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中文摘要 

 

 近年來，世界上越來越多人選擇學習中文，中文文法錯誤偵測及更正工具的需

求因而增加。在 HSK動態作文語料庫中，用詞錯誤是最頻繁的詞層級錯誤。然而，

針對用詞錯誤偵測的研究並不多；在更正方面則只有處理特定詞類，如介係詞等。

在這篇碩士論文中，我們提出中文用詞錯誤偵測及更正的方法。據我們所知，這是

第一篇處理所有詞類之中文用詞錯誤更正之研究。 

 我們分三個階段處理中文用詞錯誤：(1) 子句層級之偵測、(2)詞層級之偵測、

(3)更正，使用了中文字、詞、詞性和依存關係等等資訊。在第一階段中，我們訓練

二元分類器來判斷一個子句是正確的、還是含有用詞錯誤，最好的模型準確率達

0.84、精確率達 0.95。在第二階段，我們使用雙向長短期記憶神經網路建立序列標

記模型，預測每一個詞的錯誤程度。這個模型可以考慮錯誤的詞和其他上下文詞彙

的關係，在超過 80%的測試資料中，可以將標準答案排在前兩名。在第三階段，我

們建立神經網路模型，輸入上下文以及需要被更正的詞之特徵，產生一個更正向量，

這個向量可以和候選詞彙集合比較以選出適合的更正。由於可能存在不只一種更

正，我們對系統的前五名候選更正進行人工標記。根據人工評估的結果，對於超過

91%的測試資料，前五名中至少有一個是可接受的更正。非母語中文學習者可以使

用我們的系統，在沒有語言教師指導的情況下檢查並修正自己所寫的句子。 

 

關鍵字：文法錯誤、中文用詞錯誤、用詞錯誤偵測、用詞錯誤更正、電腦輔助語言

教學、HSK語料庫 
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ABSTRACT 

 

 Recently, more and more people around the world choose to learn Chinese as a 

second language. The need of Chinese grammatical error detection and correction tools 

is therefore increasing. In the HSK dynamic composition corpus, word usage error (WUE) 

is the most common type of errors at the lexical level. However, few studies focus on 

WUE detection, and for correction only specific types of words such as prepositions are 

investigated. In this thesis, we propose methods to detect and correct Chinese WUEs. To 

the best of our knowledge, this is the first research addressing general-type Chinese WUE 

correction. 

 We deal with Chinese WUE with three stages: (1) segment-level detection, (2) token-

level detection, and (3) correction. Information of character, word, POS and dependency 

are utilized. In the first stage, we train binary classifiers to tell whether a segment is 

correct, or contains some WUE. The best model achieves accuracy 0.84 and precision 

0.95. In the second stage, we use bidirectional Ling-Short Term Memory to build 

sequence labeling model that can predict the level of incorrectness of each token. The 

model can consider the dependency of the erroneous token on context words and rank the 

ground-truth position within the top two in more than 80% of the cases. In the third stage, 

we build a neural network model that takes context and target erroneous token features as 
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input and generates a correction vector, which can be compared against a candidate 

vocabulary to select suitable corrections. To deal with potential alternative corrections, 

the top five candidates are judged by human annotators. According to the human 

evaluation results, for more than 91% of the cases our system can propose at least one 

acceptable correction within a list of five candidates. With the help of our system, non-

native Chinese learners can check and revise their sentences by themselves without the 

help of language teachers. 

 

Keywords: Grammatical error, Chinese word usage error, Word usage error 

detection, Word usage error correction, Computer-assisted language learning, HSK 

corpus 
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Chapter 1 Introduction 

 

1.1 Motivation 

 Nowadays, more and more people around the world choose to learn Chinese as their 

second language. The need for automatic Chinese grammatical error detection and 

correction (GEC) tools, which facilitate learners in recognizing the errors and revising 

their sentences, is therefore increasing. Although the techniques for building GEC tools 

have been studied for decades, most of the studies are based on English learner data. The 

method of correcting sentences in Chinese, a language which differs substantially from 

English, has not yet been fully developed. 

Leacock et al. (2014) pointed out that the mistakes made by non-native language 

learners differ from those made by native speakers in types and distribution. For example, 

native English speakers seldom make a verb tense error, which is one of the most common 

mistakes made by non-natives. Therefore, learner data should be considered when 

designing or training a correction system for non-native users. Moreover, such data is 

required to perform realistic evaluation on GEC systems targeting language learners. 

However, since the ground-truth of the correction must be manually annotated by 

trained annotators, the available amount of data is limited. Compared to English ones, 

annotated Chinese learner corpora are even fewer. At the time of this study, the largest 
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available learner corpus was the HSK dynamic composition corpus built by Beijing 

Language and Culture University1. According to the analysis of the corpus, word usage 

error (WUE) is the most frequent lexical-level error2. Given this fact, a WUE detection 

and correction tool is worth developing. 

 

1.2 Chinese Word Usage Error (WUE) 

This research deals with the detection and correction of Chinese WUE. In Chinese 

sentences, a WUE is a grammatically or semantically incorrect token in which either the 

word itself is written in a wrong form, or the word is a correct existent word but is 

improper for its context.  

On the website of the HSK corpus, WUE, whose error tag is CC, is divided into four 

sub-types, as shown in Table 1-1. 

 

                                                 

1 http://202.112.195.192:8060/hsk/index.asp 

2 http://202.112.195.192:8060/hsk/tongji2.asp 

http://202.112.195.192:8060/hsk/index.asp
http://202.112.195.192:8060/hsk/tongji2.asp
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Sub-type Example (correct_word{CC incorrect_word})3 

(1) Character disorder within a 

word 

首先{CC先首} (first of all) 

眾所周知{CC眾所知周} (as we all know) 

(2) Incorrect selection of a word 
雖然現在還沒有實現{CC實踐}，…… 

(While it is not yet implemented, …) 

(3) Non-existent word 
殘留量{CC潛留量} (amount of residue) 

農產品{CC農作品} (agricultural product) 

(4) Word collocation error 
最好的辦法是兩個都保持{CC走去}平衡。 

(The best way is to keep both balanced.) 

Table 1-1 Sub-types of WUE (with error tag CC) defined in the HSK corpus. 

 

However, the error annotation does not contain information about which sub-type a 

WUE belongs to, and the divisions between some sub-types are not very clear. More 

specifically, CC (1) and (3) are similar in that the misused form is a non-existent word. 

On the other hand, in both CC (2) and (4) the misused form is an existent word. Therefore, 

in this thesis, CC (1) along with (3), and CC (2) along with (4) are merged into 

morphological errors (W) and usage errors (U) respectively. 4  The WUE sub-types 

defined by this thesis are summarized in Table 1-2. 

                                                 

3 The example sentences/phrases extracted from the HSK corpus are originally written in simplified 

Chinese. In this thesis, they are manually converted to traditional Chinese versions by the author. 

4 Strictly speaking, the result of a CC (1) error might not be a non-existent word. For example, “產

生”(generate) can be a misused form of “生產”(produce). However, we define sub-types only based on 

the “result” of the error. Thus, a WUE is categorized as U-error as long as the misused form is an existent 

word. 
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Sub-type Corresponding HSK CC Sub-types # instances 

Morphological errors (W) (1) & (3) 4,010 

Usage errors (U) (2) & (4) 13,314 

Table 1-2 Sub-types of WUE defined in this thesis. 

 

To determine whether the misused form is an existent word, we query the Beijing 

University Dictionary (北京大學辭典)5 . If the misused form cannot be found in the 

dictionary, the instance is marked as W-error; otherwise it is marked as U-error.  

In morphological errors, the Chinese characters within a word are wrongly selected 

or permuted. Character usage within a word is considered an aspect of word usage, since 

most of the Chinese characters are able to form meaningful words by themselves. For 

usage errors, the problem may lie in collocational combination, or a discrepancy between 

the intended meaning (inferred from the context by annotators) and the literally expressed 

semantics. According to Table 1-2, the non-native Chinese learners contributing the HSK 

corpus misuse an existent Chinese word more frequently than writing a word in an 

incorrect form. 

In both cases of WUEs, the error can be corrected by replacing the erroneous token 

with an appropriate word. However, in morphological errors, a non-existent word is likely 

to be segmented into a sequence of single characters by a dictionary-based segmentation 

                                                 

5 〈現代漢語語法信息詞典的開發與應用〉，《中文與東方語言信息處理學會通訊》，pp. 81-86 
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system, which makes the determination of the start and end offset a difficult aspect for 

automatic correction. On the other hand, to correct usage errors, how to derive the 

intended semantics is the major issue. 

 

1.3 Overview 

This research divides the WUE detection and correction task into three stages. 

Stage 1: Segment-level detection 

Stage 2: Token-level detection 

Stage 3: Correction 

In stage 1, the detection task is formulated as a binary classification problem. Given 

a Chinese segment, typically delimitated by punctuation marks like comma (，), we 

determine whether the segment is erroneous or not. The incorrect segments can then be 

passed to Stage 2, in which we build a sequence labeling model to estimate the level of 

incorrectness of each token. The tokens with the highest score of incorrectness are 

proposed to be potentially erroneous ones. In Stage 3, we assume the error position is 

known and rank candidate corrections based on both the context and the original 

(erroneous) token written by the language learner. The workflow of our system is shown 

in Figure 1-1. 
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Figure 1-1 Workflow of our Chinese WUE detection and correction system. 

 

1.4 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 reviews the related 

work. Chapter 3 introduces the dataset adopted in this research and describes the pre-

processing steps. Chapters 4 and 5 deals with segment-level and token-level WUE 

detection respectively. Chapter 6 presents our method of WUE correction. Chapter 7 

concludes the thesis and discusses possible future directions. 
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Chapter 2 Related Work 

 

2.1 Grammatical Error Detection and Correction in English 

 Leacock et al. (2014) give a very comprehensive survey of past studies in automated 

GEC. They also point out that despite the importance of learner data, the limited amount 

of annotated learner corpora could make it difficult to build a robust statistical model. 

Therefore, researchers have also explored to combine statistical models with traditional 

rule-based approaches. Other methods of overcoming the limitation of the amount of data 

include constructing artificial error corpora and making use of large “grammatical” text 

corpora.  

A disadvantage of using artificial data for machine learning models is that the 

distribution of the training data (artificially-made erroneous text) could differ a lot from 

that of the test data (real text written by language learners). In addition, it is possible that 

the model ends up learning the way of synthesizing data, instead of language learners’ 

pattern of making mistakes.  

On the other hand, the use of well-formed text may suffer from the difference in 

domain and style. For example, large corpora which are composed of newspaper or 

Wikipedia text can be much more formal than the essays written by language learners. 

Also, the topics can be different, since language learners, especially beginners, are more 
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likely to write essays about themselves and their daily lives. Moreover, it is hard to 

determine whether an expression is grammatical based solely on corpus frequencies, since 

the language leaners’ way of expressing a meaning might differ from the typical way of 

native speakers. As a result, it would be difficult to draw a line between rare usage and 

wrong usage. 

