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中文摘要  

根據聯合國環境規劃署 UNEP 估計，建築物所消耗的能源和釋放的溫室氣體

占全世界能源總消耗量的 40%左右，因此世界各國均視建築節能為減少溫室氣體

排放的一個重要手段 [1]。其中我們關注的是提高能源效率—特別是電力—以減

少電力浪費。由於 BAS 整合了各種電器控制，溫濕度、照明、頻率、水池流量、

二氧化碳濃度等等，這些大量的歷史紀錄，使統計為導向的數據挖掘方法也因此

能夠應用在建築能源預測上。能源管理者可藉由預測結果進行能源控制。 

本研究在一部份提出了用在電量預測的特徵轉換方式，以及預測的架構。首

先透過資料視覺化的方式分析使用者行為，並從資料視覺化的結果及文獻篩選進

一步挑選適合的作為訓練資料的感測器，最後以 Support vector machine（SVR）

及線性加權回歸（WLR）進行用電量擬合。 

 第二部分為應用深度學習模型再用電量的預測。由於加權回歸模型與 SVR 須

進行一層又一層的篩選，才能找出有關連的參數、特徵才能得到較佳的結果，但

篩選過程中，不同篩選方式難免有疏漏或是難以描述的部分，因此我們提出了幾

種不同的架構，能夠更全面的採用更多感測器的資訊，也能在少數幾個感測器受

擾動時能夠避免模型完全失去預測能力。 

 本研究提供了更佳準確及彈性的架構，並有一個清楚的方法及流程作為參考，

讓不同樣本數大小的資料集可以依據資料的特性選擇適合的預測架構。以達到預

測的目的。 

 

 

 

 

 

關鍵字：智慧建築用電量預測、短期負載預測、機器學習、時間序列資料 
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ABSTRACT 

 

 According to UNEP, the energy consumption and greenhouse gas discharged by 

buildings are responsible for about 40% of the global energy used. Thus, the energy 

efficiency is an important mean of reducing greenhouse gas emission. Among the 

improving methods, we put our attentions on energy efficiency to cut energy waste, 

especially on electricity consumption. In the past decades, the rate of buildings with 

Building Automation System (BAS) is increasing. BAS integrates electrical consumption, 

temperature, humidity and so on, which depends on the building. With various kinds of 

record, BAS allows data mining techniques to support decision making.     

The first part of our research developed an approach of feature extraction and a 

prediction structure which will be utilized in energy forecasting. To begin with, we 

analyzed user behavior by data visualization. Next, we selected the appropriate sensors 

to obtain training data through observing the results on the last step and literature reviews. 

At the last, we apply support vector regression (SVR) and weighted linear regression to 

train a regression model. 

In the second part of this study, we presented some deep learning structures to 

forecast electricity consumption. In the last part of our research, we combined some ways 

to select proper sensors. In addition, we made multiple steps to train a better model. To 

solve difficult problems such as that features are hard to describe, we integrated Deep 

Learning in this chapter. 

To sum up, we build a flexible and accuracy architecture which different BAS data 

and field can be applied in. In additional, we also provide a clear method and process as 
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an example, so that people can select the appropriate forecasting architecture based on 

the characteristics of their data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keyword: Smart building electricity forecasting, short term load forecasting, machine 

learning, time series data 
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第1章 緒論 

1.1 研究背景與動機 

根據聯合國環境規劃署 UNEP 估計，建築物所消耗的能源和釋放的溫室氣

體占全世界能源總消耗量的 40%左右，因此世界各國均視建築節能為減少溫室

氣體排放的一個重要手段 [1]而建築能源管理也隨之成為日趨重要的研究議題。

我國建築能源管理的策略 [2] 從早期建立使用者習慣（宣導隨手關閉電源）開

始，歷經 1990 年代鼓勵更換高效率器具（訂定耗能標準）、2000 年代個別系統

效率運轉最適化（系統整合與調整）到 2010 年代的全棟系統運轉最適化（智慧

化建築能源管理系統），建築能源管理已進入高節能效率的智慧化時代。 

目前建築能源管理系統（Building Energy Management System，BEMS）運

作的主要概念如圖 1 目前建築能源管理系統之運作概念所示，乃是透過收集建

築物的能源使用數據，以數據監測判斷耗能原因，而後進行設備更新或調整管

理模式來節約能源使用，達成減少建築能耗的管理目的，其中用以分析計算的

數據大多僅涵蓋與能源使用直接相關的資料。 

 

圖 1 目前建築能源管理系統之運作概念 

另一方面，在現代化的建築大樓，特別是新落成的公共建築，為了達到同

時控制燈光、空調設備、電梯機電設備，並整合多項及時控制，因此建築自動
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化控制系統 Building Automation System（以下簡稱 BAS）的普及率，在各國間

有逐年上升的趨勢。上述原因使得人們開始能夠取得更多元廣泛而大量的建築

環境數據，透過人、機器、環境、系統間的串連、溝通與互動，能源消費與能

源使用的方式將有望真正地達到智慧化管理，而帶來建築能源使用效益的大躍

進。英國策略效率相關顧問公司在近期的報告也顯示了，若歐洲建築行業採用

先進的建築自動化控制系統，有機會在 2028 年以前節省 22%的能源量 [3]。 然

而現在 BAS 的實際狀況卻是場域的複雜性、特殊性裝設的 BAS 各有不同，且

管理者欠缺良好的技術與工具，導致 BAS 數據在現在的用途只有簡單的資料分

析，例如歷史數據追蹤、平均用量改變等等 [4]。  

例如在 2011 年，微軟發布了一份智慧能源建築白皮書（Energy-Smart 

Buildings Whitepaper） [5]，微軟結合能源管理顧問公司 Accenture 與美國能源

部 Lawrence Berkeley 國家實驗室，共同揭示應用辦公物業巨量資料分析辦公大

樓能源管理上的效益。在微軟的試行計畫（pilot program）中，微軟將其智慧管

理判斷系統導入 13 棟建築物進行實驗改造，在不須翻修改造既有建物基礎設施

的前提下，以數據分析改變了辦公物業的管理模式。上述模式所帶來的效益為

降低建築物每年的能源消耗 6%~10%、延長建築物資產的使用壽命並提升工作

效率與減少碳排放量。 

上述微軟的經驗是一個成功的數據應用案例，讓我們看見應用數據分析在

打造新能源管理解決方案上的巨大潛力。微軟在此計畫中，用以分析的數據除

與能源使用直接相關的資料外，還包含：企業內部數據、公共領域（public 

domain）開放數據及使用行為數據等。可惜的是，目前國內產業界對物聯網與

大數據的能源管理應用大多從數位資料處理所需之硬體設施出發，將資源投入
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蒐集、儲存、連結資料與系統整合的研發，並致力於資訊設備、感測器、控制

