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摘要

本論文研究三個重要且實際的議題：線上更新，標籤空間維度下

降，以及成本導向性，在多標籤分類問題上。目前的多標籤分類問題

演算法並未被設計來同時處理這三個議題。在本論文中，我們提出了

一個創新的演算法，成本導向動態特徵投影，來同時解決這三個議題。

本方法是基於一個將領先的標籤空間維度下降演算法利用線上主成份

分析延伸到線上更新的框架。詳細的說，本方法使用矩陣隨機梯度下

降法作為處理線上主成份分析問題的方法，並在與精心設計得線上回

歸學習者結合時建立其理論骨幹。另外，本方法將成本資訊嵌入標籤

權重之中以達有理論保證的成本導向性。我們也研究了本方法的實際

改進以提高效率。實驗結果表明，本方法在不同的評估標準上達到比

現有的多標籤分類演算法更好的實際表現，也證明了同時解決這三個

問題的重要性。
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Abstract

We studymulti-label classification (MLC)with three important real-world

issues: online updating, label space dimensional reduction (LSDR), and cost-

sensitivity. Current MLC algorithms have not been designed to address these

three issues simultaneously. In this paper, we propose a novel algorithm, cost-

sensitive dynamic principal projection (CS-DPP) that resolves all three issues.

The foundation of CS-DPP is a framework that extends a leading LSDR algo-

rithm to online updating with online principal component analysis (PCA). In-

particular, CS-DPP investigates the use of matrix stochastic gradient as the on-

line PCA solver, and establishes its theoretical backbone when coupled with

a carefully-designed online regression learner. In addition, CS-DPP embeds

the cost information into label weights to achieve cost-sensitivity along with

theoretical guarantees. Practical enhancements of CS-DPP are also studied to

improve its efficiency. Experimental results verify that CS-DPP achieves bet-

ter practical performance than current MLC algorithms across different eval-

uation criteria, and demonstrate the importance of resolving the three issues

simultaneously.
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Chapter 1

Introduction

The multi-label classification (MLC) problem allows each instance to be associated with

a set of labels. The MLC problem reflects the nature of different real-world applications

[8, 4, 12]. Traditional MLC algorithms mainly consider the batch MLC problem, where

the input data are presented in a batch [22, 25]. Nevertheless, in many MLC applications

such as e-mail categorization [20], multi-label examples arrive as a stream, which requires

online analysis, as algorithms for batchMLCmay not be suitable because of the potentially

infinite amount of data. The need of such applications can be formalized as the online

MLC (OMLC) problem.

The OMLC problem is generally more challenging than the batch one, and many ma-

ture algorithms for the batch problem have not yet been carefully extended to OMLC.

Label space dimension reduction (LSDR) is a family of mature algorithms for the batch

MLC problem [7, 13, 17, 24, 14, 23, 31, 6, 2, 5]. By viewing the label set of each instance

as a high-dimensional label vector in a label space, LSDR encodes each label vector as

a code vector in a lower-dimensional code space, and learns a predictor within the code

space. An unseen instance is predicted by coupling the predictor with a decoder from

the code space to the label space. For example, compressed sensing (CS) [13] encodes

using random projections, and decodes with sparse vector reconstruction; principal label

space transformation (PLST) [24] encodes by projecting to the key eigenvectors of the

known label vectors obtained from principal component analysis (PCA), and decodes by

reconstruction with the same eigenvectors. This low-dimensional encoding allows LSDR

1
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algorithms to exploit the key joint information between labels to be more robust to noise

and be more effective on learning [24]. Nevertheless, to the best of our knowledge, all the

LSDR algorithms mentioned above are designed for the batch MLC problem rather than

the OMLC one.

Another family of MLC algorithms that have not been carefully extended for OMLC

contains the cost-sensitive MLC algorithms. In particular, different MLC applications

usually come with different evaluation criteria (costs) that reflect their realistic needs. It

is important to design MLC algorithms that are cost-sensitive to systematically cope with

different costs, because an MLC algorithm that targets one specific cost may not always

perform well under other costs [15]. Two representative cost-sensitive MLC algorithms

are probabilistic classifier chain (PCC) [10] and condensed filter tree (CFT) [15]. PCC

estimates the conditional probability with the classifier chain (CC) method [22] and makes

Bayes-optimal predictions with respect to the given cost based on the estimations; CFT

decomposes the cost into instance weights when training the classifiers in CC. Both algo-

rithms, again, are designed for the batch MLC problem rather than the OMLC one.

From the discussions above, there is currently no algorithm that considers the three

realistic needs of online updating, label space dimension reduction, and cost-sensitivity at

the same time. The goal of this work is to study such algorithms. We first formalize the

OMLC and cost-sensitive OMLC (CSOMLC) problems in Section 2 and discuss related

work. We then extend LSDR for the OMLC problem and propose a novel online LSDR

algorithm, dynamic principal projection (DPP), by connecting PLST with online PCA.

In particular, we derive the DPP algorithm in Section 3 along with its theoretical guar-

antees, and resolve the issue of possible basis drifting caused by online PCA. Practical

enhancements of DPP are also studied to improve its efficiency.

In Section 4, we further extend DPP to cost-sensitive DPP (CS-DPP) to fully match

the needs of CSOMLC with a label-weighting scheme inspired by CFT. Extensive em-

pirical studies demonstrate the strength of CS-DPP in addressing the three realistic needs

in Section 5. In particular, we justify the necessity of considering LSDR, basis drifting

and cost-sensitivity under the CSOMLC setting. The results show that CS-DPP signifi-

2
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cantly outperforms other OMLC competitors across different CSOMLC problems, which

validates the robustness and effectiveness of CS-DPP, as concluded in Section 6.

3



doi:10.6342/NTU201701149

Chapter 2

Preliminaries and Related Work

For the MLC problem, we denote the feature vector of an instance as x ∈ Rd and its cor-

responding label vector as y ∈ Y ≡ {+1,−1}K , where y[k] = +1 iff the instance is

associated with the k-th label out of a total ofK possible labels. We let y[k] ∈ {+1,−1}

to conform with the common setting of online binary classification [9, 27], which is equiv-

alent to another scheme, y[k] ∈ {1, 0}, used in other MLC works [15, 22].

Traditional MLC methods consider the batch setting, where a training dataset D =

{(xn, yn)}Nn=1 is given at once, and the objective is to learn a classifier g : Rd → {+1,−1}K

from D with the hope that ŷ = g(x) accurately predicts ground truth y with respect to an

unseen x. In this work, we focus on the OMLC setting, which assumes that instance (xt, yt)

arrives in sequence from a data stream. Whenever an xt arrives at iteration t, the OMLC

algorithm is required to make a prediction ŷt = gt(xt) based on the current classifier gt and

feature vector xt. The ground truth yt with respect to xt is then revealed, and the penalty

of ŷt is evaluated against yt.

Many evaluation criteria for comparing y and ŷ have been considered in the litera-

ture to satisfy different application needs. A simple criterion [25] is the Hamming loss

cham(y, ŷ) = 1
K

∑K
k=1!y[k] ̸= ŷ[k]". The Hamming loss separately considers each label as

equally important. In addition to the Hamming loss, there are other criteria that jointly

evaluate all labels in ŷ, such as

F1 loss cf(y, ŷ) = 1−2
(

K∑
k=1

!y[k]=+1 and ŷ[k]=+1"
)
/

(
K∑
k=1

(!y[k]=+1" + !ŷ[k]=+1")
)

4
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Accuracy loss cacc(y, ŷ)=1−
(

K∑
k=1

!y[k]=+1 and ŷ[k]=+1"
)
/

(
K∑
k=1

!y[k]=+1 or ŷ[k]=+1"
)

Normalized Rank loss cnr(y, ŷ) = average
y[i]>y[j]

(
!ŷ[i]< ŷ[j]" + 1

2!ŷ[i]= ŷ[j]"
)

In this work, we follow existing cost-sensitive MLC approaches [15] to extend OMLC

to the cost-sensitive OMLC (CSOMLC) setting, which further takes the evaluation crite-

rion as an additional input to the learning algorithm. We call the criterion a cost function

and overload c : {+1,−1}K × {+1,−1}K → R as its notation. The cost function eval-

uates the penalty of ŷ against y by c(y, ŷ), and includes the four loss functions discussed

above. We naturally assume that c(·, ·) satisfies c(y, y) = 0 and maxŷ c(y, ŷ) ≤ 1. Given

additional input, the CSOMLC algorithm shall behave differently when fed with different

cost functions. In particular, the objective of a CSOMLC algorithm is to adaptively learn

a classifier gt : Rd → {+1,−1}K based on not only the data stream but also the given cost

function c such that the cumulative cost
∑T

t=1 c(yt, ŷt) with ŷt = gt(xt) over T iterations

of (xt, yt) can be minimized.

Several OMLC algorithms have been studied in the literature, including online binary

relevance [21], Bayesian OMLC framework [32], and the multi-window approach using

k nearest neighbors [30]. However, none of them are cost-sensitive. That is, they cannot

take the cost function into account to improve learning performance.

Cost-sensitive MLC algorithms have also been investigated in the literature. Cost-

sensitive RAkEL [18] and progressive RAkEL [29] are two algorithms that generalize

a famous batch MLC algorithm called RAkEL [26] to cost-sensitive learning. The for-

mer achieves cost-sensitivity for any weighted Hamming loss, and the latter achieves this

for any cost function. probabilistic classifier chain (PCC) [10] and conditional filter tree

(CFT) [15] are two other algorithms that generalizes another famous batchMLC algorithm

called classifier chain (CC) [22] to cost-sensitive learning. PCC estimates the conditional

probability of the label vector via CC, and makes a Bayes-optimal prediction with respect

to the estimation and cost function. While PCC in principle achieves cost-sensitivity for

any cost function, the prediction step can be time-consuming unless an efficient Bayes

inference rule can be specifically designed for the cost function (e.g. F1 loss [11]). CFT

embeds the cost information into CC by an O(K2)-time step that re-weights the training

5
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instances for each classifier. All four algorithms above are designed for the batch cost-

sensitive MLC problem, and it is not clear how they can be modified for the CSOMLC

problem.

Label space dimension reduction (LSDR) is another family ofMLC algorithms. LSDR

encodes each label vector as a code vector in the lower-dimensional code space, and learns

a predictor from the feature vectors to the corresponding code vectors. The prediction of

LSDR consists of the predictor followed by a decoder from the code space to the label

space. For example, compressed sensing (CS) [13] uses random projection for encoding,

takes a regressor as the predictor, and decodes by sparse vector reconstruction. Instead

of random projection, principal label space transformation (PLST) [24] encodes the label

vectors {yn}Nn=1 to their top principal components for the batch MLC problem. Other

LSDR algorithms consider the feature and label vectors jointly, including conditional

principal label space transformation [7], feature-aware implicit label space encoding [17],

canonical-correlation-analysis method [23], and low-rank empirical risk minimization for

multi-label learning [31]. The code vectors produced by those LSDR algorithms capture

the joint information between the labels to allow more robust and more effective learning.

