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ABSTRACT

According to UNEP, the energy consumption and greenhouse gas discharged by
buildings are responsible for about 40% of the global energy used. Thus, the energy
efficiency is an important mean of reducing greenhouse gas emission. Among the
improving methods, we put our attentions on energy efficiency to cut energy waste,
especially on electricity consumption. In the past decades, the rate of buildings with
Building Automation System (BAS) is increasing. BAS integrates electrical consumption,
temperature, humidity and so on, which depends on the building. With various kinds of

record, BAS allows data mining techniques to support decision making.

The first part of our research developed an approach of feature extraction and a
prediction structure which will be utilized in energy forecasting. To begin with, we
analyzed user behavior by data visualization. Next, we selected the appropriate sensors
to obtain training data through observing the results on the last step and literature reviews.
At the last, we apply support vector regression (SVR) and weighted linear regression to

train a regression model.

In the second part of this study, we presented some deep learning structures to
forecast electricity consumption. In the last part of our research, we combined some ways
to select proper sensors. In addition, we made multiple steps to train a better model. To
solve difficult problems such as that features are hard to describe, we integrated Deep

Learning in this chapter.

To sum up, we build a flexible and accuracy architecture which different BAS data
and field can be applied in. In additional, we also provide a clear method and process as
i
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an example, so that people can select the appropriate forecasting architecture based on

the characteristics of their data.

Keyword: Smart building electricity forecasting, short term load forecasting, machine

learning, time series data
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HAaE M AEFREE: t, 0<t<24 89 MA. A, FHEAREEH, AR
4 mine. maxi. meant. vary, o FATIILREA B G IEE AFZIF M 2L a9 mine.

maxi. meani. var,, B A1EEE S £ BN T F 3 4 A4

3.1.3 ZofE& e iR

KB G ) B AR AL 6 o ) Ao HE AR P ) B RARAR S ) R R 3B B B O
HABETENHE, TRZAAE (Pl AHU WREHR ) ST ALK
MM, A ZRABSHATHREARKGEE, HRAVEMGZORARHET S

AUE AR, © SR H T RT AT 2 H X[27][28]:
M
y = BiX;+ ¢ (3.1)
2

b,y REBHEEEKWh), Xi REZRABEGE, B READHFHREK, M

ATRERRE, e RTAREA,

RlEF, BR e AFHEE 0 BIFFRAT £

a2 0 .. 0
( 0 0-22 e 9 > ( 3.2 )
0 0 .. o

SRR Y B RPRAE NI B wel/of, BITHR SR W &—18 0 A4

T AR,
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AAEE O -F 7 £ T AT 2 X483

n
Bwis = argmin 2 ef (34)

i=1

= X"WX)" XTwy. (35)

AR, B
3.14 SVR

SVR & SVM J& B /& Regression L8 Ra A, 7 VA3 4 % B0 4 1881 4 & 3
BA K B AR (data) S A0y 5 A A TR A, IRk 4, d# SVR 4% A Kernel
trick A9 45, B ASMAAEE H 0B HE, Bt SVRIEH A& A A
B ANBRAGBE A I 12 6930 0 A AHE (subset) INRGRA A& ) —8 M, &
RS EATABREABRFEREY, EEL T ABER R, BEFRIF,
AR A R 7 ik T AR M E SR SVR 89 £ B AT A R AR $ S48

Jg: R E o

f& SVR 698 A - KAVAR D -F 7R £ §ERAR L, TAF s ARAT it
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BAHRENG B, LT & 7[29]:
min J(w, e) =l||a)||2+1CZe2' (3.6)
wbe 02 A '

subjecttoy, = (w,9(x,)) + b+ e, k=1,..N (3.7)

BHH J(0,0) hRAERZH, o hHEHER, e, ER AREFHK, C0 AR

Fl %A At £ e B R0 F iR b2 M ARAT 60 8 BAA, x AN E, v hTE

AME, EAFRT HE A, N AR HEGFR.