器等硬體製造，實際跨入資料處理分析與服務應用的企業較少。 

1.2 文獻回顧 

1.2.1 用電預測需求 

辦公建築管理者在管理建築系統上往往是朝著減輕維修負擔以及減少開支

的方向努力，其中提高能源效率是最直接能夠減少開支的方法。提高能源效率

—特別是電力—的方式包含減少電力浪費，節省能源的方式包含透過不規則的

使用偵測、觀察減少能源浪費、改變不適合的運行調度排程等等，其他還有高

峰負荷管理，藉由減少尖峰用電量一方面能降低備載負擔 [8]，另一方面也能

減少電力花費，若是對用電控制掌握度提高，還能夠配合時間電價以及蓄能的

節能方式。因此最耗能的 HVAC 系統成為了最佳化的主要目標 [9]。 

Fan, C. et al. [11]的研究指出，建築能源的預測可用來改善建築的能源效率，

像是錯誤偵測及診斷、配合智慧電網的管理需求，因此近幾年能源消耗相關的

預測引起了許多相關業者特別的注意。其次，Marino, D. L., Amarasinghe, K., & 

Manic, M. (2016).表示，在有智慧電網管控的區域或是簽訂契約容量的建築大樓，

準確的能源預測能夠減少對管理者對未來的不確定性。由於 BAS 整合了各種電

器控制，溫濕度、照明、頻率、水池流量、二氧化碳濃度等等，這些大量的歷

史紀錄與即時測量值，統計為導向的數據挖掘方法也因此能夠應用在建築能源

預測上，例如混合類神經網路與分類分析演算法以預測每日的用電尖峰[13]、

以及其他較耗能例如 HVAC 的使用量預測 [7]、用電量的錯誤診斷 [14][15]等。 
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用電量的預測是一個困難且複雜的問題。用電量的預測，涉及了建築材料、

人員流動[9][10]、人員使用、天氣狀況、時間長度…等，因此用電需求的預測

是一項困難的挑戰。建築能源消耗量的預測根據預測的時間範圍被分為短期、

中期、長期三個種類[16]，短期為一個小時之後到一週之間、中期預測為一週

至一年而長期預測為一年以上。根據不同的決策目的需要不同的預測時間長度，

而短期的時間預測即可滿足建築管理人員在電力上的調配。 

1.2.2 現有預測方法 

電量的負載預測有許多方法，從數據進行預測的文獻中預測方式可分為回

歸模型、時間序列模型（ Autoregressive integrated moving average ，簡稱

ARIMA）、機器學習等等。以資料驅動的方式以機器學習為主，包括預測建築

短期電量負載的模型有之向量回歸 Support vector machine（SVR）、類神經網路

（ANN）[19][20]、深度學習架構（Deep Learning）等。 

SVR 為 1995 年 Vapnik 發展出來處理回歸問題的演算法，SVR 能有效率地

處理非線性的問題[11]。相關做短期負載研究的包括 De Wilde, et al. [17]以模擬

器產生的資料預測電力負載，Kavousi-Fard, et al. [18]以伊朗五個不同城市 2007

年三月 21 至 2010 年 2 月 20 日，取樣率為一日的資料進行預測。 

過去因 BAS 資料並不常見另一方面有隱私的考量，因此上述進行短期負載

預測的作者所採用的資料來源部分是由模擬器產生、部分僅限於量測辦公大樓

的電力資料。Chae, Y. T. et al. [20] 使用 ANN 的方式挑選了 BAS 內的九個相關

感測資料作為預測，效果甚好。然而，本研究取得之資料，與上述作者取得之

BAS 資料集涵蓋感測器多有不同，故以相同演算法套用至本研究取得之資料集，
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卻效果不彰。DNN 的部分類似的則是有 Fan, C. et al., [24] 以在香港的 BAS 資

料以三層隱藏層的 DNN 模型預測 24 小時之後的冷卻水使用量。                            

1.2.3 電量數據特性 

因本研究探討使用情形較為複雜的商業建築大樓，因此在回顧用電數據特

性時也一併參考了其他非商辦大樓場域的預測電力負載預測的研究。目前 BAS

並沒有統一的規格或範本，且不同的建築的侷限與特性不同，相似功能的建築，

在 BAS 系統上安裝的感測器可能相仿，例如商辦大樓與大學實驗室不同，對於

冷卻系統的要求較為嚴格、安裝更多的感測器。 

家戶的用電量預測因有著相似特性，也是本研究的重要參考對象。各國政

府為節省傳統電表抄表人力及發展需量反應等的考量，積極地推動家戶智慧電

表的裝設，因此才有了愛爾蘭 [21]與澳洲 [22]的家戶電力開放資料。由於家戶

人數相對商辦大樓單純許多且資料較易取得，因此關於家戶的電量負載比起商

辦大樓有更多的文獻探討，包括如何預測家戶的用電量以及評估家戶的特性 

[23]等，在本研究抽取特徵時也有一定的參考。例如，家戶或是商辦大樓的電

力消耗得主要貢獻都是空調系統，其次為人員的活動情形影響電力消耗，而這

些都是本研究在之後模型的建立依據。 

1.3 研究目的 

辦公建築管理者在建築管理上通常是朝著減輕維修負擔或減少開支的方向

努力，其中，用電掌握度提高是直接能夠減少開支的方法。用電掌握度提高能

夠使管理者進行高峰負荷管理、加入電力市場或是配合時間電價等等，這些都
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是能夠直接或間接地節省能源或是減少花費。 

在提高用電掌握度方面，對管理者而言，提前知道 24 小時工作時間的用電

量，便有助於大樓管理者預先安排用電的調度排程，準備相應決策。另一方面，

由於 BAS 數據挖掘在近年來已被廣泛利用在機器學習預測、偵錯與診斷、控制

系統最佳化[6][7]，因此，我的研究目標為，為了使管理者能以BAS資料提高用

電掌握度，而以機器學習預測建築自動化控制系統上的 24 小時短期負載。 

進行電量預測可分為方法上及現況，兩方面的挑戰。首先，在現有方法的

部分，若是使用 Linear Regression、SVR 的方式，需要降低維度或是特徵抽取，

然而取特徵的方式目前是沒有固定方法，所以不能確定在找參數的過程中，一

定能找到關鍵的特徵。 

在現況上，不同場域在裝設 BAS 的時間不同，因此累積的資料量大小也不

同，那麼不同大小的資料，分別適合使用什麼方式，也是本研究會探討的問題。 

1.4 論文組織 

 本論文後續內容簡述如下： 

第二章為資料特性介紹，由場域描述開始，並開始進行分析流程以限縮感

測器範圍。 

第三章及第四章為兩種電力預測方法的實驗。首先，第三張全篇以 SVR 及

線性回歸模型為主。以回歸模型（原始資料）建立一個準確性的 baseline，接著

透過特徵模型的實驗超越回歸模型建立的準確率 baseline。 
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第四章以目前深度學習應用在 BAS 資料上的困境，接著導向不同的架構並

討論這些實驗結果。 

 第五章為論文討論與總結，提出本研究之結論，並針對未來數據分析為基

礎的 BAS 控制系統提出一些發展方向。 
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第2章 資料描述與分析方法 

2.1 資料與場域描述 

本研究與獲得綠建築 LEED 認證面積佔台灣 48% ，共 2,129,034m2 的台灣

積體電路公司合作，取得位於新竹科學園區的台積電六期辦公大樓六樓（配置

如圖 2 P6 廠六樓配置平面如圖）的 BAS 數據，數據記錄日期從 2016/6/19 至

2017/1/17 日為止，感測器的取樣率整理後為每一小時一筆。 

 

