Mo f B TP FRERT LS
R
Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

B ACH B Y b AR M 5 RS HTR AL
Dynamic Principal Projection

for Cost-sensitive Online Multi-label Classification

AT
Hong-Min Chu

b g bR L
Advisor: Hsuan-Tien Lin, Ph.D.

PEXRE 106 £ 6 °
June, 2017

doi:10.6342/NTU201701149

DA AR
BRI T B ERA T I‘J%i‘«,ty#r o FA AR

Dynamic Principal Projection for Cost-sensitive Multi-label
Classification

WXk EE (435 R04922031) £AB L& KL E ML
227 ﬁkzzéi—ﬁ%a X 7?"&. 106 & 6 B 5 BATHZRE
BERLRBRORRA 4FILE

FEYE %
77 11 @
p (E#HE)
3 SVEIN 1 AR W

vaw RRWE

Bie > - EFRAZITEMLI G » - I
fles o 2§ A Ltk REL L Rt B8 Ko
EAN A L I B S A

BT Rt B MERKIENE I KRR L A dr B ¥
SIEARSC R RIS gl e A

BSHCLLab cha R i » i Penidih A A VEF 25 0 7
FEAFTORE S 5 BREAFTOLARE S G o FRR - FE AT R
%i’i‘gﬁﬁ’ﬁ IR L I FEE

RN PFA o NG I B R miE2andt F2A @ A R4

1

\:
T
= »
o
N
b=

LSTEIER

AT EE

2017.06.27

doi:10.6342/NTU201701149

i &

AAHTFPTZBER I FEORE R (T BRI FRRET
oA R A e AIERALSERIEL c PRl RRLS R
WE T ARE TR AL BRI AP > AP
- BRIATIF R E o A A A B R REPR KPR BRAE -
AEF AN - BRAALGERRIFRAR TR R IR LN
At PR L FTHHEZE o Wmihi o A 2 B EE R T

‘H:l\.; ‘;/L:"J‘,E;'z‘ﬂ o

F_k

BEITL AR A X AR AP E o T
5}11?%?3&3—%“%55%?‘ WA iE e ¥ b A3 E ;;_,_,;\V*A)%}\)\ﬁl_%

L2 P i A EFRNS A APL FT T RS R s

)

BRI B kT o FARBE AP 0 A2 AR R TR R E)0

MF S BERAGEFEZ (L HNTELIRN 4 FP T PR ATZ B

il

doi:10.6342/NTU201701149

Abstract

We study multi-label classification (MLC) with three important real-world
issues: online updating, label space dimensional reduction (LSDR), and cost-
sensitivity. Current MLC algorithms have not been designed to address these
three issues simultaneously. In this paper, we propose a novel algorithm, cost-
sensitive dynamic principal projection (CS-DPP) that resolves all three issues.
The foundation of CS-DPP is a framework that extends a leading LSDR algo-
rithm to online updating with online principal component analysis (PCA). In-
particular, CS-DPP investigates the use of matrix stochastic gradient as the on-
line PCA solver, and establishes its theoretical backbone when coupled with
a carefully-designed online regression learner. In addition, CS-DPP embeds
the cost information into label weights to achieve cost-sensitivity along with
theoretical guarantees. Practical enhancements of CS-DPP are also studied to
improve its efficiency. Experimental results verify that CS-DPP achieves bet-
ter practical performance than current MLC algorithms across different eval-
uation criteria, and demonstrate the importance of resolving the three issues

simultaneously.

iil

doi:10.6342/NTU201701149

Contents

W i
i & ii
Abstract iii
1 Introduction 1
2 Preliminaries and Related Work 4
3 Dynamic Principal Projection 7
3.1 Principal Label Space Transformation 7
32 OnlinePCA e 8
3.3 Proposed Approach 9
3.4 Practical Variant and Implementation 12
4 Cost-Sensitive Extension 14
5 Experiments 17
5.1 ExperimentsSetup 17
5.2 Necessityof LSDR 18
5.3 Experiments on Basis Drifting 19
5.4 Experiments on Cost-Sensitivity 20
6 Conclusion 23
v

doi:10.6342/NTU201701149

A.1 ProofofTheorem?2 24
A2 ProofofLemma3 27
A3 ProofofLemmad 28
A4 ProofofTheoremS 29
A.5 Details of Experiments 31
A.5.1 Datasets and Parameters 31
A.5.2 Necessityof LSDR 31
A.5.3 Experiments on Basis Drifting 32
A.5.4 Experiments on Cost-sensitivity 33
Bibliography 36
v

doi:10.6342/NTU201701149

List of Figures

5.1 DPPvs. O-BRonnoisylabels 18

52 PBCvs.PBTvs.None 20

53 CS-DPPvs. Others s 21
vi

doi:10.6342/NTU201701149

List of Tables

5.1 DPPvs. O-BRon Large Dataset 18
A.l1 Statisticsof datasets Lo 31
A.2 DPP vs. O-BR on Noisy Data, Hamming loss 32
A.3 DPPvs. O-BRon Noisy Data, Flloss 32
A.4 DPP vs. O-BR on Noisy Data, Accuracyloss 33
A.5 DPP vs. O-BR on Noisy Data, Normalized rank loss 33
A.6 CS-DPP with PBC vs. PBT vs. None, Hamming loss 34
A.7 CS-DPP with PBC vs. PBT vs. None, Flloss 34
A.8 CS-DPP with PBC vs. PBT vs. None, Accuracy loss 34
A.9 CS-DPP with PBC vs. PBT vs. None, Normalized rank loss 34
A.10 CS-DPP vs. others, Hammingloss 34
A.11 CS-DPP vs. others, Flloss 34
A.12 CS-DPP vs. others, Accuracyloss 35
A.13 CS-DPP vs. others, Normalized rank loss 35
vii

doi:10.6342/NTU201701149

Chapter 1

Introduction

The multi-label classification (MLC) problem allows each instance to be associated with
a set of labels. The MLC problem reflects the nature of different real-world applications
[8, 4, 12]. Traditional MLC algorithms mainly consider the batch MLC problem, where
the input data are presented in a batch [22, 25]. Nevertheless, in many MLC applications
such as e-mail categorization [20], multi-label examples arrive as a stream, which requires
online analysis, as algorithms for batch MLC may not be suitable because of the potentially
infinite amount of data. The need of such applications can be formalized as the online
MLC (OMLC) problem.

The OMLC problem is generally more challenging than the batch one, and many ma-
ture algorithms for the batch problem have not yet been carefully extended to OMLC.
Label space dimension reduction (LSDR) is a family of mature algorithms for the batch
MLC problem [7, 13, 17, 24, 14, 23,31, 6, 2, 5]. By viewing the label set of each instance
as a high-dimensional label vector in a label space, LSDR encodes each label vector as
a code vector in a lower-dimensional code space, and learns a predictor within the code
space. An unseen instance is predicted by coupling the predictor with a decoder from
the code space to the label space. For example, compressed sensing (CS) [13] encodes
using random projections, and decodes with sparse vector reconstruction; principal label
space transformation (PLST) [24] encodes by projecting to the key eigenvectors of the
known label vectors obtained from principal component analysis (PCA), and decodes by

reconstruction with the same eigenvectors. This low-dimensional encoding allows LSDR

doi:10.6342/NTU201701149

algorithms to exploit the key joint information between labels to be more robust to noise
and be more effective on learning [24]. Nevertheless, to the best of our knowledge, all the
LSDR algorithms mentioned above are designed for the batch MLC problem rather than
the OMLC one.

Another family of MLC algorithms that have not been carefully extended for OMLC
contains the cost-sensitive MLC algorithms. In particular, different MLC applications
usually come with different evaluation criteria (costs) that reflect their realistic needs. It
is important to design MLC algorithms that are cost-sensitive to systematically cope with
different costs, because an MLC algorithm that targets one specific cost may not always
perform well under other costs [15]. Two representative cost-sensitive MLC algorithms
are probabilistic classifier chain (PCC) [10] and condensed filter tree (CFT) [15]. PCC
estimates the conditional probability with the classifier chain (CC) method [22] and makes
Bayes-optimal predictions with respect to the given cost based on the estimations; CFT
decomposes the cost into instance weights when training the classifiers in CC. Both algo-
rithms, again, are designed for the batch MLC problem rather than the OMLC one.

From the discussions above, there is currently no algorithm that considers the three
realistic needs of online updating, label space dimension reduction, and cost-sensitivity at
the same time. The goal of this work is to study such algorithms. We first formalize the
OMLC and cost-sensitive OMLC (CSOMLC) problems in Section 2 and discuss related
work. We then extend LSDR for the OMLC problem and propose a novel online LSDR
algorithm, dynamic principal projection (DPP), by connecting PLST with online PCA.
In particular, we derive the DPP algorithm in Section 3 along with its theoretical guar-
antees, and resolve the issue of possible basis drifting caused by online PCA. Practical
enhancements of DPP are also studied to improve its efficiency.

In Section 4, we further extend DPP to cost-sensitive DPP (CS-DPP) to fully match
the needs of CSOMLC with a label-weighting scheme inspired by CFT. Extensive em-
pirical studies demonstrate the strength of CS-DPP in addressing the three realistic needs
in Section 5. In particular, we justify the necessity of considering LSDR, basis drifting

and cost-sensitivity under the CSOMLC setting. The results show that CS-DPP signifi-

doi:10.6342/NTU201701149

cantly outperforms other OMLC competitors across different CSOMLC problems, which

validates the robustness and effectiveness of CS-DPP, as concluded in Section 6.

doi:10.6342/NTU201701149

Chapter 2

Preliminaries and Related Work

For the MLC problem, we denote the feature vector of an instance as x € R? and its cor-
responding label vector asy € V = {+1, —1}¥, where y[k] = +1 iff the instance is
associated with the k-th label out of a total of K possible labels. We let y[k] € {+1,—1}
to conform with the common setting of online binary classification [9, 27], which is equiv-
alent to another scheme, y[k| € {1, 0}, used in other MLC works [15, 22].

Traditional MLC methods consider the batch setting, where a training dataset D =
{(Xn, ¥n) }2_, is given at once, and the objective is to learn a classifier g: R? — {+1, —1}¥
from D with the hope that y = g(x) accurately predicts ground truth y with respect to an
unseen X. In this work, we focus on the OMLC setting, which assumes that instance (x;, y;)
arrives in sequence from a data stream. Whenever an x; arrives at iteration ¢, the OMLC
algorithm is required to make a prediction y;, = ¢;(x;) based on the current classifier g, and
feature vector x;. The ground truth y; with respect to x; is then revealed, and the penalty
of y, is evaluated against y;.

Many evaluation criteria for comparing y and y have been considered in the litera-
ture to satisfy different application needs. A simple criterion [25] is the Hamming loss
Cham (¥, ¥) = & S [y[k] # y[k]]. The Hamming loss separately considers each label as

equally important. In addition to the Hamming loss, there are other criteria that jointly

evaluate all labels in y, such as

Fllossci(y, §) = 1-2 (i [y[k]=+1 and §[K] =+1ﬂ) / (i([[ymzﬂﬂ ¥ [[fy[k]zﬂ]]))

k=1

doi:10.6342/NTU201701149

Accuracy loss ¢, (y,y) =1— (kle [y[k]=+1 and y[k] = —1—1]]) / <k§:1 [y[k]=+1ory[k]= —1—1]])
Normalized Rank loss ¢y:(y,¥) _: average <[[§’M <yl + [yl :;’[j]]D

In this work, we follow exis‘[ingy [é];syt[f}sensitive MLC approaches [15] to extend OMLC
to the cost-sensitive OMLC (CSOMLC) setting, which further takes the evaluation crite-
rion as an additional input to the learning algorithm. We call the criterion a cost function
and overload c: {+1, =1} x {+1,—1}¥ — R as its notation. The cost function eval-
uates the penalty of y against y by ¢(y, y), and includes the four loss functions discussed
above. We naturally assume that (-,) satisfies ¢(y,y) = 0 and maxy c(y,y) < 1. Given
additional input, the CSOMLC algorithm shall behave differently when fed with different
cost functions. In particular, the objective of a CSOMLC algorithm is to adaptively learn
a classifier g;: R? — {+1, —1} based on not only the data stream but also the given cost
function ¢ such that the cumulative cost 3./ c(yy, ¥;) with §, = g,(x;) over T iterations
of (x;,y;) can be minimized.

