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中文摘要 

本文研究高斯超幾何方程的施圖姆-劉維爾形式及其 Zeta行列式.基於

Lesch給出以 wronskian表示正則奇異施圖姆-劉維爾算子之 Zeta行列

式的公式,以及拉馬努金的某項公式,便得出本文的主要結果: 超幾何

方程之施圖姆-劉維爾形式的 Zeta行列式之 closed form. 

關鍵詞: 高斯超幾何方程, Zeta行列式, 正則奇異施圖姆-劉維爾算子, 

拉馬努金公式, closed form. 
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Abstract 

 

In the thesis, the eignevalue probelm of the Hypergeometric equation(for 

short: HGE or E(a,b,c)) is discussed. There are three parts in this thesis. 

First of all, I introduce some heuristic backgrounds and motivations of the 

eigenvalue problem of HGE. The second part is a survey about the theory 

of the HGE. Finally, based on Lesch’s formula of zeta determinant of 

Regular Singular Sturm-Liouville Operators, I calculate the zeta 

determinant with repect to the Sturm-Liouville form of HGE operator on a 

closed interval, by using Ramanujan's identities. 

Key words: Hypergeometric equation, Sturm-Liouville form, zeta 

determinant, Ramanujan's identities, Regular Singular Sturm-Liouville 

Operators, 
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Chapter 1

Introduction

1.1 Motivation and main results.

Guass Hypergeometric equation (in this thesis, we call it the Hypergeometric equation)

x(1− x)
d2f(x)

dx2
+ (c− (a+ b+ 1)x)

df(x)

dx
− abf(x) = 0,

is a kind of Euler’s Hypergeometric differential equations, and it is a second-order
ordinary differential equation. Here we denote it as E(a, b, c) for both the operator and
the equation. The Hypergeometric series

2F1(a, b; c;x) :=
∞∑
n=1

(a;n)(b;n)

(c;n)(1;n)
xn

is one of the solutions of this equation. They appear in many fields of “Exact Science”
from the era of Euler to now.

In this thesis, we ask a question: “How does the operator structure of the Hyper-
geometric equation look like? Can we do its spectral resolutions?” We give a partially
positive answer:“We can do that on the closed interval [0, 1].” (For other domain,
see the problem in section 1.1.1 .) In particular, the question and the answer can be
described as in the following dialogues:

“Does any potential application for this spectral resolution exist?” My short answer
to this is : “Why, sir, there is every probability that you will soon be able to tax it.”
(by Michael Faraday,).

The dream hidden in this thesis is an analogue of “from hamonic function to eigen-
function” in the context of Riemannian geometry and Hodge theory. Especially, the
dream can also be considered as the classical philosophy in functional analysis “ker
and eigen” of nice operators deeply involved with geometry and arithmetic, such as
Laplacian operator and, in our case, Hypergeometric equation.

We object is the zeta determinant of a one-parameter family of a regular singular
Sturm-Liouville operator. The closed form of it can be calculated by using the formulaes

1
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given by Matthias Lesch and a Ramanujan’s formula on the Hypergeometric series that
related to the derivative of the Schwarz map. In case a = b = 1

2
, c = 1 , the Schwarz

map is the inverse of Modular lambda function:

τ =
2F1(1

2
, 1

2
; 1; 1− x)

2F1(1
2
, 1

2
; 1;x)

=

∫∞
1

dt√
t(t−1)(t−(1−x))∫∞

1
dt√

t(t−1)(t−x)

.

where our regular singular Sturm-Liouville operator:

L =
d2

dx2
+

a(x)

x2(1− x)2

is the Sturm-Liouville form of the Hypergeometric operator (and the associated equation
is called the Sturm-Liouville form of the Hypergeometric equation):

H
(µ0,µ1,µ∞)
G =

d2

dx2
+

1

4
(
(1− µ2

0) + (−1 + µ2
0 − µ2

1 + µ2
∞)x+ (1− µ2

∞)x2

x2(1− x)2
).

For classical Laplacian operator4 of a compact Reimannian manifold M , we defines
the zeta determinant by

det4 := exp(−ζ ′4(0)),

where the Laplacian 4 has the discrete spectrum 0 < λ1 < λ2 · · · , and we define the
spectral zeta function of 4 by

ζ4(s) :=
∞∑
n=1

1

λsn
.