Another difficult aspect in GEC research pointed out by Leacock et al. (2014) is 

evaluation. Different research teams tend to adopt different typology of errors and 

evaluate on different datasets, so it might be hard to compare various systems and 

conclude which one is better. To measure the performance of GEC systems in a 

standardized manner, several shared tasks have been conducted, including Helping Our 

Own (HOO) 2011 (Dale and Kilgarriff, 2011), HOO 2012 (Dale et al., 2012), CoNLL 

2013 (Ng et al., 2013) and CoNLL 2014 (Ng et al., 2014). Different types of grammatical 

errors were investigated. For example, five error types: article/determiner, preposition, 

noun number, verb form and subject-verb agreement, are evaluated in the CoNLL 2013 

Shared Task on GEC. In CoNLL 2014, it is extended to 28 error types. Language models, 

machine learning-based classifiers, rule-based classifiers, and machine translation models 

have been explored. 

The machine translation approach to GEC, which aims to model a transformation 

from incorrect text to its correction, has the major advantage that there is no need to 
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explicitly formulate the types of the errors. Based on the phrase-based statistical machine 

translation (SMT) framework, Dahlmeier and Ng (2011) add phrase table entries to 

handle semantic collocation errors resulting from the influence of the writer’s first 

language (L1). Chollampatt et al. (2016b) explore neural network-based translation 

models, including Neural Network Global Lexicon Model (NNGLM) and Neural 

Network Joint Model (NNJM) for GEC. By incorporating features generated by neural 

network models into the phrased-based SMT model, they achieve substantial 

improvement over the top systems proposed in the CoNLL 2014 Shared Task. 

Chollampatt et al. (2016a) adapt a general NNJM with L1-specific text to capture the 

different regularities of errors made by learners with different L1. A Kullback-Leibler 

divergence regularization term is introduced to prevent overfitting to the relatively small 

L1-specific data. Improvements are shown on the data of three L1s: Chinese, Russian and 

Spanish. 

Rei and Yannakoudakis (2016) argue that the evaluation of error correction can be 

subjective and focus only on error detection. The detection is performed with a sequence 

labeling framework, where the probability of being correct/incorrect is predicted at token 

level based on the word representation of each input token. They compare different 

composition architectures such as Convolutional Neural Network (CNN), Recurrent 

Neural Network (RNN) and Long-Short Term Memory (LSTM), and conclude that 
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LSTM is the most suitable model for this task. 

 

2.2 Grammatical Error Detection and Correction in Chinese 

 For Chinese, spelling check evaluations were held at SIGHAN 2013 Bake-off (Wu 

et al., 2013) and SIGHAN 2014 Bake-off (Yu et al., 2014). The task is to detect and correct 

character errors in the given sentence. Similar character sets are provided. Two Chinese 

characters can be orthographically similar, such as ”間” and ”門”, or phonetically similar, 

such as ”惕” and ”悌”. 

The Shared Task for Chinese Grammatical Error Diagnosis (Yu et al., 2014; Lee et al., 

2015, 2016) extends the above task to word errors. Four kinds of errors, including 

redundant word, missing word, word disorder and word selection, are defined. The 

performance of the participants are reported on the whole dataset, so it is unclear whether 

some systems are better at certain error types.  Besides, these tasks only deal with the 

detection but not the correction.  

Huang and Wang (2016) use LSTM for Chinese grammatical error diagnosis. Each 

word in the sentence is represented by a randomly initialized real-valued vector. Their 

models are trained only on learner data. Without incorporating information derived from 

external well-formed text, the performance might be limited by the relatively small 

number of annotated sentences written by non-native learners. 
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The HSK corpus used in this research has been adopted by Yu and Chen (2012) to 

study word ordering errors (WOEs) in Chinese. They propose syntactic features, web 

corpus features and perturbation features for WOE detection. Cheng et al. (2014) identify 

sentence segments containing WOEs, and further recommend the candidates with correct 

word orderings by using ranking support vector machine (SVM). 

Huang et al. (2016) also use the HSK corpus to study the Chinese preposition selection 

problem. They propose gated recurrent unit (GRU)-based models to select the most 

suitable one from a closed set of 43 Chinese prepositions given the sentential context. 

Their approach can be utilized to both detect and correct preposition errors. 

Nevertheless, it is still worth investigating how to handle WUEs involving other types 

of words such as verbs and nouns. Recognizing and correcting errors of such open-set 

types could be much more difficult since the set of candidates can be huge. To the best of 

our knowledge, this is the first research dealing with general-type Chinese WUE 

correction. 

 

2.3 Distributed Word Representations 

 In the past few years, distributed word representations (word embeddings) derived 

from neural network models (Mikolov et al., 2013a; Pennington et al., 2014) have become 

popular among various studies in natural language processing. Based on the assumption 
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that similar words should share similar context, the representations can be trained on large 

text corpora in an unsupervised manner. Typically, these representations are in the form 

of real-valued vectors, whose dimensionality is low compared to the size of the 

vocabulary. Beyond surface forms, these low-dimensional vector representations can 

encode syntactic and semantic information implicitly (Mikolov et al., 2013b).  

Because WUEs involve syntactic or semantic problems, vector representations could 

be promising for the detection/correction task. In this research, we experiment with three 

major types of word embeddings. 

2.3.1 CBOW/Skip-gram Word Embeddings 

These are the two architectures included in the Word2vec software (Mikolov et al., 

2013a). The continuous bag-of-words model (CBOW) uses the words in a context 

window to predict the target word, while the skip-gram model (SG) uses the target word 

to predict every word in the context window. The two architectures are shown in Figure 

2-1. In these two models, every context word is treated equally, so the information of 

word order is not preserved. 
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Figure 2-1 The architecture of CBOW and Skip-gram (Mikolov et al., 2013a). 

 

2.3.2 CWINDOW/Structured Skip-gram Word Embeddings 

The continuous window model (CWIN) and the structured skip-gram model (Struct-

SG) (Ling et al., 2015) are extensions of CBOW and SG respectively, which take the 

order of context words into consideration. The former replaces the summation of context 

word vectors in CBOW with a concatenation operation, and the latter applies different 

projection matrices for predicting context words in different relative position with the 

target word. Figure 2-2 illustrates the two models. 

In their paper, Ling et al. (2015) show that by using CWIN and Struct-SG 

embeddings, the performance of syntactic tasks such as part-of-speech (POS) tagging and 

dependency parsing can be enhanced. For Chinese WUE, the incorrect selection of a word 

might cause syntactic anomaly, so we examine whether these embeddings can help. 
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Figure 2-2 The architecture of CWINDOW and Structured Skip-gram (Ling et al., 

2015). 

 

2.3.3 Character-enhanced Word Embedding (CWE) 

One of the most idiosyncratic aspect of the Chinese writing system is that the 

components of words, the Chinese characters, usually take on their own meanings. The 

meanings of individual characters usually contribute to the meaning of the word. For 

example, one familiar with Chinese can easily infer that “公車”(bus) is very likely to be 

a kind of “車”(vehicle), even without any context. Also, the character “公”(public) 

indicates that “公車” is a kind of public transportation. 

Based on this characteristic of Chinese, Chen et al. (2015) proposed character-

enhanced word embedding model (CWE), in which word vectors and character vectors 

are learned jointly. The model is based on CBOW. Figure 2-3 compares CWE with CBOW. 

In CWE, the representation of a context word is a combination of its own vectors and the 
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vectors of its constituent characters. The combination is done with vector addition. 

Throughout the process of training, both word and character vectors are updated. 

As discussed in Chapter 1, one case of Chinese WUE is that the characters within a 

word is wrongly chosen or permuted. For instance, “決解” is a misused form of “解決” 

(solve). Though the misused form is a non-existent word, its character components serve 

as an important clue for discovering what the writer originally means and help provide 

more suitable correction. Therefore, we study how to utilize the CWE vectors, which 

encode both character and word information, to cope with the WUE correction task. 

 

 

Figure 2-3 Comparison between CBOW and CWE (Chen et al., 2015). 
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Chapter 3 The HSK Word Usage Error Dataset 

 

3.1 Data Collection 

3.1.1 Split Sentences 

 We extract correct and wrong sentences from the HSK corpus, which contains essays 

written by non-native Chinese learners. The punctuation marks “。”, “？” and “！” are 

used to split the sentences. The sentences containing no error annotation are regarded as 

correct. To study the WUE correction task, we also include the correction of the wrong 

sentences in our dataset. Example sentences are shown in Table 3-1. 

 

Correct sentence 我曾經到台灣讀書交了很多外國朋友，我們是用漢語說話的。 

Wrong sentence 
可想而知，他們長大以後會遇到很多的麻煩，甚至不適應生

活，造成不甚後果。 

Correction of the 

wrong sentence 

可想而知，他們長大以後會遇到很多的麻煩，甚至不適應生

活，造成不良後果。 

Table 3-1 Example sentences in our dataset. 

 

3.1.2 Convert Multiple-error Sentences into Single-error Ones 

A sentence may contain multiple errors, including errors of types other than WUE. 

To focus on WUEs and enable systematic analysis, we convert a sentence containing n 

errors into n sentences, each of which only contains one error. That is, the following 

sentence with three errors: 

○ ○ E1 ○ ○ ○ ○ ○ ○ E2 ○ ○ ○ ○ E3 ○ 
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will be converted into three sentences: 

○ ○ E1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

○ ○ ○ ○ ○ ○ ○ ○ ○ E2 ○ ○ ○ ○ ○ ○ 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ E3 ○ 

After conversion, only wrong sentences in which the error is a WUE are considered. We 

got a total of 33,851 wrong sentences, each of which contains exactly one WUE. 

 

3.2 Linguistic Processing 

 We process the extracted sentences with the Stanford CoreNLP toolkit (Manning et 

al., 2014). The following annotators are applied. 

 Word Segmentation 

 POS Tagging 

 Dependency Parsing 

The length of a sentence is defined to be the number of tokens in its word 

segmentation result. The POS tagging set of CoreNLP is that of the Chinese Penn 

Treebank. The tagging guideline can be found in (Xia 2000).  

In each stage, we will extract features based on these three levels of information. The 

details will be provided in subsequent chapters. 
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3.3 Splitting Sentences into Sentence Segments 

In our pilot experiments, we randomly sampled 1,000 correct and wrong sentences 

respectively and found out that we can achieve nearly 80% binary classification accuracy 

simply using a threshold on the length of the sentences. The reason is that a Chinese 

sentence is usually composed of several segments, mostly separated by comma “，”. 