SVR #& % £ = 4B R BLAF 335 69 JR I °T LA SVR #9348 & B B2, AR4% SVR
AAR K R FAY E &, B —E PRI 9 453K 4 48 0% RSB A hypothesis )7 epsilon,
% (B 10) , hypothesis #AZx — B L& (F18) % epsilon #9FF, SVR A7 &
3% 2] — 18 55 449 hypothesis % /T s AE . £ T AERE R £ A9 IF IR 42 & S Ao
SVR MREZREZXRS M, 122K £ F 5025, B ERQMRUZREFFH

R E AR AL Z T SVR &~ % outlier &,

|

o

’

3.1.5 B P R LR

KA AE B K 3 U (K-fold cross validation) , A% 4% & & #5 mk 6
, BEREF k-1 BINRER, mT—R (FkE) 1FhR#E. AFBREEL
B, B 11 5T/ S8EE2 LR EFIMARIZEEZ, AP XEATER,
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AT RAENISERT — %7 HHXBRB A AREE RN T AR E

F—ERG T RAETHAT, ATHI G 00 R0 B A4 ELE 4 FdoaT
—FRATHAANTHREAE, pRlA—RAEMN, ZAEtMEes . &40
M AER A E —k (B 122 ) HEOoHERRBENEEERARES, Plie
ENBERENRE. MEKREFTOH_ANHERANS XS EE 123, 05

12.4, {24848 w3 % S A E & 0948 B M 51K
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Fe] 69 FE 447

B —7r @, R Ay A AR B RS B FRR R A AR KA B & R g A LR B R
BT VAR R B M) 69 BEAR, FRRIAF M FERTE FARIAF M ARYT, A BEERMZG, wE 13
s, Bl 13 89 X #9342 400, Y #458E%, RARRKARLN— I FRGE
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5T AR B i A A L A BN, SEAERF M AR —BA R ER T,
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W 5 69 BF B A 8 FAR R AR A B A T AR, A MENS S XA AT AE
T =B EARE (%% KW _A0611 AHU601 . KW _A0611 RPB_E2 0201 .
KW_A0611_VFD N4 0201 ) &M AL, $R—mAMMAEKGEL 17
BRI, IR EAE P —BEI 168 £ (24 (NEF) *7 (R) ) 3 H
NG RB B ARG ETARBEA LR ARG, BANE, NHAZEN

Aa BGRY, HT AR &S AR A N RRI B, KR E A, A
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detay hvs / MAE with Linear Regression/ var 1520

,//‘." \\ — etl

15 E¥ho EAR ZRAI S TART — I FEZOHRE

3.4 WEEER

B 7% model 1 /£ iE 7 BB RK, AIEEITHETEWTAA, F 1A WLR L
% SVR ¥, BAAEE miENE R e/HEL L (baseline) KA ALY

model 2 £ model 4 ZB & e AR B B &

ARR R HIFETARE ARG 7 X4 B 16, BEE 24 JEFATORE, &
F24NEFEZHRNENBER, RIBEF RG24 DEFEHFAB G R E—M,

M E)ER, N ATRR H = RAIMERF M 25, PTAE Al 69 DR AR R AR 89 .

AHETERTA:

X = Sensorti_l, 0<i<17 (3.8)

Ve =€ (3.9)
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A1 ATARMBRENGIK, ¢ REENHAZNEF, t RERF Y

BY, AHEEB IS WX URFESTXTHEAHENS L
a.21 XA EH, RRXAH LT XOEH
b. 6/19-9/19 Z 4R E 4, AKX T H % 9/19-12/17

& R AR SR AR X A B @ 50 A TRR . 48 IS AR 6 7 X T A B 3
HOERR AR KR MAR T B B M BE AP A5 45, HiE B EEa R,
MBARA A Z 4709 B 1% A BB FRAMAAT B2 K A, Wbk £ 693 8 77 Xk
I Mean absolute percentage error(MAPE):
100:§:|truet predict

(3.10)

n true;
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MAE with Feature Model
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IEFEER (%)
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30 f& Al AF LIRSk 09 B

BB EF DO EHR (DBRED) YLSVR ISR R4eE 29, 5B KE
BAE R A ERBASERTMEMRBELRARFMIEEREEZAANGEE, X #EhHK
B, Y BATRAES, BHEE (B 30) 48% model 1, B/E AL 50~85%I&k

L E 75%~90%.