圖 2 P6 廠六樓配置平面如圖 

 六樓平面圖上側區塊皆為辦公區與會議室區域，上側區塊也有配置少數會

議室，而空調送風系統裝設於下側區塊，辦公室有多個 VAV，集中是空調送風

系統由管線分配冷風經由 VAV 至辦公室各區塊。 
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 感測器有十多種，分別為溫溼度、水池高度、電力量測、出風溫度、冰水

閥開度、風管靜壓、頻率、CO2、風門開度、風量、露點，佈設在場域各處。 

除此之外，另取得 2017/2/13 至 2017/2/20，共計一週、每小時 P6 及 P7 廠之總

人數（如圖 3，x 軸為一天中不同的時刻，y 軸為 2/13/2017 起，星期一至星期

日人員數量，紅色表人數較多，藍色則為人數較少。） 

P6 廠與 P7 廠有連通道，故人員可相互移動。雖然無單一樓層之計數，但根據

管理者描述，兩廠每樓的人員行動都是相似的，因此我們假設樓層人員對於時

間的分布比率大致等同於總人數（圖 4），之後每當計算上需要使用人員分佈

資料，例如：需要週間星期一九點的空間人數比率，則取一週週間九點的平均

人數除以大樓人數的最大值，依此類推。 

 

圖 3 每日人數分布情形 
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圖 4 每小時人數分布情形統計變化 

2.2 分析架構與順序 

數據挖掘在 BAS 資料上的處理，由於場域的侷限、特性或其他原因，事實

上目前並沒有一種固定流程。進行能源數據分析的資料分析的人員並非場域專

家，因此需要一些方法幫助瞭解數據。BAS 的數據分析藉由相關文獻 [4][7]，

大致可將整體步驟歸納為圖 5 所示。未進行處理的資料（Raw Data）在可透過

資料探索( Data Exploration ) 幫助資料分析人員了解資料的特性。 

資料探索包含第一階段的數據清理及資料視覺化。數據清理囊括移除錯誤

數據、補上缺失數據、資料降維、正規化等等。移除錯誤數據可藉由統計標準

差等方式檢查。補上缺失數據的方法常用的方式為平均數、上一筆數據等，正

規化包含最大最小值正規化、Z-score 正規化等等，本研究使用的是最大最小值

正規化。 

資料探索的第二部分，資料視覺化( Data Visualization )，藉由資料視覺化的

方式表現數據的相關特性，包括場域使用者的生活型態( Pattern )、趨勢，透過

圖像的表達能幫助資料分析人員有基本的利基點與領域專家溝通，使前者更瞭
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解實際場域以及數據的特性。例如，台積電六期辦公大樓共三種不同電盤的六

樓總共有三種電盤耗電量的紀錄。我們把它轉換成 24 小時的方式表示其中有兩

個電盤的表現像圖 6 的左圖一樣，很規則，另外一個則如右圖很零散。由於資

料的呈現方式不同，因此詢問場區工程師，才了解很規則的電盤，像是 AHU 盤，

有分為日夜間模式的用電管理；而本來以為是故障的電盤，實際上是沒有分日

夜模式的插座盤。 

用電預測的第三階段，在這個階段我們希望能找出真正影響用電量的因子，

可能是人數、也可能是氣溫：隨著人數的增加用電量增高，氣溫增加使得耗電

量增加，因此我們在第一階段找出相關性係數較高的資料進行篩選。篩選的方

式為在後面章節會詳加說明。 

用電預測的第四階段使用篩選後的感測器數據建立模型，並在最後一階段

回饋給場域管理者，找出預測可能偏差的原因（可應用的知識）並展開可能的

應用，便完成了一輪 BAS 上的數據挖掘。 
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圖 5 數據挖掘分析流程 

 

圖 6 一個月份的耗電資料 

本研究的預測模型如圖 7 所示，分為兩類模型，一類為傳統需進行特徵抽

取（Feature Extraction）以達到較佳效果的機器學習模型，使用的演算法為基於

傳統機器學習中的回歸演算法包含線性加權回歸（Weighted Linear Regression）、

支 持 向 量 回 歸 （ Support Vector Regression）。另一類則為使用深度
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學習的結構，不需進行特徵抽取，而是以不同層數擬合回歸模型，以達到準確

的預測結果。 

在圖 7 中，使用 WLR 以及 SVR 演算法的模型為 model 1 與 model 2，model 

1 需在資料集中的眾多感測器篩選適合的感測器，而篩選的方式，在本研究中

結合了文獻支持、領域專業人員、資料視覺化（Data Visualization）以及探測模

型（在本研究稱為 Probe Model）的方式進行篩選。Model 2 是將篩選後的感測

器數據，進一步分析可能特徵，才進行電量負載的預測。 

使用深度模型的架構則大大簡化了分析的步驟，有別於上述 model 1 及

model 2 需經過資料的篩選的方法，深度學習可以直接依照不同的需求、資料的

狀況，設計多層（Layer）架構測試，進行預測準確率相當高的模型。因為深度

學習的特性，多層的運算模式使得模型不需經過事前篩選感測器及特徵工程的

流程，而是由演算法自動學習出同樣的過程。 
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圖 7 模型描述 
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第3章 感測器篩選與預測模型 

3.1 方法 

3.1.1 感測器篩選與資料視覺化 

根據過往文獻資料指出高度影響建築電量消耗為暖通空調（Heating, 

Ventilation and Air Conditioning，簡稱 HVAC 系統）也就是室內負責暖氣、通風

及空氣調解的系統或相關設備。據統計，上述設備在美國建築用電中就佔了約

50％ [24][25]。 Chae, Y. T. et al. [20]將預測電力的模型中，限縮影響因子至九

種，而前五大影響因子中最重要即為 HVAC 排程，其他依序為時間、日期、室

外電燈溫度、室外相對濕度。 

然而，電荷負載除了 HVAC、時間、環境數值外，還有許多複雜的因素牽

涉其中。Beckel, C. et al. [23] 認為人員有固定的行為模式，而這些作為與電量使

用有緊密相關，Lazos, D. et al. [26] 則是認為人員行動與外在天氣環境一致，綜

合上述因子，本研究也在合理範圍內將外部環境數值與人員隨時間的分布密度

納入模型中測試。 

BAS 數據羅列的 128 種感測器中，透過散佈圖達到初步的篩選。以本研究

的預測目標——六樓總用電量——作為 X 軸的資訊，128 種感測器數值作為各

自的 Y 軸，透過散佈圖的方式呈現，能快速的看出在抽離時間因素的狀況下，

哪些感測器與六樓總用電量的相關係數較高。散佈圖的表現大致可分為四種類

型，第一種類型如圖 8.1 ，相關係數較高，散佈點呈正斜率分佈，斜率大於

0.6。第二種類型如圖 8.2 ，散佈點散佈於全區，斜率介於正負 0.25之間，對應
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到的感應器為室內觀測值如溫濕度，與總電量較無相關。 第三種類型與的四種

類型的相關係數大約也在正負 0.2之間，為感測器種類較繁雜，在控制邏輯上亦

與總電量無關。因此我們推測可以藉由散佈圖選出作為參考的變數。 

為比較挑選出來的參數對模型的影響效力，我們將資料集半年約 3000 小時

的數據集其中 3/4 作為訓練資料、1/4 作為測試資料。透過此種方式篩選出的感

測器共有 N 個，因此一筆資料共有 N 維，將第Ｎ維的資料記為 

Ｘi，i = 1 … N 

將訓練資料由Ｘi＝1 以線性回歸預測下一小時的總電量，並以餘下 168 筆計算

MAPE 誤差。測試資料的維度由Ｘi＝1 逐一遞增，增加至 N 維共訓練 N 個模型。

以此方式可以看出增加之維度對於時間變化的敏感度。如此，在選擇感應器作

為模型參數時有參考效力。 
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圖 8 電力與感應器散佈圖 

 

