B 328 K2 ERE NPT B AR % Rt 2007
#E 13 X =

Graduate Institute of Networking and Multimedia.

College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

ETHREAEMRREZRITHDA B KA

Visual-Inertial Ego-Positioning for Flying Cameras

RAe

Qiao Liang

R - T
Advisor: Yi-Ping Hung, Ph.D.

TERE 1057 A
July, 2016

d0i:10.6342/NTU201601311



NI

2+
WS

BRMASERZOMFEFLRERET  RHE—BLEHFSAY
Koy Bl Fa g Bh o

BARHIEEHRE—FEARNFAFBRTEETRTEMBARE -
ZERAE R LA BAE B Rt B FRBIT ARG 2T Rk » £
HAEAEN T EE L — AR ERERFBFLE MA K -

RBEBRHAREXZE R B EHROTE > kT BT HAMA
Bhod o BB RF KRS AR PSR TEREKENFIZELT
RE BB AR -

R F R A E Rk - A — SRR RN TRIRT
RARRR > REABFEXE RGP ROBSTFR > UARGA XL
Bi~ RALE B ERH L EHOATCHET  BRESI THRO L& -
A SPGB B R B E T R BR A BB o R RERE R
FoRE -~ S8 BEAMZLOERLS N ERMLRICRAS AE S
B AT i

Soobh o BB RCHHE R RIS R AT > —ARIER > —ARVEAR 0 —
AR T A NEY 0 LR AR TR -

B ORHBREREORA > M EEHFG XFNER > TR
ERRGESHTER

d0i:10.6342/NTU201601311



eI

TXHR

M ERATHEBDHROBELR > B R EMENEAREL MR
MR — EEEZMEaEN EERMBEBERAEE
L (IMU) B & R KA~ i EF E458 > JEw A6 AN RITHELS RS
B &AL o BB W X ARE AR R B AR R B ek A B &
BATHAE LR BB/ PR ERAEEARE —ERITHEDHLE R
BMZH K o AXH=ZMBEATRALENANEHTMNEEBRE T
B 7 ik AT R B T 69 B 5 0 0 47 % H A 7 AT 3 75 4% A 05 7T 48
EAGRR > AR EE T RN ER G R ERE - FEBAE M
BEARH  AXFIN—REANEHKBE T XOERBRE T L #
REFERREHES  LEERERTRET H AR M -

MegF: ROB|BHL BRI FERT ATLM AEHEIE
AR R 3 Rk S

i d0i:10.6342/NTU201601311



Abstract

In this paper, a low cost monocular camera and an inertial measurement
unit (IMU) are combined for the ego-positioning on flying cameras. We firstly
survey the state-of-the-art monocular visual positioning approaches, such as
Simultaneous Localization and Mapping (SLAM) and Model-Based Local-
ization (MBL). Three of the most representative methods including ORB-
SLAM, LSD-SLAM, and MBL ’ which are originally designed for vehicles,
are evaluated in different scenarios. Based on the experiment results, we ana-
lyze the pros and cons of each method. Considering the limitations of vision-
only approaches, we fuse the visual positioning with an inertial sensor based
on a loosely-coupled framework. The experiment results demonstrate the ben-

efits of visual-inertial sensor fusion.

Keywords: Flying Cameras, Ego-Positioning, Monocular Vision, Visual Po-

sitioning, Visual-Inertial Sensor Fusion.
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Chapter 1

Introduction

1.1 Motivation

With the development of technology, Micro Aerial Vehicles (MAVs) are widely used in
industry and daily life. A MAV is a class of miniature Unmanned Aerial Vehicles (UAVs)
that has a size restriction and is always autonomous. Development of MAV is driven by
commercial, research, government, and military purposes. The small craft allows remote
observation of hazardous environments inaccessible to ground vehicles. MAVs also have
been built for hobby purposes, such as aerial robotics contests and aerial photography. One
of the most representative MAV products in recent years is the Phantom 4 [4] developed
by DJI, as shown in Figure 1.1 with other popular products. This kind of products is
usually equipped with a camera and has been widely used in aerial cinematography and
photography, so they can be also called flying cameras. To enable the flying cameras to
navigate autonomously in different environments, accurate and robust ego-positioning is

indispensable.