3.6 &

£ M ZHAF model 1 $2 model 2 IN4R4E FHEIFWILE R, THRTHGE, &

Regig R Lay s (e X 2P77) , EFRARE,

Bk, THE A DA AEME ), BHEE AKX 20FZALGER, B456
BHELERS, KMEEZETHRERFE L ROEEEHFIR, TR LEHTE

0 E B dE B SVR kIR 47 a9 A

BB R, VAR R AL E AR L FAAE B AT, BR AR KK
A RRAKLT, RIATR oA RET o b N HE L, 7 feE 18 & & (overfitting)
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BRI, AL, RMAE model 2 EFHMEAE a. AHE b RETLRE XD E A
F R 4B 60 M, vRH G HERE R 69 A AZ AR model 1 3 69 baseline, 124k 89

BERRY, ARG BALAL SR L T AL

Model 2
TR A Model 1
(ABaiR)
o 405 4, 17 fBRRA| % 60 4, 5B %
FHE B gl
(28 # sample) WLR SVR
THED 96 4, 4 1B &8 % 60 %, 5 1B &8 %
(180 &
SVR SVR
sample)

# 2model | ¥ model 2 N4
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FAFT KEZHRAMNER

A B SR AR AL SVR e Al —F AT Edam 6 R0, A7 RS20 TR R AT /A
WEH—AX—ReEE, TREREAMENSIER, 8. EFEELFNFK,
Rm B EBAZ R, R & 7 XIERA R R AT AR Ao, BHIAIA
PH T7 kit kB IR A, SR AT AR AR AR AP AR IL T AN
% BRI B A, H AHMNRE S RARIR, &) BRMBEREEDEFR
PR R T aRETRRRES, mAMRERBENOMIRT ELERNRESEH

AL,

REFHEABAMBEZE S 3, H#HE LeCun et al., 892 & [31], RE

SRGTEH XA EBEATIRS RNRAGTEREETRGE L, Flde: HK
B, R, RS, BT TR 63 I 5 B e T 2 ALBR A AR

o —EHEAGKEFHREGH —OMANL, —EMEEARTHE ) & F

— RSB, WBAR MR, ERER ARG A.

ﬁ

EERBRFEARFSZOER, ERTELNELATLZFBELMRF, a4,

EE IS T SR TEENER LS T LT P A7 T

S
e
4
oy
KR

5
o

LFREAHE, M EEARAERALEINREORBEAETZXZHATH. Hl

50%50 69E A BA —BE AL RIMME] REEWE R, KM BAS B EMF T
Bl&y R A TR, BB H— RGP EAA TR, RHLEIZRIAL
ARG ARERR—MHEHNEF, AEFAIBRIRB ALY, EFEE—FHFH
A, REF—FXREAGYEFRER, B4 BAS L F 2R H X AR,
RAUAINREESERAFFTAEAH S ARAGEREIL., AT LHHTEHEN

46

d0i:10.6342/NTU201701959



£ R T AR AR T A A 6 RS EARA

4.1 Recurrent Neural Network

Recurrent Neural Network (VAT #i4% RNN) £ BAgfem b {AfF ZHmA
IMNALEY FEAVIE AT, do B 31 P, MBS HEEAMEATEHDE T
—REI AT, B —H RNN A 2IE09 R A fmg FAHmR Ly i 1538 4a,
ARAF K B BAT RNN &k 2 £ 09 8 ¥ S A R4 (Long-Term dependencies) #9

Fa‘j %o

A A i H) 7 B#9 Long-Short Term Memory (VATF # 4§ LSTM) EAEA %
T A RIEBRIN, LA E13% RNN £ R AR 6 B8 L5 H R 6K, RNN
$ LSTM ##edtbds A B 32 RNN cell (&) $ LSTM cell a9tk (@
Greff, K. et al. [33]) LSTM tbtAZ RNN &4 7 = {8 1 F) 49 gate, FRif $)id FH
SHgH A LSTM A2 M 5 2 SR b A F 13 Sk 8 8 2R 69 F R4 A L1348 RNN
AR AR, ESBAEH P LR ELSL RNN R BB 8 R, KEHg A

LSTM FRA| 4 RE AT H 4

?
P -

b

v

v

® ® ®
S —
b & . ¢

31 RNN Cell (3% g Olah, C. [32])

@—>—@®
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Legend

unweighted connection
— weighted connection
=== Connection with time-lag

@®  branching poimt

©  mutliplication

@ sum over all inputs

gate activation function
(always sigmoid)

input activation function
(usually tanh)

output activation function
(usually tanh)

" >

32RNNcell (£) 3 LSTMcell 89t (4 A Greff, K. et al. [33])

ARG EHA=ZAATHOEAHE (%5 KW A0611 AHUG601 .
KW_A0611 RPB_E2 0201. KW _A0611 VFD N4 0201) , 2418 %% LSTM cell
FAEARAL, A 24 DB ABATINE ) BLAMA, AR A — R R A A0 B R
R (8925 Vi) BT A AT —8esA, (& T —%amAg

R 125 i, sk XAE3E, AR FARH 24 ) B A1k, RNN &9 2454 8

A 4B 33 AT

1hr 2 hr 3hr 23 hr 24 hr

input layer

' ' ¢ y v v
LSTM ---> LSTM ---> LSTM ---> LSTM ---> LSTM --> LSTM

| | | | ! !

