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摘要

隨著社群網站的普及與蓬勃發展，許多推薦系統開始利用社群網路

中的資訊來提供對使用者有助益的建議，諸多與社群網路分析相關的

研究也隨之展開。近來社群網路的規模快速增長，導致推薦系統的運

算成本顯著增加。對於要處理社群網路資料以提供建議的推薦系統而

言，社群網路的複雜性和巨大規模帶來了沈重的運算負擔。因此，在

本論文中，我們針對社群網路中的三個重要推薦問題進行研究，並致

力於提升它們的運算效率。

首先，我們聚焦於兩個使用者間的關係來研究大型網路中的鏈結預

測問題。在進行鏈結預測時，許多特徵值需要被計算並且整合以便進

行推薦，而這些運算成本會隨網路規模成長而快速增加。先前部分關

於網路處理之研究嘗試透過稀疏化縮小網路規模，以便降低運算成本。

然而，重要的資訊可能在稀疏化過程中被移除，因而導致預測準確率

大幅下降。為了解決這個問題，我們提出了一個名為 DEDS的架構，
它能建立具有高度準確率的整體分類器，同時能降低預測所需的時間。

DEDS包含了多樣的稀疏化方法，而這些方法是為了保存網路中的不
同特性所設計的。因此，DEDS能夠產生出具有顯著結構差異性的稀
疏網路，並且增加整體分類器的多樣性，從而提升預測效果。

接著我們將討論範疇從兩個使用者間的關係擴展到一群使用者之

間的關係，並研究社群群組查詢問題與活動規劃的相關應用。考慮所

有使用者間的社交鏈結以推薦一群相互認識的活動參加者，這是一個

非確定性多項式時間複雜性類（NP-hard）問題。除了找一群相互熟識
的活動參加者外，選定一個所有參加者皆有空的活動時間也是活動規

劃的關鍵要素。因此，我們還需要額外考慮使用者的有空時間，而社

交連結複雜性和使用者行程的多樣性使得這個問題變得更加困難。在

本論文中，我們提出社群時域群組查詢（Social-Temporal Group Query）
來找到合適的活動時間與一群具有最小社群距離總和的參加者。我們

並設計了兩個演算法，分別是 SGSelect和 STGSelect，它們包含了多種
有效的修剪策略（pruning strategy）來大幅減少執行時間。實驗結果顯
示，我們設計的演算法比起基準方法有明顯的效率提升。我們也進行
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了使用者研究，將所提出的演算法與人工活動規劃進行比較。研究結

果顯示所提出的演算法能取得較高品質的答案，且需要的規劃工作量

較少，因此能夠增加使用者發起活動的意願。

最後，我們研究了連續群組查詢問題，以便有效支援一連串的推薦

任務。在規劃活動時，使用者通常不容易將所有條件一次設定完備並

找到完美的活動參加者群組與活動時間。幸好透過前述的社群時域群

組查詢，使用者可以很容易地調整參數並且獲得其他推薦結果以供選

擇。有鑒於使用者可能反覆變動參數以便微調結果，我們進一步提出

連續社群群組查詢（Consecutive Social Group Query）來支援此需求。
考量到利用先前查詢的中間解將能增進後續查詢的效率，我們設計了

一個名為累積搜尋樹（Accumulative Search Tree）的樹狀結構，用緊緻
形式暫存歷史查詢的中間解以供重複利用。為了提升查找效率，我們

進一步設計了一個名為社群邊界（Social Boundary）的索引結構，在處
理特定參數的連續社群群組查詢時，可快速地取得所需使用的中間解。

根據實驗結果顯示，透過所設計的暫存機制，連續查詢所花的處理時

間將可進一步被顯著降低。

關鍵字：演算法設計與分析、社群網路、鏈結預測、網路稀疏化、

查詢處理、索引結構
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Abstract

As the development and popularization of social networking websites,
many recommendation systems tend to leverage the information in social net-
works to provide helpful suggestions for users, and a great deal of research
studies on social network analysis are thereby motivated. Recently, the sizes
of social networks have been increasing rapidly, and this growth results in a
significant increase in the computational cost of the sophisticated recommen-
dations. The huge size and complexity of social networks create a consid-
erable burden for recommendation systems while processing the information
from social networks to provide suggestions. Therefore, in this dissertation,
we study three important recommendation problems in social networks and
aim to improve their efficiency.

First, we focus on the relationship between two users and study the link
prediction problem in large-scale networks. During the link prediction, nu-
merous feature values need to be calculated and then combined to make rec-
ommendations, and the computational cost grows quickly as the network size
becomes larger. Some previous studies involving network processing attempt
to lower the computational cost by reducing the network size via sparsifica-
tion. However, sparsification might remove important information and hurt
the prediction accuracy. To address this issue, we propose a framework called
Diverse Ensemble of Drastic Sparsification (DEDS), which constructs ensem-
ble classifiers with good accuracy while keeping the prediction time short.
DEDS includes various sparsification methods that are designed to preserve
different measures of a network. Therefore, DEDS can generate sparsified
networks with significant structural differences and increase the diversity of
the ensemble classifier, which is key to improving prediction performance.

Second, we extend the scope from the relationship between two users to
the relationship among a group of users, and study the social group query
problem with its applications in activity planning. Considering social links
among all users to recommend a mutually acquainted group of attendees for
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an activity is an NP-hard problem. In addition to finding a group of atten-
dees familiar with each other, selecting an activity period available to all is
also essential for activity planning. Therefore, we need to further consider the
available time of users, which makes the problem even harder due to the com-
plexity of social connectivity and the diversity of user schedules. In this dis-
sertation, we propose the Social-Temporal Group Query (STGQ) to find suit-
able time and attendees with minimum total social distance. We design two
algorithms, SGSelect and STGSelect, which include various effective pruning
strategies to substantially reduce running time. Experimental results indicate
that SGSelect and STGSelect are significantly more efficient than baseline
approaches. We also conduct a user study to compare the proposed approach
with manual activity coordination. The results show that our approach ob-
tains higher quality solutions with less coordination effort, thereby increasing
users’ willingness to organize activities.

Finally, we study the consecutive group query problem to support a se-
quence of recommendations. When planning an activity, it is difficult for a
user to specify all the conditions right at once to find the perfect group of at-
tendees and time. Fortunately, with the aforementioned social-temporal group
query, it is easy for the user to tune the parameters to find alternative recom-
mendations. As users may iteratively adjust query parameters to fine tune
the results, we further propose Consecutive Social Group Query (CSGQ) to
support such needs. Envisaging that exploiting the intermediate solutions of
previous queries may improve processing of the succeeding queries, we de-
sign a new tree structure, namely, Accumulative Search Tree, which caches
the intermediate solutions of historical queries in a compact form for reuse. To
facilitate efficient lookup, we further propose a new index structure, called So-
cial Boundary, which effectively indexes the intermediate solutions required
for processing each CSGQwith specified parameters. According to the exper-
imental results, with the caching mechanisms, processing time of consecutive
queries can be further reduced considerably.

Keywords: Algorithm Design and Analysis, Social Networks, Link Pre-
diction, Network Sparsification, Query Processing, Index Structure
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Chapter 1

Introduction

1.1 Motivation and Overview of the Dissertation

As the development and popularization of social networking websites, many recom-

mendation systems tend to leverage the information in social networks to provide helpful

suggestions for users, and a great deal of research studies on social network analysis are

thereby motivated. For example, link prediction can recommend movies or restaurants

to users based on their friends’ opinions, and it can also suggest people that users may

be friend with (e.g., the “people you may know” feature in Facebook and LikedIn). Re-

cently, the sizes of social networks have been increasing rapidly, and this growth results in

a significant increase in the computational cost of the sophisticated recommendations. For

example, the number of monthly active users on Facebook reaches 1.79 billion in 2016.1

The huge size and complexity of social networks create a considerable burden for rec-

ommendation systems while processing the information from social networks to provide

suggestions. Therefore, in this dissertation, we study three important recommendation

problems in social networks and aim to improve their efficiency. The challenges of these

recommendation problems are introduced below.

First, we focus on the relationship between two users and study the link prediction

problem in large-scale networks. During the link prediction, numerous feature values
1The statistics provided by Facebook. http://newsroom.fb.com/company-info/.
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need to be calculated and then combined tomake recommendations, and the computational

cost grows quickly as the network size becomes larger. Some previous studies involving

network processing attempt to lower the computational cost by reducing the network size

via sparsification. However, sparsification might remove important information and hurt

the prediction accuracy. Therefore, the primary challenge is to reduce the network size

considerably while maintaining high prediction accuracy.

Second, we extend the scope from the relationship between two users to the relation-

ship among a group of users, and study the social-temporal group query problem with its

applications in activity planning. While the first problem we study (i.e., link prediction)

focuses on predicting the existence of a link between particular two users, the second prob-

lem considers existing links among all users to recommend a mutually acquainted group

of attendees for an activity. This is an NP-hard problem, and the computational cost also

grows rapidly as the network size increases. In addition to finding a group of attendees

familiar with each other, selecting an activity period available to all attendees is also es-

sential for activity planning. Therefore, we need to further consider the available time of

users, which makes the problem even harder due to the complexity of social connectivity

and the diversity of user schedules.

Third, we study the consecutive group query problem to support a sequence of recom-

mendations. When planning an activity, it is difficult for a user to specify all the condi-

tions right at once to find the perfect group of attendees and time. Fortunately, with the

aforementioned social-temporal group query, it is easy for the user to tune the parameters

to obtain alternative recommendations. Allowing tuning parameters to try consecutive

queries easily is a great advantage of the planning service over the current practice of

manual planning. However, answering each of the consecutive queries individually will

lead to repeated exploration of similar solution space, since these queries are issued by

the same user with slightly adjusted parameters. Therefore, new challenges arise in the

design of an effective index structure for maintenance and examination of the intermediate

results to facilitate efficient processing of consecutive queries.

In the following, we provide overviews for the aforementioned three problems studied

2
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in this dissertation and the proposed solutions.

1.1.1 Efficient Link Prediction in Large-Scale Networks

Since managing massive networks is complex and time-consuming, various studies

have focused on network sparsification, simplification, and sampling [16] [47] [25] [33]

[45] [54]. Many of these algorithms are designed to preserve certain properties of inter-

est while reducing the size of networks, so that the sparsified or simplified networks may

remain informative for future targeted applications. For example, the simplification al-

gorithm in [16] is designed as a preprocessing step prior to network visualization, while

the sparsification algorithm in [47] is designed to sparsify the network before clustering.

These existing algorithms are effective in their target applications. However, to the best of

our knowledge, none of these works has been specifically designed with classifier ensem-

bling to facilitate link prediction. Such algorithmsmay remove the part of the network that

is informative for link prediction, and hence lead to a substantial decrease in prediction

accuracy.

To address this issue, we propose a framework called Diverse Ensemble of Drastic

Sparsification (DEDS), which constructs ensemble classifiers with good accuracy while

keeping the prediction time short. DEDS includes various sparsification methods that are

designed to preserve different measures of a network. Therefore, DEDS can generate

sparsified networks with significant structural differences and increase the diversity of the

ensemble classifier, which is key to improving prediction performance. According to the

experimental results, when a network is drastically sparsified, DEDS effectively relieves

the drop in prediction accuracy and raises the AUC value. With a larger sparsification

ratio, DEDS can even outperform the classifier trained from the original network. As for

the efficiency, the prediction cost is substantially reduced after the network is sparsified.

If the original network is disk-resident but can fit into main memory after being sparsified,

the improvement is even more significant.

3
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1.1.2 Efficient Social-Temporal Group Query

For social activity planning, three essential criteria are important: (1) finding attendees

familiar with the initiator, (2) ensuring most attendees have tight social relations with

each other, and (3) selecting an activity period available to all. In this dissertation, we

propose the Social-Temporal Group Query (STGQ) to find suitable time and attendees

with minimum total social distance. By minimizing the total social distance among the

attendees, we are actually forming a cohesive subgroup in the social network. In the field

of social network analysis, research on finding various kinds of subgroups, such as clique,

k-plex and k-truss has been conducted (e.g., [6, 18, 43, 55, 59]). There are also related

works on group formation (e.g., [3, 44, 57]), team formation (e.g., [2, 24, 41]), and group

query (e.g., [27,28,60]). While these works focus on different scenarios and aims, none of

them simultaneously encompass the social and temporal objectives to facilitate automatic

activity planning. Therefore, the STGQ problem is not addressed previously.

In our study of STGQ, we first prove that the problem is NP-hard and inapproximable

within any ratio. Next, we design two algorithms, SGSelect and STGSelect, which in-

clude various effective pruning techniques to substantially reduce running time. Experi-

mental results indicate that SGSelect and STGSelect are significantly more efficient and

scalable than the baseline approaches. Our research results can be adopted in social net-

working websites and web collaboration tools as a value-added service. We also conduct

a user study to compare the proposed approach with manual activity coordination. The re-

sults show that our approach obtains higher quality solutions with less coordination effort,

thereby increasing users’ willingness to organize activities.

1.1.3 Efficient Consecutive Group Query Processing

According to the feedbacks from the user study we conduct, it is difficult for an activ-

ity initiator to specify all the conditions right at once to find the perfect group of attendees

and time, and hence the initiator tends to tune the parameters to find alternative solutions.

As users may iteratively adjust query parameters to fine tune the results, we further study
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the problem of Consecutive Social Group Query (CSGQ) to support such needs. Some ex-

isting studies (e.g., [14, 34, 63, 64]) return multiple subgraphs with diverse characteristics

in one single query. However, since these studies are not specifically designed for activ-

ity planning, social connectivity and tightness are not their major concern. Therefore, the

returned subgroups are not guaranteed to achieve social cohesiveness. Moreover, without

feedback and guidance from user-specified parameters, most returned subgraphs in the

diversified query are likely to be redundant (i.e., distant from the desired results of users).

On the other hand, session query and reinforcement learning in retrieval (e.g., [20,26,50])

that allow users to tailor the query have attracted increasing attentions. However, these

studies are designed for document retrieval and hence cannot handle the social network

graph and user schedules. Therefore, these aforementioned research works are not appli-

cable for automatic activity planning, and the CSGQ problem is not addressed previously.

Anticipating that the users would not adjust the parameters drastically, we envisage

that exploiting the intermediate solutions of previous queries may improve processing of

succeeding queries. In our study of CSGQ, we design two new data structures to facilitate

the above idea and efficiently support a sequence of group queries with varying param-

eters. We first design a new tree structure, namely, Accumulative Search Tree, which

caches the intermediate solutions of historical queries in a compact form for reuse. To fa-

cilitate efficient lookup, we further propose a new index structure, called Social Boundary,

which effectively indexes the intermediate solutions required for processing each CSGQ

with specified parameters. According to the experimental results, with the caching mech-

anisms, processing time of consecutive queries can be further reduced considerably.

1.2 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we propose the

DEDS framework consisting of four different sparsification methods and show that, while

using only a small portion of the edges causes considerable performance deterioration,

our ensemble classifier with high diversity can counter the drop in prediction accuracy. In
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Chapter 3, we formulate STGQ for automatic activity planning, and propose Algorithm

SGSelect and Algorithm STGSelect with various strategies to find the optimal solution ef-

ficiently. In Chapter 4, we further introduce CSGQ, and then design new data structures to

avoid redundant exploration of solution space and speed up the processing of consecutive

queries. Finally, Chapter 5 concludes this dissertation and presents the future directions.
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Chapter 2

Ensemble of Diverse Sparsifications for

Link Prediction in Large-Scale

Networks

2.1 Introduction

Link prediction is to forecast the existence of a link between two vertices, and it is an

important research topic in network analysis, since many major problems involving net-

works can benefit from the process. Recently, the sizes of networks have been increasing

rapidly, and this growth results in a significant increase in the computational cost of link

prediction. Moreover, these networks may become too large to be stored in main mem-

ory. Consequently, processing these networks requires frequent disk access, which may

lead to considerable deterioration in performance. As a result, prediction tasks can take

days to complete, meaning that dynamic friend suggestions or product recommendations

cannot be made to users or customers in a timely manner, and the recommendations may

therefore become less useful as time passes.

In link prediction, there are several measurements, known as proximity measures, used

to indicate how likely it is for a non-neighboring vertex pair to be connected via an edge

in the near future. A possible solution for speeding up link prediction is to design algo-
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rithms to approximate each of the proximity measures. For example, the authors in [51]

and [49] proposed methods to achieve a close approximation of proximity measures such

as Katz [22] and rooted PageRank [29]. However, building robust and high-accuracy

classifiers for link prediction often requires various proximity measures. It would be very

complicated if we were to design different algorithms to approximate each of these prox-

imity measures. Therefore, a general and flexible solution for lowering computational

costs is required.

Inspired by previous research that simplifies large networks to decrease computational

costs, we found that reducing the size of networks provides a more general solution.1 Once

a network has been sparsified, most proximitymeasures can benefit from the size reduction

of the network and can be calculated faster. If the network is too large to be stored in main

memory, decreasing its size also helps to lower the number of disk accesses. Furthermore,

when the sparsification ratio is sufficiently small, the sparsified network may be able to

fit into main memory, which means the burden of disk access is relieved. However, with

such drastic sparsification, many edges in the network are removed, and the information

that can be used in link prediction becomes rather limited. In turn, the prediction accuracy

would drop significantly under such severe conditions. Therefore, the primary challenge

is to reduce the network size considerably while maintaining high prediction accuracy.

In this chapter, we address this issue by proposing a sparsification framework for link

prediction called Diverse Ensemble of Drastic Sparsification (DEDS), which consists of

sparsifying, training, and ensembling, as shown in Figure 2.1. Specifically, we design

four different methods to sparsify the original network, train individual classifiers from

the sparsified networks, and ensemble these classifiers appropriately to improve prediction

performance. The rightmost sparsified network in Figure 2.1 is obtained from the most

straightforward random sparsification. In addition, DEDS incorporates three more so-

phisticated sparsification methods, which are based on heuristics for preserving the edges

required by different proximity measures. DEDS is able to generate sparsified networks
1Certain previous studies have proposed methods that remove vertices and edges to simplify the network

(e.g., [25] and [45]), while other methods only remove edges (e.g., [33] and [47]). In our study, we do not
remove vertices, since any vertex may be the target that we want to generate a prediction for.
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Figure 2.1: Flow chart of the DEDS framework.

with significant structural differences, and this increases the diversity of the correspond-

ingly trained classifiers, which is key to creating an effective ensemble classifier. As

shown in the experimental results, the proposed DEDS framework can effectively relieve

the drop in prediction accuracy, while considerably reducing running time.

The main contributions of this chapter are summarized as follows.

• We propose a novel network sparsification framework called DEDS to slim down

large networks while preserving important proximity measures that are used in link

prediction. Specifically, we design four different sparsification methods by cate-

gorizing the proximity measures and then devising heuristics to preserve the edges

required by these measures. The proposed DEDS framework can generate sparsi-

fied networks with significant structural differences and increase the diversity of the

ensemble classifier. We also prove that adopting accuracy-based weighting enables

DEDS to further reduce the prediction error. Experimental results show that when

the network is drastically sparsified, DEDS can effectively relieve the drop in pre-

diction accuracy and considerably raise the AUC value. With a larger sparsification
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ratio, DEDS can even outperform the classifier trained from the original network.

• Our proposed DEDS framework is able to significantly reduce the running time of

link prediction tasks. According to the experimental results, the prediction cost is

substantially reduced after the network is sparsified. Moreover, if the network is

too large to be stored in main memory, DEDS helps to lower the number of disk

accesses by reducing the network size. When the sparsification ratio is sufficiently

small, DEDS provides further efficiency by relieving the burden of disk access,

since the sparsified network can fit into main memory.

• In the proposed DEDS framework, all the individual classifiers remain unentan-

gled before the final decision is generated, meaning that each individual classifier

can be trained and run independently. This enables DEDS to fully utilize all the

CPUs or cores to simultaneously train and run the maximum number of individual

classifiers. As a result, DEDS can maximize the ensemble size based on the user’s

computational ability and considerably increase prediction accuracy.

The rest of this chapter is organized as follows. In Section 2.2, we introduce related

works. Section 2.3 provides preliminaries for a supervised framework of link prediction,

and describes the datasets and evaluation metrics used throughout this study. In Section

2.4, we propose four different sparsification methods and show that, while using only a

small portion of the edges causes considerable performance deterioration, our ensemble

classifier with high diversity can counter the drop in prediction accuracy. In Section 2.5,

we analyze two strategies which further raise the performance of the ensemble classifier.

More detailed experimental results, such as efficiency analysis, are provided in Section

2.6. We summarize this chapter in Section 2.7.

2.2 Related Works

Since managing massive networks is complex and time-consuming, various studies

have focused on network sparsification, simplification, and sampling [16] [47] [25] [33]
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[45] [54]. Many of these algorithms are designed to preserve certain properties of inter-

est while reducing the size of networks, so that the sparsified or simplified networks may

remain informative for future targeted applications. For example, the simplification al-

gorithm in [16] is designed as a preprocessing step prior to network visualization, while

the sparsification algorithm in [47] is designed to sparsify the network before clustering.

These existing algorithms are effective in their target applications. However, to the best

of our knowledge, none of these works has been specifically designed with classifier en-

sembling to facilitate link prediction. Such algorithms may remove the part of the network

that is informative for link prediction, and hence lead to a substantial decrease in predic-

tion accuracy. Moreover, the existing network sparsification algorithms are not designed

to deal with drastic sparsification, and most of them have used a sparsification ratio in

the range of tens of percent. In our study, we make use of even smaller sparsification ra-

tios (e.g., 5%) and explain how prediction accuracy can be maintained under such severe

conditions.

Certain previous studies have succeeded in preserving one of the proximity measures

used in the link prediction task. For example, the method in [45] can recover the shortest-

path distance between a vertex pair from the simplified graph, while that in [54] can pre-

serve the quality of the best path between a vertex pair. However, various proximity

measures are required to achieve high accuracy in link prediction; thus, merely focusing

on a single measure is not sufficient. In this chapter, we first discuss the properties of the

different proximity measures used in link prediction, and then we propose a novel spar-

sification framework that aims to preserve the discrimination ability of these measures to

provide good prediction accuracy.

Another area of related work is graph partitioning, which includes a focus on handling

large-scale graphs. Many useful graph partitioning tools already exist (e.g., Chaco [15]

and METIS [21]), and certain recent studies continue to focus on graph partitioning [62]

[53]. A common goal of graph partitioning is to divide a large graph into smaller disjoint

components of approximately the same size, which together can cover the entire origi-

nal graph. In our work, we also create multiple small and even-sized components from
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the original large-scale network. However, these components are not necessarily disjoint,

and some informative edges may exist in multiple components. Furthermore, these com-

ponents together are not required to cover the entire original network. Each component

may include only a small portion of edges (e.g., 1% of the original network), and even if

tens of components are created, the edges used are still less than the edges in the original

network.

2.3 Framework Overview

Before introducing the details of the DEDS framework, we provide in Section 2.3.1

preliminaries on the proximity measures that are commonly used in link prediction tasks.

We also introduce in Section 2.3.2 the method for leveraging these proximity measures

under a supervised link prediction framework. In Section 2.3.3, we describe the datasets

and the evaluation metrics used throughout this chapter.

2.3.1 Proximity Measures in Link Prediction

Most existing link prediction methods involve calculating proximity measures for a

non-neighboring vertex pair, vi and vj , where the higher the measures are, the more likely

vi and vj are to be connected via an edge in the near future. According to [29], most

basic link prediction methods generate proximity measures based on the neighborhood

information of vi and vj , or on the path information between vi and vj . The methods

that rely on neighborhood information include common neighbors, Jaccard’s coefficient

[46], Adamic/Adar [1], and preferential attachment [5]. The common neighbors method

calculates the number of neighbors that vi and vj have in common, while the Jaccard’s

coefficient method modifies the common neighbors method by normalizing it with the

total number of neighbors that vi and vj have. The Adamic/Adar method modifies the

common neighbors method by giving more weight to the neighbor that is rarer (i.e., the

neighbor that is connected to fewer other vertices). In the preferential attachment method,

the proximity measure is determined by multiplying the number of neighbors of vi and vj .
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Figure 2.2: An illustrative example for the usage of the three snapshots in the DEDS
framework, whereCN , JC, andPA stand for the proximitymeasures common neighbors,
Jaccard’s coefficient, and preferential attachment, respectively. The thick lines indicate
the newly generated edges which do not exist in the preceding snapshot.