Nevertheless, the algorithms are all designed for the batch MLC problem rather than the

OMLC one, and they are not cost-sensitive.

Motivated by the possible applications of online updating, the realistic needs of cost-

sensitivity, and the potential effectiveness of label space dimension reduction, we take an

initiative to study LSDR algorithms for the CSOMLC setting. In particular, we first adapt

PLST to the OMLC setting in Section 3, and further extend it to the CSOMLC setting in

Section 4.

6
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Chapter 3

Dynamic Principal Projection

In this section, we first propose an online LSDR algorithm, dynamic principal projection

(DPP), that optimizes the Hamming loss. DPP is motivated by the connection between

PLST,which encodes the label vectors to their principal components, and the rich literature

of online PCA algorithms [1, 19, 16]. Before discussing our design to combine PLST with

online PCA, we introduce their respective details first.

3.1 Principal Label Space Transformation

Given the dimensionM ≤ K of the code space and a batch training datasetD = {(xn, yn)}Nn=1,

PLST encodes each yn ∈ {+1,−1}K into a code vector zn = P∗(yn − ȳ), where ȳ is the

empirical mean of {yn}Nn=1, and the rows of P∗ contain the projection directions to the top

M principal components of {yn − ȳ}Nn=1. That is, P∗ contains the topM eigenvectors of
∑N

n=1(yn− ȳ)(yn− ȳ)⊤. A multi-target regressor r is then learned on {(xn, zn)}Nn=1, and

the prediction of an unseen instance x is made by

ŷ = round
(
(P∗)⊤r(x) + ȳ

)
(3.1)

where round(v) =
(
sign(v[1]), . . . , sign(v[K])

)⊤

.

By projecting to the top principal components, PLST preserves the maximum amount

of information within the observed label vectors. In addition, PLST is backed by the

following theoretical guarantee:

7
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Theorem 1 ([24]). When making a prediction ŷ from x by ŷ = round
(
P⊤r(x) + o

)
with

any given reference vector o and any left orthogonal matrix P, the Hamming loss

cham(y, ŷ) ≤
1

K
(∥r(x)− z∥22︸ ︷︷ ︸

pred. error

+ ∥(I− P⊤P)(y− o)∥22︸ ︷︷ ︸
reconstruction error

)

where z ≡ P(y− o).

Theorem 1 bounds the Hamming loss by the prediction and reconstruction errors.

Based on the standard results of PCA, the pair (P∗, ȳ) in PLST is the optimal solution

for minimizing the reconstruction error of the observed label vectors. Then, by minimiz-

ing the prediction error with regressor r, PLST is able to minimize the Hamming loss

approximately.

3.2 Online PCA

We start from the common setting considered in online PCA algorithms [1, 16, 19]. An

online PCA algorithm is assumed to receive yt ∈ RK at each iteration t with ∥yt∥2 ≤ 1.

Given the dimension M ≤ K of the lower-dimensional code space, the algorithm picks

Pt ∈ RM×K with orthogonal rows and suffers reconstruction error ∥(I− P⊤
t Pt)yt∥22. The

goal of the algorithm is to iteratively picks Pt such that
∑T

t=1 ∥(I−P⊤
t Pt)yt∥22 can be close

to the reconstruction error induced by the best offline matrix P∗ over T iterations.

In this work, we consider a simple but promising algorithm, matrix stochastic gradient

(MSG) [1, 19], as the foundation of DPP. MSG maintains an up-to-date projection matrix

Ut ∈ RK×K constrained by tr(Ut) = M , which is the convex hull of rank(Ut) = M .

Upon receiving a new yt, MSG updates Ut to Ut+1 as

Descent:U′
t+1 = Ut + ηyty⊤t

Projection:Ut+1 = argmin
tr(U)=M

∥U− U′
t+1∥2F

(3.2)

where η is the learning rate.

To conform with the setting of online PCA algorithm, Pt needs to be produced (from

Ut) at each iteration. As shown in [28], any Ut is a convex combination of at most K

rank M projection matrices. Letting Γt be the discrete distribution with these projection

8
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matrices as events and the corresponding combination coefficients as probabilities, we can

easily sample a projection matrix that yields the same reconstruction error in expectation.

The eigen decomposition of the sampled projection matrix then gives Pt. A greedy algo-

rithm to find such a convex combination with time complexity be O(K2) is also given in

[28].

3.3 Proposed Approach

Next, we proceed to the detail of our proposed online LSDR algorithm, dynamic principal

projection (DPP), which focuses on the Hamming loss.

As neither P∗ nor ȳ is known a priori, naïvely extending PLST to an OMLC algorithm

by replacing r with an online regressor rt cannot be carried out. The key idea of DPP

is thus to additionally replace P∗ with an adaptively updated Pt by incorporating MSG.

Nevertheless, the problem of drifting of projection basis Pt arises, which can negatively

affect the performance of rt because rt is learned on the low-dimensional components of

y1, . . . , yt−1 composed of different sets of projection basis.

We first establish the framework of DPP using Pt fromMSG instead of P∗ and discuss

our solutions to handle basis drifting.

General Framework. Theorem 1 bounds the Hamming loss by the prediction and re-

construction errors. Therefore, it is natural to take these two errors as the loss function

for OMLC. Using the online linear predictor rt(x) = W⊤
t x and Pt from an online PCA

algorithm, the framework of DPP is established as follows.

For t = 1, . . . , T

Receive xt and predict ŷt = round(P⊤
t W⊤

t x)

Receive yt and suffer loss ℓ(t)(Wt,Pt)

Update Pt andWt

where

ℓ(t)(W,P) = ∥W⊤xt − Pyt∥22 + ∥(I− P⊤P)yt∥22

9
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The framework is established with o = 0, which accommodates the setting of online PCA

algorithms because it is assumed that uncentered yt comes in stream.

Our goal is to optimize the cumulative loss
∑T

t=1 ℓ
(t)(Wt,Pt). To achieve so, we

choose to employ the merits of PLST to exploit MSG for optimizing the cumulative re-

construction error
∑T

t=1 ∥(I−P⊤
t Pt)yt∥2, and leave the optimization of prediction error to

online ridge regression. To be more specific, we first derive a naïve updating procedure

for Pt andWt as follows:

UpdateU:Ut+1 = Ptrace(Ut + ηyty⊤t )

SampleP:Pt+1 ∼ Γt+1 (from Ut+1)

UpdateW:Wt+1 = argmin
W

λ

2
∥W∥2F +

t∑

i=1

∥W⊤xi − Piyi∥22

(3.3)

Ptrace(·) abbreviates the projection step in (3.2), and λ is the regularization parameter for

online ridge regression. Additionally, in order to fully accommodate the constraint of

∥yt∥2 ≤ 1 for online PCA, we apply a result-invariant trick (subject to a proper scaling of

λ and η) that scales yt by 1√
K
.

Drifting of Projection Basis. At a first glance, (3.3) suffices to extend PLST to an

OMLC algorithm. Nevertheless, a closer look at the update ofWt reveals a vulnerability

with respect to the drift of projection basis Pt as t advances. In particular, PLST, as a

batch MLC algorithm, uses the same P∗ to encode each label vector. In contrast, Wt is

updated with code vectors {zi}t−1
i=1 where zi = Piyi, and tries to predict zt = Ptyt from

xt. However, each zi is essentially the set of combination coefficients of different sets of

basis formed by different Pi. Wt may therefore fail to predict zt, i.e. the coefficients with

respect to a potentially new and different Pt, effectively.

To remedy the issue of basis drifting, we propose two different techniques, Princi-

pal Basis Correction (PBC) and Principal Basis Transform (PBT). Each of them enjoys

different advantages.

Principal Basis Correction. The ideal solution for the problem of basis drifting is to

“align” each zi with the Pt that is used for prediction. More specifically, we wantWt to

10
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be learned from {(xi,Ptyi)}t−1
i=1 instead of {(xi,Piyi)}t−1

i=1. This can be achieved if WPBC
t

is the ridge regression solution of {(xi,Ptyi)}t−1
i=1. It is straightforward to see that

WPBC
t = (λI+

t−1∑

i=1

xix⊤i )−1

︸ ︷︷ ︸
A−1
t

(
t−1∑

i=1

xiy⊤i )
︸ ︷︷ ︸

Bt

P⊤
t

Bymaintaining up-to-dateA−1
t andBt, which takesO(d2) andO(Kd) space, respectively,

WPBC
t can be easily obtained by A−1

t BtP⊤
t for any Pt.

Next, we analyze the performance of PBCwith respect to its batch predecessor, PLST.

For this comparison, it is natural to set up the offline cooperator as (W#,P∗), where P∗

minimizes
∑T

t=1 ∥(I − (P⊤P)yt∥22 and W# minimizes
∑T

t=1 ∥W⊤xt − P∗yt∥22. We show

that, under the condition that the sequence {Ut}Tt=1 converges to (P∗)⊤ P∗ as T →∞, the

expected average regret

R
T

=
1

T
EPt∼Γt [

T∑

t=1

(ℓ(t)(WPBC
t ,Pt)− ℓ(t)(W#,P∗))]

has an upperbound that converges to 0 as T →∞, as formalized in the following theorem.

Theorem 2. Assume that the sequence {∥Ut− (P∗)⊤ P∗∥2}Tt=1 converges to 0 as T →∞.

Then there exists F (T ) ≥ R
T such that limT→∞ F (T ) = 0.

Principal Basis Transform. While PBC always gives theWPBC
t learned on the correct

code vectors with respect to the basis formed by Pt, PBC has a dependency on Ω(Kd)

because of the need to maintain Bt. The Ω(Kd) dependency of the time complexity can

make PBC computationally inefficient when bothK and d are large.

To address the issue, we propose another solution, Principal Basis Transform (PBT),

that does not require maintaining Bt. Suppose we have a W′
t−1 that predicts the combi-

nation coefficients of the basis formed by Pt−1, and we aim for prediction with respect to

the basis formed by Pt. The key idea of PBT is to first reconstruct the prediction in label

space by P⊤
t W′

t, and then project the prediction into low-dimensional space spanned by

rows of Pt with minimal projection loss. Formally, PBT seeksWPBT
t such that

WPBT
t = argmin

W
∥WPt −W′

t−1Pt−1∥2F (3.4)

11
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Solving (3.4) analytically gives

WPBT
t = W′

t−1Pt−1P⊤
t (3.5)

Finally, we updateWPBT
t with (xt,Ptyt) to obtainW′

t for the prediction of the next itera-

tion. Note that Ptyt uses exactly the same basis asWPBC
t , and a direct update is therefore

feasible.

One can see that PBT can be better than PBC because only dependency on Ω(M2d)

rather thanΩ(Kd) is required as PtP⊤
t−1 is first calculated in (3.5). In contrast, PBT can be

worse than PBC because of the accumulated information loss every time (3.5) is applied.

Therefore, we suggest PBT as a practical solution to remedy basis drifting when Ω(Kd)

dependency of PBC is not acceptable. We shall also empirically demonstrate in Section 5

that PBT is generally competitive with PBC, while enjoying significant speedup for data

with large K and d.