For example, the following sentence is composed of three segments: 

如果我當推銷員的話，為了早點兒習慣，打算盡可能努力。 

The longer a sentence is, the more likely a learner would make some grammatical 

errors somewhere. In fact, among the 2,000 selected sentences, the average length of the 

correct sentences is 7.8, while that of the wrong sentences is 25.6. If we mark the whole 

sentence as “wrong” only because one of the segments contains WUE, the benefit to the 

learner will be limited. Therefore, in the first stage, we consider a sentence segment as a 

unit of detection. We use the tokens with POS tag “PU” (punctuation mark) to split the 

segments. 
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3.4 Data Filtering 

The raw essay text contains metadata such as serial number, title, or total number of 

words. In addition, after splitting with punctuation marks we get short segments such as 

the ones in “您好！”, “不過，…” and “那時，…”.  It is nearly impossible to determine 

the correctness of these single-word segments individually. To conduct experiments on 

valid instances, we filter out segments: 

 That contain digits or English alphabets 

 Whose length is less than five 

Finally, our dataset contains 63,612 correct segments and 17,324 segments with WUEs. 

In each of the three stages, a subset of data is extracted from this complete dataset. The 

details will be described in the corresponding chapters. 
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Chapter 4 Segment-level Chinese WUE Detection 

 

4.1 Task Description 

In this stage, we formulate WUE detection as a binary classification problem. Given 

a Chinese sentence segment, we build models to tell whether there is any WUE in the 

segment. 

 

4.2 Dataset 

 According to Section 3.4, the number of the correct segments are much more than 

that of the wrong segments in our complete dataset. Therefore, a model can reach high 

performance by always guessing the majority class, yet this kind of system would not be 

helpful for language learners. To avoid this problem, we build a balanced dataset. We 

randomly select 15,000 correct and WUE segments respectively, and combine them into 

a dataset with 30,000 segments in total. This dataset is called “15000s”. The statistics of 

the dataset is summarized in Table 4-1. 

 

 Correct Segments Wrong Segments 

# segments 15,000 15,000 

# tokens 115,597 136,666 

# types 8,532 11,187 

Table 4-1 The statistics of the balanced dataset “15000s” 
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4.3 Features 

In Section 1.2 we divided WUE into two sub-types, i.e., morphological errors (W) 

and usage errors (U). Based on this division, several properties of the Chinese WUE 

detection problem are worth noticing. W-errors can be identified almost at first sight, but 

for U-errors, even native speakers may have to “ think twice” . For example, to 

determine if “體會” (realize) is a misuse of the word “體驗” (experience) in the 

sentence “親身體會了一場永遠難忘的電單車意外”  (personally realize an 

accident which was never forgotten), we have to consider its collocation with “意外” 

(accident). On the other hand, any error with a non-existent word such as “農作品” 

can be detected solely by its extremely low frequency in a Chinese corpus.  

To detect the existence of WUE, we experiment with several sets of features. All the 

following features are utilized in combination with segment length (s_len), which is 

defined to be the number of tokens in the segment. 

4.3.1 Google N-gram Features 

We adopt the Chinese version of Google Web 5-gram (Liu et al., 2010) to generate n-

gram features. For every word sequence of length 𝑛 (𝑛 = 2, 3, 4, 5) in a segment, we 

calculate the n-gram probability by Maximum Likelihood Estimation (MLE). For 

example, the tri-gram probability is defined as follows. 

p(𝑤𝑖|𝑤𝑖−2, 𝑤𝑖−1) =  
𝑐(𝑤𝑖−2,  𝑤𝑖−1, 𝑤𝑖)

𝑐(𝑤𝑖−2,  𝑤𝑖−1)
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, where c(‧) is the frequency of the word sequence in the Google Web 5-gram corpus. 

For a segment 𝑤1𝑤2…𝑤𝐿 , all n-gram features are concatenated into a feature vector 

𝐆 =  (𝑔2, 𝑔3, 𝑔4, 𝑔5), where  

𝑔𝑛 = ∑p(𝑤𝑖|𝑤𝑖−𝑛+1, … , 𝑤𝑖−1)

𝐿

𝑖=𝑛

  

The reason for using the summation of probabilities, instead of average probability, is that 

the relationship between segment length and probability sum might not be linear. Since 

this set of features is combined with s_len, the model is expected to capture more complex 

relationship. 

 To query the n-gram counts efficiently, we utilized marisa-trie6, a data structure that 

can save memory usage and enable fast search by grouping keys (n-grams) that share the 

same prefixes. 

4.3.2 Dependency Count Features 

Errors in a sentence affect the result of segmentation and parsing. We postulate that 

there is a certain distribution of dependency counts in normal sentences, and the counts 

of error sentences deviate from the distribution. An example is shown below. 

                                                 

6 https://github.com/pytries/marisa-trie 

https://github.com/pytries/marisa-trie
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Correct segment Wrong segment 

以下 介紹  一下 我 的 簡歷 和 經

驗 。 

以下 紹 介 一下 我 的 簡歷 和 經

驗 。 

nsubj(介紹-2, 以下-1) 

root(ROOT-0, 介紹-2) 

advmod(介紹-2, 一下-3) 

assmod(經驗-8, 我-4) 

case(我-4, 的-5) 

conj(經驗-8, 簡歷-6) 

cc(經驗-8, 和-7) 

dobj(介紹-2, 經驗-8) 

nsubj(介-3, 以下-1) 

advmod(介-3, 紹-2) 

root(ROOT-0, 介-3) 

advmod(介-3, 一下-4) 

assmod(經驗-9, 我-5) 

case(我-5, 的-6) 

conj(經驗-9, 簡歷-7) 

cc(經驗-9, 和-8) 

dobj(介-3, 經驗-9) 

By comparing the two dependency parsing results, we can find out that ”紹介”, a 

misused form of “介紹” (introduce), is (incorrectly) segmented into two words and results 

in an additional, unreasonable dependency relation advmod(介-3, 紹-2). 

Therefore, we take the count of each type of dependency as a set of features. Let dep 

be the type of dependency such as nsubj and dobj. For each dependency, we compute two 

types of count:  

(1) internal count (dep_int_cnt): counts the occurrence if the two words are both in the 

target segment. 

(2) external count (dep_ext_cnt): counts as long as one of the words is in the target 

segment. 

The total internal (all_int_cnt) and external counts (all_ext_cnt) are also considered. 

An example of the calculation of this set of features is shown below.  
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聽說 貴 公司 在 國內 很 有名 ， 外國 顧客 也 很多 。 

root(ROOT-0, 聽說-1) 

nn(公司-3, 貴-2) 

nsubj(有名-7, 公司-3) 

case(國內-5, 在-4) 

prep(有名-7, 國內-5) 

advmod(有名-7, 很-6) 

ccomp(聽說-1, 有名-7) 

nn(顧客-10, 外國-9) 

nsubj(很多-12, 顧客-10) 

advmod(很多-12, 也-11) 

conj(有名-7, 很多-12) 

The corresponding feature values of the shaded segment are: 

nn_int_cnt 1 nn_ext_cnt 1 

nsubj_int_cnt 1 nsubj_ext_cnt 1 

case_int_cnt 1 case_ext_cnt 1 

prep_int_cnt 1 prep_ext_cnt 1 

advmod_int_cnt 1 advmod_ext_cnt 1 

ccomp_int_cnt 1 ccomp_ext_cnt 1 

conj_int_cnt 0 conj_ext_cnt 1 

all_dep_int_cnt 6 all_dep_ext_cnt 7 

For all other dependency types that do not appear, the feature value is 0. Note that though 

the unit of detection is a segment, the external count features can introduce information 

across segments. 

There are 45 types of dependencies in our dataset, and we also include total internal 

and external counts. The result feature vector D has 92 dimensions.  
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4.3.3 Dependency Bigram Features 

Long distance dependency is common in Chinese sentences. In the example, “親

身 體會 了 一場 永遠 難忘 的 電單車 意外”, “意外” is the object of “體

會”, but there are 6 words in-between, falling out of the range of n-gram features. To 

cope with the problem, we generate dependency bigrams. The above sentence contains 

dependencies such as nsubj(體會-2, 親身-1) and dobj(體會-2, 意外-9). We compose 

the two words in each dependency, i.e. (親身, 體會) and (體會, 意外), query the Google 

n-gram corpus, and calculate the bigram probabilities. Below is an example showing that 

the frequency of the bigram composed of correct collocation is higher than that composed 

of wrong collocation. 

 Bigram Frequency 

Wrong 體會 意外 0 

Correct 經歷 意外 167 

Since the collocating behavior may vary with dependency type, we sum the bigram 

probabilities of each type respectively. Similar to the dependency count features, we 

calculate both internal sum (dep_int_sum_prob) and external sum (dep_ext_sum_prob). 

The probability sums of all dependency types are also included (all_int_sum_prob, 

all_ext_sum_prob). This set of features, denoted by feature vector B, has 92 dimensions. 

4.3.4 Single-character Features 

A non-existent Chinese word (W-error) is usually separated into several single-
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character words after segmentation, so the occurrence of single-character words is an 

important indicator of WUEs. We define the following features: 

(1) seg_cnt: number of contiguous single-character blocks 

(2) len2above_seg_cnt: number of contiguous single-character blocks with length no less 

than 2 

(3) max_seg_len: length of the maximum contiguous single-character block 

(4) sum_seg_len: sum of the lengths of all contiguous single-character blocks 

Consider the following segment as an example: 

而且 我 認為 貴 公司 是 我國 最 大 的 

(…, and I thought that your company is the biggest in our country.) 

The feature values are 4, 1, 3, and 6, respectively. The proposed features are concatenated 

into a vector S. 
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4.3.5 Word Embedding Features 

We train CBOW/SG word embeddings on the Chinese part of the ClueWeb09 

dataset7. The Chinese part was extracted and segmented by Yu et al. (2012). The negative 

sampling objective is adopted. The hyperparameter settings are shown in Table 4-2. All 

other hyperparameters not mentioned are left default. 

 

Embedding size 400 

Window size 5 

# negative samples 10 

Iterations 20 

Table 4-2 Hyperparameters of the CBOW/SG embeddings 

 

For each segment, we sum the vectors of all the words in it. We concatenate CBOW 

and SG embeddings into a feature vector W. The dimensionality of W is therefore 800. 

 

4.4 Machine Learning Classifiers 

We experiment with four kinds of machine learning classifiers, including Decision 

Tree (DT), Random Forest (RF), Support Vector Machine with RBF kernel (SVM), and 

Feed-forward Neural Network (Deep Neural Network, DNN). For the first three models, 

                                                 

7 http://lemurproject.org/clueweb09.php 

http://lemurproject.org/clueweb09.php
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we use the implementation of scikit-learn8; for DNN, we use libdnn9.  

For SVM and DNN, we scale the feature vector to zero mean and unit variance, since 

the range of the feature values can affect the performance of these two models. 