3.1.2 特徵選擇 

特徵選擇為藉由統計、資料視覺化、資料特性、迭代排序等方式逐漸排除

對於目標影響力較低或較不相關的特徵，一方面可以提高準確率，一方面可以

降低計算量。 

關於電力相關的特徵，特徵抽取、特徵轉換的方式有許多種類，而其目的

是作為，例如 Beckel, C., et al. (2014). 以及 Haben, S., et al. (2016).將智慧電表週

間週末資料切割，以作為時序特徵的方式、BAS 區分感測器數據的時間段 
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[7]、以時間點為因子如：上下一個時段的電量變化 [23]等等，或依據實際數據

調整資料作為特徵的時間區段。從資料視覺化的方式可以觀察到上下班的時間

影響一天中每一小時的用電量甚巨，圖 9 顯示了空調電力盤與插座盤在一天中

用電量的變化。X 軸為累積用電量，Ｙ軸表示為時間，0,1,2,3…6 不同的顏色則

代表週一至週日。圖中顯示了受 BAS 設定的夜間模式與日間模式影響，有實際

電量消耗的區分：下圖為插座盤的使用情形，有人員實際使用有關。由圖 10

則可以觀察到週末與週間的用電差異，而這些不同的特性會在篩選感測器及抽

取特徵時進一步使用。 
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圖 9 空調電力盤每小時用電情形 

 

圖 10 一月的週末週間用電差異 

根據圖 9 圖 10 的週末週間用電差異，本研究使用的特徵轉換方式為：計
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算週間每個時間點：t，0≤t<24 的最小值、最大值、平均數以及變異數，分別記

做 mint、maxt、meant、vart，。再將訓練集每日的數據除以該時間點的 mint、

maxt、meant、vart，因此每個感應器在每個時間點可得到 4 個特徵。 

 

3.1.3 加權線性回歸 

本研究在回歸模型的部分使用加權線性回歸，來解釋不同感測器即時數據

對於總耗電量的影響。若是該感測器 ( 例如 AHU 的風管靜壓 ) 與耗電量有線

性關係，則該感測器數值會被乘以較大的權重，相反的無關係的感測器權重會

趨近於零。回歸模型的計算可表示為下列算式[27][28]： 

 y ൌ෍ߚ௜ ௜ܺ

ெ

௜ୀଵ

൅  ( 3.1 ) ߝ

其中，yj 代表總耗電量(kWh)，Xi 代表該感測器的值，β 代表回歸係數，M

表示感應器總數，而 ε 表示為誤差項。 

同時，假設 ε 是平均向量 0 與非常數斜方差矩陣： 

 ൮

ଵଶߪ 0 … 0
0 ଶߪ

ଶ … 0
⋮
0

⋮
0

⋱
…

⋮
௡ଶߪ

൲ ( 3.2 ) 

若我們定義變異數ߪ௜
ଶ與權重的關係為 wi=1/ߪ௜

ଶ，則可改寫矩陣 W 為一個包含權

重的對角矩陣， 
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 ൮

ଵݓ 0 … 0
0 ଶݓ … 0
⋮
0

⋮
0

⋱
…

⋮
௡ݓ

൲ ( 3.3 ) 

 

則權重的最小平方差可以以下列式子估計 

መௐ୐ୗߚ  ൌ arg݉݅݊	෍ߝ௜
ଶ

௡

௜ୀଵ

 ( 3.4 ) 

 ൌ ሺࢄ୘ࢄࢃሻିଵࢄ୘( 3.5 ) .ࢅࢃ 

也就是說，即使 

3.1.4 SVR 

SVR 是 SVM 應用在 Regression 上的版本，在以高維度數據集預測連續變數

及未看過數據(data)與其他的演算法有所區別，除此之外，由於 SVR 使用 Kernel 

trick 的特性，適合做複雜度高的函數擬合，因此 SVR 演算法能夠達成母體資料

及訓練的模型與切割後的部分資料集（subset）訓練的模型有較高的一致性，這

項優勢在資料數據難以取得時有優勢，但若是資料為維度過大、數據筆數少時，

則不適合用此方法。可以說線性回歸與 SVR 的差別在於計算效率以及擬合複雜

度的取捨。 

在 SVR 的模型中，我們以最小平方誤差當作代價函數，並將此代價函數轉
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換為最佳化的問題，以下表示[29]： 

 min
ఠ,௕,௘

Ｊሺ߱, ݁ሻ ൌ
1
2
‖߱‖ଶ ൅

1
2
෍݁௞ܥ

ଶ

ே

௞ୀଵ

; ( 3.6 )

 subject	to	ݕ௞ ൌ ൫߱, ߮ሺݔ௞ሻ൯ ൅ ܾ ൅ ݁௞	, ݇ ൌ 1,…ܰ ( 3.7 )

 

在此的Ｊ(ω,e)為最佳化函數，ω為估計參數，݁௞∈R為誤差變數，C≥0為使 

用者作為誤差݁௞與函式的平滑性之間權衡的常數值，ݔ௞為輸入的變數，ݕ௞為預

測值，在本研究中為電力值，N 為測試資料集的筆數。 

SVR能夠在高維表現得較好的原因可以從 SVR的損失函數解釋，根據 SVR

的損失函數的定義，每一筆觀測數據的錯誤必須滿足距離hypothesis小於 epsilon，

畫（圖 10），hypothesis 就像一個寬度（半徑）為 epsilon 的管子，SVR 為了要

找到一個符合的 hypothesis需進行最佳化。在資料總體誤差小的時候線性回歸和

SVR 的誤差量是差不多的，但到誤差量高的點，線性回歸的錯誤以誤差平方計

算，因此誤差會暴增，以此相比之下 SVR 較不受 outlier 影響。 

3.1.5 時間序列交叉驗證 

本研究使用 K 層交叉驗證（K-fold cross validation），將數據及隨機分成 6

層，並使用其中 k-1 層訓練模型，而下一層（第 k 層）作為驗證。以線性回歸為

例，圖 11為工作時段8點至21點的誤差估算值以及標準差，其中X表示層數，
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y 軸表示錯誤率（%），從圖中可以看出最後一層資料與前面有顯著的差異，因

此我們以最後一層作為驗證。 

 

圖 11 工作時段 8 點至 21 點的誤差估算值以及標準差 

3.2 感測器篩選 

在 3.1.1 節提到了過往研究歸納出顯著影響電力的因子有 HVAC、時間、日

期、室外電燈溫度、室外相對濕度、人員等，而本份資料除了無法取得室外電

燈泡溫度之外，都有一定程度的數據，比較不同的是，因為辦公大樓一層樓地

面積廣大，因此有數台 HVAC 系統運作，二氧化碳感測器等也廣設多處，因此

本研究在此部分嘗試了一些方法試圖找到能夠作為代表當成輸入資料的感測器。 

第一個嘗試的方式為資料視覺化，以資料剖繪的感測器在散點圖結果如前

一章描述可分為以下類型，分別為一類正相關，三類無相關性的分類。無相關

性的種類如第二類（圖 12.2 ）均勻分散圖面是屬室內環境監測感應器，例如

室內溫度及室內濕度。而會議室中的二氧化碳感測器則部分屬圖 12.3、部分屬

圖 12.4，但總體而言皆與用電量的相關性較低。 
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根據與電量間相關性的計算相關性，取相關係數大於 0.5之感測器，可初步