3.4 Practical Variant and Implementation

In this subsection, we first discuss the practical variant for updatingUt and the correspond-

ing efficient sampling of Pt. Then, we discuss an efficient implementation for updating

Wt.

Efficient implementations of MSG have been studied in [1], which improved the time

complexity from O(K2) of the naïve implementation toO(K× rank2(Ut)) at iteration t.

Specifically, the descent step can be implemented by maintaining an up-to-date eigen de-

composition of Ut = P′diag(σ′)(P′)⊤, while the projection step is performed by clipping

each value of σ′ into [0, 1] after a constant shift.

Nevertheless, the run-time of MSG, and also that of DPP, still critically depends on

rank(Ut). Capped MSG, which is proposed in [1], is a practical variant of MSG that

imposes a hard constraint of rank(Ut) ≤ M ′ with M ≤ M ′ during the projection step.

Capped MSG has been shown to enjoy significant speedup while still maintaining the

quality of Ut. We useM ′ = M + 1, as recommended in [1], for DPP.

As capped MSG guarantees the time complexity of updating Ut to be O(M2K), the

12
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computational cost of sampling Pt, which is O(K2), becomes the main obstacle. We

overcome this obstacle by presenting the following lemma.

Lemma 3. SupposeU is obtained after an update of cappedMSGwith rank(U) = M+1,

and let P′diag(σ′)(P′)⊤ be the eigen decomposition of U. Then define Pi ∈ RM×K to be

P′ with the i-th row excluded and Γ to be a discrete probability distribution over {Pi}M+1
i=1

with probability of Pi being 1− σ′
i, we have for any y

EP∼Γ[y⊤P⊤Py] = y⊤Uy (3.6)

We refer our readers to the appendix for the proof. Because the up-to-date eigen de-

composition of Ut is already maintained by (capped) MSG in each iteration, Lemma 3

directly gives an O(M) sampling procedure, which is significantly improved over the

original O(K2).

We now discuss the efficient implementation for updatingWt. The optimal solution of

Wt+1 (without PBC or PBT) is known to beWt+1 = A−1
t+1(

∑t
i=1 xiz⊤i ). Naïve calculation

ofWt+1 takes O(Md2), even with the matrix inversion lemma due to the need for matrix

multiplication. We eliminate the multiplication step by realizing that the updating ofWt

has the following form:

Wt+1 = Wt −
A−1

t xt+1(z̃t+1 − zt+1)⊤

1 + x⊤t+1A−1
t xt+1

(3.7)

where z̃t = W⊤
t xt+1. (3.7) takesO(d2+Md) by calculatingA−1

t xt+1 first before the outer

product.

(3.7) can be directly applied to obtain W′
t+1 with PBT applied efficiently simply by

replacing Wt with WPBT
t+1 = W′

tPtP⊤
t+1. To efficiently implement PBC, one can instead

maintain an alternativeHt by (3.7) with z̃t, zt replaced by ỹt = H⊤
t xt, yt, respectively, and

calculate WPBC
t = HtP⊤

t afterward. We summarize the time complexity of updating Wt

with PBC and PBT in the following table.

Time compl. W-Update P-Change
PBC O(d2 +Kd) O(MKd)
PBT O(d2 +Md) O(M2d+M2K)

13
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Chapter 4

Cost-Sensitive Extension

In this section, we extend DPP to cost-sensitive DPP (CS-DPP), which meets the require-

ment of CSOMLC. The key idea is based on a carefully designed label-weighting scheme

that transforms cost c(y, ŷ) into the corresponding weighted Hamming loss. The opti-

mization objective is then derived similarly to Theorem 1, which allows us to reuse the

framework of DPP.

We start from the detail of our label-weighting scheme based on the label-wise decom-

position of c(y, ŷ). The weight of each label arguably reflects its importance. However,

many c(·, ·) (e.g. the F1 loss) do not evaluate each label independently. To allow the la-

bel weights to fully represent the cost, we propose a label-weighting scheme based on a

label-wise and order-dependent decomposition of c(·, ·), which is motivated by a similar

concept in [15]. The label-weighting scheme works as follows. Defining ŷ(k)real and ŷ
(k)
pred as

ŷ(k)real[i] =

⎧
⎪⎪⎨

⎪⎪⎩

y[i] if i ≤ k

ŷ[i] if i > k

and ŷ(k)pred[i] =

⎧
⎪⎪⎨

⎪⎪⎩

y[i] if i < k

ŷ[i] if i ≥ k

we decompose c(y, ŷ) into δ(1), . . . , δ(K) such that

δ(k) = |c(y, ŷ(k)pred)− c(y, ŷ(k)real)| (4.1)

Our label-weighting scheme directly follows by simply setting the weight of k-th label as

δ(k).

The proposed label-weighting scheme with (4.1) enjoys nice theoretical guarantee un-

14
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Algorithm 1Cost-Sensitive Dynamic Principal Projection with Principal Basis Transform
Parameters: λ,M , η
1: P0 ← OM×K , U0 ← OK×K , A−1

0 ← 1
λId×d,W′

0 ← Od×M (O is zero matrix)
2: while Receive (xt, yt) do
3: ŷt ← round(P⊤

t−1W′⊤
t−1xt)

4: Obtain Ct by (4.2)
5: Update Ut−1 to Ut by Capped MSG (using Ctyt) and Sample Pt with Lemma 3
6: WPBT

t ←W′
t−1Pt−1P⊤

t (PBT)
7: UpdateWPBT

t ,A−1
t−1 toW′

t, A−1
t by (3.7) (using Ctyt instead)

8: end while

der a mild condition of c(·, ·) as shown in the following lemma.

Lemma 4. If c(y, y(k)pred) − c(y, y(k)real) ≥ 0 holds for any k, y and ŷ, then for any given y

and ŷ, we have

c(y, ŷ) =
K∑

k=1

δ(k)!y[k] ̸= ŷ[k]"

The proof of the above lemma can be found in the appendix. Lemma 4 transforms

c(y, ŷ) into the corresponding weighted Hamming loss, and thus enables the optimization

over general cost functions.

Next, we propose CS-DPP, which extends DPP based on our proposed label-weighting

scheme. Define C as

C = diag(
√
δ(1), ...,

√
δ(K)) (4.2)

With C, which carries the cost information, we establish a theorem similar to Theo-

rem 1 to upperbound c(y, ŷ).

Theorem 5. When making a prediction ŷ from x by ŷ = round
(
P⊤r(x) + o

)
with any

given reference vector o and any left orthogonal matrix P, if c(·, ·) satisfies the condition

of Lemma 4, the prediction cost

c(y, ŷ) ≤ ∥r(x)− zC∥22 + ∥(I− P⊤P)(Cy− o)∥22

where zC = P(Cy− o).

The proof can be found in the appendix. This condition implies that correcting a

wrongly-predicted label leads to no higher cost, and is considered mild as general cost

functions satisfy the condition, including those mentioned in Section 2.
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Theorem 5 generalizes Theorem 1 to upperbound the general cost c(y, ŷ) instead of

cham(y, ŷ). With Theorem 5, extendingDPP to CS-DPP is a straightforward task by reusing

the updating framework of DPPwith yt replaced byCtyt. The full details of CS-DPP using

PBT is given in Algorithm 1.

16
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Chapter 5

Experiments

To empirically evaluate the performance, and also to study the effectiveness and necessity

of design components of CS-DPP, we conduct three sets of experiments: (1) necessity

justification of LSDR, (2) experiments on basis drifting, and (3) experiments on cost-

sensitivity.

5.1 Experiments Setup

We conduct our experiments on nine real-world datasets1 downloaded fromMulan2. Data

streams are generated by permuting datasets into different random orders. All LSDR algo-

rithms are coupled with online ridge regression and three different code space dimensions,

M = 10%, 25%, and 50% of K, are considered.

We consider four different cost functions: Hamming loss, Normalized rank loss, F1

loss, and Accuracy loss, as defined in Section 2 to justify the cost-sensitivity. The perfor-

mances of different algorithms are compared using the average cumulative cost 1t
∑t

i=1 c(yi, ŷi)

at each iteration t. We report the average results of each experiment after 15 repetitions.
1 , , , , , , , and
2http://mulan.sourceforge.net/datasets-mlc.html
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(a) emot. p = 0.3, cham (b) emot. p = 0.3, cf1 (c) enron p = 0.3, cham (d) enron p = 0.3, cf1

(e) emot. p = 0.7, cham (f) emot. p = 0.7, cf1 (g) enron p = 0.7, cham (h) enron p = 0.7, cf1

Figure 5.1: DPP vs. O-BR on noisy labels

delicious eurlex-eurovec
PBT PBC O-BR PBT PBC O-BR

cham 0.1136 0.1153 0.1245 0.4917 0.5011 0.4993
cNR 0.5636 0.5641 0.5756 0.7435 0.7467 0.7433
cF1 0.9143 0.9138 0.9076 0.9972 0.9928 0.9921
cAcc 0.9512 0.9517 0.9494 0.9980 0.9964 0.9958

. ( ) 21.49 140.77 105.18 60.81 10522.25 4841.35

Table 5.1: DPP vs. O-BR on Large Dataset

5.2 Necessity of LSDR

In this experiment, we aim to justify the necessity to address LSDR for OMLC problems.

We demonstrate that the ability of LSDR of preserving the key joint correlations between

labels can be helpful when facing (1) data with noisy labels or (2) data with a large possible

set of labels, where these types of data are often encountered in real-world OMLC prob-

lems. We compare DPP with online Binary Relevance (O-BR), which is a naïve extension

from binary relevance [25] with online ridge regressor. The only difference between DPP

and O-BR is whether the algorithm incorporates LSDR or not.

We first compare DPP and O-BR on data with noisy labels. We generate noisy data

stream by randomly flipping each positive label y[i] = 1 to negative with probability

p = {0.3, 0.5, 0.7}, which simulates the real-world scenario in which human annotators

fail to tag the existed labels. We plot the results of O-BR and DPP withM = 10%, 25%

and 50% of K on datasets emotions and enron with respect to Hamming loss and F1 loss

in Figure 5.1. We report the complete results in the appendix.
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The results from the first two columns of Figure 5.1 show that DPP with M = 10%

of K performs competitively and even better than O-BR as p increases. The results from

the last two columns of Figure 5.1 show that DPP always performs better on enron. We

can also observe from Figure 5.1 that DPP with smaller M tends to perform better as p

increases. The above results clearly demonstrate that DPP better resists the effect of noisy

labels with its incorporation of LSDR as the noise level (p) increases, while O-BR suffers

more from the noise as it makes an independent prediction on each label. The observation

that DPP with smallerM tends to perform better demonstrates that DPP is more robust to

noise by preserving the key of the key joint correlations between labels with LSDR.

Next, we demonstrate that LSDR is also helpful for handling data with a large label set.

We compare O-BR with DPP that is coupled with either PBC or PBT on datasets delicious

and eurlex-eurovec3. DPP uses M = 10 for delicious and M = 25 for eurlex-eurovec.

