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Abstract

In the thesis, the eignevalue probelm of the Hypergeometric equation(for
short: HGE or E(a,b,c)) is discussed. There are three parts in this thesis.
First of all, | introduce some heuristic backgrounds and motivations of the
eigenvalue problem of HGE. The second part is a survey about the theory
of the HGE. Finally, based on Lesch’s formula of zeta determinant of
Regular Singular Sturm-Liouville Operators, | calculate the zeta
determinant with repect to the Sturm-Liouville form of HGE operator on a
closed interval, by using Ramanujan's identities.

Key words: Hypergeometric equation, Sturm-Liouville form, zeta
determinant, Ramanujan's identities, Regular Singular Sturm-Liouville

Operators,
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Chapter 1

Introduction

1.1 Motivation and main results.

Guass Hypergeometric equation (in this thesis, we call it the Hypergeometric equation)

& f(x)

dax?

x
(1l —x) +(c—(a+b+1)z)——= —abf(z) =0,

x
is a kind of Euler’s Hypergeometric differential equations, and it is a second-order
ordinary differential equation. Here we denote it as E(a, b, ¢) for both the operator and
the equation. The Hypergeometric series

oFi(a,b;c;x) : i

n=1

is one of the solutions of this equation. They appear in many fields of “Exact Science”
from the era of Euler to now.

In this thesis, we ask a question: “How does the operator structure of the Hyper-
geometric equation look like? Can we do its spectral resolutions?” We give a partially
positive answer:“We can do that on the closed interval [0,1].” (For other domain,
see the problem in section 1.1.1 .) In particular, the question and the answer can be
described as in the following dialogues:

“Does any potential application for this spectral resolution exist?” My short answer
to this is : “Why, sir, there is every probability that you will soon be able to tax it.”
(by Michael Faraday,).

The dream hidden in this thesis is an analogue of “from hamonic function to eigen-
function” in the context of Riemannian geometry and Hodge theory. Especially, the
dream can also be considered as the classical philosophy in functional analysis “ker
and eigen” of nice operators deeply involved with geometry and arithmetic, such as
Laplacian operator and, in our case, Hypergeometric equation.

We object is the zeta determinant of a one-parameter family of a regular singular
Sturm-Liouville operator. The closed form of it can be calculated by using the formulaes
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given by Matthias Lesch and a Ramanujan’s formula on the Hypergeometric series that
related to the derivative of the Schwarz map. In case a = b = 5,¢c = 1, the Schwarz
map is the inverse of Modular lambda function:

L1 foo dt
B 2F1(§,5 Ll—2) U \ie1e(0-w)
= T di :
2y 1 t(t—1)(t—x)
where our regular singular Sturm-Liouville operator:
d2
. a(a)

da? " 22(1 —x)?

is the Sturm-Liouville form of the Hypergeometric operator (and the associated equation
is called the Sturm-Liouville form of the Hypergeometric equation):

H(Mo7u17uoo) — d_2 + 1((1 - Ng) + (_1 + :u(2) - :u% + ,ugo)a: + (1 - :U“go)x2)
¢ dz? 4 22(1 —x)? ‘

For classical Laplacian operator A of a compact Reimannian manifold M, we defines
the zeta determinant by

det A == exp(—(x(0)),
where the Laplacian A has the discrete spectrum 0 < A\; < Ay---, and we define the
spectral zeta function of A by
1
— ; N

The absolute convergence of (a(s) on {Re(s) > o} (for some o) depends on the geom-
etry of M (c.f.Weyl asympotic formula). Moreover, We can use Mellin transform by the
apriori estimate of the trace of heat kernel of A: Z _, exp(—At) and the identity

o0

Z / tSIZeXp —nt)d

to obtain the analytical continuation of (5 at s = 0, so the (/,(0) and det A are well-
defined.

When the coefficient of the operator is smooth on whole domain, the estimate of it
heat kernel is relatively easy. However, when the coefficients of operator have strong
singularities in the domain, such as —% — ﬁ on [0, ) for any o > 0, the foundation
of the study of the heat kernel need to be reconstructed. One of the fundamental work
on this is the “singular asymptotics lemma” of Bruning and Seeley, see [7](see also [1]).