篩選出共 31 個與電力顯著相關的感測器。 
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圖 12 感測器相對於總用電量的散佈圖 
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3.3 篩選模型 

藉由散佈圖及相關性篩選出的感測器對於預測電量模型而言仍有隱含意義

重複的問題。考慮到線性回歸的演算法在計算總體平方誤差會隨著維度增加而

稀釋該維度的重要性，因此仍須進一步減少由相關係數篩選後所得知感測器以

提高準確性。 

減少模型參數一方面會提高模型對特定感測器的依賴性，但同時卻能提高

模型的準確度。而在建築設備做電力負載預測的控管及調節都須有一定的準確

性已達到有效的控制，因此在感測器的篩選上我們將此視為準確性與依賴性之

間的權衡。 

另一方面，前面的章節提到影響預測效力有很大的因素來自於觀測數據與

所以預測時間的距離，觀測時間距所需預測時間越近，則準確率越高，如圖 13

所示，圖 13 的 X 軸單位為小時，Y 軸為總電量。觀測數據預測一小時後的電

量的擬合結果相較於圖 14 預測三小時後的電量擬合結果更為準確，從預測數

值可以看出不論是在精細度或是準確性，距離時間的確是一個有力的影響因子。 

因此在這個部分我們希望能透過時間因子來進行第二輪的感測器篩選，藉

由簡易的時間延遲預測來確認感測器的實質效果。模型的運作方式為以量測電

量的三個感測器（編號 KW_A0611_AHU601、KW_A0611_RPB_E2_0201、

KW_A0611_VFD_N4_0201 ）數據做為基礎，並逐一加入相關係數篩選出的 17

個感測器，並以訓練資料集中的一週共計 168 筆（24（小時）*7（天））計算

新加入的感測器在是否在預測模型上的表現有改變，若有改變，不論是誤差增

加或減少，都可以視為隱含與先前加 入測試的感測器間，不同的資訊。測
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試表現如圖 14。最後篩選出的感測器可大幅縮減至 17 種，根據不同用途共可分

為以下五組： 

1. 電量（文獻）：前述測量的三個感測器 A0611_AHU601、

A0611_RPB_E2_0201、A0611_VFD_N4_0201 

2. 人數（文獻）：24 小時的分布 

3. AHU 計量（相關係數高、影響模型）：出風溫度、風管靜壓、頻率、CO2

濃度、外氣風門開度 

4. MAU 計量（相關係數高、影響模型）：預冷出風溫度、第一段冰水閥、出

風露點、第二段冰水閥、出風溫度 

5. 溫度（文獻）：三種測量外氣溫度之感測器 

 

圖 13 電量數據預測一小時後的總電量 
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圖 14 電量資料預測隔三小時的電量 
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圖 15 電量加上不同感測器預測下一小時電量的錯誤率 

 

3.4 回歸模型 

圖 7 的 model 1 在篩選完感測器後，直接進行耗電量的預測，並以 WLR 以

及 SVR 中，擬合程度最佳的結果當作基準線（baseline）。本研究之後使用的

model 2 至 model 4 表現皆需能夠超過此基準。 

以感測器數據預測電力模型的方式如圖 16，感應器 24 小時前的數據，建

立24小時之後的電力模型。根據第一天的24小時資料預測的二天的某一時間，

換句話說，不論是預測第二天的哪個時間點，所使用的訓練特徵都是相同的。 

資料集可表示為: 

 ܺ௧ ൌ ௧ିଵݎ݋ݏ݊݁ݏ
௜ ，0 ൑ i ൏ 17 ( 3.8 ) 

௧ݕ  ൌ ݁௧ ( 3.9 ) 
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其中 i 表示不同的感應器的編號，e 代表電力消耗量的總和，t 代表不同的

日子，資料集透過 3.1.5 的交叉驗證方式可將資料集切割為： 

a. 21 天的訓練資料，測試資料為 7 天的資料 

b. 6/19-9/19 為訓練資料，測試資料為 9/19-12/17  

使用加權回歸以及支持向量回歸演算法預測。使用這樣的方式可以避開計

算整體資料最大最小值及不同時間點的平均值等等特徵，並達到較佳的效果。

特徵模型在這裡的目標是每個預測值都應接近實際值，因此誤差的計算方式採

用 Mean absolute percentage error(MAPE)： 

 M ൌ
100
݊

෍ฬ
௧݁ݑݎݐ െ ݐܿ݅݀݁ݎ݌

௧݁ݑݎݐ
ฬ

௡

௧ୀଵ

 ( 3.10 ) 

 



doi:10.6342/NTU201701959

 31

 

圖 16 電力預測模型示意圖 

在此模型的資料集 a 與資料集 b 每一筆的特徵數量皆為前一天的 24 小時乘

以所選的感測器數量共 17 個，總計特徵數量為 408 維，資料集 a 共 21 筆，資

料集 b 則有 180 筆。由於資料集 a 的特徵數量遠遠大於資料筆數，因此較適合

使用可以用公式解的 WLR 做迴歸分析，較不適合使用 SVR，但實際上我們也

試跑了 SVR 的結果用來觀察結果的差異。 

實際結果請見圖 17。圖 17 為以加權回歸 (WLR) 每小時實際預測資料集

a 的結果。圖中的 X 軸為天數，Y 軸為實際用電量。圖中黃線的部份是訓練資

料， 後面紫色線是預測的結果、藍色是真正量測的值。也就是說，演算法看過

前面黃色的部份；則預測出來的紫色線應該跟藍色越像越好。最後我們選擇八

點與十三點作為擬合度較差的代表，下午三點作為擬合度較高的代表。而表現
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較差的原因我們認為是因為下午一點適逢用餐及午休時間，故變動較大。 

  

 

圖 17 每個時間點的預測電量 

前面有探討過資料為度與比數懸殊的資料不適合使用支持向量回歸

（SVR），實際上每小時實際預測資料集 a 的結果如 圖 18 一樣，演算法無發

學到好的結果。圖中 X 軸為天數，Y 軸為實際用電量。圖中黃線的部份是訓練
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資料， 後面紫色線是預測的結果、藍色是真正量測的值。  

 

圖 18 每個時間點的預測電量 

 圖 19 比較了上一節提到的電量、人數(occupancy)、MAU、AHU、溫

度(outdoor temperature)等五大類的預測因子，個別會對錯誤率造成什麼影響。

從圖中可發現，以線性加權回歸預測，缺少任一類因子對模型而言，都會造成

巨大的波動。例如黃色現表示為沒有 MAU 類別資料的預測結果，其中，中午
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12點的錯誤率可高達70%。除此之外，黑色憲表示少掉AHU資訊的預測結果。

黑色線比起納入全部感測器的藍線，整體準確率略微提高。然而，根據領域專

家及文獻表示，AHU 系統對電力的影響有高度相關，因此我們合理懷疑，這是

由於資料不足產生的過擬合情形。 

 

