
doi:10.6342/NTU201704465

國立台灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

利用語法結構之雙向遞迴類神經網路

於命名實體辨識之研究

Leveraging Linguistic Structures for Named Entity

Recognition with Bidirectional Recursive Neural Networks

李朋軒

Peng-Hsuan Li

指導教授： 許永真 博士

馬偉雲 博士

Advisor: Jane Yung-jen Hsu, Ph.D.
Wei-Yun Ma, Ph.D.

中華民國 106 年 11 月
November, 2017

doi:10.6342/NTU201704465

doi:10.6342/NTU201704465

Acknowledgments

感謝許永真老師指導我研究。大學部時，許永真老師和王詩翰學長帶領我探索

各個研究問題與技術，引領我完成一個研究專題。碩士班時，許永真老師給予我

各個研究方向的回饋，也給我許多碩士論文撰寫建議。

感謝馬偉雲老師指導我研究。碩士班時，馬偉雲老師帶領我探索一個研究領

域，指導我在一個具體的研究題目上得到成果，並教導我投稿和撰寫會議論文。

至今，馬偉雲老師持續給我進一步研究方向建議和回饋。

感謝實驗室的同學們合作討論，感謝我的家人，感謝許許多多的人在我成長過

程中帶來正面影響。

i

doi:10.6342/NTU201704465

ii

doi:10.6342/NTU201704465

Abstract

Named Entity Recognition (NER) is an important task which locates proper

names in text for downstream tasks, e.g. to facilitate natural language under-

standing. The problem is often casted from structured prediction of text chunks

to sequential labeling of tokens. Such sequential approaches have achieved high

performance with models like conditional random fields and recurrent neural net-

works. However, named entities should be linguistic constituents, and sequential

token labeling neglects this information.

In the thesis, we propose a constituency-oriented approach which fully utilizes

linguistic structures in text. First, to leverage the prior knowledge of hierarchi-

cal phrase structures, we generate parses and alter them into constituency graphs

that minimize inconsistencies between parses and named entities. Then, we use

Bidirectional Recursive Neural Networks (BRNN) to propagate relevant structure

information to each constituent. We use a bottom-up pass to capture the local

information and a top-down pass to capture the global information. Experiments

show that this approach is comparable to sequential token labeling, and significant

improvements can be seen on OntoNotes 5.0 NER, with F1 scores over 87%.

iii

doi:10.6342/NTU201704465

摘摘摘要要要

命名實體辨識(NER)是一個找出文字中的命名實體的重要任務，其產出能提

供給下游的任務比如自然語言理解使用。此問題常從命名實體所在的文字區

段的預測被轉型為線性地預測每個單詞是否屬於某一命名實體的一部分。利

用CRF與RNN等模型，這類轉型後的方法取得了很好的成果。然而，每個命名實

體都應該是一個語法單元，而線性單詞預測的方法忽略這個資訊。

在本論文中，我們提出一個語法導向的方法以完整利用文字裡的語言結構。要

利用階層性的詞組結構，我們首先產生語法剖析樹並將之改變為最小化剖析樹與

命名實體之間的不一致的語法圖。然後我們利用雙向遞迴類神經網路(BRNN)去

傳遞相關的結構資訊到每一個語法單元。我們利用一個由下往上的遍歷來蒐集局

部資訊，以及一個由上往下的遍歷來蒐集全域資訊。實驗顯示此方法可和線性單

詞標記法相比，並在OntoNotes 5.0 NER語料上取得了超過87% F1分數的顯著進

步。

iv

doi:10.6342/NTU201704465

Contents

Acknowledgments i

Abstract iii

List of Figures ix

List of Tables xi

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Objective . 4

1.4 Outline of the Thesis . 5

Chapter 2 Related Work 6

2.1 NER . 6

2.2 Related Neural Models . 8

v

doi:10.6342/NTU201704465

2.3 Constituents and NER . 10

2.4 Recurrent NN and NER . 11

Chapter 3 Constituency-Oriented NER 13

3.1 Problem Statement . 13

3.2 Proposed Solution . 14

Chapter 4 Constituency Graph Generation 18

4.1 Constituency Graph . 18

4.2 Consistency . 20

4.3 Parse Tree Binarization . 21

4.3.1 Observations of Type-1 . 21

4.3.2 Binarizing Parse Trees . 22

4.3.3 An Example . 22

4.4 Pyramid Construction . 25

4.4.1 Observations of Type-2 . 25

4.4.2 Näıve Pyramids . 27

4.4.3 The Pyramid Addition Method 28

4.5 Dependency Transformation . 30

Chapter 5 Constituent Classification 33

5.1 Feature Extraction . 33

5.1.1 Word-Level Features . 34

vi

doi:10.6342/NTU201704465

5.1.2 Character-Level Features . 36

5.1.3 Parse Tag Features . 37

5.1.4 Lexicon Hit Features . 38

5.2 BRNN-CNN . 39

5.2.1 Input Layer . 40

5.2.2 Hidden Layers . 44

5.2.3 Output Layer . 48

5.3 Prediction Collection . 49

Chapter 6 Evaluation 51

6.1 Experimental Setup . 51

6.1.1 Parameter Initialization . 51

6.1.2 Parameter Optimization . 52

6.1.3 CoNLL-2003 Dataset . 54

6.1.4 OntoNotes 5.0 Dataset . 55

6.1.5 Hyper-Parameters . 56

6.2 Major Results . 58

6.3 Analysis . 61

6.3.1 Constituency-Oriented Approach 61

6.3.2 Constituency Graph Generation 63

6.3.3 Constituent Classification . 64

Chapter 7 Conclusion 67

vii

doi:10.6342/NTU201704465

7.1 Summary of Contributions . 67

7.2 Future Work . 68

Bibliography 70

viii

doi:10.6342/NTU201704465

List of Figures

1.1 The NER task and a sequential labeling approach with BIOES se-

quential labels (Begin, Inside, Outside, End, Single). 2

1.2 Linguistic structures and NER. 3

2.1 Recurrent vs. Recursive NN. 10

3.1 An NER system. 14

3.2 Comparing classical sequential labeling NER and constituency-oriented

NER. 15

3.3 High-level overview of the system. 16

4.1 Types of inconsistencies between Parses and NER. 21

4.2 A parse tree-derived constituency graph for S1. 24

4.3 Applying Algorithm 1 for S1. 24

4.4 Wrong grouping for S1. 25

4.5 Another example of type-2 inconsistency. 26

4.6 A näıve pyramid. 27

ix

doi:10.6342/NTU201704465

4.7 A combined graph of a parse tree and a näıve pyramid. 28

4.8 The pyrmaid-added constituency graph. 29

4.9 A dependency parse tree with bottom-up links. 30

4.10 The transfromed tree for Figure 4.9. Arrows indicate head nodes. . . 32

5.1 Binarized tree for S1 = (senator, Edward,Kennedy). 35

5.2 The bottom-up hidden layer applied to node#5 in Figure 5.1. 45

5.3 The top-down hidden layer applied to node#5 in Figure 5.1. 45

5.4 The bottom-up hidden layer applied to the graph in Figure 5.1. . . . 46

5.5 The top-down hidden layer applied to the graph in Figure 5.1. 46

5.6 The top-down deep hidden layer applied to node i with parent p. . . . 47

5.7 The output layer applied to node i with left sibling j and right sibling

k. The fully-connected layer does not contain non-linear transforma-

tions like ReLU. 49

6.1 The parse tree of a sentence containing White House (FACILITY). . 62

6.2 The parse tree of a sentence containing Koran (WORK OF ART). . . 66

x

doi:10.6342/NTU201704465

List of Tables

5.1 An example of word-to-index mapping. φ represents a non-existent

token. 35

5.2 An example of pos-to-index mapping. φ represents a non-existent

parse tag. Added pyramid nodes all have the same sepcial tag. . . . 38

5.3 Three example lexicons of PER, ORG, and LOC. 39

6.1 Parameters of BRNN-CNN. 52

6.2 Dataset statistics for CoNLL-2003. 54

6.3 Dataset statistics for OntoNotes 5.0. 55

6.4 Trial range and final settings of hyper-parameters. 56

6.5 Experiment results on CoNLL-2003. 59

6.6 Experiment results on OntoNotes. *Finkel and Manning used gold

parses in training time. 59

6.7 Experiment results on different data sources of OntoNotes. *Percent-

age of NEs that correspond to some constituents in binarized auto

parses. 60

xi

doi:10.6342/NTU201704465

6.8 Performance of sequential labeling models on OntoNotes. 62

6.9 Consistency rates before and after binarization. 63

6.10 Performance on OntoNotes before and after binarization. 63

6.11 Performance of unidirectional and bidirectional models on OntoNotes. 65

xii

doi:10.6342/NTU201704465

Chapter 1

Introduction

In this chapter, we start off introducing the background of the thesis. Then our

motivation and goals are given. Finally, the following chapters in the thesis are

briefly summarized.

1.1 Background

Named Entities (NEs) are text chunks that represent names, and they are some-

times simply referred to as names or entities. The types of names that are often

wanted to be recognized include PERSON, ORGANIZATION, and LOCATION.

While in specific domains such as biomedicine, each molecule can be seen as a cat-

egory of named entities, many other categories of general named entities have also

been proposed, e.g. WORK OF ART and LAW.

Named Entity Recognition (NER), which can be seen as a combined task of lo-

1

doi:10.6342/NTU201704465

2 CHAPTER 1. INTRODUCTION

cating and classifying named entities, is an important task of information extraction

systems. Recent important benchmark datasets of the general domain include the

dataset of CoNLL 2003 shared task [31] and the dataset of the OntoNotes project

[13]. CoNLL 2003 is the Reuters corpus with NER annotations, and OntoNotes

5.0 boasts multilevel annotations, e.g. TreeBank, PropBank, and NE, for diverse

sources of texts.

NER problems are often casted from structured prediction of text chunks to

sequential labeling of tokens (Figure 1.1). This is done by labeling each token as a

part of a named entity chunk, e.g. “Begin Person”. Such approaches achieve high

performances in the benchmark datasets [25, 22, 3].

Figure 1.1: The NER task and a sequential labeling approach with BIOES sequential

labels (Begin, Inside, Outside, End, Single).

Being formulated as a sequential labeling problem, NER systems could be im-

plemented by models which compute hidden states for each token. These hidden

state features are then used to predict the sequential label of a token. Such kind of

doi:10.6342/NTU201704465

1.2. MOTIVATION 3

models include conditional random fields and recurrent neural networks. With both

forward and backward directions, bidirectional networks learn how to propagate the

information of a token sequence to each token. Bi-LSTM-CNN, a variant of such

models, is shown to accomplish state-of-the-art results on both CoNLL 2003 and

OntoNotes 5.0 NER [3].

