
doi:10.6342/NTU201600798

i 

國立臺灣大學工學院土木工程學系 

碩士論文 

Department of Civil Engineering 

College of Engineering  

National Taiwan University 

Master Thesis 

以局部徑向基底函數佈點法分析 

三維功能梯度壓電半導體問題 

Three-dimensional Analysis for Functionally Graded 

Piezoelectric Semiconductors by the Local Radial Basis 

Function Collocation Method 

陸學賢

Hubert Hsueh-Hsien Lu 

指導教授：楊德良 博士 

Advisor: Der-Liang Young, Ph.D. 

  中華民國 105 年 7 月 

July, 2016



doi:10.6342/NTU201600798

 

 

  

審定書 

 
 

  



doi:10.6342/NTU201600798

 

 

  

致謝 

首先感謝指導教授楊德良老師非常有耐心的指導我，從一個什麼都不懂的大

學畢業生，到現在對自己研究生生涯感到驕傲，老師不僅在學術方面給予指導，

甚至在做人處事上都相當關心學生我，也改正了我不少壞習慣。起初，參與壓電

材料的數值模擬計畫時相當的不開心，那時覺得我自己身為一個水利組的學生就

應該做和流體力學或水利工程相關的研究，但在老師的循循善誘下，我漸漸地珍

惜這個能跨領域學習的機會，在碩一升碩二的暑假甚至還讓研究生的我能到斯洛

伐克參加學術交流，非常感謝老師讓我加入這個研究團隊，往後學生也將更努力

地學習。 

接著我想感謝 Sladek 教授的建議和指導，還有其團隊成員 Peter，非常有耐

心積極的指正我對學理上的錯誤，一來一往百餘篇的電子郵件讓我非常感激。另

外特別感謝口試委員們提供給我許多寶貴的意見，讓我能在研究和論文上更精進

更完整。此外非常感謝學長吳清森博士不管在學術或是在遇到問題時該如何面對

上都給我許多意見和幫助，也感謝研究室學長姐們在我剛進團隊時非常有耐心的

教我，從一個程式都不會到 MATLAB、C++都相當熟悉。感謝研究室的學弟們、

助理，Mahmoud 讓我練習英文口說還有亂扯紓解壓力，也感謝我同屆的研究室

好麻吉們，祝大家順利畢業。最後感謝我的家人們，總是支持我一切決定，就像

隱形的翅膀一樣讓我走到今天，在我徬徨失落的時候給我依靠，希望以後我也能

成為你們信任安心的依靠，並且實現自己的夢想。



doi:10.6342/NTU201600798

 

i 

  

摘要 

本研究主旨為藉由局部徑向基底函數佈點法分析三維梯度功能壓電半導體

問題。局部徑向基底函數無網格數值方法已經被廣泛運用在工程與科學領域上，

由於在處理空間尺度相差甚異與無須數值積分的優勢下，因此將此數值方法運用

在壓電材料的工程問題上。 

壓電材料可以分為介電體與半導體兩類，不同於壓電絕緣體，由電子密度及

電流所組成的電守恆式需被額外用以描述壓電半導體的現象，這也加深了彈性位

移及電場間相互作用分析的複雜度。此研究以局部徑向基底函數佈點法來求解存

在非定常數的偏微分方程，在物理場中的空間變化以多元二次曲面徑向基底函數

近似；時變性的微分方程系統問題以 Houbolt 有限差分法求解。 

以有限元素法之相對應結果來驗證局部徑向基底函數佈點法之結果，且分析

在不同載重情形下分析的樑所產生的力學反應、電場、電流場間互相的關係。此

外，此研究也分析梯度參數及初始電子密度所產生之影響。最後，暫態分析也在

此研究的範疇中。 

 

關鍵詞: 局部徑向基底函數佈點法、功能梯度材料、壓電半導體、壓電效應、智

能材料 
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Abstract 

This thesis presents three-dimensional analysis of functionally graded 

piezoelectric semiconductor by the local radial basis function collocation method 

(LRBFCM). The LRBFCM is a commonly-used meshless numerical method in the 

field of engineering and sciences. On account of the advantages of addressing the 

problems with much different length scales in three dimensions and circumventing 

numerical quadrature, the LRBFCM is investigated and applied in the problems of 

piezoelectric materials. 

Piezoelectric materials can be divided by dielectrics and semiconductors. 

Unlike piezoelectric dielectric materials, the conservation of charge which is composed 

of electron density and electric current is additionally considered to depict the 

phenomenon for piezoelectric semiconductors. This will complicate our analyzing the 

mutual coupling of elastic displacements and electric fields. For the solution of the set 

of partial differential equations with non-constant coefficients the LRBFCM is 

proposed in this work. The spatial variations of all physical fields are approximated by 

the multiquadric radial basis function. For time dependent problems a resulting system 

of ordinary differential equations is solved by the Houbolt finite difference scheme as 

a time stepping method. 

The presented LRBFCM method is verified by using the corresponding results 
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obtained by the finite element method. The effect of various loading scenarios is then 

considered in the numerical examples to analyze the mutual properties of the 

mechanical responses, electrical fields, and electrical current field. The influence of 

material parameter gradation and initial electron density is then investigated. The 

transient analysis is also analyzed. 

 

Keywords: local radial basis function collocation method (LRBFCM), functionally 

graded materials, piezoelectric semiconductors, piezoelectric effect, smart materials 
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Chapter 1 Introduction 

 

1.1 Motivations and Objectives  

On account of the development of computer science and technology, numerical 

analyses have been frequently utilized and even substituted for some experiments. 

There are advantages by numerical analyses such as cheap and enable some problems 

which do not exist analytical solutions to be solved and analyzed. The numerical 

methods generally can be categorized as two types, mesh-dependent methods and 

meshless methods. Mesh-dependent methods have been developed and commonly used 

in scientific research and engineering applications. The following four mesh-dependent 

methods are most commonly used methods, the finite difference method (FDM), the 

finite volume method (FVM), the finite element method (FEM), and the boundary 

element method (BEM). However, the mesh-dependent numerical schemes still exist 

challenges and problems on account of inevitable burdensome tasks such as mesh 

generation and numerical quadrature especially for multi-dimensional problems and 

irregular domains. In order to avoid those problems, various meshless methods have 

been developed in recent years. They have become more and more popular due to the 

ease of implementation and the flexibility of generation of computational nodes which 

can circumvent the problems of inaccuracy near where gradients of variables are high. 
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However, there are the stability and accuracy of meshless methods which should be 

concerned and analyzed. In this thesis, we focus on one of the meshless numerical 

methods, the local radial basis functions collocation method (LRBFCM), which will be 

introduced in subsection 1.1.2.  

1.1.1 Mesh-dependent numerical methods 

 With the development of the computer technology in recent years, it has been more 

feasible and efficient to utilize numerical methods to simulate and analyze engineering 

problems. The finite difference method (FDM), the finite volume method (FVM), and 

the finite element method (FEM) have been developed to a robust and effective methods 

and widely used in engineering problems. The finite difference method is based on 

Taylor series expansion to approximate the derivative which accuracy is dependent on 

how many terms we utilize. However, it is complicated when we solve problems with 

irregular domain due to difficulty of construction of orthogonal mesh. Additionally, we 

should refine the mesh and add more terms of derivative to obtain more accurate results 

which is very time-consuming. In order to reduce the dependency of the meshes, 

researchers have developed a powerful alternative numerical scheme, the boundary 

element method (BEM), to substitute for other mesh-dependent numerical methods. By 

the Green’s function, the BEM can reduce one dimensionality of the problems. The 

BEM discretizes the computational 3D domain of the surface instead of the whole 
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domain. Therefore, it provides more flexibility and relatively decreases the dependency 

of meshes. However, the limitation of the fundamental solutions or free-space Green’s 

functions restricts engineers to apply the BEM to some problems. Due to the above 

difficulties of applying the mesh-dependent numerical methods, researchers have been 

paying attention on the development and improvement of meshless numerical methods. 

1.1.2 Meshless numerical methods 

 In order to circumvent numerical quadrature and mesh generation, various 

meshless or mesh-free numerical methods have been developed such as the smoothed 

particle hydrodynamics (SPH) [1], the multiquadrics collocation method (MQ) [2]-[6], 

the method of fundamental solutions (MFS) [7]-[10], the method of particular solutions 

(MPS) [11][12], the method of approximate particular solutions (MAPS) [13][14], the 

differential quadrature method (DQ) [15][16], the boundary particle method [17], and 

the finite point method (FPM) [18]. The above numerical methods are classified as 

global-type methods. Global-type methods generally utilize the discretization of all 

collocation points within the global domain. Subsequently, the problems such as the ill-

conditioned and dense resultant interpolation matrix are inevitable. In order to improve 

the efficiency of computation and deal with large-scale problems, researchers have been 

developing various localization methods for the corresponding global-type numerical 

methods.  
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The localization technique allows the global-type numerical methods to 

approximate the solution of partial differential equations (PDEs) with few local points 

and then the individual relations constitute the sparse resultant interpolation matrix 

instead of the dense matrix. That enables computation procedures to utilize the solvers 

of inversion of sparse matrix and save substantial computational time and memory 

loading. The MQ, the MAPS, and the DQ are respectively improved and localized as 

the localized multiquadric method (LMQ) [19], the localized method of approximate 

particular solutions (LMAPS) [20]-[22], and the localized differential quadrature (LDQ) 

[23][24]. In addition, there are other localized meshless numerical methods such as the 

compactly supported radial basis functions [25], the local radial basis function 

collocation method (LRBFCM) [26]-[29], and the meshless local Petrov–Galerkin 

(MLPG) method [30][31]. This research will focus on the LRBFCM, and utilize it to 

conduct three-dimensional analysis for functionally graded piezoelectric 

semiconductors. 