On the other-hand, the difficulties of evaluation of the zeta determinant of an opera-
tor may be regarded as the ignorance of the exact form of eigenvalues and eigenfunctions.

However, in the case of regular singular Sturm-Liouville operators

d? a(z)

L= 4 2
dx? * 22(1 — x)?
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on [0, 1](where a(z) is a smooth function defined on the cloesd interval [0, 1]), Lesch
gives a clear expression of the zeta determinant via only the a(0),a(1) and the pair of
normalized solutions of L. For the whole details, we refer the readers to the papers of
Bruning-Seeley’s[7] and Lesch’s [2].

The Lesch’s formula of the zeta determinant is

Theorem 1.1.1. det, (L) = exp(—¢;,(0)),

_ TW(, )
detC(L) N vt (v + D)1y + 1) (1.1)

where Y (p,resp.) is the normalized solution of L at 0(at 1,resp.), vy = \/i +—1(1— pd)
(1, 1, resp.), Wb, @) = vips — pipa=the Wronskian of 1, ¢.

Based on this, a particular case of the main result of this thesis is

(0,0,0)

detCHG = 1.

1.1.1 Motivation

I start this study since my advisor Chun-Chung Hsieh asked Masaaki Yoshida: “Why
you study Schrodinger equation?” in the lectures of Yoshida on his lovely book <Hyper-
geometric Functions, My Love> (see [3]) invited by Chang-Shou Lin in the autumn of
2014. If my understaning is correct, Yoshida has not considered the term “Schrodinger
equation” in his lecture ever. In fact, Yoshida is considering the normal form(it this
this we call it Sturm-Liouville from) of Hypergeometric equation at that time. For me,
however, the question of Hsieh is not totally a nonsense. I dream on this diection, if
the Hypergeometric equation have discrete spectrum

=M<\ < <<}
and assign the form the spectrum, we can see the eigenspaces
Ey ={g € F(CP'\ {0,1,00}) : Hag = Mg}

of Hg = H(GHO’”““"") are dimension two. (Here F(CP'\ {0,1,00}) is a unknown function
space that we want to find it but not success yet.) Therefore, we may get a series of linear
monodromy representations if we can do analytic continuation for the eigenfuctions,

pr: T (CP'\ {0,1,00}) = GL(E}) = GLy(C).
Formally, we have

p:m(CP'\ {0,1,00}) = GL(ED Ei) = GL&(C),
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by using the naive direct sum of the monodromy matrices. One of the intention of the
author is to try to use this hypothetical construction to study the Belyi embedding

Gal(%) < Out(m (CP'\ {0,1,00})),
and the graded Grothendieck-Teichmuller Lie algebra. The beliefs of the author are
based on the deep-interconnections between the Hypergeometric function and the con-
formal field theory [1].And the recent work of Takashi Ichikawa: [(],[5], shows that
there is a rigorous relation between Conformal theory and Grothendieck-Teichmuller
lego game, this work is on the same line of the beliefs of the author.

However, this dream is still in the air. It has no any concrete result yet. As an
opportunity and challenge, we use the spectral resolution of regular singular Sturm-
Liouville operators in this thesis. For example, the spectral resolution on the domain
of H¢ is still not clear. Hence, we use a framework over the closed interval [0, 1]. There
is a question: how would the eigenvalue or eigenfunction change when the domain are
replaced as CP' \ {0, 1, 00}.

So here we have a challenge:

Remark 1.1.2. Can we find a functional space that allow us to do a spectral resolution
of Hg over CP'\ {0,1,00}? Which one is a “suitable” functional space?

1.2 Heat Kernel and Mellin Transform in the Case
of Riemann Zeta.

. 2 .
The eigenvalues of —-L; over 5 are {n?},cz. That is,
2
o d einx — n2€in2
dx?

We see {€"*},,cz is the set of eigenfunctions.In fact, it forms an orthonormal basis of
LR C).

LAl
The layout below is taken from <A geometric glance at zeta functions, L-functions,

and automorphic forms >, by Ken Richardson.