1.2 Motivation

According to analyses, most named entity chunks are actually linguistic con-

stituents, e.g. noun phrases, and additional linguistic information other than word

orders should be intuitively useful (Figure 1.2). However, due to the hierarchical

chunking nature of phrase structures, it is intrinsically hard for sequential labeling

token-based NER models to take advantage of them. Unfortunately for constituent-

based NER models, the inconsistencies between constituency parses and named en-

tities pose another challenge: the recall of such models is capped by the proportion

of named entities that correspond to some constituents

Figure 1.2: Linguistic structures and NER.

doi:10.6342/NTU201704465

4 CHAPTER 1. INTRODUCTION

Provided that both parse trees and NEs are given, they can be made consistent

by flattening the trees and then adding new nodes [10]. However, this condition is

not practical for NER systems that are dependent on parses. Instead, for any NER

training corpora with or without constituency parse annotations, readily available

parsers can be used. It is then desirable to have algorithms that can still alter those

parser-generated parses to make them more consistent without actually knowing NE

locations.

Additionally, as the approach shifts from sequential labeling token-based NER

to tree-structured constituent-based NER, recursive neural networks should be con-

sidered. Recurrent neural networks are shown to be powerful on sequential label-

ing NER, and recursive networks are the generalization that can operate on tree

structures. To capture the relevant information for each token, bidirectional recur-

rent networks have two passes for left and right context respectively. For recursive

networks, they could have a bottom-up pass to capture local information and a

top-down pass to capture global information.

1.3 Objective

To leverage linguistic structures in texts for NER, we want to

• Mitigate the inconsistencies between parsing and NER by restructuring algo-

rithms, and

• Utilize prior linguistic structure information with constituent-based Bidirec-

tional Recursive Neural Networks (BRNN).

doi:10.6342/NTU201704465

1.4. OUTLINE OF THE THESIS 5

1.4 Outline of the Thesis

Chapter 2 explores previous work on NER, treatments for the consistency prob-

lem, and models closely related to the proposed BRNN-CNN.

Chapter 3 first states the NER problem to solve, and then shows the overview of

the system proposed by this thesis. Chapter 4 elaborates the first functional block

of the system: constituency graph generation. This chapter covers the construction

of linguistic structures, inconsistencies between the structures and NER, and algo-

rithms that mitigate these inconsistencies. Finally, after linguistic structures needed

are defined, Chapter 5 formulates the proposed model and the features used.

In Chapter 6, evaluation setup about tuning, training, and testing of the system

on different datasets are documented. Experiment results and analyses of different

aspects of the approach are given.

Chapter 7 summarizes the contribution of the thesis as well as possible future

research directions.

doi:10.6342/NTU201704465

Chapter 2

Related Work

In this chapter, related researches of the NER problem and neural models are

presented first. The last two sections then introduce two approaches that are most

related to the thesis.

2.1 NER

Studies of named entity recognition can be dated back to the Message Un-

derstanding Conference-6 at 1995 [12]. NER systems on this well-studied MUC-7

dataset [2] have achieved near-human performances (93% against 97%) [21]. How-

ever, NER remains an active and challenging research topic to date with various

complications. These include more classes of general named entities, more fine-

grained categories, an indefinite number of domain-specific types, diverse sources

of corpora, crowd-based external knowledge, and joint tasks of related problems

6

doi:10.6342/NTU201704465

2.1. NER 7

[31, 13, 17, 7, 9].

The Conference on Computational Language Learning (CoNLL) organized by

SIGNLL includes a shared Natural Language Processing (NLP) task every year. In

2003, CoNLL held a language-independent NER shared task [31]. Since then, its

English corpus, the Reuters Corpus Volume 1 (RCV1) [19] annotated with sequential

NE labels, has become an widely used benchmark for recent systems.

OntoNotes, a project which creates multilingual, multi-source, and substantially

larger corpora with multilevel annotations, are first described in 2006 [13]. Partic-

ularly, the multilevel annotations make it possible for systems that tackle different

tasks in the NER pipeline to share with, compare with, or depend on one another.

In addition, joint models that try to solve multiple problems at once are made pos-

sible. For NER, OntoNotes release 5.0 [32] annotates more categories of names and

numerical quantities which have wider coverage and are more fine-grained. Base-

lines for various tasks as well as a train-validate-test split which later become the

standard have been established for this final release [24]. In 2012, the dataset was

used for the multilingual coreference shared task held by CoNLL, and has since been

gaining popularity as a benchmark for NE-related tasks.

Traditionally, NER is modeled as a token-based sequential labeling problem by

breaking each NE chunk into chunk labels. (An example is shown in Figure 1.1.) The

most widely used chunk labels include Begin, Inside, Outside, End, and Single. In

the famous BIO chunk labeling, every token that is not Outside any chunk is labeled

as Inside unless it is the Beginning of a chunk. However, for the more complicated

BIOES, or BILOU (Begin, Inside, Last, Outside, Unit), chunk labeling, the Last

doi:10.6342/NTU201704465

8 CHAPTER 2. RELATED WORK

token of a multi-token chunk is labeled as End, whereas the token of a Unit-length

chunk is labeled as Single. Studies that use the latter chunk labeling scheme have

been dominating pure NER tasks (as opposed to joint tasks) [25, 22, 3].

When a large corpus with multiple annotations such as OntoNotes are available,

constructing models that are guided by multilevel information is then possible. In-

tuitively, since all the human-labeled linguistic annotations are sound, models that

are trained by more than NER labels should not perform worse than pure NER

models. However, these additional labels generated by human are costly and could

practically only be obtained in training time, so they cannot be used as features

but targets to predict. In other words, to utilize multiple annotations, joint models

that tackle several tasks at once must be trained. This kind of models are gener-

ally hard to train successfully despite intrinsically having advantages against pure

NER models. Joint systems for NER that were successful at their time include one

that jointly predicts NE while parsing [10], and ones that does named entity typing,

linking and even coreference at once [9, 20].

2.2 Related Neural Models

Neural Networks (NN), the collection of functions composed by linear combi-

nations and nonlinearities, are proved to be able to approximate any continuous

functions on a close interval [6]. The universality and empirical results of deep

neural networks intrigue to construct end-to-end models that use raw sources of

information as features for each domain, e.g. pixels for vision. In 2011, the SENNA

doi:10.6342/NTU201704465

2.2. RELATED NEURAL MODELS 9

system that almost use raw words as features achieved near state-of-the-art perfor-

mances on various NLP tasks, including part-of-speech (POS) tagging, chunking,

NER, and semantic role labeling, at its time [5].

The actual raw features in text are the sequences of characters, which means

the usage of a pre-trained word segmentation system already introduces noises and

losses of information. However, for synthetic languages that has multiple phonemes

per word like English, training a true end-to-end model is intrinsically hard since

each character encodes little semantic information. Still, character-level features

have recently been shown to be effective in capturing morphological information in-

side words and combating the word sparsity problem. State-of-the-art NER systems

have been achieved for Spanish and Portuguese by using both word and character

embeddings [8]. Some models use word segmentation only as boundaries for the com-

putation of character-level word embeddings by convolutional networks. Such kind

of recurrent neural network language models outperforms word-level baselines for

several languages with rich morphology (Arabic, Czech, French, German, Spanish,

Russian) [15].

While recurrent neural networks repeatedly apply their hidden layers to a se-

quence of inputs, recursive neural networks repeatedly apply their hidden layers

to a Directed-Acyclic Graph (DAG) of inputs. In other words, recursive networks

are generalized recurrent networks with relaxed condition on the dependency of in-

puts (Figure 2.1). When applied to parse trees, the computed hidden states of each

node capture the semantic composition of the corresponding constituent. Thus they

have been applied to constructing parses, computing sentence embeddings for sen-

doi:10.6342/NTU201704465

10 CHAPTER 2. RELATED WORK

timent analysis and paraphrase detection, and computing additional features (in a

top-down fashion) for tokens of a sequential model [27, 30, 28, 29, 26, 14].

Figure 2.1: Recurrent vs. Recursive NN.

2.3 Constituents and NER

A complete sentence consists of phrases that are organized in a hierarchical

structure. The constituency parse of a sentence is a tree of constituent nodes, where

constituents are functional units in a sentence, including words, phrases, clauses, etc.

Hence, a named entity should correspond to a constituent, probably a Noun Phrase

(NP). A sequential NP-based approach with linear-chain Conditional Random Fields

(CRF) has been proposed as part of an ensemble for NER [33]. However, the full

potential of constituency structures has not been utilized by the system.

On OntoNotes, both NER and constituency parse annotations are available, so it

is proposed to do NER while parsing [10]. However, the parse and NER annotations

were found to be inconsistent. NEs might cross constituent boundaries by consisting

doi:10.6342/NTU201704465

2.4. RECURRENT NN AND NER 11

of multiple sibling constituents, or even cross tree branches by, for instance, con-

sisting of multiple cousin constituents. These inconsistencies were deemed by the

authors of that work as annotation errors of the parse trees and were resolved by

modifying the dataset. Some subtrees are flattened and smaller constituents are

regrouped according to NER annotations. Then the Context Free Grammar (CFG)

for parsing was modified so that each nonterminal, e.g. NP, was further lexicalized

by adding NE suffixes, e.g. NP-PERSON, NP-LOCATION. A CRF-CFG parser

of this grammar was trained on the modified dataset. The method outperformed

the same parser of the vanilla grammar on parsing, and surpassed a token-based

linear-chain CRF on NER respectively.

2.4 Recurrent NN and NER

A hidden layer of a feed-forward neural network computes a hidden vector from

its previous layer, except that the first layer computes from the raw feature vector

extracted from a sample. On the other hand, a hidden layer of a recurrent neural

network has two input vectors, with the additional one being the output hidden

vector from the last time this very layer was applied. Essentially, such kind of

networks learn to propagate useful information of previous samples to the current

sample, and are suited for classifying sequences of dependent samples. A Long-

Short Term Memory (LSTM) is one variation of recurrent neural networks that are

oftentimes more successful.

The current state-of-the-art NER system takes a sequential labeling token-based

doi:10.6342/NTU201704465

12 CHAPTER 2. RELATED WORK

approach with Bi-LSTM-CNNs [3]. In the core of the model, bidirectional LSTM

layers learn to propagate the information of the left and the right contexts of a

token respectively. The attached CNN learns to compute character-level features

to augment other raw features of a token, e.g. the word embedding. Notably, the

authors crafted good lexicon features that record if a token is seen in the NE lexicons

extracted from SENNA and DBpedia [18].