1.2 Organization of the thesis  

In order to analyze the functionally graded piezoelectric semiconductor problems 

by the local radial basis function method, we divide the thesis into five chapters and the 

brief introduction of them is shown as follows:  
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Chapter 1 Introduction 

The motivation of this thesis is presented, and the difference between the mesh-

dependent methods and meshless methods is also discussed in this chapter. In addition, 

the development of local meshless methods with respect to corresponding global-type 

meshless methods is mentioned. 

Chapter 2 The Local Radial Basis Function Collocation Method 

The meshless methods, the radial basis function collocation method (RBFCM) and 

the local radial basis function collocation method (LRBFCM), are introduced in this 

chapter. 

Chapter 3 Piezoelectricity 

The piezoelectricity is introduced and can be divided by five sections, historical 

overview, principles of piezoelectric effect, applications in civil engineering, 

functionally graded materials, and the constitutive equations of piezoelectric materials. 

Chapter 4 The Local Radial Basis Function Collocation Method for 

Functionally Graded Piezoelectric Semiconductor 

The LRBFCM is utilized to analyze the functionally graded piezoelectric 
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semiconductor problems in this chapter. The results of the LRBFCM and those of the 

finite element method by the commercial software, COMSOL, are compared and in 

good agreement. The effect of functionally graded properties is also illustrated and 

compared. The transient analyses are also analyzed in this chapter. 

Chapter 5 Conclusions and Future works 

Conclusions and future works are summarized and proposed in this chapter, 

respectively. 
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Chapter 2 The Local Radial Basis Function 

Collocation Method 

 

    This chapter will report the numerical tool, LRBFCM, which is utilized to deal 

with the piezoelectric sensor problem in this thesis. In the first section, we will illustrate 

the concept and the approximation procedure of the LRBFCM thoroughly. Then, we 

will introduce the RBFs which play an important role in the LRBFCM in the second 

section. Although the LRBFCM can overcome the drawbacks of the RBFCM, it is still 

a developing meshless numerical method whose stability and the accuracy should be 

further investigated. The accuracy and the stability in the LRBFCM is strongly 

depended on the selection of the supported local nodes and the value of the shape 

parameters. For the purpose of promoting the accuracy and the stability of the 

approximation results, we will introduce some kinds of methods for choosing the 

supported local nodes in the section 3 and the shape parameters in the section 4, 

respectively. In the last section, we provide the normalization technique to improve the 

multi-scale domain problems.  
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2.1 The radial basis function collocation method  

The multiquadric (MQ) scheme was first proposed by Hardy [2] in 1971. Then, 

the radial basis function collocation method (RBFCM), which is a modified MQ 

scheme, was developed by Kansa. The RBFCM [3][4] requires a linear combination of 

radial basis functions with regard to all the computation points within the computational 

domain   to approximate any given variable denoted by  . Let all the computation 

points be defined as , [1, ]i i N x , where N is the total number of global points. 

Then the given variable at any computation point within the computational domain can 

be approximated by the following term 

   
1

, ,

N

k

k kt f 


  x x x x  (2.1-1)  

where f  is the radial basis function,   is the weighting coefficient to be determined, 

and kx x  is the Euclidean distance between the global points. In order to evaluate 

the weighting coefficients, Eq. (2.1-1) at each computational point should be enforced. 

Then, the system of the algebraic equations becomes 

, f 
 

(2.1-2)   

where      1 1, , ,, , , , ,N

T

N

T
t t       x x  and  
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     
     

     

1 1 1 2 1

2 1 2 2 2

1 2

.

N

N

N N N N

f f f

f f f

f f f

   
 

   
  
 
    

f

x x x x x x

x x x x x x

x x x x x x

 

To implement any given or operator   , the approximate summation equation of the 

variable in Eq. (2.1-1) becomes  

    , ,t   f x
 

(2.1-3)  

By solving Eq. (2.1-3), we obtain the weighting coefficient with respect to every 

computation point within the global domain. Then substituting the weighting 

coefficients into Eq. (2.1-1), we get the approximate values of the variable within the 

computational domain. 

2.2 The local radial basis function collocation method  

Due to time-consuming computation, large memory loading, dense and ill-

conditioned resultant interpolation matrix, and sensitive shape parameter, the 

localization technique, the local radial basis function collocation method, was 

developed [26]. The local radial basis function collocation method (LRBFCM) enables 

engineers to analyze large-scale realistic problems and more efficiently compute partial 

differential equations by sparse solvers. Contrary to the RBFCM, LRBFCM utilizes the 

approximation of  , t x  with respect to the point , [1, ]i i Nx  which is supported 
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by NL from the local influence area i  as 

   , ,,

1

, ,

NL

i i i kk i

k

kt f  



 x x x x  (2.2-1)  

where , ( [1, ]; [1, ])i k i N k NL    are the weighting coefficients, f is the RBF, and  

,i kx x  is the Euclidean distance between two points. In order to evaluate the 

weighting coefficients, Eq. (2.2-1) at each computational point from i  should be 

enforced. Then, the system of the algebraic equations becomes 

,i i i f 
 

(2.2-2)   

where     ,1, ,,1, , , , , ,,,
T T

i i i i Li NL Ni t t           x x  and  

     

     

     

,1 ,1 ,1 ,2 ,1 ,

,2 ,1 ,2 ,2 ,2 ,

, ,1 , ,2 , ,

.

i i i i i i NL

i i i i i i NL
i

i NL i i NL i i NL i NL

f f f

f f f

f f f

   
 
   
 
 
 
   
 

f

x x x x x x

x x x x x x

x x x x x x

 

 

Fig.2.2.1 The illustration of a computation point with its local points respect to the 

local influence area i  within the computational domain  .  

x

,i kx
ix



i
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Since if  is invertible, the weighting coefficient can be determined as  

1 , [1, ].i i i i N f 
 

(2.2-3)   

Additionally, Eq. (2.2-1) can be rewritten as 

   , i it  F x x
 

(2.2-4)  

by introducing the row-vector      ,1 ,, , .ii i NLf f   
 

F x x x x x  To 

implement any given or operator   , the approximate summation equation of the 

variable in Eq. (2.2-1) gives 

        
1

,,,

NL

i k i k i i

k

t f   


  F x x x x  (2.2-5)   

where      
i

i i i 


F F
x x

x x . 

For convenience, we define the row vector (1 )NL  

   1

,1 ,2 ,NL, , ,i i i i i ii s s s      F fs x , and then Eq. (2.2-5) becomes  

  , [1, ].i i it i N   s x  (2.2-6)   

Subsequently, we transform the local system to the global system as shown in Eq. (2.2-

6). 

  , [1, ],i i i it i N    s Sx    (2.2-7)   

where
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     ,1 ,2 ,N , 1 2

,

0,
, , , , , and , , , , , , .

,

Tj i

i i i i i j N

i j j i

S S S S t t t
s


  




         

S
x

x x x
x



Finally,  

 

  
  

  

1 1

2 2

N

,

,

,N

t

t

t

 

 


 

   
   
       
   
    

S

S

S








x

x

x  

(2.2-8)   

where  

1,1 1,2 1,N

2,1 2,2 2,N
1 2 N

N,1 N,2 N,N

, , , ,
T

S S S

S S S

S S S

 
 
  
 
 
  

S S S S  

and we can obtain the solution of   by solving the linear system in Eq. (2.2-1). 

Additionally, we define 
ijS as the S  whose given operator is the second-order partial 

spatial derivatives with respect to  ix  and  jx  in this thesis; that is, 

   2 / i jx x      where ,i j  represent the indices of Cartesian spatial dimension 

number.  