We summarize the results and average run-time in Table 5.1. The results from Table 5.1

indicate that DPP coupled with either PBT or PBC performs competitively with O-BR,

while DPP with PBT enjoys significantly cheaper computational cost. The results demon-

strate that DPP enjoys more effective and efficient learning for data with a large label set

than O-BR, and also justifies the advantage of PBT over PBC in terms of efficiency when

K and d are large whileM is relatively small.

5.3 Experiments on Basis Drifting

To empirically justify the necessity of handling basis drifting, we compare variants of

DPP that (1) performs PBC, (2) performs PBT, and (3) neglects basis drifting. We plot

the results for Hamming loss with M = 10% of K in Figure 5.2 on datasets CAL500,

emotions, enron, mediamill, medical, and nuswide, and report the complete results in the

appendix. The results on all datasets in Figure 5.2 show that DPP with either PBC or PBT

significantly improves the performance over its variant that neglects the basis drifting,

which clearly demonstrates the necessity to handle the drifting of projection basis.

Further comparison of PBC and PBT based on Figure 5.2 reveals that PBT performs
3delicious: d = 500,K = 983, eurlex-eurovec: d = 5000,K = 3993.
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(a) CAL500 cham (b) emot. cham (c) enron cham

(d) media. cham (e) medical cham (f) nuswide cham

Figure 5.2: PBC vs. PBT vs. None

competitively with PBC. Nevertheless, as discussed in Section 5.2, PBT enjoys a nice

computational speedup when K and d are large and M is relatively small, making PBT

more suitable to handle data with a large label set.

5.4 Experiments on Cost-Sensitivity

To empirically justify the necessity of cost-sensitivity, we compare CS-DPP using PBT

with DPP using PBT and other online LSDR algorithms. To the best of our knowledge, no

online LSDR algorithm has yet been proposed in the literature. We therefore design two

simple online LSDR algorithms, online Compressed Sensing (O-CS) and online Pseudo-

inverse Decoding (O-RAND), to compare with CS-DPP. O-CS is a straightforward exten-

sion of CS [13] with an online ridge regressor. O-RAND encodes using random matrix

PR and simply decodes with the corresponding pseudo inverse P†
R.

We plot the results with respect to all evaluation criteria except for the Hamming loss

with M = 10% of K in Figure 5.3 on datasets Corel5k, enron, medical, and yeast. We

report the complete results in the appendix.
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t

(a) Corel5k cF1 (b) Corel5k cacc (c) Corel5k cnr

(d) medical cF1 (e) medical cacc (f) medical cnr

(g) yeast cF1 (h) yeast cacc (i) yeast cnr

Figure 5.3: CS-DPP vs. Others
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CS-DPP versus DPP. The results of Figure 5.3 clearly indicate that CS-DPP performs

significantly better than DPP on all evaluation criteria other than the Hamming loss, while

CS-DPP reduces to DPP when cHam(·, ·) is used as the cost function. These observations

demonstrate that CS-DPP, by optimizing the given cost function instead of Hamming loss,

indeed achieves cost-sensitivity and is superior to its cost-insensitive predecessor, DPP.

CS-DPP versus Other Online LSDR Algorithms. As shown in Figure 5.3, while DPP

generally performs better than O-CS and O-RAND because of the advantage to preserve

key correlations between labels rather than random ones, it can nevertheless be inferior

on some datasets with respect to specific cost functions due to its cost-insensitivity. For

example, DPP loses to O-RAND on dataset Corel5k with respect to the Normalized rank

loss, as shown in Figure 5.3(c). CS-DPP conquers the weakness of DPP with its cost-

sensitivity, and significantly outperforms O-CS and O-RAND on all three datasets with

respect to all three evaluation criteria, as demonstrated in Figure 5.3. The superiority of

CS-DPP justifies the necessity to take cost-sensitivity into account.
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Chapter 6

Conclusion

We proposed a novel cost-sensitive online LSDR algorithm called cost-sensitive dynamic

principal projection (CS-DPP). We established the foundation of CS-DPP via the con-

nection of PLST and online PCA, and derived CS-DPP along with its theoretical guar-

antees on top of MSG. We successfully conquered the challenge of basis drifting using

our carefully designed PBC and PBT. CS-DPP further achieves cost-sensitivity because

of our label-weighting scheme with a nice theoretical guarantee. Practical enhancements

of CS-DPP were also studied to improve its efficiency. The empirical results demonstrate

that CS-DPP significantly outperforms other OMLC algorithms on all evaluation criteria,

which validates the robustness and superiority of CS-DPP. The necessity for CS-DPP to

address LSDR, basis drifting and cost-sensitivity was also empirically justified.
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Appendix A

A.1 Proof of Theorem 2

Theorem 2. Assume that the sequence {∥Ut− (P∗)⊤ P∗∥2}Tt=1 converges to 0 as T →∞.

Then there exists F (T ) ≥ R
T such that limT→∞ F (T ) = 0.

Recall that

WPBC
t = (λI+

t−1∑

i=1

xix⊤i )−1

︸ ︷︷ ︸
A−1
t

(
t−1∑

i=1

xiy⊤i )
︸ ︷︷ ︸

Bt

P⊤
t

For simplicity, we will overloadWPBC
t withWt, and denote A−1

t Bt as Ht. Similarly, we

haveW# = H∗ (P∗)⊤, where

H∗ = argmin
H

T∑

t=1

∥H⊤xt − yt∥22

Before going into the details of the proof, we list several required (andminor) assumptions.

We assume ∥Htxt − yt∥22 ≤ p∗ for t = 1, . . . , T and ∥H∗∥2F ≤ h∗, which is similar to that

assumed in [3]. We also assume that ∥xt∥2 ≤ 1.

Proof. It is straight-forward to see that

R = EPt∼Γt [
T∑

t=1

∥W⊤
t xt − Ptyt∥22 − ∥(W∗)⊤xt − P∗yt∥22]

︸ ︷︷ ︸
RRidge

+EPt∼Γt [
T∑

t=1

ℓ(t)MSG(Pt)− ℓ(t)MSG(P
∗)]

︸ ︷︷ ︸
RMSG

(A.1)
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where

ℓ(t)MSG(P) = ∥(I− P⊤P)yt∥22

as sampling of Pt from Γt is independent between each iteration t, which suggests that

RRidge andRMSG can be bounded separately.

We start boundingRMSG by first observing that

RMSG =
T∑

t=1

EPt∼Γt [ℓ
(t)
MSG(Pt)− ℓ(t)MSG(P

∗)]

≤
T∑

t=1

EPt∼Γt [ℓ
(t)
MSG(Pt)]− ℓ(t)MSG(U

∗)

=
T∑

t=1

ℓ(t)MSG(Ut)− ℓ(t)MSG(U
∗) (A.2)

where U∗ is the optimal projection matrix with respect to
∑T

t=1 ℓ
(t)
MSG(U) whose tr(U∗) =

M . The first equality follows from the observation that the sampling of Pt does not af-

fect the update of Ut, and therefore is independent between each iteration. The second

inequality follows from the fact that
∑T

t=1 ℓ
(t)
MSG(U∗) ≤

∑T
t=1 ℓ

(t)
MSG(P∗) as tr((P∗)⊤P∗) =

M . The third equality follows by realizing that (I − P⊤
t Pt) is a projection matrix plus

the fact that E[P⊤
t Pt] = Ut. Analysis of Eq. (4) follows standard analysis of online

gradient descent and can be found in Appendix of [19], which gives an upperbound as
M(K−M)

2ηK + η
2

∑⊤
t=1 ∥yt∥22. With ∥yt∥22 ≤ 1 and minimization over η yields

RMSG ≤
√

M(K −M)

K
T = F1(T )

.

We next analyzeRRidge. We first rewriteRRidge as

T∑

t=1

E[∥Pt(H⊤
t xt−yt)∥22−∥P∗(H⊤

t xt−yt)∥22+∥P∗(H⊤
t xt−yt)∥22−∥P∗((H∗)⊤ xt−yt)∥22]

byWt = HtP⊤
t andW∗ = H∗ (P∗)⊤. Note that we omit the subscript of expectation here.

We first bound
T∑

t=1

E[∥Pt(H⊤
t xt − yt)∥22 − ∥P∗(H⊤

t xt − yt)∥22]
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Let ȳt = H⊤
t xt − yt and U∗ = (P∗)⊤ P∗ (note its difference from that is used in analyzing

RMSG), then we have

E
T∑

t=1

[ȳ⊤t PT
t Ptȳ⊤t − ȳ⊤t U∗ȳt] =

T∑

t=1

ȳ⊤t (Ut − U∗)ȳt

≤
T∑

t=1

∥ȳt∥22
∥(Ut − U∗)ȳt∥2

∥ȳt∥2

≤ p∗
T∑

t=1

∥Ut − U∗∥2 = F2(T )

where the last inequality follows from ∥ȳt∥22 ≤ p∗ and the definition of matrix 2-norm.

Next we bound
T∑

t=1

E[∥P∗(H⊤
t xt − yt)∥22 − ∥P∗((H∗)⊤ xt − yt)∥22]

We first define another game as

Rz =
T∑

t=1

∥W̄⊤
t xt − zt∥22 − ∥ (W̄∗)

⊤ xt − zt∥22 (A.3)

where zt = P∗yt, W̄t = argmin
W

λ
2

∑t−1
i=1 ∥W⊤xi− zi∥22, and W̄∗ be the best offline coop-

erator of the game. It is not hard to notice that the game is exactly the same as the target

we wish to bound by realizing that W̄t = Ht (P∗)⊤ and W̄∗ = H∗ (P∗)⊤ and also the

expectation can simply be removed. Furthermore, any (xt, zt) has at least corresponding

(xt, yt) as P∗ is a linear operator. Therefore, bounding (A.3) suffices to bound our target.

Now let

ℓ(t)Ridge(W̄) = ∥W̄⊤xt − zt∥22

We next rewrite (A.3) as

M∑

m=1

T∑

t=1

(ℓ(t,m)
Ridge(wt,m)− ℓ(t,m)

Ridge(w
∗
m)) (A.4)

where

ℓ(t,m)
Ridge(w) = ∥w

⊤xt − zt,m∥22

zt,m is them-th element of zt, wt,m is them-th column of W̄t, and w∗
m is them-th column
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of W̄∗. Next, we have

∥w∗
m∥2 ≤ ∥W̄∗∥2F ≤ ∥U∗∥2F∥H∗∥2F ≤Mh∗

where the last inequality follows tr(U∗) = M , and

ℓ(t,m)
Ridge(wt,m) ≤ ∥W⊤

t xt − zt∥22 = ȳTt U∗ȳt ≤ p∗

where the last inequality follows from the fact that U∗ is a projection matrix. With the

above, by plugging in λ = 1 and follow the analysis as shown in [3], we have

T∑

t=1

(ℓ(t,m)
Ridge(wt,m)− ℓ(t,m)

Ridge(w
∗
m)) ≤

M

2
h∗ + 2p∗d log(1 +

T

d
max

t
((zt,m)

2)) (A.5)

where d is the dimension of xt. Then by maxt((zt,m)2) ≤ 1 which comes from

max
t
((zt,m)

2) ≤ max
t
(∥zt∥22) = max

t
(∥P∗yt∥22) ≤ max

t
∥yt∥22 ≤ 1

and summing (A.5) over allm = 1, . . . ,M we obtain the upperbound of (A.4) as

F3(T ) =
M2

2
h∗ + 2Mp∗d log(1 +

T

d
)

Now it is easy to see that R
T ≤ F (T ) = F1(T )+F2(T )+F3(T )

T . It is straight forward to see

that limT→∞
F1(T )

T = 0 and limT→∞
F3(T )

T = 0. To see limT→∞
F2(T )

T = 0, we have by

assumption {∥Ut−U∗∥2}Tt=1 converges to 0 as T →∞, and the fact that the convergence

of sequence implies the convergence of arithmetic mean of sequence. Combing the above

we have limT→∞ F (T ) = 0, which completes the proof.