The methods that rely on path information include Katz [22], hitting time [29], variants

of PageRank [7] (e.g., rooted PageRank [29]), SimRank [19], and PropFlow [31]. A

description and comparison of the methods listed above (with the exception of the recently

proposed PropFlow) can be found in [29].

2.3.2 Supervised Framework for Link Prediction

In the proposed DEDS framework, we adopt the common proximity measures men-

tioned in the previous subsection within a supervised framework. As shown in [31], using

scores generated from the same proximity measure, a supervised method can outperform

an unsupervised method. A supervised method is also more capable of handling the dy-

namics and capturing the interdependency of topological properties in the network. There-

fore, recent link prediction works have begun to use a supervised framework.

A supervised framework like DEDS works as illustrated in Figure 2.2. The first snap-

shot of the original network is taken to generate feature values (i.e., the scores generated

from proximitymeasures). Before computing the proximitymeasures of vertex pairs in the

first network snapshot, we sparsify the snapshot using the proposed sparsification meth-

ods, which will be described later in Section 2.4.1. The computational cost of calculating

proximity measures can be reduced considerably, since the network size is significantly

lowered. Note that before sparsifying the network snapshot, the non-neighboring vertex
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pairs are marked in main memory or the disk.2 This prevents unnecessary prediction of

the vertex pairs that are originally connected but have their connecting edges removed

during sparsification. For example, even though the edge between the vertex pair (v1, v5)

is removed during sparsification, we can still avoid making a redundant prediction on this

vertex pair.

After a given period, a second snapshot of the network is taken.3 Since the network is

dynamic, this second snapshot can be used to verify whether an originally non-neighboring

pair vi and vj in the first snapshot is now connected or not, and class labels are thereby

generated. Taking the example illustrated in Figure 2.2, the vertex pair (v1, v2) is newly

connected in the second snapshot, and hence this pair is a positive instance. While the

first snapshot is sparsified in order to generate proximity measures efficiently, the second

snapshot is fully preserved. This ensures that the class labels generated from the second

snapshot are all correct.

Besides the first and the second network snapshots, there is a third snapshot used to

capture the most recent network. We use this last network snapshot to calculate the latest

proximity measures and make predictions for users. Since the goal of the drastic sparsi-

fication is to generate the prediction much faster, the third snapshot is sparsified before

calculating the proximity measures. Some may think that the training process using the

first and second network snapshots can be conducted offline without rushing, so we do

not need to sparsify the first network snapshot. However, the sparsification of the first

snapshot is actually necessary and even vital to prediction accuracy. If the first snapshot

is not sparsified, most proximity measures, such as the common neighbors and the Katz,

tend to have much higher values. As a consequence, the classifier trained with these over-

estimated values cannot make accurate predictions in the third network snapshot, which

is sparsified and tends to have lower values.
2With the help of data structures such as B-tree, we can decide quickly whether a vertex pair has a link

in the original network or not, even if this information is stored in the disk.
3The timing for taking these snapshots of the network (i.e., t1 and t2) is discussed in [31].
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2.3.3 Data and Evaluation Metrics

To evaluate the improvement of prediction accuracy introduced by the DEDS frame-

work, we use two real datasets provided in the LPmade package [30]: condmat (110.5K

edges) and disease (15.6K edges). Besides the real datasets, we also carry out the evalua-

tion of efficiency on a larger synthetic dataset rmat (10M edges), which is produced using

the R-MAT [8] graph generating algorithm. The R-MAT algorithm is able to quickly gen-

erate large networks that match patterns in real-world networks. The parameters a, b, c,

and d used in network generation are set to be 0.6, 0.15, 0.15, and 0.1, which follow the

settings in the previous study [32].

In terms of evaluation metrics, the receiver operating characteristic (ROC) curve is

an effective method for illustrating the performance of a binary classifier system, since it

shows the performance of the classifier under the entire operating range. The ROC curve

displays the true positive rate (TPR) versus the false positive rate (FPR), and each point

on this curve is produced by varying the decision threshold of the proximity measures.

Since it would be too space-consuming to generate ROC curves for all of the classifiers

under various sparsification ratios, the following evaluation is based on the area under

the ROC curve (AUC). AUC is a related scalar measure of ROC, and it can be seen as

a summary of performance. Besides using AUC to evaluate the performance over all

decision thresholds, we also adopt the common mean square error (MSE) to measure the

performance at a specific decision threshold that is selected during the training phase.

2.4 Diverse Ensemble of Drastic Sparsification

When only a small portion of edges are preserved during sparsification, the information

that can be used in link prediction becomes extremely limited. Therefore, the challenge

is to maintain high prediction accuracy while drastically reducing the network size. The

proposed DEDS framework solves this problem by using the wisdom of crowds; that is,

ensemble. The concept of ensemble is to build different experts (i.e., individual classifiers)

and then let them vote. Just as considering various opinions may help people make better
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decisions, using different classifiers allows for more accurate link prediction. One popular

and simple ensemble method is bagging, which assigns equal weighting to each classifier.

Bagging can be used to average the numerical outputs or vote for the classified label, and

it provides the DEDS framework with more flexibility in the selection of classification

algorithms. In this study, we present the results with the classic C4.5 [40], and the results

with naive Bayes show similar trends. However, if a particular classification algorithm is

found to be more suited to handling a certain network, users can easily replace the current

algorithm used in DEDS without modifying the framework structure.

To obtain an effective ensemble classifier, previous studies [56] [17] [23] suggest that

the diversity among individual classifiers plays an important role. Without diversity, the

individual classifiers tend to produce similar judgments, and combining these similar judg-

ments will not improve the final decision. Therefore, in order to increase diversity and

preserve various important properties, DEDS incorporates four sparsification methods to

generate a variety of sparsified networks. We introduce these sparsification methods in

Section 2.4.1, and in Section 2.4.2, we analyze how the ensemble with diversity can result

in a better performance. In Section 2.4.3, we further accelerate the link prediction process

by feature selection.

2.4.1 Diverse Sparsification Methods

In the DEDS framework, the proximity measures described in Section 2.3 are adopted

as features for building the classifier for link prediction. Since these proximity measures

have different properties, a single type of sparsified network is unable to sufficiently pre-

serve them all. Therefore, we generate various types of sparsified networks, and in each

network, certain proximity measures can benefit from the edges preserved. As a result,

these proximity measures can be more discriminative. Furthermore, as previously men-

tioned, diversity is an important factor in obtaining an effective ensemble. By generating

different sparsified networks with various sparsification methods, we can increase the va-

riety of classifiers trained from these sparsified networks. In the following paragraphs, we
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introduce the four sparsification methods used in the DEDS framework, namely, degree-

based sparsification, random-walk-based sparsification, short-path-based sparsification,

and random sparsification.

• Degree-based sparsification. In degree-based sparsification, each edge is first

given a score in proportion to the summation of the degrees at its two ends. We

then repeatedly select the edge with the highest score, until the percentage of se-

lected edges meets the sparsification ratio. As mentioned, the proximity measures

adopted in the DEDS framework can be roughly divided into two categories: one

based on neighborhood information, and the other based on path information. Most

proximity measures based on neighborhood information involve counting the num-

ber of common neighbors. To further illustrate this, let us assume there is a con-

nected vertex pair of vx and vy. During sparsification, if the degree of either vx or

vy is large, removing the edge connecting the pair may affect many common neigh-

bor counts. Let the degree of vx to be dx, which means vx has dx−1 neighbors other

than vy. When we remove the edge connecting vx and vy, the number of common

neighbors between vy and each of the dx − 1 neighbors of vx will decrease by one,

since vx is no longer a neighbor of vy after sparsification. For the dy − 1 neighbors

of vy, the common neighbor vy also disappears between vx and each of these dy − 1

vertices. In total, removing the edge connecting vx and vy may cause as many as

dx + dy − 2 non-neighboring vertex pairs to lose their common neighbors.4 There-

fore, we choose to remove the edge with the smaller summation of the degrees at its

two ends, in order to reduce the loss of common neighbors.

• Random-walk-based sparsification. Certain proximity measures based on path

information (e.g., hitting time, rooted PageRank, and PropFlow) involve random

walks between non-neighboring vertices. Therefore, in this sparsification method,

we aim to preserve the edges that are most frequently used by the random walk.

We first conduct random walk rehearsals on randomly selected vertex pairs in the
4There are dx + dy − 2 vertex pairs that lose common neighbors, but only the non-neighboring vertex

pairs will affect prediction accuracy. Therefore, dx + dy − 2 is actually a worst-case analysis.
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original network, and then we calculate the score of each edge in proportion to the

total visited count during the random walk rehearsals. Thereafter, we repeatedly

select the edge with the highest score, until the percentage of selected edges meets

the sparsification ratio.

• Short-path-based sparsification. In addition to random walk, certain proximity

measures based on path information (e.g., Katz) involve short paths between non-

neighboring vertices. Therefore, in this sparsification method, we aim to preserve

the edges that appear frequently in certain short paths, as these edges are likely to

be shortcuts or important bridges. We first compute the shortest paths that do not

exceed a length thresholdL, and the score of each edge is calculated in proportion to

the frequency that this edge appears in the paths. We then repeatedly select the edge

with the highest score, until the percentage of selected edges meets the sparsifica-

tion ratio. In most previous studies of link prediction, the path-oriented proximity

measures do not involve long paths since they are computationally expensive, and

using the maximum length of the paths used in proximity measures (e.g., 5 in [31])

as L will suffice. When the original network is too large to be stored in main mem-

ory, the sketch-based index structure proposed in [13] can help to compute the paths

much faster, while keeping the estimation error below 1% on average.

• Random sparsification. The random sparsification method is the most straight-

forward among the four methods, whereby edges are randomly selected from the

original network until the percentage of selected edges meets the sparsification ra-

tio. This sparsification prevents the DEDS framework from being over-fitted for

any specific type of proximity measure, and also allows the DEDS framework to be

more generalized to accommodate potential new proximity measures in the future.

Since the original network is comparatively large, the sparsification process that deals

with the original network may take longer. However, the sparsification can be done of-

fline, and then predictions can be generated online in a timely fashion using the smaller

sparsified network.
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Figure 2.3: (a) An example networkwith its four different sparsified networks, (b), (c), (d),
(e), obtained from degree-based sparsification, random-walk-based sparsification, short-
path-based sparsification, and random sparsification, respectively.

Table 2.1: Statistics of network characteristics for different sparsified networks.
Mean SD RSD

Characteristics random_spar diverse_spar random_spar diverse_spar random_spar diverse_spar
Assortativity Coef. -0.244 -0.337 0.018 0.292 7% 86%
Average Clustering Coef. 0.033 0.097 0.006 0.067 17% 69%
Median Degree 2 0.5 0 1 0% 200%
Max Degree 23.25 49.75 0.96 23.82 4% 48%
Number of SCCs 116 258 7.26 90.41 6% 35%
Largest SCC 283.25 129 7.68 104.09 3% 81%
Largest SCC Diameter 7.5 5.5 1.29 2.38 17% 43%

2.4.2 Ensemble with Diversity

Figure 2.3 displays an example network and its four sparsified networks obtained by

the sparsification methods introduced in Section 2.4.1. It can be seen that these sparsi-

fied networks have significant structural differences. These sparsified networks also ex-

hibit different quantitative characteristics. Table 2.1 provides various network statistics to

contextualize the diversity of these sparsified networks. Here we compare two groups of

sparsified networks, namely, random_spar (which includes four randomly sparsified net-

works) and diverse_spar (which includes four sparsified networks obtained from different

sparsification methods). For each sparsified network, we calculate various characteristics

as described below. To measure the tendency of finding connected vertex pairs that are

each highly connected, we use the assortativity coefficient. In order to measure how likely

vertices in the network are to be connected in dense groups, we use the average clustering

coefficient. To more fully grasp the broad topological structure of the network, we also

calculate the size and diameter of the strongly-connected components (SCCs). For sim-

plicity and easy comparison, we do not list the values for each of the sparsified networks

separately. Instead, we provide summarized statistics for the four sparsified networks in
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(a) Four individual classifiers generated from the
same type of sparsified networks, and two ensem-
ble classifiers without diversity (shown from left
to right).
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(b) Four individual classifiers generated from dif-
ferent types of sparsified networks, and two en-
semble classifiers with diversity (shown from left
to right).

Figure 2.4: Performance comparison between the ensemble without diversity and the en-
semble with diversity. (condmat, sparsification ratio = 10%)

each group, which include the mean, the standard deviation (SD), and the relative standard

deviation (RSD). The RSD is widely used to measure the degree of dispersion, and a larger

RSD means the data has more variability. As the results show, the RSD of diverse_spar

is always significantly higher than the RSD of random_spar, which indicates that the

network characteristics of the sparsified networks obtained from different sparsification

methods are much more diverse.

In Figure 2.4, experimental results are provided to compare the ensemble without di-

versity and the ensemble with diversity. Here we present the results with condmat, and

the other real dataset disease exhibits similar trends. In Figures 2.4(a) and 2.4(b), there

are seven individual classifiers (i.e., random_c1-4, degree_c1, random_walk_c1, and

short_path_c1, where the prefix of each classifier indicates its corresponding type of

sparsified network), and four ensemble classifiers composed of these individual classi-

fiers. Note that the AUC of the individual classifiers is relatively low, with most of them

under 0.6. In contrast, if we combine these weak individual classifiers, even the AUC of

the worst ensemble classifier can exceed 0.68, which is an improvement of 17% compared

with the average of its four individual classifiers.

We can further note that there exists a large difference among the ensemble classi-

fiers. The two ensemble classifiers in Figure 2.4(a) (i.e., ensem_EW_WOD and en-
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sem_AW_WOD, where WOD means without diversity) can reach 0.68 and 0.71, which

is an average improvement of 17% and 22%, respectively. On the other hand, the two en-

semble classifiers in Figure 2.4(b) (i.e., ensem_EW_WD and ensem_AW_WD, where

WD means with diversity) can reach 0.75 and 0.79, which shows an average improve-

ment of 27% and 34%, respectively.5 The ensemble classifiers in Figure 2.4(b) have no

larger ensemble size than the ensemble classifiers in Figure 2.4(a), and the key difference

that makes the former outperform the later is the diversity. Specifically, the four individ-

ual classifiers composing the ensemble classifiers in Figure 2.4(b) are trained from four

different types of sparsified networks with significant structural differences, as shown in

Figure 2.3 and Table 2.1. In addition to AUC, the ensemble classifiers with higher di-

versity also have better MSE values. As shown by the experimental results, the average

MSE of the ensemble classifiers in Figure 2.4(b) is reduced by 25% as compared with the

average MSE of the ensemble classifiers in Figure 2.4(a). The above analysis indicates

that, although the total number of edges preserved in the sparsified networks are limited,

ensembling with various types of sparsified networks can increase the diversity to help

relieve the drop in accuracy and maintain a solid performance.

2.4.3 Feature Subset Selection

As shown in Section 2.4.2, different types of sparsified networks are diverse and have

significant structural differences. Therefore, the features (i.e., the proximity measures)

are not likely to be equally effective in the correspondingly trained classifiers. For the

applications that need to provide online predictions efficiently, using feature selection to

form a proper feature subset for each classifier can further accelerate the prediction and re-

duce the delay. Among the existing feature selection algorithms, the category of wrapper

methods usually outperforms the category of filters methods, since the former evaluates

feature subsets based on the adopted prediction model. However, most wrapper methods

need to test numerous combinations of features and hence become computationally in-
5In our study, we also found that weight setting will affect performance, and the difference between equal

weighing (denoted with EW) and accuracy-based weighting (denoted with AW) will be analyzed later in
Section 2.5.1.
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tensive, especially when we have multiple classifiers to train. Therefore, we consider a

simple alternative, which evaluates the performance of each feature in different sparsified

networks separately.

Specifically, in the preprocessing stage, each feature will have four scores determined

by its discrimination ability (e.g., AUC) in the four different sparsified networks. Later in

the training process, if any feature has one score below a specified threshold, this feature

will not be adopted to make prediction in the corresponding type of sparsified network.

In this way, only the features have enough discrimination ability for this type of sparsified

network are kept to build the classifier. An intuitive threshold is the average of all the

scores, which picks out features with relatively stronger discrimination ability. If the user

wants to further accelerate the online prediction, the threshold can be raised to reduce the

number of features.

According to the experimental results, embedding feature selection as a preprocessing

stage saves 21% on running time on average, ranging from 15% to 37%. Meanwhile, the

AUC of the ensemble classifier only slightly drops by 0.007, which is less than 1%. The

results indicate that the feature selection effectively preserves the features with high dis-

crimination ability in each sparsified network, and therefore is able to reduce considerable

running time without sacrificing much on the prediction accuracy. Moreover, when new

features are proposed in the future, it is difficult for users without expert knowledge to

decide which ones are worth adopting. The feature selection here can help automatically

determine whether the new features perform well enough in a certain sparsified network,

and it can also eliminate the outdated features to save computational cost. Therefore,

incorporating the feature selection also enhances the flexibility to adopt new features in

DEDS.

2.5 Strategies for Ensemble Generation

As shown in Section 2.4, the ensemble classifier with high diversity can greatly out-

perform every individual classifier. In this section, we analyze two strategies that further
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Given a test example y, a classifier outputs fc(y), the probability
of y being an instance of class c. A classifier ensemble pools the
outputs of several classifiers before a decision is made. The most
popular way of combining multiple classifiers is via averaging [24],
in which case the probability output of the ensemble is given by:

fE
c (y) =

1
k

k∑

i=1

f i
c(y)

where f i
c(y) is the probability output of the i-th classifier in the

ensemble.
The outputs of a well trained classifier are expected to approx-

imate the a posterior class distribution. In addition to the Bayes
error, the remaining error of the classifier can be decomposed into
bias and variance [15, 6]. More specifically, given a test example
y, the probability output of classifier Ci can be expressed as:

f i
c(y) = p(c|y) + βi

c + ηi
c(y)

︸ ︷︷ ︸
added error for y

(1)

where p(c|y) is the a posterior probability distribution of class c
given input y, βi

c is the bias of Ci, and ηi
c(y) is the variance of Ci

given input y. In the following discussion, we assume the error
consists of variance only, as our major goal is to reduce the error
caused by the discrepancies among the classifiers trained on differ-
ent data chunks.
Assume an incoming data stream is partitioned into sequential

chunks of fixed size, S1, S2, · · · , Sn, with Sn being the most recent
chunk. Let Ci, Gk , and Ek denote the following models.

Ci : classifier learned from training set Si;
Gk : classifier learned from the training set consisting of

the last k chunks Sn−k+1 ∪ · · · ∪ Sn;
Ek : classifier ensemble consisting of the last k classifiers

Cn−k+1, · · · , Cn.

classification
error on y

...

...

...

...
streamSnSn-1

test
example
 

y

Sn-kSn-k-1

Figure 3: Models’ classification error on test example y.

In the concept-drifting environment, models learned up-stream
may carry significant variances when they are applied to the cur-
rent test cases (Figure 3). Thus, instead of averaging the outputs
of classifiers in the ensemble, we use the weighted approach. We
assign each classifier Ci a weight wi, such that wi is reversely pro-
portional to Ci’s expected error (when applied to the current test
cases). In Section 4, we introduce a method of generating such
weights based on estimated classification errors. Here, assuming
each classifier is so weighted, we prove the following property.

Ek produces a smaller classification error thanGk, if classifiers
inEk are weighted by their expected classification accuracy on the
test data.

Figure 4: Error regions associated with approximating the a
posteriori probabilities [24].

We prove this property through bias-variance decomposition based
on Tumer’s work [24]. The Bayes optimum decision assigns x to
class i if p(ci|x) > p(ck|x),∀k ̸= i. Therefore, as shown in Fig-
ure 4, the Bayes optimum boundary is the loci of all points x∗ such
that p(ci|x∗) = p(cj |x∗), where j = argmaxk p(ck|x∗) [24].
The decision boundary of our classifier may vary from the optimum
boundary. In Figure 4, b = xb − x∗ denotes the amount by which
the boundary of the classifier differs from the optimum boundary.
In other words, patterns corresponding to the darkly shaded region
are erroneously classified by the classifier. The classifier thus intro-
duces an expected error Err in addition to the error of the Bayes
optimum decision:

Err =

∫ ∞

−∞
A(b)fb(b)db

where A(b) is the area of the darkly shaded region, and fb is the
density function for b. Tumer et al [24] proves that the expected
added error can be expressed by:

Err =
σ2

ηc

s
(2)

where s = p′(cj |x∗) − p′(ci|x∗) is independent of the trained
model1, and σ2

ηc denotes the variances of ηc(x).
Thus, given a test example y, the probability output of the single

classifier Gk can be expressed as:

fg
c (y) = p(c|y) + ηg

c (y)

Assuming each partition Si is of the same size, we study σ2
ηg

c
,

the variance of ηg
c (y). If each Si has identical class distribution,

that is, there is no conceptual drift, then the single classifier Gk,
which is learned from k partitions, can reduce the average variance
by a factor of k. With the presence of conceptual drifts, we have:

σ2
ηg

c
≥ 1

k2

n∑

i=n−k+1

σ2
ηi

c
(3)

1Here, p′(cj |·) denotes the derivative of p(cj |·).
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Figure 2.5: Error regions associated with approximating the a posteriori probabilities [56].

raise its performance: using the accuracy-based weighting in Section 2.5.1 and augment-

ing the ensemble size in Section 2.5.2.

2.5.1 Accuracy-Based Weight Setting

While the bagging method assigns equal weighting to each classifier, we found that if

the weights of classifiers are carefully assigned, the performance of DEDS can be further

improved. With the following proof, we show that the weights of classifiers should be

assigned in proportion to their prediction accuracy.

Theorem 2.5.1. The DEDS framework adopting accuracy-based weighting introduces a

smaller prediction error than the framework adopting equal weighting.

Proof. Since the output of a reasonably well-trained classifier is expected to approximate

the corresponding a posteriori class distribution, the obtained decision boundary is ex-

pected to be close to the Bayesian decision boundary. In a two-class classification prob-

lem such as link prediction, the Bayesian optimum decision assigns an instance x to the

class i if p(ci|x) > p(cj|x), where p(c|x) is the a posteriori probability distribution of

class c given the input x. In other words, the Bayes optimum boundary is at the point x∗

such that p(ci|x∗) = p(cj|x∗). However, the trained classifier is not perfect, and it outputs

fc(y) = p(c|x) + ηc(x) instead of p(c|x), where ηc(x) is the variance of the classifier

given an input x.6 Therefore, the obtained boundary may drift from x∗ to xb, as illustrated
6According to the bias-variance decomposition [48], the added error for the output of a classifier includes

the bias of the learning algorithm and the variance. Here we focus on the variance only, since our primary
goal is to find a better weight setting that can reduce the prediction error introduced by the variance.

23



doi:10.6342/NTU201700431

in Figure 2.5, consequently causing prediction errors in the darkly shaded region.7 This

expected prediction error Err can be expressed as

Err =

∫ ∞

−∞
A(b)fb(b)db, (2.1)

where b = x∗ − xb, A(b) is the darkly shaded region, and fb is the density function for b.

Tumer and Ghosh [56] prove that (2.1) can be calculated by

Err =
σ2
ηc

s
, (2.2)

where σ2
ηc is the variance of ηc(x), and s is the difference between the derivatives of

p(cj|x∗) and p(ci|x∗).

