on index admission (HR 2.90 [1.92-4.37]; p<0.001), frequency
of check-ups per week for total bilirubin (HR 1.57 [1.40-1.76]; p<0.001), sepsis (HR 1.85

[1.20-2.85]; p=0.005), and use of hemodialysis/hemofiltration (HR 2.12 [1.15-3.9]; p=0.015)
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and proton pump inhibitors (HR 0.94 [0.90-0.98]; p=0.005) (Table 4).

Sensitivity analysis focusing on the sub-population without malignancy showed that five
variables - alcohol consumption (HR 2.43 [1.31-4.53]; p=0.005), frequency of check-ups per
week for total bilirubin (HR 1.91 [1.63-2.23]; p<0.001), sepsis (HR 1.79 [1.03-3.1];
p=0.039), and use of hemodialysis/hemofiltration (HR 2.38 [1.19-4.79]; p=0.015) and proton
pump inhibitors (HR 0.95 [0.91-0.99]; p=0.025) - remained significant prognostic factors
(Table 4). Among patients without concomitant malignancy, the adjusted survival curves for
patients stratified by etiology of ALF (Figure 10) demonstrated that alcoholic patients had the
worst survival, while those with hepatitis C virus (HCV) or toxin exposures had more

favorable outcomes.
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(4) Discussion

Analyzing the nationwide ALF cohort, the present study has four main findings. First,
the incidence of ALF was 80.2 per million person-years, which increased with age. Second,
viral infection was the most common attributable etiology (45.4%). Third, the mortality rate
was 40.4% within 90 days after admission and liver cirrhosis occurred in about half of the
survivors. Lastly, alcohol consumption, malignancy on index admission, frequency of check-
ups per week for total bilirubin, sepsis, and use of hemodialysis/hemofiltration and not using
proton pump inhibitors were poor prognostic factors for ALF.

The observation that the incidence of ALF increases with age is interesting. The median
age of the 218 ALF patients is 57.3, quite older than the 38 years of a previous study with
308 ALF patients (Ostapowicz et al. 2002). In another previous study using the NHIRD
(1997-2004) to assess drug-induced liver injury, the age distribution is also skewed towards
>60 years (Lee et al. 2012) This may indicate the ageing population of Taiwan. Ageing is
accompanied by diminished metabolism and elimination of toxin or alcohol (Meier et al.
2008, Tanemura et al. 2012), decreased water distribution volume (Timchenko et al. 2009),
and reduced liver regeneration when the liver is placed under stressful conditions like
hepatectomy or acute liver injury (Timchenko et al. 2009, Tanemura et al. 2012, Bernal et al.
2013). Acute liver injury or post-ischemic liver injury is greater in older adult mice than in
younger ones (Okaya et al. 2005, Collins et al. 2013). Older donor age is a well-known risk
factor of poorer outcome of liver recipients (Hoofnagle et al. 1996, Lake et al. 2005,
Tanemura et al. 2012). Ageing may also explain the higher ALF incidence in the study
compared to that in literature (Bower et al. 2007, Escorsell et al. 2007, Bernal et al. 2013).

In the nationwide cohort, the major etiological exposure of ALF in Taiwan is HBV
infection, followed by toxins and alcohol. HBV infection is a leading cause of ALF in Japan
and Spain, while toxins are more common in the United States, United Kingdom, and Korea
(Brandsaeter et al. 2002, Polson et al. 2005, Escorsell et al. 2007, Kjashab et al. 2007, Bernal
et al. 2010, Bernal et al. 2013, Suk et al. 2012). While studies conducted in Japan exclude
patients with alcohol exposure for analysis (Fujiwara et al. 2008, Oketani et al. 2011, Oketani
et al. 2013), some in the United States consider alcohol as playing a contributing but unclear
role in ALF (Larson et al. 2005, Bower et al. 2007). In the current ALF cohort, about one
fourth have multiple etiologic exposures, suggesting that their ALF may be attributed to
multiple hits in a short period of time. There have been reports showing that acute hepatitis C

in patients with concurrent chronic HBV infection is associated with a substantial risk of
28

doi:10.6342/NTU201600315



ALF (Chu et al. 1994, Chu et al. 1999). 1t is also clear that genetic polymorphisms, or the
effects of concomitant drugs, alcohol, or diseases, can alter the threshold for exposure to
other toxic metabolites and result in ALF (Kaplowitz et al. 2005).

Despite the well-known high mortality rate of ALF, reports on its long-term sequelae are
lacking. This study shows that liver cirrhosis occurs in about half of ALF survivors within
less than 3 years. Cases of ALF with features suggestive of an autoimmune pathogenesis
have higher incidence of chronic hepatitis in long-term follow-up than those without such
features (Stravitz et al. 2011). Acute liver injury, even those caused by single-dose or short-
term administration of hepatotoxic agents such as temozolomide, can be followed by
prolonged liver damage (Grant et al. 2013). Furthermore, the quality of life is significantly
impaired in long-term survivors of ALF (Rangnekar et al. 2013). All of these findings suggest
that ALF may have some sustained irreversible impact. As the course of ALF is widely
heterogeneous in nature, further long-term clinical observational study is needed to
characterize potential late complications of ALF and improve follow-up care of survivors.

The use of proton pump inhibitors is an independent protective factor of survival of ALF
patients in multivariate analysis. Despite the lack of firm evidences, acid suppression by a
proton pump inhibitor is recommended to prevent upper gastrointestinal bleeding in
intubated ALF patients or those in the intensive care unit (Polson et al. 2005). By inference,
proton pump inhibitors are likely to contribute to decreased incidence of significant upper
gastrointestinal bleeding in patients with ALF (Cook et al. 1994, Lee et al. 2012). Peptic ulcer
disease, in current study, is also an independent risk factor for intra-hospital hemorrhage.
Critical illness, such as respiratory failure and renal failure requiring renal replacement
therapy, may also increase the risk of stress ulcer bleeding (Skillman et al. 1969). To date,
this is the first study to show the survival benefit of using proton pump inhibitors in patients
with ALF on their index admission. This study provides positive evidence for recommending
the use of proton pump inhibitors in ALF patients.

Liver transplantation is considered as a life-saving procedure for patients with ALF, but
is not popular as a timely treatment option in this cohort. It may be due to the rapid course of
ALF and the limited organ source. Artificial liver support with plasmapheresis and
hemodialysis/hemofiltration plays a bridging role while a donor liver or the regeneration of
the native liver is being awaited (Fujiwara et al. 2008). Earlier studies report mortality rates
near 85% before transplantation (Germani et al. 2012). However, in the post-transplantation

era, one-year survival rates are estimated to be 60-80% (Ostapowicz et al. 2002, Liou et al.
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2008, Germani et al. 2012, Bernal et al. 2013).

During the study period, there were 88 liver transplant procedures (69 living donors and
19 deceased donors) in the National Taiwan University Hospital. Among them, two
deceased-donor liver transplantations were performed for ALF patients. The study cohort was
a random sampling of one out of 23 million population of Taiwan. Thus, it is representative
of the general, but not the transplant center, population. However, early recognition, prompt
referral, and living donors in areas of low organ donation rates may save more lives of
patients with ALF (Escorsell et al. 2007, Khashab et al. 2007, Fujiwara et al. 2008, Bernal et
al. 2010, Lee et al. 2012, Bernal et al. 2013).

This study has some limitations. Although the target cohort has been approached by
utilizing multiple criteria, including the diagnosis, prescription of medications, and
laboratory tests, the insurance reimbursement database has a built-in shortage of no
information of laboratory data, radiographic findings, and medications not covered by
insurance (i.e. over-the-counter drugs). The frequency of laboratory testing and the statistics
about hospital stay and ICU admission could be biased by the judgment of the attending
physicians , but generally it is reasonable that more frequent laboratory testing and longer
hospital or ICU stay would be expected in more critically ill patients. Nevertheless, it is very
difficult to validate the diagnosis of ALF and the cause-effect relationship. Furthermore,
patients with chronic liver disease may have been included if the disease has not been
established within 3 years prior to the index admission (Lee et al. 2012). Therefore, using the
218 sample cases as the numerator to calculate the incidence of the ALF may have some bias.
This may also occur in previous studies and may be a reason for the heterogeneous clinical
characteristics (Koretz et al. 1978, Saracco et al. 1988, Chu et al. 1990, Lee et al. 2012).
However, it is less likely that a slowly progressed or even stable underlying liver disease
which requires no medical help within recent 3 years will rapidly deteriorate and result in

liver failure without acute and new hepatic insult.

In summary, the incidence of ALF increases with age in Taiwan. Viral infection is the
major etiology. Mortality rate is about 40% within 3 months and half of the survivors have
concomitant liver cirrhosis. Patients with malignancy and alcohol exposure have the worst
prognosis. Use of proton pump inhibitors has a protective effect. Liver transplantation for

ALF is not highly utilized in Taiwan and early referral to a transplant center is recommended.

30

doi:10.6342/NTU201600315



sl Oflg
Chapter 3

22l g

Acute liver failure in micro

Histological study

Progenitor
cells

Cholangiocytes Hepatocytes |

-«

Portions of this chapter were previously published as Ho CM, Lin YJ, Ho SL, Chen HL. Ductular
reaction in acute liver failure. Liver Int. 2016;36(5):761-2, and have been reprinted and reproduced with
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(1) Case scenario

A 22-year-old man, who was otherwise healthy before, was referred for acute liver
failure complicated with hepatic encephalopathy, renal insufficiency and sepsis with the
initial presentation of fever, vomiting, and abdominal pain for 5 days. Laboratory surveys
revealed a recent fresh hepatitis B viral infection as evidenced by the high positivity of IgM
antibody against hepatitis B core antigen. The liver failure syndrome progressed even though
he received specific antiviral agents, broad-spectrum antibiotics and intensive supportive
care. The patient underwent urgent deceased donor liver transplantation 2 weeks since
admission. The native liver weighted 1.1 kg without cirrhosis and the volume of straw-

colored ascites were 2.4 liters, as the operation findings.

(2) Methods

Parrafin-fixed specimen of the explant was examined by immunohistochemical staining
for markers of progenitor cells [cytokeratin 19 (CK19), epithelial cell adhesion molecule
(EpCAM)], hepatocytes [HNF4a, carbamoyl phosphate synthetase (CPS-1, a urea cycle
enzyme)], cholangiocytes (HNF1p), differentiation (NUMB, an inhibitor of the Notch
pathway), and proliferation (Ki-67). Serial sections were compared and examined between

marker expressions in addition to pathologic morphology.