圖 19 不同類別因子對準確率的影響 

最後是以加權線性回歸每小時實際預測資料集 b 的結果如 圖 20，X 軸為

不同的天數，Y 軸為總用電量，圖中的顏色線與之前解讀方式相同，黃線的部

份是訓練資料、紫色線是預測值、藍色是真正量測的值。 
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圖 20 每個時間點的預測電量 

由於圖 20 的 17 個感測器共 408 維以線性加權回歸( WSR )訓練的結果太差了，

因此我們嘗試降低特徵維度，將感測器限縮到電力（共三個紀錄值）和人數，

維度縮小成 4*24，共 96 維，結果如 圖 21： 
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圖 21 每個時間點的預測電量 

相同維度（96 維）以支持向量回歸（SVR）訓練資料集 b 的結果為圖 22： 
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圖 22 每個時間點的預測電量 

最後將上述兩種資料集與兩種演算法排列組合個別得到的最佳準確率及維

度做一個整理 

 WLR SVR 

資料集 a（一個月的資料

集），17*24（ 408 ）維 

以 WLR 擬和度較佳，準確率

為 圖 23。 

樣本太少，學習不出好的結

果。 

資料集 b（六個月的資料 資料筆數增加，但表現並沒 由於樣本增加，擬和結果有
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集），17*24（ 408 ）維 有提高。 提高。 

資料集 b（六個月的資料

集），4*24（ 96 ）維 

維度降低，有稍微提高表

現，但仍有許多改善空間。 

擬合程度增加，但仍有改善

空間。準確率為 圖 24。 

最後，我們分別計算在資料集 a 與資料集 b，兩個表現較好的訓練結果。資

料集 a 以加權線性回歸的表現較佳，準確率為圖 23；資料集 b 以降維後 SVR 訓

練的表現較好，準確率為圖 24。兩張圖的 X 軸皆為一天的不同時間點，Y 軸皆

為準確率。整題而言，資料集 a 與資料集 b 在此 model 1 建立的 baseline 準確率

變動大概都在 50~85 之間，不同的是資料集 a 的預測結果變異數相當高，代表

其不穩定性也是很高的 。 

 

圖 23 資料集 a 以 WLR 訓練的準確度（由 MAPE 計算） 
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圖 24 資料集 b 以 SVR 訓練的準確率（由 MAPE 計算） 

3.5 特徵模型 

透過 model 1 可以知道在不同類別對於預測的影響力分別如何，而進一步的

從這些感測數據中限縮特徵以得到較佳的效果。接下來本節為  圖  7 中，

model2 的探討，也就是如何透過特徵抽取提高資料集 a 與資料集 b 在原本 model 

1 的表現。 

抽取特徵的方式在前面章節提到，一些相似地點、或是相似用途的產生特

徵方式可以作為 model 2 的參考。例如同樣用途的有：已安裝智慧電表的家戶作

短期電力負載預測的文獻；相似地點則有實驗室或學校辦公大樓預測實時人數

的實驗。在安裝智慧電表的家戶作短期電力負載預測的文獻中，由於智慧電表

只有電力的感測器數據，不像 BAS 系統提供較豐富完整的感測資料，因此家戶

用電量的預測比起班共建築大樓的用電量預測有更多的限制。在這些限制下，

智慧電表可以只依靠電力數據就能推估該家戶未來可能的用電消耗量，且有不

錯的結果，因此我們期待 BAS 能利用其有大量資料的優勢達到更好的表現。 
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首先透過在 model 1 的經驗，我們要面對的是如何降維以及如何取有代表性

的特徵，才能有效幫助提高訓練結果。特徵抽取的部份，我們將原本取每個感

測器前一天 24 小時的資料，限縮到只取前一日前後一小時內的值，並透過該感

測值歷史資料的最小值、最大值、平均數以及變異數做四種不同的正規化。最

小值、最大值、平均數以及變異數分別記做 mint、maxt、meant、vart，詳細特

徵轉換方式如圖 25： 

感測器 A 在當日時間點 t 時的數據記做 XＡ(t)，則前後時段同理記為 XＡ(t-1)與 X

Ａ(t+1)。特徵計算方式詳列如表一所列，一個感應器經特徵轉換可得 3 個時段各

四個特徵。 

 

圖 25 特徵模型示意圖，如要建立第二日九點的模型 

8:00     8:00   

9:00  24hr later  9:00   

10:00     10:00   
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11:00     11:00   

12:00  24hr later  12:00   

13:00     13:00   

圖 26 分別為隔日九點與隔日十二點預測模型所需的今日感測器數據 

圖 26 分別為隔日九點與隔日十二點預測模型所需的今日感測器數據。今

日 8:00~10:00 的數據資料藉由特徵轉換，可轉換成明日九點預測模型的特徵。

每一筆時間取的當日三個時間點的數據，各自除以訓練及該時間的 表 1 四個

統計值。 

XＡ(t)/ mint    XＡ(t)/maxt 

XＡ(t)/meant   XＡ(t)/vart 

表 1 特徵轉換 

本節最後使用的感測器來源直接取文獻提到最相關的感測器，分別為電力

感測 ( KW_A0611_RPB_E2_0201 )、AHU（出風溫度、頻率、CO2 的轉換以及

人數分布。每一筆資料共有 3（時段）*4（統計值正規化）*5（感測器值個

數），共計 60 維的資料。 
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先以資料集 a 訓練，結果如圖 27。 

圖 27 分別代表兩個不同時間點，擬和度較為精準和擬合度較不佳的用電

量代表。X 軸為天數，Y 軸為實際用電量，準確率為圖 28 所示。 

 

圖 27 以特徵轉換訓練之預測模型
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圖 28 資料集 a，用 model 2 以 SVR 訓練的準確率 

 

圖 29 以特徵轉換訓練之預測模型 
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圖 30 使用特徵轉換訓練的準確率 

實際測試半年份的資料（訓練集 b）以 SVR 訓練的結果如圖 29，分別代表

擬和度較為精準和擬合度較不佳的兩個不同時間點用電量預測結果。X 軸為天

數，Y 軸為實際用電量。準確率（圖 30） 相較 model 1，由原本約 50~85%收

斂至 75%~90%。 

3.6 小結 

我們重新將 model 1 與 model 2 訓練結果較好的結果，重新做資料維度、使

用的演算法上的整理（如 表 2 所示），並討論其原因。 

首先，資料集 a 因為樣本數相當少，在維度為約 20 倍以上的情況，適合的

演算法並不多，我們選擇可由反矩陣計算出來的線性回歸訓練。實際上由前面

的實驗結果也映證 SVR 無法訓練出好的模型。 

第二點是，以往總是認為對資料的特徵描述得越清楚越好，但是在樣本數

有限的狀況下，我們反而必須不斷地縮小維度，才能避免過度擬合（overfitting）
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的狀況。最後，我們在 model 2 嘗試將資料集 a、資料集 b 兩個不同大小的資料

集維度縮小到 60 維，兩者的準確率的有超越在 model 1 建立的 baseline。這樣的

結果說明，有效的特徵便能夠描述資料的特性。 

資料維度 Model 1 

Model 2 

（特徵轉換） 

資料集 a 

（28 筆 sample） 

405 維，17 個感測器 60 維，5 個感測器 

WLR SVR 

資料集 b 

（180 筆

sample） 

96 維，4 個感測器 60 維，5 個感測器 

SVR SVR 

表 2 model 1 與 model 2 小結 
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第4章 深度學習預測模型 