Assume that DEDS includes k individual classifiers D1, D2, · · · , Dk, and the output

of each classifier Di is

f i
c(y) = p(c|x) + ηic(x).

When DEDS combines these classifiers with weights wi, i = 1, ..., k to build an ensemble

E, the output of this ensemble classifier is

fE
c (y) =

k∑
i=1

wif
i
c(y)/

k∑
i=1

wi

=
k∑

i=1

wip(c|x)/
k∑

i=1

wi +
k∑

i=1

wiη
i
c(x)/

k∑
i=1

wi

= p(c|x) +
k∑

i=1

wiη
i
c(x)/

k∑
i=1

wi︸ ︷︷ ︸
variance of the ensemble classifier, i.e., ηEc (x)

.

We can further assume that the variances of individual classifiers Di, i = 1, ..., k are
7The lightly shaded region is the inherent error of the Bayes optimum decision.
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independent, and as derived by Wang et al. [58], the variance of ηEc (x) is

σ2
ηEc

=
k∑

i=1

w2
i σ

2
ηic
/(

k∑
i=1

wi)
2. (2.3)

If DEDS adopts equal weighting (i.e.,wi = 1/k), by using (2.2) and (2.3), the expected

prediction error of DEDS becomes

Errequal =
σ2
ηEc

s
=

1

sk2

k∑
i=1

σ2
ηic
. (2.4)

In contrast, if DEDS adopts accuracy-based weighting and sets the weights of classi-

fiers to be inversely proportional to their error rate (i.e.,wi = α/σ2
ηic
, whereα is a constant),

the expected prediction error of DEDS then becomes

Erracc_based =
σ2
ηEc

s
=

1

s
(1/

k∑
i=1

1

σ2
ηic

). (2.5)

With Cauchy’s Inequality, we can further derive that

k∑
i=1

1

σ2
ηic

k∑
i=1

σ2
ηic
≥ (

k∑
i=1

1

σηic

σηic
)2 = k2,

which implies that
1

k2

k∑
i=1

σ2
ηic
≥ 1/

k∑
i=1

1

σ2
ηic

.

By multiplying 1/s on both sides of the above inequality, together with (2.4) and (2.5),

we can show that

Errequal =
1

sk2

k∑
i=1

σ2
ηic
≥ 1

s
(1/

k∑
i=1

1

σ2
ηic

) = Erracc_based.

The theorem follows.

The experimental results shown in Figures 2.4(a) and 2.4(b) further support this con-

clusion. In Figure 2.4(a), while the ensemble classifier with equal weighting (i.e., en-
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sem_EW_WOD) already outperforms the four individual classifiers, the ensemble clas-

sifier with accuracy-based weighting (i.e., ensem_ AW_WOD) can bring an extra 5%

increase in AUC and also a 10% decrease in MSE. That is, the ensemble classifier with

accuracy-based weighting tends to have the highest true positive rate as well as the lowest

prediction error. The results in Figure 2.4(b) also exhibit the analogous improvements.

Therefore, we consider accuracy-based weighting while evaluating the DEDS framework

for the rest of this chapter.

2.5.2 Ensemble Size Augmentation

Rokach [42] reviews various ensemble techniques and categorizes them into two groups:

dependent frameworks and independent frameworks. In a dependent framework, the out-

put of a classifier is used as the input to construct the next classifier. In contrast, the

classifiers in an independent framework are built independently, and then their outputs

are combined to generate the final decision. One solid reason to design DEDS as an in-

dependent framework is exactly that every individual classifier can be trained and used to

generate predictions independently. This enables DEDS to fully utilize all the CPUs or

cores in order to simultaneously train and run the maximum number of individual classi-

fiers. Since these classifiers are trained and run in parallel, the total training and prediction

time will not grow much, while the prediction accuracy can be raised substantially.

To further increase the ensemble size, we need to generate more than one sparsified

network from each sparsification method. For the sparsification method that has an in-

herent random flavor (i.e., random sparsification or random-walk-based sparsification),

executing it multiple times can generate slightly varied copies of sparsified networks. The

short-path-based sparsification method can produce slightly different copies of sparsified

networks by modifying the length threshold L. For example, if L = 5 at the beginning,

using L = 5 ± 1 and L = 5 ± 2 can produce four other more sparsified networks. As

for the degree-based sparsification, we can moderately disturb the original sparsified net-

work, by replacing some existing edges in the sparsified network with the edges outside
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Figure 2.6: Comparison of AUC for different ensemble sizes. The dash line indicates the
AUC of the classifier trained from the original network. (condmat, sparsification ratio =
15%)

the sparsified network. In order to maintain the core design behind the degree-based spar-

sification (i.e., preserving the edge with high summation of the degrees at its two ends),

the probability of the replacement is set to be proportional to SDi/SDo, where SDi and

SDo are the summation of degrees for the edges in the sparsified network and the edges

outside the sparsified network, respectively.

Figure 2.6 shows the performance of ensemble classifiers with different ensemble

sizes. As expected, the AUC increases as the ensemble size becomes larger. When the en-

semble size becomes sufficiently large, the ensemble classifier may even slightly outper-

form the classifier trained from the original network. However, the AUC of the ensemble

classifier increases slowly when the ensemble size exceeds 13, and the AUC eventually

remains at approximately 0.85. The reason for this is that, when there are already many

existing classifiers, a newly joined classifier tends to possess much of the same knowledge

(i.e., edges) that the existing classifiers already have.

2.6 Analysis on Accuracy and Efficiency

As previously mentioned, the major challenge in drastic sparsification for link predic-

tion is how to considerably reduce the network size while keeping the accuracy high. In

this section, we present a more detailed analysis of (1) how a diverse ensemble helps to

preserve the prediction accuracy, and (2) how sparsification helps to reduce the processing
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time of prediction.

2.6.1 Prediction Accuracy

Here we first analyze the AUC at different sparsification ratios. The results of larger

sparsification ratios (e.g., 60% or 30%) are provided in Figure 2.7(a), and then we dig

into smaller sparsification ratios (e.g., 5% or 1%) in Figure 2.7(b). From Figure 2.7(a),

first it can be seen that no matter what the sparsification ratio is, the AUC of the ensemble

classifier is always much higher than the individual classifiers. The AUC value is 0.73

on average for individual classifiers when the sparsification ratio is 30%; in contrast, with

various types of models combined together, the AUC value of the ensemble classifier can

reach up to 0.90, which is a 23% improvement. When the sparsification ratio is not too

small (specifically, no smaller than 40%), the ensemble classifier can even outperform the

classifier trained from the original network. As intuition suggests, the prediction accuracy

drops as the sparsification ratio goes down. In Figure 2.7(b), the AUC of an individual

classifier trained from the random-walk-based sparsified network falls to 0.52 when the

sparsification ratio is 0.1%, which is almost no different frommaking decisions by flipping

a coin. In contrast, the DEDS framework can effectively relieve the loss of prediction

accuracy, and the AUC value of the ensemble classifier is able to remain at 0.70, which is

a 35% improvement.

In addition to low prediction accuracy, another problem with using only one type of

sparsified network is that the performance of individual classifiers is unstable, and the

ranking of these individual classifiers varies among different sparsification ratios. For

example, random sparsification is the most effective method when the sparsification ratio

is larger than 70%, but the short-path-based sparsification comes out on top when the

sparsification ratio is 60%. The ranking then varies again at the 9% sparsification ratio,

where the degree-based sparsification outperforms the other three methods. Therefore,

it is not possible here to choose an individual classifier that has top performance for all

sparsification ratios. This difficulty, once again, shows the importance of incorporating the
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(a) disease, ensemble size = 5

(b) disease, ensemble size = 30

Figure 2.7: Performance of four different individual classifiers, their average (denoted as
”Average”), and the ensemble classifier at different sparsification ratios.
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ensemble methodology, which enables the DEDS framework to have a steadily increasing

AUC value and outperform every individual classifier at all sparsification ratios.

The ensemble size in Figure 2.7(b) is 30, which appears to be large. However, when

the sparsification ratio is 0.1%, 30 such sparsified networks actually contain only 3% of

the edges in the original network. Moreover, as shown in Figure 2.7(b), the ensemble clas-

sifier combining 30 individual classifiers trained from various 0.1% sparsified networks

can outperform any type of individual classifier trained from a 3% sparsified network.

Remember that all of the individual classifiers are unentangled in the DEDS framework.

That is, with enough CPUs or cores, these 30 classifiers can be trained and used to gener-

ate predictions at the same time. With only the running time of a 0.1% sparsified network,

the DEDS framework can provide prediction accuracy better than that of using a 3% spar-

sified network. These results suggest that the DEDS framework could be considered as a

method for parallelizing link prediction tasks to fully utilize the computational resources.

2.6.2 Computational Efficiency

Figure 2.8(a) shows that link prediction tasks would take more than 55 hours when

using the large rmat network. In contrast, the DEDS framework only requires 4% of

prediction cost if the network is sparsified down to 1% of the original one, which means

the prediction time can be substantially shortened, from two days to two hours. Note that

when the sparsification ratio is small, the sparsified network may be able to fit into main

memory. Assume that the network used in Figure 2.8(a) can fit into main memory when

the sparsification ratio is 1%. According to the experimental results in Figure 2.8(b), the

prediction cost is now drastically lowered, from two days to only 17 seconds, which means

that DEDS saves more than 99.94% on running time. The reason why DEDS can provide

such great savings is that it not only reduces the number of edges needed to be processed,

but also relieves the burden of disk access.

If the original network is already able to fit into main memory, the proposed DEDS

framework can still lower the prediction cost considerably, by reducing the number of
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Figure 2.8: Running time under different sparsification ratios: (a) the network is stored in
the disk, (b) the original network is stored in the disk but can fit into main memory after
being sparsified, and (c) the network is cached in main memory.

edges that need to be processed. Here we use the smaller condmat network and put it into

main memory from the start. The experimental results in Figure 2.8(c) show that when

the network is sparsified to 10% of the original one, the link prediction process requires

less than 64% of the running time. If the sparsification ratio further decreases to 1% or

even 0.1%, the link prediction process will only require 30% or 19% of the running time,

respectively. That is, every time when the number of edges is sparsified to 10% of what

it previously was, the prediction cost can be reduced by 35-50%.

2.7 Summary

To the best of our knowledge, there is no existing work in the literature that addresses

the ensemble of drastic sparsification to facilitate link prediction. Removing some edges
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before predicting the existence of other edges seems counterintuitive; however, the exper-

imental results show that the proposed DEDS framework not only reduces prediction time

considerably, but also preserves high accuracy. When the network is drastically sparsi-

fied, DEDS effectively relieves the drop in prediction accuracy and raises the AUC value.

With a larger sparsification ratio, DEDS can even outperform the classifier trained from

the original network. In terms of efficiency, the prediction cost is substantially reduced

after the network is sparsified. If the original network is disk-resident but can fit into main

memory after being sparsified, the improvement is even more significant. Moreover, the

DEDS framework places no restrictions on the sparsification ratio and ensemble size, and

users can decide the ratio and the size flexibly based on their computational ability and

accuracy requirements. Note that all of the individual classifiers in DEDS can be trained

and run independently, which makes DEDS easier to parallelize.
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Chapter 3

Efficient Social-Temporal Group Query

with Acquaintance Constraint

3.1 Introduction

In Chapter 2, we have studied the link prediction problem that focuses on predicting

the existence of link between particular two users. In this chapter, we extend the scope

from the relationship between two users to the relationship among a group of users, and

study the social-temporal group query problem with its applications in activity planning.

Three essential criteria for social activity planning are (1) finding a group of attendees fa-

miliar with the initiator, (2) ensuring most attendees have tight social relations with each

other, and (3) selecting an activity period available to all. For example, a person with

some free movie tickets to share may like to find a group of mutually close friends and

a time available to all. Nowadays, most activities are still initiated manually via phone,

e-mail, or texting. However, with a growing number of systems possessing information

needed for activity initiation, new activity planning functions can be provided. For exam-

ple, social networking websites, such as Facebook, Google+, and LinkedIn, provide the

social relations, and web applications, such as Google Calendar, Doodle1, Timebridge2,
1The Doodle website. http://doodle.com/.
2The Timebridge website. http://www.timebridge.com/.
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and Meetup3, allow people to share their available time and activity plans to friends. For

manual activity planning, finding socially close participants and a suitable time can be

tedious and time-consuming, due to the complexity of social connectivity and the diver-

sity of schedules. Thus, there are demands for an effective activity planning service that

automatically suggests socially acquainted attendees and a suitable time for an activity.

To support the aforementioned service, we formulate a new query problem, named

Social-Temporal Group Query (STGQ), which considers the available time and relation-

ships of candidate attendees. Given an activity initiator, we consider her social network

for candidate attendees. We assume that their schedules are available to the planning

service (e.g., via web collaboration tools), and the closeness between friends is quanti-

tatively captured as social distance [3, 10, 65]. Based on the criteria mentioned earlier,

an STGQ comes with the following parameters, (1) a group size p to specify the number

of attendees, (2) an availability constraint m to specify the length of activity period, (3)

a social radius constraint s for the scope of candidate attendees, and (4) an acquaintance

constraint k to govern the relationships between attendees. STGQ aims to find a group

and time matching the group size in (1) and the activity length in (2), such that the total

social distance between the initiator and attendees is minimized. Additionally, the social

radius constraint in (3) specifies that all attendees are located no more than s edges away

from the initiator, while the acquaintance constraint in (4) requires that each attendee has

at most k unacquainted attendees. As such, by controlling s and k based on the desired

social atmosphere, suitable attendees and time are returned. Note that, while possessing

the required information, all of the aforementioned web applications (e.g., Doodle) still

cannot automatically find the suitable attendees and time for the initiators. To the best of

our knowledge, the STGQ problem has not been studied before. In the following, Example

3.1.1 presents an illustrative example of SGTQ.

Example 3.1.1. Consider an illustrative example in Figure 3.1, where Casey Affleck

would like to invite some friends to dine together. Figure 3.1(a) shows a possible social

network of Casey Affleck. Assume that Casey Affleck is trying to find three mutually ac-
3The Meetup website. http://www.meetup.com/.
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(a)

(b)

 ts1 ts2 ts3 ts4 ts5 ts6 

v1  O O O O  

v2 O O O O O  

v3  O O O O O 

v4 O O O O O O 

v5 O  O O O  
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v7  O O O O O 
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Figure 3.1: An illustrative example for STGQ. (a) The sample social network, (b) the
dendrogram of candidate group enumeration and (c) schedules of candidate attendees.

quainted friends. Issuing an STGQwith p = 4 and s = 1, which returns {George Clooney

(v2), Robert De Niro (v3), Casey Affleck (v7), Michelle Monaghan (v8)}, does not ensure

social closeness since the three close friends of Casey Affleck are not acquainted to each

other (as shown in Figure 3.1(a)). Instead, by adding the acquaintance constraint and is-

suing an STGQ with p = 4, s = 1 and k = 1, a better list of invitees {George Clooney

(v2), Robert De Niro (v3), Julia Roberts (v6), Casey Affleck (v7)}, where everyone knows

at least two invitees, is obtained. However, Casey Affleck then finds out that these four

attendees have no available time in common when he expects the length of activity time as

3, i.e., three consecutive time slots. Figure 3.1(c) shows the schedule of candidates, with

their available time slots marked by circles. Therefore, he turns to issue an STGQ with

p = 4, s = 1, k = 1 and m = 3, which returns a group of mutually acquainted invitees

and a suitable activity period that is available for all invitees, i.e., {George Clooney (v2),

Robert De Niro (v3), Brad Pitt (v4), Casey Affleck (v7)} and [ts2, ts4].

An intuitive approach to find the answer is to enumerate and examine all the possible

four-person candidate groups that include Casey Affleck himself for each possible activity

period of length 3. In this example, the time interval [ts1, ts6] can be divided into four can-
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didate activity periods, [ts1, ts3], [ts2, ts4], [ts3, ts5] and [ts4, ts6]. Since s = 1, all directly

connected friends of Casey Affleck, together with Casey Affleck himself, i.e., {George

Clooney, Robert De Niro, Brad Pitt, Julia Roberts, Casey Affleck, Michelle Monaghan},

are candidates. Figure 3.1(b) illustrates the enumeration process of the candidate groups

in accordance with the increasing order of user IDs. Note that the numbers 64 and 65

indicate the total social distances of qualified candidate groups. These ten non-duplicate

candidate groups constitute the solution space in a certain activity period, from which we

eliminate the ones disqualified by the acquaintance constraint or not available in this ac-

tivity period. Finally, the group with the smallest total social distance among qualified

candidate groups is returned as the optimal solution.

In situations where the activity time is pre-determined (e.g., a tennis game), STGQ can

be simplified as a Social Group Query (SGQ). In this chapter, we first examine the pro-

cessing strategies for SGQ and then extend our study to the more complex STGQ. Solving

an SGQmay incur an exponential time because SGQ is NP-hard, and processing an STGQ

is even more challenging due to the diversity of schedules. When sequentially choosing

the attendees at each iteration to form a candidate group, giving priority to close friends of

the initiator may lead to a smaller total social distance. However, it may not necessarily

satisfy the acquaintance constraint. On the other hand, prioritizing a set of mutually close

friends to address the acquaintance constraint does not guarantee minimum total social

distance. Moreover, in processing an STGQ, a group of mutually acquainted friends with

a small total social distance still cannot form a solution if their available times do not over-

lap. Therefore, the challenge comes from the strategical dilemma between reducing the

total social distance and ensuring that the solution follows the constraints both socially and

temporally. Based on the above observations, we propose an algorithm called SGSelect

that addresses both the social distance and connectivity, and then extend it to STGSelect

by incorporating various strategies for the temporal dimension. Compared with the exist-

ing studies that focus on only the social dimension to find densely-connected subgroups

(e.g., [6, 18, 43, 55, 59]), STGSelect can process both temporal and social dimensions ef-
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fectively and efficiently.

Contributions of this chapter are summarized as follows.

• We formulate two useful queries for social activity planning, namely, SGQ and

STGQ, to obtain the optimal set of attendees and a suitable activity time. These

queries can be used to plan for various activities by specifying the social radius

constraint s and the acquaintance constraint k. We also prove these two problems

are NP-hard and inapproximable within any ratio. In other words, there exists no

approximation algorithm for SGQ and STGQ unless P = NP.

• We propose Algorithms SGSelect and STGSelect to efficiently find the optimal so-

lution to SGQ and STGQ, respectively. Moreover, we devise various strategies, in-

cluding access ordering, distance pruning, acquaintance pruning, pivot time slots,

and availability pruning, to prune redundant search space and improve efficiency.

Our research results can support social networking websites and web collaboration

tools as a value-added service.

• We conduct a user study to compare the proposed planning service with manual

coordination, and collect feedbacks as a guidance to enrich our group query service.

The results show that the proposed algorithms are able to obtain higher solution

quality with much less coordination effort, increasing users’ willingness to organize

activities.

The rest of this chapter is summarized as follows. In Section 3.2, we introduce related

works. Section 3.3 formulates SGQ and explains the details of Algorithm SGSelect. Sec-

tion 3.4 extends our study on SGQ to the more complex STGQ. The details of Algorithm

STGSelect are also included. Finally, we present the experimental results in Section 3.5

and summarize this chapter in Section 3.6.
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3.2 Related Works

Though some web applications have been developed to support activity coordination,

they require users to manually assign activity time and participants. For example, with

the Events function on Facebook, an activity initiator can specify an activity time and

select friends to invite. These friends then reply with whether they can attend or not.

Some event planning websites and apps, such as Doodle, Timebridge, SelectTheDate4,

and NeedToMeet5, are developed to reduce the initiator’s efforts on collecting the avail-

able time of potential participants. However, the initiator still needs to manually choose

some possible activity times and the participants to issue the invitations, and social co-

hesiveness is thereby not ensured. Such manual activity coordination process is tedious

and time-consuming. In contrast, the proposed STGQ, complementary to the above web

applications, can automatically find a group of close friends to get together at a suitable

activity time.

By minimizing the total social distance among the attendees, we are actually forming

a cohesive subgroup in the social network. In the field of social network analysis, re-

search on finding various kinds of subgroups, such as clique, k-plex and k-truss has been

conducted (e.g., [6, 18, 43, 55, 59]). There are some related works on group formation

(e.g., [3, 44, 57]), team formation (e.g., [2, 24, 41]), and group query (e.g., [27, 28, 60]).

There are also some related works on community search and social circle discovering

(e.g., [35, 52, 61]). While these works focus on different scenarios and aims, none of

them simultaneously encompass the social and temporal objectives to facilitate automatic

activity planning. Therefore, the STGQ problem is not addressed previously.

3.3 Social Group Query

In this section, we present Social Group Query (SGQ), to find the optimal group of

attendees satisfying the social radius constraint and the acquaintance constraint. In the
4The SelectTheDate website. http://www.selectthedate.com/.
5The NeedToMeet website. http://www.needtomeet.com/.
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following, we first present the problem formulation and research challenges in Section

3.3.1, and then prove that SGQ is NP-hard. Afterwards, we propose an algorithm that can

effectively prune redundant search space to obtain the optimal solution in Section 3.3.2.

3.3.1 Problem Definition

Given an activity initiator q and her social graph G = (V,E), where each vertex

v is a candidate attendee, and the distance on each edge eu,v connecting vertices u and v

represents their social closeness. A social group query SGQ(p, s, k), where p is an activity

size, s is a social radius constraint, and k is an acquaintance constraint, finds a set F of

p vertices from G to minimize the total social distance between q and every vertex v in

F , i.e.,
∑

v∈F dv,q, where dv,q is the length of the minimum-distance path between v and q

with at most s edges, such that each vertex in F is allowed to share no edge with at most

k other vertices in F .

The initiator can specify different s for different kinds of activities. For example, the

initiator can ensure that all invited attendees are directly acquainted with her by specifying

s = 1. On the other hand, for a party, the initiator can specify a larger s such that some

friends of friends can also be invited to the party. Moreover, the initiator can vary k for

different kinds of activities, e.g., a small k for a gathering where all the attendees know

each other very well, while a larger k for a more diverse event. Note that the size of

solution space, i.e., the number of candidate groups, rapidly grows when p and s increase.

On the other hand, k serves as a filter to determine whether each candidate group satisfies

the acquaintance constraint. Indeed, processing SGQ is an NP-hard problem (as proved

below in Theorem 3.3.1). Fortunately, while the problem is very challenging, it is still

tractable when the size of s and p are reasonable. In Section 3.3.2, we design an efficient

query processing algorithm by pruning unqualified candidate groups.

Theorem 3.3.1. SGQ is NP-hard and inapproximable within any ratio.

Proof. In the following, we first prove that SGQ is NP-hard with a reduction from problem

k-plex, which is NP-hard [4]. A k-plex with c vertices is a subgraph in a graph G =
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(V ,E), such that every vertex in the subgraph can share no edge with at most k− 1 other

vertices in the subgraph. Problem k-plex with parameters c and k is to decide if G has a

k-plex with c vertices. We prove that SGQ is NP-hard with the reduction from problem

k-plex. Specifically, we construct a weighted graph G(V,E) by letting V as {q} ∪ V and

lettingE asE. We then add c edges intoE to make q connect to all the other vertices. The

distance of every edge is 1. In the following, we prove that there exists a feasible group

F with c + 1 attendees in G for the SGQ with s = 1 and k = k − 1, if and only if there

exists a k-plex with c vertices in G.

We first prove the sufficient condition. If we remove q from F , every vertex in F still

shares no edge with at most k− 1 other vertices, since q connects to all the other vertices.

In other words, F −{q} with c vertices corresponds to a k-plex with size c in G. We then

prove the necessary condition. If there exists a k-plex with size c in G, F with q and the

c vertices must all satisfy the social radius constraint with s as 1, since all the c vertices

connect to q in G. Moreover, since each vertex in the k-plex shares no edge with at most

k − 1 other vertices, F with q and the c vertices must satisfy the acquaintance constraint.