(3) Results

Histological examination of the explant liver showed submassive necrosis and
prominent ductular reaction. Characterized by immunostaining of CK19 (Figure. 11), the
road of hepatocyte differentiation was nicely shown from the bipotential progenitor cells
(thick stained, small cell size, high nuclear-cytoplasm ratio) and gradually spirally spreading
outward to form daughter intermediate hepatocytes (light stained, larger cell size, lower
nuclear-cytoplasm ratio) (curved arrow) (Figure. 11). These differentiating cells did not
proliferate actively (Ki-67 staining, Figure. 12), and express EpCAM (Figure. 13) and
transition of NUMB (Figiure. 14, 15) and CPS-1 (Figure 16). Progenitor cells differentiating
toward hepatocytes exhibited HNF4a and CPS-1 (Figure 17B, C, long and thin arrow) and
cholangiocytes, HNF1f without CPS-1 (Figure 17B, D, short and thick arrow).

Interestingly, they were negative for HBsAg and HBcAg, suggesting no further HBV

infection since differentiation from mother progenitor cells. Canal of Hering can be identified
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by lines of low cuboidal cells which were CK19+ (arrow, Figure. 18, 18A), and CPS1-
(arrow, Figure. 19B). Although shown actively as a sparing mechanism for rescuing liver
regeneration, ductular reaction occurred in this case failed to achieve overall functional

recovery.

(4) Conclusion

Prominent ductular reaction with at-least partially functional hepatocyte differentiation
did not guarantee successful regeneration in acute liver failure and there is demand left for

hepatocyte transplantation.
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Reprinted from Ho CM, Dhawan A, Hughes RD, et al. Use of indocyanine green for functional assessment
of human hepatocytes for transplantation. Asian J Surg 2012;35(1):9-15. Copyright © 2012, with
permission from Elsevier.
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(1) Background

Hepatocyte transplantation was first introduced into clinical practice in 1992 (Mito et al.
1992) as a promising alternative to liver transplantation or as a bridging therapy for patients
with metabolic diseases and acute liver failure (Nussler et al. 2006, Puppi, et al. 2009).
Hepatocyte transplantation is a safe and less invasive procedure for patients with liver
disease than whole organ transplantation. Animal studies have clearly proven the efficacy of
hepatocyte transplantation, however, this has not translated into clinical practice where there
is often limited benefit (Haridass et al. 2008). One of the major reasons for this is the quality
of the hepatocytes that have been infused, which are often isolated from livers that have been
rejected for transplantation. Currently trypan blue exclusion is used as a rapid test of cell
viability, which determines cell integrity by staining the nuclei of dead cells. This test does
not reflect the metabolic function of the hepatocytes, which is important in vivo. Measures of
specific synthetic function such as alboumin, and clotting factor 7 synthesis require cell
culture, and are not applicable to determine suitability of hepatocytes for immediate infusion
into a patient.

Current commercial assays use technologies that are either nonspecific to hepatocytes (ATP
detection; redox activity, membrane integrity) or not available for routine clinical use (P450
assays by HPLC, mass spectrometry). Indocyanine green (ICG) is an organic anion used in
hepatobiliary surgery to assess liver reserve before resection and is specifically eliminated by
the liver (Cherrick et al. 1960) ,ICG uptake by hepatocytes assessed by microscopy has been
recently used to assess the in vitro function of stem cell derived hepatocytes (Agarwal et al.
2008; Yamada et al. 2002). At the cellular level, ICG is taken up by hepatocytes via the
transporter OATP1B1 (OATP2 (rat)/ OATP-C (human) which is exclusively expressed in the
basolateral membrane of hepatocytes (Campbell et al. 2004, Ito et al. 2005, Konig et al.
2006), as used by bilirubin (Scharschmidt et al. 1978) and then excreted into the bile
cannaliculus by MRP2 which requires ATP (Simon et al. 2006, Huang et al. 2001). ICG
uptake can also reflect the degree of hepatic triglyceride content in a dose-responsive
relationship (Takahashi et al. 2000).

In this study we have investigated whether quantitative measurement of the uptake and
release of ICG by human hepatocytes has potential to develop a rapid test of metabolic
function prior to hepatocyte transplantation.
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(2) Methods

Isolation and culture of human hepatocytes

Hepatocytes were isolated from unused donor liver tissue using a modified collagenase
perfusion technique (Mitry et al. 2003). Donor data and liver characteristics are shown in
Table 5. Viability was assessed by 0.4% trypan blue exclusion test. Cell suspensions
contained 1.0 x 10° cells. Collagen-coated culture plates were seeded with fresh or defrosted
cells, which were then incubated in Williams’ medium E (WME) supplemented, as
previously described (Mitry et al. 2004). HepG2 (human hepatocellular carcinoma cell line)
cells were cultured in RPMI11640/ 10% fetal calf serum overnight before use. Cell
suspensions were used for experiments with ICG immediately. Cells were cultured

overnight to determine the effects of ICG treatment on hepatocyte functions.
ICG Treatment

ICG dry powder 5 mg (Cardiogreen ® Sigma Aldrich, Gillingham, Dorset, UK) was
dissolved in 1 ml solvent (100 ul DMSO (CryoSure-DMSO, WAK-Chemie Medical
GmbH) and culture media added to obtain a stock of 5 mg/ml. The solution was shaken for
2 minutes to ensure that the powder was completely dissolved. The experimental solutions
used were different concentrations of ICG (0.25, 0.5, 1.0, 2.0 mg/ml) and in further
experiments at 0.5 mg/ml and 1.0 mg/ml.. Cells were incubated with ICG as suspension or
plated for 30 minutes at 37°C in 95% 02/5% CO2. Cells were washed with PBS and
centrifuged to obtain the pellets if in suspension and then re-incubated in media alone to
determine ICG release. Supernatants were collected after 1, 2, and 3 hours for measurement
of ICG concentration against a standard curve using a DYNEX Technologies MRX
microplate reader, (supplied by Prior Laboratory Supplies Ltd. East Sussex, UK), at OD 820
nm. Plates were re-incubated overnight, and cell function analyzed using the following

assays.
Cell attachment—sulphorhodamine (SRB) assay

To determine cell numbers on culture plates, the SRB assay was performed as described
previously (Mitry et al. 2000). In each well of the 96-well plate, 50 ul of ice-cold 50%

trichloroacetic acid solution was gently layered on top of the medium overlaying the cells.
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The plates were then incubated for 60 minutes at 4 °C. Wells were rinsed 5 times with water
and then cells stained with 0.4% SRB solution (100 ul stain/well) for 15 minutes at room
temperature. SRB staining solution was poured off, wells were rinsed 5 times with 1% acetic
acid to remove unbound dye, and left to air dry. The bound SRB dye was then solubilized by
adding unbuffered Tris-base solution (200 ul/well), and plates placed on a plate shaker for 1
hour at room temperature. Plates were then read at OD 564 nm, using a microplate reader.

Mitochondrial activity—modified MTT assay

The assay was as described previously (Mitry et al. 2005). Briefly, 20 ul of MTT (3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) solution was added to the 200 pl
medium in each well of the 96-well plate, and the plate incubated at 37 °C, for 4 hours. The
medium was then removed by aspiration, 120 pl isopropanol/HCI added per well, the plate

shaken for a 15 min and the absorbance at OD 630 nm measured.

[®H]-thymidine incorporation into HepG2 cells

The effect of the ICG (0, 0.5 and 1 mg/ml) on DNA synthesis of HepG2 cells was assessed
using [*H]-thymidine incorporation assay. The medium in each well was replaced with an
equal volume (200 pl) of fresh medium containing [*H]-thymidine (0.5 pCi/well),
(Amersham International plc. Amersham, Bucks. UK). The plates were incubated overnight.
The cells were then harvested onto glass fibre membranes using a cell harvester (FilterMate,
Packard Instruments, Pangbourne, Berkshire, UK). The filters were dried and the
radioactivity counted (MATRIX 9600 Plate Counter, Packard Instruments) to determine the

incorporation of radioactivity into the cells.

Albumin synthesis

Concentration of albumin in culture media was determined by enzyme-linked
immunosorbent assay (ELISA) kit (Bethyl Laboratories, Montgomery, TX) using a sheep
anti-human albumin antibody. The assay was done according to the manufacturer’s

instructions. The absorbance was read at 450nm.

Cell viability - staining with fluorescein diacetate (FDA)/ethidium bromide (EtBr)
A stock solution of FDA (Sigma-Aldrich, Dorset, UK) was prepared by dissolving 5 mg/ml
in DMSO. The FDA working solution was freshly prepared by adding 0.01 ml of stock to 5
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ml of EtBr (Sigma-Aldrich) stock solution prepared by dissolving 10 mg/ml in PBS. Cells in
supernatants were collected by washing with 0.5 ml PBS at room temperature and
centrifugation for 50 x g, 4°C for 4 minutes. Cell were resuspended with 0.2 ml FDA/EtBr
solution and incubated for 6 minutes at room temperature. Cells were then collected again by
removing the staining solution, washing twice with PBS and centrifugation. Stained cells
were resuspended with 2 drops of antifading regeagent and placed onto a microscope slide
with a coverslip. The cells were observed under a fluorescent microscope (filter set 09
ZEISS, ex = 450 - 490nm, em = 520 nm), while nuclei were stained red (ex =506 nm, em =
610 nm) at 100x to 400x magnification.

Taurine treatment of hepatocytes
Fresh human hepatocytes were cultured overnight with taurine (Sigma-Aldrich) at 20 mM,

then cells were incubated with ICG and tested as above.

Statistical analysis
Statistical analysis of the results was carried out using the Student’s t-test and Pearson

correlation test. P<0.05 was considered significant.
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(3) Results

ICG uptake and release by hepatocytes and HepG2 cells

Human hepatocytes and HepG2 cells took up ICG with cells turning green after incubation
for 30 minutes. After three hours the ICG was released by the cells (Figure 20) The release of
ICG by human hepatocytes (Figure 21) and HepG2 cells (Figure 22) was related to the initial
ICG concentration during uptake from both the loss of green color of the cells and
appearance of ICG detected microscopically in the culture medium. There was a significant
correlation between the ICG release and the viability of human hepatocytes measured by
trypan blue uptake (r=0.85, P=0.008). The pattern of ICG release in human hepatocytes
showed a rapid release reaching a plateau level soon after 1 hour. (Figure 23) This effect was
seen with cells both in suspension and in culture, but tended to be more rapid in culture.

Effect of incubation with ICG on hepatocyte function

The effects of increasing concentrations of ICG on hepatocyte function were determined.
With the MTT assay, hepatocytes incubated with 1.0 mg/ml ICG had higher mitochondrial
dehydrogenase activity compared to 0.5 mg/ml ICG or control (0.025 + 0.0004 v.s 0.019 +
0.0008 or 0.020 + 0.002, P < 0.05 for hepatocytes; 0.038 + 0.004 v.s. 0.025 + 0.003 or 0.025
+ 0.004, P < 0.05 for HepG2 cells) (Figure 24).