Several OMLC algorithms have been studied in the literature, including online binary
relevance [21], Bayesian OMLC framework [32], and the multi-window approach using
k nearest neighbors [30]. However, none of them are cost-sensitive. That is, they cannot
take the cost function into account to improve learning performance.

Cost-sensitive MLC algorithms have also been investigated in the literature. Cost-
sensitive RAKEL [18] and progressive RAKEL [29] are two algorithms that generalize
a famous batch MLC algorithm called RAKEL [26] to cost-sensitive learning. The for-
mer achieves cost-sensitivity for any weighted Hamming loss, and the latter achieves this
for any cost function. probabilistic classifier chain (PCC) [10] and conditional filter tree
(CFT) [15] are two other algorithms that generalizes another famous batch MLC algorithm
called classifier chain (CC) [22] to cost-sensitive learning. PCC estimates the conditional
probability of the label vector via CC, and makes a Bayes-optimal prediction with respect
to the estimation and cost function. While PCC in principle achieves cost-sensitivity for
any cost function, the prediction step can be time-consuming unless an efficient Bayes
inference rule can be specifically designed for the cost function (e.g. F1 loss [11]). CFT

embeds the cost information into CC by an O(K?)-time step that re-weights the training

doi:10.6342/NTU201701149

instances for each classifier. All four algorithms above are designed for the batch cost-
sensitive MLC problem, and it is not clear how they can be modified for the CSOMLC
problem.

Label space dimension reduction (LSDR) is another family of MLC algorithms. LSDR
encodes each label vector as a code vector in the lower-dimensional code space, and learns
a predictor from the feature vectors to the corresponding code vectors. The prediction of
LSDR consists of the predictor followed by a decoder from the code space to the label
space. For example, compressed sensing (CS) [13] uses random projection for encoding,
takes a regressor as the predictor, and decodes by sparse vector reconstruction. Instead
of random projection, principal label space transformation (PLST) [24] encodes the label
vectors {y,}~_, to their top principal components for the batch MLC problem. Other
LSDR algorithms consider the feature and label vectors jointly, including conditional
principal label space transformation [7], feature-aware implicit label space encoding [17],
canonical-correlation-analysis method [23], and low-rank empirical risk minimization for
multi-label learning [31]. The code vectors produced by those LSDR algorithms capture
the joint information between the labels to allow more robust and more effective learning.
Nevertheless, the algorithms are all designed for the batch MLC problem rather than the
OMLC one, and they are not cost-sensitive.

Motivated by the possible applications of online updating, the realistic needs of cost-
sensitivity, and the potential effectiveness of label space dimension reduction, we take an
initiative to study LSDR algorithms for the CSOMLC setting. In particular, we first adapt
PLST to the OMLC setting in Section 3, and further extend it to the CSOMLC setting in

Section 4.

doi:10.6342/NTU201701149

Chapter 3

Dynamic Principal Projection

In this section, we first propose an online LSDR algorithm, dynamic principal projection
(DPP), that optimizes the Hamming loss. DPP is motivated by the connection between
PLST, which encodes the label vectors to their principal components, and the rich literature
of online PCA algorithms [1, 19, 16]. Before discussing our design to combine PLST with

online PCA, we introduce their respective details first.

3.1 Principal Label Space Transformation

N
n=1»

Given the dimension M < K ofthe code space and a batch training dataset D = {(X,,,y»)
PLST encodes each y,, € {+1,—1} into a code vector z,, = P*(y,, —), where y is the

empirical mean of {y,, }/"_,, and the rows of P* contain the projection directions to the top

N
n=1"

M principal components of {y, — y} That is, P* contains the top M eigenvectors of

SN (¥ —¥)(¥n —¥)". A multi-target regressor r is then learned on {(x,, z,)}"_,, and

n=1

the prediction of an unseen instance x is made by

y = round ((P*) "'r(x) +y) (3.1)

-
where round(v) = (sign(v[l]), . ,sign(v[K])) :

By projecting to the top principal components, PLST preserves the maximum amount
of information within the observed label vectors. In addition, PLST is backed by the

following theoretical guarantee:

doi:10.6342/NTU201701149

Theorem 1 ([24]). When making a prediction 'y from x by y = round (PTI‘(X) + 0) with
any given reference vector 0 and any left orthogonal matrix P, the Hamming loss

Cuany,3) < 2 ([r(x) — 23+ (1= PTR)(y — o)}

.

Vo Vo
pred. error reconstruction error

wherez = P(y — o).

Theorem 1 bounds the Hamming loss by the prediction and reconstruction errors.
Based on the standard results of PCA, the pair (P*,y) in PLST is the optimal solution
for minimizing the reconstruction error of the observed label vectors. Then, by minimiz-
ing the prediction error with regressor r, PLST is able to minimize the Hamming loss

approximately.

3.2 Online PCA

We start from the common setting considered in online PCA algorithms [1, 16, 19]. An
online PCA algorithm is assumed to receive y; € R” at each iteration ¢ with [|y;|l» < 1.
Given the dimension M < K of the lower-dimensional code space, the algorithm picks
P, € RM*X with orthogonal rows and suffers reconstruction error ||(I — P P;)y,||3. The
goal of the algorithm is to iteratively picks P, such that >, || (I—P] P,)y,||3 can be close
to the reconstruction error induced by the best offline matrix P* over 7T’ iterations.

In this work, we consider a simple but promising algorithm, matrix stochastic gradient
(MSG) [1, 19], as the foundation of DPP. MSG maintains an up-to-date projection matrix
U; € RE*K constrained by ¢r(U;) = M, which is the convex hull of rank(U;) = M.

Upon receiving a new y;, MSG updates U; to U, as

Descent: U, = U, + nyy,

(3.2)
Projection: U,y = argmin ||U — U}, I
tr(U)=M

where 7 is the learning rate.
To conform with the setting of online PCA algorithm, P; needs to be produced (from
U;) at each iteration. As shown in [28], any Uy is a convex combination of at most K

rank M projection matrices. Letting [, be the discrete distribution with these projection

8
doi:10.6342/NTU201701149

matrices as events and the corresponding combination coefficients as probabilities, we can
easily sample a projection matrix that yields the same reconstruction error in expectation.
The eigen decomposition of the sampled projection matrix then gives P;. A greedy algo-
rithm to find such a convex combination with time complexity be O(K?) is also given in

[28].

3.3 Proposed Approach

Next, we proceed to the detail of our proposed online LSDR algorithm, dynamic principal
projection (DPP), which focuses on the Hamming loss.

As neither P* nor y is known a priori, naively extending PLST to an OMLC algorithm
by replacing r with an online regressor r; cannot be carried out. The key idea of DPP
is thus to additionally replace P* with an adaptively updated P; by incorporating MSG.
Nevertheless, the problem of drifting of projection basis P, arises, which can negatively
affect the performance of r; because r; is learned on the low-dimensional components of
Y1, -..,Y:+—1 composed of different sets of projection basis.

We first establish the framework of DPP using P; from MSG instead of P* and discuss

our solutions to handle basis drifting.

General Framework. Theorem 1 bounds the Hamming loss by the prediction and re-
construction errors. Therefore, it is natural to take these two errors as the loss function
for OMLC. Using the online linear predictor r,(x) = W/ x and P; from an online PCA
algorithm, the framework of DPP is established as follows.
Fort=1,...,T

Receive x; and predict y; = round(P; W, x)

Receive y; and suffer loss JAQ) (W, Py)

Update P, and W,

where

(O(W,P) = [W'x, — Py, 3 + [T~ PP)y.l3

doi:10.6342/NTU201701149

The framework is established with 0 = 0, which accommodates the setting of online PCA
algorithms because it is assumed that uncentered y, comes in stream.

Our goal is to optimize the cumulative loss S, /()(W,, P,). To achieve so, we
choose to employ the merits of PLST to exploit MSG for optimizing the cumulative re-
construction error 3., ||(I—P] P,)y, ||, and leave the optimization of prediction error to
online ridge regression. To be more specific, we first derive a naive updating procedure

for P, and W, as follows:

Update U: U,y 1 = Prace(Us + 11y,)

SampleP: Py ~ 'ty (from Upyy) (3.3)
A t
Update W: W, | = arg min §||W||% + Z IW'x; — Piyill3
w i=1

Puace(+) abbreviates the projection step in (3.2), and A is the regularization parameter for
online ridge regression. Additionally, in order to fully accommodate the constraint of
|ly:||]2 < 1 for online PCA, we apply a result-invariant trick (subject to a proper scaling of

A and 7) that scales y, by —.

Drifting of Projection Basis. At a first glance, (3.3) suffices to extend PLST to an
OMLC algorithm. Nevertheless, a closer look at the update of W, reveals a vulnerability
with respect to the drift of projection basis P; as ¢ advances. In particular, PLST, as a
batch MLC algorithm, uses the same P* to encode each label vector. In contrast, W; is
updated with code vectors {z; f;i where z; = P,y;, and tries to predict z;, = P;y; from
x;. However, each z; is essentially the set of combination coefficients of different sets of
basis formed by different P;. W, may therefore fail to predict z;, i.e. the coefficients with
respect to a potentially new and different P, effectively.

To remedy the issue of basis drifting, we propose two different techniques, Princi-
pal Basis Correction (PBC) and Principal Basis Transform (PBT). Each of them enjoys

different advantages.

Principal Basis Correction. The ideal solution for the problem of basis drifting is to

“align” each z; with the P; that is used for prediction. More specifically, we want W, to

10
doi:10.6342/NTU201701149

be learned from {(x;, P;y;)}'1 instead of {(x;, P;y;)}:_1. This can be achieved if WFB¢

is the ridge regression solution of {(x;, Pyy;) }._]. It is straightforward to see that

t—1
WPBC — (A + Z xix;)7 () xiy])P/
=1

J/

A B,
By maintaining up-to-date A, ' and B, which takes O(d?) and O (K d) space, respectively,
WPEC can be easily obtained by A, 'B,P/ for any P,.

Next, we analyze the performance of PBC with respect to its batch predecessor, PLST.
For this comparison, it is natural to set up the offline cooperator as (W, P*), where P*
minimizes 3", [|(I = (PTP)y,||2 and Wy minimizes >, |[WTx, — P*y,||3. We show
that, under the condition that the sequence {U;}._; converges to (P*)T P*asT — oo, the

expected average regret

T
R
EPtNFt Z WPBC Pt - g(t) (W#a P*))]

has an upperbound that converges to 0 as 7" — o0, as formalized in the following theorem.

Theorem 2. Assume that the sequence {||U; — (P*)" P*||,}7_, converges to 0 as T — .

Then there exists F'(T) > % such that limr_, ., F(T) = 0.

Principal Basis Transform. While PBC always gives the W'BC learned on the correct
code vectors with respect to the basis formed by P;, PBC has a dependency on Q(Kd)
because of the need to maintain B,. The Q(K d) dependency of the time complexity can
make PBC computationally inefficient when both K and d are large.

To address the issue, we propose another solution, Principal Basis Transform (PBT),
that does not require maintaining B;. Suppose we have a W;_, that predicts the combi-
nation coefficients of the basis formed by P;_;, and we aim for prediction with respect to
the basis formed by P;. The key idea of PBT is to first reconstruct the prediction in label
space by P/ W/, and then project the prediction into low-dimensional space spanned by

rows of P; with minimal projection loss. Formally, PBT seeks WYBT such that

WBT = argmin |[WP, — W,_ P, || (3.4)
w

11
doi:10.6342/NTU201701149

Solving (3.4) analytically gives
WA =W, PP/ 3.5)

Finally, we update WBT with (x,, P;y;) to obtain W/ for the prediction of the next itera-
tion. Note that P;y; uses exactly the same basis as WFBC, and a direct update is therefore
feasible.

One can see that PBT can be better than PBC because only dependency on Q(M?2d)
rather than Q(Kd) is required as P;P, , is first calculated in (3.5). In contrast, PBT can be
worse than PBC because of the accumulated information loss every time (3.5) is applied.
Therefore, we suggest PBT as a practical solution to remedy basis drifting when Q(Kd)
dependency of PBC is not acceptable. We shall also empirically demonstrate in Section 5
that PBT is generally competitive with PBC, while enjoying significant speedup for data

with large K and d.