 

4.5 Results and Discussion 

4.5.1 Overall Results on the 15000s Dataset 

 The performance of each kind of classifiers on different sets of features are shown 

in Table 4-3 ~ Table 4-6. The s_len feature is included in every feature combination. For 

each combination, we report the performance metrics of the model with best accuracy 

among various parameter settings. All the reported performance values are the average of 

10-fold cross validation. The metrics are computed as follows. 

  
Model Prediction 

Wrong (with WUE) Correct (no WUE) 

Ground-truth 
Wrong (with WUE) True Positive (TP) False Negative (FN) 

Correct (no WUE) False Positive (FP) True Negative (TN) 

accuracy =
TP+TN

TP+FN+FP+TN
 

precision =
TP

TP+FP
       recall =

TP

TP+FN
 

                                                 

8 http://scikit-learn.org/stable/ 

9 https://github.com/botonchou/libdnn 

http://scikit-learn.org/stable/
https://github.com/botonchou/libdnn
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Feature Accuracy Precision Recall F1 

G 0.8354 0.9268 0.7285 0.8158 

D 0.6430 0.6586 0.5955 0.6254 

B 0.6437 0.6311 0.6960 0.6620 

S 0.5931 0.6009 0.5560 0.5776 

W 0.6018 0.6159 0.5446 0.5780 

GD 0.8311 0.9557 0.6945 0.8044 

GB 0.8311 0.9569 0.6935 0.8042 

GS 0.8301 0.9201 0.7230 0.8097 

GW 0.8123 0.8687 0.7359 0.7968 

All 0.8299 0.9499 0.6968 0.8039 

Table 4-3 Performance of Decision Tree on the 15000s dataset 

 

Feature Accuracy Precision Recall F1 

G 0.8398 0.9620 0.7075 0.8154 

D 0.6636 0.6767 0.6267 0.6507 

B 0.7026 0.7211 0.6611 0.6898 

S 0.5970 0.6065 0.5557 0.5800 

W 0.6623 0.6779 0.6187 0.6469 

GD 0.8376 0.9324 0.7281 0.8177 

GB 0.8425 0.9450 0.7274 0.8220 

GS 0.8342 0.9571 0.6998 0.8085 

GW 0.8281 0.8551 0.7901 0.8213 

All 0.8315 0.8405 0.8185 0.8293 

Table 4-4 Performance of Random Forest on the 15000s dataset. 
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Feature Accuracy Precision Recall F1 

G 0.7965 0.8184 0.7624 0.7894 

D 0.6706 0.7050 0.5868 0.6405 

B 0.6582 0.6711 0.6213 0.6452 

S 0.5982 0.6066 0.5604 0.5826 

W 0.6832 0.6783 0.6973 0.6877 

GD 0.8017 0.8030 0.7997 0.8013 

GB 0.7807 0.7732 0.7945 0.7837 

GS 0.7821 0.7900 0.7686 0.7791 

GW 0.7222 0.7295 0.7065 0.7178 

All 0.7350 0.7218 0.7649 0.7427 

Table 4-5 Performance of Support Vector Machine on the 15000s dataset. 

 

Feature Accuracy Precision Recall F1 

G 0.8106 0.8621 0.7399 0.7963 

D 0.6398 0.6520 0.6014 0.6257 

B 0.6200 0.6342 0.5731 0.6021 

S 0.6050 0.6230 0.5403 0.5787 

W 0.6800 0.6960 0.6399 0.6668 

GD 0.8087 0.8763 0.7203 0.7907 

GB 0.7524 0.7683 0.7273 0.7472 

GS 0.8123 0.8802 0.7243 0.7947 

GW 0.7285 0.7221 0.7469 0.7343 

All 0.7955 0.8288 0.7461 0.7853 

Table 4-6 Performance of Deep Neural Network on the 15000s dataset. 

 

Since we use a balance dataset, the baseline accuracy is 50%. As can be seen, all the 

models with each of the proposed set of features outperform the baseline. Google n-
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gram(G) is the most effective set of features, reaching 0.8398 accuracy and 0.9620 

precision on its own with the RF model. The best accuracy of Dependency count (D) and 

Dependency bigram (B) features are about 0.67 and 0.70, with SVM and RF respectively. 

For single character features (S), the accuracy is only around 0.6. The word embedding 

features (W) work better with SVM and DNN, with accuracy about 0.68. 

Because G is the strongest set of features, we try to combine it with others. Although 

individual sets of features cooperate better with different classifiers, generally DT and RF 

handle feature combinations better. Note that RF is a model that ensembles many DTs, so 

RF is usually better than a single DT. We focus our discussion on RF below. The best 

accuracy on the 15000s dataset is 0.8425, achieved by the GB feature combination. While 

the accuracy is better than that of RF only with G features, the precision slightly decreases 

to 0.945. W features increase the recall by about 9% when used with the G features, but 

at the expense of precision. D and B features also help increase the recall when used with 

G. With all sets of features, precision and recall are balanced, which are 0.8405 and 

0.8185 respectively, and the best F1 score 0.8293 is achieved. 

By utilizing suitable combination of features, we can construct a system that favors 

precision or recall, according to specific application purposes. Especially, the precision 

as high as 0.96 we achieved indicates that our system is highly reliable and seldom 

produces misleading results. 
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4.5.2 Results on Different Sub-types of WUEs 

To test the performance of our system on different WUE sub-types, we sample 4,000 

segments from each subtype and combine them with 4,000 correct segments respectively. 

The generated dataset, called 4000s_W and 4000s_U, contains 8,000 segments 

respectively. We use RF to conduct the experiments. The experimental results of the two 

datasets are shown in Table 4-7.  

 

Feature 
4000s_W 4000s_U 

Acc. P R F1 Acc. P R F1 

G 0.7969 0.8425 0.7313 0.7829 0.6355 0.6321 0.6515 0.6417 

D 0.6420 0.6370 0.6608 0.6486 0.6211 0.6151 0.6528 0.6334 

B 0.6210 0.6205 0.6235 0.6220 0.6299 0.6486 0.5678 0.6055 

S 0.6330 0.6172 0.7008 0.6563 0.5998 0.5872 0.6725 0.6270 

W 0.6095 0.6110 0.6038 0.6074 0.6139 0.6321 0.5453 0.5855 

GD 0.8213 0.8630 0.7640 0.8105 0.6813 0.6981 0.6388 0.6671 

GB 0.8091 0.8790 0.7188 0.7908 0.6935 0.6906 0.7010 0.6958 

GS 0.8226 0.8920 0.7345 0.8056 0.6396 0.6586 0.5805 0.6171 

GW 0.7714 0.7722 0.7705 0.7714 0.6529 0.6563 0.6420 0.6491 

All 0.8056 0.7757 0.8608 0.8160 0.6881 0.6956 0.6700 0.6826 

Table 4-7 Performance of Random Forest on the 4000s_W and 4000s_U dataset. 

 

Detecting U-errors is generally harder than detecting W-errors. The best accuracy of 

W-errors is above 0.82, but the best of U-errors is less than 0.7. On both sub-types, G is 

the most effective. However, for U-errors the difference in performance between G and 

other individual sets is smaller. This is consistent with what we previously discussed, that 
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compared to W-errors, U-errors cannot be easily detected by low corpus frequency. 

Considering the combination of G with the others, we can observe different 

functionalities of different feature sets. The single-character features (S) designed for W-

errors improve the accuracy when used with G on the 4000s_W dataset. S feature is not 

very effective on its own, probably because the existence of single-character words is not 

sufficient to conclude that there is something wrong with the segment. For example, the 

following “correct” sentence contains many single character words due to its grammatical 

structure: 

有 人 對 她 說 

In contrast, the following segment contains a short problematic sequence of single 

characters “共 敬” whose bigram probability is less than 0.0001. (To correct the error, 

the two tokens “共 敬” should be replaced by a single word “尊敬”) 

他們 應該 共 敬 父母 

Therefore, G and S features can together provide useful information for the model in such 

cases. 

On the other hand, D and B, the features derived from the result of dependency 

parsing, are helpful on the 4000s_U dataset. The accuracy both improves when D or B is 

used with G. This indicates that dependency information can help the models handle 

collocation errors better, especially those involve long-distance dependency. While GD 
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results in slightly lower recall compared to G, GB increases the recall a lot over G.  

W features also have different effects for two different sub-types of WUE. GW leads 

to better recall over G on the 4000s_W dataset, and better precision and accuracy on the 

4000s_U dataset. 

 

 

Figure 4-1 Accuracy v.s. dataset size. 

 

Figure 4-1 shows the relationship between the best accuracy and the dataset size in 

the experiments of RF. Due to the amount of available data for W-errors, only two datasets 

are generated. The dataset size is the total number of segments, including both wrong and 

correct ones. Therefore, the datasets with size 8000 are just 4000s_W and 4000s_U we 

used previously. 

With the largest dataset, the accuracy for U-errors reaches 0.8499. The accuracy of 

two sub-types both increases with the amount of training data. To reach the same level of 
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accuracy, more training data are needed for U-errors, which also indicates that handling 

U-errors is more difficult. 

 

4.6 Conclusion for Segment-level Detection 

In this stage, we deal with the Chinese WUE detection task with n-gram features, 

dependency count features, dependency bigram features, single-character features and 

word embedding features. The best model achieves 0.8425 accuracy, 0.9450 precision, 

0.7274 recall, and 0.8220 F1 on the 15000s balanced dataset. Among the tested machine 

learning classifiers, random forest is the most suitable model for the proposed features. 

The single-character features in combination with n-gram features are effective for 

morphological errors (W), while dependency-derived features help better capture usage 

errors (U). The detection of usage error is harder and need more training data.  

By utilizing suitable model and combination of features, we can also construct a 

WUE detection system that favors precision, up to 96.2%. If a segment is classified as 

wrong by our high-precision model, it is very likely that there is indeed some WUE in the 

segment. Therefore, in our next stage, we consider those segments known to contain WUE 

and design models to locate the specific erroneous token. 
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Chapter 5 Token-level Chinese WUE Detection 

 

5.1 Task Description 

The goal of this stage is to locate the specific location of WUE given known incorrect 

segments. We formulate the Chinese WUE detection task as a sequence labeling problem. 

Each token, the fundamental unit after word segmentation, is labeled either correct (0) or 

incorrect (1). 

As we mentioned in Chapter 1, U-errors are much more than W-errors in the HSK 

dataset. In fact, many Chinese WUEs result from subtle semantic unsuitability instead of 

violation of syntactic constraints. In (S5-1), both “權力” (power) and “權利” (right) are 

existent nouns in Chinese, and both versions are grammatically correct. 

(S5-1) 人們有(*權力,權利)吃安全的食品。 

(People have the (*power, right) to enjoy safe food. ) 

To recognize the WUE, we have to understand the meaning of “吃安全的食品”, so that 

we can determine whether it is a kind of right, or a kind of power. If the context changes, 

which word is the correct choice is very likely to be different.  