A.2 Proof of Lemma 3

Lemma 3. SupposeU is obtained after an update of CappedMSGwith rank(U) = M+1,

and let P′diag(σ′)(P′)⊤ be the eigen decomposition of U. Then define Pi ∈ RM×K to be

P′ with the i-th row excluded and Γ to be a discrete probability distribution over {Pi}M+1
i=1

with probability of Pi being 1− σ′
i, we have for any y

EP∼Γ[y⊤P⊤Py] = y⊤Uy (A.6)
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Proof. We first show that Γ is a well-defined probability distribution. By the definition

of the projection step of MSG we have 0 ≤ σ′
i ≤ 1 for each σ′

i and
∑M+1

i=1 1 − σ′
i =

M + 1 −
∑M+1

i=1 σ′
i = 1 with tr(U) = M . Γ is therefore a well-defined probability

distribution.

Then it suffices to show that EP∼Γ[P⊤P] = U. To see this, first notice that by orthog-

onal rows of P′ we have U =
∑M+1

j=1 σ′
jeje⊤j where ej is the j-th row of P′. We then

have

EP∼Γ[P⊤P] =
M+1∑

i=1

(1− σ′
i)

M+1∑

j=1

!i ̸= j"eje⊤j

=
M+1∑

j=1

(eje⊤j
M+1∑

i=1

!i ̸= j"(1− σ′
i))

=
M+1∑

j=1

(σ′
jeje⊤j ) (a)

= U

where (a) is by
∑M+1

i=1 σ′
i = M

A.3 Proof of Lemma 4

Lemma 4. If c(y, y(k)pred) − c(y, y(k)real) ≥ 0 holds for any k, y and ŷ, then for any given y

and ŷ we have

c(y, ŷ) =
K∑

k=1

δ(k)!y[k] ̸= ŷ[k]" (A.7)

Proof. Recall the definition of y(k)real and y(k)pred to be

ŷ(k)real[i] =

⎧
⎪⎪⎨

⎪⎪⎩

y[i] if i ≤ k

ŷ[i] if i > k

and ŷ(k)pred[i] =

⎧
⎪⎪⎨

⎪⎪⎩

y[i] if i < k

ŷ[i] if i ≥ k

and the definition of δ(k) to be

δ(k) = |c(y, ŷ(k)pred)− c(y, ŷ(k)real)|

Now define ki, i = 1, . . . , L be the sequence of indices such that y[ki] ̸= ŷ[ki] for every
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ki and ki < ki+1. If such ki does not exist than (A.7) holds trivially by c(y, y) = 0.

Otherwise, by the condition of c we have

K∑

k=1

δ(k)!y[k] ̸= ŷ[k]" (a)

=
K∑

k=1

(c(y, ŷ(k)pred)− c(y, ŷ(k)real))!y[k] ̸= ŷ[k]"

=
L∑

i=1

c(y, ŷ(ki)pred)− c(y, ŷ(ki)real )

= c(y, ŷ(k1)pred )− c(y, ŷ(kL)real ) (b)

= c(y, ŷ) (c)

where (a) uses the condition of c(·, ·) to remove the absolute value function; (b) is from

two possibilities of L: if L = 1 then the equation trivially holds; if L > 1 we use the

observation that ŷ(ki)real = ŷ(ki+1)
pred where the observation is by realizing y[j] = ŷ[j] for any

ki < j < ki+1; (c) follows from the observation that ŷ(k1)pred = ŷ and ŷ(kL)real = y and

c(y, y) = 0.

A.4 Proof of Theorem 5

Theorem 5. When making a prediction ŷ from x by ŷ = round
(
P⊤r(x) + o

)
with any

given reference vector o and any left orthogonal matrix P, if c(·, ·) satisfies the condition

of Lemma 4,

c(y, ŷ) ≤ ∥r(x)− zC∥22 + ∥(I− P⊤P)(Cy− o)∥22

where zC = P(Cy− o).

Recall the definition of C in the main context is

C = diag(
√
δ(1), ...,

√
δ(K)) (A.8)

Next we show and prove the following lemma before we proceed to the complete proof.

Lemma 6. Given the ground truth y, if the binary-value prediction ŷ ∈ {+1,−1}K is

made by round(ỹ) where ỹ is the real-value prediction ỹ ∈ RK . Then for any y, ŷ, ỹ, if c
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satisfies the condition in Lemma 4, we have

c(y, ŷ) ≤ ∥Cy− ỹ∥2 (A.9)

Proof. From Lemma 4 we have c(y, ŷ) =
∑K

k=1 δ
(k)!y[k] ̸= ŷ[k]". As ∥Cy − ỹ∥22 =

∑K
k=1(
√
δ(K)y[k]− ỹ[k])2, it suffices to show that for all k we have

δ(k)!y[k] ̸= ŷ[k]" ≤ (
√
δ(k)y[k]− ỹ[k])2 (A.10)

When δ(k) = 0, (A.10) holds trivially. When δ(k) > 0, we have

δ(k)!y[k] ̸= ŷ[k]"

= δ(k)(!ỹ[k] ≥ 0"!y[k] = −1" + !ỹ[k] < 0"!y[k] = +1")

= δ(k)(! ỹ[k]√
δ(k)
≥ 0"!y[k] = −1" + ! ỹ[k]√

δ(k)
< 0"!y[k] = +1") (by δ(k) > 0)

≤ δ(k)((
ỹ[k]√
δ(k)
− y[k])2!y[k] = −1" + (

ỹ[k]√
δ(k)
− y[k])2!y[k] = +1")

= δ(k)(
ỹ[k]√
δ(k)
− y[k])2

= (
√
δ(k)y[k]− ỹ[k])2

As δ(k) ≥ 0 holds by its definition, (A.10) holds for every k. Summing (A.10) with respect

to all k then completes the proof.

With Lemma 6 established, we now prove Theorem 5.

Proof of Theorem 5. If the given c satisfies the condition in Lemma (4), and let ỹ =

P⊤r(x) + o and ŷ = round(ỹ). Then for any (x, y) we have

c(y, ŷ)

≤ ∥Cy− ỹ∥22 (a)

= ∥((ỹ− o− P⊤PȳC)− (ȳC − P⊤PȳC))∥22

= ∥(P⊤(r(x)− zC)− (I− P⊤P)ȳC∥22

= ∥(P⊤(r(x)− zC)∥22 + ∥(I− P⊤P)ȳC)∥22 (b)

= ∥r(x)− zC∥22 + ∥(I− P⊤P)ȳC∥22 (c)

where ȳC = Cy − o and zC = P(Cy − o). (a) is from Lemma A.10, while (b) and (c)

follow from the orthogonal rows of P.
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Table A.1: Statistics of datasets
# of features # of labels # of instances cardinality

CAL500 68 174 502 26.044
Corel5k 499 374 5000 3.522
emotions 72 6 593 1.869
enron 1001 53 1702 3.378

mediamill 120 101 43907 4.376
medical 1449 45 978 1.245
scene 294 6 2407 1.074
yeast 103 14 2417 4.237

nuswide 128 81 50000* 1.869
delicious 500 983 7500* 19.020

eurlex-eurovec 5000 3993 7500* 5.310

We note that the proof above closely follows the proof of Theorem 1 in [24], while the

key difference comes from Lemma 6 to handle the weighted Hamming loss.

A.5 Details of Experiments

Here we report the details of each experiment, including details of cost functions, param-

eters, complete results and the characteristics of datasets we use.

A.5.1 Datasets and Parameters

We first provide the details of the datasets used in our experiments in Table A.1. Only

50000 instances are used for nuswisde because O-CS is particularly computationally com-

plex. Only 7500 instances are used for delicious and eurlex-eurovec to reduce the compu-

tational burden from O-BR and DPP with PBC.

For DPPwe fix λ = 1 and follow [1] to use the time-decreasing learning rate η = 2√
t
M
K .

For O-CS we follow [13] to set the parameters. Specifically for experiments on delicious

and eurlex, we implement both DPP and O-BR using gradient descent instead of online

ridge regression. We use the time decreasing step-size 1√
t
for gradient descent on delicious,

and 0.001√
t
on eurlex-eurovec.

A.5.2 Necessity of LSDR

We report the complete results of comparison between O-BR and DPP with M = 10%,

25% and 50%ofK from Table A.2 to Table A.5 with respect to all four evaluation criteria,

where the best values (the lowest) are marked in bold.
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Table A.2: DPP vs. O-BR on Noisy Data, Hamming loss
p = 0.3

Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 0.1130± 0.0003 0.1143± 0.0001 0.1133± 0.0002 0.1113± 0.0002
Corel5k 0.0070± 0.0000 0.0072± 0.0000 0.0072± 0.0000 0.0071± 0.0000
emotions 0.2213± 0.0011 0.2214± 0.0013 0.2226± 0.0013 0.2238± 0.0026
enron 0.0584± 0.0002 0.0572± 0.0002 0.0534± 0.0002 0.0489± 0.0001

mediamill 0.0271± 0.0000 0.0272± 0.0000 0.0272± 0.0000 0.0272± 0.0000
medical 0.0168± 0.0001 0.0177± 0.0001 0.0183± 0.0001 0.0190± 0.0001
nuswide 0.0151± 0.0000 0.0151± 0.0000 0.0151± 0.0000 0.0151± 0.0000
scene 0.1197± 0.0005 0.1282± 0.0008 0.1273± 0.0005 0.1258± 0.0004
yeast 0.2034± 0.0004 0.2032± 0.0004 0.2045± 0.0004 0.2034± 0.0005

p = 0.5
Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 0.0815± 0.0003 0.0834± 0.0001 0.0823± 0.0002 0.0816± 0.0002
Corel5k 0.0049± 0.0000 0.0051± 0.0000 0.0051± 0.0000 0.0051± 0.0000
emotions 0.1736± 0.0014 0.1689± 0.0017 0.1660± 0.0015 0.1598± 0.0014
enron 0.0475± 0.0002 0.0470± 0.0002 0.0440± 0.0002 0.0398± 0.0002

mediamill 0.0217± 0.0000 0.0217± 0.0000 0.0217± 0.0000 0.0217± 0.0000
medical 0.0153± 0.0001 0.0163± 0.0001 0.0160± 0.0001 0.0157± 0.0001
nuswide 0.0109± 0.0000 0.0110± 0.0000 0.0110± 0.0000 0.0109± 0.0000
scene 0.0965± 0.0006 0.0926± 0.0004 0.0915± 0.0004 0.0902± 0.0004
yeast 0.1581± 0.0005 0.1586± 0.0005 0.1573± 0.0004 0.1543± 0.0004

p = 0.7
Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 0.0483± 0.0003 0.0499± 0.0002 0.0502± 0.0002 0.0490± 0.0002
Corel5k 0.0029± 0.0000 0.0031± 0.0000 0.0031± 0.0000 0.0031± 0.0000
emotions 0.1007± 0.0013 0.1017± 0.0011 0.0993± 0.0015 0.0951± 0.0013
enron 0.0311± 0.0002 0.0311± 0.0002 0.0298± 0.0002 0.0266± 0.0002

mediamill 0.0130± 0.0000 0.0130± 0.0000 0.0130± 0.0000 0.0130± 0.0000
medical 0.0099± 0.0002 0.0106± 0.0002 0.0105± 0.0001 0.0097± 0.0001
nuswide 0.0066± 0.0000 0.0066± 0.0000 0.0066± 0.0000 0.0066± 0.0000
scene 0.0562± 0.0004 0.0544± 0.0003 0.0542± 0.0005 0.0538± 0.0005
yeast 0.0920± 0.0004 0.0918± 0.0003 0.0921± 0.0004 0.0915± 0.0004