Incubation of HepG2 cells with ICG reduced albumin production (98.9 £ 0.02, 66.6 £ 0.05,
39.1 + 0.4 ng/ml for control, 0.5 mg/ml, and 1.0 mg/ml ICG respectively) and also decreased
[*H]-thymidine incorporation in a dose-response manner (Figure 25, 26).

Cells had lower attachment when tested 6 hours after incubation with increasing
concentrations of ICG (Figure 27). However, if the plates were reincubated overnight the
cells reattached. To investigate these further cells in the supernatants were collected after
incubation with ICG (0-2 mg/ml) and stained with FDA/EtBr. Greater numbers of viable
cells were detached at higher ICG concentrations (0.5 mg/ml and 1 mg/ml) than those at 0.25
mg/ml ICG and control (Figure 28).

Effect of taurine on hepatocyte transport of ICG.

Pretreatment of fresh human hepatocytes with taurine in culture overnight gave greater
amounts of ICG release and the pattern of ICG release was maintained with high ICG
concentrations (Figure 29). Compared with control, taurine also resulted in a higher degree of
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cell attachment, and enhanced reattachment overnight following ICG incubation (Figure 30).
Pretreatment with taurine prevented the stimulatory effect on the MTT assay at 1.0 mg/ml
ICG, but not at 0.5 mg/ml (Figure 31).
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(4) Discussion

The results of these experiments show that there is a distinct pattern of uptake and release of
ICG by human hepatocytes which can be quantitated using readily available laboratory
equipment. Hepatocytes take up ICG in 30 min and then excrete the unchanged dye in 1 to
2h. The specific uptake of ICG by intact hepatocytes is followed by excretion via the ATP-
dependent MRP-2 transporter, which is the rate-limiting step (Huang et al. 2001), thus being
a dual measure of cell metabolic function. Cells with impaired function will have reduced
amounts of ATP which will limit ICG excretion. There was a characteristic ICG release
curve for hepatocytes which showed a peak in the second hour of incubation. In this
preliminary study only a relatively small number of cell batches were used. Further
experiments are needed to define the ICG pattern for cells isolated from fatty livers, which
are likely to have impaired function (Green et al. 1998) and those from non-heart-beating

donors exposed to warm ischemia (Soric et al. 2007).

There was a correlation of ICG excretion with cell viability by trypan blue exclusion
suggesting that trypan blue exclusion is related to cell function in the range of cell viabilities
studied. However, ICG is specific to hepatocytes and should reveal more about cellular
function than just membrane integrity. Ideally any measure of hepatocyte function should be
correlated to engraftment and function of hepatocytes after transplantation.

HepG2 cells, although they are transformed cells, had a similar release pattern of ICG to
“normal hepatocytes”. They are thus a useful tool for developing the conditions for an ICG
test having high viability as “best quality” hepatocytes are not often available. However,
HepG2 cells may not predict metabolism in adult human liver cells, because their expression
of drug-metabolizing enzymes is different (Wilkening et al. 2003). Incubation of human
hepatocytes and HepG2 cells at concentrations above 0.5 mg/ml had effects on cell
metabolism including stimulation of mitochondrial dehydrogenase activity and inhibition of
albumin synthesis and proliferation of HepG2 cells. Other studies in retinal cells have shown
high concentrations of ICG to be toxic with a proapototic effect (Kawahara et al. 2007). The

concentration used to test hepatocytes in vitro should be 0.5 mg/ml to avoid these effects
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In the cell attachment experiments using the SRB assay, we found that cells incubated with
ICG had lower attachment during ICG release but recovered to give better attachment the
next day. It is interesting to speculate whether this is in some way related to location of the
ICG uptake OATP transporter on the basolateral membrane, which attaches to the collagen
coating on the culture plates (Musat et al. 1993). Whereas the excretion of ICG is via the

transporter in the canalicular membrane of the hepatocyte.

Taurine which has been shown to be involved in membrane stabilization (Green et al. 1998)
and can act as an antioxidant (Das et al. 2008) was used to modulate cell function to see the
effects on ICG transport. With hepatocytes pretreated with taurine they appeared to better

tolerate higher concentrations (1.0 mg/ml) of ICG with increased cell attachment. Thus ICG

disposition could detect a protective effect on cell function.

In a recent study, Donato et al (Donato et al. 2008) rapidly assessed the cellular P450 enzyme
function of human hepatocytes within 1 hour by HPLC-MS/MS. However, these assays
require sophisticated equipment and are not available in everyday clinical use. They also
determined urea synthesis, which is a good specific marker of hepatocyte metabolic function,
though this did not correlate with the cell viability. It is likely that a panel of rapid assays will

give the most useful data.

In conclusion, in vitro hepatocyte function can be assessed by the ICG release pattern within
two hours. Further refinement of this assay, particularly in reducing the time taken, should
lead to a test of hepatocyte function to help assess the quality of isolated human hepatocytes

for transplantation.
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(1) Background

Hepatocyte transplantation is a promising alternative to liver transplantation in cases of acute
liver failure (Puppi et al. 2012). Since the first case of clinical human hepatocyte
transplantation performed by Mito et al. (Mito et al. 1992) in 1992, hepatocyte
transplantation has gained proof-of-principle success more in animal experiments than in
clinical use worldwide (Mazaris et al. 2005, Fisher et al. 2006, Dhawan et al. 2010). The key
issue has become translating bench success in hepatocyte transplantation into improvements
in its clinical application (Dhawan et al. 2010, Puppi et al. 2012). Many of the
preconditioning “recipes” used to improve engraftment in animal studies are inappropriate
for use in humans; 2 examples are retrorsine, which inhibits native hepatocyte proliferation
and thus enhances relative graft cell survival, and monocrotaline, which disrupts sinusoidal
endothelial barriers and thus assists graft cell migration. Partial hepatectomy, portal vein
embolization, and hepatic irradiation before cell transplantation might be feasible but are
surely highly risky in patients with acute liver injury. These difficulties limit the development
and use of hepatocyte transplantation (Dagher et al. 2009, Yamanouchi et al. 2009, Soltys et
al. 2010, Guha et al. 2011, Koenig et al. 2011, Puppi et al. 2012).

Hepatocytes can be delivered through the portal vein, which is preferred in cases of acute
liver failure with normal architecture; the spleen, when chronic liver disease with cirrhosis is
encountered; or the hepatic vein, which has recently been identified as an alternative route
(Goto et al. 2011). Whatever the route(s), transplanted hepatocytes usually block the terminal
portal veins, causing a transient increase in portal pressure that later facilitates the entry of
the cells into sinusoidal areas by an ischemic-reperfusion injury-mediated mechanism (Gupta
et al. 1999, Koenig et al. 2005, Koenig et al. 2011). For example, in the dipeptidyl peptidase
IV (DPPIV) knock-out rat model of Koenig et al. individual hepatocytes were integrated into
the parenchyma 24 hours after transplantation, and un-engrafted cells were cleared by
Kupfter cells within 48 hours (Koenig et al. 2005). Increasing engraftment in the early post-
transplantation period, before Kupffer cell engulfment, is key to increasing the clinical
applicability of hepatocyte transplantation and improves the odds for successful graft cell

repopulation.

The transfusion rates used for clinical and experimental hepatocyte transplantation vary in

literature, with cell suspension densities of 0.5-2.0 x 107/mL, transfusion rates of 0.5-2.0
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mL/min, and total cell doses estimated based primarily on the disease model and host weight
(Strom et al. 1999, Muraca et al. 2002, Yu et al. 2004, Koenig et al. 2005, Dhawan et al.
2009, Meyburg et al. 2010, Goto et al. 2011). There are no definite guidelines for the
transfusion rate. Research on hydrodynamic delivery of genes for gene-based liver therapy
supports the use of higher transfusion rates (Zhang et al. 2004, Herweijer et al. 2007). It had
been reasoned that upon rapid injection into a peripheral vein, the injected fluid enters the
vena cava, where the fluid backs up because the large volume cannot be pumped through the
heart sufficiently fast (Sawyer et al. 2007). This creates increased pressure in the vena cava
and pushes the nucleic acid-containing solution into the draining vasculature, in particular,
the large hepatic vein. There, the fluid is forced out of the capillaries into the tissue, and the
nucleic acids enter the parenchymal cells. Hydrodynamic injection also induces enlargement
of the fenestrae in the hepatic sinusoidal endothelium and enhancement of hepatocyte
membrane permeability (Zhang et al. 2004). Effective hydrodynamic delivery is not limited
to small (e.g. small interfering ribonucleic acid) and large [plasmid deoxyribonucleic acid
(DNA)] nucleic acids (Lewis et al. 2007) but extends to a range of other molecules, including
proteins (Herweijer et al. 2007). Red blood cells and platelets were also observed in the space
of Disse and even inside rat hepatocytes following hydrodynamic injection (Suda et al.

2007). This suggests that the initial engraftment of hepatocytes may follow similar principles.

In addition, intervention in rats with acute liver injury carries a high mortality rate, and this
limitation makes it difficult to compare the results of hepatocyte transplantation with those in
other models. The aim of this study was to improve the engraftment and repopulation
efficiencies of hepatocyte transplantation for treatment of acute liver failure in a clinically
useful way without preconditioning. We hypothesized that the transfusion rate influences the
engraftment efficiency of hepatocyte transplantation through the portal vein and that
increasing engraftment efficiency by varying the transfusion rate would increase subsequent

repopulation.
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(2) Methods

Recipient animals

Male Sprague-Dawley (SD) rats aged 8 weeks and weighing 200-250 g, purchased from
BioLASCO Taiwan, were used as the recipient animals. These animals were maintained on
standard laboratory chow with a 12-h light/dark cycle. All surgical procedures were
performed under anesthesia with Imalgene 1000 (Merial Laboratoire de Toulouse,
France)/Rompun (Bayer, Korea). All of the animals received humane care in accordance with
the guidelines of the National Science Council of Taiwan (NSC, 1997). The animal
experiments were approved by the Institutional Laboratory Animal Care and Use Committee
of National Taiwan University.

Donor cells

DsRedT3-emGFP transgenic SD rat hepatocytes were used as the donor cells. The rats (males
aged 8-10 weeks and weighing 200-250 g) were purchased from National Laboratory
Animal Center, Taiwan. Hepatocytes were purified by in situ liver perfusion, collagenase
digestion, and differential centrifugation as previously described (Yu et al. 2004). The
viability and purity of each preparation were assessed by evaluating trypan blue (Sigma)
exclusion using a Bright-Line™ hemocytometer (Sigma-Aldrich). Isolated hepatocytes were
resuspended in phosphate-buffered saline (pH 7.4) (Sigma-Aldrich) at 1 x 107 cells/mL. The
preparations contained at least 85% viable hepatocytes, which were transplanted within 1
hour of isolation.