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Chiu and Nichols [3]

Luo et al. [20]

Durrett and Klein [9]

Finkel and Manning [10]

Ratinov and Roth [25]

dos Santos and Guimaraes [8]

Socher et al. [29]

Collobert et al. [5]

Socher et al. [28] Kim et al. [15]

Hovy et al. [13]

Tjong Kim Sang and De Meulder [31] Pradhan et al. [24]

Related NER Datasets

Related NER Systems

Related Neural Models

doi:10.6342/NTU201704465

Chapter 3

Constituency-Oriented NER

The goal of the thesis is to leverage linguistic structures for NER. To this end, we

propose a constituency-oriented approach where a constituency graph is generated

for each sentence before structure information is utilized to classify each constituent.

3.1 Problem Statement

Let C be the set of named entity categories. Let S = {Si} be the set of tokenized

sentences. A sentence Si is a sequence of tokens (Si1, Si2, Si3, . . . , Sin) where n is

the number of tokens of Si. A named entity e = (i, (j, k), c) is the chunk of tokens

(Sij, Si(j+1), . . . , Si(k−1)) with type c ∈ C. The NER problem are thus:

Given C,

Input S,

Output a set of named entities Ea.

13

doi:10.6342/NTU201704465

14 CHAPTER 3. CONSTITUENCY-ORIENTED NER

The ground truth Eg is unknown to a system in testing time. The quality of the

system is determined by the score F (Ea;Eg), where F is an evaluation function.

Abstractly, the problem is to find an NER system which locates and classifies

named entities in text. Additionally, the system operates in a per-sentence basis,

assuming they are already tokenized. When a user gives such a sentence to the

system, chunks of tokens that belong to some predefined named entities categories,

as well as which categories they belong to, will be identified. An example is shown

in Figure 3.1.

Figure 3.1: An NER system.

3.2 Proposed Solution

In this thesis, a constituency-oriented approach for NER is proposed. Figure

3.2 shows the constituency-oriented NER compared to traditional sequential labeling

NER. Notably, NER is split into two stages in the proposed approach, of which

underlying methods might be swapped independently. In the first stage, a hierarchy

of constituents is constructed to take into account additional structural linguistic

doi:10.6342/NTU201704465

3.2. PROPOSED SOLUTION 15

information. Then in the second stage, constituent-based predictions are made.

We suggest that the model underlying the second stage classifies each constituent

not only by the constituent itself but also by relevant structures provided by the

hierarchy.

Figure 3.2: Comparing classical sequential labeling NER and constituency-oriented

NER.

Figure 3.3 shows components proposed for each stage. In constituency graph

generation, a constituency parse tree is first constructed but later altered and aug-

mented. These processes make it not a tree anymore, hence the name constituency

graph. In constituent classification, hidden state features are computed recursively

before classification. This is done by BRNN-CNN, a specially designed recur-

sive network. Actual functional blocks of the system are briefly introduced in the

following, and more details are elaborated in later chapters.

doi:10.6342/NTU201704465

16 CHAPTER 3. CONSTITUENCY-ORIENTED NER

Figure 3.3: High-level overview of the system.

doi:10.6342/NTU201704465

3.2. PROPOSED SOLUTION 17

The functional blocks in the first stage constructs a special directed graph, called

a constituency graph, from a given tokenized sentence. Several restructuring algo-

rithms are applied to a base parse tree to form the graph. These algorithms increase

the consistency between the constituency graph and the (unknown) named entities

of a given sentence while preserving linguistic structures hinted by the parse.

The functional blocks in the second stage are tasked with classifying constituents

by a constituency graph. To utilize the structural linguistic information, a special

recursive network, BRNN-CNN, is proposed. Crucially, two Directed Acyclic Graphs

(DAGs) are formed by considering only bottom-up or top-down links in the hierar-

chical constituency graph. Then BRNN-CNN computes two hidden state features

for each node recursively. The bottom-up pass captures the semantic composition

of local information for each constituent. The top-down pass captures the global

information of the structures containing each constituent. Together, the two hidden

state features contain the relevant information for the identification of named entity

constituents.

doi:10.6342/NTU201704465

Chapter 4

Constituency Graph Generation

The first stage of the proposed approach regards the construction of a special

graph, called a constituency graph, for each given sentence. Initially, a constituency

parse tree is constructed, either by direct constituency parsing or by transforming

a dependency parse. Then the parse tree is binarized and augmented to form a

hierarchical graph. The applied algorithms increase the consistency between the

constituency graph and the unknown named entities of a given sentence while pre-

serving linguistic structures hinted by the parse.

4.1 Constituency Graph

A constituency graph of hierarchical nodes is constructed for each given sentence.

The graph must meet the following conditions.

• Every node in the graph corresponds to a chunk of tokens in the sentence.

18

doi:10.6342/NTU201704465

4.1. CONSTITUENCY GRAPH 19

• For every pair of nodes linked by some edges, one of the corresponding chunks

contains the other.

Throughout the thesis, some terms are used as the following for simplicity.

• A chunk of tokens in the sentence that corresponds to some nodes is called a

constituent.

• For every pair of nodes linked by some edges, one is designated to be the

parent and the other the child such that the parent constituent contains the

child constituent.

• An edge is said to be a bottom-up link if it points to the parent, otherwise a

top-down link.

• Nodes of which bottom-up links point to the same parent are called siblings.

• Two siblings of which constituents are right next to each other are called the

left sibling or the right sibling of each other, depending on which constituent

is on the left and which is on the right.

Intuitively, a constituency graph meeting the requirements could be easily con-

structed from a constituency parse tree of the sentence. The set of nodes of the

graph is the same as the tree. The set of edges is formed by adding both bottom-up

and top-down links between every parent-child pair designated by the tree. The

constituent of each leaf node is just one single token, or word, given by the parse.

For each internal node, its constituent is the concatenation of the constituents of its

children.

doi:10.6342/NTU201704465

20 CHAPTER 4. CONSTITUENCY GRAPH GENERATION

The aforementioned parse tree-derived constituency graph is presumably

the correct constituency structure of the sentence given by a parser or an annotator.

However, as we shall see, such a näıve graph might not be optimal for NER and

changes could take place.

4.2 Consistency

A named entity does not necessarily correspond to any constituent of a con-

stituency graph.

Definition 4.1. If a named entity does not correspond to any node in a given

constituency graph, i.e. no single constituent equals the named entity chunk, it is

said to be inconsistent with the graph.

This happens frequently even for human annotated constituency parse trees.

Practically, a given parse tree might not be optimal for NER because of various

kinds of inconsistent NEs.

Definition 4.2. An inconsistent named entity is said to be type-1 inconsistent if it

is the concatenation of sibling constituents; type-2, otherwise.

So practically, a parse tree-derived constituency graph could be optimized for

NER by resolving these inconsistencies. To achieve this without actually knowing

NE locations, several algorithms are introduced in the next sections.

doi:10.6342/NTU201704465

4.3. PARSE TREE BINARIZATION 21

(a) Type-1
(b) Type-2

Figure 4.1: Types of inconsistencies between Parses and NER.

4.3 Parse Tree Binarization

4.3.1 Observations of Type-1

Many inconsistent named entities are actually the concatenation of multiple sib-

ling constituents. An example is shown in Figure 4.1a.

For parse tree-derived constituency graphs, type-1 inconsistent named entities

only occurs when some nodes have more than two child nodes. Otherwise, suppose

a named entity is type-1 inconsistent. The named entity must correspond to the

concatenation of two sibling constituents. Because the concatenated chunk must

equal to the parent constituent, the named entity is not inconsistent. A conflict.

Further judgement could be made from the above observation: these type-1

inconsistencies might be seen as minor parse errors or just the treebank annotation

doi:10.6342/NTU201704465

22 CHAPTER 4. CONSTITUENCY GRAPH GENERATION

style. Although the parser does not group some siblings correctly for NER, it does

not group them wrongly. It just does not group them.

4.3.2 Binarizing Parse Trees

Grouping some siblings correctly resolves type-1 inconsistencies. However, NE

locations are unknown to the system. Instead, a linguistic-compliant binarization

process is applied. Algorithm 1 shows the recursive procedure used by the system.

Starting from the root node of a parse tree, the process recursively groups child

nodes of which the parent has more than two children. By creating a new child to

be the new parent of all original children except only one child to a side, it ensures

every node has at most two children.

Essentially, for each node, the head-driven process groups children recursively

around the head one, making it the deepest. The heuristic is that a head constituent

is usually modified by its siblings in a near to far fashion. Practically, the head child

of a node is determined by a rule-based head finder [4]. The finder decides the head

for each production, i.e. the parse tags of a node and its children.

4.3.3 An Example

Let a sentence S1 = (senator, Edward,Kennedy) and a named entity e1 =

(1, (2, 4), PER). Figure 4.2 shows a parse tree-derived constituency graph for S1.

To facilitate discussion, nodes are numbered, and parse tags, head words, and con-

stituents are abbreviated as pos, head, and const respectively. It is clear that

doi:10.6342/NTU201704465

4.3. PARSE TREE BINARIZATION 23

Algorithm 1 Binarization
1: function BINARIZE(node)

2: n← node.children.length

3: if n > 2 then

4: if HEAD-FINDER(node) 6= node.children[n] then

5: newChild ← GROUP(node.children[1..n-1])

6: node.children ← [newChild, node.children[n]]

7: else

8: newChild ← GROUP(node.children[2..n])

9: node.children ← [node.children[1], newChild]

10: newChild.pos← node.pos

11: for child in node.children do

12: BINARIZE(child)

e1 is inconsistent with the graph because no one node corresponds to the chunk

(Edward,Kennedy). However, the chunk is actually the constituent concatenation

of the siblings node#3 and node#4.

Figure 4.3 shows the application of Algorithm 1 to the parse tree of S1. With

the heuristic that node#3 (Edward) modifies the head node node#4 (Kennedy) be-

fore node#2 (senator). The binarization process successfully adds a new node#5

(Edward Kennedy) that corresponds to e1. In addition, the newly generated child

node is given the same parse tag and the head word as its parent.

Effectively, binarizing parse trees eliminates type-1 inconsistencies while leaving

doi:10.6342/NTU201704465

24 CHAPTER 4. CONSTITUENCY GRAPH GENERATION

Figure 4.2: A parse tree-derived constituency graph for S1.

Figure 4.3: Applying Algorithm 1 for S1.

consistent NEs untouched. In other words, the consistency problem is guaranteed

to be mitigated or stay the same, which is extremely unlikely. However, type-1

inconsistent NEs might not be completely resolved, as wrong grouping of siblings

only makes some type-1 inconsistent NEs type-2. Figure 4.4 illustrates the situation

when node#3 and node#4 are not siblings anymore.

doi:10.6342/NTU201704465

4.4. PYRAMID CONSTRUCTION 25

Figure 4.4: Wrong grouping for S1.

4.4 Pyramid Construction

4.4.1 Observations of Type-2

After binarization, all remaining inconsistent NEs are type-2. This type of incon-

sistent NEs cross different branches of a parse tree. In other words, a type-2 incon-

sistent NE is the constituent concatenation of nodes deep down different branches

such that they are not siblings. An example is shown is Figure 4.1b.