Table A.3: DPP vs. O-BR on Noisy Data, F1 loss
p = 0.3

Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 0.823± 0.002 0.823± 0.002 0.830± 0.003 0.837± 0.002
Corel5k 0.949± 0.001 0.945± 0.001 0.949± 0.001 0.949± 0.001
emotions 0.697± 0.005 0.740± 0.008 0.767± 0.006 0.857± 0.003
enron 0.694± 0.002 0.697± 0.003 0.696± 0.002 0.716± 0.002

mediamill 0.640± 0.001 0.640± 0.001 0.639± 0.001 0.639± 0.001
medical 0.550± 0.004 0.544± 0.006 0.577± 0.004 0.645± 0.006
nuswide 0.627± 0.001 0.627± 0.000 0.627± 0.000 0.626± 0.000
scene 0.626± 0.001 0.695± 0.003 0.706± 0.003 0.717± 0.003
yeast 0.669± 0.002 0.678± 0.004 0.711± 0.004 0.733± 0.005

p = 0.5
Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 0.925± 0.002 0.925± 0.002 0.932± 0.002 0.947± 0.002
Corel5k 0.898± 0.001 0.899± 0.001 0.897± 0.001 0.898± 0.001
emotions 0.694± 0.004 0.691± 0.003 0.703± 0.006 0.699± 0.004
enron 0.768± 0.001 0.765± 0.003 0.764± 0.003 0.772± 0.002

mediamill 0.831± 0.001 0.830± 0.001 0.830± 0.001 0.830± 0.001
medical 0.570± 0.002 0.563± 0.005 0.569± 0.004 0.561± 0.003
nuswide 0.537± 0.000 0.537± 0.000 0.536± 0.000 0.536± 0.000
scene 0.533± 0.003 0.525± 0.002 0.519± 0.003 0.524± 0.003
yeast 0.853± 0.002 0.850± 0.002 0.860± 0.002 0.876± 0.004

p = 0.7
Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 0.985± 0.001 0.983± 0.001 0.984± 0.001 0.987± 0.000
Corel5k 0.716± 0.002 0.713± 0.001 0.714± 0.001 0.712± 0.002
emotions 0.493± 0.006 0.486± 0.005 0.489± 0.006 0.477± 0.004
enron 0.734± 0.003 0.729± 0.003 0.731± 0.002 0.711± 0.003

mediamill 0.714± 0.001 0.715± 0.000 0.714± 0.000 0.715± 0.001
medical 0.398± 0.007 0.401± 0.005 0.391± 0.004 0.377± 0.004
nuswide 0.386± 0.001 0.386± 0.000 0.386± 0.000 0.386± 0.000
scene 0.328± 0.003 0.323± 0.002 0.316± 0.002 0.313± 0.002
yeast 0.746± 0.002 0.748± 0.002 0.747± 0.002 0.748± 0.002

The results from Table A.2 to Table A.4 show that DPP outperforms O-BR as the value

of p increases with respect ti Hamming loss, F1 loss and Accuracy loss, demonstrating the

robustness of DPP. On the otter hand, the results in in Table A.5 show that, while DPP

cannot outperform O-BR with respect to Normalized rank loss, DPP do start to perform

competitively as the value of p increases. The observation again demonstrates that DPP

indeed suffers less from noisy labels comparing to O-BR due to the incorporation with

LSDR.

A.5.3 Experiments on Basis Drifting

We report the complete results of comparison between DPP using (1) PBC, (2) PBT,

and (3) nothing in Table A.6 with respect to Hamming loss, where the best values (the

lowest) are marked in bold. to further understand the behavior of basis drifting and the

effectiveness of PBC and PBT for CS-DPP, we further compare CS-DPP coupled with

PBC/PBT/none on F1 loss, Accuracy loss and Normalized rank loss. The results are re-

ported in Table A.7 to Table A.9. From Table A.7 to Table A.9 we can draw the same

conclusion as Table A.6. That is, CS-DPP with either PBT or PBC greatly outperforms

CS-DPP that neglects the basis drifting. , and CS-DPP with PBT performs competitively

with CS-DPP with PBC.
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Table A.4: DPP vs. O-BR on Noisy Data, Accuracy loss
p = 0.3

Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 0.898± 0.001 0.897± 0.001 0.900± 0.001 0.911± 0.002
Corel5k 0.957± 0.001 0.957± 0.001 0.958± 0.000 0.960± 0.001
emotions 0.719± 0.005 0.764± 0.004 0.783± 0.002 0.858± 0.004
enron 0.766± 0.002 0.770± 0.002 0.767± 0.002 0.784± 0.002

mediamill 0.721± 0.000 0.721± 0.000 0.721± 0.001 0.720± 0.001
medical 0.563± 0.005 0.556± 0.003 0.589± 0.005 0.651± 0.004
nuswide 0.632± 0.000 0.633± 0.000 0.632± 0.000 0.632± 0.000
scene 0.628± 0.003 0.698± 0.003 0.710± 0.004 0.715± 0.002
yeast 0.755± 0.002 0.762± 0.003 0.783± 0.003 0.798± 0.009

p = 0.5
Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 0.961± 0.001 0.962± 0.001 0.961± 0.001 0.970± 0.001
Corel5k 0.902± 0.001 0.900± 0.001 0.900± 0.001 0.902± 0.001
emotions 0.698± 0.004 0.706± 0.004 0.706± 0.004 0.692± 0.004
enron 0.809± 0.002 0.809± 0.001 0.806± 0.002 0.810± 0.002

mediamill 0.840± 0.001 0.839± 0.001 0.840± 0.001 0.840± 0.001
medical 0.568± 0.004 0.577± 0.004 0.570± 0.004 0.565± 0.003
nuswide 0.537± 0.000 0.537± 0.000 0.536± 0.000 0.537± 0.000
scene 0.533± 0.003 0.524± 0.002 0.522± 0.003 0.515± 0.004
yeast 0.875± 0.001 0.873± 0.002 0.878± 0.002 0.890± 0.002

p = 0.7
Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 0.990± 0.001 0.991± 0.000 0.991± 0.000 0.992± 0.001
Corel5k 0.716± 0.002 0.714± 0.002 0.715± 0.002 0.714± 0.002
emotions 0.490± 0.006 0.493± 0.005 0.491± 0.005 0.474± 0.004
enron 0.753± 0.003 0.745± 0.002 0.742± 0.003 0.726± 0.003

mediamill 0.715± 0.000 0.714± 0.000 0.714± 0.001 0.715± 0.001
medical 0.404± 0.004 0.398± 0.005 0.399± 0.004 0.377± 0.005
nuswide 0.386± 0.001 0.385± 0.000 0.386± 0.000 0.385± 0.001
scene 0.328± 0.002 0.321± 0.002 0.317± 0.002 0.318± 0.002
yeast 0.747± 0.002 0.747± 0.002 0.746± 0.002 0.746± 0.002

Table A.5: DPP vs. O-BR on Noisy Data, Normalized rank loss
p = 0.3

Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 0.453± 0.001 0.455± 0.001 0.454± 0.001 0.458± 0.001
Corel5k 0.496± 0.000 0.496± 0.001 0.497± 0.000 0.498± 0.000
emotions 0.480± 0.004 0.504± 0.005 0.527± 0.003 0.570± 0.002
enron 0.386± 0.001 0.388± 0.001 0.397± 0.001 0.414± 0.001

mediamill 0.403± 0.000 0.402± 0.000 0.403± 0.000 0.402± 0.000
medical 0.448± 0.004 0.446± 0.002 0.469± 0.005 0.538± 0.003
nuswide 0.668± 0.000 0.667± 0.000 0.667± 0.000 0.668± 0.000
scene 0.560± 0.002 0.622± 0.002 0.632± 0.002 0.643± 0.001
yeast 0.406± 0.001 0.413± 0.002 0.427± 0.002 0.443± 0.002

p = 0.5
Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 0.483± 0.001 0.480± 0.001 0.483± 0.000 0.485± 0.001
Corel5k 0.543± 0.000 0.544± 0.001 0.544± 0.000 0.543± 0.001
emotions 0.633± 0.003 0.640± 0.003 0.646± 0.002 0.650± 0.002
enron 0.491± 0.002 0.488± 0.001 0.491± 0.001 0.510± 0.002

mediamill 0.548± 0.000 0.550± 0.000 0.550± 0.001 0.549± 0.000
medical 0.655± 0.005 0.661± 0.003 0.664± 0.005 0.690± 0.003
nuswide 0.730± 0.000 0.730± 0.000 0.730± 0.000 0.730± 0.000
scene 0.718± 0.002 0.731± 0.002 0.739± 0.001 0.740± 0.001
yeast 0.518± 0.001 0.520± 0.001 0.524± 0.001 0.531± 0.002

p = 0.7
Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 0.495± 0.000 0.495± 0.000 0.495± 0.000 0.496± 0.000
Corel5k 0.647± 0.001 0.646± 0.001 0.647± 0.001 0.646± 0.001
emotions 0.759± 0.002 0.758± 0.002 0.757± 0.002 0.763± 0.002
enron 0.634± 0.002 0.633± 0.002 0.635± 0.002 0.644± 0.001

mediamill 0.643± 0.000 0.643± 0.000 0.643± 0.000 0.643± 0.000
medical 0.814± 0.003 0.812± 0.003 0.815± 0.002 0.819± 0.003
nuswide 0.808± 0.000 0.807± 0.000 0.807± 0.000 0.807± 0.000
scene 0.841± 0.001 0.841± 0.001 0.842± 0.001 0.842± 0.001
yeast 0.625± 0.001 0.627± 0.001 0.627± 0.001 0.626± 0.001