3.4 Practical Variant and Implementation

In this subsection, we first discuss the practical variant for updating U, and the correspond-
ing efficient sampling of P;. Then, we discuss an efficient implementation for updating
W,.

Efficient implementations of MSG have been studied in [1], which improved the time
complexity from O(K?) of the naive implementation to O(K x rank?(Uy,)) at iteration ¢.
Specifically, the descent step can be implemented by maintaining an up-to-date eigen de-
composition of U; = P'diag(c’)(P’) ", while the projection step is performed by clipping
each value of ¢’ into [0, 1] after a constant shift.

Nevertheless, the run-time of MSG, and also that of DPP, still critically depends on
rank(U;). Capped MSG, which is proposed in [1], is a practical variant of MSG that
imposes a hard constraint of rank(U;) < M’ with M < M’ during the projection step.
Capped MSG has been shown to enjoy significant speedup while still maintaining the
quality of U;. Weuse M’ = M + 1, as recommended in [1], for DPP.

As capped MSG guarantees the time complexity of updating U; to be O(M?K), the

12
doi:10.6342/NTU201701149

computational cost of sampling P;, which is O(K?), becomes the main obstacle. We

overcome this obstacle by presenting the following lemma.

Lemma 3. Suppose U is obtained after an update of capped MSG with rank(U) = M +1,
and let P'diag(c’)(P')" be the eigen decomposition of U. Then define P; € RM*X 1o be
P’ with the i-th row excluded and I' to be a discrete probability distribution over {P;}2

with probability of P; being 1 — o', we have for any 'y
Ep.r[y P'Py] =y Uy (3.6)

We refer our readers to the appendix for the proof. Because the up-to-date eigen de-
composition of U; is already maintained by (capped) MSG in each iteration, Lemma 3
directly gives an O(M) sampling procedure, which is significantly improved over the
original O(K?).

We now discuss the efficient implementation for updating W;. The optimal solution of
W, 1 (without PBC or PBT) is known to be W, = A;), (3°'_, x;z]). Naive calculation
of Wy takes O(M d?), even with the matrix inversion lemma due to the need for matrix
multiplication. We eliminate the multiplication step by realizing that the updating of W,

has the following form:

-1 ~ T
A; Xt+1(Zt+1 - Zt—i—l)
T A-1
L4+ X Ay Xepn

Wi =W, — (3.7)

where z, = W/ x,,1. (3.7) takes O(d? + Md) by calculating A, 'x,, ; first before the outer
product.

(3.7) can be directly applied to obtain W;_; with PBT applied efficiently simply by
replacing W; with WiE] = W,P,P/ . To efficiently implement PBC, one can instead
maintain an alternative H; by (3.7) with z;, z; replaced by y; = H, x;, y;, respectively, and
calculate WPBC = H,P/ afterward. We summarize the time complexity of updating W,

with PBC and PBT in the following table.

Time compl. | W-Update P-Change

PBC O(d® + Kd) O(MKd)

PBT O(d*> + Md) | O(M?*d + M*K)
13

doi:10.6342/NTU201701149

Chapter 4

Cost-Sensitive Extension

In this section, we extend DPP to cost-sensitive DPP (CS-DPP), which meets the require-
ment of CSOMLC. The key idea is based on a carefully designed label-weighting scheme
that transforms cost ¢(y,y) into the corresponding weighted Hamming loss. The opti-
mization objective is then derived similarly to Theorem 1, which allows us to reuse the
framework of DPP.

We start from the detail of our label-weighting scheme based on the label-wise decom-
position of ¢(y,y). The weight of each label arguably reflects its importance. However,
many c(-,-) (e.g. the F1 loss) do not evaluate each label independently. To allow the la-
bel weights to fully represent the cost, we propose a label-weighting scheme based on a
label-wise and order-dependent decomposition of ¢(-, -), which is motivated by a similar

(k)

concept in [15]. The label-weighting scheme works as follows. Defining y,.,,

and yg’jgd as

ol i<k i) i<k
Veealll = and y,,/[i] =
yli] ifi >k i ifi >k
we decompose c(y, y) into 5, ..., §U5) such that
61 = Je(¥. Fgnea) — (¥ T (4.1)

Our label-weighting scheme directly follows by simply setting the weight of k-th label as
5,

The proposed label-weighting scheme with (4.1) enjoys nice theoretical guarantee un-

14
doi:10.6342/NTU201701149

Algorithm 1 Cost-Sensitive Dynamic Principal Projection with Principal Basis Transform

Parameters: \, M,
1: Po < Onrxr, Up = Okwre, Ayt < laxa, Wi <= Ogxnr (O is zero matrix)
2: while Receive (x;,y;) do
3: y; +round(P] ‘W x,)
4: Obtain C; by (4.2)
5. Update U;_; to U; by Capped MSG (using C.y;) and Sample P, with Lemma 3
6: WBT .« W, P, P/ (PBT)
7. Update WFBT A1 to W/, A; ! by (3.7) (using C,y; instead)
8: end while

der a mild condition of ¢(+, -) as shown in the following lemma.

Lemma 4. If c(y, y]glfzd) — c(y, yifgl) > 0 holds for any k, y and y, then for any given'y

and'y, we have

c(y,§) =Y _ W [ylk] # y[k]]

k=1

The proof of the above lemma can be found in the appendix. Lemma 4 transforms
c(y,y) into the corresponding weighted Hamming loss, and thus enables the optimization
over general cost functions.

Next, we propose CS-DPP, which extends DPP based on our proposed label-weighting

scheme. Define C as

C = diag(V/s(), ..., V§(K) (4.2)

With C, which carries the cost information, we establish a theorem similar to Theo-

rem 1 to upperbound c(y, y).

Theorem 5. When making a prediction y from x by y = round (P'r(x) + o) with any
given reference vector o and any left orthogonal matrix P, if ¢(-, -) satisfies the condition

of Lemma 4, the prediction cost

ey, ¥) < |lr(x) — 2|3 + (L = P"P)(Cy — o) 3
where z€ = P(Cy — o).
The proof can be found in the appendix. This condition implies that correcting a

wrongly-predicted label leads to no higher cost, and is considered mild as general cost

functions satisfy the condition, including those mentioned in Section 2.

15
doi:10.6342/NTU201701149

Theorem 5 generalizes Theorem 1 to upperbound the general cost c(y,y) instead of
Cham (Y, ¥). With Theorem 5, extending DPP to CS-DPP is a straightforward task by reusing
the updating framework of DPP with y; replaced by C;y;. The full details of CS-DPP using

PBT is given in Algorithm 1.

16
doi:10.6342/NTU201701149

Chapter 5

Experiments

To empirically evaluate the performance, and also to study the effectiveness and necessity
of design components of CS-DPP, we conduct three sets of experiments: (1) necessity
justification of LSDR, (2) experiments on basis drifting, and (3) experiments on cost-

sensitivity.

5.1 Experiments Setup

We conduct our experiments on nine real-world datasets' downloaded from Mulan®. Data
streams are generated by permuting datasets into different random orders. All LSDR algo-
rithms are coupled with online ridge regression and three different code space dimensions,
M = 10%, 25%, and 50% of K, are considered.

We consider four different cost functions: Hamming loss, Normalized rank loss, F1
loss, and Accuracy loss, as defined in Section 2 to justify the cost-sensitivity. The perfor-
mances of different algorithms are compared using the average cumulative cost } S ey ¥i)

at each iteration t. We report the average results of each experiment after 15 repetitions.

'CALS500, emotions, scene, yeast, enron, Corel5k, mediamill, nuswide and medical
Zhttp://mulan.sourceforge.net/datasets-mlc.html

17
doi:10.6342/NTU201701149

083
ol | ©—e DPP-10 100 ©-e DPP-10 a0 ®—e DPP-10] e DPP-10
. —> DPP-25 o — DPP-25 || 0 DPP-25 — DPP-25
\ DPP-50 DPP-50 DPP-50 DPP-50
ozl G 080
By O-BR 0% O-BR 0060) 0-BR 0-BR
\ . %

o o
£ e | £
[R = £ T A
€ L ¢ £ ¢ w)
£ I vl as £} - ar -
T [N B T S e I = NS e Nt vee.,
I S \—0- P e
it As on 1 0050 S T o070 R=Otp
PR TR R s R T @0 @ w0 T Do T W0 I
of instances # of instances # of instances # of instances
(a) emot. p=0.3, Cham (b) emot. p=0.3, ¢q (C) enron p = 0.3, cham (d) enron p = 0.3, cg
oo DPP-10 o oo DPP-10
50 DPP-25 o8 DPP-25
DPP-50 DPP-50
0-BR 076 O-BR
A\ 0
\“ o ;ﬁ\\ - oo . e
2l A \\ o Wt =
\ . . oo o000y 11/ ot oo
: Bas)t w| KT et
e bR SIS,
* * oo, - o8
008 2060 360 0o b 2060 360 o 500 00 O 0 a0 w0 @0 1060 1200 1400 1600 O 20 a0 wo a0 1000 1200 1400
of instances # of instances # of instances # of instances
(e) emot. p=0.7, Cham (f) emot. p=0.7, cq (g) enron p = 0.7, cham (h) enron p=0.7, cg

Figure 5.1: DPP vs. O-BR on noisy labels

Dataset delicious eurlex-eurovec
Algorithms PBT PBC O-BR | PBT PBC O-BR
Cham 0.1136 0.1153 0.1245 | 0.4917 0.5011 0.4993
CNR 0.5636 0.5641 0.5756 | 0.7435 0.7467 0.7433
CF1 0.9143 0.9138 0.9076 | 0.9972 0.9928 0.9921
Chce 0.9512 0.9517 0.9494 | 0.9980 0.9964 0.9958
Avg. time (sec) | 21.49 140.77 105.18 | 60.81 10522.25 4841.35

Table 5.1: DPP vs. O-BR on Large Dataset
5.2 Necessity of LSDR

In this experiment, we aim to justify the necessity to address LSDR for OMLC problems.
We demonstrate that the ability of LSDR of preserving the key joint correlations between
labels can be helpful when facing (1) data with noisy labels or (2) data with a large possible
set of labels, where these types of data are often encountered in real-world OMLC prob-
lems. We compare DPP with online Binary Relevance (O-BR), which is a naive extension
from binary relevance [25] with online ridge regressor. The only difference between DPP
and O-BR is whether the algorithm incorporates LSDR or not.

We first compare DPP and O-BR on data with noisy labels. We generate noisy data
stream by randomly flipping each positive label y[i] = 1 to negative with probability
p = {0.3,0.5,0.7}, which simulates the real-world scenario in which human annotators
fail to tag the existed labels. We plot the results of O-BR and DPP with M = 10%, 25%
and 50% of K on datasets emotions and enron with respect to Hamming loss and F1 loss

in Figure 5.1. We report the complete results in the appendix.

18
doi:10.6342/NTU201701149

The results from the first two columns of Figure 5.1 show that DPP with M = 10%
of K performs competitively and even better than O-BR as p increases. The results from
the last two columns of Figure 5.1 show that DPP always performs better on enron. We
can also observe from Figure 5.1 that DPP with smaller M tends to perform better as p
increases. The above results clearly demonstrate that DPP better resists the effect of noisy
labels with its incorporation of LSDR as the noise level (p) increases, while O-BR suffers
more from the noise as it makes an independent prediction on each label. The observation
that DPP with smaller M tends to perform better demonstrates that DPP is more robust to
noise by preserving the key of the key joint correlations between labels with LSDR.

Next, we demonstrate that LSDR is also helpful for handling data with a large label set.
We compare O-BR with DPP that is coupled with either PBC or PBT on datasets delicious
and eurlex-eurovec®. DPP uses M = 10 for delicious and M = 25 for eurlex-eurovec.
We summarize the results and average run-time in Table 5.1. The results from Table 5.1
indicate that DPP coupled with either PBT or PBC performs competitively with O-BR,
while DPP with PBT enjoys significantly cheaper computational cost. The results demon-
strate that DPP enjoys more effective and efficient learning for data with a large label set
than O-BR, and also justifies the advantage of PBT over PBC in terms of efficiency when

K and d are large while M is relatively small.

