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Abstract

This thesis presents three-dimensional analysis of functionally graded
piezoelectric semiconductor by the local radial basis function collocation method
(LRBFCM). The LRBFCM is a commonly-used meshless numerical method in the
field of engineering and sciences. On account of the advantages of addressing the
problems with much different length scales in three dimensions and circumventing
numerical quadrature, the LRBFCM is investigated and applied in the problems of
piezoelectric materials.

Piezoelectric materials can be divided by dielectrics and semiconductors.
Unlike piezoelectric dielectric materials, the conservation of charge which is composed
of electron density and electric current is additionally considered to depict the
phenomenon for piezoelectric semiconductors. This will complicate our analyzing the
mutual coupling of elastic displacements and electric fields. For the solution of the set
of partial differential equations with non-constant coefficients the LRBFCM is
proposed in this work. The spatial variations of all physical fields are approximated by
the multiquadric radial basis function. For time dependent problems a resulting system
of ordinary differential equations is solved by the Houbolt finite difference scheme as
a time stepping method.

The presented LRBFCM method is verified by using the corresponding results
i
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obtained by the finite element method. The effect of various loading scenarios is then
considered in the numerical examples to analyze the mutual properties of the
mechanical responses, electrical fields, and electrical current field. The influence of
material parameter gradation and initial electron density is then investigated. The

transient analysis is also analyzed.

Keywords: local radial basis function collocation method (LRBFCM), functionally

graded materials, piezoelectric semiconductors, piezoelectric effect, smart materials
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Chapter 1 Introduction

1.1 Motivations and Objectives

On account of the development of computer science and technology, numerical
analyses have been frequently utilized and even substituted for some experiments.
There are advantages by numerical analyses such as cheap and enable some problems
which do not exist analytical solutions to be solved and analyzed. The numerical
methods generally can be categorized as two types, mesh-dependent methods and
meshless methods. Mesh-dependent methods have been developed and commonly used
in scientific research and engineering applications. The following four mesh-dependent
methods are most commonly used methods, the finite difference method (FDM), the
finite volume method (FVM), the finite element method (FEM), and the boundary
element method (BEM). However, the mesh-dependent numerical schemes still exist
challenges and problems on account of inevitable burdensome tasks such as mesh
generation and numerical quadrature especially for multi-dimensional problems and
irregular domains. In order to avoid those problems, various meshless methods have
been developed in recent years. They have become more and more popular due to the
ease of implementation and the flexibility of generation of computational nodes which

can circumvent the problems of inaccuracy near where gradients of variables are high.
1
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However, there are the stability and accuracy of meshless methods which should be
concerned and analyzed. In this thesis, we focus on one of the meshless numerical
methods, the local radial basis functions collocation method (LRBFCM), which will be
introduced in subsection 1.1.2.
1.1.1 Mesh-dependent numerical methods

With the development of the computer technology in recent years, it has been more
feasible and efficient to utilize numerical methods to simulate and analyze engineering
problems. The finite difference method (FDM), the finite volume method (FVM), and
the finite element method (FEM) have been developed to a robust and effective methods
and widely used in engineering problems. The finite difference method is based on
Taylor series expansion to approximate the derivative which accuracy is dependent on
how many terms we utilize. However, it is complicated when we solve problems with
irregular domain due to difficulty of construction of orthogonal mesh. Additionally, we
should refine the mesh and add more terms of derivative to obtain more accurate results
which is very time-consuming. In order to reduce the dependency of the meshes,
researchers have developed a powerful alternative numerical scheme, the boundary
element method (BEM), to substitute for other mesh-dependent numerical methods. By
the Green’s function, the BEM can reduce one dimensionality of the problems. The

BEM discretizes the computational 3D domain of the surface instead of the whole
2
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domain. Therefore, it provides more flexibility and relatively decreases the dependency

of meshes. However, the limitation of the fundamental solutions or free-space Green’s

functions restricts engineers to apply the BEM to some problems. Due to the above

difficulties of applying the mesh-dependent numerical methods, researchers have been

paying attention on the development and improvement of meshless numerical methods.

1.1.2 Meshless numerical methods

In order to circumvent numerical quadrature and mesh generation, various

meshless or mesh-free numerical methods have been developed such as the smoothed

particle hydrodynamics (SPH) [1], the multiquadrics collocation method (MQ) [2]-[6],

the method of fundamental solutions (MFS) [7]-[10], the method of particular solutions

(MPS) [11][12], the method of approximate particular solutions (MAPS) [13][14], the

differential quadrature method (DQ) [15][16], the boundary particle method [17], and

the finite point method (FPM) [18]. The above numerical methods are classified as

global-type methods. Global-type methods generally utilize the discretization of all

collocation points within the global domain. Subsequently, the problems such as the ill-

conditioned and dense resultant interpolation matrix are inevitable. In order to improve

the efficiency of computation and deal with large-scale problems, researchers have been

developing various localization methods for the corresponding global-type numerical

methods.
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The localization technique allows the global-type numerical methods to
approximate the solution of partial differential equations (PDEs) with few local points
and then the individual relations constitute the sparse resultant interpolation matrix
instead of the dense matrix. That enables computation procedures to utilize the solvers
of inversion of sparse matrix and save substantial computational time and memory
loading. The MQ, the MAPS, and the DQ are respectively improved and localized as
the localized multiquadric method (LMQ) [19], the localized method of approximate
particular solutions (LMAPS) [20]-[22], and the localized differential quadrature (LDQ)
[23][24]. In addition, there are other localized meshless numerical methods such as the
compactly supported radial basis functions [25], the local radial basis function
collocation method (LRBFCM) [26]-[29], and the meshless local Petrov—Galerkin
(MLPG) method [30][31]. This research will focus on the LRBFCM, and utilize it to
conduct three-dimensional analysis for functionally graded piezoelectric
semiconductors.

1.2 Organization of the thesis

In order to analyze the functionally graded piezoelectric semiconductor problems

by the local radial basis function method, we divide the thesis into five chapters and the

brief introduction of them is shown as follows:

doi:10.6342/NTU201600798



Chapter 1 Introduction

The motivation of this thesis is presented, and the difference between the mesh-

dependent methods and meshless methods is also discussed in this chapter. In addition,

the development of local meshless methods with respect to corresponding global-type

meshless methods is mentioned.

Chapter 2 The Local Radial Basis Function Collocation Method

The meshless methods, the radial basis function collocation method (RBFCM) and

the local radial basis function collocation method (LRBFCM), are introduced in this

chapter.

Chapter 3 Piezoelectricity

The piezoelectricity is introduced and can be divided by five sections, historical

overview, principles of piezoelectric effect, applications in civil engineering,

functionally graded materials, and the constitutive equations of piezoelectric materials.

Chapter 4 The Local Radial Basis Function Collocation Method for

Functionally Graded Piezoelectric Semiconductor

The LRBFCM is utilized to analyze the functionally graded piezoelectric
5
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semiconductor problems in this chapter. The results of the LRBFCM and those of the

finite element method by the commercial software, COMSOL, are compared and in

good agreement. The effect of functionally graded properties is also illustrated and

compared. The transient analyses are also analyzed in this chapter.

Chapter 5 Conclusions and Future works

Conclusions and future works are summarized and proposed in this chapter,

respectively.
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Chapter 2 The Local Radial Basis Function

Collocation Method

This chapter will report the numerical tool, LRBFCM, which is utilized to deal
with the piezoelectric sensor problem in this thesis. In the first section, we will illustrate
the concept and the approximation procedure of the LRBFCM thoroughly. Then, we
will introduce the RBFs which play an important role in the LRBFCM in the second
section. Although the LRBFCM can overcome the drawbacks of the RBFCM, it is still
a developing meshless numerical method whose stability and the accuracy should be
further investigated. The accuracy and the stability in the LRBFCM is strongly
depended on the selection of the supported local nodes and the value of the shape
parameters. For the purpose of promoting the accuracy and the stability of the
approximation results, we will introduce some kinds of methods for choosing the
supported local nodes in the section 3 and the shape parameters in the section 4,
respectively. In the last section, we provide the normalization technique to improve the

multi-scale domain problems.
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2.1 The radial basis function collocation method

The multiquadric (MQ) scheme was first proposed by Hardy [2] in 1971. Then,
the radial basis function collocation method (RBFCM), which is a modified MQ
scheme, was developed by Kansa. The RBFCM [3][4] requires a linear combination of
radial basis functions with regard to all the computation points within the computational
domain €2 to approximate any given variable denoted by ¢ . Let all the computation
points be defined as X; €Q,i€[1 N], where N is the total number of global points.
Then the given variable at any computation point within the computational domain can

be approximated by the following term

N
p(x1) =D o f([x=x]), xeQ (2.1-1)
k=1

where f isthe radial basis function, & isthe weighting coefficient to be determined,
and ||X—Xk|| is the Euclidean distance between the global points. In order to evaluate
the weighting coefficients, Eq. (2.1-1) at each computational point should be enforced.