The absolute convergence of ζ4(s) on {Re(s) > σ} (for some σ) depends on the geom-
etry of M(c.f.Weyl asympotic formula). Moreover, We can use Mellin transform by the
apriori estimate of the trace of heat kernel of 4:

∑∞
n=1 exp(−λt) and the identity

∞∑
n=1

λ−sn =
1

Γ(s)

∫ ∞
0

ts−1

∞∑
n=1

exp(−λnt)dt,

to obtain the analytical continuation of ζ4 at s = 0, so the ζ ′4(0) and det4 are well-
defined.

When the coefficient of the operator is smooth on whole domain, the estimate of it
heat kernel is relatively easy. However, when the coefficients of operator have strong
singularities in the domain, such as − d2

dx2
− 1

4x2
on [0, α) for any α > 0, the foundation

of the study of the heat kernel need to be reconstructed. One of the fundamental work
on this is the “singular asymptotics lemma” of Bruning and Seeley, see [7](see also [1]).

On the other-hand, the difficulties of evaluation of the zeta determinant of an opera-
tor may be regarded as the ignorance of the exact form of eigenvalues and eigenfunctions.
However, in the case of regular singular Sturm-Liouville operators

L =
d2

dx2
+

a(x)

x2(1− x)2

2
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on [0, 1](where a(x) is a smooth function defined on the cloesd interval [0, 1]), Lesch
gives a clear expression of the zeta determinant via only the a(0), a(1) and the pair of
normalized solutions of L. For the whole details, we refer the readers to the papers of
Bruning-Seeley’s[7] and Lesch’s [2].

The Lesch’s formula of the zeta determinant is

Theorem 1.1.1. detζ (L) = exp(−ζ ′L(0)),

detζ(L) =
πW(ψ, ϕ)

2ν0+ν1Γ(ν0 + 1)Γ(ν1 + 1)
(1.1)

where ψ (ϕ,resp.) is the normalized solution of L at 0(at 1,resp.), ν0 =
√

1
4

+−1
4
(1− µ2

0)

(ν1, µ1, resp.), W(ψ, ϕ) = ψϕx − ϕψx=the Wronskian of ψ, ϕ.

Based on this, a particular case of the main result of this thesis is

detζH
(0,0,0)
G = 1.

1.1.1 Motivation

I start this study since my advisor Chun-Chung Hsieh asked Masaaki Yoshida: “Why
you study Schrodinger equation?” in the lectures of Yoshida on his lovely book <Hyper-
geometric Functions, My Love> (see [3]) invited by Chang-Shou Lin in the autumn of
2014. If my understaning is correct, Yoshida has not considered the term “Schrodinger
equation” in his lecture ever. In fact, Yoshida is considering the normal form(it this
this we call it Sturm-Liouville from) of Hypergeometric equation at that time. For me,
however, the question of Hsieh is not totally a nonsense. I dream on this diection, if
the Hypergeometric equation have discrete spectrum

{0 = λ0 < λ1 ≤ · · · ≤ λk ≤ · · · }

and assign the form the spectrum, we can see the eigenspaces

Ek = {g ∈ F (CP1 \ {0, 1,∞}) : HGg = λkg}.

of HG = H
(µ0,µ1,µ∞)
G are dimension two. (Here F (CP1 \{0, 1,∞}) is a unknown function

space that we want to find it but not success yet.) Therefore, we may get a series of linear
monodromy representations if we can do analytic continuation for the eigenfuctions,

ρk : π1(CP1 \ {0, 1,∞})→ GL(Ek) ∼= GL2(C).

Formally, we have

ρ : π1(CP1 \ {0, 1,∞})→ GL(
⊕
k

Ek) ∼= GL∞(C),

3
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by using the naive direct sum of the monodromy matrices. One of the intention of the
author is to try to use this hypothetical construction to study the Belyi embedding

Gal(
Q
Q

) ↪→ Out(π1(CP1 \ {0, 1,∞})),

and the graded Grothendieck-Teichmuller Lie algebra. The beliefs of the author are
based on the deep-interconnections between the Hypergeometric function and the con-
formal field theory [4].And the recent work of Takashi Ichikawa: [6],[5], shows that
there is a rigorous relation between Conformal theory and Grothendieck-Teichmuller
lego game, this work is on the same line of the beliefs of the author.