2.3 Radial basis function 

The radial basis functions (RBFs) have been frequently utilized and applied to 

approximate scattered data in recent years. By the Euclidean distance r , the LRBFCM 

can form the discretization equation. However, there are several types shown in the 

Table.2.3.1 where the shape parameter is denoted by c. The decision of appropriate 

shape parameter is very cumbersome especially in practical engineering problems. We 

will elucidate that in the following section. 
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Table.2.3.1. List of commonly-used RBFs 

Name of RBFs  Formulation 

Multiquadric (MQ) 2 2+ , 0r c c   

Inverse multiquadric (IMQ) 2 21/ + , 0r c c   

General Multiquadric (GMQ)  
1/

2 2+ , 0 ( 1,3,5...)
n

r c c n 
 

Gaussian (GA)  2exp , 0cr c 
 

Polyharmonic Splines (PS) of order m in 

2D 

 2 lnmr r
 

Polyharmonic Splines (PS) of order m in 

3D 

2 1mr   

Franke [32] compared several methods in 1982 from the characteristics, such as 

accuracy, sensitivity to parameters, timing, storage requirements, and so on. Among the 

methods, the multiquadric RBF (MQ-RBF), that is Hardy’s multiquadric method, is one 

of the most frequently-used methods due to the characteristics of accuracy and stability 

in the LRBFCM. Therefore, we adopt the MQ-RBF and use it to form the approximate 

equations in this thesis. To utilize the radial basis function f as the MQ-RBF with 

respect to computation points x and
kx , the radial basis function can be expressed 

as 
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 k kf f r
 

(2.3-1)   

where 
2 2

1 1( ) ( )k k k

d dr x x x x      x x  is the Euclidean distance in the 

Cartesian coordinate system and d is the number of spatial dimension. The differential 

formulation in the Cartesian coordinate system is shown in Table.2.3.2.  

Table.2.3.2. The differential formulation of the MQ-RBF 

 2-dimensional formulation 3-dimensional formulation 

f   
1

2 2 2r c   
1

2 2 2r c  

1

f

x



   

1 1

1
2 2 2

kx x

r c




 

 

1 1

1
2 2 2

kx x

r c




 

2

f

x



   

2 2

1
2 2

k

2

x x

r +c



 
 

2 2

1
2 2 2

kx x

r c




 

3

f

x




 

0 
 

3 3

1
2 2 2

kx x

r c




 

2

2

1

f

x



   

 

 

2

1 1

1 3
2 2 2 22 2

1
kx x

r c r c




 
 

 

 

 

2

1 1

1 3
2 2 2 22 2

1
kx x

r c r c




 
 

2

2

2

f

x



   

 

 

2

2 2

1 3
2 2 2 22 2

1
kx x

r c r c




 
 

 

 

 

2

2 2

1 3
2 2 2 22 2

1
kx x

r c r c




 
 

2

2

3

f

x




 

0 
 

 

 

2

3 3

1 3
2 2 2 22 2

1
kx x

r c r c




 
 

2

1 2

f

x x



   

  

 

1 1 2 2

3
2 2 2

k kx x x x

r c

 



 

  

 

1 1 2 2

3
2 2 2

k kx x x x

r c

 



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2

1 3

f

x x



   
0 

  

 

1 3

2

k k

1 3

3
2 2

x x x x

r +c

 


 

2

2 3

f

x x



   
0 

  

 

2 3

2

k k

2 3

3
2 2

x x x x

r +c

 


 

 

2.4 Local influence area 

The numerical accuracy and stability of LRBFCM are highly dependent on the 

local influence area. Inappropriate local influence will possibly cause the ill-

conditioned resultant interpolation matrix. Therefore, there have been many fashions of 

selection of local influence area developed to deal with the above problems. The most 

popular three fashions are the selection of fixed number of the nearest points, the 

selection of points within the fixed radius, and the cross-shaped selection. Due to the 

easy implementation, we adopt the selection of fixed number of the nearest points in 

this research. 

First, the selection of fixed number of the nearest points is the easiest and most 

common selection method due to its characteristic of simple coding. By utilizing this 

method of selection, we should determine the number of the nearest points with respect 

to every computation point. To exemplify, the two-dimensional uniform point 

distribution case is shown in Fig.2.4.1. It is obvious that the selection in the boundary 

and corner is asymmetric and unbalanced. This phenomenon will become more 
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significant in the non-uniform point.  

 

Fig.2.4.1 The number of the nearest points with respect to every computation 

point by choosing 5NL   in the two-dimensional uniform point 

distribution case. 

Second, the selection of points within the fixed radius is also a commonly-used 

method which should be given a radius to determine the local points with respect to 

every computation point. From Fig.2.4.2, computational inefficiency possibly occurred 

in the relatively dense region and insufficient local points are illustrated. If the non-

uniform point distribution cases or the problems with the much different length scales 

in three dimensions are applied by the selection of fixed number of the nearest points, 

this phenomenon will be more significant which increases the opportunity of 
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occurrence of numerical instability and ill-conditioned matrix. 

 

Fig.2.4.2 The selection of points within the fixed radius in the two-dimensional non-

uniform point distribution case. 

Third, the cross-shaped selection [33] as shown in Fig.2.4.3, which utilizes the 

provided shape of local influence area and provided number of local points with respect 

to computation point to determine the local point within each local domain, provides 

more efficient computation and lowers the opportunity of occurence of numerical 

instability and ill-conditioned matrix.  
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Fig.2.4.3 The cross-shaped selection. 

2.5 Shape parameter 

The decision of optimal shape parameter c plays a crucial role in the stability and 

accuracy of the LRBFCM for different numerical applications. It strongly depends on 

geometry of global domain and types of point distributions.   

 In general, shape parameter is located on the specific range. If c is too small, it 

could result in the singularity; however, if c is too big, the influence of radius will be 

decreased by the shape parameter. It is very difficult to determine optimal shape 

parameter when we deal with the problems which the length scales in three dimensions 
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are much different. We will introduce and elucidate a normalization technique to assure 

optimal shape parameter to be in the same order in the next section. 

2.6 Normalization technique 

Many normalization techniques have been developed due to the difficulty of 

determination of optimal shape parameter. Generally, normalization techniques can be 

divided by two parts, normalized distance and normalized shape parameter. 

2.6.1 Normalized distance 

One of the most popular normalization techniques is to normalize the distance as 

2

, , , ,

, ,

1 ,

d i k d i m
Nd

i k m

d d i

r
L

x x



 
   

 


  

(2.6.1-1)  

where , ,i k mr  is the distance between the collocation points within the local influence 

area i , , ,d i kx  denotes the position of the thk  local point within the local influence 

area i  in the thd  dimension, Nd  is the total number of spatial dimension, and the 

maximum distance between collocation points in all the dimensions within the local 

influence area i  is defined as ,d iL . 

2.6.2 Normalized shape parameter 

Another normalization technique is developed in [26] and it is to normalize the 

given shape parameter c associated with each local influence area i  as 
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,i ic c L 
 

(2.6.2-1)  

where ic  is the normalized shape parameter and iL  is the maximum distance between 

the computation points within the local influence area i . By normalizing the shape 

parameter, the range of optimal shape parameter could be narrowed. 

Due to the efficiency and improvement, we adopt the second normalization 

technique, normalized shape parameter, for simulation of piezoelectric problems in this 

thesis. Additionally, there are the cross partial derivative terms in our problems (see 

Eqs. (4.2-19)-(4.2-23) in Chapter 4), so the local influence must cover more local points 

rather than local points of cross-shaped selection. As a result, normalization technique 

of shape parameter is necessary to solve piezoelectric problems. 
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Chapter 3 Piezoelectricity 

 

3.1 Historical overview 

The story of the piezoelectric materials starts in 1880, when the Pierre and Jacques 

Curie discovered [34] that several natural materials, including quartz and Rochelle salt, 

exhibited a special property. The Curie brothers demonstrated that if the specially 

prepared materials were imposed a mechanical stress, an electric output was produced. 

They showed this coupling by measuring the charge induced across electrodes placed 

on the material when it was imposed an applied mechanical deformation. They defined 

this effect the piezoelectric effect. The name comes from a Greek word for squeeze –

piezein. Few years later it was demonstrated by Gabriel Lippmann [35] that 

piezoelectric materials also exhibited the reciprocal property; namely, a mechanical 

strain was induced when an electric field was applied to the materials. 

However, the coupling weak, which means the amount of electrical signal 

produced by applied mechanical deformation was small, limited the application due to 

the lack of precision instrumentation. The first engineering application was developed 

to locate submarines, which is the basis of sonar, until World War I. The piezoelectric 

materials were widely used in sonar during World War II and developments in 

electronics also stimulate different uses of piezoelectric materials, such as electronic 
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oscillators and filters. On account of the increasing need for better piezoelectric 

materials, the synthetic materials were developed to exhibit better piezoelectric 

properties. To exemplify, the early synthetic piezoelectric material, Barium titanate

3(BaTiO ) , is superior to quartz crystals in piezoelectric and thermal properties. In the 

1950s and 1960s the most widely used piezoelectric material, lead-zirconate-titanate 

(PZT), was developed and motivated more applications. Nowadays, piezoelectricity is 

utilized everywhere. For example, motion and force sensors, the airbag, accelerometers, 

and atomic force microscopes (AFMs). The application in civil engineering will be 

presented in section 3.3. 

3.2 Principles of piezoelectric effect 

The piezoelectric effect can be divided by two types as shown in Fig.3.2.1. The 

first is the direct piezoelectric effect which depicts piezoelectric materials transform the 

applied mechanical strain into the electric output. The second is the converse effect 

which describe mechanical strain energy is produced by an applied electrical potential 

on piezoelectric materials.  
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Fig.3.2.1. The illustration of the relations between the energies and the 

piezoelectric effects. 