Then, the system of the algebraic equations becomes
¢ =fa, (2.1-2)

where ¢=[¢(X1,t),“',¢(XN ,t)]T Lo =[ag, ey ]T , and
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I Flxa=xf)  f(x=%f) - f(”Xl‘XN”)_
e tlha=xl) flbe-xal) - 1 x-xl)|
f (”XN. - X1||) f (”XN._ X2 ||) f (”XN'_ XN ||)_

To implement any given or operator ¢{ }, the approximate summation equation of the

variable in Eq. (2.1-1) becomes
cp(x0)f=¢{fa (21-3)

By solving Eq. (2.1-3), we obtain the weighting coefficient with respect to every
computation point within the global domain. Then substituting the weighting
coefficients into Eq. (2.1-1), we get the approximate values of the variable within the
computational domain.
2.2 The local radial basis function collocation method

Due to time-consuming computation, large memory loading, dense and ill-
conditioned resultant interpolation matrix, and sensitive shape parameter, the
localization technique, the local radial basis function collocation method, was
developed [26]. The local radial basis function collocation method (LRBFCM) enables
engineers to analyze large-scale realistic problems and more efficiently compute partial

differential equations by sparse solvers. Contrary to the RBFCM, LRBFCM utilizes the

approximation of ¢(X,t) with respect to the point X;,i<[L N] which is supported
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by NL from the local influence area @; as
NL
B )= o f (Hx— xi,kH), Xi € @, (2.2-1)
k=1

where @ik (i€[LN];ke[L,NL]) are the weighting coefficients, f is the RBF, and

HX_Xi,kH is the Euclidean distance between two points. In order to evaluate the

weighting coefficients, Eq. (2.2-1) at each computational point from «, should be

enforced. Then, the system of the algebraic equations becomes
¢ =fa;, (2.2-2)

where ¢, :[¢<Xi,1’t)’""¢(Xi,NL’t)]T ) O =[05i,1""aai,NL]T , and

() () ()
f, = f (HXLZ._XMH) f (HXLZ'_ Xi,ZH) f (Hxi,z — Xi,NLH) .
_f (Hxi,NL - Xi,lH) f (Hxi,NL - Xi,ZH) e f (Hxi,NL - Xi,NLH)_

Fig.2.2.1 The illustration of a computation point with its local points respect to the

local influence area @; within the computational domain €2 .

10
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Since f; is invertible, the weighting coefficient can be determined as
o; =f ', i e[LN]. (2.2-3)
Additionally, Eq. (2.2-1) can be rewritten as
#(x.t)=F (X)o (2.2-4)

by introducing the row-vector F; (X)=[f (HX—XMH),“" f (HX_Xi,NLH)]- To
implement any given or operator ¢{ }, the approximate summation equation of the

variable in Eq. (2.2-1) gives

)=t nal) -l @29

where ‘f{':i (% )} :g{Fi (X)}‘X:Xi :

For convenience, we define the row vector (Ix NL)

Si = J{Fi (% )}ffl :I:Si,l’si,zi""si,NL:I, and then Eq. (2.2-5) becomes
S{p(x.t)} =sidy, i €[LN]. (2.2-6)

Subsequently, we transform the local system to the global system as shown in Eq. (2.2-

6).
S{p(% 1)) =sids =S;®, i €[LN], (2.2-7)

where
11
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S, =[S0 Sin | Si ={0’ zj zz cand @ =[ p(x,,t),#(X, 1), d( Xy, 1) ] -
Finally,

§{¢(X1’t)} S, @
S{p(%a.1)} S,d

i@f= : = (2.2-8)
S{o(xn b)) | [Sn@
Sl,l S1,2 Sl,N

where S=[S,,S,,--,Sy] =| 4 2% . 72N

SN,l SN,Z SN,N

and we can obtain the solution of ¢ by solving the linear system in Eq. (2.2-1).
Additionally, we define S asthe S whose given operator is the second-order partial
spatial derivatives with respect to X, and X; in this thesis; that is,
C{ }=52/8Xi<3x,-{ } where 1, j represent the indices of Cartesian spatial dimension
number.
2.3 Radial basis function

The radial basis functions (RBFs) have been frequently utilized and applied to
approximate scattered data in recent years. By the Euclidean distance I, the LRBFCM
can form the discretization equation. However, there are several types shown in the
Table.2.3.1 where the shape parameter is denoted by c. The decision of appropriate
shape parameter is very cumbersome especially in practical engineering problems. We

will elucidate that in the following section.

12
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Table.2.3.1.  List of commonly-used RBFs

Name of RBFs Formulation
Multiquadric (MQ) Jri+c?,c>0
Inverse multiquadric (IMQ) 1/+/r*+c?,¢c>0
. . 2 2 1/n
General Multiquadric (GMQ) (r +C ) ,>0 (n=135..)
Gaussian (GA) exp(—cr®),c>0

Polyharmonic Splines (PS) of order m in
r*"In(r)

2D

Polyharmonic Splines (PS) of order m in
2m-1

3D

Franke [32] compared several methods in 1982 from the characteristics, such as
accuracy, sensitivity to parameters, timing, storage requirements, and so on. Among the
methods, the multiquadric RBF (MQ-RBF), that is Hardy’s multiquadric method, is one
of the most frequently-used methods due to the characteristics of accuracy and stability
in the LRBFCM. Therefore, we adopt the MQ-RBF and use it to form the approximate
equations in this thesis. To utilize the radial basis function f as the MQ-RBF with
respect to computation points X and X , the radial basis function can be expressed

as

13
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f=1(r)

(2.3-1)

where r:Hx—x"H:\/(xi—xlk)z+~--+(xd—x('j)2 is the Euclidean distance in the

Cartesian coordinate system and d is the number of spatial dimension. The differential

formulation in the Cartesian coordinate system is shown in Table.2.3.2.

Table.2.3.2.  The differential formulation of the MQ-RBF
2-dimensional formulation 3-dimensional formulation
1 1
f (r2+c2)2 (r2+c2)2
o &—@l &—@l
24 (rr+c’) (rr+c’)
of X = X; X, = X:
- 1 1
X, (r*+c’)z (rr+c’)
of 0 X, =%
- 1
28 (r*+c?)
o f 1 (X 1 (e=x)
Ox{ (r2+c2)% (r2+c2)g (r2+c2)% (r2+c2)g
k)2 k)2
azf 1 _(XZ—XZ) 1 _(Xz_xz)
0%, (r2+02)% (rZJrcz)g (r2+cz)% (r2+cz)g
o7 f 1 (% %)’
2 0 T 3
Xy (rP+c’)z (r*+c?)
& f (a1 %) (a1 (%)
no% (r ey (4
14
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o f (e =X (6 - %)
%% 0 (vt
o f (e —%)(x—x)
OX,0% 0 (I‘2+C2 )g

2.4 Local influence area

The numerical accuracy and stability of LRBFCM are highly dependent on the
local influence area. Inappropriate local influence will possibly cause the ill-
conditioned resultant interpolation matrix. Therefore, there have been many fashions of
selection of local influence area developed to deal with the above problems. The most
popular three fashions are the selection of fixed number of the nearest points, the
selection of points within the fixed radius, and the cross-shaped selection. Due to the
easy implementation, we adopt the selection of fixed number of the nearest points in
this research.

First, the selection of fixed number of the nearest points is the easiest and most
common selection method due to its characteristic of simple coding. By utilizing this
method of selection, we should determine the number of the nearest points with respect
to every computation point. To exemplify, the two-dimensional uniform point
distribution case is shown in Fig.2.4.1. It is obvious that the selection in the boundary
and corner is asymmetric and unbalanced. This phenomenon will become more
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significant in the non-uniform point.

i
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o & O O 3 3 O Cr o 2
® local point
@ computation point

Fig.2.4.1 The number of the nearest points with respect to every computation

point by choosing NL =5 in the two-dimensional uniform point

distribution case.

Second, the selection of points within the fixed radius is also a commonly-used

method which should be given a radius to determine the local points with respect to

every computation point. From Fig.2.4.2, computational inefficiency possibly occurred

in the relatively dense region and insufficient local points are illustrated. If the non-

uniform point distribution cases or the problems with the much different length scales

in three dimensions are applied by the selection of fixed number of the nearest points,

this phenomenon will be more significant which increases the opportunity of
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occurrence of numerical instability and ill-conditioned matrix.