After proving that SGQ is NP-hard, we then prove that there is no approximation al-

gorithm for SGQ unless P = NP. Note that SGQ will return the objective value as ∞ if

F = ∅, i.e., no feasible solution exists for SGQ. Therefore, if SGQ has a polynomial-time

approximation algorithm with an arbitrarily large ratio ρ < ∞, the above proof indicates

that (1) the algorithm can find a feasible solution for SGQ if k̄-plex returns TRUE, and

(2) any SGQ instance with the algorithm returning a feasible solution implies that the cor-

responding instance in k̄-plex is TRUE. In other words, the ρ-approximation algorithm

can solve k̄-plex in polynomial time, implying that P = NP, which is widely deemed in-

correct. Therefore, SGQ has no polynomial-time approximation algorithm. The theorem

follows.
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3.3.2 Algorithm Design

In this section, we propose a novel algorithm, namely SGSelect, to solve SGQ effi-

ciently. Our idea is to first derive a feasible graph GF = (VF , EF ) from G based on our

observation on the social radius constraint, such that there exists a path with at most s

edges from q to each vertex in GF . Starting from q, we iteratively explore GF to derive

the optimal solution. At each iteration, we keep track of the set of vertices that satisfy

the acquaintance constraint as the intermediate solution obtained so far (denoted as VS).

Initially, we set VS = {q}, and let VA denote the set of remaining vertices in VF , i.e.,

VA = VF − VS . We select a vertex in VA and examine whether it is feasible (i.e., follow-

ing the acquaintance constraint) to move this vertex to VS at each iteration, until VS has p

vertices and the process stops.

The selection of a vertex from VA at each iteration is critical to the performance of

query processing. It is essential to avoid choosing a vertex v that may significantly in-

crease the total social distance or lead to the violation of the acquaintance constraint. We

observe that the access order of nodes in constructing candidate groups is a key factor

to the overall performance. It is important to take a priority to consider nodes that are

very likely to be included in the final answer group, i.e., the optimal solution. This may

facilitate effective early pruning of unqualified solutions. Additionally, social radius and

acquaintance constraints can be exploited to facilitate efficient pruning of vertices which

would not lead to the eventual answer. We summarize our ideas as follows.

Access ordering. To guide an efficient exploration of the solution space, we access

vertices in VA following an order that incorporates (1) the increment of the total social

distance and (2) the feasibility for the acquaintance constraint. Accordingly, we define

the notion of interior unfamiliarity and exterior expansibility of VS to test the feasibility

of examined vertices to the acquaintance constraint during the vertex selection.

Distance pruning. To avoid exploring vertices in VA that do not lead to a better solu-

tion in terms of total social distance, Algorithm SGSelect keeps track of the best feasible

solution obtained so far and leverages its total social distance to prune redundant exami-
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nations of certain search space.

Acquaintance pruning. We explore the properties of the acquaintance constraint to

facilitate search space pruning. Specifically, we define the notion of inner degree of the

vertices in VA and derive its lower bound, such that a feasible solution can be derived from

vertices in VS and VA. The lower bound is designed to detect the stop condition when there

exists no feasible solution after including any vertex in VA.

To find the optimal solution, Algorithm SGSelect may incur an exponential time in

query processing because SGQ is NP-hard. In the worst case, all candidate groups may

need to be considered. However, by employing the above pruning strategies, the average

running time of Algorithm SGSelect can be effectively reduced, as to be shown in Section

3.5. In the following, we present the details of the proposed algorithm.

Radius Graph Extraction

Obviously, the social radius constraint can effectively prune redundant candidates in

the social network of the activity initiator. Thus, Algorithm SGSelect first extracts the

vertices that satisfy the social radius constraint. A simple approach to meet the social

radius constraint is to find theminimum-edge path (i.e., the shortest path with theminimum

number of edges) between q and every other vertex, and then remove those vertices that

have their minimum-edge paths longer than s edges. Nevertheless, the minimum-distance

path with at most s edges and the minimum-edge path can be different. As a result, the

total distance of the minimum-edge path may not be the minimum distance. Moreover,

the minimum-distance path may consist of more than s edges which does not satisfy the

social radius constraint. To address the above problem, we define the notion of i-edge

minimum distance, which represents the total distance of the minimum-distance path with

no more than i edges as follows.

Definition 3.3.1. The i-edge minimum distance between the vertex v and the vertex q is

div,q = min
u∈Nv

{
di−1
v,q , d

i−1
u,q + cu,v

}
,
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where Nv is the set of neighboring vertices of v.

Based on dynamic programming, Algorithm SGSelect computes the i-edge minimum

distance between the vertex v and the vertex q by iteratively deriving div,q in terms of di−1
u,q

of each neighboring vertex u, for 1 ≤ i ≤ s. Initially, we set d0v,q as ∞ for every vertex

v, v ̸= q. We set d0q,q as 0 and derive d1v,q for every vertex v in Nq. At the next iteration,

we update d2v,q for v if there exists a neighbor u of v such that d1u,q + cu,v is smaller than

d1v,q. This case indicates that there is an alternate path from v to q via a neighbor u, and the

path has a smaller total distance. Our algorithm iterates at most s times for each vertex.

Therefore, each vertex v with dsv,q < ∞ is extracted in our algorithm to construct a feasible

graphGF = (VF , EF ). In the graph, the total distance of the minimum-distance path with

at most s edges (i.e., dsv,q) is adopted as the social distance between v and q (i.e., dv,q).

In other words, we ensure that every vertex in VF satisfies the social radius constraint.

Therefore, we consider GF in evaluating the SGQ for the rest of this chapter.

Access Ordering

After constructing the feasible graphGF , Algorithm SGSelect iteratively exploresGF

to find the optimal solution. Initially, the intermediate solution set VS includes only q, and

the remaining vertex set VA is VF −{q}. At each iteration afterwards, we select and move

a vertex from VA to VS in order to expand the intermediate solution in VS . Therefore, VS

represents a feasible solution when |VS| = p and the vertices in VS satisfy the acquaintance

constraint. Next, our algorithm improves the feasible solution by backtracking the above

exploration procedure to previous iterations and choosing an alternative vertex in VA to

expand VS . A branch-and-bound tree is maintained to record the exploration history for

backtracking. This process continues until VS has p vertices.

To reduce the running time and search space, the selection of a vertex at each iteration

is critical. Naturally, we would like to include a vertex that minimizes the increment of

the total social distance. Nevertheless, the connectivity of the selected vertex imposes

additional requirements for satisfying the acquaintance constraint. Thus, we introduce the
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notion of interior unfamiliarity and exterior expansibility with respect to the intermediate

solution set VS to exploit the acquaintance constraint in query processing.

Definition 3.3.2. The interior unfamiliarity of VS is

U(VS) = max
v∈VS

|VS − {v} −Nv| ,

where Nv is the set of neighboring vertices of v in GF . The set VS − {v} − Nv refers to

the set of non-neighboring vertices of v in VS .

The interior unfamiliarity describes the connectivity within the intermediate solution

set, and a smaller interior unfamiliarity means the vertices in VS are more densely con-

nected. As shown later, the interior unfamiliarity of possible intermediate solution sets are

taken into account in deciding which vertex is to be included in the process of generating

the candidate groups. It is preferable to first include a well-connected vertex that results in

the intermediate solution set with low interior unfamiliarity since it may make selections

of other vertices in the later iterations easier. Next, we define the exterior expansibility of

an intermediate solution set VS , denoted by A(VS), as the maximum number of vertices

that VS can be expanded from.

Definition 3.3.3. The exterior expansibility of VS is

A(VS) = min
v∈VS

{|VA ∩Nv|+ (k − |VS − {v} −Nv|)}, (3.1)

where the first set (i.e., VA ∩ Nv) contains the neighboring vertices of v in VA and the

second set (i.e., VS − {v} −Nv) contains the non-neighboring vertices of v in VS .

The exterior expansibility counts the number of options when selecting vertices from

VA to expand VS , and a larger exterior expansibility means the acquaintance constraint

is easier to follow during the vertex selection. Specifically, since the number of ex-

isting non-neighboring vertices of v in VS is |VS − {v} −Nv|, we can select at most

k − |VS − {v} −Nv| extra non-neighboring vertices of v from VA to expand VS; oth-

erwise, vertex v would have more than k non-neighboring vertices in VS and violate the
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acquaintance constraint. Therefore, for a vertex v in VS , there are at most |VA ∩Nv| neigh-

boring vertices and k−|VS − {v} −Nv| non-neighboring vertices to be selected from VA

in order to expand VS .

When selecting a vertex v to expand VS , we consider both the increment of the total

social distance caused by v and the connectivity of vertices in the new intermediate solu-

tion set containing v, which is captured by U(VS ∪ {v}) and A(VS ∪ {v}). Specifically,

Algorithm SGSelect chooses the vertex v with the minimum social distance to q that sat-

isfies the following two conditions for interior unfamiliarity and exterior expansibility,

respectively.

Interior Unfamiliarity Condition. The first condition considers the interior un-

familiarity. Note that a small value of interior unfamiliarity indicates that every vertex

v ∈ VS has plenty of neighboring vertices in VS , i.e., the current intermediate solution set

VS is likely to be expanded into feasible solutions satisfying the acquaintance constraint.

Based on this observation, we employ the interior unfamiliarity condition, i.e.,

U(VS ∪ {v}) ≤ k

[
|VS ∪ {v}|

p

]θ
,

where θ ≥ 0 and |VS∪{v}|
p

is the proportion of attendees that have been considered, to ensure

the value of interior unfamiliarity remaining small when the vertex v is selected. Note that

the right-hand-side (RHS) of the inequality reaches its maximum, i.e., k, when θ is fixed

as 0. With θ = 0, it is flexible to find a vertex v with a small social distance. However,

if a vertex v resulting in U(VS ∪ {v}) = k is selected, the vertex with k non-neighboring

vertices in the set VS ∪ {v} is required to connect to all the vertices chosen from VA at

later iterations. Thus, the feasibility of selecting other qualified vertices in later iterations

is thereby decreased. In contrast, a larger θ allows SGSelect to choose a vertex from VA

that connects to more vertices in VS to ensure the feasibility at later iterations. Note that

the RHS of the condition increases when VS includes more vertices. On the other hand,

the algorithm reduces θ if there exists no vertex in VA that can satisfy the above condition.

When θ decreases to 0 and the above condition still does not hold, i.e., U(VS ∪ {v}) > k,
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Algorithm SGSelect stops expanding the new intermediate solution set VS = VS ∪ {v},

because adding any vertex from VA to this new intermediate solution set does not generate

a feasible solution, as shown by the following lemma.

Lemma 3.3.1. Given that

U(VS) > k, (3.2)

there must exist at least one vertex v in VS such that v cannot follow the acquaintance

constraint for every possible selection of vertices from VA.

Proof. If U(VS) > k, then we can find at least one vertex v in VS such that |VS − {v} −

Nv| > k, which means v is already unacquainted with more than k other vertices in VS .

Please note that adding any vertex from VA to VS cannot increase the connectivity between

the existing vertices in VS . When we expand VS by adding any vertex u from VA, the

number of vertices that are unacquainted with v will remain unchanged if u and v are

connected, but increase by one otherwise. Therefore, after the expansion, the number of

vertices in VS that are unacquainted with v must still exceed k. That is, v still violates

the acquaintance constraint, and hence VS cannot form a feasible solution. The lemma

follows.

Exterior Expansibility Condition. Now we discuss the second condition based on

the exterior expansibility, which represents the maximum number of vertices in VA that

can be considered for expanding the intermediate solution set VS , and this value must be

no smaller than the number of attendees required to be added later, i.e., p−|VS|. Therefore,

SGSelect chooses the vertex v from VA that can satisfy the exterior expansibility condition,

i.e.,

A (VS ∪ {v}) ≥ (p− |VS ∪ {v}|) .

If the inequality does not hold, the new intermediate solution set obtained by adding v is

not expansible, as shown by the following lemma.

Lemma 3.3.2. Given that

A (VS) < (p− |VS|) , (3.3)
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there must exist at least one vertex v in VS such that v cannot follow the acquaintance

constraint for every possible selection of vertices from VA.

Proof. If A (VS) < (p− |VS|), then we can find at least one vertex v in VS

such that |VA ∩Nv| + (k − |VS − {v} −Nv|) < (p− |VS|). In other words,

(k − |VS − {v} −Nv|) < (p− |VS|)−|VA ∩Nv|. As mentioned above, |VS − {v} −Nv|

is the number of non-neighboring vertices for v, and k − |VS − {v} −Nv| thereby repre-

sents the ”quota” for v to choose non-neighbor vertices fromVA. For any possible selection

V̂A ⊆ VA, let λ̂A denote the number of neighbor vertex of v in V̂A. Since λ̂A ≤ |VA ∩Nv|,

(p− |VS|) − |VA ∩Nv| ≤ (p− |VS|) − λ̂A. Therefore, if A (VS) < (p− |VS|), then

(k − |VS − {v} −Nv|) < (p− |VS|)− λ̂A, and v does not have enough quota to support

V̂A for satisfying the acquaintance constraint. The lemma follows.

Distance and Acquaintance Pruning

In the following, we further exploit two pruning strategies to reduce the search space.

Our algorithm aims to obtain a feasible solution early since the total social distance of this

solution can be used for pruning redundant candidates. At each iteration, the following

distance pruning strategy avoids exploring the vertices in the remaining vertex set VA if

they do not lead to a solution with a smaller total social distance.

Lemma 3.3.3. The distance pruning strategy stops selecting a vertex from VA to VS if

D −
∑
v∈VS

dv,q < (p− |VS|) min
v∈VA

dv,q, (3.4)

where D is the total social distance of the best feasible solution obtained so far. The

distance pruning strategy can prune the search space with no better solution.

Proof. If the above condition holds, it is impossible to find an improved solution by ex-

ploring VA, since the total social distance of any new solution must exceed D when we

select p − |VS| vertices from VA. Algorithm SGSelect considers minv∈VA
dv,q in distance

pruning to avoid sorting the distances of all vertices in VA, which requires additional com-
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putation and may not be scalable for a large social network. Please note that as the best

obtained solution improves at later iterations, we are able to derive a smaller upper bound

in the LHS, and thus prune a larger search space with distance pruning. The lemma fol-

lows.

In addition to pruning the search space that does not lead to a smaller total social

distance, we also propose an acquaintance pruning strategy that considers the feasibility

of selecting vertices from VA, and stops exploring VA if there exists no solution that can

satisfy the acquaintance constraint. Earlier in this section, the interior unfamiliarity and

the exterior expansibility consider the connectivity between the vertices in only VS , and

the connectivity between the vertices in VS and VA, respectively. Here the acquaintance

pruning strategy focuses on the edges between the vertices in VA. Note that all vertices in

VA are excluded from expansion (and thus the corresponding VS is pruned) if

∑
v∈VA

|VA ∩Nv| < (p− |VS|)(p− |VS| − k − 1).

The LHS of the above inequality is the total inner degree of all vertices in VA, where the

inner degree of a vertex in VA considers only the edges connecting to other vertices in VA.

The RHS is the lower bound on the total inner degree on any set of vertices extracted from

VA to expand VS into a solution satisfying the acquaintance constraint. Specifically, our

algorithm needs to select p − |VS| vertices from VA, and hence the inner degree of any

selected vertex cannot be smaller than p − |VS| − k − 1; otherwise, the vertex must be

unacquainted with more than k vertices and violate the acquaintance constraint.

The above strategy can be improved by replacing the LHS of the inequality with∑
v∈MA

|VA∩Nv|, whereMA denotes the set of p−|VS| vertices in VA with the largest inner

degrees. Therefore, withMA, our algorithm is able to stop the search earlier, and prune off

more infeasible solutions becauseMA ⊆ VA, and
∑

v∈MA
|VA ∩Nv| ≤

∑
v∈VA

|VA ∩Nv|.

To obtain the exact value of
∑

v∈MA
|VA ∩Nv|, we need to identify the vertices in the set

MA first, which may require sorting the vertices in VA. However, since the size of MA

(i.e., p − |VS|) is usually small, we can use a few times of extracting maximum to iden-
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tify the vertices in MA, rather than sorting the entire VA. Specifically, the acquaintance

pruning is specified as follows.

Lemma 3.3.4. The acquaintance pruning strategy stops selecting a vertex from VA to VS

if ∑
v∈MA

|VA ∩Nv| < (p− |VS|) (p− |VS| − k − 1) , (3.5)

and the acquaintance pruning strategy can prune the search space with no feasible solu-

tion.

Proof. To acquire a tighter bound for the acquaintance pruning, we consider
∑

v∈MA
|VA∩

Nv| instead of
∑

v∈VA
|VA∩Nv| in the LHS of Eq. (3.5). Since we will only extract p−|VS|

vertices from VA to join VS , the upper bound of total inner degree of the extracted vertices

is
∑

v∈MA
|VA ∩Nv|, whereMA denotes the set of p− |VS| vertices in VA with the largest

inner degrees. If these p−|VS| extracted vertices follow the acquaintance constraint, each

of them must be acquainted with at least p−|VS|− k− 1 extracted vertices, which means

there will be at least (p− |VS|)(p− |VS| − k − 1) inner degrees. When the acquaintance

pruning happens, it means even the upper bound of total inner degree of the extracted

vertices is smaller than (p− |VS|)(p− |VS| − k− 1), which indicates that there is at least

one vertex being unacquainted with more than k vertices and violating the acquaintance

constraint. Therefore, the pruned search space contains no feasible solution. The lemma

follows.

In the following, we first prove that our algorithm with the above strategies finds the

optimal solution. After that, Example 3.3.1 provides illustration of Algorithm SGSelect,

and the pseudo code of SGSelect can be found in Appendix B.

Theorem 3.3.2. SGSelect obtains the optimal solution to SGQ.

Proof. In radius graph extraction, each of the removed vertices has no path with at most s

edges connecting to q, and no feasible solution thereby contains these vertices. Algorithm

SGSelect includes three strategies: access ordering, distance pruning, and acquaintance

pruning. For each VS , interior unfamiliarity and exterior expansibility do not consider the
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(a)

(b)

(vi) (di,7) 

v2 17 

v3 18 

v4 27 

v6 23 

v8 25 

 

 ts1 ts2 ts3 ts4 ts5 ts6 ts7 

v2 O O O O O O O 

v3  O O  O O  

v4 O O O O O  O 

v6  O O O O O O 

v7 O O O O O O  

v8 O  O  O O  

 (c)
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Figure 3.2: Another illustrative example for SGQ and STGQ. (a) The sample social net-
work, (b) the social distances of candidate attendees and (c) the schedules of candidate
attendees.

vertex violating the acquaintance constraint, which are proven in Lemma 3.3.1 and Lemma

3.3.2, respectively. After we choose a vertex u from VA, Lemma 3.3.3 shows that the

distance pruning specifies a lower bound on the total social distance that is derived from

VA. Therefore, the distance pruning will prune off only the solution with a larger total

social distance. Moreover, Lemma 3.3.4 shows that the acquaintance pruning specifies

the lower bound on the total inner degree on any set of vertices extracted from VA in

any feasible solution. If we choose the required number of vertices with the largest inner

degrees from VA and the result cannot exceed the above lower bound, the connectivity is

too small for VA to obtain a feasible solution. The theorem follows.

Example 3.3.1. In this illustrating example for SGSelect, we revisit the social network in

Figure 3.1(a) and assume that v7 issues an SGQ with p = 4, s = 1, and k = 1. All can-

didate attendees vi with d1vi,v7 < ∞ are shown in Figure 3.2(a), with their social distances

to v7 listed in Figure 3.2(b).6 In the beginning, VS = {v7} and VA = {v2, v3, v4, v6, v8}.

We first consider selecting v2 (i.e., the vertex with the smallest social distance) from VA to

expand VS . Afterwards, we have A(VS ∪ {v2}) = 3 and (p− |VS ∪ {v2}|) = 4− 2 = 2,

which means that the exterior expansibility condition holds if we select v2.7 In addi-
6Some small modifications are made for better illustration.
7To find A(VS ∪ {v2}), we derive |VA ∩Nv7 | + (k − |VS − {v7} −Nv7 |) = 4 + (1 − 0) = 5 and

|VA ∩Nv2 | + (k − |VS − {v2} −Nv2 |) = 2 + (1 − 0) = 3, and then choose the smaller one. Therefore,
A(VS ∪ {v2}) = 3 holds.
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tion, U(VS ∪ {v2}) = 0 and k
[
|VS∪{v2}|

p

]θ
= 1 × (2

4
)2 = 1

4
(assume θ = 2), i.e.,

the interior unfamiliarity condition also holds, and hence v2 is selected.8 Now we have

VS = {v2, v7}, VA = {v3, v4, v6, v8}, and the next vertex to be considered is v3 according

to the social distance. The exterior expansibility condition holds when v3 is selected, since

A(VS∪{v3}) = 1 ≥ (p−|VS ∪ {v3}|) = 1. However, it violates the interior unfamiliarity

condition, since U(VS ∪{v3}) = 1 > k
[
|VS∪{v3}|

p

]θ
= 1× (3

4
)2 = 9

16
. We do not reduce θ

here because there are still more vertices in VA (we put v3 in parenthesis and temporarily

skip it, i.e., VA = {(v3), v4, v6, v8}). Now the next vertex to be considered is v6 since both

of the exterior expansibility condition and the interior unfamiliarity condition hold. As

a result, we have VS = {v2, v6, v7} and VA = {v3, v4, v8}. Again, selecting v3 violates

the interior unfamiliarity condition, so we temporarily skip v3. When selecting v8, we

observe that it violates the exterior expansibility condition and then remove v8 from VA.

Therefore, we choose v4 instead and obtain the first feasible solution {v2, v4, v6, v7} (total

social distance = 64). Note that if we set a small θ and allow v3 to be selected earlier,

it leads to the generation of an infeasible candidate group {v2, v3, v6, v7}, instead of the

first feasible solution. If we can acquire the first feasible solution early, we are able to

leverage the distance pruning strategy. Now SGSelect backtracks one step to the state

VS = {v2, v6, v7} and VA = {(v3)}, and it reduces θ since there is no other vertex in VA.

However, selecting v3 still violates the interior unfamiliarity condition when we reduce θ

to 0, since U(VS ∪ {v3}) = 2 and k
[
|VS∪{v3}|

p

]θ
= 1 × (4

4
)0 = 1. Therefore, we can re-

move v3 and backtrack to the state VS = {v2, v7} and VA = {(v3), v4, v8}. In this branch,

SGSelect first removes v8 due to the violation of the exterior expansibility condition, and

later we select v4 and v3 to obtain the second feasible solution {v2, v3, v4, v7} (total social

distance = 62). Note that when reducing θ to 0 here, the interior unfamiliarity condition

holds and v3 can be selected since U(VS ∪ {v3}) = 1 and k
[
|VS∪{v3}|

p

]θ
= 1× (4

4
)0 = 1.

Now SGSelect further backtracks to the state VS = {v7} and VA = {v3, v4, v6, v8} and

selects v3. However, since 62−18 < (4−2)×23, the distance pruning strategy then stops
8To calculate U(VS ∪ {v2}), it is necessary to consider the value of |VS − {v7} −Nv7 | and

|VS − {v2} −Nv2 | and then choose the larger one. Since |VS − {v7} −Nv7 | = |∅| = 0 and
|VS − {v2} −Nv2 | = |∅| = 0, U(VS ∪ {v2}) = 0 holds.
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selecting a vertex from VA. Later, there is no need to explore the last state VS = {v7} and

VA = {v4, v6, v8}, since (1 + 1 + 0) − (3 − 4 + 1) × 0 < (4 − 1) × (4 − 1 − 1 − 1).

Hence the algorithm stops and returns the optimal solution {v2, v3, v4, v7} with the total

social distance as 62.