On one hand, type-2 inconsistences could be seen as major parse errors. In

general, every named entity should correspond to a linguistic constituent or at least

the combination of some constituents. The parse tree, however, dictates that some

needed constituents of an NE should not be combined at all.

On the other hand, type-2 inconsistent NEs could be seen as ungrammatical

against the supposedly correct parsing. This happens when a chunk of tokens fits a

name well just by chance. Sometimes the writer or the speaker does not intend to

doi:10.6342/NTU201704465

26 CHAPTER 4. CONSTITUENCY GRAPH GENERATION

group the tokens of a name but rather group some of them with others first.

For example, in Figure 4.1b, the speaker might just want to use Taihang as an

adjective for Mountain range. However, Taihang Mountain fits too well a name not

to tag by NER annotators. Note that, in modern Chinese, the name of a mountain

is almost always ended by Mountain (山). Taihang Mountain (太行山) is such a

case.

Another example of coincidence is shown in Figure 4.5. The speaker might want

to mention the couple by first grouping their first names Bob and Mary before

their shared last name Schindler. But the NER annotators might think that Mary

Schindler is too good a proper name not to tag.

Figure 4.5: Another example of type-2 inconsistency.

Whichever point of view taken, the parser making mistakes or NEs being un-

grammatical, this inconsistency could not be resolved solely by the parser. This is

doi:10.6342/NTU201704465

4.4. PYRAMID CONSTRUCTION 27

in contrast to the cases of type-1. Without NE information, type-1 inconsistencies

are mitigated by using head words determined by parses. For type-2 inconsistencies,

trusting the parse is the essence of the problem.

4.4.2 Näıve Pyramids

A so called näıve pyramid has a node for every possible chunking of nodes. Figure

4.6 shows an example. For each node, its constituent is the concatenation of leaf

node tokens in the sub-pyramid rooted at the node. While there might be no simple

syntactical ways to restructure and in a sense fix the parses without knowing NE

locations, this extreme alternative ditches parses and makes sure no inconsistent

NEs exist.

Figure 4.6: A näıve pyramid.

The apparent drawback of a näıve pyramid is that no linguistic structures are

present. Instead, it might be better if a parse and a pyramid are combined together

into one single constituency graph. Figure 4.7 illustrates the idea.

Still, too much information might just behave like lack of valuable information.

doi:10.6342/NTU201704465

28 CHAPTER 4. CONSTITUENCY GRAPH GENERATION

Figure 4.7: A combined graph of a parse tree and a näıve pyramid.

The nodes of a pyramid that do not already exist in parses lack linguistic information

such as parse tags and head words. Moreover, the number of nodes explodes when

a pyramid is added to a parse tree. Suppose there are n tokens in a sentence. For

a parse tree, there will be only n leaf nodes, n − 1 2-degree nonterminal nodes,

and few 1-degree nonterminal nodes practically. However, for a pyramid, there

are n + (n − 1) + (n − 2) + · · · + 1: more than half of n2 nodes in total. These

overwhelming uninformative new nodes make it much harder for models to learn

to propagate structural linguistic information. As a result, phrase structures are

diluted too much and training speed becomes unpractically slow.

4.4.3 The Pyramid Addition Method

According to the above reasoning, a novel method is proposed to create a pyramid-

added constituency graph. An example is illustrated in Figure 4.8.

First and foremost, the parse tree is preserved by making old links bypass new

pyramid nodes. This way, valuable linguistic information is presented to a model in

doi:10.6342/NTU201704465

4.4. PYRAMID CONSTRUCTION 29

Figure 4.8: The pyrmaid-added constituency graph.

the same structure as the parse-tree derived constituency graph by the untouched

parse tree. Newly added pyramid nodes only act as information consumers. Their

constituents consume information from original parse tree, but are fed only to other

new nodes. As a result, only bottom-up links are added, while previously every line

in the illustrations is bidirectional.

Second, the height of the pyramid is limited to a small constant d. Hence the

total number of nodes are bounded by d×n, where n is the number of tokens in the

sentence. When d is set to 3, all bigrams and trigrams in the sentence correspond

to some nodes in the pyramid-added graph.

In summary, the proposed procedure of adding pyramid nodes significantly in-

creases consistency while preserving linguistic structures. This is done by focusing

on predicting additional short named entities, which are actually most NEs, with

the aid of untouched parse trees.

doi:10.6342/NTU201704465

30 CHAPTER 4. CONSTITUENCY GRAPH GENERATION

4.5 Dependency Transformation

An alternative to constituency parsing for constructing a base tree is dependency

parsing. However, a dependency parse is not a hierarchy of phrases. Instead, every

node in such a parse corresponds to a distinct token and tagged edges give the

modification relationship, or dependency, between tokens. Figure 4.9 shows a simple

example. Note that it is still a tree, with every arrow pointing from a child to its

parent.

Figure 4.9: A dependency parse tree with bottom-up links.

To use a dependency parse to construct a base tree, a dependency-to-constituency

transformation must be applied. Now one strength of a constituency graph is that

no strict grammar is required. As long as a consistent hierarchy of nodes is present,

underlying models could try to learn from the structures. Algorithm 2 gives the

recursive procedure used in the thesis to obtain a hierarchy of token chunks from

dependencies.

The process transforms a dependency parse to a constituency parse by recursively

making a new root node out of each dependency relation. Originally in a dependency

parse, every node corresponds to a distinct token. In the process, this notion is

doi:10.6342/NTU201704465

4.5. DEPENDENCY TRANSFORMATION 31

Algorithm 2 Dependency Transformation
1: function TRANSFORM(node)

2: root← node

3: for child in CHILD-QUEUE(node) do

4: childRoot ← TRANSFORM(child)

5: if child.token.index < node.token.index then

6: root ← GROUP([childRoot, root])

7: else

8: root ← GROUP([root, childRoot])

9: root.pos ← RELATION(node, child)

10: return root

generalized to every token corresponds to a subtree headed by it. For each pair

of tokens in an unprocessed relation, their current respective subtrees are grouped

together by a new root node. The parent token in the original dependency parse

then corresponds to the new grown subtree because it is the head token. Figure 4.10

shows the transformed tree of Figure 4.9. A transformed tree is naturally binary,

and dependency links determine head child nodes and parse tags.

A detail hidden in CHILD-QUEUE is how the processing order of relations that

shared the same head token is decided. In the thesis, the heuristic that a named

entity is often centered around a token which is modified in a left-to-right and

near-to-far fashion is used. For instance, a noun is often modified in the order of

adjectives, a determiner, and a clause.

doi:10.6342/NTU201704465

32 CHAPTER 4. CONSTITUENCY GRAPH GENERATION

Figure 4.10: The transfromed tree for Figure 4.9. Arrows indicate head nodes.

Effectively, a dependency parser plus the proposed transformation algorithm

could take on the role of generating parse tree-derived constituency graphs. This

is an alternative to the functional block of constituency parsing in Figure 3.3. The

alternative could prove to be useful if a good dependency parser is available.

doi:10.6342/NTU201704465

Chapter 5

Constituent Classification

The second stage of the proposed approach is tasked with classifying constituents

by a constituency graph. To utilize relevant constituent structures in classifying

each constituent, we propose to use a special recursive network, BRNN-CNN, as

the model underlying the stage. By following bottom-up links, the model captures

the semantic composition of local information for each constituent. By following

top-down links, the global information of the structures containing each constituent

is captured. Together, the bidirectional passes propagate relevant information on a

constituency graph for the identification of named entity constituents.

5.1 Feature Extraction

For every node in a constituency graph, local features are drawn from itself,

its left sibling, and its right sibling. Features in use include words, head words,

33

doi:10.6342/NTU201704465

34 CHAPTER 5. CONSTITUENT CLASSIFICATION

and parse tags. However, features are not always available because of the following

reasons.

• Absent siblings,

• Absent words for nonterminal nodes, and

• Absent words and head words for added pyramid nodes.

Should these cases happen, dummy feature values are used.

Besides, total number of tokens in a sentence is used as a global feature.

5.1.1 Word-Level Features

For word-level features, a function N1 is first defined such that it maps each

distinct token to a distinct index. Suppose there are n distinct tokens in the corpus.

Then their indices are from 1 to n. A special index 0 is mapped for non-existent

tokens.

With the index mapping defined, the word-level features are extracted as the

following. For each node i with left sibling j and right sibling k, its word-level

features

xi = (N1(wordi), N1(headi), N1(headj), N1(headk))

where wordi denotes the word of i, and headi, headj and headk denote the head

words of i, j, and k respectively.

For example, suppose the word-to-index mapping used is shown in Table 5.1.

doi:10.6342/NTU201704465

5.1. FEATURE EXTRACTION 35

For node#5 in Figure 5.1, its word-level features

x5 = (N1(word5), N1(head5), N1(head2), N1(headφ)

= (N1(φ), N1(Kennedy), N1(senator), N1(φ))

= (0, 3, 1, 0)

where φ represents non-existent nodes and tokens.

x φ senator Edward Kennedy Bob and Mary Schindler

N1(x) 0 1 2 3 4 5 6 7

Table 5.1: An example of word-to-index mapping. φ represents a non-existent

token.

Figure 5.1: Binarized tree for S1 = (senator, Edward,Kennedy).

doi:10.6342/NTU201704465

36 CHAPTER 5. CONSTITUENT CLASSIFICATION

5.1.2 Character-Level Features

For character-level features, every word is treated as a sequence of characters, and

in the case when a token is non-existent, an empty sequence is used as its character

sequence. To facilitate batch computing, words are preprocessed so that they are

uniform in length. This is achieved with the aid of a special padding character. In

addition, special end and start characters are used to provide boundary information

for shift-window models. Algorithm 3 shows the steps of the process. Effectively,

for words that are too long, its trailing characters are cut off before prepending

start and appending end. Conversely for those short words, start and end are added

before appending additional paddings. The uniform length is set to 20, with which

the completeness of most dictionary words are preserved and the noisy tails of long

tokens such as web addresses are truncated.

Algorithm 3 Unification
1: function UNIFY(word)

2: word← [start] + word[1..18] + [end]

3: word← word+ [padding]× (20− word.length)

4: return word

With preprocessed words, a function N2 is defined such that it maps each distinct

character to a distinct index. Suppose there are n distinct characters in the corpus.

Then their indices are from 3 to n+2. The indices 0, 1, 2 are reserved for the

characters padding, end, and start respectively. For simplicity, the notation is abused

so that N2 could also represent a procedure that takes a character sequence c and

returns a sequence of mapped indices of UNIFY (c).

doi:10.6342/NTU201704465

5.1. FEATURE EXTRACTION 37

With the procedure defined, the character-level features are extracted as the

following. For each node i with left sibling j and right sibling k, its character-level

features

ci = (N2(wordi), N2(headi), N2(headj), N2(headk))

where wordi denotes the word of i, and headi, headj and headk denote the head

words of i, j, and k respectively.