Experimental design

Hepatocyte transplantation for treatment of acute liver failure

One week before transplantation, a 24-G catheter (0.7 mm in diameter, BD, Insyte™) was
placed with the tip in the main trunk of the portal vein before bifurcation via midline
laparotomy (Figure 32A), with the lock beneath an undermined skin flap (Figure 32B). The
catheter was heparinized and fixed secured with 4-0 silk sutured to the periportal connective
tissue first, followed by a loop of knot between the portal vein and the abdominal wall, and
finally with the lock reinforced to the abdominal muscle. Acute hepatic injury was induced
with D-galactosamine (Sigma) treatment (0.9 g/kg intraperitoneally) 24 hours before
transplantation. Hepatocytes (1 x 10’/mL) isolated from DsRedT3-emGFP transgenic SD rats
were transplanted intraportally through the pre-implanted lock by continuous infusion at 3

steady rates (1/30, 1/70, 1/100 mL/sec) so that the 1-mL volume was infused over 30, 70, or
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100 seconds. Rats were sacrificed and their livers harvested 0, 2, and 7 days after hepatocyte
transplantation (Figure 33).

Real-time monitoring of portal pressure during hepatocyte transplantation
Acute hepatic injury was induced in SD rats by D-galactosamine treatment (0.9 g/kg, IP) 24
hours before transplantation. The main portal vein was identified and cannulated with 2
heparinized 24-G catheters (BD, Insyte™) which were inserted right before the time of
transplantation, one for continuous measurement of portal pressure and the other for cell
transfusion. The tips of the catheters were at the main trunk of the portal vein before
bifurcation. Portal pressures were measured, as described previously (Yu et al. 2004). A total
of 1 x107 donor cells in 1 mL were transplanted intraportally through the catheter via
continuous infusion at 3 steady rates such that each infusion took place over 30, 70, or 100
seconds, with real-time monitoring of the portal venous pressure. When the portal pressure
returned to baseline after hepatocyte transplantation, the rats were sacrificed and their livers
harvested (Figure 33).

Immuno-fluoro-histo-chemistry

Transplanted DsRedT3-emGFP hepatocytes in the recipient liver were identified by direct
visualization of red fluorescence or staining with antibody against DsRed fluorescence of
liver cryosections. Antibodies for staining of DsRed hepatocytes, or for intrahepatic vascular
structures against CD31 and vascular cell adhesion molecule 1 (VCAM-1) were used
according to the manufacturers’ recommendations and detailed in Table 6. Nuclei were
revealed with 4',6-diamidino-2-phenylindole (DAPI) staining. Secondary antibodies,
including Alexa Fluor 488 donkey anti-rabbit IgG (Molecular Probes, Oregon, USA), Alexa
Fluor 594 donkey anti-goat IgG, and Alexa Fluor 594 donkey anti-rat IgG, were used in
immunofluorescence assays.

Hepatic histology and determination of liver engraftment/repopulation

Fresh liver sections were fixed in formalin (Merck, KGaA), embedded in paraftin, sectioned,
and stained with hematoxylin and eosin to demonstrate the hepatic histology. Transplanted
DsRedT3-emGFP hepatocytes in the recipient liver were identified by direct fluorescence of
liver cryosections or immuno-fluoro-histo-chemistry. To analyze the liver repopulation, 3 to 4
sections from multiple liver lobes per rat were examined. Microphotographs were obtained
from consecutive adjacent areas to include the whole section under 100x magnification using
a digital camera (SPOT™ Imaging Solutions, Diagnostic Instruments, Inc.). The area

occupied by the transplanted hepatocytes was quantified using ImageJ software (National
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Cancer Institute, Bethesda, MD).

Serological assay

Hepatic venous blood was sampled when the recipient rat was sacrificed. Biochemical
analysis were measured in an animal laboratory by standard automated assays (Hitachi 7080
chemistry analyzer, Hitachi Ltd.) International normalized ratio (INR) of prothrombin time
was determined using fresh whole blood without anticoagulants and measured using an
automated coagulation monitoring device (CoaguChek XS System, Roche Diagnostic,

Mannheim, Germany).

Statistical analysis

The number of animals per treatment was at least 4. Data are presented as the mean +
standard error and analyzed using a student t test or an analysis of variance (ANOVA)
followed by the Tukey post hoc test, when appropriate. Data analysis of real-time pressure
measurement was performed by using non-parametric Kruskal-Wallis one-way analysis-of-

variance-by-ranks test. A P < 0.05 was considered significant.
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(3) Results

Pathology of acute liver injury model

Grossly, the liver demonstrated congestion and easily touched bleeding (Figure 34A).
The histopathology of our rat model of acute liver injury showed massive hepatocyte
necrosis and apoptosis, hemorrhage and sinusoidal dilatation (Figure 34B).

The rate of cell transfusion was associated with the engraftment efficiency and

subsequent repopulation efficiency in acute liver injury

In our acute liver injury model, 3 different transfusion rates resulted in different engraftment
efficiencies (P = 0.018) and subsequent repopulation efficiencies (P = 0.037) by ANOVA
(Figure 35). Post hoc tests utilized Tukey's procedure revealed that infusion over 70 seconds
yielded a higher engraftment efficiency (1.1 &+ 0.53%) than the other rates [30-second (0.35 £
0.32%) and 100-second (0.16 £ 0.18%); P =0.072 and 0.018, respectively]. Infusion over 70
seconds also tended to produce a higher repopulation efficiency (2.06 + 1.78%) than the
other rates [30-second (0.09 + 0.09%) and 100-second (0.14 + 0.25%)] (Post hoc tests, P =
0.063 and 0.074, respectively) (Figure 35B).

Liver function improvement

The blood chemistry results of serum aspartate aminotransferase (AST) level, serum alanine
aminotransferase (ALT) level, serum total bilirubin level, serum albumin level, INR, and
blood ammonia level were shown in Figure 36. The serum AST level (2179.1 + 381.7 U/L),
serum ALT level (855.3 £ 352.2 U/L) and INR (4.5 £+ 0.3) were highly elevated 24 hours after
induction of acute liver injury using D-galactosamine and the success of consistent acute
liver injury induction using D-galactosamine based on the comparable biochemical and
histological changes 24 hours after the injection D-galactosamine in our previous pilot study
(Yu et al. 2004). In the 70-second group, the albumin level was significantly higher after 1
week (3.2 £0.2 g/dL) than on day 2 (1.6 = 0.5 g/dL; P = 0.0044) and the serum AST level
was significantly lower after 1 week (67.9 £ 9.1 U/L) than on day 2 (284.6 £ 69.6 U/L; P =
0.036) after hepatocyte transplantation. The serum levels of albumin and AST did not change
significantly between day 2 and 1 week in the other groups (30- and 100- second). The
ammonia level was significantly higher after 1 week (69.0 + 6.3 pmol/L) than on day 2 (40.8
+ 3.3 umol/L; P =0.013) in the 30-second group and of no significant changes in the other

groups. The serum ALT level, serum total bilirubin level, and INR did not change
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significantly between day 2 and 1 week in 3 groups.

Real-time monitoring of perioperative portal venous pressure during hepatocyte
transplantation for treatment of acute liver injury demonstrated no significant

portal hypertension

Median time to the first peak portal venous pressure was 33, 75 and 100 seconds in the 30,
70, and 100-second groups, respectively, with significance (P < 0.001). Real-time monitoring
of perioperative portal pressure during hepatocyte transplantation demonstrated no
significant difference in baseline, peak pressures and pressures at 10, 20, and 30 minutes
among the 3 groups (Figure 37). The mean first peak pressures were 14.8 £ 6.5, 17.7 + 3.7,
and 13.6 = 3.0 mmHg in the 30, 70, and 100-second groups, respectively. The portal venous
pressure achieved second peaks shortly after declined from the first ones, though the second

peak portal pressures were smaller compared to the first ones (Figure 37).

Early engraftment of donor cells was observed shortly after hepatocyte
transplantation over 70 seconds

Early engraftment of transplanted hepatocytes can be observed shortly after transplantation
for treatment of acute liver injury when infused over 70 seconds (Figure 38A), but not seen
in the other groups. Transmigrated DsRedT3-emGFP cells occasionally could be noted just

outside the wall of the portal vein (Figure 38B).

Potential complications of hepatocyte transplantation at different rates of

transfusion

Cell embolus was rarely observed in the lung in all groups 1 week after the procedure (Figure
39). Pulmonary embolism was not observed more frequently after transfusion at higher rates,
and transfusion at a slower-than-optimal rate did not prevent pulmonary entrapment of

transplanted cells.
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(4) Discussion

Our study demonstrated that transfusion rate is an important determinant of the engraftment
and repopulation efficiencies after hepatocyte transplantation for treatment of acute liver
injury. Table 7 and 8 summarizes the current literature (animal and human) regarding the
transfusion rates used in hepatocyte transplantation for various etiologies (Fox et al. 1998,
Muraca et al. 2002, Yu et al. 2004, Weber et al. 2006, Lee et al. 2007, Weber et al. 2009,
Meyburg et al. 2010, Goto et al. 2011, Enosawa et al. 2012, Ribes-Koninckx et al. 2012,
Stéphenne et al. 2012, Timm et al. 2013). Rates slower than 0.5 mL/min were associated with
intraportal accumulation of cells though engraftment in an acute liver injury model is
expected to be considerably different from transplant into a confluent, normal liver in many
of these referred studies. For example, Fox et al. (Fox et al. 1998) transplanted hepatocytes
through the portal vein at a rate of 2.5 mL/min in a 10-year-old girl with Crigler-Najjar
syndrome type I without significant increase in portal vein pressure and the patient survived
for more than 11 months with partial correction of the metabolic disorder. Consideration of
our study results altogether imply the significance of rate influence in cell therapy. Although
few cases were reported for acute liver failure, it suggested that, in general, the rate of the
intraportal transfusion of hepatocytes could be, at least, increased safely for potentially

improved efficiency.