5.3 Experiments on Basis Drifting

To empirically justify the necessity of handling basis drifting, we compare variants of
DPP that (1) performs PBC, (2) performs PBT, and (3) neglects basis drifting. We plot
the results for Hamming loss with M = 10% of K in Figure 5.2 on datasets CALS500,
emotions, enron, mediamill, medical, and nuswide, and report the complete results in the
appendix. The results on all datasets in Figure 5.2 show that DPP with either PBC or PBT
significantly improves the performance over its variant that neglects the basis drifting,
which clearly demonstrates the necessity to handle the drifting of projection basis.

Further comparison of PBC and PBT based on Figure 5.2 reveals that PBT performs

3delicious: d = 500, K = 983, eurlex-eurovec: d = 5000, K = 3993.

19
doi:10.6342/NTU201701149

'—/\ PBT —/\ PBT '\ PBT
-0 PBC 05 0 PBC o o0 PBC
05 None None 05 None
o o o
= Lo Lo
IS S IS
£ E |1 g
© © 04f T ©
T T =N - T o2
02k On e e e A A
N"‘j‘ﬂ—,v—\;—;_o_;_iﬁ OO w T o1 .
S S S Sy Sy S S S e S S S S
0.0
100 0 ET 10 70 £ 00 30 a0 60 80 1000 1300 1400 T
of instances # of instances # of instances
(a) CALS500 cham (b) emot. Cham (C) enron Cpam
o '—/\ PBT —/\ PBT '—/\ PBT
oo PBC 0s) PBC o ~0 PBC
05 None None 05 None
o Dos o
C o4 = C o4
E 0.3 E 02 E 03
IS € IS
© o, © © o2
I I o I
o1 . 01
OO
ey eyeyeysyeyeySyty syt yey Sy eyl o 00| B o O O o0+
10000 15000 70000 75000 30000 35000 40000 70 W0 &0 %0 o 16000 70000 30000 @000 50000
of instances # of instances # of instances
(d) media. cpam (C) medical ¢y (f) nuswide cham

Figure 5.2: PBC vs. PBT vs. None

competitively with PBC. Nevertheless, as discussed in Section 5.2, PBT enjoys a nice
computational speedup when K and d are large and M is relatively small, making PBT

more suitable to handle data with a large label set.

5.4 Experiments on Cost-Sensitivity

To empirically justify the necessity of cost-sensitivity, we compare CS-DPP using PBT
with DPP using PBT and other online LSDR algorithms. To the best of our knowledge, no
online LSDR algorithm has yet been proposed in the literature. We therefore design two
simple online LSDR algorithms, online Compressed Sensing (O-CS) and online Pseudo-
inverse Decoding (O-RAND), to compare with CS-DPP. O-CS is a straightforward exten-
sion of CS [13] with an online ridge regressor. O-RAND encodes using random matrix
P and simply decodes with the corresponding pseudo inverse PL.

We plot the results with respect to all evaluation criteria except for the Hamming loss
with M = 10% of K in Figure 5.3 on datasets Corel5k, enron, medical, and yeast. We

report the complete results in the appendix.

20
doi:10.6342/NTU201701149

F1

F1

F1

®-e CS-DPP

o—0 DPP

4 0Cs
O-RAND

2000 3000

of instances

(a) Corel5k cg;

®-e CS-DPP

o0 DPP

¢+ 0Cs
O-RAND

49— ~
. eSS eeY

N*O+H, o oo

200 400 600 800
of instances

(d) medical g

e CSDPP
-0 DPP
44 ocs
O-RAND
L I R O R e e o S ey

O~ O0—O0—0—0—0 —

500 1000 1500
of instances

(g) yeast cpy

2000

®-e CS-DPP o7 ®-e CS-DPP
©o—0O DPP o—0O DPP
105 44 0Cs 06 44 0CS
> O-RAND O-RAND
O ~
© C os o
5 g S————————————9—0—{
8 =Z os
< 0.95
03
Lo e o000 00900 o4
0.90.
1000 2000 3000 4000 o 0 1000 2000 3000 4000
of instances # of instances
(b) Corel5Kk cace (C) Corel5k cpr
2 e CS-DPP o8 e e CS-DPP
12 o0 DPP 07 o—O DPP
11 ++ 0Cs 0 44 0Cs
a O-RAND v O-RAND
o c” S ——a
© T —————o—s h X
Doof Lty &L o4 P == === ————
[v] O G o T ST =
< o5 U—O—0—0— O—0—0—O—0—0—] 03
o ‘\\.\'\’; 02
06 R S S S o1 ./’Ff
200 400 600 800 200 400 600 800
of instances # of instances
(e) medical cace (f) medical cpr
n e CS-DPP 08 e-e CS-DPP
’ ©—O DPP 07 o0 DPP
1 44 0Cs 44 0Cs
0.6
T o O-RAND o O-RAND
© e S S e e e e e o o o S S
Soasl &4 © o,
o
8 = —O0—O0—0—0—0—0—0—0—0—0—0—0—0
< 03

[
i
!
i
)
it
T

T

\

i

i
I
1

500 1000 1500
of instances

(h) yeast Cace

2000

Figure 5.3: CS-DPP vs. Others

21

500 1000 1500
of instances

2000

(i) yeast cnr

doi:10.6342/NTU201701149

CS-DPP versus DPP. The results of Figure 5.3 clearly indicate that CS-DPP performs
significantly better than DPP on all evaluation criteria other than the Hamming loss, while
CS-DPP reduces to DPP when ¢y, (-, -) is used as the cost function. These observations
demonstrate that CS-DPP, by optimizing the given cost function instead of Hamming loss,

indeed achieves cost-sensitivity and is superior to its cost-insensitive predecessor, DPP.

CS-DPP versus Other Online LSDR Algorithms. As shown in Figure 5.3, while DPP
generally performs better than O-CS and O-RAND because of the advantage to preserve
key correlations between labels rather than random ones, it can nevertheless be inferior
on some datasets with respect to specific cost functions due to its cost-insensitivity. For
example, DPP loses to O-RAND on dataset Corel5k with respect to the Normalized rank
loss, as shown in Figure 5.3(c). CS-DPP conquers the weakness of DPP with its cost-
sensitivity, and significantly outperforms O-CS and O-RAND on all three datasets with
respect to all three evaluation criteria, as demonstrated in Figure 5.3. The superiority of

CS-DPP justifies the necessity to take cost-sensitivity into account.

22

doi:10.6342/NTU201701149

Chapter 6

Conclusion

We proposed a novel cost-sensitive online LSDR algorithm called cost-sensitive dynamic
principal projection (CS-DPP). We established the foundation of CS-DPP via the con-
nection of PLST and online PCA, and derived CS-DPP along with its theoretical guar-
antees on top of MSG. We successfully conquered the challenge of basis drifting using
our carefully designed PBC and PBT. CS-DPP further achieves cost-sensitivity because
of our label-weighting scheme with a nice theoretical guarantee. Practical enhancements
of CS-DPP were also studied to improve its efficiency. The empirical results demonstrate
that CS-DPP significantly outperforms other OMLC algorithms on all evaluation criteria,
which validates the robustness and superiority of CS-DPP. The necessity for CS-DPP to

address LSDR, basis drifting and cost-sensitivity was also empirically justified.

23
doi:10.6342/NTU201701149

Appendix A

A.1 Proof of Theorem 2

Theorem 2. Assume that the sequence {||U; — (P*)" P*||,}7_, converges to 0 as T — .

Then there exists F(T) > & such that limy_,.. F(T') = 0.

Recall that

t—1 t—1
W= L+) xix) () xiy])Pf
i=1 i=1

AN

-~

Al B
For simplicity, we will overload WFBC with W,, and denote A; 'B, as H,. Similarly, we
have W, = H* (P*)T, where
S 2
H = argémn Z IH X — yell5

t=1

Before going into the details of the proof, we list several required (and minor) assumptions.
We assume ||H;x; — y;]|2 < p* fort = 1,...,T and ||H*||2 < h*, which is similar to that

assumed in [3]. We also assume that ||x;|]> < 1.

Proof. 1t is straight-forward to see that

T T
R =Eppor,[D_ W)X = Peyil3 = (W) % — Pyi3] + Eppr, [> s (Pr) — Lhssa (P9)]

t=1 t=1
NS > NS >
Vv Vv

RRidge RwmsG

(A.1)

24
doi:10.6342/NTU201701149

where

Uik (P) = [|(1 = PTP)y,||2

as sampling of P; from I'; is independent between each iteration ¢, which suggests that
Rrigge and Rusg can be bounded separately.
We start bounding Rysg by first observing that

T
Rasc = O Br,or, g6 (P1) — s (PY)]

t=1

T
< Epr, [Grsa(Pr)] — Ui (U7)
t=1

~

ﬁ?sc, — U (U%) (A2)

where U* is the optimal projection matrix with respect to >, EI(\Z)SG(U) whose tr(U*) =
M. The first equality follows from the observation that the sampling of P; does not af-
fect the update of U,, and therefore is independent between each iteration. The second
inequality follows from the fact that 3, K%G(U*) <> E](\?SG(P*) as tr((P*)"P*) =
M. The third equality follows by realizing that (I — P/ P;) is a projection matrix plus
the fact that E[P/P;] = U,. Analysis of Eq. (4) follows standard analysis of online
gradient descent and can be found in Appendix of [19], which gives an upperbound as

M(;;(M) + 250 Iyl With [|y,[|2 < 1 and minimization over 7 yields

M(K — M)

Rmsc < T =F(T)

We next analyze Rpigee. We first rewrite Ryjqge as

T
> EP(H x —yo)l5— 1P (H, x, —y) 15+ [P (H xe — o) I3 — [P (") x, —2)|3]

t=1
by W, = H,P] and W* = H* (P*) " Note that we omit the subscript of expectation here.
We first bound

T
> ENP(H x — yo)ll5 — [IP*(H x; — y2)]13]
t=1

25

doi:10.6342/NTU201701149

Lety; = H/x; —y; and U* = (P*)T P* (note its difference from that is used in analyzing

Rwmsc), then we have

T

E Z[Yt P[Py, —§, Uy =

t=1

MH

t

T *
Z ’ tH2|| —U)ytH?

P
T
<Py U= Uz = F5(T)

t=1

where the last inequality follows from ||y;||3 < p* and the definition of matrix 2-norm.

Next we bound

T
D ENP (Hx —yo)5 — [P*((H) " x; — yi)l13]
t=1

We first define another game as

T
R.=> [IW/x =zl = [(W) x, — z]]3 (A.3)
t=1

where z; = P*y,, W, = argmin 5 ZE;} |WTx; —z]|2, and W* be the best offline coop-
erator of the game. It is no:vhard to notice that the game is exactly the same as the target
we wish to bound by realizing that W, = H; (P*) T and W* = H* (P*) T and also the
expectation can simply be removed. Furthermore, any (x;, z;) has at least corresponding
(x¢,y:) as P* is a linear operator. Therefore, bounding (A.3) suffices to bound our target.

Now let

L
U (W) = [[WTx, — 2,3

We next rewrite (A.3) as

M T
Z Z Rldge Wt m g}({ti’(;g (W*m)) (A4)
m=1 t=1
where
t,m
(g W) = [WX = 213

2t.m 18 the m-th element of z;, w; ,, is the m-th column of W,, and w, is the m-th column

26

doi:10.6342/NTU201701149

of W*. Next, we have
IWallz < [IWHIE < U517 < MR
where the last inequality follows tr(U*) = M, and
Gt W) < W — 23 = ¥/ Uy, < o7

where the last inequality follows from the fact that U* is a projection matrix. With the

above, by plugging in A = 1 and follow the analysis as shown in [3], we have

d M T
Z Rldge th gl%(?g?()) < 7’1* + 2p*dlog(1 + E mfx((ztm)z)) (AS)
t=1

where d is the dimension of x;. Then by max,((2,,)?) < 1 which comes from
max((z,,,m)*) < max(|lz[|3) = max([[P7y3) < max |ly;[5 < 1

and summing (A.5) over allm = 1,..., M we obtain the upperbound of (A.4) as

M? T

Now it is easy to see that & < F(T) = A (THFQ}THF:”(T). It is straight forward to see

Fi(T)
T

T

= 0 and limy_,o, 22 B

that limp_, o = 0. To see limy_ o = 0, we have by
assumption {||U; — U*||2}Z_, converges to 0 as T' — oo, and the fact that the convergence
of sequence implies the convergence of arithmetic mean of sequence. Combing the above

we have limy_,, F/(T') = 0, which completes the proof.