1.2.1 Mellin Tranform

First of all, as Riemann did, we turn our subject into an integral:

Lemma. -
A0 = —/ tLexp(—At)dt,
0

for A > 0.

4 doi:10.6342/NTU201701882



Proof. [t~ exp(—At)dt = A [ 5L exp(—u)du = AT (s) 0

—1
t=u A 0

Corollary.
1 o0
A;S:—/ 57N Cexp(—Ant)dt
2Ty 2

and

2Crie(2s) = Z no* = ﬁ/ooo 51 Z exp(—n’t)dt

neZ\0 n€Z\0

1.2.2 Heat Kernel.

We observe
1+ Z exp(—n’t) = K(z, x,1).

where K(z,y,t) is the heat kernel of S

Z exp(—n?t)e™ e =1 42 Z exp(—n?t) cos(n(x — y)),

neL n=1

K(z,x,t) is the trace of heat operator. That is, K(x,z,t) = Zp p, where p is the
eigenvalue of heat operator K;.

We recall some facts about the heat equation(operator). Our heat kernel is the
fundamental solution for the following problem onS*:

g 7

(a — @)K(w,yﬂf) =0,t>0

Apply the defintion of §(x — y) (the Dirca function), we can solve the following
initial condition problem:

o 02

limug(r,1) = f(z).

That means (and also justify the “kernel” in the name):

/ Kz, y. )£ (y)dy
St

is the unique solution for the problem. That is,

wet) = [ Ko 05wy

5 doi:10.6342/NTU201701882



We can check this fact by applying PH&K(SE, y,t) = d(z — y). uniqueness can be derived
—
with the fact: heat operator K; is well defined:

K, : L*(S') — C™(SY)

[ uy.

In the case of S!, we can obtain the closed form of the eigenvalues of K since
we knew an explicit expression of an orthonormal basis in L?(S') and how the heat

operator K, acts on it: 4 ‘
Kt(ezn:p) — eXp(—th)em‘”.

Therefore, we get the trace formula which we claim in the beginning;:

Z exp(—n’t) = Tr(K;)

ne”L

Remark. In some papers or books, K; may be witten as e~“!, which the A is the
Laplacian operator on a Riemannian manifold (M, g).

1.3 Some Backgrounds

The link (up to day is still unfinished) between the regular singular Sturm-Liouville
operators and the Hypergeometric equation can be summerized by a word: conical

singularity. A basic example is —% — ﬁ. It is the radial part in the polar coordinate
of the Laplacian of R2. In [1],[7],[3], the operator

>  a(x)

de? 2?2’

where a(z) is smooth on [0, 00) with a(0) > =! which has been studied and motivated
by considering the Laplacian on “manifold with an asymptotically conical singularity
as the model. For the detail we refer to their papers.

In this thesis, we provide a new example of this direction:

d? 1,1 1 1

Hel0.0.0 =~m ~ 1@ Y o T a0

It is a Sturm-Liouville form of the Hypergeometric equation

11 d*z dz 1
E-,=1):z(1l—2)-—+(1—-22)——-2=0 1.2.1
(3D ial—n) s+ (1 -20) 7 -2 =0, (121)
The necessary explanations and backgrounds of this operator are the main ingredient

of this thesis. Hg(0,0,0) has strong parallelism with —% — ﬁ. Moreover, we will

6 doi:10.6342/NTU201701882



see Hg(0,0,0) may be called the hyperbolic version of —% — ﬁ,
x)% +(c—(a+b+ l)x)% of hypergeometric equation is the radial part in the
polar coordinate of the Laplacian of hyperbolic plane. (See Appendix)

And, not only the special case E(%, %; 1), but also this Ramanujan identity are used
in the studies of the metrics of with three conical singularities on the 2-sphere of con-
stant curvature. For example,[9],[10]. Moreover, the relation between hypergeometric
function/equation and the Schwarzian derivative of Schwarz map plays the dominant
role of their works. However, the rigorous formulation of this link between the analysis
of heat trace of hypergeometric equation and the geometry of the metrics with three
conical singularities on the 2-sphere of constant curvature is still totally open. Finding
a good functional space over 2-sphere minus three point may be regarded as the ground
of the formulation of this propose.

since the part (1 —

7 doi:10.6342/NTU201701882



Chapter 2

A Survey of the Hypergeometric
Equation

We will give equivalence among hypergeomteric series, differential equation, and integral
representation, under certain conditions of parameters.