However, this dream is still in the air. It has no any concrete result yet. As an
opportunity and challenge, we use the spectral resolution of regular singular Sturm-
Liouville operators in this thesis. For example, the spectral resolution on the domain
of HG is still not clear. Hence, we use a framework over the closed interval [0, 1]. There
is a question: how would the eigenvalue or eigenfunction change when the domain are
replaced as CP1 \ {0, 1,∞}.

So here we have a challenge:

Remark 1.1.2. Can we find a functional space that allow us to do a spectral resolution
of HG over CP1 \ {0, 1,∞}? Which one is a “suitable” functional space?

1.2 Heat Kernel and Mellin Transform in the Case

of Riemann Zeta.

The eigenvalues of − d2

dx2
over R

2πZ are {n2}n∈Z. That is,

− d2

dx2
einx = n2einx.

We see {einx}n∈Z is the set of eigenfunctions.In fact, it forms an orthonormal basis of
L2( R

2πZ ,C).
The layout below is taken from <A geometric glance at zeta functions, L-functions,

and automorphic forms >, by Ken Richardson.

1.2.1 Mellin Tranform

First of all, as Riemann did, we turn our subject into an integral:

Lemma.

λ−s =
1

Γ(s)

∫ ∞
0

ts−1 exp(−λt)dt,

for λ > 0.

4
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Proof.
∫∞

0
ts−1 exp(−λt)dt =

λt=u

λ−1

λs−1

∫∞
0
us−1 exp(−u)du = λ−sΓ(s)

Corollary. ∑
n

λ−sn =
1

Γ(s)

∫ ∞
0

ts−1
∑
n

exp(−λnt)dt

and

2ζRIE(2s) =
∑
n∈Z\0

n−2s =
1

Γ(s)

∫ ∞
0

ts−1
∑
n∈Z\0

exp(−n2t)dt

1.2.2 Heat Kernel.

We observe
1 +

∑
n∈Z\0

exp(−n2t) = K(x, x, t).

where K(x, y, t) is the heat kernel of S1:∑
n∈Z

exp(−n2t)einxe−iny = 1 + 2
∞∑
n=1

exp(−n2t) cos(n(x− y)),

K(x, x, t) is the trace of heat operator. That is, K(x, x, t) =
∑

ρ ρ, where ρ is the
eigenvalue of heat operator Kt.

We recall some facts about the heat equation(operator). Our heat kernel is the
fundamental solution for the following problem onS1:

(
∂

∂t
− ∂2

∂x2
)K(x, y, t) = 0, t > 0

lim
t→0

K(x, y, t) = δ(x− y).

Apply the defintion of δ(x − y) (the Dirca function), we can solve the following
initial condition problem:

(
∂

∂t
− ∂2

∂x2
)uf (x, t) = 0, if t > 0

lim
t→0

uf (x, t) = f(x).

That means (and also justify the “kernel” in the name):∫
S1

K(x, y, t)f(y)dy

is the unique solution for the problem. That is,

uf (x, t) =

∫
S1

K(x, y, t)f(y)dy.

5



doi:10.6342/NTU201701882 

 

We can check this fact by applying lim
t→0

K(x, y, t) = δ(x− y). uniqueness can be derived

with the fact: heat operator Kt is well defined:

Kt : L2(S1) −→ C∞(S1)

f 7−→ uf .

In the case of S1, we can obtain the closed form of the eigenvalues of Kt since
we knew an explicit expression of an orthonormal basis in L2(S1) and how the heat
operator Kt acts on it:

Kt(e
inx) = exp(−n2t)einx.

Therefore, we get the trace formula which we claim in the beginning:∑
n∈Z

exp(−n2t) = Tr(Kt)

Remark. In some papers or books, Kt may be witten as e−4t, which the 4 is the
Laplacian operator on a Riemannian manifold (M, g).