2 hr 3hr 4hr 24 hr 25 hr

output layer

33 RNN %4

48

d0i:10.6342/NTU201701959



AR EA AR R — AR, R34 FELHIRE, 14 4 HRKE,

FoH AL 24%28 (672) 4 AHK,

TAR&E R4 B 34, X 400, YRAURKHEANLZGRATE, &
B AHTAIGE R, %BP AHTRRLE R, LR LR LT B R A4T, A RNN 28]

8 7 KAEARAE, 1 1000 25 A T LUIRAY .

predict by history

-@~ expected
08 {1 =@~ predict

¥
j;,

Ol
06 1 "o i. ; “ : !
; A T A T A
04 4 " . - . ’ . i W
L el 58 LA bk b
0 P ® ) 80 100 120
B 34 AT ERLEO,1)MGTARLE R
EBER (%) BALSTMIERI—E B A 8~21 & EBAYHEER
100
R + t t t
B8O
60 — ot by Makery -

20 "‘.%.:’. “

8 9 10 11 12 13 14 15 16 17 18 19 20 211J\H§(hr)

35 1278 I LAY A

B 35 ATARG Rk LT B0 6y BAE R BAEE LA 90%WA L,
8% AT 2R AENF, B MR e i Kags % AR A
HRARG LiE ki B ETRR R MIRE S EEHEE EARIIGEL, LF X
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UE S AR MBS R S, Blde, M EXBEESFENAREE SR
TreagrFizE, RATARfa A bnF i BT se A R4S 2, Ao E A AR, g

ERE BB E

4.2 Deep Neural Network

REFEHOGEARKEEwE, —F& (Layer) A # % 69474 T (neuron) ,
ERBORESYE, B—RHA A 4224465 (Fully connected) , M &9 R kA

Stochastic gradient descent (SGD) #% & T M4 & & §7 K 8,

AE WM ANFH 2016/619-2017/12/17 AHIALBA, 6/19-10/19 2 vaE A £
3000 £ AIIRE, LhAHRAKE, KRS ZHIE Atelp 1?2257 508 R AR
iAo EA B B A A 98 A RGRI AR E MU N, 48R 24 NEFZ IR AGEATIE
RIAZAE N oAt b, B2 B 36, A UARME & TR KA

FRMN, PHAE_E = RSB,

RO BRAEA . KATRK T R AR BB A, 3B R Ik
MALE, AV ERRGLE R4 B 378 38 B 39 i, XA, Y
A IERAKTARNNEES, AT HEKATALENERALER, BEgE

TRR4E R, LA E G LRARIE AR & 4ARLT,
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electricity
consumption

98 data 2t time(t+24)
at time(t)

| | Ou La:

e Hidden Layer oS

36 A B {% 869 DNN 4 4%
20/5
07 : pred
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l l il
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38 80 #E VAR 100 449/ & S8 & DNN & faRlE 24 R
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80/100/5

074~ pred
Tue
06 1
05 1

044

034

3980 #i. 100 4B VAR 5 469 = TS5 /& DNN AR E 4 3

B 37 RRETEHEE AL 20 4% 5 469 DNN A HAAEE4 %, &4
100 fEA7 48 L AR T, 3000 FAR ABGEAT 200 Kk A AR ILE & K48 2] 8
i@ (overfitting) , B LA F I 380, 450 & 69 4 5 ) I R 5] 80 i Fm
100 4z, 2t 8000 {EAY4E T, 4w B 38, @E 38 A9 FIRTAET AA HEEZHE
BOBR, EARMERBTAEDNNGHERE Laldmd—. $ Bk K, AEHK
093 e, BA K RTAZ ML T RE, 40 HUZREEETAR A E 0B
£ OATREM AT, X #REARHZ, Y i-cfAREHEE, X nT

TAERF M 6 B E = AR VT i 2] 80% XA Lo

DADNNFERIEFER 8~21 B B EAEEER

IERER (%)

| JM WU ! ”h"uﬁu

8 9 10 1 12 13 14 15 16 1? 18 19 20
i 2 Nhoun)