In our study, donor cells were observed to extravasate through the sinusoidal endothelial
barrier shortly after transplantation with infusion time over 70 seconds (Figure 4), before the
development of occlusion-induced inflammation and the destruction by Kupffer cells (Krohn
et al. 2009). Acute complete thrombosis of the portal vein (which could cause intestinal
congestion and mesenteric venous ischemia) and pulmonary embolism were rarely seen in
our study. Increasing the transfusion rate was associated with only transient mild elevation in
the portal venous pressure. A wider safe range of the transfusion rate than previously
expected is warranted. Intraportal hepatocyte transplantation may cause portal vein
thrombosis (Baccarani et al. 2005). Concerns regarding this and portal hypertension might
restrict the variation of the rate of cell transfusion. However, the complications of portal
hypertension, such as variceal bleeding, or ascites, occur mainly in patients with chronic liver
disease (McCormack et al. 1985, Ohta et al. 1994), and the risk would not be high in those
with acute liver injury. Koenig ef al. observed prominent accumulation of donor cells within

small portal venules, which occurred but to a less degree in our 100-sec group, and vascular
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transmigration and integration of cells were noted 24 hours after transplantation, with a slow
infusion rate (Koenig et al. 2005). Breakdown of the sinusoidal endothelial barrier by
ischemic-reperfusion injury allowed live donor cells to migrate to and integrate into the
parenchyma (Koenig et al. 2005). Mechanisms of extravasation other than the ischemic-
reperfusion model seem ready to come well-predicted. Besides, Timm and Vollmar provided
evidence for differential portal blood supply to different areas of the liver using in vivo
fluorescence microscopy (Timm et al. 2013). Inadequate mixing of portal venous blood and
the cell suspension would further increase such heterogeneity. The mixing mechanisms that
occur when the cell suspension is infused into the portal vein are molecular and turbulent
diffusion. Molecular diffusion is based primarily on the concentration gradient that occurs
when a high-concentration cell suspension is infused into the portal vein, whereas turbulent
diffusion provides more rapid mixing during processing. The scenario is more complicated
when the mixing of the 2 fluids involves momentum. In this context, an adequate transfusion
rate is one that produces an environment of rapid mixing of the cell suspension with the
portal venous blood. This would result overall in less occlusion of small portal venules and a
better chance for engraftment. In patients with acute liver failure, the amounts of hepatocytes
are of sudden shortage. Timely supply of more already- transmigrated hepatocytes by the
optimal transfusion rate could safely bridge the critical period which allow time for
hepatocytes (either native or donor cells) to further proliferate, or transit to liver

transplantation, and save the hosts.

Our study provides proof of the principle that the rate of intraportal cell transplantation
influences the efficiency of engraftment, although we have not yet clarified the details of the
underlying mechanism or the optimal rate adjusting for body size, species, or liver disease.
However, given the difference in size between rats and humans, the pressure variation zone,
which was tolerable in rats, would likely be of wider safety range in humans. In the clinical
transplants, the investigators usually tried to infuse up to 5% of liver mass or 2 x 108 cells /kg
into a recipient. In the present work we only infused approximately 1/4 or even less of this
cell number. The comparison with the clinical studies might be inappropriate because of the
model, the infusion rates and the cell number. The summary of infusion rates in Table 7
(animal) and 8 (human), however, suggests a general trend toward up-titration of transfusion
rates of hepatocyte transplantation into various backgrounds of liver for larger body sizes.

Regardless, the observed phenomenon is easily manipulated and potentially clinically
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applicable. For real-time monitoring of portal pressure, we were able to validate the finding
of early vascular transmigration of donor cells after transfusion at an appropriate rate. In
addition, portal vein thrombosis and hypertension seem not to be major problems. A wider
range of the rate of intraportal hepatocyte transplantation in clinical practice is reasonably
expected to yield variable engraftment efficiencies. Our study indicates that the optimal
rate(s) of intraportal hepatocyte transplantation should be considered seriously in the clinical

setting because it affects graft cell engraftment.

In conclusion, differential hepatocyte transfusion rate contribute to accelerated early
engraftment and repopulation in rats with acute liver injury. These findings represent proof of

concept but are of clinical significance because they are easy to translate into practice.

55

doi:10.6342/NTU201600315



56

doi:10.6342/NTU201600315



IO
Chapter 6

ol O fleg

Future perspectives and Conclusion

PnC

75 o
B A ”;f@&f
A

HHRRE

ia b R '% ,riﬁ.:"_%‘{ﬁ‘% Acute-on-chronic Af )

i X =30
72 I 4 >
BT ArAER
31 (AT 5 ) #r ta i
57

doi:10.6342/NTU201600315



The hallmark of acute liver failure is massive liver cell loss, uncontrolled inflammation and
impaired regeneration. If inflammation is not naturally good, why living beings are kept
equipped with this arm from generation to generation? As we raise the question, a review
from Nature published in 2016 answer part of it (Karin M et al. 2016). Adequate
inflammation can result in less overall tissue damage by harmful triggers, such as infection,
or toxin while chronic unresolved inflammation will culminates in a host of pathologies,
including cancer and fibrosis (Karin M et al. 2016). The ancient signaling of inflammation
and repair was actually originated from the same cytokines (such as TNF, IL-6, IL-22, and
IL-17) and axes (such as MAPK-AP-1, IKK-NF-kB, Hippo-YAP/Notch, and WNT
signaling). Downstream factor (YAP) of another ancient Hippo signaling pathway for growth
and development is involved in the convergence of IL-6 and noncanonical WNT signaling
pathways (Karin M et al. 2016). The concept of reparative inflammation is formulated and it
actually take charge of tissue regeneration, including intestinal cells and liver cells.
Theoretically, the host, if not recover itself, will die and pass the problem to the offspring to
see potential solution by natural mutation and evolution. Therefore, numerous studies are
designed to modulate or balance between inflammation and regeneration. In clinical or
medical sense, the intervention in modern age may help solved the unsolved balance in
between. Further research on acute liver failure and cell therapy is focused more on the
following: modulation of inflammation by stem cells; characterization of the role of
macrophage polarization in the process of acute liver failure and repair; establishment of the
animal model of acute-on-chronic liver failure, which is more commonly observed clinically
in Taiwan. Finally, we hope the further study can be back to clinical application by the

modification of clinical processing of liver cells for cell therapy.

(1) Stem cells as the adjuvant cell source in acute liver failure and acute-on-chronic

liver failure

Cell therapy for acute liver failure with stem cells

Mesenchymal stem cells (MSCs), a major component of bone marrow cells, were shown to
have multiple beneficial effects in vitro that were relevant in a therapeutic context of liver
injury, including (1) hepatocellular functional support (improved albumin secretion, urea
genesis, hepato-specific gene expression, cytochrome P450 activity) (GOmez-Aristizabal et
al. 2012), (2) secretion of molecules that inhibit hepatocyte apoptosis (such as stromal-cell-
derived factor-1 and vascular endothelial growth factor) (Oritz et al. 2007, Hematti et al.

2008, van Poll et al. 2008, Balber et al. 2011) and stimulate hepatocyte proliferation (such as
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hepatocyte growth factor (HGF), epidermal growth factor, IL-6, and TNF-a), (3) modulation
of an acute phase response and suppress inflammatory responses such as 1L-1 receptor
antagonists and can upregulate anti-inflammatory cytokines such as IL-10 (Oritz et al. 2007),
and (4) secrete several extracellular matrix (ECM) molecules, such as collagen, fibronectin,
laminin for liver reconstruction (Gomez-Avristizabal et al. 2009, Yagi et al. 2009). The MSC-
derived cytokines that potentially protect the liver during injury can be summarized in Meier

et al.’s review (Meier et al. 2013).

In vivo, MSC or MSC conditioned media can attenuate inflammation and secrets cytokines
and growth factors for cell proliferation and provide significant rescue from fulminant
hepatocyte failure (van Poll et al. 2008, Puglisi et al. 2011, Kanazawa et al. 2011, Li et al.
2012). MSC transplantation following solid organ transplantation, both clinically and
experimentally, can also reduce rate of acute rejection (Tan et al. 2012, Wan et al. 2008).MSC
transplantation alone, however, is not expected to work in acute liver failure because the
hostile microenvironment of acute liver failure is not a good niche for MSC to reside, so
long-term engraftment rates are low (Yagi et al. 2009). Transplanted hepatocytes are unable
to function, or even survive well, without stromal cell support. Bone marrow—derived
mesenchymal stromal cells (MSCs), if transplanted too, can support the proliferation and

functionality of hepatocytes (Gomez-Avristizabal et al. 2009).

Over 280 clinical trials of MSN are registered, of which 28 focus on the treatment of liver
disease (Meier et al. 2013). If no severe side-effects were observed so far, long-term benefits
remain uncertain (Meier et al. 2013). Li et al. transplanted human bone-marrow derived
MSCs into pigs with acute liver failure induced with D-galactosamine and without use of
immunosuppressants (Li et al. 2012). Most (13/15) achieved long-term survival (>6 months)
whereas animals without infusion of MSCs were dead (L.i et al. 2012). Up to 30% of the
hepatocytes, in their study, were bone marrow-derived MSCs (Li et al. 2012). The
elucidation of mechanisms involved in the observed effect in these relevant animal
experiments were elusive too (Meier et al. 2013). Furthermore, though controversial, MSCs
may carry risks of developing fibrotic reaction (Baertschiger et al. 2009, Forbes 2004, Li et
al. 2009) or malignant transformation (Casiraghi et al. 2013), and the long-term risks of

developing them should be evaluated.
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It is, therefore, reasonably to assume that transplantation of hepatocytes and MSCs would
provide enough support for transplanted hepatocytes to better survive and proliferate and, by
so doing, enhance repopulation, which is vital for early prompt control of deteriorating acute
liver failure. Different flourescent colors of hepatocytes and MSCs will be chosen to
transplanted intraportally in D-gal induced acute liver injured SD rat model for tracking
hepatocytes and MSCs, and, especially, MSC differentiation. Whether MSC will differentiate
into parenchymal (hepatocyte, cholangiocyte) (Lee et al. 2004, Hong et al. 2005, Snykers et
al. 2009, Liu et al. 2013), nonparenchymal (sinusoidal endothelial cells, stellate cell) (Oswald
et al. 2004, Russo et al. 2006) or just remains as MSC but govern partially differentiated cells

(progenitor cells) and their functional role(s) (Wang et al. 2010) will be investigated.

If transplanted hepatocytes can proliferate and double the cell numbers occurs in time in
acute liver failure, there will be even better chance to have enough functional cells to cover
the rapid loss of native hepatocytes and therefore, rescue the hosts. We will use different
fluorescent colors of hepatocytes and MSCs to trace the course of MSC differentiation
(parenchymal, non-parenchymal, or remain partially differentiated progenitor cells) post
transplantation, interaction of MSC with hepatocytes and microenvironment, and long-term

transplanted cell repopulation in the future.