1.3 Some Backgrounds

The link (up to day is still unfinished) between the regular singular Sturm-Liouville
operators and the Hypergeometric equation can be summerized by a word: conical
singularity. A basic example is − d2

dx2
− 1

4x2
. It is the radial part in the polar coordinate

of the Laplacian of R2. In [1],[7],[8], the operator

− d2

dx2
+
a(x)

x2
,

where a(x) is smooth on [0,∞) with a(0) ≥ −1
4

which has been studied and motivated
by considering the Laplacian on “manifold with an asymptotically conical singularity
as the model. For the detail we refer to their papers.

In this thesis, we provide a new example of this direction:

HG(0, 0, 0) = − d2

dx2
− 1

4
(

1

x2
+

1

(1− x)2
+

1

x(1− x)
),

It is a Sturm-Liouville form of the Hypergeometric equation

E(
1

2
,
1

2
; 1) : x(1− x)

d2z

dx2
+ (1− 2x)

dz

dx
− 1

4
z = 0), (1.2.1)

The necessary explanations and backgrounds of this operator are the main ingredient
of this thesis. HG(0, 0, 0) has strong parallelism with − d2

dx2
− 1

4x2
. Moreover, we will

6
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see HG(0, 0, 0) may be called the hyperbolic version of − d2

dx2
− 1

4x2
, since the part x(1−

x)d
2f(x)
dx2

+ (c − (a + b + 1)x)df(x)
dx

of hypergeometric equation is the radial part in the
polar coordinate of the Laplacian of hyperbolic plane. (See Appendix)

And, not only the special case E(1
2
, 1

2
; 1), but also this Ramanujan identity are used

in the studies of the metrics of with three conical singularities on the 2-sphere of con-
stant curvature. For example,[9],[10]. Moreover, the relation between hypergeometric
function/equation and the Schwarzian derivative of Schwarz map plays the dominant
role of their works. However, the rigorous formulation of this link between the analysis
of heat trace of hypergeometric equation and the geometry of the metrics with three
conical singularities on the 2-sphere of constant curvature is still totally open. Finding
a good functional space over 2-sphere minus three point may be regarded as the ground
of the formulation of this propose.

7
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Chapter 2

A Survey of the Hypergeometric
Equation

We will give equivalence among hypergeomteric series, differential equation, and integral
representation, under certain conditions of parameters.

2.1 Hypergeomteric Series.

Here we define Hypergeomteric series by

2F1(a, b; c;x) :=
∞∑
n=1

(a;n)(b;n)

(c;n)(1;n)
xn,

where c 6= 0,−1,−2,−3, ..., and (a;n) := a(a+1) · · · (a+n−1) = Γ(a+n)
Γ(a)

. Sometime

we denote (a;n) ≡ (a)n. The radius of convergence is one (unless a or b is a nonpositive
integer, in which case the series is a polynomial):

A(n+ 1)

A(n)
=

(a+ n)(b+ n)

(c+ n)(1 + n)
−→
n→∞

1.

Now we have a holomorphic function 2F1(a, b; c;x), and we may study it with the
differential equation which it satisfies.

For this, recall the fact described at the first chapter for Euler operator:θ := x d
dx

,
we have

θ · xλ = λxλ,

Fomally speaking, xλand λ are the eigenfunction and the eigenvalue of the operator θ.

2.2 Hypergeomteric Equation.

We can check 2F1(a, b; c;x) is a solution of (a+ θ)(b+ θ)f − (c+ θ)(1 + θ) 1
x
f = 0.

8
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Proposition. E(a, b; c) is equivalent to

(a+ θ)(b+ θ)− (c+ θ)(1 + θ)
1

x

Proof. Let f be a test function, then we check the claim in two part:

(a+ θ)(b+ θ) · f = abf + x(a+ b+ 1)f ′ + x2f ′′;

[(c+ θ)(1 + θ)
1

x
] · f = [(c+ θ)(1 + θ)] · ( 1

x
f)

= [c+ (1 + c)θ + θ2] · ( 1

x
f) = cf ′ + xf ′′

2.3 Integral representation of Hypergeomteric se-

ries.

Proposition 2.3.1.