A.2 Proof of Lemma 3

Lemma 3. Suppose U is obtained after an update of Capped MSG with rank(U) = M +1,
and let P'diag(a’)(P')" be the eigen decomposition of U. Then define P; € RM*X to be
P’ with the i-th row excluded and I to be a discrete probability distribution over {P;} 1

with probability of P; being 1 — o/, we have for any 'y

Ep.rly'P'Py] =y'Uy (A.6)

27
doi:10.6342/NTU201701149

Proof. We first show that I' is a well-defined probability distribution. By the definition
of the projection step of MSG we have 0 < o, < 1 for each o} and Zf‘i# 1 <=
M+1—M"s! = 1 with tr(U) = M. T is therefore a well-defined probability
distribution.

Then it suffices to show that Ep[P"P] = U. To see this, first notice that by orthog-

onal rows of P’ we have U = ZMJ{I ojeje] where e; is the j-th row of P’. We then
have
M+1 M+1
Ep_r[P'P] = Z (1-o Zu@ # jleje)
M+1 M+1

= %JZ[[Z%J]U—U))

7=1
1

(cese]) (a)

S
+

<.
I
A

I
-

where (a) is by Y1 0! = M

A.3 Proof of Lemma 4

Lemma 4. If c(y, yg:gd) — ¢y, yﬁle) > 0 holds for any k, y and y, then for any given'y

and 'y we have

K
y) =Y 0Wylk] # y[K] (A7)
k=1
Proof. Recall the definition of y*) and y®)m to be

P R TR S P RV
yiolli) = and §,,[i] =
§li] ifi > k §li] ifi >k
and the definition of) to be

~(k ~(k
00 = ey, §) — ey, 3

Now define k;,7 = 1,..., L be the sequence of indices such that y[k;| # y[k;] for every

28
doi:10.6342/NTU201701149

k; and k; < k;11. If such k; does not exist than (A.7) holds trivially by ¢(y,y) = 0.

Otherwise, by the condition of ¢ we have
K
> oW yIk] # yIK]] (a)
k

(c(y, 3900 — ey, ¥E0) Iylk] # (K]

I
[~

b
Il
—

I
.Mh

Il
—

)

= c(y,) — cly, yur)) (b)

= c(y,y) (c)
where (a) uses the condition of ¢(-, -) to remove the absolute value function; (b) is from
two possibilities of L: if L = 1 then the equation trivially holds; if L > 1 we use the
observation that yffaﬁ ygrgf) where the observation is by realizing y[j] = y[j] for any
ki < j < kis1; (c) follows from the observation that ypreg — yand y*) — yand

c(y,y) = 0. O

A.4 Proof of Theorem 5

Theorem 5. When making a prediction y from x by § = round (Pr(x) + o) with any
given reference vector o and any left orthogonal matrix P, if c(-,) satisfies the condition
of Lemma 4,

c(y,y) < r(x) = z°|[3 + [|(1 = PTP)(Cy — o) |3

where € = P(Cy — o).
Recall the definition of C in the main context is
C = diag(VsM), ..., V§(K) (A.8)
Next we show and prove the following lemma before we proceed to the complete proof.

Lemma 6. Given the ground truth y, if the binary-value prediction y € {+1,—1}¥ is

made by round(y) where y is the real-value prediction’y € RX. Then for anyy, ¥, y, if ¢

29
doi:10.6342/NTU201701149

satisfies the condition in Lemma 4, we have
c(y.¥) < [[Cy — ¥ (A.9)

Proof. From Lemma 4 we have c(y,y) = Zszl 5k Iy[k] # ylk]]. As||Cy = ¥|j5 =
S (VOE)y[k] — §[k])?, it suffices to show that for all k we have

Oylk] # (K] < (Vo®y[k] — y[K])? (A.10)
When 6%) = 0, (A.10) holds trivially. When 6*) > 0, we have

0 ylk] # yIKI]

= 5[50 2 O)y[K] = ~1 + [514] < O}yl = +1]
=001 J 2 0llylk] = ~1) + [<olly{k = +1D) (by % >0
< (2L - vk Iylh) = 11 + (s — vkl = +1])

— 9Ly

= (VoWy[k] — y[k])*
As 6% > 0 holds by its definition, (A.10) holds for every k. Summing (A.10) with respect

to all £ then completes the proof. [
With Lemma 6 established, we now prove Theorem 5.
Proof of Theorem 5. 1f the given c satisfies the condition in Lemma (4), and lety =
P'r(x) + 0 and y = round(y). Then for any (x,y) we have
c(y,y)
<|Cy-vl3 (a)
= [I((F —o —P'PY") — (¢ — PTPY))||3
= [|(P"(r(x) —2°) — (1-P"P)¥°|3
= [[(P"(r(x) =23 + [[A-P"P)Y)[3 (D)
= [[r(x) — 2[5 + (L - PTP)¥°3 (¢)
where y¢ = Cy — 0 and z€ = P(Cy — 0). (a) is from Lemma A.10, while (b) and (c)
O]

follow from the orthogonal rows of P.

30
doi:10.6342/NTU201701149

Table A.1: Statistics of datasets

of features # of labels # of instances cardinality

CAL500 68 174 502 26.044
Corel5k 499 374 5000 3.522
emotions 72 6 593 1.869
enron 1001 53 1702 3.378
mediamill 120 101 43907 4.376
medical 1449 45 978 1.245
scene 294 6 2407 1.074

yeast 103 14 2417 4237
nuswide 128 81 50000" 1.869
delicious 500 983 7500" 19.020

eurlex-eurovec 5000 3993 7500" 5310

We note that the proof above closely follows the proof of Theorem 1 in [24], while the

key difference comes from Lemma 6 to handle the weighted Hamming loss.

A.5 Details of Experiments

Here we report the details of each experiment, including details of cost functions, param-

eters, complete results and the characteristics of datasets we use.

A.5.1 Datasets and Parameters

We first provide the details of the datasets used in our experiments in Table A.1. Only
50000 instances are used for nuswisde because O-CS is particularly computationally com-
plex. Only 7500 instances are used for delicious and eurlex-eurovec to reduce the compu-
tational burden from O-BR and DPP with PBC.

For DPP we fix A = 1 and follow [1] to use the time-decreasing learning rate = \/% 2z
For O-CS we follow [13] to set the parameters. Specifically for experiments on delicious
and eurlex, we implement both DPP and O-BR using gradient descent instead of online

ridge regression. We use the time decreasing step-size \/% for gradient descent on delicious,

and % on eurlex-eurovec.

A.5.2 Necessity of LSDR

We report the complete results of comparison between O-BR and DPP with M = 10%,
25% and 50% of K from Table A.2 to Table A.5 with respect to all four evaluation criteria,

where the best values (the lowest) are marked in bold.

31
doi:10.6342/NTU201701149

Table A.2: DPP vs. O-BR on Noisy Data, Hamming loss
p=0.3 p=0.5 p=0.7

Dataset O0BR DPP-50 DPP-25 DPP-10 Dataset OBR DPP-50 DPP-25 DPP-10 Dataset O-BR DPP-50 DPP-10
CAL500 | 0.1130 £ 0.0003 0.1143 £0.0001 01133 £0.0002 0.1113 % 0.0002 CALS500 | 0.0815 £ 0.0003 0.0834%0.0001 0.0823 £0.0002 0.0816 & 0.0002 CAL500 | 0.0483 £ 0.0003 0.0499 +0.0002 0.0490 £ 00002
Corelsk | 0.0070 4 0.0000 0.0072+0.0000 0.0072 = 0.0000 0.0071 % 0.0000 Corelsk | 0.0049 =0.0000 0.0051 0.0000 0.0051 +0.0000 0.0051 % 0.0000 Corelsk | 0.0029 4 0.0000 0.0031 % 0.0000 0.0031 + 0.0000
emotions | 0.2213£0.0011 0.2214£0.0013 0222600013 0.2238 £ 0.0026 emotions 0.1689 40,0017 0.1660 +0.0015 0.1598 + 0.0014 emotions | 0.1007+0.0013 01017 £0.0011 0.0993 = 0.0015 0.0951 + 0.0013
enron | 0.0584+£0.0002 0.057240.0002 0.0534 +0.0002 0.0489 = 0.0001 enron 2 0.0470 £0.0002 0.0440 4 0.0002 0.0398 0.0002 eoron | 0.0311+£0.0002 0.031140.0002 0.0298 +0.0002 0.0266 + 0.0002
mediamill | 0.0271 +0.0000 0.027240.0000 0.0272 £0.0000 0.0272 % 0.0000 ‘mediamill 0.0217£0.0000 0.0217 +0.0000 0.0217 & 0.0000 mediamill | 0.0130 +0.0000 0.013040.0000 0.0130 £ 0.0000 0.0130 % 0.0000
medical | 0.0168 +0.0001 0.01770.0001 0.0183 £ 0.0001 0.0190 = 0.0001 medical | 0.0153 =0.0001 0.01630.0001 0.0160 +0.0001 00157 % 0.0001 medical | 0.0099 +0.0002 0.0106%0.0002 0.0105 £ 0.0001 0.0097 + 0.0001
nuswide | 0.015140.0000 0.0151 +0.0000 0.0151 =0.0000 0.0151 = 0.0000 nuswide | 0.0109=0.0000 0.0110 =0.0000 0.011040.0000 0.0109 = 0.0000 nuswide | 0.0066 4 0.0000 0.0066 = 0.0000 0.0066 = 0.0000 0.0066 = 0.0000
scene [0.1197£0.0005 0.128240.0003 0.1273 £0.0005 0.1258 % 0.0004 scene | 0.0965 £ 0.0006 00926 40.0004 0.09150.0004 0.0902 + 0.0004 scene | 0.0562+0.0004 0.054440.0003 0.0542 +0.0005 0.0538 + 0.0005
yeast | 02034400004 0.2032 +0.0004 02045 = 0.0004 0.2034 + 0.0005 yeast | 0.1581=0.0005 0.1586+0.0005 0.1573 +0.0004 0.1543 & 0.0004 yeast | 0.0920 & 0.0004 00918 £ 0.0003 0.0921 +0.0004 0.0915 + 0.0004

Table A.3: DPP vs. O-BR on Noisy Data, F1 loss
p=0.3 p=05 p=0.7

Dataset O-BR DPP-50 DPP-25 DPP-10 Dataset 0O-BR DPP-50 DPP-25 DPP-10 Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 | 0.823+0.002 0.823+0.002 0.830+0.003 0.837 + 0.002 CAL500 | 0.925+0.002 0.925+0.002 0.932+0.002 0.947 +0.002 CAL500 | 0.985+0.001 0.983+0.001 0.984 +0.001 0.987 + 0.000
Corelsk | 0.949£0.001 0.945+0.001 0.949 £ 0.001 0.949 & 0.001 CorelSk | 0.898 £0.001 0.899 £ 0.001 0.897 £ 0.001 0.898 = 0.001 Corelsk | 0.716 £0.002 0.713 £ 0.001 0.714£0.001 0.712 & 0.002
emotions | 0.697 £ 0.005 0.740 £ 0.008 0.767 £ 0.006 0.857 4 0.003 emotions | 0.694 +0.004 0.691 + 0.003 0.703 £ 0.006 emotions | 0.493 £ 0.006 0.486 £ 0.005 0.480 = 0.006 0.477 £ 0.004
enron | 0.694 +0.002 0.697 +0.003 0.696 & 0.002 0.716 + 0.002 enron | 0.768 £0.001 0.765 & 0.003 0.764 + 0.003 2 enron | 0.734+0.003 0.729+0.003 0.731£0.002 0.711 4 0.003
mediamill | 0.640 £ 0.001 0.640 = 0.001 0.639 = 0.001 0.639 + 0.001 mediamill | 0.831+0.001 0.830 £ 0.001 0.830 +0.001 0.830 = 0.001 mediamill | 0.714 £ 0.001 0.715+0.000 0.714 £ 0.000 0.715 £ 0.001
medical | 0.550 +0.004 0.544 +£0.006 0.577 +0.004 0.645 4 0.006 medical | 0.570 £ 0.002 0.563 +0.005 0.569 4 0.004 0.561 -+ 0.003 medical | 0.398 £0.007 0.401 £0.005 0.391+0.004 0.377 + 0.004
nuswide | 0.627 +0.001 0.627 £ 0.000 0.627 = 0.000 0.626 + 0.000 nuswide | 0.537 +0.000 0.537 £0.000 0.536 +0.000 0.536 + 0.000 nuswide | 0.386 £ 0.001 0.386 +0.000 0.386 = 0.000 0.386 + 0.000
scene 0.626 +0.001 0.695+0.003 0.706 +0.003 0.717 + 0.003 scene 0.533 £0.003 0.525+0.002 0.519 + 0.003 524 +0.003 scene 0.328 £0.003 0.323£0.002 0.316 £0.002 0.313 + 0.002
yeast 0.669 +0.002 0.678 +0.004 0.711 4+ 0.004 0.733 4 0.005 yeast 0.853 +0.002 0.850 4+ 0.002 0.860 + 0.002 +0.004 yeast 0.746 + 0.002 0.748 + 0.002 0.747 + 0.002 0.748 + 0.002

The results from Table A.2 to Table A.4 show that DPP outperforms O-BR as the value
of p increases with respect ti Hamming loss, F1 loss and Accuracy loss, demonstrating the
robustness of DPP. On the otter hand, the results in in Table A.5 show that, while DPP
cannot outperform O-BR with respect to Normalized rank loss, DPP do start to perform
competitively as the value of p increases. The observation again demonstrates that DPP

indeed suffers less from noisy labels comparing to O-BR due to the incorporation with

LSDR.