For example, suppose characters a, . . . , z, A, . . . , Z are mapped to 3, . . . , 28, 29, . . . , 54

and the uniform length is set to 5 for the purpose of demonstration. Then senator,

Kennedy, and non-existent tokens are unified to (start,s,e,n,end), (start,K,e,n,end),

and (start,end,padding,padding,padding) respectively. For node#5 in Figure 5.1, its

character-level features

c5 = (N2(word5), N2(head5), N2(head2), N2(headφ)

= (N2(φ), N2(Kennedy), N2(senator), N2(φ))

= ((2, 1, 0, 0, 0), (2, 39, 7, 16, 1), (2, 21, 7, 16, 1), (2, 1, 0, 0, 0))

where φ represents non-existent nodes and tokens.

5.1.3 Parse Tag Features

For parse tag features, a function N3 is defined such that it maps each distinct

parse tag to a distinct index. Suppose there are n distinct parse tags in the grammar.

Then their indices are from 1 to n. Non-existent parse tags are mapped to index 0.

For each node i with left sibling j and right sibling k, its parse tag features

pi = (N3(posi), N3(posj), N3(posk))

doi:10.6342/NTU201704465

38 CHAPTER 5. CONSTITUENT CLASSIFICATION

where posi, posj, and posk denote the parse tag of i, j, and k respectively.

For example, suppose the pos-to-index mapping used is shown in Table 5.2. For

node#5 in Figure 5.1, its parse tag features

p5 = (N3(pos5), N3(pos2), N3(posφ)

= (N3(NP), N3(NNP), N3(φ))

= (5, 3, 0)

where φ represents non-existent nodes and parse tags.

p φ NN NNS NNP NNPS NP PYRAMID

N3(p) 0 1 2 3 4 5 6

Table 5.2: An example of pos-to-index mapping. φ represents a non-existent parse

tag. Added pyramid nodes all have the same sepcial tag.

5.1.4 Lexicon Hit Features

In addition to the aforementioned features derived from parse trees. Additional

lexicon hit features are introduced by external lexicon resources. For each node,

there is a feature per lexicon. If the constituent of the node can be found in a

lexicon, then the lexicon feature value is set to 1 (hit); 0 (not hit), otherwise. All

phrases are lower-cased before deciding equality.

For example, suppose there are three lexicons shown in Table 5.3. Then for

doi:10.6342/NTU201704465

5.2. BRNN-CNN 39

node#5 in Figure 5.1, its lexicon hit features lex5 = (1, 0, 0) because its constituent,

Edward Kennedy, is found in the first lexicon.

PER

donald rumsfeld

edward kennedy

finkel

wesley

ORG

european broadcasting union

oxford health

the new york times

us airways group inc

LOC

angelus oaks

california city

london mills

waite park

Table 5.3: Three example lexicons of PER, ORG, and LOC.

5.2 BRNN-CNN

A special recursive neural network, BRNN-CNN, is proposed to classify each

constituent from a constituency graph. To classify a node, BRNN-CNN does not

only consider its features. Instead, BRNN-CNN considers the hidden states of the

node, which are recursively computed from the features of its relevant linguistic

structures.

To recursively compute hidden states, constituents must be structured as a di-

rected acyclic graph. Then, BRNN-CNN could repeatedly apply its hidden layers

from the sources to the sinks of the DAG. For each sentence, two DAGs are formed

from its hierarchical constituency graph. One is formed by taking all the nodes and

bottom-up links, and the other uses top-down links instead.

doi:10.6342/NTU201704465

40 CHAPTER 5. CONSTITUENT CLASSIFICATION

Because local information is propagated bottom-up according to constituency

structures, bottom-up hidden states capture the semantic composition of each con-

stituent. On the other hand, the features of an ancestry and their siblings are

propagated down to each descendent, hence top-down hidden states capture global

information for each node. These hidden states of each node together contain the

structure information of a sentence relevant to the classification of the corresponding

constituent.

5.2.1 Input Layer

The extracted features, described in the previous section, are first processed into

real-valued vectors by the input layer of BRNN-CNN. For each node, its feature

vector is the concatenation of vectors representing word-level, character-level, parse

tag, and lexicon hit features.

Word-Level Vector

Suppose there are n distinct tokens in the corpus and the desired word embedding

dimension is dx. Then BRNN-CNN stores a word embedding look-up table Wx

which is a n-by-dx real-valued matrix. Effectively, every row of Wx represents a

word embedding.

Recall that each word-level feature is simply a word index. BRNN-CNN trans-

forms each word index into a n-dimensional one-hot vector except for 0. The special

index 0 is transformed to a zero vector. Then the vector is multiplied by Wx to

retrieve the word embedding. Finally, for a node i with word-level features xi, a

doi:10.6342/NTU201704465

5.2. BRNN-CNN 41

vector Xi is formed by concatenating the embeddings of the 4 words in xi.

For example, suppose dx = 2 and the word embedding look-up table

Wx =


11 11

22 22

33 33

 .

Then the word embedding of word index 3 is computed by

(
0 0 1

)


11 11

22 22

33 33

 =
(

33 33
)
.

And for word-level features xi = (0, 3, 1, 0), Xi = (0, 0, 33, 33, 11, 11, 0, 0).

Character-Level Vector

It is more complex to compute a character-level vector for a node than other

vectors in the input layer. In a nutshell, BRNN-CNN forms a matrix from the

character sequence of each token and put it through a series of convolution, max-

pooling, and highway layers. These computations actually consist the CNN part of

the model, whereas the so-called input layer is actually the input layer of BRNN.

The first step is to form a character-level feature matrix for each token. Recall

that for each token, its character-level features is a sequence of character indices.

BRNN-CNN forms a one-hot vector for each character index except for the index

0, which is transformed into a zero vector. These character vectors are then put

together into a m-by-n matrix, where m is the uniform word length and n is the

number of distinct characters in the corpus plus end and start.

doi:10.6342/NTU201704465

42 CHAPTER 5. CONSTITUENT CLASSIFICATION

Then sub-word patterns are captured by putting the character-level feature ma-

trix through multiple convolution kernels in parallel. Kernels might have different

heights as their window sizes, but their widths must be n. For example, if a kernel

has height h, the convolutional layer will compute an (m-h+1)-by-1 feature map.

The feature map will then be max-pooled into a scalar, representing the signal

strength of a sub-word pattern of length h. Finally, results of all the kernels are put

into a vector, called u, of which length, called dc, is the number of kernels.

However, as suggested by Kim et al. [15], the CNN-computed character-level

feature vector u of each token is put through an additional highway layer. The final

character-level vector of a token, called v, is computed as the following.

t = σ(Wtu+ bt)

v′ = ReLU(Wvu+ bv)

v = (1− t)� u+ t� v′

σ(x) represents the sigmoid function 1
1 + e−x

, and ReLU(x) = max(0, x). Wt and

Wv are dc-by-dc square weight matrices, and bt and bv are dc-dimensional bias vectors.

Essentially, the final vector v is a weighted sum of its input u and the non-linear

transformation v′ of u. By initializing bt to a negative value, the layer initially sends

its input direct to output like a highway.

In summary, for each node i, BRNN-CNN computes a character-level vector for

each of the 4 character index sequences in ci. These 4 vectors are then concatenated

to form the character-level vector of the node, called Ci, for the input layer.

doi:10.6342/NTU201704465

5.2. BRNN-CNN 43

Parse Tag Vector

A parse tag vector is computed for each node i. Suppose there are dp distinct

parse tags in the corpus. For each parse tag index in pi, a dp-dimensional one-hot

vector is formed. The exception is that index 0 is transformed into a zero vector.

These vectors are concatenated into a long vector, called Pi, for the input layer.

Global Word Feature Vector

Aside from a constituent itself and its ancestors, the whole sentence provides

useful additional information for NER. BRNN-CNN averages the word-level vectors

of all tokens in a sentence as Mx. Similarly, the character-level vectors of all the

tokens in a sentence are averaged to get another mean embedding Mc. These two

vectors are used for every node in the constituency parse of the sentence as global

knowledge.

Input Layer Vector

Finally, for each node i, BRNN-CNN computes its input layer by Equation 5.1.

Ii = Xi‖Ci‖Pi‖lexi‖Mx‖Mc. (5.1)

The dimension of Ii is given by

dI = dx × 4 + dc × 4 + dp × 3 + dlex + dx + dc

where dlex is the number of lexicons.

doi:10.6342/NTU201704465

44 CHAPTER 5. CONSTITUENT CLASSIFICATION

5.2.2 Hidden Layers

Having computed the input layer for every node on a constituency graph, BRNN-

CNN recursively computes two hidden states for every node.

For each node i with the set of child nodes N and the parent p, the bottom-up

hidden vector Hbot,i and top-down hidden vector Htop,i are recursively computed by

Equation 5.2 and Equation 5.3 respectively.

Hbot,i = ReLU((Ii‖
∑
j∈N

Hbot,j)Wbot + bbot) (5.2)

Htop,i = ReLU((Ii‖Htop,p)Wtop + btop) (5.3)

The function ReLU(x) represents max(0, x). Suppose dH is the desired hidden

feature dimension. Then Wbot and Wtop are (dI+dH)-by-dH weight matrices. bbot

and btop are dH-dimensional bias vectors. If the set of child nodes are empty, a

dH-dimensional zero vector is used instead of
∑
j∈N

Hbot,j. Similarly if i has no parent,

a zero vector is used instead of Htop,p.

The computations of the bottom-up and top-down hidden states of node#5 in

Figure 5.1 are illustrated in Figure 5.2 and 5.3. The full bottom-up and the top-

down passes on the constituency graph in Figure 5.1 are illustrated in Figure 5.4

and Figure 5.5.

doi:10.6342/NTU201704465

5.2. BRNN-CNN 45

Figure 5.2: The bottom-up hidden layer applied to node#5 in Figure 5.1.

Figure 5.3: The top-down hidden layer applied to node#5 in Figure 5.1.

doi:10.6342/NTU201704465

46 CHAPTER 5. CONSTITUENT CLASSIFICATION

Figure 5.4: The bottom-up hidden layer applied to the graph in Figure 5.1.

Figure 5.5: The top-down hidden layer applied to the graph in Figure 5.1.

doi:10.6342/NTU201704465

5.2. BRNN-CNN 47

Deep Hidden Layers

There can be more than one recursive hidden layer in BRNN-CNN. One-layered

recursive neural networks is already deep in the sense of recursion: the hidden layer

is stacked as many times as the height of the input hierarchy. Having multiple hid-

den layers, however, makes more powerful transformations between two neighboring

nodes possible.