In general, we will utilize the direct piezoelectric effect to be a sensor and utilize the 

converse piezoelectric effect to be an actuator. From Fig.3.2.1, if the piezoelectric 

material generates a positive electric field by the applied tensile stress (see (a)), the 

applied compressive load will generate a negative electric field (see (b)). Furthermore, 

the converse piezoelectric effect also exhibits this phenomenon. If the positive electric 

filed is imposed on the piezoelectric material and generates a contraction of the material, 

an expansion of the material will be generated by the applied negative electric field. 

Electrical 
Energy

Mechanical 
Energy

Direct 

Piezoelectric 

Effect 

Converse 

Piezoelectric 

Effect 
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Fig.3.2.1 Configuration of the direct piezoelectric effect. (G: galvanometer) 

3.3 Applications in civil engineering 

In recent decades, there have been many piezoelectric applications in civil 

engineering due to advances of science and technology. The so-called smart materials, 

which can be significantly changed by the applied stimuli such as stress or electric 

output, were presented [36]. This thesis also introduces the related applications of smart 

materials including piezoelectric materials to civil and mechanical infrastructure 

systems. Piezoelectric materials have been playing an important role in the vibration 

control of structures [37]. In addition, piezoelectric materials are also applied [38] in 

structural damping mechanism by passive electrical circuits, while piezoceramics [39] 

are used in various forms for active control of structural vibration and are applied in 

civil structures such as beams and steel frames. The embedded piezoelectric wafer 

active sensors (PWAS) [40] perform an important function in structural health 
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monitoring (SHM) by exciting and detecting tuned Lamb waves. Since oil resources 

have been gradually depleted, more and more researchers devote themselves to 

alternative technology of power harvesting and piezoelectric materials are considered 

a feasible and renewable resources. Erturk [41] introduced and analyzed the energy 

harvesting of piezoelectric materials from moving load excitations and surface strain 

fluctuations in civil infrastructure system. 

3.4 Functionally graded materials 

In recent decades, a novel advanced materials, functionally graded materials 

(FGMs), have been gradually attached importance in various engineering applications. 

The characteristic of FGMs is that continuous and gradual variation of material 

properties over the spatial coordinates. The difference of structure between two-layered 

composites and FGMs is shown in Fig.3.4.1. FGMs have shown advantage of better 

performance over multilayered composites. In general, conventional multilayered 

composites suffer from abrupt changes of material properties [42] at the interface 

between contiguous layers of composites which results in problems such as 

delamination and large residual thermal stresses. In contrast, FGMs are utilized to 

reduce the stress concentration and the fracture toughness [43][44]. 

From the above advantages, the properties of FGMs provide prospect for 
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applications of piezoelectric materials. The attributes of low thermal expansion 

coefficient, low dielectric constant, high toughness, high strength, and increase of 

gradient of the material properties [45] can be applied to extend the lifetime, and 

improve reliability of piezoelectric structures [46]. In general, the grading variation is 

defined by power-law, sigmoid, or exponential function. In this work the exponential 

function is adopted and we will elucidate the definition of grading properties in Eq. 

(4.2-24). 

 

Fig.3.4.1 Configuration of two-layered composites and FGMs.  

3.5 The constitutive equations of piezoelectric materials 

 From thermodynamic considerations, the constitutive equations of 

piezoelectric materials can be categorized into the following four forms [47] with 

respect to their independent variables: 

 D  form: 

Dc kD    

E k D     

 

(3.5-1)  

(a) Two-layered composites (b) FGMs 
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 E  form: 

Es dE    

D d h E   

 

(3.5-2)  

 D  form: 

Ds gD    

E g D     

 

(3.5-3)  

 E  form: 

Ec eE    

D e h E   

 

(3.5-4)  

where  ,  , D , and E  denote the stress, strain, electric displacement, and electric 

field, respectively. The stiffness constants at a constant electric displacement and a 

constant electric field are
Dc Ec , respectively. The compliance constants

Ds Es  are 

at a constant electric displacement and a constant electric field, respectively. The 

dielectric constants (permittivity) at a constant strain and a constant stress are h h , 

respectively. The impermittivity constants 
   are at a constant strain and a 

constant stress, respectively. The constants k , d , g , and e  are piezoelectric 

constants. To exemplify, the  E  form of the constitutive equation in Eq. (3.5-4) 

can be rewritten in tensor as  
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E

ij ijkl kl kij kc e E    

i ikl kl ik kD e h E   

 

(3.5-5)  

where ( , , , 1, 2, 3)i j k l  . 

Then, the above equation can be depicted in the matrix form as: 

11 11 12 13 14 15 16

22 21 22 23 24 25 26

33 31 32 33 34 35 36

23 41 42 43 44 45 46

13 51 52 53 54 55 56

12 61 62 63 64 65 66

E E E E E E

E E E E E E

E E E E E E

E E E E E E

E E E E E E

E E E E E E

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c













  
  
  
  

   
  
 
 

     

11 21 3111

12 22 3222

1

13 23 3333

2

14 24 3423

3

15 25 3531

16 26 3612

2

2

2

e e e

e e e
E

e e e
E

e e e
E

e e e

e e e













  
  
    
    

     
        

   
         

 

11

22

1 11 12 13 14 15 16 11 12 13 1

33

2 21 22 23 24 25 26 21 22 23 2

23

3 31 32 33 34 35 36 31 32 33 3

31

12

= +
2

2

2

D e e e e e e h h h E

D e e e e e e h h h E

D e e e e e e h h h E

  

  

  













 
 
        
        
        
               
 
    

 

(3.5-6)  

With different symmetry type of material properties, piezoelectric behavior and the 

above equations vary. 

The analyzed piezoelectric ceramic materials in this thesis exhibit transversely 

isotropic elastic behavior with hexagonal symmetry of class 6 mm with 3x  as the 

poling direction and 1 2x x  plane as the isotropic plane. Material coefficients in the 

matrix form of the constitutive equations utilize the Voigt notation to express. For the 

hexagonal system the principal axis has order six, behaving as a diad axis combined 

with a triad. The matrix of stiffness constants thus has a form combining the features of 
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the monoclinic and trigonal systems 

11 12 13 16

12 11 13 26

13 23 33 36

44 45

45 55

16 26 36 66

11 12 13 14 25

12 11 13 14 25

13 13 33

14 14 44 25

25 25 44 14

25

0 0

0 0

0 0
Monoclinic :

0 0 0 0

0 0 0 0

0 0

0

0

0 0 0
Tetragonal :

0 0

0 0

0 0 0

c c c c

c c c c

c c c c

c c

c c

c c c c

c c c c c

c c c c c

c c c

c c c c

c c c c

c

 
 
 
 
 
 
 
 
  









 14 11 12

,

/ 2c c c

 
 
 
 
 
 
 
 

    

giving 

 

11 12 13

12 11 13

13 13 33

44

55

11 12

0 0 0

0 0 0

0 0 0
Hexagonal : .

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 / 2

c c c

c c c

c c c

c

c

c c

 
 
 
 
 
 
 
 

    

The class 6mm possesses three diad axes which has the same properties as those 

of the class 2mm and class 6. 

14 15

15 14

31 31 33

15

24

31 32 33

0 0 0 0

Class 6 : 0 0 0 0

0 0 0

0 0 0 0 0

Class 2 : 0 0 0 0 0

0 0 0

e e

e e

e e e

e

mm e

e e e

 
 


 
  

 
 
 
    

Therefore, the matrix of piezoelectric moduli (coefficients) of class 6mm gives 
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15

15

31 31 33

0 0 0 0 0

Class 6 : 0 0 0 0 0

0 0 0

e

mm e

e e e

 
 
 
    

Since the analyzed material is semiconductors, the governing equations have to be 

supplemented by constitutive equations [48][49] to obtain a unique solution. They 

express the coupling of the mechanical and electrical fields and electric current fields 

as 

( , ) ( ) ( , ) ( ) ( , ),ij ijkl kl kij kc e E     x x x x x  (3.5-7)  

( , ) ( ) ( , ) ( ) ( , ),j jkl kl jk kD e h E    x x x x x  (3.5-8)  

0 ,( , ) ( ) ( , ) ( ) ( , ),i ij j ij jJ qM E qd M    x x x x x  (3.5-9)  

where ( )ijklc x , ( )ijke x , ( )ijh x , ( )ij x  and ( )ijd x  are the elastic, piezoelectric, 

dielectric, electron mobility and carrier diffusion material coefficients, respectively. 