1.2 Positioning Techniques for Flying Cameras

Ego-positioning aims at locating an object in a coordinate system based on the sensors
mounted on the object. For outdoor positioning, the Global Positioning System (GPS) is

the most popular positioning technology in the past few decades. However, the precision

1 d0i:10.6342/NTU201601311



Figure 1.1: The state-of-the-art MAVs. (a) DJI Phantom 4. (b) 3DR Solo. (c) Parrot
Bebop 2. (d) AscTec Falcon 8.

of GPS sensors is around 3 to 20 meters [5,6] and hard to meet the requirement in accurate
navigation. Furthermore, existing GPS systems do not perform well in urban areas full of
high rises and cannot work in indoor environments. Because of the drawbacks of existing
GPS, other positioning methods more accurate and independent of external signals are
needed. Laser scanners can achieve high accuracy, but the sensor suites are too bulky to
be practical on flying cameras. From the trend in recent years, vision-based positioning
is probably the most viable solution for flying cameras with very limited weight, since
visual solutions only required to carry very lightweight, cheap cameras and are capable of

running in real time.

1.3 Visual Positioning

Nowadays the vision-based positioning is well studied in the community and a vari-
ety of solutions are available, mostly known as Simultaneous Localization and Mapping
(SLAM). In terms of different kinds of cameras, vision-based positioning can be divided
into RGB-D, Stereo and Monocular. The RGB-D sensor consists of a RGB camera, an
infrared (IR) camera and an IR projector. RGB-D cameras such as Microsoft Kinect [7]
provides both color images and dense depth maps at full video frame rate. This allows

creating a new approach to visual positioning that combines the scale information of 3D
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depth sensing with the strengths of visual features [8, 9]. However, this kindsof sensors
cannot be used in outdoor environments and has great restrictions in the depth distance, so
RGB-D cameras are not applicable for the positioning for flying cameras. A stéreg'camera
is a type of camera with two or more lenses with a separate image sensor for each lens.
This allows the camera to simulate human binocular vision, and gives it the ability to per-
ceive the depth in real scale from the images [10, 11]. The fixed small baseline means the
estimated distance will be less precise due to narrow triangulation, so the stereo cameras
have bad performance in large-scale outdoor environments.

In [12, 13] the authors reduced the sensor suite to one single camera, which is known
as monocular visual odometry. One of the major benefits of monocular SLAM comes
with the inherent scale-ambiguity, which allows to seamlessly switch between differently
scaled environments, such as indoor environments and large-scale outdoor environments.
Scaled sensors on the other hand, such as depth or stereo cameras, have a limited range
at which they provide reliable measurements and hence do not provide this flexibility.
Another advantage of monocular cameras is that it can be very low cost and has been
widely equipped on existing MAVs. There is almost no demand to add additional sensors
since most commercial MAVs are equipped with cameras as basic configuration. In recent
years, many efforts have been made aiming to perform monocular visual SLAM in real
time and the community launches a variety of visual positioning frameworks for different
purposes [1,3, 13—16]. In this paper, we evaluate the performance of the most represen-
tative state-of-the-art monocular methods and discuss on the pros and cons of them. We
aim to find their most suitable application scenarios respectively and discuss the possible

complementary combination in the future.

1.4 Inertial Sensor

Although monocular visual positioning is probably the most viable solution for flying
cameras, there are still some limitations. Vision-only solutions rely heavily on the image
quality and the number of feature points, so this kind of methods is easy to fail with serious
blur or lack of features. Furthermore, the monocular solutions suffer from the lack of
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Figure 1.2: The visual and inertial sensors used in our experiments. (a) The used x-IMU.
(b) The RGB camera on Phantom 4.