Suppose there are 3 hidden layers with desired dimension dH1, dH2, and dH3. For

each node i with parent node p, the top-down hidden state features can be computed

by the following.

Htop,i,1 = ReLU((Ii‖Htop,p,1)Wtop,1 + btop,1)

Htop,i,2 = ReLU((Htop,i,1‖Htop,p,2)Wtop,2 + btop,2)

Htop,i,3 = ReLU((Htop,i,2‖Htop,p,3)Wtop,3 + btop,3)

ReLU(x) = max(0, x). Wtop,1, Wtop,2, and Wtop,3 are (dI+dH1)-by-dH1, (dH1+dH2)-

by-dH2, and (dH2+dH3)-by-dH3 weight matrices respectively. btop,1, btop,2 and btop,3

are dH1, dH2, and dH3-dimensional bias vectors respectively. Figure 5.6 illustrates

the three-layered computation. The bottom-up direction is generalized similarly.

Figure 5.6: The top-down deep hidden layer applied to node i with parent p.

doi:10.6342/NTU201704465

48 CHAPTER 5. CONSTITUENT CLASSIFICATION

5.2.3 Output Layer

The output layer of BRNN-CNN identifies named entity constituents. For each

node, the input bottom-up and top-down hidden state vectors contain relevant local

and global information of the corresponding constituent. The output is the predicted

probability distribution of named entity classes.

Given the set of named entity categories C with size n, a function N4 is first

defined to map each distinct NE category to a distinct integer between 1 . . . n. The

number n + 1 is reserved for the special category NON NE. The inverse function

mapping integers to categories is denoted by N−1
4 . Therefore the dimension of

predicted distributions dO = n+ 1.

For any node x, let Hx = Hbot,x +Htop,x. And let σ denote the softmax function

where, for any vector x, σ(x)t = ext∑
u

exu
. Then for each node i with left sibling j

and right sibling k, its class probability distribution is given by Equation 5.4.

Oi = σ((Hi‖Hj‖Hk)Wout + bout) (5.4)

Wout is a (dH × 3)-by-dO weight matrix. bout is a dO-dimensional bias vector. If

a sibling does not exist, zero vectors are used as its hidden states. Should deep

hidden layers be deployed, the last hidden layer is used. Figure 5.7 illustrates the

computation of the output layer.

doi:10.6342/NTU201704465

5.3. PREDICTION COLLECTION 49

Figure 5.7: The output layer applied to node i with left sibling j and right sibling k.

The fully-connected layer does not contain non-linear transformations like ReLU.

5.3 Prediction Collection

After BRNN-CNN produces a probability distribution for each constituent, the

set of predicted named entities are now collected from the constituency graph.

For each constituent, the system classifies it as the category with highest pre-

dicted probability. Formally, for each node i, the system predicts its label by Equa-

tion 5.5.

Li = N−1
4 (argmax

j
Oij) (5.5)

Oij represents the j-th element of Oi.

Intuitively, the predictions of a sentence are the label Li for every node i unless

Li = NON NE. Given the set of sentences S and the set of named entity categories

doi:10.6342/NTU201704465

50 CHAPTER 5. CONSTITUENT CLASSIFICATION

C, the set of predicted named entities

Ea = {(i, (j, k), Ln) | Si ∈ S, n ∈ GNSi
, (Sij, . . . , Si(k−1)) = constn, Ln ∈ C}

where GNSi
denotes the set of nodes in the constituency graph of the sentence Si,

and constn denotes the corresponding constituent of the node n.

In many applications, overlapping named entities, including nested named enti-

ties, are not practically useful and should not be predicted by NER systems. These

could happen to the above NE collection method. For instance, two NEs are nested

if their corresponding nodes are an ancestor and its descendant.

To form non-overlapping predictions, a special NE collection scheme is applied by

the system. The scheme traverses through every node of a constituency graph in two

passes. The first pass performs a depth-first walk from the root node of the original

constituency parse tree in the graph. The system stops recurring down a branch

as soon as it encounters a node i in the branch of which Li 6= NON NE. Then a

second pass walk through the additional pyramid nodes in a breadth-first fashion,

collecting an additional NE only if it does not overlap with previously collected NEs.

Briefly speaking, the system forms non-overlapping predictions from the output

of BRNN-CNN by preferring tree nodes over additional pyramid nodes and larger

NEs over smaller ones. The heuristics behind this scheme is to appreciate parsing

and to avoid nested NEs, like the first name and the last name of a full name.

doi:10.6342/NTU201704465

Chapter 6

Evaluation

The constituency-oriented approach is evaluated on CoNLL 2003 NER and OntoNotes

5.0 NER. The detailed setup of the experiments is given in the first section. Major

results against state-of-the-art systems and related work are shown in the second

section. Finally, we analyze different aspects of the approach with ablation studies

and discuss their abstractive meaning with case studies.

6.1 Experimental Setup

6.1.1 Parameter Initialization

Parameters of BRNN-CNN are contained in the CNN, the highway layer, the

BRNN hidden layers, and the output layer. In addition, the word embedding look-

up table is also trainable. Table 6.1 summarizes the weights and biases of which

values need to be decided.

51

doi:10.6342/NTU201704465

52 CHAPTER 6. EVALUATION

Except for Wx, the parameters of all other layers are initialized with Xavier

initializer [11]. The initializer tries to ensure the scale of output values for deep

networks. This is desirable because BRNN-CNN might go down an indefinitely

deep recursion.

On the other hand, the initialization of the word embedding look-up table has two

cases. First, a pre-trained table is attempted to be used. For example, unsupervised

word embeddings trained by GloVe [23] from a 840 billion-token web corpus are

available. If a pre-trained GloVe vector could be found for a word, the corresponding

row of Wx is initialized by that vector. Otherwise, the Gaussian distribution with

zero mean and 0.1 standard deviation is used for sampling.

Layer Weights and Biases

Word Embedding Look-Up Table Wx

CNN Kernels

Highway Layer Wt, Wv, bt, bv

Hidden Layers Wbot, Wtop, bbot, btop

Output Layer Wout, bout

Table 6.1: Parameters of BRNN-CNN.

6.1.2 Parameter Optimization

Once initialized, the model parameters can be optimized with a training corpus.

In a training corpus, all ground truth named entities are known to BRNN-CNN.

doi:10.6342/NTU201704465

6.1. EXPERIMENTAL SETUP 53

For each node n in the constituency graph of a sentence, its ground truth NE label

is denoted by Ln,g. If n corresponds to a named entity e = (i, (j, k), c), Ln,g = c.

Otherwise, Ln,g = NON NE. Equation 6.1 gives the loss function of a node.

lossn = − logOnN4(Ln,g) (6.1)

OnN4(Ln,g) denotes the N4(Ln,g)-th element of On. The objective is set to minimize

the average loss of all nodes for a corpus. To achieve this, Adam optimizer [16] is

used for parameter updates.

To avoid overfitting for gradient descent optimization algorithms such as Adam,

it is desirable to stop iterating parameter updates with the aid of a validation corpus.

Let F denotes an evaluation function, Ea denotes the prediction of BRNN-CNN for

the validation corpus, and Eg denotes the set of ground truth NEs of the corpus.

After each round, or epoch, of parameter update with the training corpus, the

validation score F (Ea;Eg) is checked. Since initialization, the best score is kept. If

a record has not been broken for 20 epochs, the training stops and the parameter

values that achieved the best score are restored.

Dropout

Zeroing some of the output of some network layers is oftentimes beneficial to

training. BRNN-CNN is no exception and dropout layers are added for the input

layer and the hidden layers. For each node i, elements of Ii (excluding lexi), Hbot,i,

and Htop,i are randomly zeroed in training time. The dropout probability must be

carefully chosen so the dropout layers have due effects.

doi:10.6342/NTU201704465

54 CHAPTER 6. EVALUATION

6.1.3 CoNLL-2003 Dataset

In 2003, CoNLL held a language-independent NER shared task. This classic

dataset annotates 4 types of NEs: PER (person), ORG (organization), LOC (loca-

tion), and MISC (miscellaneous). Its English corpus, the Reuters Corpus Volume 1

(RCV1), contains about 300,000 tokens and near 35,000 named entities. A standard

train-validate-test split is defined by the shared task.

However, CoNLL-2003 dataset contains no parse annotations. Readily available

parsers are used for BRNN-CNN instead. One of the parses used is the Stan-

ford RNN parser [27], which is also a recursive network model. The other is the

SyntaxNet dependency parser [1] recently released by Google. The transformation

algorithm in Chapter 4 is applied to the dependency parses generated by SyntaxNet.

Table 6.2 shows the dataset statistics with transformed SyntaxNet parses before

adding additional pyramid nodes. Even with SyntaxNet, the 93% consistency rate,

which equals the maximal possible recall, is still not ideal.

Split Sentences Tokens Nodes NEs Consistent NEs

Train 14,041 203,621 393,201 23,326 21,816 (93.53%)

Validate 3,250 51,362 99,474 5,902 5,440 (92.17%)

Test 3,453 46,435 89,417 5,613 5,197 (92.59%)

Table 6.2: Dataset statistics for CoNLL-2003.

doi:10.6342/NTU201704465

6.1. EXPERIMENTAL SETUP 55

6.1.4 OntoNotes 5.0 Dataset

OntoNotes is a project which creates substantially larger corpora from multi-

ple sources with multilevel annotations. The dataset was used for the CoNLL-2012

shared task of coreference resolution and are increasingly popular as a benchmark

for NE-related tasks. The 5.0 release boasts various data sources such as newswire,

broadcast conversation, and web text. For NER, 18 categories are annotated, includ-

ing 11 types of names and 7 types of numerical values. Its English corpus contains

near 1,400,000 tokens and more than 100,000 NEs. A standard train-validate-test

split is widely used and described in 2013.

OntoNotes comes with both gold-standard parses and automatically generated

parses. However, even the gold-standard parses are sometimes inconsistent with

NER annotations. The binarization procedure introduced in Chapter 4 is applied

to both type of parses to further boost their consistency with NER.

Table 6.3 shows the dataset statistics with binarized auto parses without adding

additional pyramid nodes. The 97% consistence rate still hinders constituent-based

approaches a bit, but is already desirable.

Split Sentences Tokens Nodes NEs Consistent NEs

Train 59,920 1,088,503 2,388,362 81,828 79,636 (97.32%)

Validate 8,527 147,724 324,841 11,066 10,735 (97.01%)

Test 8,262 152,728 335,101 11,257 10,936 (97.15%)

Table 6.3: Dataset statistics for OntoNotes 5.0.

doi:10.6342/NTU201704465

56 CHAPTER 6. EVALUATION

6.1.5 Hyper-Parameters

Before training BRNN-CNN, many hyper-parameters remain to be determined.