]
l::l _— e
] -~ -~
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] / & \
_— T T l:::l !
- .‘x [ @ @ |
¢ & \'ll L ’
o e s @ ® N . F_,,/
' g —-
o
o~ _®_ o o

& |ocal point
& computation paint

Fig.2.4.2 The selection of points within the fixed radius in the two-dimensional non-

uniform point distribution case.

Third, the cross-shaped selection [33] as shown in Fig.2.4.3, which utilizes the

provided shape of local influence area and provided number of local points with respect

to computation point to determine the local point within each local domain, provides

more efficient computation and lowers the opportunity of occurence of numerical

instability and ill-conditioned matrix.
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Fig.2.4.3 The cross-shaped selection.

2.5 Shape parameter

The decision of optimal shape parameter c plays a crucial role in the stability and

accuracy of the LRBFCM for different numerical applications. It strongly depends on

geometry of global domain and types of point distributions.

In general, shape parameter is located on the specific range. If c is too small, it

could result in the singularity; however, if c is too big, the influence of radius will be

decreased by the shape parameter. It is very difficult to determine optimal shape

parameter when we deal with the problems which the length scales in three dimensions
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are much different. We will introduce and elucidate a normalization technique to assure
optimal shape parameter to be in the same order in the next section.
2.6 Normalization technique

Many normalization techniques have been developed due to the difficulty of
determination of optimal shape parameter. Generally, normalization techniques can be

divided by two parts, normalized distance and normalized shape parameter.

2.6.1 Normalized distance

One of the most popular normalization techniques is to normalize the distance as

2
Nd

Xyiw — Xy
[m =] 20| 25— (2.6.1-1)
d=1 Ly
where 1, . is the distance between the collocation points within the local influence

area @, Xy, denotes the position of the kth local point within the local influence
area o, inthe dth dimension, Nd is the total number of spatial dimension, and the

maximum distance between collocation points in all the dimensions within the local

influence area «; is definedas L ;.

2.6.2 Normalized shape parameter
Another normalization technique is developed in [26] and it is to normalize the

given shape parameter c associated with each local influence area @, as
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¢ =cxL, (2.6.2-1)

where ¢; is the normalized shape parameter and L; is the maximum distance between
the computation points within the local influence area ,. By normalizing the shape
parameter, the range of optimal shape parameter could be narrowed.

Due to the efficiency and improvement, we adopt the second normalization
technique, normalized shape parameter, for simulation of piezoelectric problems in this
thesis. Additionally, there are the cross partial derivative terms in our problems (see
Egs. (4.2-19)-(4.2-23) in Chapter 4), so the local influence must cover more local points
rather than local points of cross-shaped selection. As a result, normalization technique

of shape parameter is necessary to solve piezoelectric problems.
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Chapter 3 Piezoelectricity

3.1 Historical overview

The story of the piezoelectric materials starts in 1880, when the Pierre and Jacques
Curie discovered [34] that several natural materials, including quartz and Rochelle salt,
exhibited a special property. The Curie brothers demonstrated that if the specially
prepared materials were imposed a mechanical stress, an electric output was produced.
They showed this coupling by measuring the charge induced across electrodes placed
on the material when it was imposed an applied mechanical deformation. They defined
this effect the piezoelectric effect. The name comes from a Greek word for squeeze —
piezein. Few years later it was demonstrated by Gabriel Lippmann [35] that
piezoelectric materials also exhibited the reciprocal property; namely, a mechanical
strain was induced when an electric field was applied to the materials.

However, the coupling weak, which means the amount of electrical signal
produced by applied mechanical deformation was small, limited the application due to
the lack of precision instrumentation. The first engineering application was developed
to locate submarines, which is the basis of sonar, until World War I. The piezoelectric
materials were widely used in sonar during World War Il and developments in

electronics also stimulate different uses of piezoelectric materials, such as electronic
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oscillators and filters. On account of the increasing need for better piezoelectric
materials, the synthetic materials were developed to exhibit better piezoelectric
properties. To exemplify, the early synthetic piezoelectric material, Barium titanate
(BaTiOs) , is superior to quartz crystals in piezoelectric and thermal properties. In the
1950s and 1960s the most widely used piezoelectric material, lead-zirconate-titanate
(PZT), was developed and motivated more applications. Nowadays, piezoelectricity is
utilized everywhere. For example, motion and force sensors, the airbag, accelerometers,
and atomic force microscopes (AFMs). The application in civil engineering will be
presented in section 3.3.
3.2 Principles of piezoelectric effect
The piezoelectric effect can be divided by two types as shown in Fig.3.2.1. The
first is the direct piezoelectric effect which depicts piezoelectric materials transform the
applied mechanical strain into the electric output. The second is the converse effect
which describe mechanical strain energy is produced by an applied electrical potential

on piezoelectric materials.
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Electrical
Energy

Direct Converse

Piezoelectric Piezoelectric
Effect Effect

Mechanical
Energy

Fig.3.2.1. The illustration of the relations between the energies and the

piezoelectric effects.

In general, we will utilize the direct piezoelectric effect to be a sensor and utilize the
converse piezoelectric effect to be an actuator. From Fig.3.2.1, if the piezoelectric
material generates a positive electric field by the applied tensile stress (see (a)), the
applied compressive load will generate a negative electric field (see (b)). Furthermore,
the converse piezoelectric effect also exhibits this phenomenon. If the positive electric
filed is imposed on the piezoelectric material and generates a contraction of the material,

an expansion of the material will be generated by the applied negative electric field.
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Fig.3.2.1 Configuration of the direct piezoelectric effect. (G: galvanometer)

3.3 Applications in civil engineering

In recent decades, there have been many piezoelectric applications in civil
engineering due to advances of science and technology. The so-called smart materials,
which can be significantly changed by the applied stimuli such as stress or electric
output, were presented [36]. This thesis also introduces the related applications of smart
materials including piezoelectric materials to civil and mechanical infrastructure
systems. Piezoelectric materials have been playing an important role in the vibration
control of structures [37]. In addition, piezoelectric materials are also applied [38] in
structural damping mechanism by passive electrical circuits, while piezoceramics [39]
are used in various forms for active control of structural vibration and are applied in
civil structures such as beams and steel frames. The embedded piezoelectric wafer

active sensors (PWAS) [40] perform an important function in structural health
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monitoring (SHM) by exciting and detecting tuned Lamb waves. Since oil resources
have been gradually depleted, more and more researchers devote themselves to
alternative technology of power harvesting and piezoelectric materials are considered
a feasible and renewable resources. Erturk [41] introduced and analyzed the energy
harvesting of piezoelectric materials from moving load excitations and surface strain
fluctuations in civil infrastructure system.
3.4 Functionally graded materials

In recent decades, a novel advanced materials, functionally graded materials
(FGMs), have been gradually attached importance in various engineering applications.
The characteristic of FGMs is that continuous and gradual variation of material
properties over the spatial coordinates. The difference of structure between two-layered
composites and FGMs is shown in Fig.3.4.1. FGMs have shown advantage of better
performance over multilayered composites. In general, conventional multilayered
composites suffer from abrupt changes of material properties [42] at the interface
between contiguous layers of composites which results in problems such as
delamination and large residual thermal stresses. In contrast, FGMs are utilized to

reduce the stress concentration and the fracture toughness [43][44].
From the above advantages, the properties of FGMs provide prospect for
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applications of piezoelectric materials. The attributes of low thermal expansion

coefficient, low dielectric constant, high toughness, high strength, and increase of

gradient of the material properties [45] can be applied to extend the lifetime, and

improve reliability of piezoelectric structures [46]. In general, the grading variation is

defined by power-law, sigmoid, or exponential function. In this work the exponential

function is adopted and we will elucidate the definition of grading properties in Eq.

(4.2-24).