metric scale. Considering these drawbacks, a well known direction is to fuse the Inertial
Measurement Unit (IMU) with the vision result [2,17-19]. An inertial measurement unit
(IMU) typically comprises three orthogonal accelerometers to measure the acceleration of
the body, and also includes three orthogonal gyroscopes to measure the rate of change of
the body’s orientation. Linear velocity and position, and angular position are obtained by
integration or double integration. This is the principle behind inertial navigation systems
(INS) which are used in aerospace and naval applications. An IMU is small in size, low
cost and power efficient and thus is suitable for flying cameras. In this paper, we fuse the
inertial data with the visual positioning result using a loosely-coupled method [20]. The
used sensors are x-IMU [21] and the RGB camera mounted on the Phanthom 4, as shown

in Figure 1.2.
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Chapter 2

Related Works

2.1 Monocular Visual Positioning

For monocular SLAM, the early solutions are filter-based approaches [14,22,23], in

which every frame is processed by the filter to jointly estimate the map points and the

camera pose. It has the drawbacks of wasting computation in processing consecutive

frames with little new information and the accumulation of linearization errors. The later

proposed keyframe-based approaches [13] estimate the map using only selected frames,

allowing to perform more costly but accurate bundle adjustment optimizations.
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Figure 2.1: The differences between direct methods and feature-based methods. This

figure is from [1].
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Monocular SLAM approaches can be divided into two categories — direct.and feature-
based, as shown in Figure 2.1. Direct methods optimize the geometry directhy-on the
image intensities, which enables using all information in the image, including eg edges
-while feature-based approaches can only use small patches around corners., This leads
to higher accuracy and more robustness in sparsely textured environments (e.g. indoors),
and a much denser 3D reconstruction. In [15,24,25], accurate and fully dense depth maps
are computed, which is computationally demanding and requires novel GPU to run in real
time. In [26], a semi-dense depth filtering formulation was proposed which significantly
reduces computational complexity, allowing real-time operation on a CPU and even on
a modern smartphone [27]. In [1], the authors propose a Large-Scale Direct Monocular
SLAM (LSD-SLAM) method, which not only locally tracks the motion of the camera,
but also builds consistent, large-scale maps of the environment including loop-closures in
real time. The benefits of direct method are higher accuracy and robustness in particular in
environments with few features, and this method provides substantially more information
about the geometry of the environment.

Feature-based methods performs feature extraction and matching before optimiza-
tions. The most representative feature-based SLAM system is probably Parallel Tracking
and Mapping (PTAM) [13]. It was the first work to introduce the idea of splitting camera
tracking and mapping in parallel threads, and demonstrated to be successful for real time
augmented reality applications in small environments. PTAM has become a standard in
monocular vision, and it has been adapted for MAVs navigation [28]. Recently an impres-
sive real-time monocular SLAM systems called ORB-SLLAM [3] that uses the efficient
ORB feature has been presented. In this work, they implement a complete system that
operates in real time with the capability of wide baseline loop closing and relocalization.

In addition to visual SLAM which performs mapping at the same time, there is an
alternative to build the map or model previously, known as Model-Based Localization
(MBL) [16]. This kind of approach applies to the ego-positioning in a known or repeatedly

passed area.
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2.2 Visual-Inertial Sensor Fusion

features 4N
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Figure 2.2: The differences between tightly-coupled methods and loosely-coupled meth-
ods. This figure is from [2].

The visual-inertial fusion approaches found in the literature can be divided into two
categories: Tightly-coupled and loosely-coupled. Tightly-coupled approaches directly
fuse the visual and inertial data, thus considering all correlations amongst them and achiev-
ing higher precision. In [17], the authors propose an Extended Kalman Filter (EKF)-
based real-time fusion using monocular vision, named Multi-state Constraint Kalman Fil-
ter (MSCKF). This work performs with errors below 0.5 percent of the distance traveled.
In [29], a novel EKF-based algorithm is proposed, named MSCKF 2.0. The method de-
scribed in [19] applies keyframe concept into nonlinear optimization by marginalization
to achieve better accuracy.

Loosely-coupled systems in contrast process the IMU measurements and vision mea-
surements separately, limiting computational complexity, seen as the simplest and most
computationally efficient approach. Separately processing the two sources of information
leads to a reduction in computational cost, and as a result loosely coupled methods are typ-
ically suited for systems with very limited resources, such as flying cameras [30]. Weiss
et al. [2] propose an EKF-based algorithm that is independent of the underlying vision
algorithm which estimates the camera poses. They later present a versatile framework to
enable autonomous flights of a MAV in [20] by treating the visual part as a black box.
This method is suitable for us to implement on flying cameras since it is computationally
efficient and can be easily used with different visual positioning algorithms.

7 d0i:10.6342/NTU201601311



Chapter 3

Visual Positioning for Flying Cameras

As described in the previous section, we choose three of the most representative state-
of-the-art monocular solutions for experiment, which are MBL, ORB-SLAM and LSD-

SLAM.