3.4 Social-Temporal Group Query

In the following, we first extend SGQ to STGQ by exploring the temporal dimension

and formulate the problem in Section 3.4.1. STGQ is more complex than SGQ because

there may exist numerous activity periods with different candidate groups. An intuitive

approach is to first find the SGQ solution for each individual activity period and then select

the one with the minimum total social distance. However, this approach is computation-

ally expensive. To address this issue, in Section 3.4.2, we identify pivot time slots, the

only time slots required to be explored in the temporal dimension, to facilitate efficient

STGQ processing. Moreover, we propose the availability pruning strategy to leverage the

correlation in the available time slots among candidate attendees to avoid exploring an

unsuitable activity period.

3.4.1 Problem Definition

STGQ generalizes SGQ by considering the available time of each candidate attendee

via the availability constraint, which ensures that all selected attendees are available in a

period of m time slots. Given an activity initiator q and her social graph G = (V,E),

where each vertex v is a candidate attendee, and the distance on each edge eu,v con-

necting vertices u and v represents their social closeness. A social-temporal group query

STGQ(p, s, k,m), where p is an activity size, s is a social radius constraint, k is an ac-

quaintance constraint, and m is an activity length, finds a time slot t and a set F of p

vertices fromG to minimize the total social distance between q and every vertex in F , i.e.,∑
u∈F du,q, where du,q is the length of the minimum-distance path between u and q with
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at most s edges, such that each vertex u in F is allowed to share no edge with at most k

other vertices in F , and u is available from time slot t to t+m− 1.

3.4.2 Algorithm Design

STGQ is also an NP-hard problem because STGQ can be reduced to SGQ if every

candidate attendee is available in all time slots. An intuitive approach to evaluate STGQ

is to consider the social dimension and the temporal dimension separately, by sequentially

exploring each time slot t and the candidate attendees who are available from t to t +

m − 1 (i.e., m consecutive time slots). However, the running time significantly grows

when the number of time slots increases. Therefore, we devise Algorithm STGSelect,

which explores the following features in the temporal dimension to reduce search space

and running time.

Pivot time slot. We consider only a limited number of slots, namely, the pivot time

slots, to find the solution. STGSelect returns optimal solutions even though only parts of

the slots are considered.

Access ordering. In addition to interior unfamiliarity and exterior expansibility dis-

cussed earlier, we further consider the solution quality and the feasibility based on the

availability constraint. Algorithm STGSelect constructs the VS with vertices which have

more available time slots in common to find an initial feasible solution and then chooses

the vertices in VA with smaller social distances to improve the solution.

Availability pruning. In addition to the distance and acquaintance pruning discussed

in Section 3.3.2, we propose the availability pruning strategy to stop the algorithm when

selecting any vertex from VA never leads to a solution withm available time slots.

To find the optimal solution, STGSelect is expected to have an exponential-time com-

plexity because STGQ is NP-hard. In the worst case, all candidate groups in all time slots

may need to be considered. However, as shown in Section 3.5, the average running time

of the proposed algorithm with the above strategies can be effectively reduced, especially

for a large m. In the following, we describe the details of Algorithm STGSelect, paying
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special attention on the temporal dimension. Instead of considering the interval from t

to t +m − 1 for each time slot t, our algorithm leverages the pivot time slots defined as

follows to reduce running time.

Lemma 3.4.1. A time slot is a pivot time slot if the ID of the slot is im, where i is a positive

integer. Any feasible solution to STGQ must include exactly one pivot time slot.

Proof. If a solution does not span over a pivot time slot, the solution must have fewer than

m slots because there arem− 1 time slots between any two consecutive pivot time slots.

If a solution contains more than one pivot time slot, the solution includes more than m

slots, and the above two cases are not feasible. Moreover, there must exist an integer i∗

such that the optimal solution resides in an interval starting from slot (i∗ − 1)m + 1 to

(i∗ +1)m− 1, corresponding to pivot time slot i∗m. If the optimal solution is not located

in the above interval, the optimal solution must include at least two pivot time slots and

thereby is infeasible, or the optimal solution must reside in the corresponding interval for

pivot time slot (i∗ − 1)m or (i∗ + 1)m. The lemma follows.

Definition 3.4.1. Every vertex v in the feasible graph Gim
F = (V im

F , Eim
F ) for pivot time

slot im has at leastm consecutive available time slots in the interval from slot (i−1)m+1

to (i+ 1)m− 1. Moreover, there exists a path from q to v with at most s edges.

For each pivot time slot im, Algorithm STGSelect extends SGSelect by considering

the temporal informationwhen selecting a vertex fromVA toVS . Specifically, letTS denote

the set of consecutive time slots available for all vertices in VS , and TS must contain slot

im. In other words, TS will be a feasible solution to the STGQwhen VS includes p vertices

satisfying the acquaintance constraint, and |TS| ≥ m. At each iteration, for each vertex in

VA, Algorithm STGSelect considers the social distance to q during the selection to reduce

the objective value. However, we also consider the temporal availability of the vertex

to avoid choosing a vertex that leads to a small increment of the total social distance but

ends upwith redundant examination of solutions eventually disqualified by the availability

constraint. In other words, in addition to interior unfamiliarity and exterior expansibility

as described in Section 3.3.2, we define the notion of temporal extensibility as follows.
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Definition 3.4.2. The temporal extensibility of VS is

X(VS) = |TS| −m.

A larger temporal extensibility ensures that many vertices in VA with good quality in the

temporal dimension can be selected by our algorithm afterward.

Temporal Extensibility Condition. To consider both the solution quality and fea-

sibility in the temporal dimension, Algorithm STGSelect chooses the vertex u with the

minimum social distance to q, and u must satisfy

X(VS ∪ {u}) ≥ (m− 1)

[
p− |VS ∪ {u}|

p

]ϕ
,

where ϕ ≥ 1 and p−|VS∪{u}|
p

is the proportion of attendees that have not been considered.

The RHS grows when ϕ decreases, and the above condition enforces that the result VS ∪

{u} must be more temporal extensible, i.e., more available time slots are shared by all

vertices in the result, and hence more vertices in VA are eligible to be selected at later

iterations. In the extreme case, if ϕ = 1, the above condition requires that the result

contains almost 2m − 1 available time slots when VS = {q}, because the RHS is close

tom− 1. In contrast, as ϕ grows, our algorithm is able to choose a vertex with a smaller

social distance because more vertices can satisfy the above condition. Please note that

ϕ is increased by the algorithm if there exists no vertex in VA that can satisfy the above

condition, and the RHS approaches 0 in this case. For the case that leads toX(VS∪{u}) <

0, we remove u from VA because adding u to VS results in unqualified solutions that are

infeasible in the temporal dimension.

In addition to distance pruning and acquaintance pruning that consider the social di-

mension, we propose availability pruning in the temporal dimension. The strategy enables

our algorithm to stop exploring VA if there exists no solution that can satisfy the availability

constraint. The above temporal extensibility considers the available time slots for vertices

in VS . In contrast, availability pruning reduces the search space according to the available
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time slots of vertices in VA. Specifically, for each pivot time slot im, let t+A and t−A denote

the time slots closest to im, such that all vertices in VA are not available in the two time

slots, where t
+
A > im and t

−
A < im, respectively. Therefore, we are able to stop con-

sidering VA when t
+
A − t

−
A ≤ m. In this case, the solution is infeasible since the interval

starting from t
−
A+1 to t+A−1 contains fewer thanm time slots. This strategy can be further

improved by considering the number of vertices that are not available for each time slot,

and the availability pruning strategy is formally specified as follows.

Lemma 3.4.2. The availability pruning strategy stops selecting a vertex from VA to VS if

t
+
A(|VA| − p+ |VS|+ 1)− t

−
A(|VA| − p+ |VS|+ 1) ≤ m,

where t+A(n) and t
−
A(n) denote the time slots closest to im, such that at least n vertices

in VA are not available, and t
+
A(n) > im and t

−
A(n) < im, respectively. Moreover, the

availability pruning strategy can prune the search space with no feasible solution.

Proof. If the above condition holds, there are at most p−|VS|−1 vertices of VA available

in each of the above two slots, and we can never find a feasible solution because Algorithm

STGSelect is required to choose p−|VS| vertices from VA for a common available interval

with at leastm time slots. The lemma follows.

Theorem 3.4.1. STGSelect obtains the optimal solution to STGQ.

Proof. Each pivot time slot is separated from a neighbor pivot time slot withm− 1 time

slots. Therefore, Lemma 3.4.1 shows that any feasible solution must include exactly one

pivot time slot. In addition, the proposed algorithm considers the interval with 2m−1 slots

for each pivot time slot, and we derive the best solution by extending Algorithm SGSe-

lect with the temporal extensibility. Moreover, Lemma 3.4.2 shows that the availability

pruning discards VA only when there exists no feasible solution satisfying the availabil-

ity constraint by incorporating any vertex from VA. The solution obtained by Algorithm

STGSelect is optimal because the algorithm chooses the pivot time slot and the corre-

sponding group with the smallest total social distance at the end of the algorithm. The
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theorem follows.

In the following, Example 3.4.1 provides illustration of Algorithm STGSelect, and the

pseudo code of STGSelect can be found in Appendix B.

Example 3.4.1. In this illustrating example for STGSelect, we extend the SGQ in Exam-

ple 3.3.1 by considering the length of activity time as 3 (i.e., m = 3). When processing

an STGQ, the schedules of candidate attendees provided in Figure 3.2(c) should be con-

sidered as well. Since m = 3, ts3 and ts6 are selected to be pivot time slots. For the

first pivot time slot ts3, VS = {v7} and VA = {v2, v3, v4, v6, v8} in the beginning. As

obtained in Example 3.3.1, both of the exterior expansibility condition and the interior

unfamiliarity condition hold when selecting v2. Note that STGSelect also evaluates the

temporal extensibility condition when selecting a vertex to ensure the feasibility in the

temporal dimension. Since (m − 1)
[
p−|VS∪{v2}|

p

]ϕ
= 2 × (2

4
)2 = 1

2
(assume ϕ = 2) and

X(VS ∪ {v2}) = 29, the temporal extensibility condition also holds, and hence we can

select v2 from VA to VS . Now we have VS = {v2, v7} and VA = {v3, v4, v6, v8}. The later

vertex selection ordering is identical to Example 3.3.1 since there is no violation on the

temporal constraint, and we also obtain the first feasible solution {v2, v4, v6, v7} (total so-

cial distance= 64) available in the activity period [ts2, ts4]. Until we select v3 in the state

VS = {v2, v4, v7} and VA = {(v3)}, we find out that the temporal extensibility condition

does not hold when selecting v3, and then we increase ϕ since there is no other vertex in VA

that we can choose. However, sinceX(VS∪{v3}) = 2−3 = −1, the temporal extensibil-

ity condition does not hold even when the RHS of the inequality approaches 0. Therefore,

we can remove v3 and backtrack to the state VS = {v7} and VA = {v3, v4, v6, v8}. As

shown in Example 3.3.1, the later branches violate the social constraints and hence lead to

no feasible group. Therefore, {v2, v4, v6, v7} is the only feasible group available in activity

periods extended from the pivot time slot ts3.

Next, we start processing the second pivot time slot, i.e., ts6. Different from ts3, we

have VS = {v7} and VA = {v2, v3, v6, v8} in the beginning. Since v4 is not available in the
9Ts = {ts1, ts2, ts3, ts4, ts5} since v2 and v7 are available in them. Hence |Ts| = 5 andX(VS∪{v2}) =

5− 3 = 2.
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pivot time slot, we can directly remove it without further consideration. We then obtain

VS = {v2, v7} and VA = {v3, v6, v8} because selecting v2 violates no constraint. Note that

the LHS of the availability pruning condition is t+A(|VA| − p+ |VS|+ 1)− t
−
A(|VA| − p+

|VS| + 1) = t
+
A(3 − 4 + 2 + 1) − t

−
A(3 − 4 + 2 + 1) = t

+
A(2) − t

−
A(2). Since there are 2

vertices, i.e., v3 and v8, in VA not available in ts4, t
−
A(2) = 4. Besides, there are 2 vertices,

i.e., v3 and v8, in VA not available in ts7, t
+
A(2) = 7. Therefore, the availability pruning

condition holds since t+A(2) − t
−
A(2) = 7 − 4 ≤ m, and we can stop selecting vertices

from VA to VS . Then we backtrack one step to the state VS = {v7} and VA = {v3, v6, v8}.

We can skip this final branch since the acquaintance pruning condition holds. Therefore,

there exists no feasible group available in activity periods extended from ts6. Finally, we

return the group {v2, v4, v6, v7} and the time period [ts2, ts4] as the optimal result.

3.5 Experimental Results

In this section, we evaluate the performance and analyze the solution quality of the

proposed algorithms. First, we describe the experiment setup in Section 3.5.1. We then

perform a series of sensitivity tests to study the impact of query parameters with real

datasets and evaluate the performance of Algorithms SGSelect and STGSelect in Section

3.5.2. Finally, we invite users to answer activity planning problems and compare the

proposed algorithm with manual coordination in Section 3.5.3.

3.5.1 Experiment Setup

To evaluate the performance and analyze the solution quality of the proposed algo-

rithms, we conduct various experiments using real datasets. The existing approaches

(e.g., [2,27,41]) cannot be applied to solve SGQ and STGQ because their problem formu-

lations do not include the temporal dimension and social constraints s and k. Therefore,

we compare the proposed algorithms with three other approaches: SGBasic (i.e., enumer-

ating all possible candidate groups), KNN (i.e., selecting the p−1 people with the smallest
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social distances to the initiator), and DKS [12] (i.e., choosing the candidate group out of all

possible ones that maximizes the number of edges within the group). Note that DKS is the

core of the algorithms in the aforementioned works [2,27,41] and correlated to [11,39,55].

Since evaluating STGQ requires daily schedules, we invite 194 people from various

community to join the experiment and use Google Calendar to collect their schedules. The

data collection lasts for 5 weeks and returns 6790 days of real schedules. We then ran-

domly select 5weekday and 2weekend schedules to form a 7-day one for each vertex in the

social network. We perform a series of sensitivity tests on a coauthorship network (called

Coauthor) of 16,726 people [38]. In addition to the sensitivity tests, we also conduct

experiments on a much larger YouTube social network [61], which includes 1,134,890

people. The algorithms are implemented on an HP DL580 server with four Intel E7-4870

2.4 GHz CPUs and 128 GB RAM.

To demonstrate the strength of automatic group recommendation, we implement a so-

cial activity planning application on Facebook and conduct a user study. We invite 171

people from various communities to performmanual activity planning. Each user answers

20 activity planning requests with social graphs extracted from their social networks on

Facebook. The social distances between users and their friends are specified by the users,

and the social distances between their friends are derived according to the number of com-

mon friends [9, 37]. These 20 tasks span various network sizes and different numbers of

attendees, and with different s and k for varying social atmospheres. We then compare

the solution quality and the processing time of manual coordination with that of automatic

group recommendation.

3.5.2 Performance Analysis of SGQ and STGQ

In this section, we first present an analysis on the proposed strategies in SGQ and its

extension in temporal dimension (i.e., STGQ). After that, we then evaluate the proposed

algorithms in the large YouTube dataset.

Analysis of SGQ. We first compare the running time of SGSelect against SGBasic,
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(a) Comparison of running time with
different p.

(b) Solution quality analysis of KNN.

(c) Comparison of running time with
different s.

(d) Comparison of running time with
different k.

Figure 3.3: Experimental results of SGQ.

KNN, and DKS with different numbers of attendees, i.e., p. Figure 3.3(a) presents the

experimental results with s = 2 and k = 3. The trends in other parameter settings, such

as s = 1, are similar. The results indicate that SGSelect outperforms SGBasic and DKS,

and the improvement becomes more significant as p grows because SGBasic and DKS

need to carefully examine numerous candidate groups, and the processing effort of each

candidate group also increases with p. SGBasic outperforms DKS for a larger p because

the constraint with the same k becomes stricter under a larger p. Moreover, SGBasic is

likely to detect and then discard an infeasible candidate group in an early stage (i.e., find a

candidate group infeasible when checking the first one or two vertices instead of checking

all the vertices in the group). However, DKS only focuses on maximizing the density

of the candidate group and does not leverage the k constraint. In contrast to the above

approaches, SGSelect is able to effectively prune the solution space with the proposed

access ordering, distance pruning, and acquaintance pruning strategies.

Although KNN is the fastest one in Figure 3.3(a), Figure 3.3(b) manifests that many

solutions returned by KNN are infeasible to SGQ. More specifically, the feasibility ratio

shows the percentage of feasible groups returned by KNN. It drops quickly as p grows
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because the candidates with small social distances to the initiator do not necessarily know

each other. In addition, Figure 3.3(b) compares the total social distances of KNN and

SGSelect. The distance ratio represents the total social distance returned from KNN di-

vided by the total social distance returned from SGSelect. Note that the solution of KNN

can be regarded as a lower bound on the total social distance of SGQ since the social con-

straint is relaxed in KNN. Figure 3.3(b) indicates that the ratio remains above 70% even

for a large p.

Figure 3.3(c) shows the results with different social radius constraints, i.e., s. As s

rises, the number of candidate vertices considered (i.e., friends within s hops) increases

quickly, and the running time grows rapidly as a consequence. For example, when s

changes from 2 to 3, the running time of SGBasic drastically becomes near 1,000 times

greater. However, the running time of SGSelect only increases 11 times. This result in-

dicates that the proposed pruning strategies become more and more effective as the num-

ber of candidates increases. SGSelect thereby is much more scalable than SGBasic. In

addition to the social radius constraint, we also compare the running time of these two

approaches under different acquaintance constraints, i.e., k. As shown in Figure 3.3(d),

the running time of SGBasic only slightly changes for different k. In contrast, the run-

ning time of SGSelect is reduced for a smaller k, since the IU pruning, EE pruning and

acquaintance pruning become more effective under a tighter acquaintance constraint. Fi-

nally, Figure 3.3(d) manifests that SGSelect consistently outperforms SGBasic by more

than one order of magnitude, even under the loosest k.

Detailed Analysis on Proposed Strategies. The above experiment results show that

the proposed algorithm requires much less time than the baseline algorithms due to the

proposed strategies. In the following, we first investigate the effectiveness of the access

ordering strategy, which can guide an efficient exploration of the solution space. Figure

3.4(a) shows that either interior unfamiliarity (IU) or exterior expansibility (EE) can re-

duce the running time, and the proposed access ordering strategy that combines both of

them leads to the greatest improvement.

Afterwards, Figures 3.4(b), 3.4(c), and 3.4(d) analyze the pruning power of acquain-
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(a) Comparison of running time with
different access ordering strategies
used.

(b) Comparison of running time with
different pruning strategies used.

(c) Average pruning counts of dif-
ferent strategies.

(d) Comparison between the pruning
count and the pruned node count. (The
postfix represents the group size p.)

Figure 3.4: Analysis on pruning ability of proposed strategies.

tance pruning, distance pruning, interior unfamiliarity condition (IU pruning), and exterior

expansibility condition (EE pruning), where a node in Figure 3.4(d) represents a visited

state in the branch-and-bound tree. Note that each pruning can remove a branch in the

dendrogram (i.e., remove more than one node), and the pruned node count thereby will be

larger than the pruning count.

More specifically, Figure 3.4(b) first compares the running time of SGSelect with dif-

ferent pruning strategies. Figure 3.4(c) further analyzes the effectiveness of these pruning

strategies by comparing their pruning counts in SGSelect. The distance pruning is themost

effective one with the help of the access ordering strategy, i.e., the first feasible solution

with a small total social distance returned by access ordering can be exploited to facilitate

effective distance pruning. On the other hand, the pruning count of EE pruning exceeds

that of IU pruning as p increases. It is because under the same k, the number of edges re-

quired inside a size-p feasible group (i.e., p(p−k−1)/2) increases as p grows. Therefore,

the exterior expansibility condition is more difficult to hold. EE pruning thereby tends to
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Table 3.1: The percentage of prunings located near the root of the dendrogram (i.e., with
|VS| ≤ ⌊p

2
⌋).

Group Size IUP EEP DISP
p=7 0% 44% 61%
p=9 0% 52% 60%
p=11 0% 61% 64%

occur more frequently.

Finally, Figure 3.4(d) compares the pruned node count versus the pruning count with

different strategies. The pruning ratio (i.e., the pruning count versus the pruned node

count) of distance pruning reaches 1 : 90. When a pruning happens in a position closer

to the root of the dendrogram, the number of pruned nodes tends to increase because

those pruned nodes are all downstream nodes in the dendrogram. Therefore, we further

investigate the position of pruning in different strategies. Table 3.1 shows the percentage

of prunings that occur when |VS| ≤ ⌊p
2
⌋, where a smaller |VS| implies that the pruning is

closer to the root. The IU pruning usually occurs in the position more distant to the root

because the pruning requires that the LHS of Eq. (3.2) exceeds the RHS, and the value of

LHS tends to increase as |VS| becomes larger. Nevertheless, the IU pruning still plays an

important role in SGSelect because it prunes off the infeasible |VS| and ensures that the

final solution satisfies the acquaintance constraint.

Analysis on Temporal Dimension. Recall that Algorithm STGSelect leverages pivot

time slots to efficiently explore the temporal dimension in order to find a suitable activity

time efficiently. To evaluate the performance on STGQ, we compare STGSelect with the

following three algorithms: MultiSGSelect, MultiKNN, and MultiDKS, i.e., sequentially

considering each candidate activity period and solving the corresponding SGQ problem

using SGSelect, KNN, and DKS, respectively. Figure 3.5(a) first compares the running

time of these algorithms under different activity lengths, i.e., m. Note that the running

time of MultiDKS is more than 7 hours and thereby not shown in this figure. The results

show that STGSelect consistently outperforms MultiSGSelect, especially for a larger m,

due to a decreasing number of pivot time slots required to be examined in STGSelect.
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(a) Comparison of running time with
differentm.

(b) Solution quality analysis of KNN.

(c) Comparison of running time with
different schedule lengths.

(d) Comparison of solution quality
with differentm.

Figure 3.5: Experimental results of STGQ.

Similar to KNN, although MultiKNN is the fastest one, it is not able to guarantee the

solution feasibility for the STGQ problem. Figure 3.5(b) shows that the percentage of

feasible groups returned by MultiKNN drops quickly as p grows. Note that the distance

ratio in Figure 3.5(b) remains above 85%, which is higher than 70% in Figure 3.3(b). It is

because when solving STGQ,MultiKNN can only choose the candidates that are available

in the activity period, rather than all the candidates in the entire social network. Therefore,

the difference of the solution quality betweenMultiKNN and STGSelect diminishes in this

case.

Figure 3.5(c) further presents the running time of STGSelect and MultiSGSelect with

different lengths of schedules provided by users. More time slots need to be examined

in a longer schedule. The results manifest that STGSelect consistently outperforms Mul-

tiSGSelect for varied lengths of schedules. Finally, Figure 3.5(d) analyzes the solution

quality with various m. For each p, the total social distance steadily increases as m be-

comes larger, because a candidate vertex with a small social distance may not be available

in all time slots during the examined period. It is thus necessary to choose other candidates

with larger social distances.
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(a) Comparison of running time with
different p on the YouTube dataset.
(Parameters m and schedule length
are for STGSelect.)

(b) Comparison of running time with
different k on the YouTube dataset.
(Parameters m and schedule length
are for STGSelect.)

(c) Comparison of solution quality
with different p.

(d) Comparison of solution quality
with different s.

Figure 3.6: Experimental results with the YouTube dataset.

Analysis with Large Dataset. In the following, we compare different algorithms

in a large YouTube dataset. Figure 3.6(a) manifests that the difference of running time

becomes even more significant as compared to Figure 3.3(a). When p = 12, SGBasic

requires more than 3 days to find the optimal solution, while SGSelect merely needs 5

seconds. When the schedules of users are considered, STGSelect finds the optimal group

and a suitable activity time efficiently. In Figure 3.6(b), SGSelect still outperforms SG-

Basic by approximately five orders of magnitude. STGSelect, even paying extra effort to

consider the user schedules, outperforms SGBasic bymore than three orders of magnitude.