The above example can shed light on one of the challenging aspects of this task. The 

errors usually do not stand on their own, but the problems lie in their relationship with 

their context. If a model examines the sentence segment token by token, it would not be 

able to detect this kind of WUEs. Therefore, we need a model that considers the sequence 
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of words as a whole to determine which position needs correction. 

 

5.2 Dataset 

We extract the wrong segments in the 15000s balanced dataset used in the previous 

stage. Each sentence segment has exactly one token-level position that is erroneous. We 

filter out any sentence segment whose corrected version differs from it by more than one 

token due to segmentation issues. Some W-error instances are filtered out since the 

erroneous token is segmented into several words. We only focus on the cases in which 

the error can be corrected by replacing one single token.  

After filtering, we end up with 10,510 sentence segments. We use 10% data for 

validation and testing respectively, and the remaining 80% data as the training set. 

 

5.3 WUE Detection Based on Bidirectional LSTM 

We previously discuss the challenge of token-level WUE detection and conclude that 

a model suitable for this task needs to consider the whole sequence words. One possible 

model is the Long Short-Term Memory (LSTM) model (Hochreiter and Schmidhuber, 

1997), which processes sequential data and generates the output based not only on the 

information of the current time step, but also on the past information stored in the memory 

layer. Therefore, we utilize LSTM as our sequence labeling model. 
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LSTM handles long sequences better than simple recurrent neural network (RNN) 

does, since it is equipped with input, output and forget gates to control how much 

information is used. The ability of LSTM to capture longer dependencies among time 

steps makes it suitable for modeling the complex dependencies of the erroneous token on 

the other parts of the sentence.  

We train the LSTM model with the Adam optimizer (Kingma and Ba, 2014) 

implemented in Keras10. The parameters are shown in Table 5-1. The training process is 

stopped when the validation accuracy does not increase for two consecutive epochs. The 

model with the highest validation accuracy is selected as the final model.  

 

LSTM layer size 400 

Cost function binary_crossentropy 

Optimizer Adam 

Batch size 32 

Initial learning rate 0.001 

Table 5-1 Parameters of the LSTM-based WUE detection model. 

 

We apply a sigmoid activation function before the output layer, so the output score 

of each token, which is between 0 and 1, can be interpreted as the predicted level of 

incorrectness. With these scores, our system can output a ranked list of candidate error 

                                                 

10 https://keras.io/ 

https://keras.io/
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positions. The positions with the highest incorrectness scores will be marked as incorrect.  

We show an example labeling result of our system with segment (S5-2). The tokens 

“差” (bad) and “知識”(knowledge), which are given the highest scores, are most likely 

to be incorrect. We also use (S5-2) to illustrate the LSTM-based WUE detection model in 

Figure 5-1. The darkness of the blocks in the bottom indicates the level of incorrectness 

predicted by the model. 

(S5-2) 學習 的 知識 也 很 差 

Incorrectness score 0.056 0.035 0.153 0.039 0.030 0.429 

 ( The knowledge learned is also very bad. ) 

 

 

Figure 5-1 LSTM-based WUE detection model. 

 

Bidirectional LSTM (Schuster and Paliwal, 1997) is an extension of LSTM which 

includes a backward LSTM layer. Both information before and after the current time step 
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are taken into consideration. Figure 5-2 illustrates a bidirectional LSTM-based WUE 

detection model. In segment (S5-3), we need the “future” information to detect the error. 

The incorrectness of the token留在(left at) cannot be determined without considering its 

object我們(us). 

(S5-3) 店是爸爸(*留在,留給) 我們的。 

( The store is our father left (*at,to) us. ) 

 

 

Figure 5-2 Bidirectional LSTM-based WUE detection model. 
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5.4 Sequence Embedding Features 

We consider the word sequence in a sentence segment and the corresponding POS 

tag sequence. They are mapped to sequences of real-valued vectors through an embedding 

layer. These vectors are also updated during the training process. 

5.4.1 Word Embeddings 

We set the word embedding size to 400. Besides randomly initialized embedding, 

we also try several types of pre-trained word vectors. 

1. CBOW/Skip-gram Word Embeddings: two basic architectures of Word2vec 

2. CWINDOW/Structured Skip-gram Word Embeddings: take the order of the context 

words into consideration  

The training corpus and the hyperparameter settings are the same as those used for 

obtaining W features in the previous stage. 

5.4.2 POS Embeddings 

The POS embeddings are randomly initialized. We set the embedding size to 20, 

which is slightly smaller than the number of different POS tags (30) in our dataset. 

 

5.5 Token Features 

In addition to representing each token as a real-valued vector, we also incorporate 

some abstract features. These features are derived from the Google Chinese Web 5-gram 
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corpus and will be referred to as “n-gram features”. 

5.5.1 Out-of-Vocabulary Indicator 

This feature is simply a bit indicating whether a word is an out-of-vocabulary (OOV) 

word or not. If a token never appears in the Web 5-gram corpus, the bit is set to 1; 

otherwise it is set to 0. A W-error token which is not segmented into several words is 

expected to be captured with the help of this binary indicator. 

5.5.2 N-gram Probability Features 

We compute the n-gram probability of each token using the occurrence count in the 

Web 5-gram corpus. We consider only up to trigrams since the probabilities are mostly 

zero when 𝑛 >  3. For boundary cases such as the first token for bigram, and the first 

and second token for trigram, a special value -1 is given.  

In fact, this is similar to the Google n-gram features we used in the previous segment-

level detection task. The difference is that we preserve the sequence of probabilities. 

Given the limited amount of available learner data, these probabilities may serve as useful 

features indicating how likely an expression is valid in Chinese. 
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5.6 Evaluation 

5.6.1 Accuracy 

We use the detection accuracy as our main evaluation metric. A test instance is 

regarded as correct only if our system gives the highest score of incorrectness for the 

ground-truth position. This metric is relatively strict as the average length of the sentence 

segments in our dataset is 9.24. The McNemar’s test (McNemar, 1947) is adopted to 

perform statistical significance test. 

5.6.2 Mean Reciprocal Rank (MRR) 

The mean reciprocal rank rewards the test instances for which the model ranks the 

ground-truth near the top of the candidate list. The definition of MRR is: 

𝑀𝑅𝑅 =∑
1

𝑟𝑎𝑛𝑘(𝑖)

𝑁

𝑖=1

 

 , where 𝑁 is the total number of test instances and 𝑟𝑎𝑛𝑘(𝑖) is the rank of the ground-

truth position of test instance 𝑖. 

5.6.3 Hit@k Rate 

The Hit@k rate regards a test instance as correct if the answer is ranked within the 

top k places. In the experiments, k is set to 2. We report this metric since one of the most 

common types of WUEs is collocation error. In example (S5-2), the problem involves a 

pair of words, i.e., the adjective “差” (bad) is not a suitable modifier of the noun “知識” 
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(knowledge). (S5-4) and (S5-5) are both acceptable. 

(S5-4) 學習 的 知識 也 很 不足 

( The knowledge learned is also insufficient. ) 

(S5-5) 學習 的 態度 也 很 差 

( The attitude of learning is also very bad. ) 

Which correction is better highly depends on the context or even the intended meaning in 

the writer’s mind. If the model proposes two potentially erroneous tokens which are 

closely related to each other, it can be useful for Chinese learners. 

5.6.4 Hit@r% Rate 

Finding the exact position of the error could be more challenging in a longer sentence 

segment. Therefore, we propose another hit rate measure which takes the segment length 

(𝑠_𝑙𝑒𝑛) into account. Specifically, we regard one test instance as correct if the answer is 

ranked within the top max(1, ⌊𝑠_𝑙𝑒𝑛 ∗ 𝑟%⌋) candidates. We report hit@20%. That is, for 

segments shorter than 10 tokens, the system is allowed to propose one candidate; for those 

whose length is between 10 and 14, the system is allowed to propose two, and so on. 

Equivalently, this measure judges whether our system can rank the ground-truth error 

position within the top 20% of the candidate list. This metric compromises Accuracy and 

Hit@k. 

  



doi:10.6342/NTU201702231

 46 

5.7 Results and Analysis 

 

Model Features Acc. MRR Hit@2 Hit@20% 

Rand. 

baseline 
- 0.1239 0.3312 0.2478 0.1611 

LSTM 

Rand. Init. Word Emb. 0.4186 0.6010 0.7222 0.6565 

CBOW 0.4072 0.5923 0.7155 0.6432 

CBOW + POS 0.4263 0.6150 0.7564 0.6908 

CBOW + POS + n-gram 0.4386 0.6204 0.7526 0.6755 

SG 0.4072 0.5910 0.7146 0.6365 

SG + POS 0.4301 0.6170 0.7593 0.6965 

SG + POS + n-gram 0.4386 0.6205 0.7507 0.6755 

CWIN 0.4853 0.6537 0.7774 0.7031 

CWIN + POS 0.4681 0.6435 0.7783 0.7022 

CWIN + POS + n-gram 0.4700 0.6502 0.7945 0.7269 

Struct-SG 0.4710 0.6412 0.7650 0.6889 

Struct-SG + POS 0.4757 0.6441 0.7593 0.6822 

Struct-SG + POS + n-gram 0.4881 0.6577 0.7840 0.7184 

Bi-LSTM 

CWIN 0.4795 0.6547 0.7840 0.7174 

CWIN + POS 0.5138 0.6789 0.8097 0.7479 

CWIN + POS + n-gram 0.4948 0.6719 0.8173 0.7507 

Struct-SG 0.4786 0.6544 0.7945 0.7212 

Struct-SG + POS 0.4653 0.6470 0.7850 0.7146 

Struct-SG + POS + n-gram 0.4948 0.6658 0.8040 0.7374 

Table 5-2 Performance of the LSTM/Bi-LSTM sequence labeling models with different 

sets of features. 
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5.7.1 Overall Results 

Table 5-2 shows the performance of our WUE detection models with different input 

features. The random baseline is a system randomly choosing one token as the incorrect 

position. The LSTM model using only randomly initialized word embeddings largely 

outperforms the random baseline. The pre-trained CBOW/SG word embeddings seem not 

very useful, leading to detection performance slightly lower than the model with random 

initial word embeddings. For both CBOW and SG, introducing the POS sequence 

improves the detection accuracy by about 2% and also improves all other measurements. 

The n-gram features further increase the accuracy by about 1%.  

On the other hand, the CWIN and Struct-SG embeddings themselves are very 

powerful. Incorporating the POS and n-gram features leads to only slight improvements 

in terms of accuracy. Despite the small impact on accuracy, the n-gram features bring 

obvious improvements on hit@2 and hit@20% rates, indicating that they do facilitate the 

model in promoting the rank of the ground-truth position. Under the same set of features, 

all models with CWIN/Struct-SG significantly outperform their CBOW/SG counterparts 

(𝑝 <  0.05).  