2.1 Hypergeomteric Series.

Here we define Hypergeomteric series by

oFi(a,byc;x) = Z ’ngn

n=1 ’n

+n—1) = Fgﬁ’(z)" ) Sometime

where ¢ # 0,—1,—-2, -3, ..., and (a;n) :=a(a+1)---(
we denote (a;n) = (a),. The radlus of convergence is one
integer, in which case the series is a polynomial):

a
(unless a or b is a nonpositive

An+1) (a+n)(b+n) o

Alm) ~ (erm)(Itn) o

Now we have a holomorphic function oF(a,b;c;x), and we may study it with the
differential equation which it satisfies.

For this, recall the fact described at the first chapter for Euler operator:f := x--
we have

d
dx’

6 -2 =\,

Fomally speaking, x*and ) are the eigenfunction and the eigenvalue of the operator 6.

2.2 Hypergeomteric Equation.
We can check 2F)(a,b;c;x) is a solution of (a +60)(b+60)f — (c+0)(1+60)2f =

] doi:10.6342/NTU201701882



Proposition. E(a,b;c) is equivalent to
1
(a+0)(b+0)— (c+0)(1+ 9)5

Proof. Let f be a test function, then we check the claim in two part:

(a+0)(b+0)  f=abf +x(a+b+1)f +2*f";

(e +0)(1+0)1] - f = [(e+O)(1 +6)] - (=)

X

_ [c+(1+c)9+92]-(if) —of taf”
]

2.3 Integral representation of Hypergeomteric se-
ries.

Proposition 2.3.1.

c—a

JFy(a, b c: ) — % / (=1 (1 — )91 (1 — t) b,

for R(c) > R(a) > 0.
The proof is a computaion which uses the following identities.

_ ) bin n 1, _ I'(p)T
Lemma. (1 —tz)™" =", ﬁ(m) and [; 711 — ) ldt = _;gg+§5>

Proof. To prove our propostion, we just need to observe that % =ala+1)---(a+

n — 1) = (a;n) and the summation in the lemma can interchage with the integral. [

2.4 Projective Equivalence implies Sturm-Liouville
form of Hypergeomteric equation.

Here, we show how to change a second order ordinary differential equation into it’s
Sturm-Liouville form, then apply it to the case of hypergeometric equation. Let u be a

solution of
u” + pu' + qu =0,

Consider v = fv,, then

9 doi:10.6342/NTU201701882



v+ (p+27/)v’+ (q+p7/ + %)v =0.

Now let f be a solution of p + 2’% = 0, then

f/ fl/ 1 1
q+p?+7=q—§p’——p2.

In the case of the hypergeometric equation

[z(1 — ZB)—2 +(c—(a+b+ 1)x)i —abju =0,

dx? dx
we have
f@)=a3(1-a) 5
wnd po L l—pg 1=y 1= — pf 4l
U+Z< x? +(1—ac)2+ (1l —x) =) =0,
where

o=1—c,py =c—a—>b, e =b—a.
With the notion of Schwarz derivative, we can give a geometric interpretation of

1, 12:}(1—u3+ 1 — +1—u3—u%+u§0)
4% 2?2 (1—x)2 z(l —x) '

(4.2.1)

Remark. We regard

(a+b—c+1)
2

fla)y=a"3(1—x)"
as the integration factor of the original ODE u” 4 pu’ 4+ qu = 0.