3.1 Model-Based Localization

Model-based visual localization applies to the scenarios that we want to know our
position in a known or repeatedly passed area. The major difference between MBL and
SLAM methods is that MBL builds the global map or model previously before localiza-
tion, while SLAM methods perform the localization and mapping simultaneously. The
MBL method proposed by Chen et al. [16] consists of two phases — the training phase and

the ego-positioning phase, as shown in Figure 3.1.

3.1.1 Training Phase

In the training phase, image-based modeling is performed, which aims to construct a
3D point cloud model from a number of input images. One of the well-known image-based
modeling systems is the Photo Tourism method [1], which uses structure from motion to
estimate camera poses as well as reconstruct 3D scene geometry from images simulta-
neously. Firstly, SIFT features are extracted upon each image in the image collection.
For every image pair, the feature point descriptors are matched with approximate nearest

8 d0i:10.6342/NTU201601311
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Training SIFT Feature
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Figure 3.1: The overview of Model-Based Localization.

neighbors, and the fundamental matrices of all pairs are estimated using RANSAC, sub-
sequently. In the next step, an incremental Structure from Motion (SfM) method is used
to avoid bad local minimal solutions and to reduce the computational load. It recovers
camera parameters and 3D locations of feature points by minimizing the sum of distances
between the projections of 3D feature points and their corresponding image features based

on the following objective function:

mlglzszd (Q(Cj7pi)7pij) ) (31)

Gt =1 j=1

where c; is the camera parameters of image j; m is the number of images; F; is 3D coordi-
nates of feature point ¢; n is the number of feature points; v;; denotes the binary variables
that equals 1 if point ¢ is visible in image j and 0 otherwise; Q(c;, P;) projects the 3D
point i onto the image j; p;; is the corresponding image feature of 7 on j; and d(.) is the
distance function. This objective function can be solved by using bundle adjustment, and
a 3D point cloud model is built simultaneously. It includes the positions of 3D feature

points and the corresponding SIFT feature descriptor list for each point.
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3.1.2 Ego-Positioning Phase "’/ \ Y

which aims to find the correspondences between 2D and 3D feature poi'ﬁii:g?h_& then com-
pute the position of the 2D image in the 3D model. Given a test image, 1ts/SIF’1“ feafulres
are firstly detected and the descriptors are computed at the same time. 2D-to-3D matching
is referred to as finding the correspondence of the 2D points in the test image and the 3D

points in the compressed model. Then, the camera position can be estimated based on the

correspondence using the 6-point DLT algorithm with RANSAC.

3.2 LSD-SLAM

LSD-SLAM [1] is a novel, direct monocular SLAM method, which directly operates
on image intensities both for tracking and mapping, instead of using feature points. The
algorithm consists of three major components — tracking, depth map estimation and map

optimization. The overview of the complete algorithm is shown in Figure 3.2.

Tracking Depth Map Estimation Map Optimization

Replace/Refine

al keyframe g1i5ha)

pose estimation by
direct image alignment

image depth map variance

pose graph of keyframes

Figure 3.2: Overview over the complete LSD-SLAM algorithm.

3.2.1 Tracking

The tracking component continuously tracks new frames with the current keyframe as
reference. It estimates their rigid body pose & € se(3) with respect to the current keyframe.

The pose of the previous frame is used as initialization. For pose estimation, direct image

10 d0i:10.6342/NTU201601311



alignment is performed using a novel method proposed in their paper, which directlyuses

image intensities instead of feature points. =

3.2.2 Depth Map Estimation

The depth map estimation component uses tracked frames to either refine or replace
the current keyframe. A frame is chosen to become a new keyframe once the camera has
moved too far. Tracked frames that do not become a new keyframe are used to refine the
depth map of the current keyframe. The map is refined by filtering over many per-pixel,

small-baseline stereo comparisons as well as interleaved spatial regularization.

3.2.3 Map Optimization

Once a keyframe is replaced, it is incorporated into the global map which is a pose
graph of keyframes by map optimization. In this component, a similarity transform & €
sim(3) to close-by existing keyframes is estimated using scale-aware, direct image align-

ment to detect loop closures and scale-drift.