A.5.3 Experiments on Basis Drifting

We report the complete results of comparison between DPP using (1) PBC, (2) PBT,
and (3) nothing in Table A.6 with respect to Hamming loss, where the best values (the
lowest) are marked in bold. to further understand the behavior of basis drifting and the
effectiveness of PBC and PBT for CS-DPP, we further compare CS-DPP coupled with
PBC/PBT/none on F1 loss, Accuracy loss and Normalized rank loss. The results are re-
ported in Table A.7 to Table A.9. From Table A.7 to Table A.9 we can draw the same
conclusion as Table A.6. That is, CS-DPP with either PBT or PBC greatly outperforms
CS-DPP that neglects the basis drifting. , and CS-DPP with PBT performs competitively
with CS-DPP with PBC.

32

doi:10.6342/NTU201701149

Table A.4: DPP vs. O-BR on Noisy Data, Accuracy loss

p=0.3

p=0.5

p=0.7

Dataset O-BR DPP-50 DPP-25 DPP-10 Dataset DPP-50 DPP-25 DPP-10 Dataset O-BR DPP-50 DPP-25 DPP-10
CALS500 | 0.898 £ 0.001 0.897 £ 0.001 0.900 £ 0.001 0.911 + 0.002 CALS500 0.962 +0.001 0.961 £ 0.001 CALS500 | 0.990 £ 0.001 0.991 £ 0.000 0.991 £ 0.000 0.992 £ 0.001
CorelSk | 0.957 +0.001 0.957 +0.001 0.958 + 0.000 0.960 + 0.001 Corel5k 0.900 + 0.001 0.900 £ 0.001 CorelSk | 0.716 £0.002 0.714 £ 0.002 0.715+0.002 0.714 + 0.002
emotions | 0.719£0.005 0.764 = 0.004 0.783 £0.002 0.858 & 0.004 emotions 0.706 £ 0.004 0.706 £ 0.004 emotions | 0.490 £ 0.006 0.493 = 0.005 0491+ 0.005 0.474 & 0.004
enron 0.766 + 0.002 0.770 £ 0.002 0.767 + 0.002 0.784 4 0.002 enron 0.809 +0.001 0.806 + 0.002 enron 0.753 £ 0.003 0.745 4 0.002 0.742 £ 0.003 0.726 + 0.003
mediamill | 0.721 4 0.000 0.721+0.000 0.721 £ 0.001 0.720 + 0.001 mediamill 0.839 +0.001 0.840 + 0.001 mediamill | 0.715 4 0.000 0.714 4+ 0.000 0.714 £0.001 0.715 £ 0.001
medical | 0.563 £ 0.005 0.556 +0.003 0.580 £0.005 0.651 &+ 0.004 medical | 0.568 £0.004 0.577 £0.004 0.570 £ 0.004 medical | 0.404£0.004 0.398 = 0.005 0.399 £0.004 0.377 & 0.005
nuswide | 0.632 4 0.000 0.633 £ 0.000 0.632 £ 0.000 0.632 + 0.000 nuswide | 0.537 +0.000 0.537 4 0.000 0.536 + 0.000 nuswide | 0.386 4 0.001 0.38540.000 0.386 - 0.000 0.385 -+ 0.001
scene 0.628 +0.003 0.698 +0.003 0.710 +0.004 0.715 4 0.002 scene 0.533+0.003 0.524 +0.002 0.522 4 0.003 scene 0328 +0.002 0.321+0.002 0317 +£0.002 0318+ 0.002
yeast 0.755 £ 0.002 0.762 £ 0.003 0.783 £ 0.003 0.798 4 0.009 yeast 0.875+0.001 0.873 +0.002 0.878 + 0.002 0.890 £ 0.002 yeast 0.747 £ 0.002 0.747 £ 0.002 0.746 = 0.002 0.746 -+ 0.002

Table A.5: DPP vs. O-BR on Noisy Data, Normalized rank loss
.5: . ,

Dataset O-BR DPP-50 DPP-25 DPP-10 as DPP-50 DPP-25 DPP-10 Dataset O-BR DPP-50 DPP-25 DPP-10
CAL500 | 0.45340.001 0.455+0.001 0.454 £0.001 0.458 £ 0.001 CALS500 0.480 £ 0.001 0.483 + 0.000 CALS500 | 0.495+0.000 0.495+0.000 0.495+0.000 0.496 £ 0.000
Corel5k | 0.496 +0.000 0.496 +0.001 0.497 +0.000 0.498 + 0.000 Corel5k | 0.543 0.544 +£0.001 0.544 + 0.000 Corel5k | 0.647 +0.001 0.646 + 0.001 0.647 = 0.001 0.646 + 0.001
emotions | 0.480 £ 0.004 0.504 = 0.005 0.527 +0.003 0.570 £ 0.002 emotions | 0.633 003 0.640 £0.003 0.646 + 0.002 emotions | 0.759 £ 0.002 0.758 +0.002 0.757 = 0.002 0.763 = 0.002
enron 0.386 +0.001 0.388 +0.001 0.397 +0.001 0.414 4 0.001 enron 0.491+0.002 0.488 £ 0.001 0.491 4 0.001 enron 0.634 £0.002 0.633 +£0.002 0.635+0.002 0.644 4 0.001
mediamill | 0.403 +0.000 0.402 + 0.000 0.403 £ 0.000 0.402 + 0.000 mediamill 0.550 £ 0.000 0.550 £ 0.001 mediamill | 0.643 4+ 0.000 0.643 +0.000 0.643 = 0.000 0.643 -+ 0.000
medical | 0.448 £ 0.004 0.446 £ 0.002 0.469 £ 0.005 0.538 + 0.003 medical 0.661 +£0.003 0.664 £ 0.005 medical | 0.814£0.003 0.812+0.003 0.815£0.002 0.819 £ 0.003
nuswide | 0.668 + 0.000 0.667 + 0.000 0.667 -+ 0.000 0.668 -+ 0.000 nuswide | 0.730 £ 0.000 0.730 4 0.000 nuswide | 0.808 4 0.000 0.807 £ 0.000 0.807 £ 0.000 0.807 4+ 0.000
scene 0.560 +£0.002 0.622+0.002 0.632+0.002 0.643 £ 0.001 scene 0.718 £ 0.002 0.731 £ 0.002 0.740 £ 0.001 scene 0.841 £ 0.001 0841 £0.001 0.842 = 0.001 0.842 £ 0.001
yeast 0.406 £ 0.001 0413 +£0.002 0.427 +0.002 0.443 4 0.002 yeast 0.518 £ 0.001 0.520 £ 0.001 0.524 4 0.001 0.531 £ 0.002 yeast 0.625 + 0.001 0.627 £ 0.001 0.627 = 0.001 0.626 + 0.001

A.5.4 Experiments on Cos

-sensitivity

We report the complete results of on all datasets with respect to all four cost functions in

Table A.10 to Table A.13, where the best values (the lowest) are marked in bold. The

conclusion can be drawn similarly to that is drawn from the discussion in the main paper.