2F1(a, b; c;x) =
Γ(c)

Γ(a)Γ(c− a)

1∫
0

ta−1(1− t)c−a−1(1− tx)−bdt,

for <(c) > <(a) > 0.

The proof is a computaion which uses the following identities.

Lemma. (1− tx)−b =
∑∞

n=0
(b;n)
(1;n)

(tx)n and
∫ 1

0
tp−1(1− t)q−1dt = Γ(p)Γ(q)

Γ(p+q)

Proof. To prove our propostion, we just need to observe that Γ(a+n)
Γ(a)

= a(a+ 1) · · · (a+

n− 1) = (a;n) and the summation in the lemma can interchage with the integral.

2.4 Projective Equivalence implies Sturm-Liouville

form of Hypergeomteric equation.

Here, we show how to change a second order ordinary differential equation into it’s
Sturm-Liouville form, then apply it to the case of hypergeometric equation. Let u be a
solution of

u′′ + pu′ + qu = 0,

Consider u = fv,, then

9
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v′′ + (p+ 2
f ′

f
)v′ + (q + p

f ′

f
+
f ′′

f
)v = 0.

Now let f be a solution of p+ 2f
′

f
= 0, then

q + p
f ′

f
+
f ′′

f
= q − 1

2
p′ − 1

4
p2.

In the case of the hypergeometric equation

[x(1− x)
d2

dx2
+ (c− (a+ b+ 1)x)

d

dx
− ab]u = 0,

we have
f(x) = x−

c
2 (1− x)−

(a+b−c+1)
2 ,

and

v′′ +
1

4
(
1− µ2

0

x2
+

1− µ2
1

(1− x)2
+

1− µ2
0 − µ2

1 + µ2
∞

x(1− x)
)v = 0,

where
µ0 = 1− c, µ1 = c− a− b, µ∞ = b− a.

With the notion of Schwarz derivative, we can give a geometric interpretation of

q − 1

2
p′ − 1

4
p2 =

1

4
(
1− µ2

0

x2
+

1− µ2
1

(1− x)2
+

1− µ2
0 − µ2

1 + µ2
∞

x(1− x)
). (4.2.1)

Remark. We regard

f(x) = x−
c
2 (1− x)−

(a+b−c+1)
2

as the integration factor of the original ODE u′′ + pu′ + qu = 0.

2.5 Schwarz derivative of Schwarz map.

Let u(x) be an analytic function in x. The Schwarz derivative of u is denoted by{u; x},
and it is defined by

(
u′′

u′
)′ − 1

2
(
u′′

u′
)2. (4.3.1)

Schwarz discovered the following result:be fundemental solutions of u′′ + pu′ + qu = 0,
and

s =
u2

u1

, (4.3.2)

Then we have

{s;x} = 2q − 1

2
p2 − dp

dx
. (4.3.3)

10
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Proof. If we put u′2 = s′u1 + su′1 and u′′2 = s′′u1 + 2s′u′1 + su′′1 into u′′2 + pu′2 + qu2 = 0.,
we get

2s′u′1 + (s′′ + ps′)u1 = 0,

and

p+
s′′

s′
= −2

u′1
u1

. (4.3.4)

Differentiate the equation of above, and we can get

p′ + (
s′′

s′
)′ = −2

u1u
′′
1 − (u′1)2

u2
1

= −2
u1(−pu′1 − qu1)− (u′1)2

u2
1

= 2q + 2

(
p
u′1
u1

+ (
u′1
u1

)2

)
.

Use p+ s′′

s′
= −2

u′1
u1

again and we can obtain

p′ + (
s′′

s′
)′ = 2q − 1

2
p2 +

1

2
(
s′′

s′
)2.

Since we have q − 1
2
p′ − 1

4
p2 = 1

4
(

1−µ20
x2

+
1−µ21

(1−x)2
+

1−µ20−µ21+µ2∞
x(1−x)

) , we can rewrite

v′′ +
1

4
(
1− µ2

0

x2
+

1− µ2
1

(1− x)2
+

1− µ2
0 − µ2

1 + µ2
∞

x(1− x)
)v = 0

into

v′′ +
1

2
{s;x}v = 0, (4.3.5)

11
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Chapter 3

Calculation of the Zeta
Determinant.