Finally, we compare the solution quality in the two different datasets in Figure 3.6(c)

and Figure 3.6(d). For fair comparison, we first normalize the edge weights into the range

[0,1]. Figure 3.6(c) manifests that the largeYouTube dataset leads to better solution qual-

ity, and the difference becomes more significant when p increases. The reason is that

more proper candidates are inclined to appear in a larger dataset, and hence there is a

higher chance of forming a better group. However, as shown in Figure 3.6(d), the solu-

tion quality in the smallerCoauthor dataset can be effectively improved when the number
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(a) Comparison of coordination time
with different network sizes.

(b) Comparison of coordination time
with different k.

(c) Comparison of solution quality
with different network sizes.

(d) Comparison of solution quality
with different s.

(e) The percentage of qualified results
obtained from manual coordination.

(f) The percentage of users that pre-
fer SGSelect or manual coordination.

Figure 3.7: Experimental results of the user study.

of candidates grows as s increases.

3.5.3 User Study of Manual Activity Coordination

In Figures 3.7(a)-3.7(e), we compare manual coordination and SGSelect for activity

planning in the user study. Figure 3.7(a) and Figure 3.7(b) first compare the coordination

time with different network sizes and k, respectively. When the network size increases, the

number of candidate attendees is inclined to become larger, which implies that the number

of candidate groups will increase quickly. Therefore, Figure 3.7(a) manifests that the

elapsed time of manual coordination grows quickly with a larger network size. Although

the elapsed time of SGSelect also follows the same trend, it constantly requires less than
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a few milliseconds. Figure 3.7(b) shows that the elapsed time of manual coordination is

more than 60 seconds. Even when k = 6, where constraint k can be ignored in this case

and the initiators only need to consider the social distances of the candidates, the manual

coordination still requires approximately 40 seconds.

In Figure 3.7(c) and Figure 3.7(d), we compare the solution quality of manual coordi-

nation and SGSelect. Note that when the network size or s increases, we are able to find

a group with a smaller total social distance, since more candidate attendees appear in VA.

Nevertheless, Figure 3.7(c) manifests that the improvement due to a large network size

or s is tiny for manual coordination, because the activity planning problem is difficult for

manual coordination even with the network size as small as 10. It is time-consuming and

tedious for users to carefully extract a better group when the network size grows. In con-

trast, our proposed algorithm always finds the optimal one among all possible groups and

outperforms the manual coordination by 67% on average. In Figure 3.7(d), the solution

quality of manual coordination slightly improves when s increases from 1 to 2. However,

the solution quality becomes slightly worse when s further increases from 2 to 3, which

shows that the solution quality is not stable in manual coordination.

In addition to the solution quality, manual coordination suffers from the problem of so-

lution feasibility. Given a pair of s and k, manual coordination may not always be able to

find a feasible group that satisfies the social constraints even when there actually exists at

least one. Figure 3.7(e) shows the percentage for manual coordination to find the answers

satisfying the social constraints. Both the percentage of following the social radius con-

straint s and the percentage of following the acquaintance constraint k decrease quickly as

p grows up, manifesting that it is much harder for the initiator to ensure the connectivity

of all the attendees when p becomes larger. It is more difficult for manual coordination

to ensure constraint k because examining the connectivity of all pairs of attendees is nec-

essary to be involved, while constraint s only requires the distance calculation on each

attendee and the initiator herself. In contrast, for all activity planning problems, our pro-

posed algorithm is guaranteed to find a feasible solution (i.e., the percentage is 100%) and

ensure that the total social distance is minimized.
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In the user study, when we return the recommended groups obtained by SGSelect to

the users, Figure 3.7(f) manifests that 93% of users agree that these solutions are better

or as good as the groups derived by themselves. According to the feedbacks from the

users, we conclude that an automatic group recommendation system is highly desirable,

since it reduces considerable efforts on activity planning. This has a significant impact on

increasing users’ willingness to organize social activities with friends.

3.6 Summary

To the best of our knowledge, there is no existing work in the literature that addresses

the issues of automatic activity planning based on both the social and temporal relation-

ships of an initiator and attendees. In this study, we first define two useful queries, namely,

SGQ and STGQ, to obtain the optimal set of attendees and suitable activity time. We show

that these problems are NP-hard and inapproximable within any ratio. We then devise two

algorithms, SGSelect and STGSelect, to find optimal solutions in reasonable time with ef-

fective query processing strategies, including access ordering, distance pruning, acquain-

tance pruning, pivot time slots, and availability pruning are explored to prune redundant

search space for efficiency. Experimental results indicate that the proposed SGSelect and

STGSelect are significantly more efficient and scalable than the baseline approaches. Ac-

cording to a user study we performed, the proposed algorithm obtains higher solution

quality with much less coordination effort compared with manual activity coordination,

and hence increases users’ willingness to organize activities with friends.
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Chapter 4

Efficient Processing of Consecutive

Group Queries for Social Activity

Planning

4.1 Introduction

In Chapter 3, we have introduced the Social Group Query (SGQ) and Social-Temporal

Group Query (STGQ) for activity planning. Note that it is difficult for a user to specify all

the query parameters right at once to find the perfect group of attendees and time. Fortu-

nately, with SGQ and STGQ, it is easy for the user to tune the parameters to find alternative

solutions. For example, the initiator may decrease k to tighten the group, or increase s to

incorporate more friends of friends. Allowing tuning parameters to try consecutive queries

is a great advantage of the planning service over the current practice of manual planning.

However, it has not been explored in related works [2, 6, 18, 24, 27, 41, 43, 55, 59]. Some

existing studies [14,34,63,64] on subgraph queries return multiple subgraphs in one single

diversified query. However, without feedback and guidance from user-specified param-

eters, most returned subgraphs are likely to be redundant (i.e., distant from the desired

results of users). In realistic, users usually review the result obtained with the current

parameter setting, and then adjust the parameter setting for succeeding queries.
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A straightforward method to support a sequence of SGQs is to answer each individ-

ual query with Algorithm SGSelect introduced in Chapter 3. However, anticipating that

the users would not adjust the parameters drastically, we envisage that exploiting the in-

termediate solutions of previous queries may improve processing of succeeding queries.

To facilitate the above idea, in this chapter, we propose Consecutive Social Group Query

(CSGQ), which aims to efficiently support a sequence of SGQs with varying parameters,

and CSGQ can be extended to support a sequence of STGQs. Accordingly we design a

new tree structure, namely, Accumulative Search Tree, which caches the intermediate so-

lutions of historical queries in a compact form for reuse. To facilitate efficient lookup, we

further propose a new index structure, called Social Boundary, which effectively indexes

the intermediate solutions required for processing each CSGQ with specified parameters.

We devise various node selection rules to carefully select a sufficient and necessary set of

candidate subgroups for extracting the final solution. We prove that the returned solution

is optimal, even if CSGQ only processes a small portion of candidate subgroups in a social

boundary.

Contributions of this chapter are summarized as follows.

• We observe the needs of activity initiators who are inclined to adjust the social con-

straints for alternative recommendations in order to finalize the invitation. Thus, we

propose a new query, namely, CSGQ, to support a sequence of social group queries

with a variety of query parameters. We design two new data structures, accumu-

lative search tree and social boundary, to accelerate a sequence of group queries.

The proposed data structures effectively cache and index intermediate solutions in

preceding queries to support succeeding ones. We also extend CSGQ to consider

the temporal dimension.

• We derive a set of node selection rules to efficiently and accurately build the so-

cial boundaries under various query parameters. We further prove that the derived

node selection rules obtain a sufficient and necessary set of nodes for each social

boundary. We also perform a series of sensitivity tests to evaluate the performance
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of proposed mechanisms for accelerating CSGQ. Experimental results show that the

caching mechanisms are able to substantially reduce the query processing time.

The rest of this chapter is summarized as follows. In Section 4.2, we introduce related

works. After that, we introduce CSGQ and the caching mechanisms used to support con-

secutive queries in Section 4.3. We then detail the construction and maintenance of the

caching mechanisms in Section 4.4. Proof of solution optimality and extensions of CSGQ

are provided in Section 4.5. Finally, we present the experimental results in Section 4.6

and summarize this chapter in Section 4.7.

4.2 Related Works

In the field of social network analysis, there are many studies related to SGQ. For

example, research on finding various kinds of subgroups, such as clique, k-plex and k-

truss has been conducted (e.g., [6, 18, 43, 55, 59]). There are also related works on group

formation (e.g., [3, 44, 57]), team formation (e.g., [2, 24, 41]), and group query (e.g., [27,

28, 60]). Moreover, there are some related works on community search and social circle

discovering (e.g., [35,52,61]). However, none of them explore consecutive queries, which

are crucial in real scenarios.

For diversified query, some existing studies (e.g., [14,34,63,64]) return multiple sub-

graphs with diverse characteristics in one single query. However, since these studies are

not specifically designed for activity planning, social connectivity and tightness are not

their major concern. Therefore, the returned subgroups are not guaranteed to achieve

social cohesiveness. Moreover, without feedback and guidance from user-specified pa-

rameters, most returned subgraphs in the diversified query are likely to be redundant (i.e.,

distant from the desired results of users). In addition, none of the aforementioned studies

consider the temporal dimension to facilitate automatic activity planning. On the other

hand, session query and reinforcement learning in retrieval (e.g., [20, 26, 50]) that allow

users to tailor the query have attracted increasing attentions. However, these studies are

designed for document retrieval and hence cannot handle the social network graph and
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user schedules. Therefore, these aforementioned research works are not applicable for

automatic activity planning, and the CSGQ problem is not addressed previously.

4.3 Consecutive Social Group Query

In real situations, users usually prefer to adjust the query parameters in order to retrieve

better results. Moreover, according to the feedback from a user study (see Section 3.5.3),

initiators are inclined to adjust social constraints to consider varying recommendations,

thus tend to issue a sequence of social group queries. Nevertheless, the above important

need is largely ignored in related works [2, 6, 18, 24, 27, 41, 43, 55, 59]. A naive method

to process a sequence of SGQs is to solve each SGQ independently with SGSelect. How-

ever, as these SGQs are fine-tuned by the same initiator with slight changes in parameters,

we can improve the efficiency of consecutive SGQs by caching intermediate solutions for

reuse. Therefore, we propose two mechanisms, Accumulative Search Tree (AST) and So-

cial Boundary (SB), to support processing ofConsecutive Social Group Queries (CSGQs).

Instead of repeating the traversal for each individual SGQ, AST caches the intermediate

solutions for different parameters in a single tree to process a sequence of SGQs from the

same initiator. SBs then index the nodes in AST to facilitate lookup in the processing of

new SGQs. Since the nodes not indexed by any SB are not used in the succeeding SGQs,

a large portion of nodes in AST can be discarded, significantly reducing caching overhead

and processing cost. Moreover, duplicate searches are reduced because AST and SB en-

able the query processing of succeeding SGQs to start with intermediate solutions. In the

following, Section 4.3.1 first introduces AST and SB. Section 4.3.2 then presents how to

exploit AST and SB to answer CSGQs efficiently. The construction and maintenance of

AST and SB will be detailed later in Section 4.4. After that, we will prove the solution

optimality and extend CSGQ to support the temporal dimension in Section 4.5.
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Figure 4.1: T1 and T2 are two dendrograms with different k, and T3 is the accumulative
search tree.

4.3.1 Accumulative Search Tree and Social Boundary

Figure 4.1 illustrates two search trees T1 and T2 corresponding to two SGQs with

slightly different parameters (s, k) = (2, 1) and (2, 2), respectively. It can be observed

that T1 and T2 share many nodes in common, includingG1−G4,G6, I1, S1,D1, andE2.

Nevertheless, some nodes are different due to various pruning strategies. For example,G5

in T1 does not appear in T2 due to the distance pruning (thus it is marked as D2 in T2).

Meanwhile, G7 in T2 does not appear in T1 because of the acquaintance pruning (thus

it is marked as A1 in T1). In addition to the distance pruning and acquaintance pruning,

the interior unfamiliarity condition with θ = 0 and the exterior expansibility condition

also avoid traversing redundant branches, and here we refer them as interior unfamiliarity
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pruning (IU pruning) and exterior expansibility pruning (EE pruning), respectively. It is

important in the design of AST to cache not only the common parts but also the different

parts of T1 and T2, in order to support different SGQs with a variety of query parameters

consecutively in the future. Also, to support quick traversal of the tree in the consecutive

queries, we propose SB to index the nodes in AST. For example, indexing I1 in T1 allows

future queries with parameter k = 3 to start with this node, instead of the root G1, to

avoid traversing unnecessary nodes. In the following, we first introduce AST to cache the

intermediate results of historical queries in a compact way.

Definition 4.3.1. An accumulative search tree is a tree structure that includes (1) internal

nodes (i.e., the nodes successfully expanded in historical queries), (2) pruned nodes (i.e.,

the nodes where prunings happen and act as the roots of pruned branches), and (3) solu-

tion nodes. Each tree node contains the information generated during query processing,

such as VS and VA.

The initial AST is the search tree generated in the first SGQ. Taking Figure 4.1 as an

example, the first query is with parameters (s, k) = (2, 1), and the initial AST is T1, where

A1 is a pruned node since there is a branch pruned by acquaintance pruning. Nodes Gi

and Si stand for an internal node and a solution node, respectively. When processing the

succeeding query, AST is updated by replacing the pruned node with an internal node to

explore the branch not considered in the previous query. For example, the second query

is with parameters (s, k) = (2, 2), and A1 in T1 is replaced by G7 in T3, implying that the

previously pruned branch is explored in the new query.

When the user specifies a tighter constraint, such as k = 0, not all the nodes in the

existing AST (i.e., T3) are feasible for the tight constraint. On the other hand, although

the root node is always feasible, it is not efficient to start the query processing with G1

because it leads to duplicate traversal. Therefore, it is desirable to index the nodes of T3

for different social constraints in order to support the consecutive queries, and we propose

SB to address this issue.

Definition 4.3.2. An (sb,kb)-social boundary contains pointers to a list of nodes in AST to
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accelerate the processing of the query with s = sb and k = kb, such that expanding the

nodes in the list leads to the optimal solution to this query.

Note that, during the construction of the SBs for different s and k, nodes that cannot

lead to the optimal solution are excluded.1 While a pruned node may be included in an

SB with a larger k for re-expansion, it may be excluded from another SB with a smaller k

due to violating the tighter acquaintance constraint. In Figure 4.1, there are two dashlined

regions in T3 representing (1,2)-SB and (1,3)-SB, respectively. There are only two nodes

in (1,2)-SB, since the other five nodes in (1,3)-SB (i.e., I1, S2, E1, E2, and E3) violate

the acquaintance constraint with k = 2 and thus are excluded from (1,2)-SB. Therefore, to

answer a new querywith (s, k) = (1, 2), we only need to expand the two nodes in (1,2)-SB,

instead of all the 15 nodes in T3. Specifically, the SBs can be viewed as a table containing

pointers to a set of nodes, as shown in Table 4.1 with the query example in Figure 4.2.

The content of this table is filled using the nodes in AST after the first SGQ is processed.

For each succeeding SGQ with specified s and k, we are able to simply extract the nodes

in the corresponding (s,k)-SB and expand these nodes to find the optimal solution. These

nodes in the SB can be treated as shortcuts on AST, where expanding them directly can

avoid traversing from the root of AST to reduce the computational cost for new queries.

Finding the correct nodes for each SB is crucial due to the following reasons. First,

if the SB contains some nodes too close to the root, it still needs to traverse some re-

dundant internal nodes in AST, leading to duplicate exploration. Second, while a node

close to the leaf nodes lowers traversal cost, the new branch expanded from this node only

covers a small portion of the solution space, and the optimal solution is thereby not guar-

anteed. Third, if the SB includes the nodes that do not generate feasible solutions under

the new social constraints, it incurs redundant caching overhead and computational cost.

Therefore, it is important to select a sound and complete set of nodes for each SB. In the

following, we first present how to efficiently acquire the solution by leveraging AST and

SB in Section 4.3.2. We will then detail the construction of SBs in Section 4.4 and prove
1The range of possible s and k are 1 ≤ s ≤ smax and 0 ≤ k ≤ p− 1, where smax is the largest possible

s. According to the small world phenomenon [36], smax does not need to be very large (e.g., 4), and users
can also specify a desired smax.
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Table 4.1: The (s,k)-SBs constructed after the first SGQ.
(s,k) Nodes indexed by the (s,k)-SB
... ...

(2,0) P23, P27, P28, P29
(2,1) P20, P23, P27, P28, P29 [S1]
(2,2) P4, P11, P16, P18, P20, P22, P23, P27, P28, P29 [S1]
(2,3) P2, P4, P9, P11, P16, P18, P20, P22, P23, P27, P28, P29 [S2]
(2,4) P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22,

P23, P24, P25, P26, P27, P28, P29 [S2]
(2,5) ...
(2,6) ...
(3,0) P23, P27, P28, P29
(3,1) P20, P23, P27, P28, P29 [S1]
(3,2) P4, P11, P16, P18, P20, P22, P23, P27, P28, P29 [S1]
(3,3) [already processed]
(3,4) P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22,

P23, P24, P25, P26, P27, P28, P29 [S2]
(3,5) ...
(3,6) ...
... ...

in Theorem 4.5.1 that the nodes indexed by (s,k)-SB are sufficient for finding the optimal

solution.

4.3.2 Solution Acquisition Using AST and SB

For each new SGQwith a specified pair of s and k, we first use the (s,k)-SB to quickly

identify the corresponding nodes in AST. Each node indexed by the (s,k)-SB is then ex-

panded to see if better solutions can be generated. The expansion here is similar to the re-

cursive function ExpandSG in Algorithm SGSelect (pseudo code provided in Appendix

B): repeatedly expand the VS of the node by selecting and adding the vertices from VA

to VS , and then detect if the expanded VS satisfies the acquaintance constraint. Newly

generated solutions are compared with the existing one stored in the (s,k)-SB to choose

that with the smallest total social distance. While processing the succeeding SGQ, if any

pruned node in the AST is successfully expanded, it will be replaced by the branches

generated during the expansion. To update the SBs, the node removed from the AST is

also eliminated from the SBs to avoid duplicate expansion. Nodes in the newly gener-

ated branches, on the other hand, are incorporated into SBs for reuse. More details about

selecting the correct set of nodes for each SB will be provided later in Section 4.4.

Example 4.3.1. In this example, v7 in Figure 4.2(a) is the initiator. After processing the

first query with (p, s, k) = (7, 3, 3) using SGSelect, the initial AST is shown in Figure
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Figure 4.2: An illustrative example for CSGQ. (a) The sample social network, (b) the
initial accumulative search tree and (c) the accumulative search tree after the second query.
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4.2(b). Nodes Gi, Pi and Si stand for an internal node, a pruned node and a solution

node, respectively. In Table 4.1, we list SBs for different s and k, with the details of its

construction to be provided in Section 4.4. Assume that the initiator modifies the con-

straint k from 3 to 2 for a tighter group. Instead of examining all 43 nodes in the initial

AST to obtain the optimal solution, with the help of (3,2)-SB, we only need to consider

11 nodes, which include 10 pruned nodes and one solution node S1. Each pruned node

has its VS and VA, e.g., VS = {v2, v6, v7, v8, v9, v11} and VA = {v1, v4, v5, v10} for P1.

We examine these pruned nodes to see if they can be successfully expanded to generate

solutions, with a procedure similar to that in SGSelect. Note that since there is an existing

solution S1 in (3,2)-SB, the distance pruning strategy is effective at early stages in the ex-

pansion and saves computation. If a pruned node is successfully expanded, it becomes an

internal node that may lead to new solutions and will be replaced by the newly generated

branches. The updated AST is shown in Figure 4.2(c). For example, a distance-pruned

node P4 in Figure 4.2(b) is successfully expanded into the internal node G10 in Figure

4.2(c), which eventually is expanded into a new solution node S6. After processing all

the 10 pruned nodes in (3,2)-SB, we obtain four new feasible solutions (i.e., S6, S7, S8

and S9). Among them and the existing solution (i.e., S1), S8 is returned as the optimal

one since it has the smallest total social distance.

4.4 Index Construction and Maintenance

Section 4.3 has illustrated how to exploit AST and SB to answer CSGQs. In the follow-

ing, we further detail how to construct a table of (s,k)-SBs for various s and k in Section

4.4.1. The updating procedure of AST and SB is then discussed in Section 4.4.2.

4.4.1 Node Indexing of AST Using SB

To effectively reduce redundant node processing in CSGQs, it is crucial to create SBs

with the minimum number of nodes and ensure solution optimality by considering each
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kind of node (i.e., pruned nodes, solution nodes, and internal nodes) in AST. Here we

address this essential issue by deriving a set of node selection rules for building SBs under

various query parameters. We first focus on the acquaintance constraint k in Rule 1 and

then return to the social radius constraint s in Rule 2.

Rule 1: node indexing for different k

(1) Pruned nodes. We categorize pruned nodes into four types: IU-pruned nodes, EE-

pruned nodes, acquaintance-pruned nodes and distance-pruned nodes, which correspond

to Eqs. (3.2), (3.3), (3.4) and (3.5) in Section 3.3.2, respectively. Given s and k of the first

SGQ, we examine if a pruned node is needed in the (s,k′)-SB for processing a new SGQ

with k′ as follows.

• IU-pruned nodes. All IU-pruned nodes do not appear in any (s,k′)-SB with k′ ≤

k, since k′ represents a tighter acquaintance constraint. On the other hand, when

k′ > k, an IU-pruned node is not included in any (s,k′)-SB if k′ < U(VS) since

insufficient social tightness within VS prevents this node from becoming a solution.

Therefore, an IU-pruned node only appears in the (s,k′)-SB where

k′ ≥ max{U(VS), k + 1}. (4.1)

Example 4.4.1. Figure 4.2(b) presents an illustrative example with an IU-pruned

node P1 to identify the corresponding SBs. P1 is generated in the first query with

(s, k) = (3, 3), and its VS and VA are {v2, v6, v7, v8, v9, v11} and {v1, v4, v5, v10}, re-

spectively. It is not necessary to calculateU(VS) here, sinceU(VS) = 4was derived

when solving the first query. According to Eq. (4.1), when s remains unchanged,

P1 only needs to appear in the (3,k′)-SBs with k′ ≥ 4, which are (3,4)-SB, (3,5)-SB

and (3,6)-SB.

• EE-pruned nodes. As with the IU-pruned nodes, all EE-pruned nodes will not ap-

pear in any (s,k′)-SB with k′ ≤ k for the same reason. Moreover, an EE-pruned

node will be pruned again in any (s,k′)-SB if k′ − k < p− |VS| −A(VS), since the
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social connectivity between VS and VA is still too small with respect to k′. Therefore,

an EE-pruned node only appears in the (s,k′)-SB where

k′ ≥ max{p− |VS| − A(VS) + k, k + 1}.

• Acquaintance-pruned nodes. An acquaintance-pruned node is included in an (s,k′)-

SB only if k′ > k and
∑

v∈MA
|VA ∩ Nv| ≥ (p − |VS|)(p − |VS| − k′ − 1) (i.e.,

Eq. (3.5) does not hold to trigger acquaintance pruning). That is, an acquaintance-

pruned node only appears in the (s,k′)-SB where

k′ ≥ max{p− |VS| − 1−
∑
v∈MA

|VA ∩Nv|/(p− |VS|), k + 1}.

Note that the value of
∑

v∈MA
|VA ∩Nv| has already been derived in the first query

and does not change when k is replaced by k′, and exploiting these unchanged parts

helps reduce computation when processing succeeding SGQs.