Application of cell therapy in acute-on-chronic liver failure

Acute-on-chronic liver failure (ACLF) is an increasingly-recognized distinct entity from
cirrhosis with acute decompensation and has been associated with very poor short-term
survival (Moreau et al. 2013, Arroyo et al. 2015, Moreau et al. 2015). ACLF encompasses
patients with previously well-compensated liver disease in whom an acute decompensation
of liver function occurs because of a precipitating event and is associated with the
development of multi-organ failure leading to high in-hospital mortality despite costly
intensive care therapy (Graziadei et al. 2011). In chronic injured liver such as chronic viral
hepatitis (Marshall et al. 2005) and non-alcoholic fatty liver disease (Yang et al. 2004), the
normally efficient renewal from mature hepatocytes becomes impaired when additional liver
insult encountered (Boulter et al. 2013). Liver transplantation remains the only curative

therapeutic option for the majority of these patients (Finkenstedt et al. 2013). Due to limited
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organ source and high mortality if the patients left untransplanted, alternative therapy is

urgently needed.

Progressive hepatic fibrosis as a wound healing response to chronic liver injury leads to
accumulation of collagen surrounding liver nodules and further replacement of injured
parenchyma by scar tissue, resulting in impaired hepatocyte function (Schuppan et al. 2008,
Hernandez et al. 2011). Hepatic stellate cells are the main contributors to the pathogenesis of
liver fibrosis (Henderson et al. 2007, Friedman 2008). Therefore, these cells have represented
the primary target to reduce or reverse fibrosis by developing specific anti-fibrotic strategies
(Schuppan et al 2009, Kisseleva et al 2011). At present, however, therapeutic options in
humans are quite limited (Henderson et al. 2007, Friedman 2010, Kisseleva et al. 2011,
Arroyo et al 2015, Moreau et al. 2015).

Our previous results demonstrated that adequate rate of cell infusion can have increased
engraftment of transplanted hepatocytes in D-gal induced acute liver injured rat model (Ho et
al. 2015). However, the engraftment efficiency is about 2.5 % in one week after hepatocyte
transplantation without preconditioning. It is difficult for hepatocytes to proliferate
effectively in the hostile microenvironment of acute liver failure clinically (Dhawan et al.
2006), let alone in the setting of acute-on-chronic liver failure. Considering the urgent need
of large amounts of hepatocytes in acute-on-chronic liver failure, there still much space of

improvement exists.

Adipose-derived stem cells (ADSCs) are derived from the stromal vascular fraction (SVF) of
adipose tissue which represents an accessible, abundant source of adult stem cells for
potential applications in regenerative medicine (Gimble et al. 2007). ADSCs are very similar to
bone marrow derived mesenchymal stem cells and share many common character (Gimble et
al. 2003, Katz et al. 2005, Prunet-Marcassus et al. 2006), although they can be distinguished
from bone-marrow-derived MSCs by their positivity for CD36 and negativity for CD106
(Bourin et al. 2013).

Compared to MSC from bone marrow, ADSCs, in Kim et al’s study, even show a
significantly greater angiogenic potential (Kim et al. 2007). ADSC transplantation, though in
limited studies, was shown to be beneficial in treating acute liver failure (Deng et al. 2014,
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Chen et al. 2015), improving microcirculation and ameliorating liver fibrosis induced by
CCl4 in rats (Wang et al. 2012).

The fibrosis induced by temporary ligation of common bile duct (CBD) is being established
in our ongoing work (Figure 40). We will use absorbable thread for CBD ligation to produce
transient chronic liver fibrosis. Addition of D-galactosamin further makes the model of acute-
on-chronic liver failure. We will investigate the effect of transplantation of hepatocytes and
ADSC:s on this model of acute-on-chronic liver failure. Different fluorescent colors of
hepatocytes and ADSCs will be transplanted intraportally in D-galactosamin induced acute

liver injured SD rat model for tracking hepatocytes and ADSCs, and ADSC differentiation.

The prevailing school of thought is that MSC do not express CD34, and this sets MSC apart
from hematopoietic stem cells, which do express CD34 (Lin et al. 2012). However, the
evidence for MSC being CD34(-) is largely based on cultured MSC, not tissue-resident MSC
(Lin et al. 2012). In fact, accumulating evidence suggested that CD34 being expressed in
tissue-resident MSC, and its negative finding being a consequence of cell culturing (Lin et al.
2012).

Consistently, several papers have shown that CD34 is highly expressed in freshly isolated
ADSC (SVF cells), but its expression is quickly lost in cultured ADSC within the first few
(<3) passages, probably due to down regulation of CD34 expression rather than death of
CD34+ cells (Ning et al. 2006, Gimble et al. 2007, Helder et al. 2007, Lin et al. 2008).

In vitro preliminary results indicated that CD34+ ADSCs were more proliferative and had a
greater ability to form colonies, with expression of angiogenic progenitor markers (FIk-1, and
FLT1). Further, in our preliminary experiment with rat hepatocyte and human ADSC
transplantation for acute-on-chronic liver failure model, ADSC can be observed within rat
livers 1 week after transplantation. The rat transplanted with CD34(+) ADSCs was associated
with less histological fibrosis, bile duct dilatation and ductular reaction than that with
CD34(-) ones, while unsorted ADSCs had intermediate effect. We proposed that CD34+

ADSCs are associated with more beneficial effects than the other SVF cells.
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It is, therefore, reasonably to assume that transplantation of hepatocytes and ADSCs would
provide enough support for transplanted hepatocytes to better survive and proliferate and, by
so doing, enhance repopulation, which is vital for early prompt control of deteriorating acute-
on-chronic liver failure. Further, fibrosis could be ameliorated by ADSC cellular and/or
paracrine effects. If transplanted hepatocytes can proliferate and double the cell numbers
occurs in time, and ADSCs can ameliorate the fibrotic background by cellular and/or
paracrine effects, there will be even better chance to have enough functional cells to cover
the rapid loss of native hepatocytes and therefore, rescue the hosts.

(2) Macrophage polarization and its potential application in acute-on-chronic liver

failure

Macrophage have remarkable plasticity in response to environmental cues (Biswas 2012,
Gao et al. 2014). Depending on the stimulated signals, macrophages undergo classical M1
activation or alternative M2 activation. M1 macrophages, stimulated by TLR ligands and
interferon-vy, are characterized by the release of pro-inflammation cytokines and high
production of reactive nitrogen and oxygen intermediates. M2 macrophages, stimulated by
interleukin 4 (IL-4) or IL-13, are characterized by the release of IL-10, high expression of
arginase 1 (Arg-1) and mannose receptors (Mosser et al. 2008). Macrophages of the M2
phenotype are considered to be anti-inflammatory cells and play critical roles in tissue
remodeling (Pena et al. 2011, Hematti et al. 2013).

Increasing evidence showed that MSC can induce macrophage M2 activation in vitro
(Abumaree et al. 2013, Cho et al. 2014). In the liver, resident macrophages (Kupffer cells)
fulfill homeostatic functions, orchestrate tissue remodeling in ontogenesis, and regulate
metabolic functions (Sica et al. 2014). Polarized Kupffer cells interact with hepatic
progenitor cells, integrate metabolic adaptation, mediate responses to infectious agents,
orchestrate fibrosis in a yin-yang interaction with hepatic stellate cells (Sica et al. 2014,
Tacke et al. 2014).

It is important in the future to investigate the polarization process of hepatic macrophages
(mainly Kupfter cells) (from M1 to M2 which was known to express markers of CD206 and

CD163) before, during and after transplantation of hepatocytes and MSCs in ameliorating the
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fibrosis of acute (D-gal induced) on chronic (CBD ligation by absorbable thread) liver

injured rat model.

(3) Modification of clinical hepatocyte processing in the real-world

The purpose is to investigate the feasibility of modification with simplification in hepatocyte
processing for hepatocyte transplantation, and to compare the cellular function and quality in
vitro. We plan to isolate the hepatocytes from deceased donor liver with signed informed
consents in operation and prepare the cell suspension for ex vivo functional assays (such as
cell viability, activity of the urea cycle enzyme, mitochondrial enzymes, and albumin
synthesis). As shown in Figure 41, it is feasible to perform hepatocyte isolation in the
operation room, although further process modification is needed to achieve better cell quality

and quantity.
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Conclusion

ALF in Taiwan is mainly due to viral infection. Patients with malignancy and alcohol
exposure have worst prognosis. The use of proton pump inhibitor is associated with
improved survival. Half of the ALF survivors have liver cirrhosis. Prominent ductular
reaction with at-least partially functional hepatocyte differentiation did not guarantee
successful regeneration in acute liver failure and there is demand left for hepatocyte
transplantation. With further refinement of ICG could be used to develop a rapid assay for
assessment of the function of isolated human hepatocytes. Differential hepatocyte transfusion
rate contribute to accelerated early engraftment and repopulation in rats with acute liver
injury. These proof-of-concept findings are of clinical significance because they are easy to
translate into practice. Further studies are needed for improvement of hepatocyte
transplantation for ALF in Taiwan, albeit some problems solved. We plan to investigate on
the modulation of ALF microenvironment and the application of cell therapy with

hepatocytes and/or MSC in the near future in hope to further improve the prognosis of ALF.
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Figures

Figure 1. Gene expression (mRNA) changes in clinical living liver donors before and after
liver resection. The different rows represent gene expression patterns in different donors. Red
represents upregulated genes and green represents downregulated genes. Similar patterns of
gene expression are noted in cluster analysis. Specific up- and downregulated genes are

labeled as shown.

RNy

81

doi:10.6342/NTU201600315



Figure 2. Process of clinical hepatocyte isolation and transplantation.
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Figure 3. Clinical hepatocyte isolation in reality. A. Microbacterial monitoring in clinical-
grade cell isolation room. B. Transfer perfusate, preservation solution, pippete tips into the
clinical-grade cell isolation room though the transit box. C. Liver perfusion in the hood. D.
Cut the liver capsule and mince the digested liver parenchyma, and release the cells into
ice-cold EMEM. E. Filter cells with gauze. F. Centrifuge cells with 50g. G. Freezing cells

for preservation. H. Clinical hepatocyte transplantation during infusion.
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Figure 4. Research infrastructure and association network.
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Figure 5. Schematic representation of the patient selection process in choosing target patients

of acute liver failure in Taiwan.