The calculation of the zeta determinant is based on the following identity of Ramanujan.
(In [11] P.87 Entry 30)

Theorem 3.0.1. Let a+ b+ 1 = c+ d, Γ = Γ(a, b; c, d) = Γ(a)Γ(b)
Γ(c)Γ(d)

,and

y = Γ
2F1(a, b; d; 1− x)

2F1(a, b; c;x)
.

then

y′ = − x
−c(1− x)−d

2F 2
1 (a, b; c;x)

. (3.1)

Directly compute the derivative of y, we have

y′ = Γ

∣∣∣∣ 2F1(a, b; c;x) d
dx 2F1(a, b; c;x)

2F1(a, b; d; 1− x) d
dx 2F1(a, b; d; 1− x)

∣∣∣∣
2F 2

1 (a, b; c;x)
. (3.2)

Combine (3.1) and (3.2), and get the following

Corollary. ∣∣∣∣ 2F1(a, b; c;x) d
dx 2F1(a, b; c;x)

2F1(a, b; d; 1− x) d
dx 2F1(a, b; d; 1− x)

∣∣∣∣ = −x
−c(1− x)−d

Γ
(3.3)

Consider the case
a = s, b = 1− s, c = 1,

that is, µ0 = 0, µ1 = 0, µ∞ = 1− 2s. Then ψ (ϕ,resp.), the normalized solution of

H
(0,0,1−2s)
G at 0(at 1,resp.), is

ϕ(x) =
√
x(1− x) 2F1(s, 1− s; 1;x),

ψ(x) =
√
x(1− x) 2F1(s, 1− s; 1; 1− x).

12
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Lemma.

W (ψ, ϕ) =

∣∣∣∣ψ(x) d
dx
ψ(x)

ϕ(x) d
dx
ϕ(x)

∣∣∣∣ =
1

Γ(s)Γ(1− s)
=

sin(πs)

π
.

Proof. Denote 2F1(s, 1 − s; 1;x) by F0(x) and 2F1(s, 1 − s; 1; 1 − x) by F1(x). Since
d
dx
ϕ(x) =

√
x(1− x) d

dx
F0(x) + F0(x) d

dx

√
x(1− x), we have similar form for d

dx
ψ(x).

Then ∣∣∣∣ψ(x) d
dx
ψ(x)

ϕ(x) d
dx
ϕ(x)

∣∣∣∣ =

∣∣∣∣ψ(x) F1(x) d
dx

√
x(1− x)

ϕ(x) F0(x) d
dx

√
x(1− x)

∣∣∣∣+

∣∣∣∣ψ(x)
√
x(1− x) d

dx
F1(x)

ϕ(x)
√
x(1− x) d

dx
F0(x)

∣∣∣∣
= F0(x)F1(x)

∣∣∣∣√x(1− x) d
dx

√
x(1− x)√

x(1− x) d
dx

√
x(1− x)

∣∣∣∣+ x(1− x)

∣∣∣∣F1(x) d
dx
F1(x)

F0(x) d
dx
F0(x)

∣∣∣∣
= 0 + x(1− x)

∣∣∣∣F1(x) d
dx
F1(x)

F0(x) d
dx
F0(x)

∣∣∣∣ .
By (3.3) and the definition of Γ, we get

x(1− x)

∣∣∣∣F1(x) d
dx
F1(x)

F0(x) d
dx
F0(x)

∣∣∣∣ =
1

Γ(s)Γ(1− s)
.

Fianlly, apply the reflection formula of gamma function: 1
Γ(s)Γ(1−s) = sin(πα)

π
, and we

are done.

Now, we apply this lemma into (1.1) to finish the calculation of

Theorem 3.0.2. For a = s, b = 1− s, c = 1, that is µ0 = 0, µ1 = 0, µ∞ = 1− 2s, we

have νi =
√

1
4

+−1
4
(1− µ2

i ) = 0 for i = 0, 1 and

detζH
(0,0,1−2s)
G = sin(πs).

In particular,

detζH
(0,0,0)
G = 1.

Also, for those H
(µ0,µ1,µ∞)
G correspond to E(1

r
, r−1

r
; 1), we see

a+ b =
1

r
+
r − 1

r
= 1 = c,

that is

µ0 = 0, µ1 = 0, µ∞ =
r − 2

r
.