Bidirectional LSTM (Bi-LSTM) further enhances the performance of LSTM. Bi-

LSTM with CWIN+POS features achieves the best accuracy and MRR, and significantly 

outperforms its LSTM counterpart (𝑝 <  0.005). Bi-LSTM with CWIN+POS+n-gram 
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features achieves the best Hit@2 and Hit@20%. 

5.7.2 LSTM v.s. Bi-LSTM on Segments with Different Length 

 

Length (# tests) # proposed LSTM Bi-LSTM 

< 10 (645) 1 0.7426 0.7659 

10 ~ 14 (317) 2 0.6908 0.7319 

15+ (89) 3+ 0.7416 0.7079 

Table 5-3 Hit@20% rates of LSTM and Bi-LSTM on segments with different lengths. 

 

To take a closer look at what is gained by moving from LSTM to bidirectional LSTM, 

we analyze the performance of the two types of models on different length of segments 

in Table 5-3. We use the versions with all set of features and report hit@20% rates. Using 

Bi-LSTM leads to some improvement on short (< 10 tokens) segments, and larger 

improvement on mid-length (10 ~ 14 tokens) ones. Even longer (15 tokens up) segments 

are relatively rare since foreign learners seldom construct complex sentences. 

5.7.3 Relationship between Top Two Candidates 

We previously justify the use of the hit@2 metric by pointing out that a WUE usually 

involves a pair of words dependent on each other. We can verify whether the top two 

candidates proposed by our model are closely related by examining the dependency 

distance. We take the output of the Bi-LSTM model with CWIN+POS+ngram features 

and analyze the error cases where the model ranks the ground-truth error position second. 
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We use the dependency parsing result to construct an undirected graph, where each 

dependency corresponds to an edge, and calculate the shortest distance between the top 

two candidates in these cases. Figure 5-3 shows the undirected dependency graph of 

segment (S5-2). The shortest path distance between token “知識” and “差” is 1. 

 

Dependency Parsing Result Undirected Dependency Graph 

relcl(知識, 學習) 

mark(學習, 的) 

nsubj(差, 知識) 

advmod(差, 也) 

advmod(差, 很) 
 

Figure 5-3 An example of undirected dependency graph. 

 

The dependency analysis results are summarized in Table 5-4. 𝑎  denotes the 

ground-truth error position. 𝑐1  and 𝑐2  denote the first and the second candidate 

positions proposed by the model. 𝑑𝑖𝑠(𝑐1, 𝑐2) is the distance between 𝑐1 and 𝑐2 on the 

dependency graph. The average distance (2.07) is small compared to the average length 

of the segments (9.24), indicating that our model can consider the dependencies among 

words when ranking the candidate positions. Moreover, among the 𝑐2 = 𝑎 cases, more 

than one third of them have 𝑑𝑖𝑠(𝑐1, 𝑐2) = 1. This means that the top two candidates are 

closely related as in the case of “知識” and “差” in (S5-2). 
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# correct (𝑐1 = 𝑎)  520 (49.48%) 

# tests where 𝑐2 = 𝑎 339 (32.25%) 

Average 𝑑𝑖𝑠(𝑐1, 𝑐2) when 𝑐2 = 𝑎  2.07 

# tests where 𝑐2 = 𝑎 and 𝑑𝑖𝑠(𝑐1, 𝑐2) = 1 129 (12.27%) 

Table 5-4 Summary of the analysis of the dependency between the top two candidates.  

 

5.7.4 Effectiveness of POS Features 

 

POS (# tests)  CWIN CWIN+POS 

VV (325)  0.8123 0.8185 

NN (282)  0.6879 0.7447 

AD (134)  0.6194 0.7015 

Table 5-5 Hit@20% rates of Bi-LSTM models with or without POS features on three 

most frequent POS tags of the erroneous token. 

 

A factor that might limit the effectiveness of POS features is that the POS tagger 

trained on well-formed text may not perform well on noisy learner data. In fact, for 26.7% 

of the test data, the POS tag of the original erroneous token differs from that of its 

corrected version. We compare the performance of Bi-LSTM with or without POS 

features on three most frequent POS tags in Table 5-5. As can be seen, the POS 

information of the erroneous segment, which potentially contains errors, can still be 

helpful for detecting anomaly of the segment. In example (S5-6) we show the scores of 

incorrectness predicted by models with or without POS features. The ”DEC + AD” 

construction is invalid in Chinese, so in this case the error can be detected more easily if 
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POS information is available. 

(S5-6) 應該 有 別人 的 *盡力 

POS tag  VV VE NN DEC AD 

w/o POS 0.048 0.226 0.030 0.016 0.042 

w/ POS 0.010 0.066 0.031 0.071 0.077 

 ( There should be someone else’s *utmost. ) 

5.7.5 Effectiveness of N-gram Features 

Though being very powerful in the segment-level detection task, the Google n-gram 

features only lead to small improvement in accuracy and MRR according to Table 5-2. In 

the case of Bi-LSTM with CWIN+POS features, including n-gram features even results 

in slightly lower accuracy and MRR.  

We find out that a segmentation error somewhere in the segment can affect the 

model’s decision. For example, in (S5-7) the token “就在這時候” is an incorrect merge 

of several words. The Bi-LSTM model with CWIN+POS selects the token “起來”, which 

is the ground-truth error position, but the model with CWIN+POS+n-gram selects the 

OOV token “就在這時候”. Note that “起來” is still given second highest incorrectness 

score, which may explain the improvement on the hit rates after incorporating n-gram 

features. 

(S5-7) 他 就在這時候 想 *起來 一 個 辦法 

OOV 0 1 0 0 0 0 0 

CWIN+POS 0.0228       0.0860 0.0466 0.5440 0.0105 0.0712 0.0885 

  + n-gram 0.0488       0.2677 0.1427 0.2540 0.0150 0.1158 0.0319 

 (At this moment, he thought *of a way.) 



doi:10.6342/NTU201702231

 52 

Even when there is no segmentation error, making decision based on n-gram 

probabilities is still rather complex. We use (S5-8) as an example. 

(S5-8) 哪個                             城市 都 有 特色 的 氣氛 

2gram -1            0.0139 0.0037 0.0544 0.0013 0.1020 0.0002 

3gram -1 -1 0.0317         0.2462 0.0002 0.3981 0.000039 

 (Every city has *specialty atmosphere.) 

Regarding bigram probabilities, the erroneous token “特色” is not the one given 

lowest probability. Instead, the bigram “的 氣氛” has the lowest probability, since many 

words can be the succeeding word of “的”. Thus, the probability of a certain possibility, 

“氣氛” in this case, would be low. A low probability does not indicate a wrong usage 

when involving such a “general” word “的”, so making decision simply based on 

probability threshold would not work. It is expected that the WUE in (S5-8) can be 

recognized if we consider trigrams, since “特色 的 氣氛” is a local wrong usage. 

However, the trigram probability does not drop until the last token “氣氛”, which makes 

it difficult to trace the problem to the inappropriate usage of “特色”. 

Although the model has access to word and POS information, which can be used for 

determining different thresholds for different situations, it seems that the model is better 

at matching word and POS patterns where the Chinese learners are more likely to make 

mistakes. 

In sum, if a segment contains some WUEs, it is more likely to have low overall n-

gram probability sums. Thus, the Google n-gram features can be useful for the segment-
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level detection task. Nevertheless, when the model needs to determine the error position, 

the noise from segmentation error may lead to wrong results. Moreover, it can be complex 

to interpret the n-gram probabilities and trace which token causes the WUE. 

5.7.6 Performance on Commonly Misused Words 

 

Word  Error rate Precision Recall 

產生 (generate)  0.571 (8/14) 0.700 (7/10) 0.875 (7/8) 

經驗 (experience)  0.500 (5/10) 0.667 (4/6) 0.800 (4/5) 

發生 (happen)  0.455 (5/11) 0.571 (4/7) 0.800 (4/5) 

而 (so)  0.417 (20/48) 0.550 (11/20) 0.550 (11/20) 

Table 5-6 Precision/recall on four most commonly misused words. 

 

In Table 5-6 we show the precision/recall of the Bi-LSTM model with CWIN+POS 

features on four most commonly misused (error rate above 0.4) words. The error rate of 

a word w is calculated on the test set by  

err_rate(𝑤)  =
# segments in which 𝑤 is misused

# segments containing 𝑤
 

We exclude words that occur in less than 10 segments regardless of their error rates. In 

general, our model achieves high recall and fair precision. Discriminating correct and 

wrong usage of the conjunction 而(so), which often connects more than one segment, 

seems to be the most difficult. For example, in (S5-9) the inappropriateness of 而 cannot 

be recognized unless we consider the wider context of this segment. 

(S5-9) (*而,並) 當成此生做人的道理 
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( ..., (*so,and) take it as a lifelong way to behave around others. ) 

 

5.8 Conclusion for Token-level Detection 

In this stage, we propose an LSTM-based sequence labeling model for detecting 

WUEs in sentences written by non-native Chinese learners. The experimental results 

suggest that the CWIN/Struct-SG embeddings, which consider word orders, are better 

word features for Chinese WUE detection. The POS information can help detect incorrect 

grammatical constructions. For the model, Bi-LSTM is more preferred than LSTM since 

the context after the erroneous token can be taken into account. 

While a wrong usage often involves more than one token, making it difficult to 

determine which one should be corrected, the best Bi-LSTM model can rank the ground-

truth error position within the top two in 80.97% of the cases. In addition, analysis on 

dependency distances shows that the top two candidates are usually closely related to 

each other. 
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Chapter 6 Chinese WUE Correction 

 

6.1 Task Description 

In this stage, given a token in a segment that is known to be erroneous, we aim to 

generate a suitable correction for it. The criteria for a suitable correction are: 

 Correctness: After substituting the erroneous token with the correction token, the 

result must be a syntactically and semantically correct Chinese sentence segment. 

 Similarity: The meaning of the correction must be as close to the writer’s intended 

meaning as possible. 

We discuss the criteria with the following examples. 

(S6-1) *生活方式已經猛烈地改變了 

(S6-2) *生活方式已經強烈地改變了 

(S6-3) 生活方式已經緩慢地改變了 

(S6-4) 生活方式已經劇烈地改變了 

For the wrong segment (S6-1), (S6-2) is not a correction since it is incorrect itself. The 

adverb “強烈地” does not collocate with the verb “改變”. (S6-3) is grammatical, but its 

meaning differs from the original meaning of (S6-1), so neither is a suitable correction. 

(S6-4) is a good correction that meets both criteria. 

 Nevertheless, there are some cases in which the similarity criterion is hard to meet. 
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For example, the intended meaning of (S6-5) is very difficult to recognize. (S6-6) is the 

ground-truth correction, but the association between the original erroneous token “情緒” 

and the correction “因素” is unclear without wider context information. 

(S6-5) 發生 這 種 情況 的 情緒 很多 

(S6-6) 發生 這 種 情況 的 因素 很多 

When either criterion cannot be met, the correctness criteria should have higher 

priority, since an incorrect sentence can confuse the language learner and have bad impact 

on learning. 