One million nationwide representative populations observed during 1996-2007

28,078 potential admissions with acute liver failure

-- 22,618 admissions due to liver-associated diagnosis*
-- 4,191 admissions due to acute hepatic failure

-- 1,269 admissions due to both

—®Exclude 14,482 admissions before 2005

13,596 admissions between 2005 and 2007

Exclude 9,880 due to prior history of liver diseases# within 3 years
— Exclude 3,430 due to no records of INR, NH3, and lactulose
Exclude 50 due to index hospital stay <7 days

236 admissions in 232 patients

—®Exclude 14 after 1 Oct. 2007 (observation time <3 months)

222 admissions of acute liver failure between 1 Jan. 2005 and 30 Sep. 2007

— Exclude 4 non-first admissions

218 patients with first admission between 1 Jan. 2005 and 30 Sep. 2007

Liver-associated diagnosis* included ICD-9-CM (International Classification of Diseases, ninth revision, clinical modification) 070.0-070.9, 571.1, 571.42,
573.3,782.4, and V02.61. Prior history of liver diseases# included (1) liver-associated diagnoses; (2) chronic hepatitis (ICD-9: 571.4); (3) hepatic stone (ICD-9:
574.5); (4) HCC (ICD-9: 155.0); (5) intrahepatic cholangiocarcinoma (ICD-9: 155.1); (6) malignant neoplasm of gall bladder (ICD-9: 156.0); (7) malignant
neoplasm of extrahepatic bile ducts (ICD-9: 156.1); (8) malignant neoplasm of ampulla of vater (ICD-9: 156.2); (9) malignant neoplasm of pancreas (ICD-9:
157.9); and (10) liver metastasis (ICD-9: 197.7).
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Figure 6. The calculated incidence of acute liver failure in Taiwan from 2005~2007. Note
that the incidence increased with age in both genders.

800

700

600

500

400

300

200

Cases / 1,000,000 person-years

100

Q
Age (years)

-9

10-19

20-29

30-39

40-49

50-59

60-69

70-79

80-89

290

W male

6.5

0.0

23.9

89.5

144.1

200.0

2916

405.6

274.7

387.8

u female

7.1

0.0

16.4

215

36.1

55.0

117.2

298.2

405.0

273.1

86

d0i:10.6342/NTU201600315



Figure 7. The etiology of acute liver failure in Taiwan from 2005~2007.
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Figure 8. Kaplan-Meier curve of survivals for patients of acute liver failure stratified

according to the status of malignancy.
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Figure 9. Kaplan-Meier curve of survivals for patients of acute liver failure stratified

according to the etiological exposure except malignancy.
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Figure 10. Adjusted survival curve for patients of acute liver failure in Taiwan stratified
according to the etiological exposure except malignancy. Adjusted survival curves were
plotted based on regression estimates in the Cox model and average covariate values

(average covariate method).
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Figure 11. Ductular reaction in acute liver failure characterized by the immunohistochemical

examination of cytokeratin19 (200X).
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prominent ductular reaction (200X).
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Figure 14. Transitional expression of NUMB in acute liver failure. Comp'ar’_qdl‘tb the

wi in cell

;ﬁ;%ioc?ytﬁes

immunohistochemical staining of cytokeratin 19 (A), NUMB expression%{ﬁas

95

d0i:10.6342/N'TU201600315



Figure 16. Transitional expression of CPS-1 in acute liver failure. Compared to the

immunohistochemical staining of cytokeratin 19 (A), CPS-1 expression was shown in cell

96

d0i:10.6342/N'TU201600315



Figure 17. Immunohistochemical examination of CK19, CPS-1, HNF4a, and HNF1f in
acute liver failure. Progenitor cells differentiating toward hepatocytes exhibited HNF4a. (C,
long and thin arrow) and CPS-1 and cholangiocytes, HNF1p without CPS-1 (D, short and

thick arrow). Serial sections 100X.
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Figure 20. Characteristics of ICG uptake and release by human hepatocytes and HepG2 cells
in vitro. Uptake and release of ICG: after ICG incubation (1, 3) and 3 hours rele_@sé of ICG
(2,4). 1, 2: human hepatocytes; 3, 4: HepG2 cells. 1 A
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Figure 21. ICG release into the supernatant by human hepatocytes increased with ICG

concentration used for incubation.
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Figure 22. HepG2 cells in plates release ICG with time as shown as decrease in the

percentage of green cells.
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Figure 23. Release patterns of ICG by ex vivo human hepatocytes from different donors.
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Figure 24. Functional disturbances of human hepatocytes and HepG2 cells following ICG

treatment. MTT assay showed increased mitochondrial function in hepatocytes (top) and

HepG2 cells (bottom) incubated with 1.0 mg/ml ICG. (* p<0.05)
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Figure 25. Functional disturbances of HepG2 cells following ICG treatment. Albumin
synthesized by HepG2 cells decreased in a dose-responsive relationship as increased ICG

incubation concentration. (n=2) (* p<0.05)
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Figure 26. Functional disturbances of HepG2 cells following ICG treatment. Incubation with

1.0mg/ml ICG decreased HepG2 cell proliferative activity. (n=2) (* p<0.05)
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Figure 27. Human hepatocytes and HepG2 cells detach when releasing indocyanine green.

Detachment of human hepatocytes (top) and HepG2 cells (bottom) on incubation with

increasing ICG concentration.
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Figure 28. Human hepatocytes and HepG2 cells detach when releasing indocyanine green.
Cell viability staining with fluorescein diacetate (FDA)/ethidium bromide (EtBr) showed that

more viable cells detached when incubated with higher concentrations of indocyanine green.
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Figure 29. Effect of pretreatment with taurine on human hepatocytes. (A) Human
hepatocytes released more ICG when pretreated with taurine. When incubated in 1.0 mg/ml

ICG, the pattern of ICG release was maintained in taurine pretreated hepatocytes. (* p<0.05)
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Figure 30. Pretreatment with taurine increases hepatocyte attachment. Following incubation
with ICG for 30 minutes, plates are reincubated overnight to study cell attachment study.

Cells pretreated with taurine are attached better with 1.0 mg/ml ICG concentration.
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Figure 31. Taurine-pretreated hepatocytes had lower MTT activity on incubation with 1.0

mg/ml than with 0.5 mg/ml ICG.
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Figure 32. Rat model of acute liver injury and hepatocyte transplantation. Catheterization of
the portal vein for cell infusion. (A) A 24-G catheter placed in the main portal vein via

midline laparotomy. (B) The lock of the catheter beneath an undermined skin flap.
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Figure 33. Schematic design of animal experiment of hepatocyte transplantation for

acute liver failure.
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Figure 34. Representative images of acute liver injury. Gross appearance of acute liver
injured rat 24 hours after D-galactosamine (0.9 g/kg) treatment (A). Representative images of
acute liver injury. Histopathology of the acute liver injury rat showed massive hepatocyte

necrosis and apoptosis, hemorrhage, and sinusoidal dilatation. (scale bar: 100pm)
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Figure 35. Early engraftment (2 days) and repopulation (7 days) after transplantation of
hepatocytes from DsRedT3-emGFP transgenic rats into recipients with acute liver injury. A
total of 1 x 107 hepatocytes in 1 mL were transfused intraportally over a period of 30, 70, or
100 sec. Three groups had significantly different hepatocyte engraftment (P = 0.018) and
repopulation (P = 0.037) efficiencies. (A) Both 2 and 7 days after transplantation, the
transplanted hepatocytes (identified by direct visualization of red fluorescence) were
observed more frequently in the 70-sec group. (B) Average engraftment and repopulation
with respect to the transfusion rate. The 70-sec group had superior engraftment and
repopulation efficiencies to the other groups. (Tukey post hoc tests; p: * 0.072; # 0.063; **
0.018; ## 0.074) (scale bar: 100pum)
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Figure 36. Effect of hepatocyte transplantation on biochemical indexes of acute liver injury.
Blood biochemistry of liver function tests was evaluated by (A) serum aspartate
aminotransferase (AST) level, (B) serum alanine aminotransferase (ALT) level, (C) serum
total bilirubin level, (D) serum albumin level, (E) international normalized ratio (INR) of
prothrombin time, and (F) blood ammonia level. *p < 0.05. D-gal-24h, 24 hours after D-

galactosamine treatment.
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Figure 37. Real-time monitoring of perioperative portal venous pressure during rat
hepatocyte transplantation for treatment of acute liver injury at different rates of transfusion.
Three groups reached the first peaks of pressure at different time with significance (p <
0.0001). Transfusion rate of 70 seconds achieved higher pressure than the other groups
though without statistical significance. The second lower peaks than the first ones of portal

pressure were observed in all three groups. Shaded zones are 95% confidence interval.
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Figure 38. Early vascular transmigration of donor cells (DsRedT3-emGFP hepatocytes,
identified by immune-fluorescence) was observed 20 minutes after hepatocyte
transplantation at the optimal rate of transfusion in rats with D-galactosamine-induced acute
liver injury. (A) Early engraftment was seen in liver parenchyma (arrow). Vascular wall was
stained with the antibody against vascular cell adhesion molecule 1 (VCAM-1). (B) Vascular
transmigration of donor cells (arrows) was detectable just outside the wall of the portal vein

(arrow). Portal vein was stained with the antibody against CD31. (scale bars: 100um)
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Figure 39. Cell embolus was scatterly noted at day 2, but rarely observed in the lung in all
groups 1 week after intra-portal hepatocyte transfusion in acute liver injured rats. Scattered

donor cells (DsRedT3-emGFP hepatocytes) (arrow) were marked. (scale bars: 200um)

30sec

119

doi:10.6342/NTU201600315



Figure 40. Liver fibrosis induced by temporary ligation of common bile duct 1n SD rat [first

(2 weeks) and second (3 weeks) rows]. Acute-on-chronic liver failure was fuftﬁg lflllduced by

<= |
add-on D-gal (500 mg/kg) and rescued by hepatocyte and stem cell co-trans |anE:;ltiI n (733'd
row). H&E (left panel), trichrome (middle panel) and GGT (right panel) s'»t'ain}ngrfo} rat liver
sections. (100X).
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Figure 41. Clinical in vivo isolation of hepatocytes from a dead donor at operation room.
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Tables

Table 1. Concomitant malignancy in index admission for acute liver failure and major

etiologic exposures in Taiwan from 2005~2007

Primary focus of malignancy No. HBV HCV Alcohol Toxin

Hepatocellular carcinoma 37 17 13 6 3

Extra-hepatic malignancy 25 10 1 0 10
Head and neck cancer 4 1 0 0 2
Lung cancer 4 1 0 0 3
Colorectal cancer 4 1 0 0 1
Cholangiocarcinoma and gall bladder carcinoma 3 1 0 0 2
Breast and cervical cancer 3 2 0 0 1
Leukemia 3 2 0 0 0
Pancreatic cancer 2 1 0 0 1
Bladder cancer 1 1 0 0 0
Unknown primary 1 0 1 0 0

Abbreviations: No., total patient numbers; HBV, hepatitis B virus; HCV, hepatitis C virus

Data were numbers of patients
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Table 2. Characteristics of patients with acute liver failure in Taiwan from 2005~2007

Survived >90 days Died within 90 days  Overall

(n=130) (n=88) (n=218)
Follow-up days* 458.5 [45-1059] 29 [7-93] 171 [7-1059]
Hospital stay* 19.5 [7-574] 26.5 [7-93] 22 [7-574]
ICU admission* 89 (69) 73 (83) 162 (76)
Age, years* 56.5+18.4 60.0£14.7 57.9£17.1
Male 91 (70) 59 (67) 150 (69)
Underlying co-morbidity
Diabetes mellitus 46 (35) 27 (31) 73 (34)
Peptic ulcer 29 (22) 16 (18) 45 (21)
Concomitant malignancy* 18 (14) 41 (47) 59 (27)
Prior to index admission* 4 (3) 11 (13) 15 (7)
COPD 17 (13) 8(9) 25 (12)
End-stage renal disease 2 (2) 4 (5) 6 (3)
Autoimmune disease 0 33 3(1)
Low income 6 (5) 4 (5) 10 (5)
Etiology of ALF
Hepatitis B virus exposure 39 (30) 33 (38) 72 (33)
Hepatitis C virus exposure 18 (14) 7(8) 25 (11)
Toxin exposure 24 (19) 17 (19) 41 (19)
Acetaminophen” 15 (12) 9 (10) 24 (11)
Alcohol exposure 19 (15) 12 (14) 31 (14)
Metabolic disorder 4 (3) 0 4(2)

Abbreviations: COPD, chronic obstructive pulmonary disease; GI, gastrointestinal; ICU, intensive care unit

Data were either number (%), median [inter-quartile range], or mean+standard deviation.