A.5.4 Experiments on Cost-sensitivity

We report the complete results of on all datasets with respect to all four cost functions in

Table A.10 to Table A.13, where the best values (the lowest) are marked in bold. The

conclusion can be drawn similarly to that is drawn from the discussion in the main paper.
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Table A.6: CS-DPP with PBC vs. PBT vs. None, Hamming loss
M = 10% of K

Dataset CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CAL500 0.4464± 0.0074 0.1443± 0.0001 0.1454± 0.0002
Corel5k 0.4814± 0.0063 0.0099± 0.0000 0.0100± 0.0000
emotions 0.4787± 0.0039 0.3419± 0.0033 0.3301± 0.0012
enron 0.4030± 0.0160 0.0560± 0.0001 0.0565± 0.0001

mediamill 0.4936± 0.0016 0.0309± 0.0000 0.0308± 0.0000
medical 0.1923± 0.0352 0.0242± 0.0001 0.0204± 0.0002
nuswide 0.4975± 0.0006 0.0201± 0.0000 0.0201± 0.0000
scene 0.4609± 0.0080 0.1796± 0.0001 0.1797± 0.0001
yeast 0.4979± 0.0015 0.2294± 0.0010 0.2307± 0.0011

M = 25% of K
Dataset CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CAL500 0.4374± 0.0100 0.1471± 0.0002 0.1476± 0.0001
Corel5k 0.4997± 0.0018 0.0100± 0.0000 0.0101± 0.0000
emotions 0.4988± 0.0022 0.2768± 0.0051 0.2819± 0.0036
enron 0.4844± 0.0050 0.0581± 0.0002 0.0601± 0.0002

mediamill 0.4917± 0.0015 0.0307± 0.0000 0.0307± 0.0000
medical 0.4493± 0.0161 0.0171± 0.0002 0.0152± 0.0001
nuswide 0.4978± 0.0007 0.0201± 0.0000 0.0201± 0.0000
scene 0.5002± 0.0012 0.1787± 0.0014 0.1797± 0.0014
yeast 0.4992± 0.0014 0.2139± 0.0006 0.2144± 0.0005

M = 50% of K
Dataset CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CAL500 0.4141± 0.0176 0.1487± 0.0002 0.1490± 0.0002
Corel5k 0.5014± 0.0017 0.0101± 0.0000 0.0101± 0.0000
emotions 0.4941± 0.0029 0.2308± 0.0014 0.2306± 0.0012
enron 0.4953± 0.0016 0.0626± 0.0002 0.0643± 0.0001

mediamill 0.4907± 0.0018 0.0308± 0.0000 0.0307± 0.0000
medical 0.4177± 0.0370 0.0136± 0.0001 0.0130± 0.0001
nuswide 0.4972± 0.0007 0.0201± 0.0000 0.0201± 0.0000
scene 0.5015± 0.0012 0.1731± 0.0010 0.1720± 0.0015
yeast 0.4982± 0.0011 0.2077± 0.0003 0.2079± 0.0003

Table A.7: CS-DPP with PBC vs. PBT vs. None, F1 loss
M = 10% of K

Dataset CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CAL500 0.733± 0.001 0.601± 0.001 0.603± 0.001
Corel5k 0.957± 0.000 0.853± 0.001 0.850± 0.001
emotions 0.618± 0.004 0.445± 0.003 0.450± 0.007
enron 0.802± 0.002 0.534± 0.002 0.528± 0.002

mediamill 0.692± 0.016 0.460± 0.000 0.460± 0.000
medical 0.896± 0.002 0.554± 0.012 0.508± 0.006
nuswide 0.933± 0.001 0.649± 0.000 0.648± 0.000
scene 0.761± 0.003 0.723± 0.002 0.724± 0.002
yeast 0.616± 0.002 0.435± 0.004 0.433± 0.003

M = 25% of K
Dataset CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CAL500 0.732± 0.002 0.604± 0.001 0.602± 0.001
Corel5k 0.965± 0.000 0.845± 0.000 0.844± 0.000
emotions 0.631± 0.004 0.401± 0.003 0.398± 0.004
enron 0.812± 0.002 0.517± 0.001 0.519± 0.001

mediamill 0.842± 0.009 0.458± 0.000 0.457± 0.000
medical 0.902± 0.002 0.338± 0.005 0.316± 0.004
nuswide 0.930± 0.003 0.648± 0.000 0.648± 0.000
scene 0.747± 0.002 0.632± 0.003 0.631± 0.004
yeast 0.622± 0.001 0.389± 0.001 0.385± 0.001

M = 50% of K
Dataset CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CAL500 0.735± 0.002 0.602± 0.001 0.602± 0.001
Corel5k 0.969± 0.000 0.843± 0.000 0.842± 0.001
emotions 0.631± 0.003 0.381± 0.002 0.377± 0.002
enron 0.821± 0.003 0.523± 0.001 0.522± 0.001

mediamill 0.895± 0.008 0.457± 0.000 0.457± 0.000
medical 0.907± 0.002 0.252± 0.002 0.250± 0.002
nuswide 0.940± 0.004 0.648± 0.000 0.648± 0.000
scene 0.745± 0.001 0.554± 0.003 0.558± 0.003
yeast 0.630± 0.001 0.382± 0.001 0.382± 0.001

Table A.8: CS-DPP with PBC vs. PBT vs. None, Accuracy loss
M = 10% of K

Dataset CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CAL500 0.843± 0.001 0.749± 0.001 0.748± 0.001
Corel5k 0.980± 0.000 0.912± 0.001 0.910± 0.000
emotions 0.696± 0.005 0.563± 0.007 0.560± 0.009
enron 0.875± 0.001 0.642± 0.002 0.638± 0.001

mediamill 0.728± 0.001 0.583± 0.000 0.582± 0.000
medical 0.932± 0.003 0.583± 0.008 0.549± 0.007
nuswide 0.959± 0.001 0.675± 0.000 0.675± 0.000
scene 0.825± 0.002 0.798± 0.003 0.796± 0.002
yeast 0.727± 0.001 0.549± 0.003 0.541± 0.003

M = 25% of K
Dataset CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CAL500 0.846± 0.002 0.750± 0.001 0.751± 0.001
Corel5k 0.983± 0.000 0.905± 0.000 0.904± 0.000
emotions 0.722± 0.003 0.513± 0.003 0.509± 0.003
enron 0.884± 0.001 0.633± 0.001 0.633± 0.001

mediamill 0.759± 0.009 0.581± 0.000 0.580± 0.000
medical 0.931± 0.004 0.374± 0.004 0.360± 0.004
nuswide 0.964± 0.001 0.675± 0.000 0.675± 0.000
scene 0.830± 0.002 0.692± 0.003 0.697± 0.004
yeast 0.737± 0.001 0.495± 0.001 0.497± 0.001

M = 50% of K
Dataset CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CAL500 0.844± 0.002 0.752± 0.001 0.751± 0.001
Corel5k 0.986± 0.000 0.901± 0.000 0.903± 0.001
emotions 0.729± 0.002 0.481± 0.002 0.481± 0.002
enron 0.889± 0.002 0.636± 0.001 0.636± 0.001

mediamill 0.838± 0.019 0.581± 0.000 0.581± 0.000
medical 0.944± 0.002 0.303± 0.002 0.299± 0.002
nuswide 0.964± 0.002 0.674± 0.000 0.675± 0.000
scene 0.832± 0.001 0.626± 0.004 0.623± 0.004
yeast 0.745± 0.001 0.493± 0.001 0.492± 0.001

Table A.9: CS-DPP with PBC vs. PBT vs. None, Normalized rank loss
M = 10% of K

Dataset CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CAL500 0.393± 0.002 0.137± 0.001 0.144± 0.002
Corel5k 0.357± 0.001 0.248± 0.001 0.237± 0.001
emotions 0.376± 0.008 0.159± 0.021 0.133± 0.023
enron 0.385± 0.002 0.124± 0.003 0.132± 0.001

mediamill 0.416± 0.004 0.066± 0.002 0.072± 0.002
medical 0.346± 0.003 0.132± 0.005 0.096± 0.003
nuswide 0.520± 0.001 0.356± 0.001 0.358± 0.001
scene 0.362± 0.007 0.264± 0.012 0.231± 0.016
yeast 0.422± 0.003 0.003± 0.000 0.003± 0.000

M = 25% of K
Dataset CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CAL500 0.392± 0.002 0.151± 0.002 0.150± 0.002
Corel5k 0.366± 0.001 0.223± 0.001 0.220± 0.001
emotions 0.420± 0.005 0.078± 0.016 0.046± 0.015
enron 0.386± 0.002 0.136± 0.002 0.135± 0.001

mediamill 0.429± 0.001 0.070± 0.000 0.068± 0.000
medical 0.361± 0.004 0.043± 0.003 0.036± 0.002
nuswide 0.523± 0.000 0.334± 0.001 0.329± 0.001
scene 0.373± 0.004 0.185± 0.013 0.142± 0.011
yeast 0.424± 0.002 0.017± 0.001 0.016± 0.001

M = 50% of K
Dataset CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CAL500 0.398± 0.002 0.154± 0.001 0.151± 0.001
Corel5k 0.369± 0.001 0.214± 0.001 0.213± 0.000
emotions 0.386± 0.004 0.034± 0.003 0.033± 0.003
enron 0.385± 0.002 0.130± 0.001 0.129± 0.001

mediamill 0.426± 0.001 0.062± 0.000 0.059± 0.000
medical 0.368± 0.002 0.021± 0.001 0.019± 0.001
nuswide 0.528± 0.001 0.307± 0.000 0.304± 0.000
scene 0.385± 0.002 0.125± 0.005 0.104± 0.009
yeast 0.413± 0.001 0.024± 0.001 0.026± 0.001

Table A.10: CS-DPP vs. others, Hamming loss
M = 10% of K

Dataset O-CS O-RAND DPP CS-DPP
CAL500 0.1610± 0.0006 0.4042± 0.0052 0.1453± 0.0001 0.1454± 0.0002
Corel5k 0.0117± 0.0000 0.3734± 0.0044 0.0100± 0.0000 0.0100± 0.0000
emotions 0.3338± 0.0073 0.3847± 0.0099 0.3335± 0.0042 0.3301± 0.0012
enron 0.0739± 0.0006 0.3907± 0.0090 0.0563± 0.0001 0.0565± 0.0001

mediamill 0.0485± 0.0011 0.3737± 0.0070 0.0308± 0.0000 0.0308± 0.0000
medical 0.0272± 0.0006 0.3674± 0.0093 0.0204± 0.0002 0.0204± 0.0002
nuswide 0.0239± 0.0004 0.3707± 0.0107 0.0201± 0.0000 0.0201± 0.0000
scene 0.2168± 0.0047 0.3711± 0.0172 0.1797± 0.0001 0.1797± 0.0001
yeast 0.3077± 0.0021 0.4162± 0.0096 0.2314± 0.0014 0.2307± 0.0011