0M  is the electron density in the unloaded state. The matrix form of the constitutive 

equations for the analyzed piezoelectric ceramic materials can be expressed as: 

11 12 1311 11 31

12 11 1322 22 31

13 13 3333 33 33

4423 23 15

5513 13 15

6612 12

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 2 0 0 0

c c c e

c c c e

c c c e

c e

c e

c

 

 

 

 

 

 

      
     
     
     

      
     
     
     

          

1

2

3

E

E

E


  
  
  
   

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11

22

1

33

2

23

3

13

12

( ) ( )
2

2

2

E

E

E













 
 
   
   

    
     
 
  

C Lx x  

(3.5-10) 

                                                                                                  

11

22

1 15 11 1

33

2 15 11 2

32

3 31 31 33 33 3

31

12

0 0 0 0 0 0 0

0 0 0 0 0 0 0
2

0 0 0 0 0
2

2

D e h E

D e h E

D e e e h E













 
 
        
        

         
                
 
  

 

 

       

11

22

1

33

2

32

3

31

12

( ) ( )
2

2

2

E

E

E













 
 
   
   

    
     
 
  

G Hx x  

(3.5-11)  

 

1 11 1 11 ,1

2 0 22 2 22 ,2

3 33 3 33 ,3

0 0 0 0

0 0 0 0

0 0 0 0

J E d M

J qM E q d M

J E d M







        
        

          
                 

 

 

          

1 ,1

0 2 ,2

3 ,3

( ) ( ) ,

E M

qM E q M

E M

  
  

    
     

A Fx x

 

(3.5-12) 

where 
66 11 12

1
( )

2
c c c  . 
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Chapter 4 The Local Radial Basis Function 

Collocation Method for Functionally Graded 

Piezoelectric Semiconductor 

 

4.1 Introduction 

Recently, one of smart materials, piezoelectric materials, has received great 

attention and been utilized in engineering applications. Piezoelectric materials can be 

applied as transducers, sensors and actuators. Generally, piezoelectric materials can be 

categorized by two types, non-conducting dielectrics and conductors. However, it is 

difficult to distinguish between them. Especially, there are more and more synthetic 

materials. The coupling of the mechanical field, the electrical field and electrical current 

should be considered [48][49] since the produced electric field and dispersion of elastic 

waves which result from the space charge. The interaction between mobile charges and 

a traveling acoustic wave is called an acoustoelectric effect. The above phenomenon is 

utilized in many acoustoelectric devices [50][51]. Additionally, there are several 

complicated models of deformable piezoelectric semiconductors in the literature 

[52][53]. 

 Functionally graded materials (FGMs) have been extensively used in engineering 

applications. Often, they performs better behaviors than the conventional composites.  
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There are advanced innovation to manufacture functionally graded piezoelectric 

materials [54]. The detailed introduction is elucidated in section 3.4.  

 Various meshless methods have been developed and some of them have been 

proposed to analyze piezoelectric problems [55]-[57]. Continuously nonhomogeneous 

piezoelectric material properties are considered to analyze non-conducting dielectrics 

in the literature [58]. Some reviews of meshless methods are presented and analyses of 

applications in piezoelectric materials are introduced in [59][60]. The element-free 

Galerkin method (EFG) has been presented [61] to analyze laminated piezoelectric 

beams; however, the background (shadow) mesh is still required to integrate in this 

method. The MLPG method has been developed to analyze the three-dimensional 

elasticity [62], three-dimensional piezoelectricity [63], and three-dimensional 

axisymmetric continuously non-homogeneous solids [64][65]. Recently, fracture 

analyses of piezoelectric semiconductors were conducted for anti-plane crack problems 

[66] and also for thermally induced fracture [67]. 

 The LRBFCM has been utilized to analyze piezoelectric problems [68]. To the 

best of our knowledge there is no paper on analysis of general three-dimensional 

functionally graded piezoelectric semiconductor solids using a strong-form meshless 

method. Therefore, the LRBFCM is proposed to analyze such problems in this thesis. 

The three-dimensional analyses are considered no simplification and allows arbitrary 
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given loading profile, boundary conditions, and grading material coefficients. Static 

and transient boundary value problems are also investigated in this thesis. The 

displacements, electric potential, and electron density are approximated by the 

multiquadric radial basis function (MQ-RBF). The analyzed piezoelectric 

semiconducting beam is discretized only with pints, and no finite element is required. 

Furthermore, the coupling of the governing equations for mechanical field, electrical 

field, and current are satisfied in a local strong-form for a set of points. Thus, no 

integration of the governing equations is required. The essential and natural boundary 

conditions are also implemented with the collocation of boundary points and their 

ambient points. If continuous variation of material properties is considered for analyses 

of functionally graded materials, the conventional numerical methods are difficult to be 

applied in approximation of governing partial differential equations with non-constant 

coefficients. By contrast, the LRBFCM has advantages since the independent points. 

After implementing the spatial RBF approximation, a system of the governing 

equations for certain point unknowns is obtained in case of transient problems. Then, 

the system of the governing equations of the second order resulting from the equations 

of motion is solved by the Houbolt finite-difference scheme [69] as a time-stepping 

method. Numerical examples are presented for various loading scenarios to analyze the 

mutual response of mechanical and electrical fields. The influence of material 
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parameter gradation and initial electron density is also investigated. 

4.2 Governing equations 

We consider one-carrier piezoelectric semiconductor with continuously 

nonhomogeneous material (FGM) properties, the electron density 0M  in the unloaded 

state, and vanishing initial electric field 0E . In addition, we consider a general variation 

of material properties with Cartesian coordinates. Since the physical dimension of the 

device is generally smaller than the electromagnetic wavelength, the quasi-static theory 

of electromagnetism for the first Maxwell equation is assumed. The phenomenon is 

expressed by the following governing equations, the balance of momentum, Gauss’s 

law, and conservation of charge [48] 

, ( , ) ( , ),ij j iu   x x  (4.2-1)  

, ( , ) ( , ),i iD qM x x  (4.2-2)  

,( , ) ( , ) 0,i iqM J  x x  (4.2-3)  

where iu , ij  , iD , and q  are the acceleration of elastic displacements, stress 

tensor, electric displacement field, and electric charge of electron, respectively. The 

electron density and electric current are depicted, respectively, by the symbols M  

and iJ .   denotes the mass density. A comma followed by an index denotes 



doi:10.6342/NTU201600798

 

36 

  

derivative with respect to the coordinate associated with the index. The coupling of 

mechanical fields, electrical field, and electric current field has to be supplemented by 

the constitutive equations Eqs. (3.5.10)-(3.5.12) in section 3.5. The strain tensor ij  

related to the displacements iu and the electric field vector jE  related to the electric 

potential   can be expressed by 

 , ,

1
,

2
ij i j j iu u  

 
(4.2-7) 

, .j jE  
 (4.2-8) 

Substituting Eqs. (3.5.10)-(3.5.12) into the governing equations Eqs. (4.2-1)-(4.2-3), 

we obtain the governing equations for the primary fields, displacements, electric 

potential, and current charge density, and get the system of partial differential equations. 

   11 1,11 11 12 1,22 11 12 2,12

1 1
( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , )

2 2
c u c c u c c u     x x x x x x x x

 
 

 13 55 3,13 55 1,33 11,1 1,1 12,1 2,2+ ( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )c c u c u c u c u      x x x x x x x x x
 

  13,1 3,3 11,2 12,2 1,2 2,1

1
( ) ( , ) ( ) ( ) ( , ) ( , )

2
c u c c u u     x x x x x x

 

   55,3 1,3 3,1 31 15 ,13 31,1 ,3( ) ( , ) ( , ) ( ) ( ) ( , ) ( ) ( , )c u u e e e         x x x x x x x x
 

15,3 ,1 1( ) ( , ) ( , ),e u    x x x
 

 

 

 

(4.2-9)  

 

   11 2,22 11 12 2,11 11 12 1,21

1 1
( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , )

2 2
c u c c u c c u     x x x x x x x x

 
 

 13 44 3,32 44 2,33( ) ( ) ( , ) ( ) ( , )c c u c u   x x x x x
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    11,1 12,1 1,2 2,1 44,3 2,3 3,2

1
( ) ( ) ( , ) ( , ) ( ) ( , ) ( , )

2
c c u u c u u       x x x x x x x

 

12,2 1,1 11,2 2,2 13,2 3,3( ) ( , ) ( ) ( , ) ( ) ( , )c u c u c u    x x x x x x  

 31 15 ,23 31,2 ,3 15,3 ,2 2( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( , ),e e e e u           x x x x x x x x  

 

 

(4.2-10)  

 

 55 3,11 44 3,22 33 3,33 55 13 1,13( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( ) ( , )c u c u c u c c u      x x x x x x x x x   

   44 13 2,32 13,3 1,1 2,2 33,3 3,3( ) ( ) ( , ) ( ) ( , ) ( , ) ( ) ( , )c c u c u u c u       x x x x x x x x
 

   55,1 1,3 3,1 44,2 2,3 3,2( ) ( , ) ( , ) ( ) ( , ) ( , )c u u c u u      x x x x x x  

 15 ,11 ,22 33 ,33( ) ( , ) ( , ) ( ) ( , )e e       x x x x x  

15,1 ,1 15,2 ,2 33,3 ,3 3( ) ( , ) ( ) ( , ) ( ) ( , ) ( , ),e e e u          x x x x x x x  

 

 

 

(4.2-11)  

 

 15 3,11 3,22 33 3,33( ) ( , ) ( , ) ( ) ( , )e u u e u   x x x x x   

    15 31 1,31 2,32 15,1 1,3 3,1( ) ( ) ( , ) ( , ) ( ) ( , ) ( , )e e u u e u u       x x x x x x x
 

   15,2 2,3 3,2 31,3 1,1 2,2( ) ( , ) ( , ) ( ) ( , ) ( , )e u u e u u      x x x x x x  

33,3 3,3 11 ,11 22 ,22 33 ,33( ) ( , ) ( , ) ( , ) ( , )e u h h h         x x x x x  