3.3 ORB-SLAM

ORB-SLAM [3] is the state-of-the-art feature-based SLAM method. It uses the ORB
[31] (Oriented FAST and Rotated BRIEF) features which is extremely fast to compute
and match. It is also invariant to rotation and scale in a certain range. Overview of the
complete algorithm are shown in Figure 3.3. This feature-based SLAM system consists

of three threads that run in parallel: tracking, local mapping and loop closing.

3.3.1 Tracking

The tracking thread performs image localization frame by frame and decides when
to use the current frame as a new keyframe. It firstly uses a constant velocity motion
model to roughly estimate the pose of a new frame and performs an initial matching with

the previous frame, then it use a local map to project into the current frame and adjust the
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Figure 3.3: Overview over the complete ORB-SLAM algorithm. This figure is from their
paper [3].
camera pose by minimizing the reprojection error. After tracking on local map, the current

frame is decided whether to be a new keyframe according to some thresholds.

3.3.2 Local Mapping

Local mapping is only performed on new keyframe K;. At first the new keyframe is
inserted into the global covisibility graph map and is used to update the nodes and edges
in the covisibility graph. New map points are created by triangulating the ORB feature
points. Then it performs a local bundle adjustment to optimize all the variables including
the currently keyframe K;, all the other keyframes connected to the current keyframe in the
graph K., and all the map points that are seen by those keyframes. In order to maintain a
condensed map and a compact reconstruction, redundant map points as well as keyframes

are detected and culled in this thread.
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3.3.3 Loop Closing

The loop closing thread uses the current keyframe K; to detect loops and _clgé“e them.
A bags of words place recognition module is embedded in the system, which .cor;siSts of
a visual vocabulary and a recognition database. It uses a pre-trained visual vocabulary to
replace high dimensional ORB features in the loop detection for efficiency. If a loop is
detected, it computes the 7-DoF similarity transformation from the current keyframe K;
to the corresponding loop keyframe K, which informs the accumulative error in the loop.
Then in the loop correction, the duplicated points in the map are fused and new edges are
generated and inserted in the global map that attaches the loop closure. At last, a graph
optimization is performed over an essential graph which is built and maintained by the

system for efficiency to close the loop in real time.
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Chapter 4

Visual-Inertial Sensor Fusion

4.1 Framework Overview

As discussed above, we advocate the EKF-based loosely-coupled sensor fusion de-
scribed in [20]. Since IMU measurements and visual measurements are processed sepa-
rately, we can divide the whole system into two independent modules — the visual position-
ing and the visual-inertial sensor fusion. Figure 4.1 shows the overview of the framework
in this paper. For the visual positioning, we choose the most representative three state-of-
the-art monocular solutions to evaluate and discuss on the pros and cons of each method,
which are MBL, ORB-SLAM and LSD-SLAM. We aim to find their most suitable ap-
plication scenarios respectively and discuss the possible complementary combination in
the future. In the visual-inertial sensor fusion part, the fixed input is the IMU measure-
ment and the changeable input is the visual measurement. The visual measurement can
be the odometry result from any of the three above-mentioned methods, since we use the
loosely-coupled method that treats the visual part as a black box. The output is the fusion

result which can be compared with the ground truth.

4.2 Method

The loosely-coupled visual-inertial sensor fusion method proposed by Weiss et al. [20]

does not only estimate pose and velocity, but also estimate the scale of the position mea-
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Figure 4.1: Overview of the visual-inertial positioning framework in this paper. The blue
blocks represent the measurements.

surement and detect failures of the visual part. They verified the function of their method
by fusing IMU data with PTAM visual measurement in their experiment [2]. As the visual
framework is treated as a black box that has strong portability, we can use this method in
our framework to fuse IMU data with the above-mentioned visual algorithms. This method
uses an Extended Kalman Filter (EKF) framework, which generally consists of a predic-
tion and an update step. Following gives an overview about the underlying structure of

the EKF framework.