(a) Two-layered composites (b) FGMs

Fig.3.4.1 Configuration of two-layered composites and FGMs.
3.5 The constitutive equations of piezoelectric materials
From thermodynamic considerations, the constitutive equations of
piezoelectric materials can be categorized into the following four forms [47] with

respect to their independent variables:

&—-D form:
o=c’¢-kD
E=—ke+ 4D (35-1)
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o—-E form:

e=s0-dE
D=do+h°E (8:5-2)
o—-D form:
e=s"c+gD
E=-go+A°D (353)
g—E form:
o=C"¢-¢E
D=ec+h’E (3.5-4)

where o, &, D,and E denote the stress, strain, electric displacement, and electric
field, respectively. The stiffness constants at a constant electric displacement and a
constant electric field are ¢ ¢, respectively. The compliance constants s s are
at a constant electric displacement and a constant electric field, respectively. The
dielectric constants (permittivity) at a constant strain and a constant stress are h® h?
respectively. The impermittivity constants S° S° are at a constant strain and a
constant stress, respectively. The constants kK, d , g, and € are piezoelectric

constants. To exemplify, the o —E form of the constitutive equation in Eq. (3.5-4)

can be rewritten in tensor as
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_E
0 = Gijaéu —Ej E,

(3.5-5)
_ £
D, =& +IE
where (i, j, k,1=12,3).
Then, the above equation can be depicted in the matrix form as:
[~ 7 [AE E E E E EIN 1T T
611 Cll C12 C13 Cl4 C15 C16 811 ell eZl e31
E AE AE AE AE AE
022 C21 C22 C23 CZ4 C25 C26 822 e12 e22 e32
E E E E E E e e El
On| |G Cp Cy Gy G Cyf| & | |G € Ey E
0| |CE cE ¢ cf, cE ¢ 2 e, &y
23 41 42 43 44 45 46 23 e14 24 34
E E E E E E 2 e e E3
0-13 C51 C52 C53 C54 C55 C56 831 elS 25 35
E E E E E E
102 |Ca Co Ce Cu Ces  Cgg 26, | &g €5 €y
én
&2 £ hE e
1 G € 63 &y G5 & c hi h, hy|E (3.5-6)
_ 33 £ € g
DZ e21 e22 eZ3 e24 e25 eZG 28 t h21 h22 h23 EZ
23 £ £ &
D3 eSl e32 e33 e34 e35 e36 h31 h32 h33 E3
28y
| 2¢,, |

With different symmetry type of material properties, piezoelectric behavior and the
above equations vary.

The analyzed piezoelectric ceramic materials in this thesis exhibit transversely
isotropic elastic behavior with hexagonal symmetry of class 6 mm with X, as the
poling direction and X, — X, plane as the isotropic plane. Material coefficients in the
matrix form of the constitutive equations utilize the Voigt notation to express. For the
hexagonal system the principal axis has order six, behaving as a diad axis combined

with a triad. The matrix of stiffness constants thus has a form combining the features of
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the monoclinic and trigonal systems

Monoclinic
0 0 0 cy Ccs O
0 0 0 ¢ €5 O
[C6 Co6 C O O Ce |
i G2 Gz Cu —Cxp 0
Co Cu Gz —Gg4 Cxp 0
C 0 0 0
Tetragonal s a3 G ,
Cy —Ca 0 cy 0 Cos
5 Cs 0 0 cy Cia
| 0 0 0 cp Cy (cu—cp)l2
giving
cy G &3 O O 0 |
Cp &1 Gz 0 0 0
Cs CG3 C3 0 O 0
Hexagonal
J 0 0 0 ¢y O 0
0 0 0 0 cg 0

0 0 0 0 0 (cy-¢p)l2]

The class 6mm possesses three diad axes which has the same properties as those

of the class 2mm and class 6.

Class6 : |0 O 0 e, -6,

Class 2mm : 0 0 0 e, O

OO O O o o o

Therefore, the matrix of piezoelectric moduli (coefficients) of class 6mm gives
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0 0 0 0 e O

Classémm:{ 0 0 0 e, 0 O

€, € € 0 0 0
Since the analyzed material is semiconductors, the governing equations have to be
supplemented by constitutive equations [48][49] to obtain a unique solution. They

express the coupling of the mechanical and electrical fields and electric current fields

as

0 (X,7) =Gy (X) & (X, 7) —&; (X E, (X, 7), (3.5-7)
D, (x,7)= € (X)&y (X, 7)+ hjk (X)E, (X, 7), (3.5-8)
J;(X,7) = qMo; (X)E; (X, 7) - (X)M (X, 7), (3.5-9)

where ¢, (X) , €, (X) , (X)), g (x) and d;(x) are the elastic, piezoelectric,
dielectric, electron mobility and carrier diffusion material coefficients, respectively.

M, is the electron density in the unloaded state. The matrix form of the constitutive

equations for the analyzed piezoelectric ceramic materials can be expressed as:

On C; C ¢ 0 0 0 én 0 0 ey

O C, ¢ ¢ 0 0 0 7 0 0 ey E

O | _ Cs C3 C 0 0 O & | 0 0 ey El

oux| |0 O 0 ¢, O O |25 |0 ¢ O 52

o] |0 0 0 0 ¢ O] |2 |eg O O
o, [0 0 0O 0 O cu|2] |0 0 O]
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e, | (3.5-10)
&5 E,
-c()| 7 |-L()| E,
26, e
2&, ’
2¢,,

o
DJJO 0 0 0 e 0 ? h, 0 07E
D,|=|0 0 0 e O ng'+0 h, 0| E
D,| |e, €& € 0 0O ozf 0 0 h,l|E
31
2¢,,
e, | (3.5-11)
&9
E,
&33
=G(x) +H(x)| E,
2&,,
ES
2&4
2¢,,
J, w, 0 O07E d, 0 07M,
J=aM;| 0, O [|E;(—q] O dy O M,
J, 0 0 ulE 0 0 dyl|l M,
E, M, (3.5-12)
EqMoA(X) E, —qF(x) M,z )
E3 M,3
1
where ¢ ZE(Cll_CIZ)'
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Chapter4 The Local Radial Basis Function
Collocation Method for Functionally Graded

Piezoelectric Semiconductor

4.1 Introduction

Recently, one of smart materials, piezoelectric materials, has received great
attention and been utilized in engineering applications. Piezoelectric materials can be
applied as transducers, sensors and actuators. Generally, piezoelectric materials can be
categorized by two types, non-conducting dielectrics and conductors. However, it is
difficult to distinguish between them. Especially, there are more and more synthetic
materials. The coupling of the mechanical field, the electrical field and electrical current
should be considered [48][49] since the produced electric field and dispersion of elastic
waves which result from the space charge. The interaction between mobile charges and
a traveling acoustic wave is called an acoustoelectric effect. The above phenomenon is
utilized in many acoustoelectric devices [50][51]. Additionally, there are several
complicated models of deformable piezoelectric semiconductors in the literature
[52][53].

Functionally graded materials (FGMSs) have been extensively used in engineering

applications. Often, they performs better behaviors than the conventional composites.
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There are advanced innovation to manufacture functionally graded piezoelectric

materials [54]. The detailed introduction is elucidated in section 3.4.

Various meshless methods have been developed and some of them have been

proposed to analyze piezoelectric problems [55]-[57]. Continuously nonhomogeneous

piezoelectric material properties are considered to analyze non-conducting dielectrics

in the literature [58]. Some reviews of meshless methods are presented and analyses of

applications in piezoelectric materials are introduced in [59][60]. The element-free

Galerkin method (EFG) has been presented [61] to analyze laminated piezoelectric

beams; however, the background (shadow) mesh is still required to integrate in this

method. The MLPG method has been developed to analyze the three-dimensional

elasticity [62], three-dimensional piezoelectricity [63], and three-dimensional

axisymmetric continuously non-homogeneous solids [64][65]. Recently, fracture

analyses of piezoelectric semiconductors were conducted for anti-plane crack problems

[66] and also for thermally induced fracture [67].

The LRBFCM has been utilized to analyze piezoelectric problems [68]. To the

best of our knowledge there is no paper on analysis of general three-dimensional

functionally graded piezoelectric semiconductor solids using a strong-form meshless

method. Therefore, the LRBFCM is proposed to analyze such problems in this thesis.

The three-dimensional analyses are considered no simplification and allows arbitrary
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given loading profile, boundary conditions, and grading material coefficients. Static

and transient boundary value problems are also investigated in this thesis. The

displacements, electric potential, and electron density are approximated by the

multiquadric radial basis function (MQ-RBF). The analyzed piezoelectric

semiconducting beam is discretized only with pints, and no finite element is required.

Furthermore, the coupling of the governing equations for mechanical field, electrical

field, and current are satisfied in a local strong-form for a set of points. Thus, no

integration of the governing equations is required. The essential and natural boundary

conditions are also implemented with the collocation of boundary points and their

ambient points. If continuous variation of material properties is considered for analyses

of functionally graded materials, the conventional numerical methods are difficult to be

applied in approximation of governing partial differential equations with non-constant

coefficients. By contrast, the LRBFCM has advantages since the independent points.