11,1 ,1 22,2 ,2 33,3 ,3( ) ( , ) ( ) ( , ) ( ) ( , ) ( , ) 0,h h h qM          x x x x x x x  

 

 

 

(4.2-12)  

 

 0 11 ,11 22 ,22 33 ,33( ) ( , ) ( ) ( , ) ( ) ( , )M          x x x x x x  

 0 11,1 ,1 22,2 ,2 33,3 ,3( ) ( , ) ( ) ( , ) ( ) ( , )M           x x x x x x  
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 11 ,11 22 ,22 33 ,33( ) ( , ) ( ) ( , ) ( ) ( , )d M d M d M    x x x x x x  

11,1 ,1 22,2 ,2 33,3 ,3( ) ( , ) ( ) ( , ) ( ) ( , ) ( , ),d M d M d M M      x x x x x x x  

 

(4.2-13)  

The above system of PDEs can be simplified due to the homogeneous material 

properties as: 

   11 1,11 11 12 1,22 11 12 2,12

1 1
( , ) ( , ) ( , )

2 2
c u c c u c c u     x x x

   13 55 3,13 55 1,33 31 15 ,13 1( , ) ( , ) ( , ) ( , ),c c u c u e e u          x x x x  

 

(4.2-14)  

 

   11 2,22 11 12 2,11 11 12 1,21

1 1
( , ) ( , ) ( , )

2 2
c u c c u c c u     x x x

   13 44 3,32 44 2,33 31 15 ,23 2( , ) ( , ) ( , ) ( , ),c c u c u e e u          x x x x  

 

(4.2-15)  

 

 55 3,11 44 3,22 33 3,33 55 13 1,13( , ) ( , ) ( , ) ( , )c u c u c u c c u      x x x x

   44 13 2,32 15 ,11 ,22 33 ,33 3( , ) ( , ) ( , ) ( , ) ( , ),c c u e e u             x x x x x  

 

(4.2-16)  

 

    15 3,11 3,22 33 3,33 15 31 1,31 2,32( , ) ( , ) ( , ) ( , ) ( , )e u u e u e e u u        x x x x x

11 ,11 22 ,22 33 ,33( , ) ( , ) ( , ) ( , ) 0,h h h qM          x x x x  

 

(4.2-17)  

 

 0 11 ,11 22 ,22 33 ,33( , ) ( , ) ( , )M          x x x  

(4.2-18)  
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 11 ,11 22 ,22 33 ,33+ ( , ) ( , ) ( , ) ( , ),d M d M d M M     x x x x  

In order to approximate the unknown variables by the LRBFCM, we rearrange the 

above governing equation for convenience as follows: 

 
2 2 2 2

11 66 55 1 12 66 22 2 2

1 21 2 3

+cc c u c c u
x xx x x

      
     

      

   
2 2

13 55 3 31 15 1

1 3 1 3

= ,c c u e e u
x x x x

 
    

      
      

 

 

 

(4.2-19)  

 

 
2 2 2 2

12 66 1 66 11 44 2

1 2 1 2 3

2 2 2
c c u c c c u

x x x x x

     
     

       

   
2 2

13 44 3 31 15

2 3 2 3

,2c c u e e = u
x x x x

 
    

      
      

 

 

 

(4.2-20)  

 

   
2 2

13 55 1 44 13 2

1 3 2 3

c c u c c u
x x x x

    
     

      

2 2 2 2 2 2

55 44 33 3 15 33

1 2 3 1 2 3

,32 2 2 2 2 2
c c c u e +e = u

x x x x x x
 

         
       

         
 

 

 

(4.2-21)  

 

   
2 2

15 31 1 15 31 2

1 3 2 3

e e u e e u
x x x x

    
     

      

 

 

(4.2-22)  
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2 2 2 2 2 2

15 33 3 11 11 33

1 2 3 1 2 3

2 2 2 2 2 2
e +e u h h h qM=0,

x x x x x x


         
          

         
 

 

2 2 2 2 2 2

0 11 22 33 11 22 33

1 2 3 1 2 3

.
2 2 2 2 2 2

M d d d M=M
x x x x x x

   
        

       
        

 
 

(4.2-23)  

For problems of FGMs, the above material coefficients are dependent on the spatial 

coordinates. One can prescribe an exponential variation of material parameters as 

    30 /

3 ,x hP x P e  (4.2-24)  

where
 0

P and h  denotes the material property of the elastic, piezoelectric, dielectric 

and coefficients at 3 0x   and beam height, respectively. The grading parameter with 

respect to the elastic, piezoelectric, dielectric and coefficients is  . 

4.3 Boundary conditions and initial conditions 

4.3.1 Boundary conditions 

 The boundary conditions for the mechanical fields are considered in Eq. (4.3-1). 

   , ,i iu u x x  on    ,u   

   , ,i ij j it n t   x x  on    t , ,u t     
(4.3-1)  

where jn  is the unit vector normal to the boundary, it  denotes the traction vector 

which is the force per unit area acting on a surface, the given value prescribed on the 

boundary for displacement, and traction are denoted by iu and it , respectively. For the 
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electrical fields, we assume 

   , ,   x x  on    p   

       , , ,i iQ D n Q   x x x x  on    q , ,p q     
(4.3-2)  

where Q ,  , and Q  are the surface density of the free charge, the given values 

prescribed on the boundary for electric potential, and for surface density of the free 

charge, respectively. Then for electric charge mobility, the following boundary 

conditions are considered as 

   , ,M M x x  on    ,a   

       , , ,i iS J n S   x x x x  on    b , ,a b     
(4.3-3)  

where the electric current flux, the given values prescribed on the boundary for electron 

density, and for electric current flux are, respectively, represented by S , M , and S . 

Additionally, u  is the part of the global boundary   with prescribed displacements, 

while the traction vector, electric potential, surface density of the free charge, electron 

density, and the electric current flux are applied on t , p , q , a , and b , 

respectively. 

In order to apply to the LRBFCM, we substitute the compact matrix form for the 

constitutive equations in Eqs. (3.5-10)-(3.5-12) into the boundary conditions in Eqs. 

(4.3-1)- (4.3-3). We obtain Eqs. (4.3-5)-(4.3-6).
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   , ,i iu u x x  on    ,u   

1 11 1 66 2 55 3 1 12 1 66 2 2 13 1 55 3 3

1 2 3 2 1 3 1

c ct c n n c n u c n n u c n c n u
x x x x x x x

          
          

            

  

  
31 1 15 3 1

1 1

e n e n t
x x


  

   
    

  

2 66 1 12 2 1 66 1 11 2 44 3 2 13 2 44 3 3

2 1 1 2 3 3 2

t c n c n u c n c n c n u c n c n u
x x x x x x x

          
          

             

  

31 2 15 3 2

3 2

e n e n t
x x


  

   
    

  

3 55 1 13 3 1 44 2 13 3 2 55 1 44 2 33 3 3

3 1 3 2 1 2 3

t c n c n u c n c n u c n c n c n u
x x x x x x x

           
           

             

  

15 1 15 2 33 3

1 2 3

3e n e n e n t
x x x


   

    
     

on    t , ,u t     
(4.3-4)  
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   , ,   x x  on    p   

15 1 31 3 1 15 2 31 3 2 15 1 15 2 33 3 3

3 1 3 2 1 2 3

Q e n e n u e n e n u e n e n e n u
x x x x x x x

           
           

             

  

  
11 1 22 2 33 3

1 2 3

h n h n h n Q
x x x


   

     
     

on    q , ,p q     
(4.3-5)  

   

   , ,M M x x  on    ,a   

0 11 1 22 2 33 3 11 1 22 2 33 3

1 2 3 1 2 3

S M n n n d n d n d n M S
x x x x x x

   
        

         
          

on    b , ,a b     
(4.3-6)  
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4.3.2 Initial conditions 

The initial conditions for the mechanical displacements, electric potential, and the 

current charge density are assumed as 

   
0

, ,0i iu u




x x                         

 

     
0

, ,0


  

x x                            

 

   
0

, ,0M M




x x       in      (4.3-7)  

4.4 Numerical solution by the local radial basis function 

collocation method 

By the discussions in chapter 4, the implementation is introduced in this section. 