2.5 Schwarz derivative of Schwarz map.

Let u(x) be an analytic function in . The Schwarz derivative of u is denoted by{w; z},
and it is defined by

u// 1 u//
() -5

u

7)2. (4.3.1)
Schwarz discovered the following result:be fundemental solutions of u” + pu’ + qu = 0,
and

U2
= — 4.3.2
=2 43
Then we have . J
P
cxl =2¢ — —p* — =, 4.3.3

10 doi:10.6342/NTU201701882



Proof. 1f we put uy = s'uy + su} and uy = s"u; + 2s'u} + suf into uf 4 puly + qus = 0.,

we get

and

2s'uy + (8" + ps')us =0,

1 !
u

=21
Uy

S

P+ (4.3.4)

Differentiate the equation of above, and we can get

wd = @) n(—puh — ) — ()

/ S /
—)' =-=2 = -2
p + ( S/) U/% U/%
) u
=2q+2 (p—l + (—1)2> .
Uy Uy
Use p + Z—/,/ = —22—3 again and we can obtain
1 1 1 S”
/ - /: 2 .2 (. 2.
PGy =25t 5(5)
O
Since we have ¢ — ip' — 1p? = }1(1253 + (1:5)%2 + l_ufai?“g") , We can rewrite
11_,u2 1_M2 1_'u2_,u2+lu2
" 0 1 0 1 00
- -0
! +4( x? (1—x)2+ z(1—x) Jv
into ]
v+ 5{5; z}v =0, (4.3.5)

11 doi:10.6342/NTU201701882



Chapter 3

Calculation of the Zeta
Determinant.

The calculation of the zeta determinant is based on the following identity of Ramanujan.
(In [11] P.87 Entry 30)
a)

Theorem 3.0.1. Leta+b+1=c+d, T' =T(a,b;c,d) = %7and
_ p2file,bidi1 - @)

2F1(a,b; ¢ )
then
/ x—c(l B x)_d
S S A— 3.1
YR oy
Directly compute the derivative of y, we have
2F1(a7b; C,.CU) %2F1(a7b; C,ZL’)
2Fi(a,byd;1—2) L 5F(a,b;d; 1 — )
y =T 7 e : (3.2)
o F¢(a,b; c; x)
Combine (3.1) and (3.2), and get the following
Corollary.
2F1<Cl,b; G l’) %2F1<a7b; G (L’) _ _‘Tﬁc(l _x)id (3 3)
oFi(a,b;d;1— ) LyF(a,b;dy 1 — )| r '

Consider the case
a=s,b=1—s,¢c=1,

that is, po =0, 1 =0, piee = 1 — 2s. Then ¢ (p,resp.), the normalized solution of
Hg’o’l_%) at O(at 1,resp.), is

p(x) = Va(l —x)2Fi(s,1 — 5515 2),
(x) =+x(l—1x)9F1(s,1—s;1;1 —x).

12 doi:10.6342/NTU201701882



Lemma.

1 sin(7s)

_ (@) f(a) =
W(, p) = ‘so(l’) Zizgo(x) P(s)P(1-s)  «

Proof. Denote oFi(s,1 — s;1;x) by Fy(x) and oFy(s, 1

. = \/$(1—x)%Fg(m) —FF()(LB)%

Then
'¢(x) Ly(x) :'1/1(56) Fy(x) /(1 — )+‘¢(I) (1
o) L) = |ole) Fole)Ly/ali= (x) a(l
v | VEAD) d—\/ o |R@

=0+2z(1—2x) ?

By (3.3) and the definition of I", we get

TR @) £R@)| T TEIT - s)

—s;1;1 — x) by Fi(z). Since
z(1 — z), we have similar form for -L¢)(z).

sin(ma)

Fianlly, apply the reflection formula of gamma function: ® L
are done.

Now, we apply this lemma into (1.1) to finish the calculation of

Theorem 3.0.2. fFora=s,b=1—35, ¢

have Vi:\/}l—i-—}l(l—u?):Ofori:O,l and

et HO172) — gin(rs).

In particular,

detCHg’O’o) = 1.

Also, for those H(“0 Hko) correspond to E(L, =%1), we sce

1 -1
a+b:—+r =1=cg,
r r
that is 5
r —
po=0,p11 =0, o = "

13

T(s)T(1—s)

=1, that 1s o =10, p; =0

, and we
m

™

, Moo = 1 — 25, we

doi:10.6342/NTU201701882



07 r—2
T

Therefore, for r = 3,4, 6, the zeta determinants of H(GO ’ are

that are the inverse of the constants csc(Z) in Ramanujan’s alternative bases [12]

T o Fi(3, =11 —a)
oxp(—mese( ) A=

PR

)

respectively. The author doesn’t know any theoretical explanation of this coincidence,
it will be welcome if some can tell.