• Distance-pruned nodes. In contrast, distance-pruned nodes need to appear and may

be expanded in the (s,k′)-SB when k′ < k, since k′ represents a tighter acquaintance

constraint, and the solutions that trim off the distance-pruned nodes may not be

feasible. However, including every distance-pruned node in all (s,k′)-SBs in this

situation is not necessary. Instead, we employ the distance pruning strategy again to

filter out the distance-pruned nodes that never become a better solution in each SB.

Specifically, if the solutions generated in the previous queries are feasible under k′,

the one with the smallest total social distance is kept in the (s,k′)-SB, and this total

social distance is then employed to update D in distance pruning for filtering. On

the other hand, distance-pruned nodes are not included in (s,k′)-SBs when k′ ≥ k,

because the original solutions that trim off these nodes are still better solutions.

In the above cases, we explored whether a pruned node appears in (s,k′)-SB according

to its original pruning type. However, taking a distance-pruned node as an example, when

it is included in an (s,k′)-SB with k′ < k, it may violate the new tighter interior unfamil-
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iarity condition and be trimmed off by IU pruning. To further reduce the number of nodes,

we examine each type of pruned nodes for the other three types of pruning strategies with

the corresponding s and k′. These examinations are almost the same as in Section 3.3.2,

except that some parts of the inequalities have already been derived and can be reused

directly.

(2) Solution nodes. It is desirable for the SBs to include solution nodes to facilitate

early pruning in the new query. A solution node here can be any node with |VS| = p, e.g.,

any feasible solution (not necessarily the optimal one). Specifically, any solution node

can be selected in an (s,k′)-SB if k′ ≥ U(VS), since the solution node still satisfies the

acquaintance constraint k′. Nevertheless, if there is already another solution node in the

(s,k′)-SB, we only need to keep the one with the smaller total social distance to facilitate

distance pruning afterwards.

(3) Internal nodes. To effectively minimize the storage overhead, no internal node is

included in (s,k′)-SBs, since all feasible solutions expanded from an internal node either

are the solution nodes in its sub-tree or can be expanded from the pruned nodes in its

sub-tree.

Rule 2: node indexing for different s

(1) Pruned nodes.

• IU-pruned nodes. No IU-pruned node needs to be included in any (s′,k)-SB, since

changing the social radius constraint does not increase the connectivity between the

existing vertices in VS . Thus, all the IU-pruned nodes are infeasible with any s′.

• EE-pruned nodes. In contrast to the IU-pruned nodes, some EE-pruned nodes may

be successfully expanded to generate new sub-trees when s′ > s, since new candi-

date attendees may appear in VA. Therefore, if s′ > s, it is necessary to derive the

corresponding V s′
A (i.e., the candidate attendees within s′ hops from the initiator) for

an EE-pruned node.2 We then update the social distance according to different s′ to
2The tightest social radius constraint that allows a vertex v to be included as a candidate can be identified

from the radius graph extraction procedure, and it is the smallest i such that div,q < ∞.
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keep track of the status of the pruned node.3 An (s′,k)-SB includes an EE-pruned

node only if its V s′
A is large enough such that A(VS) ≥ p − |VS|, implying that Eq.

(3.3) does not hold and prevents EE pruning.

Example 4.4.2. Figure 4.2(b) presents an illustrative example with an EE-pruned

node P5 to identify the corresponding SBs. P5 is generated in the first query with

(s, k) = (3, 3), and its VS and VA are {v3, v6, v7, v8, v9} and {v1, v4, v5, v10, v11},

respectively. According to Rule 2-(1), an EE-pruned node is only considered for

the (s′,k)-SBs with s′ > s. Since smax = 4, where smax is the largest possible s′,

P5may only stay in the (4,3)-SB. Note that the tightest social radius constraint that

allows a vertex v to be included as a candidate can be identified from the radius

graph extraction procedure. Therefore, V 4
A = V 3

A . Since V s′
A is unchanged, A(VS)

will remain the same when s′ = 4, which indicates that Eq. (3.3) still holds to

trim off P5 again. By excluding P5 from the (s′,3)-SBs, the node selection rules

effectively reduce the processing time of the succeeding queries.

Note that, although VS contains the same set of vertices under different s′, the so-

cial distances of the vertices in VS may change and affect the later distance pruning.

Therefore, in addition to tracking each node’s V s′
A for different s′, we update the

corresponding VS for different s′, denoted as V s′
S . Moreover, V s′

S or V s′
A for the

same node under different s′ tend to share many common vertices. Therefore, to

efficiently maintain V s′
S and V s′

A under different s′, we hierarchically save the differ-

ence among them. That is, we first save a base node for V s′
S or V s′

A with the smallest

s′. When new candidates join or when the social distance of any vertex becomes

smaller for a larger s′, these new candidates or the difference of social distances

will be recorded in a delta node. With the base node and the delta nodes, we can

dynamically generate the corresponding V s′
S and V s′

A of the specified s′ for further

expansion. Example 4.4.3 illustrates how the base node and delta nodes work.
3The social distance of any vertex in V s′

A for different s′ can also be derived from the radius graph
extraction procedure, since the social distance of a vertex v for s′ is exactly div,q with i = s′.
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Table 4.2: (a) The social distances from different vertices to v7 under various s, and (b)
variations of node P5.

(a)

v1 v4 v5 v6 v9 v10 v11 v12
s = 1 ∞ 27 ∞ 20 13 ∞ 23 ∞
s = 2 25 27 30 15 13 42 23 ∞
s = 3 25 27 25 15 13 42 23 49
s = 4 25 27 25 15 13 42 23 49

(b)

P5: ⟨VS = {v6(20), v7(0)}, VA = {v4(27), v9(13),
v11(23)}⟩
C2

P5: ⟨V
2
S = {v6(15), v7(0)}, V 2

A = {v1(25), v4(27),
v5(30), v9(13), v10(42), v11(23)}⟩
C3

P5: ⟨V
3
S = {v6(15), v7(0)}, V 3

A = {v1(25), v4(27),
v5(25), v9(13), v10(42), v11(23), v12(49)}⟩
C4

P5: ⟨V
4
S = {v6(15), v7(0)}, V 4

A = {v1(25), v4(27),
v5(25), v9(13), v10(42), v11(23), v12(49)}⟩

B2−4
P5 : ⟨V 2

S = {v6(15), v7(0)}, V 2
A = {v1(25), v4(27),

v5(30), v9(13), v10(42), v11(23)}⟩
D3−4

P5 : ⟨V ′
S = ∅, V ′

A = {v5(−5), v12(49)}⟩

Example 4.4.3. This example employs a query with a smaller group size p to illus-

trate the function of the base node and delta nodes. Assume that v7 in Figure 4.2(a)

issues a query with (p, s, k) = (4, 1, 1). With the radius graph extraction, we obtain

the social distance of each vertex under different s. Part of the results are listed in

Table 4.2(a), and the social distance of a vertex may decrease as s increases. More-

over, a vertex is included as a candidate in V s′
A if its social distance becomes smaller

than ∞ under the social constraint s = s′. Here we consider an EE-pruned node

P5 with VS = {v6(20), v7(0)} and VA = {v4(27), v9(13), v11(23)} generated in the

query as an example. (The number in the parentheses next to vi is the social dis-

tance from vi to the initiator v7.) A naive approach to handle various s′ is generating

standalone copies of P5 for each s′ from s+ 1 = 2 to smax = 4, i.e., C2
P5, C3

P5 and

C4
P5 in Table 4.2(b), where smax is the largest possible s. However, we observe that

there is a large overlap among C2
P5, C3

P5 and C4
P5. Therefore, in the following, we

will show how to condensedly maintain these copies using the base node and the

delta nodes.

First, the base node B2−4
P5 contains the V s′

S and V s′
A of P5 with the smallest s′ (i.e.,

2). Here the index 2 − 4 means this node is used when reconstructing the V s′
S and

V s′
A with s′ = 2, 3, or 4. When s′ increases to 3, it is necessary to record the newly

joined vertex (i.e., v12) and the difference of social distance (i.e., −5 for v5) in the
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delta nodeD3−4
P5 . The unchanged vertices can be omitted to save space. Since there

is no further change when s′ = 4, more delta nodes do not need to be generated.

When a new query comes in, we only need to take the base node and use delta

nodes to add new candidates or update the social distance as necessary. Thus, the

V s′
S and V s′

A that fit the new social radius constraint can be dynamically generated

when needed.

• Acquaintance-pruned nodes. Similar to the EE-pruned nodes, some acquaintance-

pruned nodes may be expanded into new sub-trees when s′ > s, since new candidate

attendees may appear in VA. Specifically, an (s′,k)-SB includes an acquaintance-

pruned node only if its V s′
A is large enough such that

∑
v∈Ms′

A

|V s′

A ∩Nv| ≥ (p− |VS|)(p− |VS| − k − 1),

whereM s′
A is the set of p− |VS| vertices in V s′

A with the largest inner degrees. The

above inequality indicates that Eq. (3.5) does not hold and the node is not pruned.

• Distance-pruned nodes. In contrast, most distance-pruned nodes, except those with

V s′
S violating the social radius constraint (i.e., maxv∈V s′

S
hv > s′, where hv is the

number of hops from the initiator to a vertex v), need to be re-considered when

s′ changes. The reason is that when s′ > s, the newly included vertices in V s′
A

may create shorter paths to the initiator. Alternately, when s′ < s, the total social

distance of the solution in the previous distance pruning may increase. In either

way, the distance pruning condition may not hold, and its pruned nodes need to be

included in (s′,k)-SB for further examination.

Here we also create the base node and the delta nodes for a distance-pruned node

to compactly maintain its V s′
S and V s′

A for different s′ to update the social distance

of any vertex, and then use the distance pruning strategy again to include only the

updated distance-pruned nodes that can generate a better solution in the (s′,k)-SB.
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(2) Solution nodes. In order to facilitate early pruning for the succeeding queries

and avoid missing the optimal solution, (s′,k)-SB includes the solution nodes that follow

the social radius constraint. For each solution node, we update the social distance with

any vertex in V s′
S , so that it is associated with the correct total social distance. For each

(s′,k)-SB, we only keep the solution node of the smallest total social distance to reduce

the storage overhead.

(3) Internal nodes. In contrast to the (s, k′)-SB, internal nodes in AST play a more

important role in the (s′, k)-SB, because when s′ > s, new candidate attendees may join.

Therefore, the internal nodes of AST need to be cached for the (s′, k)-SBs with s′ > s, so

that new candidates can be added to the existing internal nodes without generating them

all over again. Similar to the pruned nodes, we maintain V s′
S and V s′

A of each internal

node for different s′ using the base node and the delta nodes, so that we can dynamically

generate the corresponding V s′
S and V s′

A of the specified s′ for further expansion.

Rule 3: node indexing for different s and k Although the node indexes for different

k and different s have been presented in Rule 1 and Rule 2, respectively, when considering

both s and k, carefully combining the rules for k and for s can further reduce the number

of nodes to include in SBs. Therefore, we explore the generalized case as follows.

(1) Pruned nodes.

• IU-pruned nodes. Rule 1-(1) indicates that an IU-pruned node is included in the

(s,k′)-SB if k′ ≥ U(VS).4 Rule 2-(1) shows that, when k is fixed, an IU-pruned

node is not in any (s′,k)-SB regardless of s′; however, when constructing (s′,k′)-

SBs, s′ can still to reduce the number of IU-pruned nodes. That is, a pruned node

is included in an (s′,k′)-SB only if all vertices in its VS are within s′ hops of the

initiator, i.e., maxv∈VS
hv ≤ s′. Combining the inequalities, an IU-pruned node is

included in an (s′,k′)-SB only if k′ ≥ U(VS) and maxv∈VS
hv ≤ s′.

Example 4.4.4. We revisit P1 in Example 4.4.1, with VS = {v2, v6, v7, v8, v9, v11}
4The original rule listed in Rule 1-(1) is k′ ≥ max{U(VS), k + 1}. However, it can be simplified by

observing that U(VS) must exceed k; otherwise, the IU pruning will not happen. Similarly, the rules of
EE-pruned and acquaintance-pruned nodes used later are also simplified.
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and VA = {v1, v4, v5, v10}. Since U(VS) = 4 was already derived in the first query,

P1 will only appear in (s′,k′)-SBs with k′ ≥ 4. Moreover, because the vertices in

VS are all within one hop of the initiator, maxv∈VS
hv = 1 holds. Therefore, the

IU-pruned node P1 will only appear in (s′,k′)-SBs with 1 ≤ s′ and k′ ≥ 4, such as

(2,4)-SB and (3,4)-SB in Table 4.1.

• EE-pruned nodes. According to Rule 1-(1), an EE-pruned node is included in the

(s,k′)-SB if

k′ ≥ p− |VS| − A(VS) + k. (4.2)

We employ the social radius constraint to reduce the number of nodes included.

Specifically, it is not necessary to keep the pruned nodes for the (s′,k′)-SBs with

s′ < maxv∈VS
hv, even if their k′ satisfies Eq. (4.2). Other (s′,k′)-SBs whose k′

does not satisfy Eq. (4.2) can include an EE-pruned node only if their s′ is large

enough so that its A(VS) with new candidates in V s′
A is no smaller than p − |VS|,

implying that this node will not be pruned by EE pruning again.

• Acquaintance-pruned nodes. According to Rule 1-(1), an acquaintance-pruned node

is included in the (s,k′)-SB if

k′ ≥ p− |VS| − 1−
∑
v∈MA

|VA ∩Nv|/(p− |VS|). (4.3)

We again use the social radius constraint to reduce the number of nodes included.

The pruned nodes for the (s′,k′)-SBs with s′ < maxv∈VS
hv are not needed, even if

their k′ satisfies Eq. (4.3). Other (s′,k′)-SBs whose k′ does not satisfy Eq. (4.3) can

include an acquaintance-pruned node only if their s′ is large enough such that

∑
v∈Ms′

A

|V s′

A ∩Nv| ≥ (p− |VS|)(p− |VS| − k′ − 1).

• Distance-pruned nodes. A distance-pruned node may be successfully expanded

when k′ < k or when s′ ̸= s, according to Rule 1-(1) or Rule 2-(1), respectively.
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Similarly, we can reduce the number of included nodes by excluding the distance-

pruned nodes with maxv∈VS
hv ≤ s′. We further reuse the inequality of distance

pruning strategy (i.e., Eq. (3.4)) by replacingD with the current best solution in the

(s′,k′)-SB. If the inequality holds, the distance-pruned node is not required in the

SB since it will be pruned again.

(2) Solution nodes. Combining Rule 1-(2) and Rule 2-(2), a solution node is included

in the (s′,k′)-SBs with k′ ≥ U(VS) and s′ ≥ maxv∈VS
hv, i.e., satisfying the acquaintance

and social radius constraints, respectively.

(3) Internal nodes. Rule 2-(3) indicates that the (s′,k)-SBs with s′ > s should include

internal nodes for new candidates due to the increment of s′. For changes in k′, the internal

nodes with U(VS) > k′ violate the acquaintance constraint k′ and does not generate a

solution. Therefore, the (s′,k′)-SB only includes the internal nodes if k′ ≥ U(VS) and

s′ ≥ maxv∈VS
hv.

4.4.2 Updating of AST and SB

After the first SGQ is processed, the initial AST is generated, and the (s,k)-SBs for

various s and k are constructed using the node selection rules derived in Section 4.4 to

facilitate the processing of the succeeding SGQs. In the following, we detail the update

of AST and SBs while processing a succeeding SGQ. During the process, some nodes are

expanded into new sub-trees in the AST, and these sub-trees may include new solution,

internal and pruned nodes. All these newly generated nodes are added into the existing

AST to retain the latest intermediate solutions. Since a tree node may reside in more than

one SB, the successfully expanded nodes may still reside in some other (s,k)-SBs not yet

processed to solve any query. To keep the latest intermediate solutions, certain new nodes

are selected to be included in some unprocessed (s,k)-SBs based on the node selection

rules derived in Section 4.4, which can effectively identify a small portion of nodes that

need to be processed in the query with corresponding s and k.

While updating, we can save the space by considering the s of all historical queries
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Table 4.3: The (s,k)-SBs after updated according to the second SGQ.
(s,k) Nodes indexed by the (s,k)-SB
... ...

(3,0) P29, P44
(3,1) P29, P41, P44 [S1]
(3,2) [already processed]
(3,3) [already processed]
(3,4) P1, P2, P3, P5, P6, P7, P8, P9, P10, P12, P13, P14, P15, P17, P18, P19, P21, P22, P24, P25, P26,

P29, P30, P31, P32, P33, P34, P35, P36, P37, P38, P39, P40, P41, P42, P43, P44, P45, P46, P47 [S8]
(3,5) ...
(3,6) ...
... ...

simultaneously. Consider an example with two historical queries, where s of the first is 3,

and s of the second is 1. When updating the SBs, if we only compare s′ of the SBs with s

of the latest query (i.e., 1), it is necessary to include the new internal nodes in the (s′,k′)-

SB with s′ > 1. However, it is redundant to include these nodes in the (s′,k′)-SBs with

1 < s′ ≤ 3, since the nodes containing the candidates within 3 hops of the initiator were

generated in the first query and already exist in the AST and SBs. Therefore, when we

decide if the internal nodes should be included in an (s′,k′)-SB, it is important to consider

the s of all historical queries, not just the latest. To be specific, let sold_max denote the

largest s among all historical queries, only the (s′,k′)-SBs with s′ > sold_max are required

to consider if the new internal nodes need to be included. In the following, we provide an

example to illustrate the update of SBs.

Example 4.4.5. In Example 4.3.1, after processing the succeeding SGQ, any successfully

expanded node is replaced by the branches generated (as shown in Figure 4.2(c)) such that

these new results can be leveraged in processing future queries. When AST changes, SBs

in Table 4.1 should be updated accordingly. For example, pruned nodes P23, P27 and

P28 are removed from the SBs since they were expanded, while a new pruned node P44

is now included in (3,1)-SB according to the node selection rules. The updated SBs after

processing the succeeding SGQ with (s, k) = (3, 2) are listed in Table 4.3.
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4.5 Solution Optimality and Extensions

In Section 4.5.1, we first prove the solution optimality of processing CSGQs using

AST and SB. We then extend CSGQ to support the temporal dimension in Section 4.5.2.

4.5.1 Solution Optimality

Although we only process a small portion of nodes in AST (i.e., the nodes indexed by

the SB), the following theorem proves that the solution is still ensured to be optimal.

Theorem 4.5.1. Processing the nodes in the (s′,k′)-SB obtains the optimal solution to the

CSGQ.

Proof. Here we provide a sketch of proof, and the complete version can be found in Ap-

pendix A.1. Let SP (s) denote the solution space consisting of all size-p feasible solutions

within s hops. AST covers SP (sold_max), where sold_max is the largest s among all pro-

cessed historical queries, because feasible solutions are either the existing solution nodes

or descendant nodes of unexpanded pruned nodes in AST. If we expand the cached pruned

nodes to generate the solutions and compare them with the existing ones, the optimal so-

lution of the query can be obtained.

However, an (s′,k′)-SB only includes a small portion of cached nodes chosen by the

node selection rules. In the following, we prove that all the pruned nodes not included in

an (s′,k′)-SB do not generate the optimal solution to the query with specified s′ and k′.

Specifically, an EE-pruned node does not stay in an (s′,k′)-SB if k′ is not large enough

such that

k′ < p− |VS| − A(VS) + k, (4.4)

and s′ is also not large enough such that

A(VS) < p− |VS|. (4.5)

89



doi:10.6342/NTU201700431

Combining Eq. (3.1) and Eq. (4.4), we have

k′ < p− |VS| − min
v∈VS

{|VA ∩Nv|+ (k − |VS − v −Nv|)}+ k,

or equivalently,

min
v∈VS

{|VA ∩Nv|+ (k′ − |VS − v −Nv|)} < p− |VS|,

which indicates that k′ is not loose enough for this node to satisfy the exterior expansi-

bility condition, and hence this node must be pruned again. Eq. (4.5) indicates that s′

is too small to bring a sufficient number of new vertices, which also implies that the ex-

terior expansibility condition is not satisfied, and hence this node must be trimmed off

again. Similarly, the acquaintance and distance pruned nodes that are not chosen by the

node selection rules cannot be successfully expanded for better solution, as derived in the

complete proof (see Appendix A.1).

Moreover, a solution node does not reside in an (s′,k′)-SB only if it violates the so-

cial constraints or if there already exists another solution node with a smaller total social

distance in the SB. Therefore, these nodes can be omitted without missing solution opti-

mality. When s′ > sold_max, new feasible solutions are necessary to be examined because

SP (s′) ⊇ SP (sold_max). The (s′,k′)-SBs with s′ > sold_max include the internal nodes

in AST, and the VS in these internal nodes are expanded with newly added candidates to

generate new feasible solutions. Therefore, the solutions in SP (s′) − SP (sold_max) are

also carefully examined. The theorem follows.

In the following, we further prove that all the nodes included in the SBs are feasible for

further expansion in Theorem 4.5.2, and then we show that the nodes included in the SBs

are sufficient and necessary in Corollary 4.5.1. Since all the infeasible nodes are excluded

from the SBs, the nodes to be processed in the succeeding queries can be minimized.

This property brings a considerable improvement in the efficiency of query processing, as

shown later in Section 4.6.1.
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Theorem 4.5.2. The nodes included in the (s′,k′)-SB are expansible in the CSGQ with s′

and k′, i.e., they can be expanded to investigate new solutions. If any of these nodes is

discarded, the optimal solution is no longer guaranteed. That is, the nodes included in the

(s′,k′)-SB are necessary.

Proof. (1) An internal node is included in the (s′,k′)-SB only when s′ > sold_max and

k′ ≥ U(VS), where sold_max is the largest s among all processed historical queries. Note

that all the vertices in the VS of this internal node are within s hops from the initia-

tor. Meanwhile, they must also be located within sold_max hops from the initiator since

sold_max ≥ s for any internal node. If s′ > sold_max, the internal node that satisfies the

social radius constraint sold_max must also satisfy the loosened new social radius constraint

s′. Furthermore, the inequality k′ ≥ U(VS) implies that this internal node also satisfies

the acquaintance constraint. Therefore, this internal node is expansible under the specified

s′ and k′ of the new query. In other words, new feasible solutions and even the optimal

solution could be generated by adding newly joined candidates. If this internal node is not

kept in the (s′,k′)-SB, the optimal solution is not guaranteed.

(2) A solution node is included in the (s′,k′)-SBwhen k′ ≥ U(VS) and s′ ≥ maxv∈VS
hv,

in order to ensure that this solution node satisfies the acquaintance constraint and the social

radius constraint, respectively. Moreover, the solution node maintained in the (s′,k′)-SB

is the optimal solution obtained so far. Therefore, it is essential to take into account this

solution node in order to guarantee the optimal solution.

(3) The same as the solution nodes, an IU-pruned node will be included in the (s′,k′)-

SBs when k′ ≥ U(VS) and s′ ≥ maxv∈VS
hv, in order to ensure that this IU-pruned node

satisfies the acquaintance constraint and the social radius constraint, respectively. There-

fore, this IU-pruned node is expansible under the social constraints, and new feasible

solutions could be obtained by expanding this node. If this node is not included in the

(s′,k′)-SB, the optimal solution is not guaranteed to be found.

An EE-pruned node can be included in the (s′,k′)-SBs if k′ is large enough such that

k′ ≥ p− |VS| − A(VS) + k, (4.6)
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or s′ is large enough such that

A(VS) ≥ p− |VS|. (4.7)

In addition to Eq. (4.6) or Eq. (4.7), the (s′,k′)-SBs also satisfy s′ ≥ maxv∈VS
hv to ensure

the EE-pruned node satisfying the social radius constraint s′. Combining Eq. (3.1) and

Eq. (4.6), we have

k′ ≥ p− |VS| − min
v∈VS

{|VA ∩Nv|+ (k − |VS − v −Nv|)}+ k,

or equivalently,

min
v∈VS

{|VA ∩Nv|+ (k′ − |VS − v −Nv|)} ≥ p− |VS|,

which means that k′ is loose enough, and this node does not need to be pruned by the

EE pruning again. Eq. (4.7) also indicates that s′ is large enough such that this node is

not necessary to be pruned by the EE pruning again, and new feasible solutions could be

generated by expanding this node. Therefore, if this expansible EE-pruned node is not

included, the optimal solution is not guaranteed to be found.