*Significant difference (p<0.05) between patients who died within 90 days and those who did not, by chi-square test or ¢ test

#Meansstandard deviation of the defined daily dose of acetaminophen in the three groups were 16.3£13.6, 12.2£10.8, and 14.6+12.5, respectively.
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Table 3. Severity and complications of acute liver failure during index admission in Taiwan.

Survived >90 days Died within 90 days Overall

(n=130) (n=88) (n=218)
Presence of ascites 49 (38) 46 (52) 95 (45)
Presence of esophageal varices 27 (21) 11 (13) 38 (18)

Frequency of check-ups per week

Aspartate transaminase 1.4+1.6 1.7£1.3 1.5€1.5
Alanine transaminase 1.4£1.6 1.7¢£1.2 1.6£1.5
Total bilirubin* 0.4+0.7 1.9+£1.5 1.0+£1.3
Direct bilirubin 0.9£1.1 1.1£1.1 1.0£1.1
Ammonia* 1.0+0.9 1.4£1.4 1.2+1.1
INR of prothrombin time 1.2+1.8 1.6£1.5 1.4£1.7
Lactulose dose (ml/week) 321+319 397+486 351+£396

Undergoing procedure

Panendoscopy 61 (47) 34 (39) 95 (45)
Computed tomography 59 (45) 57 (65) 116 (55)
Brain MRI 10 (8) 9(10) 19 (9)
Plasmapheresis* 10 (8) 13 (15) 23 (11)
Sepsis* 26 (20) 34 (39) 60 (28)

Local infection

Pneumonia 17(13) 12 (14) 29 (14)
Urinary tract infection 15(12) 7(8) 22 (10)
Hemorrhage 22(17) 20(23) 42 (20)
Unspecified GI tract 2(7) 10 (11) 199
Peptic ulcer 6(5) 5 (6) 11 (5)
125

doi:10.6342/NTU201600315



2(2) 0 (0) 2(h

Varices

Brain 403) 4(5) 8.(4)

Unspecified 1(1) 1(1) 2(1)
Blood transfusion (U/week)

Packed red blood cell 12+21 L.7+24 l4+2.2

Platelet 29+8.9 2.7+6.1 28+79

Fresh frozen plasma®* 3,663 8.1=+11.5 54+9.0
Organ damage
Renal insufficiency 28 (22) 18 (20) 46 (22)

Prescription of diuretic” 87 (67) 77 (88) 164 (77)
Prescription of vasopressin®* 15 (12) 21 (24) 36 (17)

Requiring HD/HF* 6 (5) 16 (18) 22 (10)
Requiring ventilator support* 35 (27) 44 (50) 79 (37)
Seizure 9(7) 2(2) 11(5)

INR, international normalized ratio; MRI, magnetic resonance imaging; HD/HF, hemodialysis or hemofiltration; GI,
gastrointestinal

Data were either meantstandard deviation or number (%).

*Significant difference (p<0.05) between patients who died within 90 days and those who did not, by chi-square test or ¢ test
#Meanzstandard deviation of the defined daily dose (DDD) of diuretics in the three groups was 26.5+56.4, 35.2+49.9, and
30.0£53.9, respectively

$Meanztstandard deviation of vasopressin DDD in the three groups was 0.4+1.3, 0.2+0.9, and 0.3£1.2, respectively
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Table 4. Risk factors of survival in all patients with acute liver failure and in those without

malignancy on index admission in Taiwan.

Overall (n=218)

Patients without

malignancy (n=59)

HR  95% p HR  95%CI »p

CI

No. of hepatitis B virus 1.00 0.61- 0.990 0.99 0.52- 0.960
1.64 1.86

No. of hepatitis C virus 1.76  0.99-  0.056 1.74  0.64- 0.280
3.16 4.72

No. of alcohol consumption 1.67 1.01- 0.046 2.43  1.31- 0.005
2.77 4.53

No. of toxin 1.25 0.70-  0.450 0.75 0.33- 0.480
2.24 1.68

No. of malignancy 290 1.92- <0.001 - - -
4.37

No. of check-ups per week for 1.57 1.40- <0.001 1.91 1.63- <0.001

total bilirubin 1.76 2.23

No. of sepsis 1.85 1.20- 0.005 1.79  1.03- 0.039
2.85 3.11

No. of hemorrhage 1.25 0.77-  0.370 0.92 0.46- 0.820
2.03 1.85

No. of ventilator use 1.00 0.65-  >0.999 1.64  0.95- 0.076
1.55 2.83

No. of 2.12 1.15-  0.015 238 1.19- 0.015

hemodialysis/hemofiltration 3.91 4.79

No. of proton pump inhibitor 0.94 0.90- 0.005 0.95 0091- 0.025

(7DDD) 0.98 0.99

CI, confidence Interval; DDD, defined daily dose; HR, hazard ratio; No., frequency number.
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Table 5. Details of donor livers used for ex vivo ICG experiments.

Liver Age Gender  Cause of Status at Cold Warm
(years) death retrieval ischemia  ischemia Viability

(h) (min) (%)

1 31 F ICH Cadaveric 10 - 70.0

2 57 M ICH NHBD 12 15 79.8

fatty liver

3 52 M ICH NHBD 13 20 52.1

4 26 M Cardiac NHBD 125 22 76.0
arrest

5 76 M ICH Cadaveric 10 = 78.6

6 60 F Heart NHBD 12 19 39.7
attack

7 28 M Cardiac Cadaveric 115 = 67.0
arrest

ICH, intracerebral hemorrhage; NHBD, non-heart beating donor

128

doi:10.6342/NTU201600315



Table 6. Antibodies used in immuno-fluoro-histo-chemistry in animal experiment of

hepatocyte transplantation.

Name Company Cat. No. Dilution

RFP MBL, Nagoya, Japan PMO005 1: 300

CD31 Millipore, Temecula, CA MAB1393 1: 125

Vascular cell adhesion molecule 1 ; )

VCAM-1 Serotec, Oxford, UK MCA4633GA 1:100
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Table 7. Literature review of transfusion rate in intraportal hepatocyte transplantation of

animals
Species Transfusion Trans‘fu51- Cell density Total cells Outcome (reference)
rate on time
Portal hypertension
DPPIV (-/-) rat 0.67-0.5 . 7 4
and D-gal injury mL/min 3-4 min 10%/mL 210 (McCormack et al. 1985)
. 0.26% engraftment
DPPIV (-/-) rat 0.5 mL/min 1 min 2 x 107/mL 107 efficiency, mainly in zone 1
(Dagher et al. 2009)
Cells pile up in distal portal
Wistar rat 0.25 mL/min . 6 6 vein, small amounts in
2 min 2> 10%mL 10 sinusoids (Stéphenne et al.
2012)
Infant pig No marked anomaly of
0.67 mL/min . 7 8 physiological parameters,
(2.5kg) 373 min 1> 107/mL 2510 positive engraftment after 1
day (Dhawan et al. 2010)
Vascular thrombosis, portal
Pig 1 mL/min . 2.5 x 8 hypertension, and
16-32 min 107/mL 4810 pulmonary cell emboli
(Herweijer et al. 2007)
Non-human
primates (Macaca
mulatta, 3-5.5 2 mL/min Proliferation of transplanted
kg) with liver 20 min 1 x 107/mL 4 x108 hepatocytes (Fox et al. 1998,
partial portal Krohn et al. 2009)
branch
embolization

DPPIV, dipeptidyl peptidase IV; D-gal, D-galactosamine
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Table 8. Literature review of transfusion rate in intraportal hepatocyte transplantation

of human
Case Transfusion Transfusi- Cell Total cells Outcome (reference)
rate on time density
Children (1 acute liver ~ 2-6.1 mL/min =~ 21-33 min = 5.7-9.5 x 1.4-7.2 x No clinical signs of portal
failure, 2 urea cycle 10%mL 10° vein thrombosis, pulmonary
disorders, and 1 Crigler- embolism, or anaphylactic
Najjar syndrome; 3—40 reactions; portal pressure
kg) increased 24-36% and
remained elevated for 6
hours (Strom et al. 1999)
Children (1 ornithine 1 mL/min 40-60 min 1-1.5 % 3-10 x Improvement in clinical
transcarbamylase 107/mL 107/kg of status (Suda et al. 2007)
deficiency, 1 Crigler- body weight
Najjar syndrome, 1 per dose for
glycogen storage disease 2-15 doses
Ia, and 1 tyrosinemia
type I; age, 45 days to 12
years)
Child (phenylketonuria 1 mL/min 63 min on 107/mL 63 x 107 Second transplant (1.4
in a 6-year-old boy) day 1 and cells, 110 x mL/min) yielded greater
110 min on 107 cells on improvement in clinical
day 2 days 1 and 2 status than the first series (1
mL/min). Better donor cell
quality in second transplant
. (Weber et al. 2006)
1.4 mL/min 1 hour 107/mL 85 x 107
Child (Crigler-Najjar 2.5 mL/min 30 min for3  1.3-2x 7.5 % 10° Portal vein pressure did not
syndrome type I in a 10- separate 107/mL  cellsover 15  increase by more than 4 mm
year-old girl infusions hours Hg for more than 5 minutes.
separated by Survived for more than 11
4-6 hours months with partial
correction of the metabolic
disorder (Soltys et al. 2010)
Young adult (glycogen 4 mL/min 5 min 108/mL 2 x10° Improvement in clinical
storage disease type Ib status (Yu et al. 2004)
in an 18-year-old man)
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