33

doi:10.6342/NTU201701149

Table A.6: CS-DPP with PBC vs. PBT vs. None, Hamming loss
M = 25% of K

M =10% of K

M = 50% of K

Dataset_| CS-DPP-None __CS-DPPPBT __ CS-DPP-PBC Dataset | CS-DPP-None __CS-DPP-PBT __ CS-DPP-PBC Dataset_| CS-DPP-None _ CS-DPPPBT __ CS-DPP-PBC
CALS500 | 0.4464 0.0074 0.1443 = 0.0001 0.1454 = 0.0002 CAL500 | 0.4374 = 0.0100 0.1471 = 0.0002 0.1476 + 0.0001 CALS500 | 04141 £ 0.0176 0.1487 = 0.0002 0.1490 = 0.0002
CorelS5k | 0.4814 4+ 0.0063 0.0099 + 0.0000 0.0100 + 0.0000 CorelSk | 0.4997 + 0.0018 0.0100 + 0.0000 0.0101 =+ 0.0000 CorelSk | 0.5014 4+ 0.0017 0.0101 + 0.0000 0.0101 + 0.0000
emotions | 0.4787 4+ 0.0039 0.3419 + 0.0033 0.3301 + 0.0012 emotions | 0.4988 +0.0022 0.2768 + 0.0051 0.2819 + 0.0036 emotions | 0.4941 4+ 0.0029 = 0.2308 + 0.0014 0.2306 + 0.0012
enron 0.4030 £ 0.0160 0.0560 + 0.0001 0.0565 + 0.0001 enron 0.4844 £+ 0.0050 0.0581 + 0.0002 0.0601 + 0.0002 enron 0.4953 . 0.0626 + 0.0002 0.0643 + 0.0001
mediamill | 0.4936 + 0.0016 0.0309 + 0.0000 0.0308 4 0.0000 mediamill | 0.4917 +0.0015 0.0307 = 0.0000 0.0307 +0.0000 mediamill | 0.4907 - 0.00180.0308 = 0.0000 ~ 0.0307 = 0.0000
medical | 0.1923 £ 0.0352 0.0242 4 0.0001 0.0204 + 0.0002 medical | 0.4493 £+ 0.0161 0.0171 4 0.0002 0.0152 + 0.0001 medical | 0.4177 £ 0.0370 0.0136 £ 0.0001 0.0130 £ 0.0001
nuswide | 0.4975 £ 0.0006 0.0201 £ 0.0000 0.0201 + 0.0000 nuswide | 0.4978 + 0.0007 0.0201 £ 0.0000 0.0201 + 0.0000 nuswide | 0.4972 £ 0.0007 0.0201 £ 0.0000 0.0201 -+ 0.0000
scene 0.4609 £ 0.0080 0.1796 £ 0.0001 0.1797 £ 0.0001 scene 0.5002 = 0.0012 0.1787 £0.0014 0.1797 £ 0.0014 scene 0.5015 4+ 0.0012 0.1731 £ 0.0010 0.1720 + 0.0015
yeast 0.4979 4+ 0.0015 0.2294 + 0.0010 0.2307 + 0.0011 yeast 0.4992 +0.0014 0.2139 + 0.0006 0.2144 + 0.0005 yeast 0.4982 4+ 0.0011 0.2077 +0.0003 0.2079 + 0.0003
Table A.7: CS-DPP with PBC vs. PBT vs. None, F1 loss
M =10% of K M = 25% of K M = 50% of K
Dataset | CS-DPP-None CS-DPP-PBT CS-DPP-PBC Dataset | CS-DPP-None CS-DPP-PBT CS-DPP-PBC Dataset | CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CALS500 | 0.733+£0.001 0.601 £0.001 0.603 £ 0.001 CAL500 | 0.732£0.002 0.604 =0.001 0.602 + 0.001 CALS500 | 0.735+0.002 0.602 £ 0.001 0.602 £ 0.001
Corel5k | 0.957 £0.000 0.853£0.001 0.850 = 0.001 Corel5k | 0.965+0.000 0.845 +0.000 0.844 + 0.000 Corel5k | 0.969 £ 0.000 0.843 +0.000 0.842 +0.001
emotions | 0.618 +0.004 0.445+0.003 0.450 £ 0.007 emotions | 0.631 +0.004 0.401 +0.003 0.398 + 0.004 emotions | 0.631+0.003 0.381+0.002 0.377 £ 0.002
enron 0.802£0.002 0.534 +0.002 0.528 + 0.002 enron 0.812£0.002 0.517 +£0.001 0.519 + 0.001 enron 0.821 £0.003 0.523 +£0.001 0.522 +0.001
mediamill | 0.692 4 0.016 0.460 & 0.000 0.460 + 0.000 mediamill | 0.842 +0.009 0.458 + 0.000 0.457 + 0.000 mediamill | 0.895 4 0.008 0.457 4 0.000 0.457 + 0.000
medical 0.896 £+ 0.002 0.554 +0.012 0.508 + 0.006 medical 0.902 £0.002 0.338 +0.005 0.316 £ 0.004 medical 0.907 £ 0.002 0.252 +0.002 0.250 + 0.002
nuswide | 0.933 +0.001 0.649 £ 0.000 0.648 + 0.000 nuswide | 0.930 £0.003 0.648 £ 0.000 0.648 + 0.000 nuswide | 0.940 £0.004 0.648 = 0.000 0.648 + 0.000
scene 0.761 £ 0.003 0.723 £ 0.002 0.724 = 0.002 scene 0.747 £0.002 0.632 +=0.003 0.631 £ 0.004 scene 0.745+£0.001 0.554 4 0.003 0.558 + 0.003
yeast 0.616 £0.002 0.435+0.004 0.433 +=0.003 yeast 0.622 £0.001 0.389 +=0.001 0.385+ 0.001 yeast 0.630 £0.001 0.382+£0.001 0.382 +0.001
Table A.8: CS-DPP with PBC vs. PBT vs. None, Accuracy loss
M =10% of K M = 25% of K M = 50% of K
Dataset | CS-DPP-None CS-DPP-PBT _ CS-DPP-PBC Dataset | CS-DPP-None CS-DPP-PBT _ CS-DPP-PBC Dataset | CS-DPP-None CS-DPP-PBT _ CS-DPP-PBC
CAL500 | 0.843+0.001 0.749 + 0.001 0.748 + 0.001 CAL500 | 0.846 £ 0.002 0.750 £ 0.001 0.751 + 0.001 CAL500 | 0.844 £0.002 0.752 +0.001 0.751 + 0.001
Corel5k | 0.980 £ 0.000 0.912+0.001 0.910 + 0.000 Corel5k 0.983 £ 0.000 0.905 + 0.000 0.904 + 0.000 Corel5k | 0.986 £ 0.000 0.901 + 0.000 0.903 & 0.001
emotions | 0.696 + 0.005 0.563 + 0.007 0.560 + 0.009 emotions | 0.722 4+ 0.003 0.513 £ 0.003 0.509 + 0.003 emotions | 0.729 4 0.002 0.481 £ 0.002 0.481 + 0.002
enron 0.875 £ 0.001 0.642 +£0.002 0.638 = 0.001 enron 0.884 £0.001 0.633 +0.001 0.633 £ 0.001 enron 0.889 £ 0.002 0.636 +0.001 0.636 = 0.001
mediamill | 0.728 £0.001 0.583 £0.000 0.582 + 0.000 mediamill | 0.759 = 0.009 0.581 £0.000 0.580 + 0.000 mediamill | 0.838 £0.019 0.581£0.000 0.581 + 0.000
medical 0.932£0.003 0.583 +0.008 0.549 = 0.007 medical 0.931 £0.004 0.374+0.004 0.360 £ 0.004 medical 0.944 £0.002 0.303 +0.002 0.299 = 0.002
nuswide | 0.959 +0.001 0.675+0.000 0.675 + 0.000 nuswide | 0.964 +0.001 0.675+0.000 0.675 + 0.000 nuswide | 0.964 +0.002 0.674 +0.000 0.675 + 0.000
scene 0.825£0.002 0.798 +0.003 0.796 = 0.002 scene 0.830 £0.002 0.692 +0.003 0.697 + 0.004 scene 0.832£0.001 0.626 + 0.004 0.623 = 0.004
yeast 0.727 £ 0.001 0.549 £ 0.003 0.541 + 0.003 yeast 0.737 £ 0.001 0.495 + 0.001 0.497 + 0.001 yeast 0.745 4 0.001 0.493 £ 0.001 0.492 + 0.001
Table A.9: CS-DPP with PBC vs. PBT vs. None, Normalized rank loss
M =10% of K M = 25% of K M = 50% of K
Dataset | CS-DPP-None CS-DPP-PBT CS-DPP-PBC Dataset | CS-DPP-None CS-DPP-PBT CS-DPP-PBC Dataset | CS-DPP-None CS-DPP-PBT CS-DPP-PBC
CALS500 | 0.3934+0.002 0.137 £0.001 0.144 £ 0.002 CAL500 | 0.392£0.002 0.151+0.002 0.150 £ 0.002 CALS500 | 0.398 +£0.002 0.154 £0.001 0.151 £0.001
Corel5k | 0.357£0.001 0.248 £0.001 0.237 = 0.001 Corel5k | 0.366 =0.001 0.223 £0.001 0.220 £ 0.001 Corel5k | 0.369 £0.001 0.214£0.001 0.213 = 0.000
emotions | 0.376 +0.008 0.159 £0.021 0.133 +0.023 emotions | 0.420 +0.005 0.078 +0.016 0.046 + 0.015 emotions | 0.386 +0.004 0.034 +£0.003 0.033 +0.003
enron 0.385£0.002 0.124+£0.003 0.132+0.001 enron 0.386 £0.002 0.136 +0.002 0.135+ 0.001 enron 0.385£0.002 0.130+0.001 0.129 = 0.001
mediamill | 0.416 4 0.004 0.066 & 0.002 0.072 + 0.002 mediamill | 0.429 + 0.001 0.070 + 0.000 0.068 -+ 0.000 mediamill | 0.426 4 0.001 0.062 & 0.000 0.059 + 0.000
medical 0.346 £ 0.003 0.132 4 0.005 0.096 + 0.003 medical 0.361 £ 0.004 0.043 £ 0.003 0.036 + 0.002 medical 0.368 £ 0.002 0.021 £ 0.001 0.019 + 0.001
nuswide | 0.520 +0.001 0.356 & 0.001 0.358 £ 0.001 nuswide | 0.523 £0.000 0.334 4+ 0.001 0.329 £ 0.001 nuswide | 0.528 +0.001 0.307 £ 0.000 0.304 =+ 0.000
scene 0.362 £ 0.007 0.264 +0.012 0.231 +0.016 scene 0.373 £0.004 0.185+0.013 0.142 £ 0.011 scene 0.385 £ 0.002 0.125+0.005 0.104 = 0.009
yeast 0.422 £ 0.003 0.003 +0.000 0.003 = 0.000 yeast 0.424 £0.002 0.017 =0.001 0.016 & 0.001 yeast 0.413£0.001 0.024 £0.001 0.026 = 0.001
Table A.10: CS-DPP vs. others, Hamming loss
M =10% of K M = 25% of K M = 50% of K
Datasel 0-CS O-RAND DPP CS-DPP Dataset DPP CS-DPP Dataset 0-CS O-RAND
CALS00 | 0.1610 £ 0.0006 0.4042 + 0.0052 0.1453 + 0.0001 0.1454 + 0.0002 CAL500 0.1479 £ 0.0002 0.1476 + 0.0001 CAL500 | 0.8315 £ 0.0011 0.2620 + 0.0045
Corel5k 0.0117 £ 0.0000 0.3734 + 0.0044 0.0100 + 0.0000 0.0100 + 0.0000 Corel5k 3 0.0101 £ 0.0000 0.0101 -+ 0.0000 CorelSk | 0.9860 + 0.0002 0.1687 + 0.0033 + 0.0101 0000
emotions | 0.3338 £ 0.0073 0.3847 + 0.0099 0.3335 + 0.0042 0.3301 + 0.0012 ‘emotions 0+ 0.0085 0.3586 0.2807 + 0.0038 0.2819 + 0.0036 emotions | 0.5079 + 0.0096 0.3357 + 0.0086 0.2276 + 0.0010 0.2306 + 0.0012
enron 0.0739 £ 0.0006 0.3907 £ 0.0090 0.0563 £ 0.0001 0.0565 = 0.0001 enron 5+ 00023 0.3150 £ 0.0109 0.0599 £ 0.0001 0.0601 + 0.0002 enron 0.7172 4 0.0041 02205 £ 0.0079 0.0642 £ 0.0002 0.0643 £ 0.0001
mediamill | 0.0485 £ 0.0011 3737 £0.0070 0.0308 + 0.0000 0.0308 = 0.0000 mediamill 0.2854 £ 0.0076 0.0307 £ 0.0000 0.0307 £ 0.0000 mediamill | 0.8998 £ 0.0049 0.1775 £ 0.0107 0.0307 = 0.0000
0.0272 £ 0.0006 4+0.0093 0.0204 £ 0.0002 0.0204 = 0.0002 medical 0.2921 £0.0134 0.0150 £ 0.0001 0.0152 + 0.0001 al 7 01673+ 0.0116 0.0132 £ 0.0001
0.0239 £ 0.0004 707 £ 0.0107 0.0201 £ 0.0000 0.0201 £ 0.0000 nuswide | 0.8721 £0.0031 0.2843 £0.0119 0.0201 £ 0.0000 0.0201 £ 0.0000 nuswide | 0.8200 +0.0053 0.1767 £ 0.0097 0.0201 = 0.0000
0.2168 £0.0047 0.3711 £ 0.0172 0.1797 £ 0.0001 0.1797 = 0.0001 scene 0.6286 £ 0.0076 0.2985 £+ 0.0205 0.1788 £ 0.0016 0.1797 £ 0.0014 scene 0.5023 £ 0.0184 0.2678 £ 0.0116 0.1711 £ 0.0020
0.3077 £0.0021 0.4162 4+ 0.0096 0.2314 £ 0.0014 0.2307 = 0.0011 yeast 0.5961 £ 0.0060 0.3464 4+ 0.0111 0.2136 = 0.0004 0.2144 -+ 0.0005 yeast 0.4504 £ 0.0104 0.2926 = 0.0060 0.2080 £ 0.0003 0.2079 £ 0.0003
Table A.11: CS-DPP vs. others, F1 loss
M =10% of K M = 25% of K M = 50% of K
Dataset 0-CS 0O-RAND DPP CS-DPP Dataset 0-CS O-RAND DPP CS-DPP Dataset O-RAND DPP CS-DPP
CAL500 | 0.953+0.003 0.750 +0.004 0.654 £ 0.002 0.603 + 0.001 CALS500 [0.739+0.000 0.734£0.006 0.653 +0.001 0.602 + 0.001 CAL500 0.703 = 0.006 0.654 £0.001 0.602 £ 0.001
CorelSk | 0.926 +0.002 0.980 +0.001 0.918+0.001 0.850 + 0.001 Corel5k | 0.981 4 0.000 0.978 +0.001 0.912 4+ 0.001 0.844 -+ 0.000 Corel5k 0.971 £0.002 0.911 £ 0.001
emotions | 0.900 +0.014 0.621 +0.033 0.428 + 0.003 0.450 + 0.007 emotions | 0.535 4 0.006 0.591 £0.029 0.446 +0.011 0.398 + 0.004 emotions 0.545 £ 0.020 0.470 £ 0.007
enron 0.885 +£0.010 0.867 £ 0.007 0.552 +0.003 0.528 + 0.002 enron 0.878 £ 0.001 0.830 4 0.007 0.528 +0.002 0.519 + 0.001 enron 0.779 + 0.009 527 + 0.001
mediamill | 0.821 +0.025 0.899 & 0.007 0.474 £ 0.000 0.460 = 0.000 mediamill | 0.915 £ 0.000 0.879 4+ 0.007 0.472+0.000 0.457 £ 0.000 mediamill 0.8: 0.014 0.472 %+ 0.000
medical 0.819+0.016 0.924+0.005 0.602 + 0.003 0.508 + 0.006 medical 0.943 +£0.001 0.894+0.006 0.377 4+ 0.004 0.316 + 0.004 medical 0.836 +0.012 0.280 + 0.003
nuswide | 0.746 £ 0.005 0.956 £ 0.002 0.673 £ 0.000 0.648 = 0.000 nuswide | 0.957 +£0.000 0.951 4 0.003 0.672+0.000 0.648 = 0.000 nuswide 0.942 £ 0.005 0.672£0.000 0.648 = 0.000
scene 0.920 £ 0.010 0.743 £ 0.030 0.999 + 0.000 0.724 + 0.002 scene 0.676 +0.004 0.709 +0.025 0.911 4+ 0.005 0.631 + 0.004 scene 0.664 +0.008 0.633+0.017 0.809 +0.003 0.558 + 0.003
yeast 0.885+0.018 0.596 4+ 0.008 0.463 4+ 0.005 0.433 + 0.003 yeast 0.564 +0.006 0.583 +0.012 0.423+0.002 0.385 + 0.001 yeast 0.524 +0.009 0.500 +0.013 0.406 £+ 0.001 0.382 + 0.001