This includes the dimensions of layers, initialization options, and parameters of

optimization algorithms. Good values of hyper-parameters often depend on each

corpus, and they are determined by the validation split with multiple training trials.

Table 6.4 summarizes the hyper-parameters and tried values.

Hyperparameter Trial Range
Final Setting

CoNLL-2003 OntoNotes

Input Layer

Pre-Trained Word Vectors 50d-Collobert, 300d-GloVe 300d-GloVe

Character Vector Dimension number of characters (one-hot), 25 number of characters

Maximal Kernel Height 3, 5 3

Kernels for Each Height h× 20, h× 40 h× 40

Lexicons (Non-Exclusive) SENNA, DBpedia SENNA

Hidden Layers

Hidden Layer Type fully-connected, Tree-LSTM fully-connected

Number of Hidden Layers 1, 2, 3 1 3

Hidden Vector Dimension 300, 350, 400, 450, 500, 600, 1200 450 350

Optimization

Learning Rate of Adam 1e-5, 1e-4, 1e-3 1e-5

Epsilon of Adam 1e-8, 1e-4, 1e-2, 1e-1, 1e-0 1e-2

Keep Rate of Dropout 0.65, 0.70, 0.75, 0.80, 0.90, 1 0.65

Table 6.4: Trial range and final settings of hyper-parameters.

For the word-level vectors, the word vector dimension is decided alongside the

doi:10.6342/NTU201704465

6.1. EXPERIMENTAL SETUP 57

pre-trained vectors used for initialization. One set of the pre-trained word vectors

is the 300-dimensional vectors trained by GloVe on an 840 billion-token web corpus.

The other is the 50-dimensional vectors of lower-cased tokens released by Collobert

in his SENNA system [5].

For character-level vectors, one important thing is how a vector is generated for

each character. As stated in Chapter 5, one-hot vector can be used. However, a

trainable character embedding look-up table could also be used if the corpus is large

enough. As for the kernels, there are 40, 80, and 120 kernels for each height 1, 2,

and 3.

For lexicon features, which external resources are used need to be decided. The

lexicons released with the SENNA system are tailored for the four categories of the

CoNLL-2003 dataset, so they are particularly useful for that dataset. In addition,

the PER, ORG, and LOC named entity categories of CoNLL-2003 coincide with

some of the categories of OntoNotes, so the three are also good for OntoNotes.

On the other hand, lexicons can be extracted from DBpedia [18], the ontology

of Wikipedia. For example, a lexicon of person names could be constructed by

including every instance falling into a type in the subtree rooted by the person type.

For hidden layers, simple fully-connected layers work better than tree-LSTM

cells. Its best dimensions depend on the number of layers. In Table 6.4, 350 is

selected as the hidden dimension for deep hidden layers, but 450 is selected if there

is only one hidden layer per direction.

In the thesis, the final values of these hyper-parameters are mostly searched

greedily by the validation data of OntoNotes. A better configuration for each corpus

doi:10.6342/NTU201704465

58 CHAPTER 6. EVALUATION

could very likely be found by a comprehensive grid search.

6.2 Major Results

In this section, the major results on the CoNLL-2003 dataset and the OntoNotes

dataset are reported against previous state-of-the-arts and related approaches.

As previous work on these datasets, the selected evaluation function for all the

results is the F1 score. While precision measures the proportion of correct predic-

tions over all predicted NEs, recall measures the proportion of correct predictions

over all ground truth NEs. F1 scores encourage a balance between the two by taking

the harmonic mean.

Table 6.5 and Table 6.6 shows the results and comparisons of the proposed

constituency-oriented approach on CoNLL-2003 and OntoNotes respectively. On

CoNLL-2003, the proposed approach achieves near state-of-the-art results. On

OntoNotes, the proposed approach surpasses the state-of-the-art as well as previous

work on joint models of NER and parsing or other NE related tasks.

The significance of the results is computed in the following. The sample mean,

standard deviation, and sample count of BRNN with auto parses and Chiu and

Nichols’ model are (87.10, 0.14, 3) and (86.41, 0.22, 10) respectively. By the conser-

vative one-tailed Welch’s T-test, the former significantly surpasses the latter with

99% confidence level (0.000489 p-value).

doi:10.6342/NTU201704465

6.2. MAJOR RESULTS 59

Validation Test

Model Parser Pyramid Precision Recall F1 Precision Recall F1

BRNN StanfordRNN No 93.5 86.8 90.04 89.6 82.2 85.73

BRNN SyntaxNet No 92.6 86.4 89.40 89.1 82.9 85.89

BRNN StanfordRNN Yes 93.0 91.6 92.34 88.9 86.9 87.91

BRNN SyntaxNet Yes 93.1 91.6 92.33 90.2 87.7 88.91

Chiu and Nichols [3] - - - 91.39 91.85 91.62

Table 6.5: Experiment results on CoNLL-2003.

Validation Test

Model Parser Pyramid Precision Recall F1 Precision Recall F1

BRNN auto No 86.0 84.7 85.34 88.0 86.2 87.10

BRNN-CNN auto No 85.5 84.7 85.08 88.0 86.5 87.21

BRNN gold No 87.5 86.7 87.11 89.5 88.3 88.91

BRNN-CNN gold No 86.6 87.0 86.77 88.9 88.9 88.92

Finkel and Manning [10] (gold*) - - - 84.04 80.86 82.42

Durrett and Klein [9] - - - 85.22 82.89 84.04

Chiu and Nichols [3] - - - - - 86.41

Table 6.6: Experiment results on OntoNotes. *Finkel and Manning used gold parses

in training time.

doi:10.6342/NTU201704465

60 CHAPTER 6. EVALUATION

Results on Different Types of Data

The OntoNotes 5.0 corpus contains NER annotations for six types of data: broad-

cast conversation (BC), broadcast news (BN), magazine (MZ), newswire (NW),

telephone conversation (TC), and web (WB). These data sources greatly differ from

each other and could have their own application and research domain.

Table 6.7 shows the performance of the constituency-oriented BRNN against

previous state-of-the-art models. BRNN outperforms previous work from the most

well-structured news text to the noisiest telephone conversations, but is less suc-

cessful in magazine text. We hope the experiments shed light for further studies on

these different domains.

BC BN MZ NW TC WB

Tokens 32,488 23,209 17,875 49,235 10,976 18,945

NEs 1,697 2,184 1,163 4,696 380 1,137

Consistency Rate* 96.29% 98.12% 97.42% 97.19% 96.84% 96.22%

Finkel and Manning [10] 78.66 87.29 82.45 85.50 67.27 72.56

Durrett and Klein [9] 78.88 87.39 82.46 87.60 72.68 76.17

Chiu and Nichols [3] 85.23 89.93 84.45 88.39 72.39 78.38

BRNN 85.73 90.63 83.92 89.15 73.08 80.05

Table 6.7: Experiment results on different data sources of OntoNotes. *Percentage

of NEs that correspond to some constituents in binarized auto parses.

doi:10.6342/NTU201704465

6.3. ANALYSIS 61

6.3 Analysis

6.3.1 Constituency-Oriented Approach

Filtering out non-constituent text chunks is both the strength and the limitation

for every constituent-based model. Focusing on constituents allows better precision

at the cost of limiting recall to the proportion of consistent named entities.

Looking into this aspect, a sequential labeling bidirectional recurrent network

is experimented on OntoNotes. This model takes no phrase structures as input,

but all non-constituent named entity predictions can be removed in post-processing.

Table 6.8 shows the performance of the sequential labeling model with and without

post-processing. As is expected, precision increases and recall decreases with post-

processing. Interestingly, we see a marginal overall F1 score improvement when the

sequential labeling model filters out non-constituent predictions in post-processing.

The experiment indicates that better results could be achieved if constituents

were more consistent with NER or if the full information of phrase structures was

utilized. This is when our constituency-oriented approach steps in, fulfilling both

requirements with graph generation algorithms and BRNN.

Figure 6.1 shows the parse tree of a sample sentence with the named entity chunk

White House. The sequential labeling recurrent model predicts a false positive chunk

the White. The post-processing is able to remove the non-constituent prediction, but

the correct named entity cannot be recovered. Finally, our constituency-oriented

BRNN fully utilizes the phrase structure information and correctly identifies the

node (NP, const = White House) as a FACILITY.

doi:10.6342/NTU201704465

62 CHAPTER 6. EVALUATION

Validation Test

Model Const-Only Precision Recall F1 Precision Recall F1

Recurrent No 84.6 85.5 85.03 85.7 86.5 86.10

Recurrent Yes 86.0 84.2 85.08 87.2 85.1 86.14

Recursive (BRNN) Yes 86.0 84.7 85.34 88.0 86.2 87.10

Table 6.8: Performance of sequential labeling models on OntoNotes.

Figure 6.1: The parse tree of a sentence containing White House (FACILITY).

doi:10.6342/NTU201704465

6.3. ANALYSIS 63

6.3.2 Constituency Graph Generation

One strength of the approach is the flexibility of constituency graphs. Here we

analyze the proposed algorithms that alter parses and create structures that are

more consistent with a targeted NER task.

Parse Tree Binarization

The parse tree binarization method introduced in Chapter 4 is shown to be

effective. In Table 6.9, both the auto parses and the gold parses of OntoNotes have

their consistency rate greatly increased. As a result, the performance also greatly

increases (Table 6.10).

Auto Parse Gold Parse

Train Validate Test Train Validate Test

Original 93.26 92.78 92.91 95.09 94.89 95.07

Binarized 97.32 97.01 97.15 98.66 98.71 98.56

Table 6.9: Consistency rates before and after binarization.

Validation Test

Model Parser Binarize Precision Recall F1 Precision Recall F1

BRNN auto No 84.9 81.6 83.20 87.3 83.0 85.11

BRNN auto Yes 86.0 84.7 85.34 88.0 86.2 87.10

Table 6.10: Performance on OntoNotes before and after binarization.

doi:10.6342/NTU201704465

64 CHAPTER 6. EVALUATION

Pyramid Addition

The pyramid addition method is proved to be useful when parses are lackluster.

For example, the validation recall with SyntaxNet increases greatly from 86.4%

to 91.6%. This is because that adding additional pyramid nodes to transformed

SyntaxNet parses increases the validation set consistency to 99%.

Dependency Transformation

Dependency parses transformed by simple heuristics could be better than classi-

cal constituency parsers in assisting NER. In Table 6.5, using transformed SyntaxNet

dependency parses as base parse trees outperforms using StanfordRNN constituency

parses.

6.3.3 Constituent Classification

For the classification stage, BRNN-CNN is proposed to capture the structure

information presented in constituency graphs. Here, we analyze different parts of

the proposed recursive model.