After implementing the spatial RBF approximation, a system of the governing

equations for certain point unknowns is obtained in case of transient problems. Then,

the system of the governing equations of the second order resulting from the equations

of motion is solved by the Houbolt finite-difference scheme [69] as a time-stepping

method. Numerical examples are presented for various loading scenarios to analyze the

mutual response of mechanical and electrical fields. The influence of material
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parameter gradation and initial electron density is also investigated.
4.2 Governing equations

We consider one-carrier piezoelectric semiconductor with continuously
nonhomogeneous material (FGM) properties, the electron density M, in the unloaded
state, and vanishing initial electric field E,. In addition, we consider a general variation
of material properties with Cartesian coordinates. Since the physical dimension of the
device is generally smaller than the electromagnetic wavelength, the quasi-static theory
of electromagnetism for the first Maxwell equation is assumed. The phenomenon is
expressed by the following governing equations, the balance of momentum, Gauss’s

law, and conservation of charge [48]

0.1 (X,7) = pli; (X, 7), (4.2-1)
D, (X,7)=aM(x,7), (4.2-2)
qM (x,7) +J;;(x,7) =0, (4.2-3)

where U; , o,

; » Di,and Q are the acceleration of elastic displacements, stress

tensor, electric displacement field, and electric charge of electron, respectively. The
electron density and electric current are depicted, respectively, by the symbols M

and J;, . p denotes the mass density. A comma followed by an index denotes
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derivative with respect to the coordinate associated with the index. The coupling of
mechanical fields, electrical field, and electric current field has to be supplemented by
the constitutive equations Egs. (3.5.10)-(3.5.12) in section 3.5. The strain tensor &;;
related to the displacements U; and the electric field vector E; related to the electric
potential ¢ can be expressed by
g, zl(u” uy,), (4.2-7)
2
E;=—¢;. (4.2-8)
Substituting Egs. (3.5.10)-(3.5.12) into the governing equations Egs. (4.2-1)-(4.2-3),
we obtain the governing equations for the primary fields, displacements, electric
potential, and current charge density, and get the system of partial differential equations.
1 1
Cll(X)Ulyll(X,z')+E(011(X)—C12(X))U1122(X,z')+§(C11(X)+012(X))U2'12(X,T)
+(C13(X)+C55(X))u3,13(xaT)+C55(X)u1,33(xaf)+011,1(X)u1,1(xa7)+C12,1(X)U2,2(X1 7)
1
+Cl3,1(x)u3,3(X:T)+§(C11,2(X)_Clz,z(x))(ul,z(xvf)+u2,1(x’7))
+C55'3(X)(U1'3(X,T)+U3’1(X,T))+(631(X)+el5(X))¢’13(X,2')+631Y1(X)¢’3(X,2')

+615’3(X)¢1(X,r) = pli, (X, 7), (4.2-9)

Cll(x)u2,22(x’ 7) +%(Cll(x) - ClZ(X))UZ,ll(X! T)+ %(Cn(x) + ClZ(X))ul,Zl(X’ 7)

+(C13(X) + C44(X)) U3132(X, T)+ c44(x)u2133(x, 7)
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+%(C11,1(X) - C12,1(X))(u1,2 (X,7) +U,, (X, T)) +Cy5(X) (U2'3(X, 7) + Uy, (X, T))
+Clz’2(X)U1V1(X, T) + Cll,Z(X)uz,Z(X! T) +C13,2(X)u3,3(x1 T)

+(931(X) + e15(X))¢223(X, 7) + €31, (X)5(X, 7) + €5, (X)), (X, 7) = pli, (X, 7), (4.2-10)

Cog (X)Us 11 (X, 7) + Cgy (XU 5 (X, T) + Cag (X)Uy 35 (X, 7) +(Co5(X) + €5 (X) Uy 13(X, 7)
+(Caa (X) + €15 (X)) Uy 35 (X, 7) + 15 5 (X) (U (X, 7) + Uy (X, 7)) + €y 5 (XU (X, 7)

+ G (X) (U (X, 7) Uy y (X, 7)) €y o (X) (U 5(X,7) s, (X, 7))

+€35 (X) (B11 (X, 7) + 9, (X, 7)) + €55 (X) B (X, 7)

+8151 (X)P1(X, 7) + €15, (X), (X, ) + €455 (X) 3 (X, T) = ply (X, 7), (4.2-11)

€15 (X) (Us 10 (X, 7) +Us 5 (X, 7)) + €35 (X)Uy 5 (X, 7)

(815 () + €53 (0)) (U2 (X 7) + Uy (X, 7)) + €155 () (U (X, 7) + Ug (%, 7))
€152 () (U3 (X, 7) + Uy, (X,7) )+ €55 () (Uyy (X, 7) + Uy, (X,7) )

+835,5 (XU 5 (X, 7) =Ny, (X, 7) =y, (X, 7) —hoy5 (X, 7)

—hy,  (X)@(X, 7) =y, (X), (X, 7) — g 5 (X) 5 (X, 7) —qM (X, 7) =0, (4.2-12)

Mo (243 (X)B11 (X, T) + 1155 (X) B (X, 7) + 1y () (X, 7) )

+M, (/ull,l(x)¢,l(X7 T)+ ﬂzz,z(x)¢,2(x’ T)+ /133,3()()¢,3(X7 T))
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+(dyy OOM 13 (X, 1)+, ()M (X, 7) + g ()M 55 (X, 7))
+0,1, (XM (X,7) + 0y, (X)M (X, 7) + gy s (X)M 5(X,7) = M (X, 7), (4.2-13)

The above system of PDEs can be simplified due to the homogeneous material

properties as:

1 1
C11u1,11(xa T)+ E(Cll - Clz)ul,zz (X,7)+ E(Cll +Cp, ) uz,lz(xv 7)

. 4.2-14

+(C13 +C55)u3,13(x’7)+C55u1,33(xaT)+(e31"'815)¢,13(X’T) :pul(xa7)1 ( )
1 1
CiyU; (X,7)+ E(Cn - C12)u2,11(xv T)+ E(Cn + Clz)ul,Zl(X’ 7)

. 4.2-15
+(c13+c44)u3’32(x,r)+c44u2,33(x,r)+(e31+q5)¢23(x,r) =,0U2(X,z'), ( )
CosUs 13 (X, T) + Chgls 09 (X, T) + Caglly 55(X, 7) +(C55 +Cp3 ) Up5(X,7)

(4.2-16)

+(C44 + C13)U2,32 (X,7)+ €5 (¢,11(X’ T)+ ¢,22 (X, T)) + 333¢,33(Xa T)= ,OUS(X, 7),

€5 (u3,1l(x’ T)+ Us 5 (X, T)) + e33u3,33(x’ )+ (elS + 631)(U1'31(X, T)+ U, 3 (X, T))

—h,8, (X, 7) =Ny, (X, 7) =y (X, 7) —qM (X, 7) =0, (4.2-17)

M, (M1¢,11(Xa T)+ :U22¢,22(X’ T)+ :U33¢,33(X' T))
(4.2-18)
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+(d11M,11(Xa 7)+0d,M 5, (X,7) +d33M,33(X!T)) =M(x,7),

In order to approximate the unknown variables by the LRBFCM, we rearrange the

above governing equation for convenience as follows:

o* o* o° o°
+C +C u, + +C,.)—— |U
|:C11 axlz 66 8X22 55 aX§:| 1 |:(C12 66)8)(18)(2} 2

2 2

+|:(C13 +Css )M} U; + {(631 + €55 )ﬁ} ¢=pu,,

2 2 2 2
(C12+Ces)a— U +]| G a2 +Cyy 82 +Cyy 52 u,
%, 0%, 28 OX; 28

2

o* 0 }
Jr|:(C13 + C44)ﬁ:| Us + {(931 + %5)@} ¢=pU,,
2 20X3

a2 62 82 62 82 82
J{Cs pY +C, EYa +Cyg @} Us +|:elS (%Jr@jﬂss %}FP%

2

82
{(915 + e3l)m:| u, + {(915 + e3l)m:| U,
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(4.2-20)

(4.2-21)
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{ (S Z ) esijj A Zeon Zon Z-qut

o° o° 0° o° 0° o°
Mo{‘ﬁla_xlz"‘ﬂzza_xzz ax }¢+{ 118)(12+d228_)(22+d33(3x3 M=M.
(4.2-23)
For problems of FGMs, the above material coefficients are dependent on the spatial
coordinates. One can prescribe an exponential variation of material parameters as
P(x)=P ™", (4.2-24)

where p(®)

and h denotes the material property of the elastic, piezoelectric, dielectric
and coefficients at X3 =0 and beam height, respectively. The grading parameter with

respect to the elastic, piezoelectric, dielectric and coefficients is O .

4.3 Boundary conditions and initial conditions

4.3.1 Boundary conditions

The boundary conditions for the mechanical fields are considered in Eq. (4.3-1).

ui(x’f):l]i(xﬁ) on T,
t(x7)=0yn, =t (x7) on T, T=T,uT, (4.3-1)

where n; is the unit vector normal to the boundary, t; denotes the traction vector

which is the force per unit area acting on a surface, the given value prescribed on the

boundary for displacement, and traction are denoted by U;and f, respectively. For the
40
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electrical fields, we assume

#(X,7)=¢(x,7) on T,

Q(X,T)EDi(X,T)ni(X)ZQN(X,z') on ]"q’ F=Fpu1“q, (4.3-2)

where Q, q? and Q are the surface density of the free charge, the given values
prescribed on the boundary for electric potential, and for surface density of the free
charge, respectively. Then for electric charge mobility, the following boundary
conditions are considered as

M(X,Z‘)=|\7|(X,T) on T,

(4.3-3)

where the electric current flux, the given values prescribed on the boundary for electron
density, and for electric current flux are, respectively, represented by S, M, and §.
Additionally, T', is the part of the global boundary I" with prescribed displacements,
while the traction vector, electric potential, surface density of the free charge, electron
density, and the electric current flux are applied on I, T/, T',, I',, and T,

q’ a’

respectively.