34

doi:10.6342/NTU201701149

Table A.12: CS-DPP vs. others, Accuracy loss
M =10% of K M =25% of K M = 50% of K

Dataset 0-CS O-RAND DPP CS-DPP Dataset 0-CS O-RAND DPP CS-DPP Dataset 0-CS O-RAND DPP CS-DPP
CALS500 | 0.9714£0.002 0.858 £0.004 0.787£0.001 0.748 £ 0.001 CAL500 [0.849£0.000 0.843£0.004 0.784+0.001 0.751 £ 0.001 CAL500 [0.849+0.000 0.824+0.004 0.785+0.001 0.751 +0.001
CorelSk | 0.949 £ 0.001 0.990 £ 0.000 0.943 £ 0.000 0.910 + 0.000 CorelSk | 0.991+0.000 0.989 £ 0.000 0.939 +0.000 0.904 + 0.000 Corel5k | 0.991 +0.000 0.986 4 0.001 0.939 £ 0.000 0.903 + 0.001
emotions | 0.924 £0.009 0.683£0.021 0.558 +0.004 0.560 & 0.009 emotions | 0.682 % 0.006 0.654 £0.013 0.531 £0.005 0.509 & 0.003 emotions | 0.671£0.007 0.679£0.021 0.546 £0.005 0.481 £ 0.002
enron 0.927+£0.009 0.923 4 0.004 0.646 4 0.002 0.638 + 0.001 enron 0.934 £ 0.000 0.91240.005 0.634 +0.002 0.633 + 0.001 enron 0.930 4 0.000 0.879 £ 0.005 0.632 +0.001 0.636 + 0.001
mediamill | 0.868 +0.014 0.950 £ 0.003 0.594 + 0.000 0.582 + 0.000 mediamill | 0.956 = 0.000 0.940 = 0.003 0.592 £ 0.000 0.580 + 0.000 mediamill | 0.955 = 0.000 0.900 £ 0.007 0.592 = 0.000 0.581 £ 0.000
medical | 0.840 £ 0.017 0.959 4+ 0.003 0.628 4+ 0.008 0.549 + 0.007 medical | 0.970 +0.000 0.952+0.003 0.402 + 0.005 0.360 + 0.004 medical | 0.966 +0.000 0.91140.005 0.312+0.002 0.299 + 0.002
nuswide | 0.741+0.003 0.973+0.002 0.691 £ 0.000 0.675 + 0.000 nuswide | 0.978 +0.000 0.968 +0.002 0.690 £ 0.000 0.675 + 0.000 nuswide | 0.977 +0.000 0.957 +0.002 0.690 £ 0.000 0.675 = 0.000
scene 0.902 £0.009 0.782 4 0.009 0.999 4 0.000 0.796 + 0.002 scene 0.803 £0.002 0.746 £ 0.008 0.927 £ 0.003 0.697 + 0.004 scene 0.7714£0.005 0.699 £ 0.018 0.827 +£0.009 0.623 + 0.004
yeast 0.926 +0.014 0.702+0.014 0.597 £ 0.005 0.541 + 0.003 yeast 0.702 = 0.003 0.696 £ 0.005 0.539 £ 0.003 0.497 + 0.001 yeast 0.666 £ 0.008 0.649 4 0.013 0.520 = 0.001 0.492 = 0.001

Table A.13: CS-DPP vs. others, Normalized rank loss
M =10% of K M = 25% of K M = 50% of K

Dataset 0-CS O-RAND DPP CS-DPP Dataset 0-CS O-RAND DPP Dataset 0-CS O-RAND DPP CS-DPP
CALS500 | 0.497 £ 0.001 0.397 £0.006 0.399 £ 0.001 0.144 + 0.002 CAL500 | 0.025+0.002 0.393 4 0.006 0.397 +0.001 CAL500 | 0.014 +0.001 3804+ 0.006 0.396 £ 0.001 0.151 £ 0.001
CorelSk | 0.470£0.001 0.393 +0.013 0.470 £ 0.000 0.237 £ 0.001 CorelSk | 0.003 +0.001 0.424 £ 0.008 0.467 £ 0.000 0.220 4 0.001 CorelSk | 0.004 +0.001 0447 +£0.009 0467 +0.000 0.213 = 0.000
emotions | 0.508 +0.006 0.363 +0.020 0.223 4+ 0.009 0.133 + 0.023 emotions | 0.174 4+ 0.023 0.319 4 0.023 0.235+0.009 0.046 + 0.015 emotions | 0.225 4 0.014 0.360 £ 0.015 0.277 +0.004 0.033 + 0.003
enron 0.463 £0.004 0.320 £0.015 0.304 £ 0.001 0.132 = 0.001 enron 0.106 £ 0.008 0.320 £ 0.020 0.282£0.001 0.135 % 0.001 enron 0.138 £ 0.009 0.314£0.009 0.274£0.001 0.129 = 0.001
mediamill | 0.454 £ 0.009 0.391 +0.020 0.307 4+ 0.000 0.072 + 0.002 mediamill | 0.092 £ 0.007 0.371 £ 0.023 0.306 £ 0.000 0.068 -+ 0.000 mediamill | 0.060 £ 0.003 0.331 £ 0.015 0.306 4 0.000 0.059 £ 0.000
medical | 0.397 £0.004 0.301=0.019 0.311£0.005 0.096 = 0.003 medical | 0.090 £0.005 0.261+0.023 0.184 £ 0.003 0.036 £ 0.002 medical | 0.11140.010 0.256 £ 0.019 0.136 £ 0.001 0.019 £ 0.001
nuswide | 0.600 +0.003 0.532£0.013 0.580 4 0.000 0.358 + 0.001 nuswide | 0.319£0.010 0.593 +0.014 0.580 = 0.000 0.329 £ 0.001 nuswide | 0.321+0.008 0.556 £ 0.011 0.580 £ 0.000 0.304 = 0.000
scene 0.491 £ 0.003 0.295+0.029 0.500 +0.000 0.231 +0.016 scene 0.155+£0.017 0.304 £ 0.028 0.470£0.002 0.142 +0.011 scene 0.191+0.021 0299 £0.020 0423 +0.003 0.104 = 0.009
yeast 0.490 4 0.002 6+ 0.018 0.340 +0.003 0.003 + 0.000 yeast 0.205 £ 0.018 0.356 4 0.021 0.301 £ 0.002 0.016 + 0.001 yeast 0.238 +£0.012 0343 £0.012 0.291 £ 0.001 0.026 =+ 0.001

35
doi:10.6342/NTU201701149

Bibliography

[1] R. Arora, A. Cotter, and N. Srebro. Stochastic optimization of PCA with capped

MSG. In NIPS, pages 1815-1823, 2013.

[2] K. Balasubramanian and G. Lebanon. The landmark selection method for multiple

output prediction. In /ICML, 2012.
[3] P. Bartlett. Online convex optimization: ridge regression, adaptivity, 2008.

[4] J. P. Bello, E. Chew, and D. Turnbull. Multilabel classification of music into emo-

tions. In /CMIR, pages 325-330, 2008.

[5] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for

extreme multi-label classification. In NIPS, pages 730738, 2015.

[6] W. Bi and J. T. Kwok. Efficient multi-label classification with many labels. In

ICML, pages 405-413, 2013.

[7] Y. Chen and H. Lin. Feature-aware label space dimension reduction for multi-label

classification. In NIPS, pages 1538-1546, 2012.

[8] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. NUS-WIDE: a real-world

web image database from national university of singapore. In CIVR, 2009.

[9] K. Crammer, O. Dekel, J. Keshet, S. S.-S., and Y. Singer. Online passive-aggressive

algorithms. Journal of Machine Learning Research, 7:551-585, 2006.

[10] K. Dembczynski, W. Cheng, and E. Hiillermeier. Bayes optimal multilabel classifi-
cation via probabilistic classifier chains. In /ICML, pages 279-286, 2010.

36
doi:10.6342/NTU201701149

[11] K. Dembczynski, W. Waegeman, W. Cheng, and E. Hiillermeier. An exact algorithm

for F-measure maximization. In NIPS, pages 1404-1412, 2011.

[12] A. Elisseeff and J. Weston. A kernel method for multilabelled classification. In

NIPS, 2001.

[13] D.Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed
sensing. In NIPS, pages 772—780, 2009.

[14] A. Kapoor, R. Viswanathan, and P. Jain. Multilabel classification using bayesian

compressed sensing. In NIPS, pages 2654-2662, 2012.

[15] C. Liand H. Lin. Condensed filter tree for cost-sensitive multi-label classification.

In ICML, pages 423431, 2014.

[16] C.Li, H. Lin, and C. Lu. Rivalry of two families of algorithms for memory-restricted

streaming pca. In AISTATS, 2016.

[17] Z. Lin, G. Ding, M. Hu, and J. Wang. Multi-label classification via feature-aware
implicit label space encoding. In ICML, pages 325-333, 2014.

[18] H. Lo, J. Wang, H. Wang, and S. Lin. Cost-sensitive multi-label learning for audio

tag annotation and retrieval. /[EEE Trans. Multimedia, 13(3):518-529, 2011.

[19] J.Nie, W. Kotlowski, and M. K. Warmuth. Online PCA with optimal regrets. Journal

of Machine Learning Research, 17:194-200, 2016.

[20] A. P. P. Osojnik and D. S. Multi-label classification via multi-target regression on

data streams. Machine Learning, 2017.

[21] J.Read, A. Bifet, G. Holmes, and B. Pfahringer. Streaming multi-label classification.

In Proceedings of the Workshop on Applications of Pattern Analysis (WAPA), pages
19-25, 2011.

[22] J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label

classification. Machine Learning, 85(3):333-359, 2011.

37
doi:10.6342/NTU201701149

[23] L. Sun, S. Ji, and J. Ye. Canonical correlation analysis for multilabel classification:
A least-squares formulation, extensions, and analysis. IEEE TPAMI, 33(1):194-200,
2011.

[24] F. Tai and H. Lin. Multilabel classification with principal label space transformation.

Neural Computation, 24(9):2508-2542, 2012.

[25] G. Tsoumakas, I. Katakis, and I. P. Vlahavas. Mining multi-label data. In Data

Mining and Knowledge Discovery Handbook, 2nd ed., pages 667-685. 2010.

[26] G. Tsoumakas and I. P. Vlahavas. Random £ -labelsets: An ensemble method for

multilabel classification. In ECML, pages 406417, 2007.

[27] J. Wang, P. Zhao, and S. C. H. Hoi. Cost-sensitive online classification. I[EEE Trans.
Knowl. Data Eng., 26(10):2425-2438, 2014.

[28] M. K. Warmuth and D. Kuzmin. Randomized online pca algorithms with regret
bounds that are logarithmic in the dimension. Journal of Machine Learning Re-

search, 9:2287-2320, 2008.

[29] Y. Wu and H. Lin. Progressive k-labelsets for cost-sensitive multi-label classifica-

tion. Machine Learning, 2016. Accepted for Special Issue of ACML 2016.

[30] E. S. Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. P. Vlahavas. Dealing with
concept drift and class imbalance in multi-label stream classification. In ZJCAZ, pages

1583-1588, 2011.

[31] H. Yu, P. Jain, P. Kar, and L. S. Dhillon. Large-scale multi-label learning with miss-
ing labels. In ICML, pages 593-601, 2014.

[32] X.Zhang, T. Graepel, and R. Herbrich. Bayesian online learning for multi-label and

multi-variate performance measures. In AISTATS, 2010.

38

doi:10.6342/NTU201701149