4.2.1 State Representation

The state of the filter is composed of the position of the IMU p!, in the inertial world
frame, its velocity v’, and its attitude quaternion ¢, describing a rotation from the inertial
to the IMU frame. They add the gyro and acceleration biases b,, and b, as well as a possible
measurement scale factor A\. The calibration states are the rotation from the IMU frame
to the measurement sensor frame ¢; and the distance between these two sensors p;. The

calibration states can be omitted and set to a calibrated constant making the filter more
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robust. The state vector X:

=Y :"‘.‘n 1

T 3T ;T s s
X={p, v, d, by b X pi ¢}

-“ (@)

4.2.2 Prediction Step

IMU reading is used in the prediction step for state propagation, as the motion model
in a basic Kalman Filter. The angular velocity w and acceleration a readings from IMU
are used to predict the system state by integration and double-integration. The following

differential equations govern the state:

oy = Uy, (4.2)
V= C'(T%)(am —bya—ng) — g (4.3)
1 _
Gy, = iQ(wm — by, —ny)q, (4.4)
by ="1p, ba=m, A=0 pi=0 ¢ =0 (4.5)

With g as the gravity vector in the world frame, Q(w) as the quaternion multiplication

matrix of w, and C; y as the IMU’s attitude in the world frame.

4.2.3 Update Step

Visual positioning result is used in the update step as the measurement in a basic
Kalman Filter. For the position measurement z, obtained from the visual algorithm, we

have the following measurement model:
2 =5, = (Pl + Clp v A+ 1y (4.6)

For the rotation measurement z, obtained from the vision algorithm, we can model this

as:

2=, =q ®q, (4.7)
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Figure 4.2: The Kalman filter steps in the sensor fusion framework. The red parts are
sensor readings (from the IMU for prediction or from another sensor for the update). The
blue parts are the parts which change if the update sensor type changes. The black parts
are the constant parts which stay analytically the same.

Having known the measurement model, the state estimation can be updated according to

the well known Kalman Filter procedure as shown in Figure 4.2. F and () can be calculated

according to [2]. In this method, the scale drift is handled by the scale estimate in real time

and the failures of the vision part can be detected when there occurs an abrupt jump in the

smooth drift estimation.
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Chapter 5

Experiments

Figure 5.1: The Vicon Bonita motion capture system which offers the position ground
truth in our indoor experiments.

In this section, we first evaluate the performance of the three chosen visual methods in
five different scenarios — indoor, outdoor, rotation-only, fast-moving and blurry, aiming to
find out the pros and cons of each method. In our experiments, video sequences from the
onboard camera of Phantom 4 are used for test. The ground truth of each video sequence
in our indoor experiments is measured using the Vicon motion capture system with four
Bonita cameras [32]. In the experiments, the flying camera navigates under this system

which consists of four optical capture cameras, as shown in Figure 5. The setup of the
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flying camera in our indoor experiments is shown in Figure 5. Then/we evaluate. the

sensor fusion performance by comparing the input measurement and the fusio Egullt In
R |
the simulation experiment > Vicon data is used to simulate the visual mea§ur¢ ent. IH[\

Figure 5.2: The setup of our indoor experiments.

5.1 Evaluation for Different Visual Positioning Methods

To evaluate the performance of the LSD-SLAM, ORB-SLAM and MBL, several sce-

narios have been designed for test.

5.1.1 Indoor

To evaluate the performance for indoor positioning, we use two video sequences for
test. In Test 1, the camera moves along a loop in the room facing the center of the circle,
while in Test 2 it faces forward. The positioning result The visualized result is shown in
Figure 5.3 where the red markers represent the positioning result at every keyframe and
the blue ones represent the corresponding ground truth, the better the closer.

ORB-SLAM and MBL outperform LSD-SLAM in both Test 1 and Test 2, since we
see the marker pairs match worse in the LSD-SLAM result than the other two methods.
Table 5.1 gives the quantitative comparison, which shows MBL is narrowly better than
ORB-SLAM. Noticed that the performance of MBL depends on the training data. It may

perform worse than ORB-SLAM with not enough training data.
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Figure 5.3: The visualized positioning results of the three methods in indoor experiments.

Table 5.1: Positioning error (cm) of the three different methods in indoor experiments.

Test LSD-SLAM ORB-SLAM MBL
Mean | Stdev. | Mean | Stdev. | Mean | Stdev.