4.4.1 The transient analysis 

By the LRBFCM, we recall the chapter 2 and approximate the variables in Eqs. (4.3-

11)-(4.3-15) as 

   1 1

,

1

1 , ,, ( ) ,
NL

u u

i k k i i ii i k

k

u f  


   F αx x x x x  (4.4-1)  

   2 2

,

1

2 , ,, ( ) ,
NL

u u

i k k i i ii i k

k

u f  


   F αx x x x x  (4.4-2)  

   3 3

,

1

3 , ,, ( ) ,
NL

u u

i k k i i ii i k

k

u f  


   F αx x x x x  (4.4-3)  
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   , , ,

1

, ( ) ,i

NL

i k k i ii ik

k

f    


   F αx x x x x  (4.4-4)  

   , ,

1

,, ( ) ,M M

i

NL

i k k i i i

k

i kM f  


   F αx x x x x  (4.4-5)  

where all the computation points are within the local influence area i  with respect to 

each computation point ix . In addition, we approximate the second-order partial 

derivative terms with respect to time by the Houbolt finite-difference scheme [69]. The 

acceleration of elastic displacement iu  in the ix  dimension can be defined as 

 
       1 1 1

1

1

2

2 , 5 , 4 , , 2
,

u u u
u

u      
 



       
 



x x x x
x

 
(4.4-6)  

 

and the first-order temporal partial derivative term, M , can be approximated as 

 
   , ,

,
M M

M
  

 


  
 



x x
x

 
(4.4-7)  

 

by the backward difference method. After the process of the LRBFCM, we utilize the
ijS

as the S  whose given operator are the first partial spatial derivative with respect to  ix  

and  jx  and transform the governing equations into the following linear system 

2

3

2

2

2

2

2

,2

1

1u

u

u

M

















 
 

     
     
         

    
    
    
      

 
  

11 12 13 14 15

1

21 22 23 24 25
2

3
31 32 33 34 35

4

41 42 43 44 45
5

51 52 53 54 55

A I A A A A

A A I A A A

A A A I A A

A A A A A

A A A A A I











 

(4.4-8)   

The governing equations for the transient analysis in Eq. (4.3-8) can be divided by several 
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parts, shown as follows. 

11 22 33

11 66 55+
N N

c c c


   11A S S S
 

  12

12 66 N N
c c


   12A S

 

  12

12 66 N N
c c


   21A S

 

11 22 33

66 11 44 N N
c c c


    22A S S S

 

  13

13 55 N N
c c


   31A S

 
  23

44 13 N N
c c


   32A S

 

  13

15 31 N N
e e


   41A S

 
  23

15 31 N N
e e


   42A S

 

 
N N

51A 0
 

 
N N

52A 0
 

 

  13

13 55 N N
c c


   13A S

 
  13

31 15 N N
e e


   14A S

 

  23

13 44 N N
c c


   23A S

 
  23

31 15 N N
e e


   24A S

 

11 22 33

55 44 33 N N
c c c


    33A S S S

 
 11 22 33

15 33+e
N N

e


  
 34A S S S

 

 11 22 33

15 33+e
N N

e


  
 43A S S S

 

11 22 33

11 11 33 N N
h h h


     44A S S S

 

 
N N

53A 0
 

 
N N

54A 0
 

 

 1 N N
5A 0

 
 

 
N N

25A 0
 

 

 
N N

35A 0
 

 

 
N N

q


 45A I
 

 

11 22 33

11 22 33 N N
d d d


    55A S S S
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     2 2 21 1 1

5 4
2

N N Nt

  
    

   
                  

1 1 1 1B u u u
 

     2 2 21 1 1

5 4
2

N N Nt

  
    

   
                  

2 2 2 2B u u u
 

     2 2 21 1 1

5 4
2

N N Nt

  
    

   
                  

3 3 3 3B u u u
 

 
1N

4B 0
 

 
1

1
N


 

    
5B M

 

 

However, the approximation of the first-order temporal partial derivative term by the 

backward difference method is first-order accurate. It overshadows the second-order 

accurate approximation for the second-order temporal partial derivative terms by the 

Houbolt finite-difference scheme. Therefore, we also adopt the second-order accurate 

central difference for the first-order temporal partial derivative term and investigate the 

effects. The linear system of the governing equations is modified as: 

2

3

2

2

2

2

2

,2

1

2

1u

u

u

M

















 
 

     
     
         

    
    
    
      

 
  

11 12 13 14 15

1

21 22 23 24 25
2

3
31 32 33 34 35

4

41 42 43 44 45
5

51 52 53 54 55

A I A A A A

A A I A A A

A A A I A A

A A A A A

A A A A A I











 

(4.4-9)   

The components in the linear system are exactly the same except 5B  as 

 
1

1

2 N
 

 
    

5B M
. 
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4.4.2 The static analysis  

For validation of the LRBFCM method, we analyze the static case and the governing 

equations become  

, ( , ) 0,ij j  x  (4.4-10)  

, ( , ) ( , ),i iD qM x x  (4.4-11)  

, ( , ) 0.i iJ  x  (4.4-12)  

The linear system in Eq. (4.3-8) becomes  

 

2

3 ,

1u

u

u

M



  
  
    

   
   
   
      

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

A A A A A

A A A A A

A A A A A 0

A A A A A

A A A A A










 

(4.4-13)   

The governing equations for the static analysis in Eq. (4.3.10) can be divided by several 

parts, as shown below. 

11 22 33

11 66 55+
N N

c c c


   11A S S S
 

  12

12 66 N N
c c
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12 66 N N
c c
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   21A S

 

11 22 33

66 11 44 N N
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
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  13

13 55 N N
c c


   31A S

 
  23

44 13 N N
c c


   32A S

 

  13

15 31 N N
e e


   41A S

 
  23

15 31 N N
e e


   42A S

 

 
N N

51A 0
 

 
N N

52A 0
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  13

13 55 N N
c c


   13A S

 
  13

31 15 N N
e e


   14A S

 

  23

13 44 N N
c c


   23A S

 
  23

31 15 N N
e e


   24A S

 

11 22 33

55 44 33 N N
c c c


    33A S S S

 
 11 22 33

15 33+e
N N

e


  
 34A S S S

 

 11 22 33

15 33+e
N N

e


  
 43A S S S

 

11 22 33

11 11 33 N N
h h h


     44A S S S

 

 
N N

53A 0
 

 
N N

54A 0
 

 

 1 N N
5A 0

 
 

 
N N

25A 0
 

 

 
N N

35A 0
 

 

 
N N

q


 45A I
 

 

 11 22 33

15 33+e
N N

e


  
 43A S S S

 
 

11 22 33

11 22 33 N N
d d d


    55A S S S

 

4.5 Numerical examples 

In this section we first verify the presented LRBFCM by comparing the results of 

the LRBFCM with those of the FEM. The FEM solutions are taken from the commercial 

software, COMSOL. The computational domain is shown in Fig.4.5.1. 
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Fig.4.5.1 The geometry of the beam. 

The length l  , width w , and height h  are 0.1 m, 0.005 m, and 0.01 m, respectively. 

The material properties for aluminum nitride (AlN) [70] are considered for the 

homogeneous ( 0  ) and shown as below. 

   0 0 11 2

11 22 4.03 10 ,c c Nm    0 11 2

12 1.43 10 ,c Nm     0 0 11 2

13 23 1.04 10 ,c c Nm  
 

 0 11 2

33 3.82 10 ,c Nm 
   0 0 11 2

44 55 1.20 10 ,c c Nm  
 

 0 2

15 0.39 ,e Cm   0 2

31 0.66 ,e Cm   0 2

33 1.57 ,e Cm
 

       
10 0 0 11

11 22 33 8.092 10 ,h h h C mV
   

 

 
12 2

11 22 33 3.0 10 ,m Vs  
   

 

4 2 1

11 22 33 7.0 10 ,d d d m s    
 

3,3255 kgm  191.602 10 ,q C 
6 3

0 1.0 10 .M m 
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Fig.4.5.2 shows the structured distribution of 2805 (51 5 11)   points which is utilized 

to approximate the variables. The red points and the blue points denote interior points and 

boundary points, respectively. 

 

Fig.4.5.2 The distribution of the points. 

In the numerical example, a uniform static compressive load at the top of the analyzed 

beam is considered. All the prescribed boundary conditions are given as follows: 

  0t x      0Q S x x  at 
1 10x x l 

 x  

  0,t x      0Q S x x  at 
2 20x x w 

 x  

  0,t x      0M  x x  at 
3 0x 

x  

 3 100Pa,t x         1 2 0t t Q S   x x x x  at 
3x h

x  

Furthermore, taking into account the symmetry and in order to eliminate the rigid body 

motion,  3 0u x  at
1 10x x l 

 x ;    1 2 0u u x x  at

1 3 1 30, /2 , /2x x h x l x h   
 x  are assumed and the vanishing initial values are imposed on 
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the initial conditions.  

 

Fig.4.5.3 The illustration of the boundary conditions. 

4.5.1 The validation of the LRBFCM 

We compare the benchmark FEM-COMSOL results obtained by 9353 tetrahedral 

elements for the line along 1x  and located at 2 0x   and 3 / 2x h  with those of the 

LRBFCM. The variation of displacement in direction 3, electric potential, and electron 

density are shown in Fig.4.5.1.1-3, and the three different values of uniform static 

compressive load at the top of the beam are prescribed in this numerical analysis. 
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Fig.4.5.1.1 Variation of vertical displacement for a line along 1x  and located at 

2 0x   and 3 / 2x h  in the static analysis. 

 

 

Fig.4.5.1.2 Variation of electric potential for a line along 1x  and located at 

2 0x   and 3 / 2x h  in the static analysis. 
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Fig.4.5.1.3 Variation of electron density for a line along 1x  and located at 

2 0x   and 3 / 2x h  in the static analysis. 

From the above comparisons, the LRBFCM results agree well with the benchmark FEM 

results obtained in the static analysis for a homogeneous beam. The increasing bending 

of the beam, induced electric potential, and electron density are observed with the 

increasing value of the uniform static compressive load. 