加權回歸模型與 SVR 如前一章所討論的狀況，在得到較佳的預測表現前須

進行一層又一層的篩選，才能找出有關連的參數、特徵、並符合演算法的特性。

然而篩選過程中，不同篩選方式難免有疏漏或是難以描述的部分，因此我們希

望有方法能夠跳過這個環節，好處是可以讓模型在保持準確性的狀況下納入更

多感測器的資訊，更能因為納入更多感測數據，在少數幾個感測器受擾動時能

夠避免模型完全失去預測能力，而我們認為有潛力的解決方法是使用深度學習

模型。 

 深度學習模型屬於機器學習的分支，根據 LeCun et al., 的定義 [31]，深度

學習的計算方式能夠使模型有很多不同的計算層處理不同的需求，例如：特徵

轉換、池化、非線性轉換等，透給這些不同的計算能夠學習如何呈現數據的樣

貌。一個典型的深度學習架構會有一的輸入層、一個輸出層以及中間至少夾著

一層隱藏層，根據不同的設計，隱藏層有不同的功用。 

儘管深度學習有許多的優點，但不可避免的還是需要考慮其限制。首先，

深度學習需要大量的資料作為訓練集。目前常見的深度學習應用以圖形影像及

文字處理為主，而上述兩種應用在訓練時的數據都需要大量的資料。例如，

50*50 的圖片若有一萬筆左右能收斂到不錯的結果。然而 BAS 的取樣率隨著不

同的系統有所不同，從每分鐘到每一天的取樣率都有可能，因此要累積足夠樣

本數的資料並不是一件容易的事。以本研究所取得數據為例，若需要一萬筆的

資料，換算需一年又兩個月的分量才能達到。由於 BAS 是需要長時間累積數據，

因此在訓練深度學習模型時常有資料量不足的困難點。本章也針對了資料量的
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差異討論了不同的資料量可以使用的深度學習模型。 

 

4.1 Recurrent Neural Network  

Recurrent Neural Network（以下簡稱 RNN）是屬於會把輸出值再重新加入

輸入值的類神經網路，如 圖 31 所示，而這樣的結構使得輸出值會重新回到下

一次的輸入端中，因此一般稱 RNN 有記憶的效果。然而當事件彼此的間隔增加，

根據實驗顯示RNN無法完美的學習這類長期依賴（Long-Term dependencies）的

問題。 

基於上述機制改良的 Long-Short Term Memory（以下簡稱 LSTM）讓模型除

了有記憶效果外，也改善傳統RNN在長期依賴的問題上學習不佳的狀況。RNN

與 LSTM 結構的比較為 圖 32 RNN cell （左）與 LSTM cell 的比較 （摘自

Greff, K. et al. [33]）LSTM 比起 RNN 增加了三個不同的 gate，用來達到適度遺

忘的機制。LSTM 在時間序列數據中有間隔或延遲效應的事件都有比傳統 RNN

更佳好的表現，在多數任務中也能比傳統 RNN 預測出較好的結果。本節會以

LSTM 預測結果進行比較。 

 

圖 31 RNN Cell （摘自 Olah, C. [32]） 
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圖 32 RNN cell （左）與 LSTM cell 的比較 （摘自 Greff, K. et al. [33]） 

本節使用的資料為三種電力的量測數據（編號 KW_A0611_AHU601、

KW_A0611_RPB_E2_0201、KW_A0611_VFD_N4_0201），24個串連LSTM cell

當作模型，以 24 小時為單位輸入電力觀測值，輸出值則為一小時間隔後的資料。

預測的該小時（的 25 小時）輸出會重新作為下一輪的輸入，使下一輪的輸入變

成第 1~25 小時，以此方式循環，直到預測出 24 小時為止。RNN 的架構繪製成

模型則如圖 33 所示： 

 

圖 33 RNN 結構 
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本份訓練資料為由同一份資料集中，取 3/4 作為訓練集，1/4 作為測試集，

資料共 24*28 (672) 筆樣本數。 

預測結果如圖 34，X 軸為小時，Ｙ軸為以最大執正規化後的總用電量。藍

線為預期結果，綠線則為預測結果，也就是綠線約貼近藍線越好。以 RNN 預測

的方式在樣本數，小於 1000 筆時是可以收斂的。 

 

圖 34 將總電量正規化至(0,1)間的預測結果 

   

圖 35 在不同時段的準確率 

圖 35 為預測結果轉換為不同時間的準確率，準確率一般都有 90%以上，

但是在耗電量的母體值較小時，相同的錯誤量會導致較大的錯誤率，因此像是

凌晨或晚上這些時段若預測不準，都很容易在準確率上有劇烈的變化。其中又
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以電量消耗剛改變的時間點變化最多。例如，晚上七點正好是介於用電量急劇

下降的時候，因此預測相較其他時間點可能稍不穩定，加上其母體較小，準確

率很容易被影響。 

 

4.2 Deep Neural Network 

深度學習的基本架構如圖，每一層（Layer）有許多的神經元（neuron），

在本節的深度學習，每一層都是全連接的（Fully connected），中間的函數透過

Stochastic gradient descent （SGD）梯度下降擬合回歸函數。 

本節的輸入資料 2016/619-2017/12/17 為期七個月，6/19-10/19 共四個月約

3000 筆做為訓練集，其餘為測試集。感應器之數據為扣除停車場環境感測數據、

並加上人員時間分布的 98 項感測數值當做輸入值。相隔 24 小時之後的進行正

規劃之後電力總和作為輸出值，模型如 圖 36，輸入層以及輸出層進行最大值

正規化。中間為二至三層隱藏層。 

在本節的回歸模型，我們測試了不同維度及不同層數的模型，並觀察其收

斂程度，最後以測試集測試的結果如 圖 37 圖 38 圖 39 所示，X 軸為小時，Y

軸為經過正規化後預測的總電量，其中橘色線表示真正的量測結果，藍色線表

預測結果，也就是藍色線越接近橘色線越好。 
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圖 36 本節使用的 DNN 結構 

 

圖 37 20 維以及 5 維的兩層隱藏層 DNN 結構預測電量結果 

 

圖 38 80 維以及 100 維的兩層隱藏層 DNN 結構預測電量結果 
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圖 39 80 維、100 維以及 5 維的三層隱藏層 DNN 結構預測電量結果 

圖 37 是兩層隱藏層分別以 20 維及 5 維的 DNN 結構預測電量結果。在共

100 個神經元的狀況下，3000 筆樣本數進行 200 次迭代的狀況還無法訓練到過

適（overfitting），因此我們試著把維度增加，將兩層的維度分別擴展到 80維和

100 維，共 8000 個神經元，如 圖 38。由圖 38 的實驗已經可以看出較較高的

擬合結果。這樣的結果顯示在 DNN 結構配置上前面第一、第二層擴大，及層數

的增加，擬合結果可以更貼近實際值。圖 40 為以三層結構預測用電量的準確

率，以不同時間點表示。X 軸代表時間點，Y 軸表示預測的準確率。整體而言

工作時間的用電量準確率可達到 80%以上。 

  