#1 3.57 1.18 1.97 1.18 1.78 | 0.77

#2 | 446 | 2.13 | 2.23 1.06 | 2.09 1.14

5.1.2 Outdoor

Performance of large-scale outdoor positioning cannot be quantitatively evaluated,

since we do not have Vicon as ground truth. Nevertheless, we can still evaluate the per-

formance by analyzing a closed loop. We choose two scenes for experiment. The results

are in Figure 5.4 and Figure 5.5. As shown in Figure 5.5, the flying camera takes a flight

in front of the Barry Lam Building in NTU and finally stop at the starting point. The result

of MBL can be approximately regarded as ground truth since this method processes each

frame independently, which has no accumulative error. SLAM methods suffer from this

kind of accumulative error, so in the results of LSD-SLAM and ORB-SLAM there are

obvious drifts, although ORB-SLAM still outperforms LSD-SLAM. The obvious drifts

occurs since there is a pure rotation movement during the flight, which will be discussed

in the next paragraph.
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Outdoor Test 1
CSIE Building

LSD-SLAM ORB-SLAM MBL

Figure 5.4: The positioning results of Test 1 in outdoor experiments. On the right is the
experiment scene located in the CSIE Building in NTU.

Outdoor Test 2

Boli Building

[ ————

2o\
P

r';[ W

LSD-SLAM ORB-SLAM MBL

Figure 5.5: The positioning results of Test 2 in outdoor experiments. On the right is the
experiment scene located in front of the Barry Lam Building in NTU.
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5.1.3 Pure Rotation

Pure rotation means that there is only rotation and no translation betwéen t\ﬁd-%ﬁsecu-

Il 2B
tively tracked frames. It is especially common for flying cameras, because'peé)i)le usﬁally
make them hover in the air and only rotate the cameras for photography, whichisancom-
mon for vehicles. In this case, the pose estimation between these two frames fails and the
tracking is lost due to the lack of depth perception, as shown in outdoor experiment. Only
MBL can survive this situation, since it does not track the current frame with respect to

the previous frame but the pre-built model.

5.1.4 Fast-Moving

With the increase of the movement speed of the flying camera, the distance between
two consecutive frames increases accordingly. We sample a testing video to simulate
different speed, eliminating the influence of motion blur. The result is shown in Table 5.2
that the positioning error increases with the growth of speed until the tracking becomes
completely lost. Noticed that the MBL is not in the experiment, because in MBL the

tracking is irrelevant to other frames, the same reason with in the rotation-only situation.

x1 x 3 x 5
s > " - e -
- - * > *
¥ e
. b .
¥ * i ¥ -
LLSD mean: 5.50 “ mean: 6.74 mean: 7.92
T » i PErd
L .' >
- -
LTI * * * *
*LSD * ot
*VICON
- i S S SR o
Lot e sy s .
. '
-~ . Fa & --\.
* - ll
{ : .
ORB i mean: 1.56 e 3 mean: 3.21 R mean: 3.78
- N " -
- ot - '
Lot
*ORB St e el L i
*VICON

Figure 5.6: Positioning results of LSD-SLAM and ORB-SLAM compared with the ground
truth in different movement speed. The mean errors (cm) are computed.

22 d0i:10.6342/NTU201601311



Table 5.2: Positioning errors (cm) of LSD-SLAM and ORB-SLAM in different movement

speed.
Speed LSD-SLAM ORB-SLAM
Mean | Stdev. | Mean | Stdev.
x1 5.50 | 2.71 1.56 | 0.63
x2 6.74 | 3.04 | 3.21 1.49
x3 7.92 | 3.82 | 3.78 1.68

5.1.5 Blurry

i}

Motion blur is an always existent issue for vision-based method. We design this ex-

periment to compare the difference between direct method and feature-based method in

blurry situations. In this experiment, we manually add motion blur from 5 to 35 pixels

onto the test video sequence. Experiment result in Figure 5.7 shows that within certain

range of blur, the feature-based method (OBR-SLAM) has much better accuracy. How-

ever, when the blur becomes large (over 20 pixels in the experiment), the feature-based

method suddenly turns into the non-initial mode, which means it cannot match enough

features for initialization. In contrast the direct method (LSD-SLAM) is very robust with

the error increasing slowly, since this kind of methods does not need to extract features

and can avoid the corresponding artifacts.