13



doi:10.6342/NTU201701882 

 

Therefore, for r = 3, 4, 6, the zeta determinants of H
(0,0, r−2

r
)

G are

√
3

2
,

1√
2
,
1

2
,

that are the inverse of the constants csc(π
r
) in Ramanujan’s alternative bases [12]

exp(−π csc(
π

r
)

2F1(1
r
, r−1

r
; 1; 1− x)

2F1(1
r
, r−1

r
; 1;x)

)

respectively. The author doesn’t know any theoretical explanation of this coincidence,
it will be welcome if some can tell.

Remark. In a fancy way, we can rewrite detζH
(0,0,1−2s)
G = sin(πs) as

detζH
(0,0,1−2s)
G = s

∞∏
k=1

(1− s2

k2π2
),

by the Euler’s product formula of sine function.
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Chapter 4

Appendix

4.1 Laplacian in polar coordinates of half plane and

Disk.

ds2
H =

dx2 + dy2

y2

4H = y2(
∂2

∂y2
+

∂2

∂x2
)

For simplicity, let us skip the isometry from H to D. And wirte down the metric
and its Laplacian as

ds2
D = dr2 + sinh(r)dθ2,

4D =
∂2

∂r2
+

1

tanh(r)

∂

∂r
+

1

sinh2(r)

∂2

∂θ2
.

Consider
cosh(r) = 2u+ 1,

so u = cosh(r)−1
2

and u(u+ 1) = sinh2(r)
4

. We have :

∂2

∂r2
+

1

tanh(r)

∂

∂r
= u(u+ 1)

∂2

∂u2
+ (2u+ 1)

∂

∂u

4.2 Eigenproblem of Laplacian implies hypergeo-

metric.

For f(u, θ) = f(u) such that

4Df(u) = s(1− s)f(u),

15
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we have

[u(u+ 1)
∂2

∂u2
+ (2u+ 1)

∂

∂u
+ s(1− s)]f(u) = 0

which means

f(u) = 2F1(s, 1− s; 1;−u),

where f(u) is also known as the zero order Legendre functions with −s degree.
On the other hand, if we consider

4Dg(u) = (
1

4
+ s2)g(u),

i.e.

[u(u+ 1)
∂2

∂u2
+ (2u+ 1)

∂

∂u
+ (

1

4
+ s2)]g(u) = 0.

Hence we have

g(u) = 2F1(
1

2
+ is,

1

2
− is; 1;−u),

because (1
2

+ is)(1
2
− is) = 1

4
+ s2and (1

2
+ is) + (1

2
− is) = 1.

Following from our interest on

4DF (x, y) = (
1

4
+ s2)F (x, y),

we give a berifly study on

2F1(
1

2
+ is,

1

2
− is; 1;x) =

∞∑
n=1

(1
2

+ is, n)(1
2
− is, n)

(n!)2
xn

where (a, n) := a(a+ 1) · · · (a+ (n− 1)). By definition we have

(
1

2
+ is, n) = (

1

2
+ is)(

1

2
+ is+ 1) · · · (1

2
+ is+ (n− 1)),

and

(
1

2
− is, n) = (

1

2
− is)(1

2
− is+ 1) · · · (1

2
− is+ (n− 1)).

Thus

(
1

2
+ is, n)(

1

2
− is, n) =

n∏
k=1

[(
2k − 1

2
)2 + s2],

and then

2F1(
1

2
+ is,

1

2
− is; 1;x) =

∞∑
n=1

∏n
k=1[(2k−1

2
)2 + s2]

(n!)2
xn.

There is a beautiful estimate on the coefficients of 2F1(1
2

+ is, 1
2
− is; 1;x), it is given

by my freind Da-wei Yang
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Proposition. ∏n
k=1[(2k−1

2
)2 + s2]

(n!)2
≤ e−(

∑n
k=1

1
k

)+lnn

n
e( 1

4
+s2)π

2

6

Proof. First we observe∏n
k=1[(2k−1

2
)2 + s2]

(n!)2
=

∏n
k=1[k2 − k + 1

4
+ s2]

(
∏n

k=1 k)2
=

n∏
k=1

[1− 1

k
+ (

1

4
+ s2)

1

k2
].