 In this chapter, “target” refers to the original erroneous token written by the language 

learner, and “context” refers to other words in the sentence segment. A pair consisting of 

the target and its corresponding correction is called a “correction pair”. In the above 

examples, “猛烈” and “情緒” are targets, and (猛烈, 劇烈) and (情緒, 因素) are 

correction pairs. 

 

6.2 Dataset 

We follow the train/validation/test split of the previous stage. For each split, we filter 

the instances where the correction is not within the top 50,000 frequent words in the 

Chinese ClueWeb dataset we used to train the word embeddings. This decision is made 

based on the fact that the vocabulary used by the non-native language learners is limited. 
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When human annotators correct the sentence, they are also unlikely to replace the 

erroneous token with a rare, hard word, since it will be too difficult for the non-native 

learner to understand and acquire the usage. 

Out of the 10,510 segments used in the token-level detection task, 954 (less than 10%) 

are filtered out since the correction token is out of the vocabulary of top 50,000 frequent 

words. In fact, most of the filtered segments involve segmentation error, or inconsistency 

of segmentation. Below is an example of wrong segmentation. 

(Wrong segmentation result) 我的 大姐 七 歲 時 因 患上 破傷風 症死去 

(Expected segmentation)  我的 大姐 七 歲 時 因 患上 破傷風 症 死去 

For the inconsistency problem, one example is the phrase “越來越大”, which is usually 

segmented into two tokens “越來越 大”, but is occasionally segmented into one single 

word. 

 Our final dataset of this stage contains erroneous segments and their corresponding 

corrections. The statistics of the datasets are shown in Table 6-1. 

 

 # segments 

Train 8,205 

Validation 1,026 

Test 1,025 

Table 6-1 Statistics of the dataset used in the WUE correction stage. 
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6.3 Neural Network-based Correction Generation Model 

6.3.1 Model Overview 

Our correction generation model is a deep neural network that takes features as input 

and generates the embedding, or word vector, of the correction token. Features are derived 

from the target and the context.  

Let 𝐟target and 𝐟context be the feature vector for target and context respectively. 

Given the original erroneous sentence segment, which includes both the target and the 

context, our model selects the most suitable correction word 𝑐 ∗  over a set 𝐶  of all 

possible corrections c: 

𝑐 ∗= argmax
𝑐∈𝐶

cos( DNN(𝐟target, 𝐟context), vec(𝑐) ) 

, where vec(𝑐) denotes the embedding of the candidate word c. DNN(𝐟target, 𝐟context) 

is referred to as the correction vector. In fact, this model can propose several candidates, 

ranked by their cosine similarities to the correction vector. The goal is to rank the ground-

truth correction toward the top of the list. Figure 6-1 illustrates the whole model. 
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Figure 6-1 A high-level view of our correction generation model. 

 

6.3.2 Model Output 

For the embedding of the correction token, we use the CWE word vectors trained on 

the Chinese ClueWeb dataset. We adopt the position-based variant (CWE+P), which 

keeps three embeddings for each character according to the character’s position in the 

word. The three embeddings are labeled s (start), m (middle) and e (end). This variant is 

designed to capture the different morphological functions of a Chinese character when it 

is at different position in a word. According to Chen et. al. (2015), the representation of 

DNN 

Target features 𝐟target Context features 𝐟context 

Correction vector 

DNN(𝐟target, 𝐟context) 

Candidate 

vocabulary 𝐶 
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the word “農產品”, for example, should be 

vec(農產品) +
1

3
[vec(農 s) + vec(產 m) + vec(品 e)] 

, where vec(∙) is the vector of a word or a character. 

If we ignore the internal structure of the word, a misused form “農作品” is simply 

an OOV word and has no association with the correction “農產品”. With the use of CWE 

vectors, it is possible for the model to learn a transformation from the incorrect token to 

its correction. 

We use the publicly released implementation of CWE11 to train the CWE+P model on 

the Chinese ClueWeb corpus. We set the embedding size to 400 and train for 20 iterations. 

All other hyperparameters are left default. 

6.3.3 Candidate Vocabulary 

According to the filtering criterion described in Section 6.2, any correction must be 

one of the top 50,000 frequent words. Nevertheless, we found that within these “frequent” 

words, some such as punctuation marks or English words are not possible correction. We 

eliminate these invalid candidates and the result candidate vocabulary size, |𝐶|, is 48,394. 

6.3.4 Model Parameters 

We implement the model with Keras. Table 6-2 shows the parameters. Models with 

                                                 

11 https://github.com/Leonard-Xu/CWE 

https://github.com/Leonard-Xu/CWE
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this setting generally perform the best on the validation set across different combination 

of features. The activation function is not applied at the output layer, so that the model 

output can fit better to the vector of the correction. 

When the validation accuracy does not increase for two consecutive epochs, the 

training process is terminated. We choose the model with the highest validation accuracy 

for each feature combination and report the results on the test set. 

 

Hidden layer size 4096 

# hidden layers 2 

Activation function ReLU 

Cost function cosine_proximity 

Optimizer Adagrad 

Batch size 32 

Initial learning rate 0.01 

Table 6-2 Correction generation model parameters. 

 

6.4 Features 

To meet the two criteria for suitable WUE correction, we adopt several target and 

context features as input to the correction generation model. The division of target and 

context features is only for indicating the source of information. The model does not 

distinguish between these two kinds of features. 

6.4.1 Target CWE+P Word Embedding 

We use the same CWE+P model as with we use for the model output. Let 𝑤 =



doi:10.6342/NTU201702231

 62 

c1𝑐2…𝑐𝑘 be the erroneous token, where c1, 𝑐2, … , 𝑐𝑘 are its character components. We 

compute the target CWE+P word embedding feature vector, CWEw, by: 

CWEw(𝑤) =

{
 
 

 
 
vec(𝑤) +

1

𝑘
[vec(𝑐1, s) +∑vec(𝑐𝑖, m)

𝑘−1

𝑖=2

+ vec(𝑐𝑘, e)]       if 𝑤 ∈ 𝑉

1

𝑘
[vec(𝑐1, s) +∑vec(𝑐𝑖,m)

𝑘−1

𝑖=2

+ vec(𝑐𝑘, e)]              otherwise

 

, where 𝑉 is the word vocabulary of the CWE+P model. For example, the target feature 

vector for the erroneous token “農作品” is: 

1

3
[vec(農, s) + vec(作, m) + vec(品, e)] 

As can be seen, this vector shares terms vec(農, s) and vec(品, e) with the vector of its 

correction “農產品”。 

The word and character vectors used to calculate this set of features are in the same 

space with the model output, enabling the model to directly learn a transformation 

between a correction pair. 

6.4.2 Target CWE Position-Insensitive Character Embedding 

Although a character’s position in a word could reflect its morphological function, 

non-native Chinese learners might not be so familiar with Chinese morphology. One 

common type of morphological error (W-error), as we defined in Chapter 1, is incorrect 

ordering of characters within a word. For example, (*決解, 解決) is the tenth frequent 

correction pair in our dataset. With the use of CWE+P embeddings, the similarity between 
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these two tokens might be underestimated since all the character vector terms are different. 

 To cope with this problem, we experimented with the CWE variant that only keeps 

one vector for each Chinese character regardless of its position, but the performance is 

not as good as the model with CWE+P features. Alternatively, we design a separate set of 

character embedding features CWEc that include character embedding of all positions. 

That is,  

CWEc(𝑤) =
1

𝑘
∑[vec(𝑐𝑖, s) + vec(𝑐𝑖,m) + vec(𝑐𝑖, e)]

𝑘

𝑖=1

 

By doing so, CWEc(決解) will contain vec(解, s) and vec(決, e), which are the terms 

of CWEw(解決). 

6.4.3 Context2vec Features 

Context2vec (Melamud et al. 2016) is a bidirectional LSTM-based model that can 

encode a “context” into a real-valued vector. A context is a sequence of words with a 

certain position blanked out. For instance, below is a context: 

可是 每 個 人 的 [ ] 都 千差萬別 

In general, a context can be represented by 𝑤1…𝑤𝑝−1[ ]𝑤𝑝+1…𝑤𝐿, where each 

𝑤i is a token, 𝐿 is the number of tokens, and 𝑝 is the index of the blank. The vector 

encoding of the context is a combination of the sequence of words before and after the 

blank: 
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C2Vctx(𝑤1…𝑤𝑝−1[ ]𝑤𝑝+1…𝑤𝐿) = LSTM(𝑤1…𝑤𝑝−1) ⨁ LSTM(𝑤𝐿…𝑤𝑝+1) 

, where ⨁ is the vector concatenation operation. 

Context2vec also keeps the embeddings of individual words, which are called target 

embeddings12  by Melamud et al. (2016). We use C2Vtrg(𝑤)  to denote the vector of 

target word 𝑤 . Both target embeddings and the parameters in the LSTM layers are 

updated during training. The objective of the model is to predict the target word that 

actually occurs in the training sentence, given the encoded context vector. Figure 6-2 

illustrates the architecture of Context2vec. 

 

 

Figure 6-2 The architecture of Context2vec. 

 

We train Context2vec on the Chinese ClueWeb corpus. We set the embedding size to 

                                                 

12  Note that the definition of “target” in the Context2vec paper is slightly different from ours. In our 

definition, target only refers to the original erroneous token, while for Context2vec, target can refer to any 

word to be put into the blank, regardless of whether the result is a correct sentence. 
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300 and train for 5 epochs. 

The formulation of context makes Context2vec suitable for the sentence completion 

task. A candidate 𝑐 to fill the blank can be selected according to how similar C2Vtrg(𝑐) 

is to the context vector in terms of cosine similarity. That is, given a context where the 

𝑝-th position is the blank, the best candidate 𝑐 ∗ would be: 

𝑐 ∗= argmax
𝑐∈𝐶

cos( C2Vctx(𝑤1…𝑤𝑝−1[ ]𝑤𝑝+1…𝑤𝐿), C2Vtrg(𝑐) ) 

In their paper, Melamud et al. (2016) have shown promising results of context2vec in 

several sentence completion benchmarks.  

For the example context we mentioned above, the best candidate selected in this way 

using our trained model is “境況”, which can be put into the blank and the result is a 

correct sentence segment. 

可是 每 個 人 的 [境況] 都 千差萬別 

In fact, this context is extracted from a wrong segment in our dataset. The original 

erroneous segment and the corresponding correction are shown below. 

可是 每 個 人 的 (*對應, 反應) 都 千差萬別 

Given the original segment, one can conclude that the candidate “境況” selected by 

Context2vec is less suitable compared to the ground-truth “反應”, according to the 

similarity criteria. Therefore, WUE correction is different from sentence completion in 

that if the model ignores the word originally written by the language learner, it is likely 
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to generate a correction that changes the meaning of the original sentence segment. 