4.5.2 The influence of initial electron density 

Then, the influence of the initial electron density is investigated in this subsection. 

It is shown that the initial electron density plays an important role in the electron density 

in Fig.4.5.2.3, while, the slight effects on the vertical displacement and the electric 

potential are observed in Fig.4.5.2.1-3.  
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Fig.4.5.2.1 Variation of vertical displacements along the line  1 2 3, 0, / 2x x x h   

for different values of 0M  in the beam under static load 3 100PaT  . 

 

 

Fig.4.5.2.2 Variation of electric potential along the line  1 2 3, 0, / 2x x x h   for 

different values of 0M  in the beam under static load 3 100PaT  . 
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Fig.4.5.2.3 Variation of electron density along the line  1 2 3, 0, / 2x x x h   for 

different values of 0M  in the beam under static load 3 100PaT  . 

Since the value of the electric charge of electron is quite small in comparison with the 

other material coefficients, the mechanical fields and electric potential in Eqs. (4.2-14)-

(4.2-17) are affected slightly by the change of the electron density. However, the electron 

density highly relies on the value of the initial electron density in Eq. (4.2-18).  

4.5.3 The influence of grading parameter 

In this subsection, the influence of grading properties   in Eq. (4.2-24), the elastic, 

piezoelectric, and dielectric coefficients, on the response to the uniform static 

compressive load 3 100PaT   with the initial electron density
6 3

0 1.0 10M m   are 

analyzed in Fig.4.5.3.1-3.  
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Fig.4.5.3.1 Variation of vertical displacement along the line  1 2 3, 0, / 2x x x h   

for different values of the gradation parameter   in the FGM beam under 

the static load 3 100PaT  . 

 

 

Fig.4.5.3.2 Variation of electric potential along the line  1 2 3, 0, / 2x x x h   for 



doi:10.6342/NTU201600798

 

58 

 

different values of the gradation parameter   in the FGM beam under the 

static load 3 100PaT  . 

 

 

Fig.4.5.3.3 Variation of electron density along the line  1 2 3, 0, / 2x x x h   for 

different values of the gradation parameter   in the FGM beam under the 

static load 3 100PaT  . 

It is observed that the increasing value of the gradation parameter   of the elastic, 

piezoelectric, and dielectric coefficients yields decreasing response of the vertical 

displacement, electric potential and electron density.  

4.5.4 The influence of complex grading parameter 

In the subsection, the three combinations of the gradation of material coefficients in 

the FGM beam:  

(i) #1 - the grading parameters of the elastic coefficients, piezoelectric 

coefficients, and dielectric coefficients are ln(2)  ;  

(ii) #2 - the grading parameter of the dielectric coefficients ln(1/ 2)  , while 
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the grading parameters of the elastic and piezoelectric coefficients are

ln(2)  ; 

(iii) #3 - the grading parameter of the dielectric coefficients ln(1/ 2)  , while 

the grading parameters of the elastic and piezoelectric coefficients are 

homogeneous ( 0)  .  

The comparisons of the numerical results are shown in Fig.4.5.4.1-3. 

 

 

Fig.4.5.4.1 Variation of vertical displacement along the line  1 2 3, 0, / 2x x x h   

for the three combinations of the gradation of material coefficients in the 

FGM beam under static load 3 100PaT  . 
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Fig.4.5.4.2 Variation of electric potential along the line  1 2 3, 0, / 2x x x h   for 

the three combinations of the gradation of material coefficients in the FGM 

beam under static load 3 100PaT  . 

 

 

Fig.4.5.4.3 Variation of electron density along the line  1 2 3, 0, / 2x x x h   for 
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the three combinations of the gradation of material coefficients in the FGM 

beam under static load 3 100PaT  . 

From the above results, the vertical displacement in homogeneous beam is much smaller 

than that in cases #1 and #2, while the effect on the electric potential and electron density 

is less distinctive in these two cases. In the case #2, the larger electrical outputs are 

observed near the beam ends 1 1( 0 and )x x l  . The larger electrical outputs and vertical 

displacement compared with those in the homogeneous beam are observed in the case #3. 

4.5.5 The transient analyses 

The transient analysis is analyzed with the compressive impact load uniformly 

distributed on the top of the beam. The same boundary conditions as those in the static 

case are considered with the vanishing initial conditions including the initial electron 

density. The total computational time interval is composed of 77 time steps with the size 

of the time step
66.5 10    [sec]. Due to the difference of accuracy for the first- and 

second-order temporal partial derivatives, the approximations of central-time (CT) and 

backward-time (BT) methods in time are investigated as shown in Fig.4.5.5.1-2. 
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Fig.4.5.5.1 Time evolution of vertical displacement along the line

 1 2 3, 0, / 2x x x h   by the CT and BT methods for the first-order 

temporal partial derivative under static and impact load 3 100PaT  . 

 

 

Fig.4.5.5.2 Time evolution of electric potential along the line  1 2 3, 0, / 2x x x h   

by the CT and BT methods for the first-order temporal partial derivative 
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under static and impact load 3 100PaT  . 

From the results by the CT and BT methods for the first-order temporal partial derivative 

we observed that there is almost no difference. Therefore, the Houbolt finite-difference 

scheme for the second-order temporal partial derivatives and the backward-time method 

for the first-order temporal partial derivative are applied in the following transient 

analyses. Fig.4.5.5.3-4 show the comparisons of the numerical results for the vertical 

displacement and electric potential at the point 1 2 3( / 2; 0; / 2)x l x x h   obtained in 

the static analysis and transient analyses with the homogeneous properties and three 

combinations of the gradation of material coefficients in the FGM beams. 

 

 

Fig.4.5.5.3 Time evolution of vertical displacement along the line

 1 2 3, 0, / 2x x x h   for the three combinations of the gradation of 

material coefficients in the FGM beam under static and impact load

3 100PaT  . 
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Fig.4.5.5.4 Time evolution of electric potential along the line  1 2 3, 0, / 2x x x h   

for the three combinations of the gradation of material coefficients in the 

FGM beam under static and impact load 3 100PaT  . 

It is observed that the transient responses at the point 1 2 3( / 2; 0; / 2)x l x x h  

oscillate around the static values (hence the amplitudes are equal to the static values). 

Additionally, the peak values of the vertical displacement in #1 and #2 are approximately 

half of that in the homogeneous properties. The peak values of the electric potential in #1 

and #2 are slightly smaller than those in the homogeneous properties. Although #3 

performs slightly larger displacement with respect to the homogeneous case, it increases 

almost twice peak values of electric potential. 
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Chapter 5 Conclusions and Future Works 

 

5.1 Conclusions 

The proposed meshless method, the LRBFCM, is investigated and developed to 

analyze three-dimensional functionally graded piezoelectric semiconductors problems in 

this thesis. The FEM results obtained by the commercial software, COMSOL, are 

compared with the LRBFCM results and in good agreement in the static analysis for an 

analyzed beam with homogeneous material properties. Furthermore, the LRBFCM shows 

that the larger uniform static compressive load at the top of the beam results in the larger 

mechanical response and electrical outputs. The influence of initial electron density is 

also investigated. In comparison with the induced electron density, the resulting 

mechanical displacement and induced electric potential have small influence on the initial 

electron density.  

 Subsequently, since the LRBFCM performs the simplicity of prescribing spatial 

variation of material properties, an exponential gradation of material properties along the 

height of the FGM piezoelectric beam is prescribed and analyzed in numerical examples. 

It is observed that the lower mechanical displacement resulting from the increasing 

grading parameter of the elastic, piezoelectric, and dielectric coefficients. In addition, we 

analyze the three combinations of the gradation of material coefficients in the FGM beam. 

Among the three cases, the decreasing gradation of dielectric coefficients which 

contributes to the larger electrical outputs is observed and utilizing this characteristic 

could reduce the stress concentration of piezoelectric devices. 

 Ultimately, the transient analyses are investigated with vanishing initial conditions 

and initial electron density in the homogeneous and FGM piezoelectric beams. The results 
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show that the peak values of vertical displacement and electric potential in the transient 

analysis are two times larger than those in the static analysis with the homogeneous 

material properties. By the use of grading properties, the vertical displacement in transient 

analyses can be lowered to the half and be increased to the double in static analysis with 

the homogeneous properties. 

 The strong form meshless method is first applied in the analysis of general 3-D 

piezoelectric semiconductor solids in this thesis. The LRBFCM is an alternative 

numerical method and promising to be extended to complex problems in the future. 

5.2 Future Works 

The LRBFCM is proved that it is advantageous to address the complicated 

engineering problems which geometrical scales in three dimensional and scales of values 

of material properties are very different. Therefore, the following topics are expected to 

analyze. 

1. The non-uniform compressive load at the top of the beam can be considered to test 

the response of the piezoelectric equipment. 

2. The piezoelectric materials which have the pyroelectric effect are expected to 

investigate. (In many piezoelectric materials an electric outputs is generated if 

temperature variations are applied. This effect is called as the pyroelectric 

phenomenon.) 
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 Appendix  

A. Houbolt method 

For the second-order temporal derivatives, the Houbolt method is second-order 

accurate, and the derivation is shown as follows: 
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