Since(1 + x) ≤ ex, we have

n∏
k=1

[1− 1

k
+ (

1

4
+ s2)

1

k2
] ≤

n∏
k=1

exp(−1

k
+ (

1

4
+ s2)

1

k2
)

= exp
n∑
k=1

(−1

k
+ (

1

4
+ s2)

1

k2
) =

(
exp(

n∑
k=1

−1

k
)

)
exp(

n∑
k=1

(
1

4
+ s2)

1

k2
).

Then by observe
∑n

k=1(1
4

+ s2) 1
k2

is monotone increase to (1
4

+ s2)π
2

6
with the

factexp(− lnn) = 1
n
, we get our result.

Remark. Recall
∑n

k=1
1
k
− lnn −→

n→∞
γ =the Euler constant. Hence for large n, we have

e−(
∑n
k=1

1
k

)+lnn

n
e( 1

4
+s2)π

2

6 ≈ γ

n
e( 1

4
+s2)π

2

6 .

Problem. Can we compute the monodromy group of 2F1(1
2

+ is, 1
2
− is; 1;−u)?

Since compare with 2F1(s, 1−s; 1;−u), which we known it well in sense of Ramanu-
jan’s alternative bases[12], the family 2F1(1

2
+ is, 1

2
− is; 1;−u) is unexplored up to the

knowledge of the author. And from the point of view of eigenproblem of Laplacian of
upper half plane, they may have close or complementary relationship.

17



doi:10.6342/NTU201701882 

 

Bibliography

[1] Brning Jochen and Seeley Robert, The resolvent expansion for second order regular
singular operators, Journal of functional analysis, vol.73, no.2, p.369-p.429,1987,
Elsevier

[2] Lesch Matthias, Determinants of Regular Singular Sturm-Liouville Operators,
Mathematische Nachrichten, vol.194, no.1, p.139-p.170, 1998, Wiley Online Li-
brary

[3] Yoshida Masaaki, Hypergeometric functions, my love: modular interpretations of
configuration spaces, 2013, Springer Science & Business Media

[4] Mimachi Katsuhisa and Yoshida Masaaki, Intersection numbers of twisted cycles
and the correlation functions of the conformal field theory, Communications in
mathematical physics, vol.234, no.2, p.339-p.358, 2003, Springer

[5] Ichikawa Takashi, Teichmller groupoids and Galois action, Journal fur die Reine
und Angewandte Mathematik, vol.559, p.95-p.114, 2003, Walter de Gruyter Berlin
New York

[6] Ichikawa Takashi, Teichmller groupoids, and monodromy in conformal field theory,
Communications in mathematical physics, vol.246, no.1, p.1-p.18, 2004, Springer

[7] Brning Jochen and Seeley Robert Regular singular asymptotics, Advances in math-
ematics, vol.58, no.2, p.133-p.148, 1985, Elsevier

[8] Brning Jochen, Heat equation asymptotics for singular Sturm-Liouville operators,
Mathematische Annalen, vol.268, no.2, p.173-p.196, 1984, Springer

[9] Umehara Masaaki and Yamada Kotaro and others, Metrics of constant curvature
1 with three conical singularities on the 2-sphere, Illinois Journal of Mathematics,
vol.44, no.1, p.72-p.94, 2000, University of Illinois at Urbana-Champaign, Depart-
ment of Mathematics

[10] Kraus Daniela and Roth Oliver and Sugawa Toshiyuki, Metrics with conical singu-
larities on the sphere and sharp extensions of the theorems of Landau and Schottky,
Mathematische Zeitschrift, vol.267, no.3, p.851-p.868, 2011, Springer

18



doi:10.6342/NTU201701882 

 

[11] Bruce C. Berndt, Ramanujans Notebooks, Part 2, 1989, Springer New York

[12] Bruce C. Berndt, S. Bhargava and Frank G. Garvan, Ramanujan’s theories of
elliptic functions to alternative bases, Trans. Amer. Math. Soc. 347, 4163-4244,
1995, American Mathematical Society.

19