In order to apply to the LRBFCM, we substitute the compact matrix form for the
constitutive equations in Egs. (3.5-10)-(3.5-12) into the boundary conditions in EgQs.
(4.3-1)- (4.3-3). We obtain Egs. (4.3-5)-(4.3-6).

41

doi:10.6342/NTU201600798



u (x,7)=0(x,7)

0 0 0 0 0 0 0
t1: Cunla"'ceenzgz"'cssns& u, + Clznlgz"'ceenza u, + Clsnlas"'cssnaa U,

‘{eslrh % +€55M, %}¢ :fl

t—cnli+clniu+cnli+clni+c niu+clni+cniu
2 66 axz 228)(1 1 66 8)(1 126)(2 4438X3 2 328X3 4436)(2 3

+[631n2 i + €5, i}¢ = f2
28 X,

t—cni+clniu+cni+clniu+cni+cni+cniu
3 551 oy 336X1 1 4426X3 35 ox 2 5518)(1 472 oy 3338X3 3

3 2 2

+ elsnli"'elsnzi"'essnai ¢:f3
ox, X, 28
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r,, I=r,ur,,

(4.3-4)
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¢(X,r):q;(x,z') on T

0 0 0 0 0 0 0
Q: elSnlg+e3ln3& u, + elSn2&+e3ln3_ u, + elsrlla+915n2_+e33n3& U,
3

3 aXZ_ aXZ

) (4.3-5)

8 o 8 . on Ty, [=r,ury,,

+__hun1&_h22n2&2_h33n3&}¢:Q a P |

M(X,z‘):l\7|(x,r) on T,
4.3-6
S=M {,ul n1i+,u n i+,L13n i}ﬂ[d nli+d n, -2 +d.n E}M =S ] )
0 1 axl 22" 2 axz 3" '3 aXS 11 axl 22" 2 axz 3373 aXS
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4.3.2 Initial conditions

The initial conditions for the mechanical displacements, electric potential, and the

current charge density are assumed as

M(x7)_,=M(x0) in Q (4.37)
4.4 Numerical solution by the local radial basis function

collocation method

By the discussions in chapter 4, the implementation is introduced in this section.
4.4.1 The transient analysis

By the LRBFCM, we recall the chapter 2 and approximate the variables in Egs. (4.3-

11)-(4.3-15) as

NL

b, (%) =Y @ f ([x=x]) =F et x, €@ (4.4-1)
k=1
NL

Uy (%7) =Y (|x=%,]) =R (e, %, €@ (4.4-2)
k=1
NL

Uy (x,7)=Y ot f (Hx ~ X, H) =F(X)o", X, €@ (4.4-3)
k=1
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$(x,7)= %a{’fk f (Hx — X H) =F(X)af, X, €@ (4.4-4)
k=1

M (x,7)= iam f (Hx— xika) =F(X)a", X, €@ (4.4-5)
k=1

where all the computation points are within the local influence area @ with respect to
each computation point X; . In addition, we approximate the second-order partial

derivative terms with respect to time by the Houbolt finite-difference scheme [69]. The

acceleration of elastic displacement U; inthe X; dimension can be defined as

2, (X,7+A7) =50, (X, 7)+4u, (X, 7-A7)-U, (X, 7 - 2A7)
A7?

U, (X, 7+A7)=

(4.4-6)

and the first-order temporal partial derivative term, M | can be approximated as

M (X,Z’+AT)—M (X,T)

4.4-7
A (4.4-7)

M(X,T+A7);

by the backward difference method. After the process of the LRBFCM, we utilize the S
asthe S whose given operator are the first partial spatial derivative with respect to  X;

and Xj and transform the governing equations into the following linear system

_ 5 _
A11 - A_PZ I A12 A13 A14 A15
T
2p a” B,
A21 Azz - A_‘L'2 I A23 A24 Azs ol ]32
2p ot t=1B,t, (4.4-8
A31 Asz A33 - A_Tz I A34 A35 a¢ BS ( )
4
A, A, A Ay A oM B,
1
Asy As, Ass Ay Ags— E I

The governing equations for the transient analysis in Eq. (4.3-8) can be divided by several
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parts, shown as follows.

Ay =[S +0y8% e 8% | Ay =[(co+¢)S7 ],

Ay =[(cn +0)S2 ] Ay =] CS" +6iS” +¢, %
Ay =[ (e +0)S" |, A =[(C+63)S7 |,

Ay =[(es+e4)S° ], Ay =[(as+ey)S™ | |

A, =[0],,., As, =[0].,

A =[(ca+cs)S° |, Ay =[(ea+es)S” ] |
An=[(0s+0u)S™ ], A =[(en+es)S™ ] |

Az = [Csssll +¢,S% + C33833] Ay = [615 (Sll +8% ) +e$3833]NxN

NxN

A43 - |:e15 (Sll +S% ) +ea3833:| A44 = I:_hllsll - hllszz - h33833]N><N

NxN
Ay = [O]NxN Ag = [O]NxN
A :[O]NXN
Ag = [O]NxN
Az = [O]NxN

A= [_qI]NxN

Ay =[d,S" +d,,8” +d8% |

NxN
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5 4
el DO S CNC LI e CXC

5 4
8= [0 ()] gl (-] - (28],

5 4
B, == s (7)) e[ (=80, e ( 227,
B, :[O]le

1
B :_E M(T)]le

However, the approximation of the first-order temporal partial derivative term by the
backward difference method is first-order accurate. It overshadows the second-order

accurate approximation for the second-order temporal partial derivative terms by the

Houbolt finite-difference scheme. Therefore, we also adopt the second-order accurate
central difference for the first-order temporal partial derivative term and investigate the

effects. The linear system of the governing equations is modified as:

2p
A11 _F I A12 A13 A14 A15
T
2 o B,
A21 A22 _A_;Oz I Azs A24 A25 a2 ]32
2 a® r=1B,t, (4.4-9
A31 A32 A33 Afz I A34 A35 a¢ BS ( )
4
A, A, Ay Ay A o B,
1
| 51 Asz A53 A54 Ass EI

The components in the linear system are exactly the same except Bs as
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4.4.2 The static analysis

For validation of the LRBFCM method, we analyze the static case and the governing

equations become

Gij,j(XaT)ZO,

D.i(X,7)=aM(x,7),

J.i(x,7)=0.

The linear system in Eq. (4.3-8) becomes

_All A12 A13

22

4

LS}

A, A, A
Ag Ay Ag
A, A, A
A, A, A

52

A14

24

4

N

>> > > >

A
As
A
A

54

iy
o

N
[$2]

B
(&)

a’ ¢ ={0},

(4.4-10)

(4.4-11)

(4.4-12)

(4.4-13)

The governing equations for the static analysis in Eq. (4.3.10) can be divided by several

parts, as shown below.

Ay, = [Cnsll + C66822 +055833 ]NxN

Ay = [(C12 *Cos )Slz:INxN
A31 = [(ClS +055)Sl3]NxN

Ap= |:(e15 + e31)9’131\1X,\‘

A, =[0]

NxN

48

A12 = [(CIZ +Ces )SlZJNxN

A, = [C%S11 +¢,S% + CMSSB]NxN

Ay :[(044 +C13)SZ3]NxN
A42 :[(els +e31)323]NxN

Ag = [O]NxN
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A, :[(013+Q55)813}Nm Ay :[(e31+el5)813}mw
A,, =[(c13 +c44)823]NxN A, =[(e3l+e15)823]NxN

A, = [CSSSH +C,,S? + Csssgsl\, A, = [615 (Sn 412 ) +633S33:'

X

NxN

Ay = |:e15 (Sll +8% ) +633333:| Ay = [_hllsll —h,§* - h33s33]NxN

NxN

A, =[0] A, =[0]

NxN NxN

A, =[0]

NxN

A, =[0]

NxN

Ay =[0]

NxN
A =[=al],.

A, = |:e15 (811 4182 ) +633833:|

NxN

A =] dyS" +0,,8% +d,, 8% |

xN

4.5 Numerical examples

In this section we first verify the presented LRBFCM by comparing the results of
the LRBFCM with those of the FEM. The FEM solutions are taken from the commercial

software, COMSOL. The computational domain is shown in Fig.4.5.1.
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-
P
e
P
e
-

X
., z
- X

Fig.4.5.1 The geometry of the beam.