LSD-SLAM ORB-SLAM
30
non initial

— 225
£
o
- 15
o
w75

0

0 5 10 15 20 25 30
Blur (pixel)

35

Figure 5.7: The relationship between different levels of blur and the positioning errors of

LSD-SLAM and ORB-SLAM.
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5.1.6 Comparison
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Figure 5.8: Positioning results of LSD-SLAM and ORB-SLAM under different levels of
blur.

We arrange the results of the above experiments and discussions into the table in Fig-

24

ure 5.9. According to the experiment results, LSD-SLAM and ORB-SLAM have similar
pros and cons since they both are SLAM methods. LSD-SLAM is better during blurry or
featureless cases while ORB-SLAM has better accuracy in common cases, which shows
the difference between direct methods and feature-based methods. MBL is different from
other methods since it has a pre-built model, tracking each frame independently. It has
advantages of not being affected by pure rotation and accumulative error, and it provides

global positioning which is useful when there are more than one flying camera.
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Figure 5.9: The performance of the three methods in different scenarios.

5.2 Evaluation for Sensor Fusion Results

Sensor fusion is used to make up for the limitations of visual positioning. Noticed
that the visual positioning methods mentioned above are accurate, so it is hard to achieve
significantly better accuracy by loosely-coupled sensor fusion methods. However, we
can still verify the function of this sensor fusion method by designing a bad case. In this
experiment, we add a Gaussian noise onto the Vicon measurement to simulate bad visual
positioning result, and then fuse it with IMU readings. Figure 5.10 shows the framework
in our simulation experiment.

In the experiment, the used inertial sensor is x-IMU [21]. The IMU moves under the
Vicon system and the angular velocity w and acceleration a readings are used to predict
the system state in the EKF-based framework. As discussed before, the visual part is
considered as a black box, so it is feasible to use Vicon data in this part as measurement.
We add o = 0.1m Gaussian noise onto Vicon measurement to simulate bad vision cases.
The mean error in 3D space is 16.01cm after adding the noise. Fusion result is shown
below. The 3D visualized input measurement and the fusion result are shown together in
Figure 5.11. Figure 5.12 shows the input and the output in the three axes in the sensor
fusion experiment, from which we see the noise has been reduced significantly and the
curve is much more smooth. Table 5.3 shows the quantitative results, from which the 3D

positioning error has been reduced to 8.68cm from 16.01cm.
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Figure 5.10: The framework in our experiment, where the visual result is simulated by the
Vicon measurement with noise.

<

Figure 5.11: The 3D visualized input measurement and the fusion result shown together.
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Table 5.3: Positioning errors (cm) before and after sensor
Axis Measurement | Fusion Result 1%_.7
Mean | Stdev. | Mean | Stdev.
X 823 | 6.09 | 4.00 | 293
y 7.79 | 577 | 421 | 3.22
z 8.09 | 6.05 | 4.67 | 3.34
3D | 16.01 | 6.67 | 8.68 | 3.36
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Figure 5.12: The position measurements before and after sensor fusion in the three axes.
For each axis, the upper is the input measurement with ¢ = 0.1m Gaussian noise, and the
lower is the fusion result. Both of them are compared with ground truth in red.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion and Future Work

In this paper, we have evaluated the three different visual positioning methods in many
scenarios. LSD-SLAM is less accurate but more robust in featureless and blurry cases.
It uses the most information and its dense reconstruction is useful for other tasks than
just localization. ORB-SLAM achieves impressively high precision most of the time but
still has the nature defects of both SLAM methods and feature-based methods. MBL
proves to be the most robust method in monocular positioning by localizing each frame
independently. However, it cannot be used in unknown environment since the model need
to be built previously and the positioning performance depends on the training images. To
make up for the limitations of vision, we use an IMU to aid visual positioning by sensor
fusion. The experiment shows that it helps reduce the positioning error in bad cases and
the metric scale which is not observable in monocular positioning can be estimated.

We find that the pure rotation situation is an important issue in ego-positioning for
flying cameras, which is uncommon in positioning for vehicles. While the SLAM methods
all suffer from this situation, MBL shows its robustness. It is a valuable future topic to
use them for complementary combination. ORB-SLAM is used for general tracking and
helps update the model in unknown area. LSD-SLAM can be combined as a spare module
for featureless or blurry cases. MBL is used to correct the accumulative drift and handle
the pure rotation cases, and it is also used for global positioning.
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