Similarly, an acquaintance-pruned node is included in the (s′,k′)-SBs if k′ is large

enough such that

∑
v∈Ms′

A

|V s′

A ∩Nv| ≥ (p− |VS|)(p− |VS| − k′ − 1), (4.8)

and s′ is large enough such that

s′ ≥ max
v∈VS

hv. (4.9)

Eq. (4.8) indicates that this node is not pruned by the acquaintance pruning under the

loosened acquaintance constraint k′, while Eq. (4.9) ensures that this node satisfies the

social radius constraint. Therefore, this node is expansible in the new query and could

lead to feasible solutions. If this expansible acquaintance-pruned node is not included, the

optimal solution is not guaranteed to be found.
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A distance-pruned node can be included in the (s′,k′)-SBs with k′ < k or s′ ̸= s,

together with s′ ≥ maxv∈VS
hv to ensure this node satisfying the social radius constraint.

This pruned node is then compared with the existing solution on the above (s′,k′)-SBs

with the distance pruning strategy. The node is included in the (s′,k′)-SBs if it passes the

distance pruning, i.e., it may be expanded into new feasible solutions with smaller total

social distances than the existing solutions in these (s′,k′)-SBs. Therefore, if this distance-

pruned node is not included, the optimal solution is not guaranteed to be found.

Note that in addition to the type of pruning with which a node is originally removed,

we also examine this pruned node under the other three types of pruning strategies with

specified s′ and k′ of the new query. Therefore, this pruned node is ensured to be expansi-

ble and could generate feasible solutions of the new query, and the optimal solution may

be missed if this pruned node is not included in the (s′,k′)-SB. The theorem follows.

Corollary 4.5.1. The nodes included in the (s′,k′)-SB are sufficient and necessary for

obtaining the optimal solution of the CSGQ with specified s′ and k′.

Proof. Theorem 4.5.1 shows that processing the nodes in the (s′,k′)-SB obtains the optimal

solution to the CSGQ with specified s′ and k′, which implies that the nodes included in

the (s′,k′)-SB are sufficient. Theorem 4.5.2 then shows that the nodes included in the

(s′,k′)-SB are necessary. The corollary follows.

4.5.2 Extensions in Temporal Dimension

The proposed AST and SB can be extended to support a sequence of STGQs by con-

sidering the temporal dimension. Specifically, it is only necessary to record TS (i.e., the

common available time interval of all vertices in VS) for the nodes in AST and attach the

available time to the vertices in VA. As introduced in Section 3.4, when processing an

STGQ, instead of considering every interval from t to t+m− 1 for each time slot t, our

algorithm leverages the pivot time slot im to effectively reduce the search space. There-

fore, the amount of ASTs can also be reduced from the number of time slots to the number

of pivot time slots.

93



doi:10.6342/NTU201700431

Although the node selection rules in Section 4.4 were derived for a sequence of SGQs,

these rules can be directly applied to a sequence of STGQs with no loss of solution opti-

mality. The reason is that, based on the proof of Theorem 4.5.1, all the excluded nodes

still cannot generate the optimal solution to a succeeding STGQ with the same s′ and k′

as with the succeeding SGQ, since adding the availability constraintm in the STGQ does

not loosen the social constraints or decrease the total social distance of these nodes.

By considering candidates’ availability in the temporal dimension, the size of each SB

can be effectively reduced. For example, if a node is pruned due to the lack of temporal

extensibility (i.e.,X(VS) < 0), it is not required in any SB. A lack of temporal extensibility

implies a lack of consecutive time slots for vertices in the VS of the node. The s′ and k′ of

a new query do not affect schedules, and the consecutive time slots for vertices in the VS

remain insufficient. Hence, this node will again be pruned in the new query.

Similarly, if a node is pruned by availability pruning, it does not need to be considered

under most situations, since the schedules of the vertices in VA are not affected. Note

that one exception is that when s′ of the new query becomes larger, additional vertices

may appear in VA, and these vertices could form a feasible solution with VS if they have

enough time slots in common. Therefore, when exploiting the temporal availability to

further reduce the size of each SB, we only discard the nodes that do not have enough new

vertices in VA to ensure the solution optimality while reducing the processing time.

4.6 Experimental Results

In this section, we analyze the experimental results of CSGQwith the proposed caching

mechanisms (i.e., AST and SB) using real datasets. We first perform a series of sensitivity

tests to study the impact of query parameters with a coauthorship network (called Coau-

thor) of 16,726 people [38]. In addition to the sensitivity tests, we also conduct experi-

ments on a much larger YouTube social network [61], which includes 1,134,890 people.

To evaluate CSGQ thoroughly, we conduct experiments with various parameter settings

for CSGQ. Specifically, the parameters are sequentially increased or decreased with differ-
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ent rates. Moreover, we also conduct experiments with randomly parameter adjustment.

The algorithms are implemented on an HP DL580 server with four Intel E7-4870 2.4 GHz

CPUs and 128 GB RAM.

4.6.1 Performance Analysis of CSGQ

Based on feedbacks from the user study, initiators are inclined to fine tune CSGQs for

different recommendations. To address such an important need, we propose AST and SB

to efficiently cache and index intermediate results in support of CSGQs. In the following,

we compare the average query time for processing CSGQs with and without the caching

mechanisms: SGSelectAST uses only AST, SGSelectASTwithSB uses both AST and SB,

and SGSelect uses none of them. Figure 4.3(a) shows the results with decreasing k in

consecutive queries, under varied number of consecutive queries (in x-axis), while Figure

4.3(b) shows the results with increasing k. The first query starts with k = 6 and k = 12

for experiments with increasing k and decreasing k, respectively. For example, x = 3

with decreasing k represents the average query processing time of the queries for k =

12, k = 11 and k = 10. The results manifest that the average query processing time

of SGSelectAST outperforms SGSelect because the proposed AST caches intermediate

solutions for reuse and speed up the processing of succeeding queries. Recall that SBs

are built to index the nodes in AST and reduce the number of nodes processed in the

succeeding queries. As shown in the results, SGSelectASTwithSB leads to the greatest

improvement, indicating that SB effectively avoids exploring unnecessary search space

and further reduces the processing time.

Note that, in both Figure 4.3(a) and Figure 4.3(b), the average running time of SGS-

electASTwithSB consistently decreases as the number of consecutive queries increases.

In contrast, the average running time of SGSelect decreases in Figure 4.3(a) but increases

in Figure 4.3(b). The reason is that, for a decreasing k, the later queries are subject to

smaller k (i.e., stricter social constraints), and larger solution space is more inclined to be

pruned later in both SGSelect and SGSelectASTwithSB. For an increasing k, the average
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Figure 4.3: Experimental results of CSGQ.
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running time of SGSelect becomes larger as the number of consecutive queries increases

due to the relaxed constraints, while the average running time of SGSelectASTwithSB still

decreases steadily with the help of the proposed caching mechanisms. Most importantly,

the improvement of the running time in SGSelectASTwithSB becomes more significant

as the number of queries grows. Compared with SGSelect, the query processing time of

SGSelectASTwithSB is only 50% for two consecutive queries but 25% for five consec-

utive queries. As expected, AST and SB cache more information to effectively trim the

solution space required to be explored in the coming new query.

Recall that the SBs are constructed after the first query. Moreover, after each suc-

ceeding query, it is necessary to update SBs to facilitate efficient lookup of the latest

intermediate solutions in AST. Figure 4.3(c) evaluates the overhead of constructing and

updating SBs. The result shows that the first query incurs the largest overhead, since all the

SBs need to be carefully examined and created. The overhead in later updates decreases

quickly for an increasing k, because the number of pruned nodes becomes smaller. Note

that the construction and update of SBs may be performed offline before a new query is

issued.

Figure 4.3(d) compares the running time under different settings of s. When s grows

from 1 to 5, the average processing time for SGSelect is boosted by 1162 times. In con-

trast, SGSelectASTwithSB only increases by 71 times, indicating that the proposed AST

and SB can alleviate the growth of computational overhead significantly. Considering that

the initiator may not always tighten or loosen the social constraints by one at a time, we

evaluate SGSelectASTwithSB by increasing k in a faster rate in Figure 4.3(e). We further

consider a more dynamic case in Figure 4.3(f), where the initiator first overly increases k

from 6 to 12, and then slowly deceases it to 8. In Figure 4.3(g), the s and k of each query

are randomized to simulate a case of random parameter tuning. In all the above cases,

SGSelectASTwithSB always outperforms SGSelect. We also compare the algorithms in

the largeYouTube dataset with an increasing and decreasing k in Figure 4.3(h). The aver-

age query processing time of SGSelect becomes smaller with a decreasing k but becomes

larger with an increasing k. In contrast, the average query processing time of SGSelec-
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tASTwithSB steadily becomes smaller in both cases. Moreover, the improvement over

SGSelect becomes larger as the number of consecutive queries increases.

In Figure 4.3(i), we analyze the memory consumption of SGSelect and SGSelectAST-

withSB under different p. For each p, there are three queries with k = 3, 4 and 5. SGS-

elect processes the three queries separately as three SGQs, while SGSelectASTwithSB

processes them together as related CSGQs. Accordingly, we record the peak memory

consumption of SGSelect and SGSelectASTwithSB for each p. While the memory con-

sumption of SGSelect remains relatively steady, that of SGSelectASTwithSB becomes

larger when p increases, in order to maintain AST and SBs. Although SGSelectAST-

withSB requires more memory, the cached intermediate solutions effectively reduce the

search space as shown in Figures 4.3(a)-4.3(h). Most importantly, these intermediate so-

lutions only need to be cached for a short period of time during the period of activity

planning.

4.7 Summary

To the best of our knowledge, there is no existing work in the literature that addresses

the issues of automatic activity planning based on both the social and temporal relation-

ships of an initiator and attendees, especially for a sequence of queries with different pa-

rameters from users to iteratively find more desired solutions. In Chapter 3, two useful

queries (i.e., SGQ and STGQ) are defined to obtain the optimal set of attendees and suit-

able activity time. In this chapter, to support and accelerate consecutive social group

queries (CSGQs), we further propose AST and SB. By effectively caching and indexing

the intermediate solutions of previous queries, data lookup needed for CSGQs is facili-

tated. Experimental results show that, with AST and SB, the running time of CSGQs can

be further reduced considerably.
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Chapter 5

Conclusion and Future Work

In this dissertation, we study three important recommendation problems in social net-

works and aim to improve their efficiency. In Chapter 2, we study the link prediction

problem in large-scale networks and propose a framework called Diverse Ensemble of

Drastic Sparsification (DEDS), which includes various sparsification methods that are de-

signed to preserve different measures of a network. Thus, DEDS can generate sparsified

networks with significant structural differences and increase the diversity of the ensemble

classifier. According to the experimental results, when a network is drastically sparsi-

fied, DEDS effectively relieves the drop in prediction accuracy and raises the AUC value.

With a larger sparsification ratio, DEDS can even outperform the classifier trained from

the original network. In terms of efficiency, the prediction cost is substantially reduced

after the network is sparsified. If the original network is disk-resident but can fit into main

memory after being sparsified, the improvement is even more significant.

Note that, in link prediction, the network is assumed to be dynamic. After a certain

amount of new edges are added, the previous sparsified networks may need to be updated

accordingly to preserve good prediction accuracy. A straightforward method is to sparsify

the new network from the very beginning. However, since networks are often quite large,

sparsifying the network all over again is not efficient. To address this issue, an incremental

update algorithm for dynamic networks, which modifies the previously sparsified network

instead of re-sparsifying the original network, is conceivable. With the incremental up-
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date algorithm, the proposed DEDS framework will be able to generate newly sparsified

networks based on old ones and save a great deal of sparsification cost.

In Chapter 3, we then study the social-temporal group query problem and its appli-

cations in activity planning. We define Social Group Query (SGQ) and Social-Temporal

Group Query (STGQ), to obtain the optimal set of attendees and suitable activity time. We

show that these problems are NP-hard and inapproximable within any ratio. We further

devise two algorithms, SGSelect and STGSelect, with various effective query processing

strategies, including access ordering, distance pruning, acquaintance pruning, pivot time

slots, and availability pruning. Experimental results indicate that SGSelect and STGSelect

are significantly more scalable and efficient than the baseline approaches. The feedbacks

from the user study further show that our approach obtains higher quality solutions with

less coordination effort, thereby increasing users’ willingness to organize activities.

Finally, in Chapter 4, we study the consecutive group query problem. We propose Con-

secutive Social Group Query (CSGQ) to support a sequence of group queries. Envisaging

that exploiting the intermediate solutions of previous queries may improve processing of

succeeding queries, we design Accumulative Search Tree (AST) to cache the intermediate

solutions of historical queries in a compact form for reuse. To facilitate efficient lookup,

we further propose Social Boundary (SB) to effectively index the intermediate solutions

required for processing each CSGQ with specified parameters. According to the experi-

mental results, with the caching mechanisms, processing time of consecutive queries can

be reduced considerably.

In summary, these recommendation problems we studied are important and useful,

but they are also complex and computationally expensive. Nevertheless, with the diverse

sparsification technique and pruning strategies devised in this dissertation, good recom-

mendation quality can be achieved with much smaller computational cost. Therefore, the

proposed framework and algorithms can be adopted in social networking websites and

web collaboration tools as a value-added service, in order to efficiently provide advanced

recommendation results for target users in social networks.
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A Detailed Proof

A.1 Proof of Theorem 4.5.1

Proof. SGSelect is used to obtain the solution of the first SGQ, and the solution has already

been proved to be optimal in Theorem 3.3.2. The search tree built in the processing of the

first SGQ is taken as the initial AST and used to construct the (s′,k′)-SBs of different s′

and k′ for processing the succeeding SGQs. By induction on the sequence number sn, we

will show that the theorem holds for each sn-th succeeding SGQ, where sn is a positive

integer.

Step 1. In the following, we first prove that when sn = 1 (i.e., the SB is used to solve a

succeeding SGQ for the first time), processing the nodes included by the (s′,k′)-SB obtains

the optimal solution to the succeeding SGQ with specified s′ and k′. Let SP (s) denote

the solution space consisting of all size-p feasible solutions within s hops. With all the

solution nodes and unexpanded pruned nodes from historical queries kept in AST, we are

able to restore all size-p feasible solutions within sold_max hops (i.e., SP (sold_max)), where

sold_max is the largest s among all processed historical queries. Note that these feasible

solutions are either solution nodes or descendant nodes of unexpanded pruned nodes. That

is, if we expand the cached pruned nodes to generate the solutions and compare them

with the existing ones, the optimal solution can be obtained. However, an (s′,k′)-SB only

includes a small portion of nodes in the AST. Therefore, in the following, we first prove

that all the pruned nodes not included in an (s′,k′)-SB do not generate the optimal solution

to the succeeding SGQ with specified s′ and k′, and hence they do not need to reside in

the (s′,k′)-SB. Afterwards, we prove that the internal nodes used to generate the optimal

solution for a larger s′ are also contained in the (s′,k′)-SB.

(1) Any solution node or any IU-pruned node does not need to reside in an (s′,k′)-SB

if k′ < U(VS) or s′ < maxv∈VS
hv, because the node violates the acquaintance constraint

or the social radius constraint, respectively. Moreover, a solution node will not stay in an

(s′,k′)-SB if there already exists another solution node with a smaller total social distance,

since the optimal solution must have the smallest total social distance.
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(2) An EE-pruned node does not need to reside in an (s′,k′)-SB if k′ is not large enough

such that

k′ < p− |VS| − A(VS) + k, (1)

and s′ is also not large enough such that

A(VS) < p− |VS|. (2)

Combining Eq. (3.1) and Eq. (1), we have

k′ < p− |VS| − min
v∈VS

{|VA ∩Nv|+ (k − |VS − v −Nv|)}+ k,

or equivalently,

min
v∈VS

{|VA ∩Nv|+ (k′ − |VS − v −Nv|)} < p− |VS|,

which indicates that k′ is not loose enough for this node to satisfy the exterior expansibility

condition, and hence this nodemust be pruned again. Eq. (2) indicates that s′ is too small to

bring a sufficient number of new vertices, which also implies that the exterior expansibility

condition is not satisfied, and hence this node must be pruned again.

(3) Similarly, an acquaintance-pruned node does not need to stay in an (s′,k′)-SB if k′

and s′ are not large enough such that

∑
v∈Ms′

A

|V s′

A ∩Nv| < (p− |VS|)(p− |VS| − k′ − 1),

which means this node will be pruned again by the acquaintance pruning.

(4) A distance-pruned node does not belong to an (s′,k′)-SB if k′ > k and s′ = s,

because this node will be pruned again by the solution corresponding toD. For an (s′,k′)-

SB with k′ < k or s′ ̸= s, the distance-pruned node does not need to be included if the

updated total social distance is not sufficiently small and will be pruned by the existing
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solution on the (s′,k′)-SB. Moreover, a distance-pruned node, as well as an EE-pruned

node and an acquaintance-pruned node, do not need to be added to an (s′,k′)-SB with

s′ < maxv∈VS
hv, because these nodes violate the social radius constraint.

(5) In addition to the original pruning for each pruned node, we also examine this

pruned node under the other three types of pruning strategies before it is included in an

(s′,k′)-SB. The above examination is based on the inequalities described in Section 3.3.2

(i.e., Eqs. (3.2), (3.3), (3.4) and (3.5)), which have already been proved to trim off only

infeasible or non-optimal solutions.

(6) Note that under a larger s′, new feasible solutions are necessary to be examined,

i.e., SP (s′) ⊇ SP (sold_max) when s′ > sold_max. To bridge the gap between them (i.e.,

SP (s′) − SP (sold_max)), the (s′,k′)-SBs with s′ > sold_max include the internal nodes in

the AST so that the new feasible solutions can be efficiently generated by expanding the

VS in these internal nodes with newly added candidates in the V s′
A . Moreover, the V s′

A

of pruned nodes also contain the newly included candidates within s′ hops. Therefore,

when the pruned nodes are successfully expanded, new feasible solutions will appear in

the consequently generated sub-trees.

Step 2. Assume that the theorem holds when sn = n (i.e., for the n-th succeeding

SGQ), which means that processing the nodes included in the (s′,k′)-SB obtains the op-

timal solution to the succeeding SGQ with specified s′ and k′. After an internal node or

a pruned node is successfully expanded, it is replaced by the generated sub-tree. If all of

the nodes in the generated sub-trees are included in the SBs, the solution space covered

by each (s′,k′)-SB with sn = n + 1 is equal to the one with sn = n. However, to reduce

the number of nodes in SBs, we use the same rules as in the SB construction to identify

the newly generated nodes that can be omitted without missing the optimality. Accord-

ing to (1)-(6) in Step 1, processing the nodes included by the (s′,k′)-SB only ignores the

infeasible nodes and the nodes with larger social distances. Therefore, it still obtains the

optimal solution to the succeeding SGQ with specified s′ and k′. Finally, by the principle

of mathematical induction, the theorem holds for every positive integer sn.
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B Pseudo Codes

Algorithm 1 SGSelect
Input: GraphG(V,E), group size p, social radius constraint with size s, and acquaintance

constraint with size k
Output: Optimal group F
1: d0q,q = 0, d0u,q = ∞ for u ̸= q;
2: for i = 1 to s do
3: diq,q = 0;
4: for each vertex u ̸= q in V do
5: diu,q = di−1

u,q ;
6: for each vertex v in Nu do
7: if di−1

v,q + cu,v < diu,q then
8: diu,q = di−1

v,q + cu,v;
9: Extract all vertices w in V with dsw,q < ∞ and form the set VF ;
10: VS = {q}, VA = VF − {q}, TD = ∞, D = ∞, F = ∅;
11: ExpandSG(VS, VA, TD);
12: if D ̸= ∞ then
13: Output F ;
14: else
15: Output “No feasible group”;
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Algorithm 2 ExpandSG
Function:
ExpandSG(inVS, inVA, inTD)

1: VS = inVS , VA = inVA, TD = inTD;
2: while |VS|+ |VA| ≥ p do
3: if there is any unvisited vertex in VA then
4: Select an unvisited vertex u with the minimum social distance to q and mark u

as visited;
5: else if θ > 0 then
6: Reduce θ and mark remaining vertices in VA as unvisited;
7: else
8: BREAK;
9: if u satisfies the exterior expansibility condition then
10: if u satisfies the interior unfamiliarity condition then
11: VS = VS + {u}, VA = VA − {u}, TD = TD + du,q;
12: if the distance pruning condition holds for TD or the acquaintance pruning

condition holds for VA then
13: BREAK;
14: else if |VS| < p then
15: ExpandSG(VS, VA, TD);
16: else
17: D = TD, F = VS;
18: BREAK;
19: else if θ = 0 then
20: VA = VA − {u};
21: else
22: VA = VA − {u};
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Algorithm 3 STGSelect
Input: Graph G(V,E), activity size p, social radius constraint with size s, acquaintance

constraint with size k, and activity lengthm
Output: Optimal group F and activity period P
1: d0q,q = 0, d0u,q = ∞ for u ̸= q;
2: for i = 1 to s do
3: diq,q = 0;
4: for each vertex u ̸= q in V do
5: diu,q = di−1

u,q ;
6: for each vertex v in Nu do
7: if di−1

v,q + cu,v < diu,q then
8: diu,q = di−1

v,q + cu,v;
9: Extract all vertices w in V with dsw,q < ∞ and form the set VF ;
10: Select a pivot time slot everym time slots, i.e., select time slots with ID as im, where

i is a positive integer;
11: while there is any unprocessed pivot time slot im and q is available in im do
12: VS = {q}, VA = VF − {q} − {vertices not available in im}, TD = ∞, D = ∞,

F = ∅, TP = [(i− 1)m+ 1, (i+ 1)m− 1], P = ∅;
13: ExpandSTG(VS, VA, TD, TP, im);
14: Remove pivot time slot im;
15: if D ̸= ∞ then
16: Output F and P ;
17: else
18: Output “No feasible group”;
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Algorithm 4 ExpandSTG
Function:
ExpandSTG(inVS, inVA, inTD, inTP, inIM)

1: VS = inVS , VA = inVA, TD = inTD, TP = inTP , im = imIM ;
2: while |VS|+ |VA| ≥ p do
3: if there is any unvisited vertex in VA then
4: Select an unvisited vertex u with the minimum social distance to q and mark u

as visited;
5: else
6: if θ > 0 then
7: Reduce θ and mark remaining vertices in VA as unvisited;
8: else if ϕ < a predetermined threshold t then
9: Increase ϕ and mark remaining vertices in VA as unvisited;
10: if ϕ ≥ t then
11: set the RHS of the temporal extensibility condition as 0;
12: else
13: BREAK;
14: if u satisfies the exterior expansibility condition then
15: if u satisfies the interior unfamiliarity condition then
16: if u satisfies the temporal extensibility condition then
17: VS = VS + {u}, VA = VA − {u}, TD = TD + du,q;
18: Update TP using the available time slots of u;
19: if the distance pruning condition holds for TD or the acquaintance pruning

condition holds for VA or the availability pruning condition holds for VA

then
20: BREAK;
21: else if |VS| < p then
22: ExpandSTG(VS, VA, TD, TP, im);
23: else
24: D = TD, F = VS , P = TP ;
25: BREAK;
26: else if ϕ ≥ t then
27: VA = VA − {u};
28: else if θ = 0 then
29: VA = VA − {u};
30: else
31: VA = VA − {u};
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