The length | |, width W, and height h are 0.1 m, 0.005 m, and 0.01 m, respectively.

The material properties for aluminum nitride (AIN) [70] are considered for the

homogeneous ( & =0) and shown as below.

o =clY) =4.03x10™ Nm?, ¢Y) =1.43x10" Nm™?, ¢ =c{2) =1.04x10™ Nm?,
cl9 =3.82x10" Nm2, ¢l =cY =1.20x10" Nm’?,

el =-0.39Cm, el =-0.66 Cm~?, € =1.57Cm?,

hy =h{) =h{) =8.092x10™ C(mV) ",

Hy =ty = gy =3.0x1072 m? (Vs) ",

d, =d,, =d,, =7.0x10™* m’s™,

p =3255kgm™, q=1.602x10" C, M, =1.0x10° m™,
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Fig.4.5.2 shows the structured distribution of 2805 (51x5x11) points which is utilized

to approximate the variables. The red points and the blue points denote interior points and

boundary points, respectively.

2 Interior points
@ Boundary points

0.o08 4;.5.1!“"5"""
‘L.q-;-l-l""“
0.006 {.ﬂll'i"b"'i

‘;.5.!.1-&5'!-"

i [m] 0o

Fig.4.5.2 The distribution of the points.

In the numerical example, a uniform static compressive load at the top of the analyzed

beam is considered. All the prescribed boundary conditions are given as follows:

f(x)=0 Q(x)=5(x)=0 at xel|,_ouT],
i(x)=0, Q(x)=S(x)=0 at xell, ol _,
t(x)=0, #(x)=Ni(x)=0 at xell],
f3(x)=100Pa,  f(x)=1,(X)=Q(X)=5(x)=0 at xeT|,

Furthermore, taking into account the symmetry and in order to eliminate the rigid body
motion, U3(x)=0 at X € F|X1=0 UF|X1=| , 0y (x)=0,(x)=0 at

XE€T, o o2 Ur|x1=l,x3=h/2 are assumed and the vanishing initial values are imposed on
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the initial conditions.

u,(x,=0)=0
u, (x, =0)=0
T, (x,=0)=0

U =

U, = 0

0
“_. = /

u(x,=1)=0
T, (x, = h)=100 uy(x,=1)=0
T,(x=1)=0

fll = ()

==
\u_. =0

L ‘ U, =0

¢(x,=0)=0
X M (x,=0)=0

Fig.4.5.3 The illustration of the boundary conditions.

4.5.1 The validation of the LRBFCM

elsewhere:
Q=0
7 =0

S=0

note:T, =6 n +0,,

We compare the benchmark FEM-COMSOL results obtained by 9353 tetrahedral

elements for the line along X, and located at X, =0 and X3 =h/2 with those of the

LRBFCM. The variation of displacement in direction 3, electric potential, and electron

density are shown in Fig.4.5.1.1-3, and the three different values of uniform static

compressive load at the top of the beam are prescribed in this numerical analysis.
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A A AT,=200 [Pa] - LRBFCM
T,=100 [Pa] - FEM

+ + +T,=100 [Pa] - LRBFCM
¢ & #T,=50[Pa]- LRBFCM

E ] ]
5 A A
6E-009 — -
A A
i N N i
-8E-009 — A A —
A A
] A Aga AA ]
1E-008 e
0 0.02 0.04 0.06 0.08 0.1
Xy [m]

Fig.4.5.1.1  Variation of vertical displacement for a line along X% and located at

X, =0 and X3 =h/2 in the static analysis.

0 T | T T ‘ T

A A AT,=200 [Pa] - LRBFCM
T.,=100 [Pa] - FEM

+ + +T,=100 [Pa] - LRBFCM
& & #T,=50[Pa] - LRBFCM

et ot
.
.

'_'-0.4 2 L
> i i
= A A
-0.6 — A A —
A A
i N N i
08 A A —
AAAAAA
A T T T T
0 0.02 0.04 0.06 0.08 01
Xy [m]

Fig.4.5.1.2  Variation of electric potential for a line along X and located at

X, =0 and X3 =h/2 in the static analysis.
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4E+007 T ‘ T ‘ T
AAAA A A AT,=200[Pa]-LRBFCM
f A N i T,=100 [Pa] - FEM
R A | |+ 4+ +T,=100[Pa] - LRBFCM
3E+007 — R A | | & #T,=50[Pa]- LRBFCM
i A A
T A A
E 2E+007 — -
= 4
1E+007 —
_{
0 T | ‘ T I T |
0 0.02 0.04 0.06 0.08 0.1
X; [m]

Fig.4.5.1.3  Variation of electron density for a line along X and located at

X, =0 and X3 =h/2 in the static analysis.

From the above comparisons, the LRBFCM results agree well with the benchmark FEM
results obtained in the static analysis for a homogeneous beam. The increasing bending
of the beam, induced electric potential, and electron density are observed with the

increasing value of the uniform static compressive load.
4.5.2 The influence of initial electron density

Then, the influence of the initial electron density is investigated in this subsection.
It is shown that the initial electron density plays an important role in the electron density
in Fig.4.5.2.3, while, the slight effects on the vertical displacement and the electric

potential are observed in Fig.4.5.2.1-3.
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0 * T _*
A A AM=107[m?
* 2|+ 4+ +M=10°[m7]
-B009 o . ¢ & ¢M;=0[m7]
1 . .
-2E-009 — —
R |
=] * *
-3E-009 — —
% *
, . . ,
4E-009 — * _
* *
i} % Sea ot i}
-5E-009 I I T I
0 0.02 0.04 0.06 0.08 0.1
X; [m]
Fig.4.5.2.1  Variation of vertical displacements along the line (X, X, =0,%;3 =h/2)
for different values of M, in the beam under static load T; =100Pa .
-0.1 T T
A A AMF=107 [mF
1 o & | + + +M=10°[m?]
* & — | & eM=0[m?
0.2
* e s
il o . .
=03 *® * .
=
| ? _
% * |
04 ] * #
0.4 * - B
o0t
05 L |
0 0.02 0.04 0.06 0.08 0.1
X, [m]
Fig.4.5.2.2  Variation of electric potential along the line (X, %, =0,x3=h/2) for

different values of M, in the beam under static load T, =100Pa .

55

doi:10.6342/NTU201600798



2E+008 T T | T ‘
YW A A AM=107[m?
B A —1N6 3
A A + + +M,=10 [T |
1.6E+008 — A A * ¢ ¢M;=0[m~
i A A
A A
1.2E+008 —
= A A
E _
= A A A
8E+007 | A A A
| 4 AA
4E+007 —
FEEEE AT
bt T Ty

0 0.02 0.04 0.06 0.08 0.1
Xy [m]

Fig.4.5.2.3  Variation of electron density along the line (X, %, =0,%3=h/2) for

different values of Mg in the beam under static load T; =100Pa .

Since the value of the electric charge of electron is quite small in comparison with the
other material coefficients, the mechanical fields and electric potential in Eqgs. (4.2-14)-
(4.2-17) are affected slightly by the change of the electron density. However, the electron

density highly relies on the value of the initial electron density in Eq. (4.2-18).

4.5.3 The influence of grading parameter

In this subsection, the influence of grading properties 0 in Eq. (4.2-24), the elastic,

piezoelectric, and dielectric coefficients, on the response to the uniform static
compressive load T, =100Pa with the initial electron density M, =1.0x10° m™ are

analyzed in Fig.4.5.3.1-3.
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0 * | T T _*
4 A ¢ ¢ #5520
oA A® | I+ + +5=In(1.5)
Ta at | L4 A5=In(2)
-1E-009 — o+A Ate
- -|-AA AA+ .
* 4 a A+ ¢
-2E-009 — + A AA + —
E | s Mttt Lt
. ¢ +++ +"'+ ¢
-3E-009 — —
. it .
, . . i
4E-009 — * * .
. .
— "“ -
-5E-009 I T I I I T
0 0.02 0.04 0.06 0.08 0.1
X, [m]

Fig.4.5.3.1  Variation of vertical displacement along the line (X, X, =0,%;3 =h/2)
for different values of the gradation parameter s in the FGM beam under
the static load T; =100Pa .

0 T
* ¢ 50
+ + +5=In(15)
AA
Ada A A A AS=In(2
-0.1 ++ (2)
+++AA Ay
+ a AT oo

0.2 ”‘ ++AAA A‘A++ ¢
T . Y VYV T LN
2 4 + ]
= L 4 ++ +++ *

0.3 L 4 Tt ¢ —

_ ¢ . |
* .
04 . _
0.4 . ‘0
%o
05 | ] |
0 0.02 0.04 0.06 0.08 0.1
% [m]
Fig.4.5.3.2  Variation of electric potential along the line (X, %, =0,x3 =h/2) for
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different values of the gradation parameter & inthe FGM beam under the

static load T; =100Pa .