333RRESB

40 VL 80 4. 100 VAR 5 b = RIS, /& DNN &80 E S ey EaE &
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BEINRES . HEHR A 80, 100, 5 49 DNN A KA B KA — K2R
TACRGR I, I HRMERLEFRINRERGEZRZFEF K, PlleRIROG=4.
H#% 80, 100, 5 M9ZAE, INRMLERAAUT WAL, BTINRERTLERES

ERIDNRELE R LT A PURA—AEGIER LI R, HELEAETIX

B, BAR & RE A,

3layers

dh%gndon:80!100!5
BREHE

i

0.3 ‘iHi ,"4 03
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41 ZRIEH G aNREE R
43 &

1 B REEHD% BAS HEHF, HEARTARNRGERRE, [2AI%:842
P, A ETHRRGEGEIREST. BAYWED, SEINREHRAZ ) —F.
MBEENEEE, FALATFRLAIISR BAS KELHEBEFHRT —RETRIEARA

HAL R BRI

Bk, THE a. b MAERAEAIREN K. EHEaZE28MYRT

& f k4T DNN 89314k, BT AaRIIE T Av 42 LI TAVE % 69 RNN & 454F 4
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Jask. ARdn RNN #9915 77 XTI LR A7, BAEBAT 24 T ZAHIA

AlfaE 24 NEFEZ T, ABEERAETEE TEARETAR 4 R B /7 59% 8 #

FI, AR R — RO B AR A B s K FRBIAE T .

AHS b T AR Al DNN 69 AL it N BB NPT AT 69 KRB, 3T 3K

SAEHEDV AL, O 54 E . B, batchsize &, BT HEEEE L HHEIF

kB TERE (B 42) . ¥R DNN @& AW ERS, TIAMAH B
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FIAE AR ARCRE R . B FAE. FR, 4R B AR A Jo FE KM

ZS i@
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Weight of sensors
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0 2 4 &0 &

number of sensor

43 = fBIEH % oAk 69 DNN 2 A A&

RTRBCEGEEHEBRARKNI, FELYNDRRAIRERER
AR E . Bh, BATUHAEARRAS Amis g (B 43) i, X
S AT R 4IRS, Y d AR BIMANREYE A R0 A E 5, 124k
B KR K (97%80) , AR LRETES —MEEHRBERASHER.

7 b — BRI A, B M AAE R S 4 AR F F 49 model 3 3 model 4 4.2

# model 1 ¥ model 2 K.
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F5E L s

51 & X$EH#H

B, AFAKETRLERNE - MNEARARAES) ARG T X b

AANT R B GH, AR AR A AR

, AARIEFHRREHE R, Dol TAQAETE R0 #HE S FHEA,
faRlEZE. Ak, B 7 49 model | B %2 & 5 AHF 50 2 £ 49 baseline, A
He = A8 model R 493 A, FE4EE T 692355, model 1 A % 8 4o fT 5 i &L A
%, AWM ESEFBAEAE D EAOMAAT, A H S eRAE, B A

HRIFE R,

Model 2 IR 7 #bif BRI Z b, WP T XE2F T 58K, mAR
JU R B 0 [B) SR SHELE SUAL 09 77 XA Ui k. RS FAFE b 1% A model 2 T 5
REB G AFBAR, TURIHZFTHAEROMH L, HEE SVR 897 X

M RAR IR H ey 2 MIEH, RS TR TIRMM

%% model 1 %] model 4 #94£ F, HMERERT —ETF K 49 BAS &AL

Ref A9 TAR 77 ko dmdb—2R, ERERART T, EAKRBRA

— B A Gtk oy 7 X AATAER H T E AR, SHRTMEACRAEN
45k BAS AATM A Mt E 2| RAFHTARI AR EREMR Y S EAOEEY,

LAk S EATTAR], RFE AR EF K BAS — R {8 A R4 P BN TFRA 69
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A, AFFRAE, MERR KD THEIR T XM AR A RER A
BREZE QMR BLAPRBERRGRAREGERFREM— BRI, £dH

TARE 2 M AN, &R F) M AR A Ko AT #4238 S 69 AR A SR I B — 1
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Gk, BHEG AT AR E R GG BAS b, T UAME A48 3R 1808 A B HE
ARG EHE, R ATHEANLTHEEEAL A EEEEARERNERALRTE

A E A NI 1] E AR BOR B9 1R¥%
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B H, BRARAKLSEN., RIAHIEITHE RS ETZGEE, wfT/4F78
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$=, AERAET @, AAREEEERRIEEEBA RZOTRBEAT
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