Remark. In a fancy way, we can rewrite detCHg) 0172) sin(7s) as
det HYO ) = sﬁ(l - )
G - k272’
k=1

by the Euler’s product formula of sine function.

14 doi:10.6342/NTU201701882



Chapter 4

Appendix

4.1 Laplacian in polar coordinates of half plane and

Disk.
dz? + dy?
2
dSH = T
0? 0?
.2
A=y (_ay2 + —8352)

For simplicity, let us skip the isometry from H to . And wirte down the metric
and its Laplacian as

ds? = dr® + sinh(r)d6?,

N\ = 6_2 + 1 2 + ;8_2
7 9r2 " tanh(r) or sinh?(r) 062

Consider
cosh(r) = 2u + 1,
SO U = % and u(u+1) = %. We have :

02 1 0 02 0
or? i tanh(r) Or = ulut UW +(2ut 1)%

4.2 Eigenproblem of Laplacian implies hypergeo-
metric.
For f(u,0) = f(u) such that

Apflu) = s(1 = s)f(u),

15 doi:10.6342/NTU201701882



we have )

[u(u + 1)% + (2u + 1)% +s(1—9)]f(u) =0

which means

f(u) = 2F1(s,1 = s;1; —u),

where f(u) is also known as the zero order Legendre functions with —s degree.
On the other hand, if we consider

1

Boglu) = (5 + 5*)g(w),

1.e.

2

[u(u + 1)% + (2u + 1)8% + (;1 + 5%)]g(u) = 0.

Hence we have ] ]
g(u) = 2F1(§ + s, 3~ is;1; —u),
because (3 +is)(5 —is) = 1 + s*and (5 +1is) + (3 —is) = 1.
Following from our interest on

AoF(e,y) = (5 +5)F(,y),

we give a berifly study on

1 1 Z(%ﬂ's,n)(%—is,n) .
T

2F1(—+2'5,§ —is;1;2) = ()2
n=1

2
where (a,n) :==a(a+1)---(a+ (n —1)). By definition we have

(1+is,n):(l—i-is)(l+is+1)---(l+z’s+(n—1)),

2 2 2 2
and
1 1 1 1
(§—is,n) = (5—2'3)(5—is+1)---(§—z’s~l—(n—1)).
Thus
1 1 S 2k —1
(5 + iS,n)(§ —is,n) = ;HKT)Q + 57,
and then [ (22 1 g
L TR < (G Rl e
2F1(§ + s, 5 18 Liz) = ; (a2 x".

There is a beautiful estimate on the coefficients of QFl(% +1s, % —is; 1;x), it is given
by my freind Da-wei Yang
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Proposition.
n 1
Hk 1[( 3 ) _|-3] < e_(Zkzl E)-Hnn 1+52)7’6—2

(,
(n!)? - n “
Proof. First we observe
G [+ I —k+5+9  ppp 1. L o
e =TI -+ G+l
(nl)? (T, #7 =5+ G5
Since(1 + x) < e, we have
[I0- 2+ G+ strhr < [Tewt + G+l
k4 k2 — k4 k2
k=1 k=1
B —~ 1 1 , 1 =1 ~ 1,01
= oDt >k2>—(exp<k:1 k))exp<;<4+s>k2>

Then by observe Y, (5 + s%)75 is monotone increase to (1 + s )—2 with the

factexp(—Inn) = £, we get our result.
[

Remark. Recall ;| 1 —Inn — ~ =the Euler constant. Hence for large n, we have
n—o0

—(Xh=1 %)Jrln" 2 2
€ G+ Lol

n

S

Problem. Can we compute the monodromy group of 2F1(% + 15, % —is;1;—u)?

Since compare with o Fi(s,1—s;1; —u), which we known it well in sense of Ramanu-
jan’s alternative bases[12], the family 2F1(% +1s, % —1s;1; —u) is unexplored up to the
knowledge of the author. And from the point of view of eigenproblem of Laplacian of
upper half plane, they may have close or complementary relationship.
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