2E+007 T | T T T
| TN | |* * e5=0
+ + +5=
. . 5=In(1.5)
1.6E+007 — * . — |A A AS=In(2)
4 . * 4
* *
1.2E4007 — ++++++ —
& * 4 +, .
£ J + + J
s L 4 AAAAAA + *
8E+006 A
”‘ + AA A + ¢
+ A A *e
+,+,4 AL
4E+006 A+AA A+t
A Asa
L R | I \
0 0.02 0.04 0.06 0.08 0.1
X; [m]

Fig.4.5.3.3  Variation of electron density along the line (X, X, =0,x; =h/2) for
different values of the gradation parameter & inthe FGM beam under the
static load T; =100Pa .

It is observed that the increasing value of the gradation parameter & of the elastic,
piezoelectric, and dielectric coefficients yields decreasing response of the vertical

displacement, electric potential and electron density.

4.5.4 The influence of complex grading parameter
In the subsection, the three combinations of the gradation of material coefficients in

the FGM beam:

M #1 - the grading parameters of the elastic coefficients, piezoelectric

coefficients, and dielectric coefficients are 6 =1In(2) ;

(i)  #2 - the grading parameter of the dielectric coefficients & =In(1/2) , while
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the grading parameters of the elastic and piezoelectric coefficients are

s=In(2);

(ili)  #3 - the grading parameter of the dielectric coefficients & =In@/2), while

the grading parameters of the elastic and piezoelectric coefficients are

homogeneous (5 =0).

The comparisons of the numerical results are shown in Fig.4.5.4.1-3.

* ¢ o
+ + +#2
A A A#3
Homogeneous properties

A
IYWe 1

-6E-009 I T I I T I

0 0.02 0.04 0.06 0.08 0.1
X, [m]

Fig.4.5.4.1 Variation of vertical displacement along the line (X, X, =0,%; =h/2)

for the three combinations of the gradation of material coefficients in the

FGM beam under static load T; =100Pa .
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04 T T T

* ¢ oy
+ + +#2
A A A#3
Homogeneous properties

AAAAAA —

'1 2 T ‘ | T | T ‘
0 0.02 0.04 0.06 0.08 0.1
Xy [m]

Fig.4.5.4.2  Variation of electric potential along the line (X, %, =0,x3 =h/2) for
the three combinations of the gradation of material coefficients in the FGM

beam under static load T; =100Pa .

4E+007 T T T T
AA“AK N * o o
i uA A T+ + +#2
A
3E+007 — A A A AR
A A Homogeneous properties
- A -
A
2E+007 — A —
— A
£ | A |
= A ++
1E+007 —
+ AT AARAAE TN R
* L PG
'S 24 ‘e
X ob
0+
-1E+007 | T ‘ | ‘ T | "
0 0.02 0.04 0.06 0.08 0.1

Xy [m]
Fig.4.5.4.3 Variation of electron density along the line (¥,%, =0, =h/2) for
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the three combinations of the gradation of material coefficients in the FGM
beam under static load T; =100Pa .

From the above results, the vertical displacement in homogeneous beam is much smaller
than that in cases #1 and #2, while the effect on the electric potential and electron density

is less distinctive in these two cases. In the case #2, the larger electrical outputs are
observed near the beam ends (¥ =0and x, =1) . The larger electrical outputs and vertical

displacement compared with those in the homogeneous beam are observed in the case #3.

4.5.5 The transient analyses

The transient analysis is analyzed with the compressive impact load uniformly
distributed on the top of the beam. The same boundary conditions as those in the static
case are considered with the vanishing initial conditions including the initial electron
density. The total computational time interval is composed of 77 time steps with the size
of the time step Az =6.5x107° [sec]. Due to the difference of accuracy for the first- and

second-order temporal partial derivatives, the approximations of central-time (CT) and

backward-time (BT) methods in time are investigated as shown in Fig.4.5.5.1-2.
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Fig.4.55.1 Time evolution of vertical displacement along the line

(%,% =0,x3=h/2) by the CT and BT methods for the first-order

temporal partial derivative under static and impact load T, =100Pa .
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Fig.4.5.5.2  Time evolution of electric potential along the line (X, X, =0,%;3 =h/2)

by the CT and BT methods for the first-order temporal partial derivative
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under static and impact load T; =100Pa .

From the results by the CT and BT methods for the first-order temporal partial derivative
we observed that there is almost no difference. Therefore, the Houbolt finite-difference
scheme for the second-order temporal partial derivatives and the backward-time method
for the first-order temporal partial derivative are applied in the following transient

analyses. Fig.4.5.5.3-4 show the comparisons of the numerical results for the vertical
displacement and electric potential at the point (X, =1/2; X, =0; X3 =h/2) obtained in

the static analysis and transient analyses with the homogeneous properties and three

combinations of the gradation of material coefficients in the FGM beams.

Homogeneous (Transient)
Homogeneous (Static)

¢ O O

A A AHD

+ + +#3

us [m]

-1.2E-008 T I i ‘ T I T

0 0.0001 0.0002 0.0003 0.0004 0.0005
time [sec]

Fig.4.55.3 Time evolution of vertical displacement along the line

(%,% =0,%=h/2) for the three combinations of the gradation of

material coefficients in the FGM beam under static and impact load

T, =100Pa .
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Fig.4.5.54  Time evolution of electric potential along the line (X, X, =0,%; =h/2)

for the three combinations of the gradation of material coefficients in the

FGM beam under static and impact load T; =100Pa .
It is observed that the transient responses at the point (X =1/2;%, =0; X3 =h/2)
oscillate around the static values (hence the amplitudes are equal to the static values).
Additionally, the peak values of the vertical displacement in #1 and #2 are approximately
half of that in the homogeneous properties. The peak values of the electric potential in #1
and #2 are slightly smaller than those in the homogeneous properties. Although #3
performs slightly larger displacement with respect to the homogeneous case, it increases

almost twice peak values of electric potential.
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Chapter 5 Conclusions and Future Works

5.1 Conclusions

The proposed meshless method, the LRBFCM, is investigated and developed to
analyze three-dimensional functionally graded piezoelectric semiconductors problems in
this thesis. The FEM results obtained by the commercial software, COMSOL, are
compared with the LRBFCM results and in good agreement in the static analysis for an
analyzed beam with homogeneous material properties. Furthermore, the LRBFCM shows
that the larger uniform static compressive load at the top of the beam results in the larger
mechanical response and electrical outputs. The influence of initial electron density is
also investigated. In comparison with the induced electron density, the resulting
mechanical displacement and induced electric potential have small influence on the initial
electron density.

Subsequently, since the LRBFCM performs the simplicity of prescribing spatial
variation of material properties, an exponential gradation of material properties along the
height of the FGM piezoelectric beam is prescribed and analyzed in numerical examples.
It is observed that the lower mechanical displacement resulting from the increasing
grading parameter of the elastic, piezoelectric, and dielectric coefficients. In addition, we
analyze the three combinations of the gradation of material coefficients in the FGM beam.
Among the three cases, the decreasing gradation of dielectric coefficients which
contributes to the larger electrical outputs is observed and utilizing this characteristic
could reduce the stress concentration of piezoelectric devices.

Ultimately, the transient analyses are investigated with vanishing initial conditions
and initial electron density in the homogeneous and FGM piezoelectric beams. The results
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show that the peak values of vertical displacement and electric potential in the transient
analysis are two times larger than those in the static analysis with the homogeneous
material properties. By the use of grading properties, the vertical displacement in transient
analyses can be lowered to the half and be increased to the double in static analysis with
the homogeneous properties.

The strong form meshless method is first applied in the analysis of general 3-D
piezoelectric semiconductor solids in this thesis. The LRBFCM is an alternative

numerical method and promising to be extended to complex problems in the future.
5.2 Future Works

The LRBFCM is proved that it is advantageous to address the complicated
engineering problems which geometrical scales in three dimensional and scales of values
of material properties are very different. Therefore, the following topics are expected to
analyze.

1. The non-uniform compressive load at the top of the beam can be considered to test
the response of the piezoelectric equipment.

2. The piezoelectric materials which have the pyroelectric effect are expected to
investigate. (In many piezoelectric materials an electric outputs is generated if
temperature variations are applied. This effect is called as the pyroelectric

phenomenon.)
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Appendix

A. Houbolt method

For the second-order temporal derivatives, the Houbolt method is second-order

accurate, and the derivation is shown as follows:
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