圖 40 以 80 維、100 維以及 5 維的三層隱藏層 DNN 結構預測電量的準確率 
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 在訓練三層、維度分別為 80、100、5 的 DNN 模型大概五次有一次是訓練

不起來的狀況，並且我們發現每次訓練結果的差異非常大，例如同樣的三層、

維度 80、100、5 的架構，訓練的結果就有以下四種。顯示訓練結果已嚴重過適，

模型訓練的結果已經完全取決於一開始的隨機初始訓練值。若是沒有進行交叉

驗證，模型是無法使用的。 

 

圖 41 三層隱藏層的訓練結果 

4.3 小結  

使用深度學習訓練 BAS 數據時，雖然可以不用篩選感測器，但在訓練過程

中，由於資料不是像傳統訓練語言、圖片的案例，每個訓練集都有至少一萬、

兩萬筆的數據量，因此本研究在訓練 BAS 深度學習架構時做了一些實驗作為調

整模型的依據。 

首先，資料集 a、b 的問題都在於訓練集的大小。資料集 a 毫無疑問的是完

全無法進行 DNN 的訓練，因此實驗挑選了神經元並不那麼多的 RNN 結構作為
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炫練。然而 RNN 的訓練方式實際上是表示，模型透過前 24 小時的電量資料預

測隔日 24 小時的電量資料，那麼若大樓管理者實際依據預測結果進行高峰負載

管理，則只依賴單一感測器的模型隨即喪失預測能力。 

資料集 b 可以使用 DNN 的模型。在輸入層匯入所有的感測數據，並可嘗試

多種排列組合，包含維度、層數、batch size 等，除了影響準確率，也易影響損

失函數的下降速率（圖 42）。雖然 DNN 的架構自由度很高，可以納入所有感

測資料，因此沒有依賴單一感測器的問題，但在訓練 DNN 的過程最需要注意的

問題是樣本數與維度、層數的調整。若是，維度及層數組成的未知數遠大於樣

本數，則訓練結果完全取決於隨機初始值。上述實驗的經驗中，在訓練不出來

或是每次訓練的結果差異過大時，除了交叉驗證之外，需要進一步計算神經元

和樣本數的比例。  

根據實驗結果，第一二層數的維度須適度擴展才有足夠的空間擬和高維的

資訊。隱藏層的層數選擇上，三層的表現儘管優於兩層，但根據前述的探討已

不適合作為訓練結果。 

 

圖 42 損失函數下降速率 
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圖 43 三層隱藏層架構的 DNN 模型權重 

除了層數與維度需考慮樣本數大小外，深度學習的回歸模型訓練結果還有

其他限制。首先，雖然可以計算出不同感測器在初始維度（圖 43）的權重，X

軸為不同編號的感測器，Y 軸為該感測器輸入後轉變為 80 維的權重分布。但維

度空間太過龐大（97*80），在解讀上較難掌握每一個維度對應感測器的意義。

另外一個限制是，時間複雜度與計算量使用深度學習的 model 3 與 model 4 也是

較 model 1 與 model 2 大。 
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第5章 論文總結 

5.1 結果與討論 

首先，本研究改善了過去僅用單一電力測量值來預測電力負載的方式。由

於加入了更多變數，使得整個架構變得相當有彈性。 

第二，本研究探討不同資料量大小，如何以四種不同架構的機器學習模型，

預測用電量。首先，圖 7 的 model 1 因為是建立本研究準確率的 baseline，與其

他三個 model 不同的地方是，在維度下降的部分，model 1 只考慮如何篩選感測

器，在時間範圍與特徵相對於整份資料的關係中，並沒有多加調整，因此並沒

有太好的表現。 

Model 2 除了挑選感測數據之外，抽取特徵的方式參考了多項文獻，最後使

用時間範圍與統計值正規化的方式做特徵轉換。原始數值藉由使用 model 2 實驗

提到的特徵轉換，可以換算出該筆資料在整體的相對定位。再透過 SVR 的方式

將數據轉換到高維的空間運算，提高預測可依賴性。 

透過 model 1 到 model 4 的使用，我們發展了一套不同大小的 BAS 資料都

能使用的預測方法。如此一來，在面對樣本數不一的資料時，使用者能夠能有

一個系統性的方式選擇使用何種演算法進行電量預測。這樣不僅在已累積長期

紀錄 BAS 資料的建築物能達到良好的預測效果；在只累積少量資料的建築物，

也能夠進行預測，使得電量預測能夠在甫裝 BAS 一兩個月便能快速投入預測的

工作。 
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最後，本研究總結，影響不同大小資料集訓練方式關鍵在於樣本數與樣本

維度之間的關係，因此我們根據不同的樣本數與維度再度做一個整理。在面對

預測電量問題時，為不同維度與樣本大小如何選擇適合的模型或演算法做一個

總結，列於表 3。 

 

 

5.2 未來方向與建議  

本研究的用電預測模型在考慮了多種變數下，以 MAPE 計算預測誤差，最

終都達到了 85%以上的準確度，因此在管理實務上能夠更有效的應用。 

表 3 實驗結果比較 

適用演算法 樣本數小於資料維度 樣本數大於資料維度 

Model 1 （無特徵轉換） WLR SVR 

Model 2 （特徵轉換） 

無進行實驗，但依  model 1

的結果推估 WLR 仍較為適

合。 

SVR 

Model 3, Model 4（深度學

習） 

不能使用 

模型設置的維度與樣本數的

比例須列入考慮 
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首先，準確的用電預測在發展系統性的 BAS 上，可以作為錯誤偵測以及排

程最佳化的基礎。而用電預測也可直接作為用電管理者在尖峰用電調度及評估

是否加入時間電價政策的依據。 

以尖峰用電調度為例，若管理者能提早得知隔日用電情況，則可以將耗電

量高卻不這麼重要的設備，轉移至耗電量低的時段。另外，我們假設用電預測

的預測值準確性是呈常態分佈，則我們可以設定預測電量加上兩個標準差作為

我們的預測值，以此評估用電總量。 

基於在進行本研究實驗的過程中遇到過的問題以及想法，提出三個建議： 

首先，本研究的四個用電預測模型，都有使用電量作為預測變數，但在實

務上，若在執行用電尖峰管理後，人為干預總用電量，若是再拿來作為用電預

測的變數，是不太合理的。因此針對已實行用電尖峰管理的場域，如何將干預

電量對模型的影響減少至最小，是值得討論的。 

第二，在演算法方面，由於機器學習與數據挖掘領域有大量的資源與人才

投入，因此研究的熱度很高，而這些新的架構都有機會在建築節能領域做出有

趣的嘗試。例如在本篇研究中，解釋深度學習的權重以及它找到的非線性特徵

才有能讓建築管理者找出變動因素，或許藉由 Mnih, V. et al., [33] 提出的注意力

機制（ Attention Mechanism ）模型能找到解釋。諸如此類有趣的模型，若有

機會的話，希望未來還能嘗試。 

另外，關於建立一個數據分析為基礎的 BAS 管理系統上還有許多可以努力

的目標，如 1.1 節提到，微軟的試行計劃將上述系統分為描述（descriptive 
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element，即資料視覺化）、預測（predictive element）、規範（Prescriptive 

element，及偵錯的規則與標準），在節能為世界潮流的背景下，已投入了許多

相關研究，希望未來有團隊能透過整合這些研究成果與真實場域調整達到真正

節能的目的。 
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