M = 25% of K
Dataset O-CS O-RAND DPP CS-DPP
CAL500 0.8221± 0.0018 0.3374± 0.0057 0.1479± 0.0002 0.1476± 0.0001
Corel5k 0.9853± 0.0002 0.2857± 0.0042 0.0101± 0.0000 0.0101± 0.0000
emotions 0.5810± 0.0085 0.3586± 0.0096 0.2807± 0.0038 0.2819± 0.0036
enron 0.8025± 0.0023 0.3150± 0.0109 0.0599± 0.0001 0.0601± 0.0002

mediamill 0.8832± 0.0020 0.2854± 0.0076 0.0307± 0.0000 0.0307± 0.0000
medical 0.8173± 0.0018 0.2921± 0.0134 0.0150± 0.0001 0.0152± 0.0001
nuswide 0.8721± 0.0031 0.2843± 0.0119 0.0201± 0.0000 0.0201± 0.0000
scene 0.6286± 0.0076 0.2985± 0.0205 0.1788± 0.0016 0.1797± 0.0014
yeast 0.5961± 0.0060 0.3464± 0.0111 0.2136± 0.0004 0.2144± 0.0005

M = 50% of K
Dataset O-CS O-RAND DPP CS-DPP
CAL500 0.8315± 0.0011 0.2620± 0.0045 0.1487± 0.0002 0.1490± 0.0002
Corel5k 0.9860± 0.0002 0.1687± 0.0033 0.0101± 0.0000 0.0101± 0.0000
emotions 0.5079± 0.0096 0.3357± 0.0086 0.2276± 0.0010 0.2306± 0.0012
enron 0.7172± 0.0041 0.2205± 0.0079 0.0642± 0.0002 0.0643± 0.0001

mediamill 0.8998± 0.0049 0.1775± 0.0107 0.0307± 0.0000 0.0307± 0.0000
medical 0.6863± 0.0047 0.1673± 0.0116 0.0132± 0.0001 0.0130± 0.0001
nuswide 0.8200± 0.0053 0.1767± 0.0097 0.0201± 0.0000 0.0201± 0.0000
scene 0.5023± 0.0184 0.2678± 0.0116 0.1711± 0.0020 0.1720± 0.0015
yeast 0.4504± 0.0104 0.2926± 0.0060 0.2080± 0.0003 0.2079± 0.0003

Table A.11: CS-DPP vs. others, F1 loss
M = 10% of K

Dataset O-CS O-RAND DPP CS-DPP
CAL500 0.953± 0.003 0.750± 0.004 0.654± 0.002 0.603± 0.001
Corel5k 0.926± 0.002 0.980± 0.001 0.918± 0.001 0.850± 0.001
emotions 0.900± 0.014 0.621± 0.033 0.428± 0.003 0.450± 0.007
enron 0.885± 0.010 0.867± 0.007 0.552± 0.003 0.528± 0.002

mediamill 0.821± 0.025 0.899± 0.007 0.474± 0.000 0.460± 0.000
medical 0.819± 0.016 0.924± 0.005 0.602± 0.008 0.508± 0.006
nuswide 0.746± 0.005 0.956± 0.002 0.673± 0.000 0.648± 0.000
scene 0.920± 0.010 0.743± 0.030 0.999± 0.000 0.724± 0.002
yeast 0.885± 0.018 0.596± 0.008 0.463± 0.005 0.433± 0.003

M = 25% of K
Dataset O-CS O-RAND DPP CS-DPP
CAL500 0.739± 0.000 0.734± 0.006 0.653± 0.001 0.602± 0.001
Corel5k 0.981± 0.000 0.978± 0.001 0.912± 0.001 0.844± 0.000
emotions 0.535± 0.006 0.591± 0.029 0.446± 0.011 0.398± 0.004
enron 0.878± 0.001 0.830± 0.007 0.528± 0.002 0.519± 0.001

mediamill 0.915± 0.000 0.879± 0.007 0.472± 0.000 0.457± 0.000
medical 0.943± 0.001 0.894± 0.006 0.377± 0.004 0.316± 0.004
nuswide 0.957± 0.000 0.951± 0.003 0.672± 0.000 0.648± 0.000
scene 0.676± 0.004 0.709± 0.025 0.911± 0.005 0.631± 0.004
yeast 0.564± 0.006 0.583± 0.012 0.423± 0.002 0.385± 0.001

M = 50% of K
Dataset O-CS O-RAND DPP CS-DPP
CAL500 0.740± 0.000 0.703± 0.006 0.654± 0.001 0.602± 0.001
Corel5k 0.981± 0.000 0.971± 0.002 0.911± 0.001 0.842± 0.001
emotions 0.538± 0.007 0.545± 0.020 0.470± 0.007 0.377± 0.002
enron 0.872± 0.001 0.779± 0.009 0.527± 0.001 0.522± 0.001

mediamill 0.916± 0.001 0.825± 0.014 0.472± 0.000 0.457± 0.000
medical 0.937± 0.001 0.836± 0.012 0.280± 0.003 0.250± 0.002
nuswide 0.957± 0.000 0.942± 0.005 0.672± 0.000 0.648± 0.000
scene 0.664± 0.008 0.633± 0.017 0.809± 0.008 0.558± 0.003
yeast 0.524± 0.009 0.500± 0.013 0.406± 0.001 0.382± 0.001
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Table A.12: CS-DPP vs. others, Accuracy loss
M = 10% of K

Dataset O-CS O-RAND DPP CS-DPP
CAL500 0.971± 0.002 0.858± 0.004 0.787± 0.001 0.748± 0.001
Corel5k 0.949± 0.001 0.990± 0.000 0.943± 0.000 0.910± 0.000
emotions 0.924± 0.009 0.683± 0.021 0.558± 0.004 0.560± 0.009
enron 0.927± 0.009 0.923± 0.004 0.646± 0.002 0.638± 0.001

mediamill 0.868± 0.014 0.950± 0.003 0.594± 0.000 0.582± 0.000
medical 0.840± 0.017 0.959± 0.003 0.628± 0.008 0.549± 0.007
nuswide 0.741± 0.003 0.973± 0.002 0.691± 0.000 0.675± 0.000
scene 0.902± 0.009 0.782± 0.009 0.999± 0.000 0.796± 0.002
yeast 0.926± 0.014 0.702± 0.014 0.597± 0.005 0.541± 0.003

M = 25% of K
Dataset O-CS O-RAND DPP CS-DPP
CAL500 0.849± 0.000 0.843± 0.004 0.784± 0.001 0.751± 0.001
Corel5k 0.991± 0.000 0.989± 0.000 0.939± 0.000 0.904± 0.000
emotions 0.682± 0.006 0.654± 0.013 0.531± 0.005 0.509± 0.003
enron 0.934± 0.000 0.912± 0.005 0.634± 0.002 0.633± 0.001

mediamill 0.956± 0.000 0.940± 0.003 0.592± 0.000 0.580± 0.000
medical 0.970± 0.000 0.952± 0.003 0.402± 0.005 0.360± 0.004
nuswide 0.978± 0.000 0.968± 0.002 0.690± 0.000 0.675± 0.000
scene 0.803± 0.002 0.746± 0.008 0.927± 0.003 0.697± 0.004
yeast 0.702± 0.003 0.696± 0.005 0.539± 0.003 0.497± 0.001

M = 50% of K
Dataset O-CS O-RAND DPP CS-DPP
CAL500 0.849± 0.000 0.824± 0.004 0.785± 0.001 0.751± 0.001
Corel5k 0.991± 0.000 0.986± 0.001 0.939± 0.000 0.903± 0.001
emotions 0.671± 0.007 0.679± 0.021 0.546± 0.005 0.481± 0.002
enron 0.930± 0.000 0.879± 0.005 0.632± 0.001 0.636± 0.001

mediamill 0.955± 0.000 0.900± 0.007 0.592± 0.000 0.581± 0.000
medical 0.966± 0.000 0.911± 0.005 0.312± 0.002 0.299± 0.002
nuswide 0.977± 0.000 0.957± 0.002 0.690± 0.000 0.675± 0.000
scene 0.771± 0.005 0.699± 0.018 0.827± 0.009 0.623± 0.004
yeast 0.666± 0.008 0.649± 0.013 0.520± 0.001 0.492± 0.001

Table A.13: CS-DPP vs. others, Normalized rank loss
M = 10% of K

Dataset O-CS O-RAND DPP CS-DPP
CAL500 0.497± 0.001 0.397± 0.006 0.399± 0.001 0.144± 0.002
Corel5k 0.470± 0.001 0.393± 0.013 0.470± 0.000 0.237± 0.001
emotions 0.508± 0.006 0.363± 0.020 0.223± 0.009 0.133± 0.023
enron 0.463± 0.004 0.320± 0.015 0.304± 0.001 0.132± 0.001

mediamill 0.454± 0.009 0.391± 0.020 0.307± 0.000 0.072± 0.002
medical 0.397± 0.004 0.301± 0.019 0.311± 0.005 0.096± 0.003
nuswide 0.600± 0.003 0.532± 0.013 0.580± 0.000 0.358± 0.001
scene 0.491± 0.003 0.295± 0.029 0.500± 0.000 0.231± 0.016
yeast 0.490± 0.002 0.376± 0.018 0.340± 0.003 0.003± 0.000

M = 25% of K
Dataset O-CS O-RAND DPP CS-DPP
CAL500 0.025± 0.002 0.393± 0.006 0.397± 0.001 0.150± 0.002
Corel5k 0.003± 0.001 0.424± 0.008 0.467± 0.000 0.220± 0.001
emotions 0.174± 0.023 0.319± 0.023 0.235± 0.009 0.046± 0.015
enron 0.106± 0.008 0.329± 0.020 0.282± 0.001 0.135± 0.001

mediamill 0.092± 0.007 0.371± 0.023 0.306± 0.000 0.068± 0.000
medical 0.090± 0.005 0.261± 0.023 0.184± 0.003 0.036± 0.002
nuswide 0.319± 0.010 0.593± 0.014 0.580± 0.000 0.329± 0.001
scene 0.155± 0.017 0.304± 0.028 0.470± 0.002 0.142± 0.011
yeast 0.205± 0.018 0.356± 0.021 0.301± 0.002 0.016± 0.001

M = 50% of K
Dataset O-CS O-RAND DPP CS-DPP
CAL500 0.014± 0.001 0.389± 0.006 0.396± 0.001 0.151± 0.001
Corel5k 0.004± 0.001 0.447± 0.009 0.467± 0.000 0.213± 0.000
emotions 0.225± 0.014 0.360± 0.015 0.277± 0.004 0.033± 0.003
enron 0.138± 0.009 0.314± 0.009 0.274± 0.001 0.129± 0.001

mediamill 0.060± 0.003 0.331± 0.015 0.306± 0.000 0.059± 0.000
medical 0.111± 0.010 0.256± 0.019 0.136± 0.001 0.019± 0.001
nuswide 0.321± 0.008 0.556± 0.011 0.580± 0.000 0.304± 0.000
scene 0.191± 0.021 0.299± 0.020 0.423± 0.003 0.104± 0.009
yeast 0.238± 0.012 0.343± 0.012 0.291± 0.001 0.026± 0.001
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