Character-Level Features

BRNN is BRNN-CNN without character-level features. In other words, its input

layer is deprived of Ci and Mc of Equation 5.1. As shown in Table 6.6, BRNN-CNN

performs better than pure BRNN when the corpus is big enough to train the CNN.

However, BRNN runs about twice as fast, so we run most analyses with it.

doi:10.6342/NTU201704465

6.3. ANALYSIS 65

Bidirectional Hidden Layers

The bottom-up hidden states capture the local structures inside each constituent.

On the other hand, the top-down hidden states capture the global structures outside

each constituent. Table 6.11 shows the performance differences when only one pass

is deployed. Compared to the bottom-up-only variant, BRNN sees a 1.4% precision

increase with the additional top-down pass.

Validation Test

Model Precision Recall F1 Precision Recall F1

Top-Down-Only 78.2 69.4 73.49 79.2 69.3 73.93

Bottom-Up-Only 84.5 84.3 84.39 86.6 86.2 86.41

Bidirectional 86.0 84.7 85.34 88.0 86.2 87.10

Table 6.11: Performance of unidirectional and bidirectional models on OntoNotes.

Figure 6.2 shows one of the cases where a top-down pass helps. The leaf node

(NNP, word = Koran) is labeled as WORK OF ART. Unfortunately, Koran is in

the PERSON lexicon. Seeing only the local features of the leaf node, the bottom-up-

only variant wrongly predicts the constituent as a named entity of type PERSON.

With the top-down information of ancestor nodes like (NP, head = verses) and

(V P, head = repeating), BRNN correctly identifies (NNP, word = Koran) as a

WORK OF ART.

doi:10.6342/NTU201704465

66 CHAPTER 6. EVALUATION

Figure 6.2: The parse tree of a sentence containing Koran (WORK OF ART).

doi:10.6342/NTU201704465

Chapter 7

Conclusion

We have proposed a constituency-oriented approach for named entity recognition,

where we generate a constituency graph before identifying named entity constituents

in the graph. In the construction of a more general hierarchy of constituents, num-

ber of inconsistent named entities are minimized while linguistic structures are pre-

served. In the classification of constituents, the power of prior linguistic structure

information is leveraged.

7.1 Summary of Contributions

To optimize the constituency structures for NER, we have defined two types

of inconsistent named entities that cross constituent boundaries and proposed var-

ious methods to minimize their numbers. Then, to actually utilize the structure

information for NER, we have proposed the recursive model BRNN-CNN. Specific

67

doi:10.6342/NTU201704465

68 CHAPTER 7. CONCLUSION

contributions include:

• Definition of two types of inconsistent named entities that cross constituent

boundaries,

• Elimination of type-1 inconsistencies by a head-driven binarization process

that alters a constituency parse,

• Elimination of type-1 inconsistencies by a relation-based transformation algo-

rithm that restructures a dependency parse,

• Mitigation of type-2 inconsistencies by a proposed method that augments bi-

narized trees,

• Utilization of relevant local structures for each constituent by capturing its

semantic composition with a bottom-up recursive neural network, and

• Utilization of relevant global structures for each constituent by propagating

information with a top-down recursive neural network.

7.2 Future Work

The constituency-oriented approach is naturally suited to solve named entity

recognition problem with nested or overlapped named entities, e.g. biological enti-

ties. This can be achieved by allowing the prediction collection phase described in

Section 5 to consider all constituent nodes. One challenge of this research direction

is likely to be parsing sentences in special domains.

doi:10.6342/NTU201704465

7.2. FUTURE WORK 69

Besides nested predictions, a direct follow-up research direction is the develop-

ment of an end-to-end method that unifies constituency graph generation and con-

stituent classification in one model. This enables data-driven fine-tuning of parsing

and graph generation according to the specific target task of constituent classifica-

tion. The main challenge lies in back-propagating through parsing. In addition,

restructuring algorithms designed with linguistic insights such as head-driven bina-

rization might not be learned automatically.

In summary, the approach proposed in the thesis is able to classify linguistic

units and hence identify text chunks of interest. NER is a prominent application of

the approach. Furthermore, all the tasks about identifying linguistic units of interest

might be better solved by the constituency-oriented approach than by traditional

sequential labeling approaches.

doi:10.6342/NTU201704465

Bibliography

[1] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev, S. Petrov, and

M. Collins. Globally normalized transition-based neural networks. arXiv preprint

arXiv:1603.06042, 2016.

[2] N. Chinchor and P. Robinson. MUC-7 Named Entity Task Definition. In Proceedings

of the 7th Conference on Message Understanding, volume 29, 1997.

[3] J. P. Chiu and E. Nichols. Named Entity Recognition with Bidirectional LSTM-

CNNs. Transactions of the Association for Computational Linguistics, 4:357–370,

2016.

[4] M. Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis,

University of Pennsylvania, 1999.

[5] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.

Natural Language Processing (Almost) from Scratch. Journal of Machine Learning

Research, 12(Aug):2493–2537, 2011.

[6] G. Cybenko. Approximation by Superpositions of a Sigmoidal Function. Mathematics

of Control, Signals, and Systems (MCSS), 2(4):303–314, 1989.

[7] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes. Improving Efficiency and

Accuracy in Multilingual Entity Extraction. In Proceedings of the 9th International

Conference on Semantic Systems (I-Semantics), 2013.

70

doi:10.6342/NTU201704465

BIBLIOGRAPHY 71

[8] C. dos Santos and V. Guimaraes. Boosting Named Entity Recognition with Neural

Character Embeddings. In Proceedings of the Fifth Named Entity Workshop, joint

with 53rd ACL and the 7th IJCNLP, pages 25–33, 2015.

[9] G. Durrett and D. Klein. A Joint Model for Entity Analysis: Coreference, Typing,

and Linking. Transactions of the Association for Computational Linguistics, 2:477–

490, 2014.

[10] J. R. Finkel and C. D. Manning. Joint Parsing and Named Entity Recognition.

In Proceedings of Human Language Technologies: The 2009 Annual Conference of

the North American Chapter of the Association for Computational Linguistics, pages

326–334. Association for Computational Linguistics, 2009.

[11] X. Glorot and Y. Bengio. Understanding the Difficulty of Training Deep Feedforward

Neural Networks. In International Conference on Artificial Intelligence and Statistics,

pages 249–256, 2010.

[12] R. Grishman and B. Sundheim. Message Understanding Conference-6: A Brief His-

tory. In Coling, volume 96, pages 466–471, 1996.

[13] E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, and R. Weischedel. OntoNotes: The

90% Solution. In Proceedings of the Human Language Technology Conference of the

NAACL, Companion Volume: Short Papers, pages 57–60. Association for Computa-

tional Linguistics, 2006.

[14] O. Irsoy and C. Cardie. Bidirectional Recursive Neural Networks for Token-Level

Labeling with Structure. In NIPS Deep Learning Workshop, 2013.

[15] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. Character-Aware Neural Language

Models. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[16] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980

[cs.LG], 2014.

doi:10.6342/NTU201704465

72 BIBLIOGRAPHY

[17] M. Krallinger, F. Leitner, O. Rabal, M. Vazquez, J. Oyarzabal, and A. Valencia.

Overview of the Chemical Compound and Drug Name Recognition (CHEMDNER)

Task. In BioCreative challenge evaluation workshop, volume 2, page 2, 2013.

[18] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hell-

mann, M. Morsey, P. Van Kleef, S. Auer, et al. DBpedia–A Large-scale, Multilingual

Knowledge Base Extracted from Wikipedia. Semantic Web, 6(2):167–195, 2015.

[19] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A New Benchmark Collection for

Text Categorization Research. Journal of machine learning research, 5(Apr):361–397,

2004.

[20] G. Luo, X. Huang, C.-Y. Lin, and Z. Nie. Joint Named Entity Recognition and

Disambiguation. In Proc. EMNLP, pages 879–888, 2015.

[21] E. Marsh and D. Perzanowski. MUC-7 Evaluation of IE Technology: Overview of

Results. In Proceedings of the seventh message understanding conference (MUC-7),

volume 20, 1998.

[22] A. Passos, V. Kumar, and A. McCallum. Lexicon Infused Phrase Embeddings for

Named Entity Resolution. In Proceedings of the Eighteenth Conference on Compu-

tational Language Learning, pages 78–86, 2014.

[23] J. Pennington, R. Socher, and C. D. Manning. Glove: Global Vectors for Word

Representation. In EMNLP, volume 14, pages 1532–1543, 2014.

[24] S. Pradhan, A. Moschitti, N. Xue, H. T. Ng, A. Björkelund, O. Uryupina, Y. Zhang,

and Z. Zhong. Towards Robust Linguistic Analysis using OntoNotes. In Proceedings

of the Seventeenth Conference on Computational Natural Language Learning, pages

143–152, 2013.

[25] L. Ratinov and D. Roth. Design Challenges and Misconceptions in Named Entity

Recognition. In Proceedings of the Thirteenth Conference on Computational Nat-

doi:10.6342/NTU201704465

BIBLIOGRAPHY 73

ural Language Learning, CoNLL ’09, pages 147–155, Stroudsburg, PA, USA, 2009.

Association for Computational Linguistics.

[26] R. Socher. Recursive Deep Learning for Natural Language Processing and Computer

Vision. PhD thesis, Department of Computer Science, Stanford University, 2014.

[27] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng. Parsing with Compositional

Vector Grammars. In Proceedings of the ACL conference, 2013.

[28] R. Socher, C. D. Manning, and A. Y. Ng. Learning Continuous Phrase Representa-

tions and Syntactic Parsing with Recursive Neural Networks. In Proceedings of the

NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop, 2010.

[29] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts.

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing,

pages 1631–1642, 2013.

[30] K. S. Tai, R. Socher, and C. D. Manning. Improved Semantic Representations From

Tree-Structured Long Short-Term Memory Networks. In Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and the 7th Inter-

national Joint Conference on Natural Language Processingg, pages 1556–1566, 2015.

[31] E. F. Tjong Kim Sang and F. De Meulder. Introduction to the CoNLL-2003 Shared

Task: Language-independent Named Entity Recognition. In Proceedings of the sev-

enth conference on Natural language learning at HLT-NAACL 2003-Volume 4, pages

142–147. Association for Computational Linguistics, 2003.

[32] R. Weischedel, M. Palmer, M. Marcus, E. Hovy, S. Pradhan, L. Ramshaw, N. Xue,

A. Taylor, J. Kaufman, M. Franchini, et al. Ontonotes Release 5.0. Linguistic Data

Consortium, Philadelphia, PA, 2013.

[33] S. Žitnik and M. Bajec. Token-and Constituent-based Linear-chain CRF with SVM

doi:10.6342/NTU201704465

for Named Entity Recognition. In BioCreative Challenge Evaluation Workshop, vol-

ume 2, page 144, 2013.

74