 To take both context and target information into account, we include two feature 

vectors C2Vtgr  and C2Vctx , which belong to target and context features respectively. 

C2Vtgr refers to C2Vtgr(𝑤), which is the embedding of the original erroneous token 𝑤. 

𝑤 can reveal important information about the writer’s intended meaning as we discussed 

above. We use the above-mentioned candidate selection method based solely on the 

cosine similarity of context and candidate vectors, without any training on the Chinese 

WUE dataset, as one of our baselines. 

6.4.4 Target POS Feature 

If we regard the process of replacing the erroneous token with a correction token as 

a kind of transition, we can analyze the transition of POS tags. The most frequent POS 

transition in the validation set are shown in Table 6-3. 

 

Original POS Correction POS # instances (%) 

(unchanged) 722 (68.70%) 

VV NN 27 (2.57%) 

NN VV 21 (2.00%) 

P VV 17 (1.62%) 

DEC DEV 15 (1.43%) 

VV P 13 (1.24%) 

AD VV 10 (0.95%) 

VV VA 10 (0.95%) 

Table 6-3 POS transitions that occurs at least 10 times in the validation set. 
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As can be seen, the POS tag does not change after the correction in nearly 70% of 

the cases. Besides, there are some systematic transitions. For example, non-native 

Chinese learners seem to confuse some nouns with some verbs, so we can observe the 

interchanging phenomenon of the VV and NN tag. It is similar for the case of VV and P. 

DEC and DEV are special tags for Chinese particles “的” and “地” respectively (Xia 

2000). The former is a nominalizer such as in “這 件 事 的 發生”, while the latter is 

an adverb marker, such as in ”清楚 地 記得”. In fact, (的, 地) is the most frequent 

correction pair in our dataset. 

 The systematic transitions of POS tags indicate that it is possible to reduce the 

candidate vocabulary. We tried to limit the candidate to the POS transitions observed in 

the training and validation set. However, this results in slightly lower accuracy and MRR, 

because the correction of some test instances is out of the candidate set and this impact is 

larger than the gain from eliminating less likely candidates.  

Therefore, instead of modifying the candidate set directly, we encode the POS of the 

erroneous token in a one-hot vector and feed this feature to the correction generation 

model. This allows the model to learn different transformation function for different 

source POS, that is, the POS of the erroneous token. 
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6.5 Language Model Re-ranking 

One drawback of our DNN correction generation model is that the correctness 

criterion does not explicitly take priority over the similarity criterion. In our experiments, 

we found that our model sometimes generates segments that seriously violate the 

correctness criterion, since the model can bias toward the similarity criterion. Below is an 

example. 

Wrong segment: 到 山頂 之間 路 走 得 不 容易 

Model prediction: 到 山頂 期間 路 走 得 不 容易 

Ground-truth correction: 到 山頂 的 路 走 得 不 容易 

The candidate “期間” is selected since it is similar to the target “之間”, but the result 

sentence segment is incorrect. It is necessary to deal with this problem since the 

correctness criterion is more important, as we previously discussed in the beginning of 

this chapter. 

It is expected that this kind of unsuitable candidates can be eliminated by a language 

model (LM), if we assume that LM probability reflects the level of correctness of a 

sentence segment. Therefore, we train two kinds of LM on the Chinese ClueWeb corpus, 

and propose a method to re-rank the correction candidates. 

6.5.1 Traditional N-gram Language Model (N-gram LM) 

The traditional N-gram LM estimates n-gram probabilities with MLE based on the 
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observed counts in the training corpus. We train a 5-gram language model with KenLM13. 

The modified Kneser-Ney smoothing (Heafield et al., 2013) is applied to handle unseen 

n-grams. 

6.5.2 Recurrent Neural Network Language Model (RNNLM) 

RNNLM is first developed by Mikolov et al. (2011). It is a prediction-based LM that 

can evaluate the probability of a sequence of 𝑛 words conditioned on previous 𝑛 − 1 

words. When processing the word sequence, the recurrent layer keeps holding the 

information of previous time steps. Therefore, different from traditional n-gram model, 

there is no limitation on 𝑛 . As a result, RNNLM is capable of capturing longer 

dependency. 

We use the Faster RNNLM toolkit14, which speeds up the training process by using 

the Hierarchical Softmax (HS) or Noise Contrastive Estimation (NCE). We choose NCE 

because it gives better performance on our WUE validation set. 

We process the ClueWeb corpus before training. The words whose frequency is less 

than 10 are replaced with a “<unk>” token. When testing, an OOV is treated as “<unk>”. 

We split 10% of the corpus for validation. The toolkit automatically adjusts the learning 

                                                 

13 https://kheafield.com/code/kenlm/ 

14 https://github.com/yandex/faster-rnnlm 

https://kheafield.com/code/kenlm/
https://github.com/yandex/faster-rnnlm
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rate and early-stops the training process based on validation entropy. The hyperparameter 

settings are shown in Table 6-4. 

 

Layer type GRU 

Layer size 128 

# negative samples 20 

Table 6-4 Hyperparameters of RNNLM. 

 

6.5.3 Re-ranking Method 

We aim to emphasize the correctness criterion by incorporate the LM scores into the 

candidate selection process. One possible approach is to apply a probability cut-off and 

discard candidates that result in segments with low probability. Nevertheless, the 

“acceptable” LM probability varies from sentence to sentence since it can be affected by, 

for instance, length and lexical complexity of the sentence. Though we can let the cutoff 

be a function taking the above factors into consideration, it is difficult to design such a 

function explicitly. 

Therefore, instead of performing combination of scores, we combine the rank 

proposed by the LM with that based on our correction generation model. One advantage 

of this approach is that the range of rank is the same for all instances, so the ranks can be 

evaluated with the same standard across different instances.  

For a candidate correction, let 𝑟LM be its rank based on the LM probability, and 
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𝑟DNN be the rank based on its cosine similarity to the correction vector generated by our 

DNN model. We adopt the following weighted harmonic mean to obtain a new “rank” for 

the candidate. 

𝑟com =
1

 
𝛼
𝑟LM

+
1 − 𝛼
𝑟DNN

 
 

, where α  is a parameter that can be tuned with the validation set. Preliminary 

experiments show that harmonic mean performs better than arithmetic mean and 

geometric mean. Though 𝑟com may not be an integer, it can be interpreted as rank. That 

is, the correction with smaller 𝑟com is considered better. 

 

6.6 Automatic Evaluation 

6.6.1 Overall Results 

 We first evaluate our correction generation model with the ground-truth correction 

provided in the HSK dataset. The evaluation is based on the rank of the ground-truth 

correction. We report accuracy, MRR and hit rates. The results are shown in Table 6-5. 

The baselines include the two LMs and the Context2vec sentence completion method, 

which select a candidate most similar to the context but ignore the original erroneous 

token. N-gram LM is the strongest baseline for the WUE correction task. 
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Target 

features 

Context 

features 
Acc. MRR Hit@5 Hit@10 Hit@50 

Baselines (No training on the WUE dataset) 

- N-gram LM 0.1659 0.2438 0.3268 0.4029 0.5951 

- RNNLM 0.1468 0.2208 0.2847 0.3611 0.5793 

- C2Vctx 0.0714 0.1170 0.1575 0.2114 0.3611 

Correction Generation Model – Context2vec Features 

C2Vtrg - 0.2507 0.3030 0.3561 0.3932 0.5024 

- C2Vctx 0.1249 0.1746 0.2273 0.2741 0.4010 

C2Vtrg C2Vctx 0.3249 0.3891 0.4566 0.4976 0.6185 

Correction Generation Model – CWE + Other Features 

CWEw  0.2898 0.3545 0.4195 0.4693 0.5971 

+ CWEc  0.2946 0.3570 0.4234 0.4722 0.6078 

+ C2Vtrg + C2Vctx 0.3512 0.4250 0.5024 0.5571 0.6800 

+ POS  0.3717 0.4378 0.5063 0.5688 0.6956 

Table 6-5 Performance of the correction generation model with various target and 

context features. 

 

The second part of Table 6-5 shows the result of a set of experiments with 

Context2vec features. The DNN model with only C2Vctx  features differs from the 

Context2vec baseline in that it is trained with the WUE dataset. Learning a transformation 

from the erroneous token to the correction seems to be easier than guessing a correction 

only from context, probably because some common correction pairs can be learned. The 

model using only C2Vtrg achieves performance substantially higher than that using only 

C2Vctx. Note that we use CWE+P embeddings for the model output, which does not lay 
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in the same space as the Context2vec vectors. This indicates that our model is indeed 

capable of learning a transformation, not just copying the vector terms from the input 

features. Combining C2Vtrg and C2Vctx can further enhance the performance. 

The third part of Table 6-5 shows another set of experiments starting from the CWE+P 

target features. The model with CWEw features performs better than that with C2Vtrg, 

since CWE+P composes a vector representation for OOV targets such as “農作品”, 

giving the model more clues for generating the correction. The position-insensitive 

character feature CWEc slightly improves the performance over CWEw. After including 

Context2vec context and target feature, the model can consider the context and reaches 

accuracy 0.3512. Finally, incorporating POS information further improves the 

performance. The best result of our DNN correction generation model is accuracy 0.3717 

and MRR 0.4378. 

6.6.2 Effect of LM Re-ranking 

 

Model Acc. MRR Hit@5 Hit@10 Hit@50 Hit@100 

Best DNN 0.3717 0.4378 0.5063 0.5688 0.6956 0.7415 

+ N-gram LM 

(α = 0.355) 
0.3727 0.4605 0.5561 0.6439 0.8039 0.8488 

+ RNNLM 

(α = 0.255) 
0.3727 0.4527 0.5278 0.6205 0.7808 0.8302 

Table 6-6 Correction performance with LM re-ranking. 
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We apply LM re-ranking to the candidate ranks generated by the best correction 

generation model. The results of two kinds of LM are shown in Table 6-6. We include the 

hit@100 rate to better illustrate the change of the ranks. Although there is only slight 

improvement on the accuracy, the MRR and hit rates increase substantially after LM re-

ranking is applied. N-gram LM gives slightly better MRR than RNNLM. The optimal α 

for N-gram LM is also larger than that of RNNLM, showing that N-gram LM is more 

suitable for this task. 

The following is an example in which LM re-ranking helps promote the rank of the 

answer. Though “一起” and “一直” share a common Chinese character, the meaning of 

the two words are not quite similar. Thus, the DNN rank is very low. In contrast, the LM 

rank is high, since “就…都不…” is a suitable context for “一直”. The high LM rank 

makes the final combined rank higher, so the MRR can be enhanced. 

我從上小學起成績就(*一起,一直)都不理想 

LM rank: 7 / DNN rank: 1284 

Combined rank: 19 

We plot validation MRR with respect to different α values in Figure 6-3. As can be 

seen, LM re-ranking works like regularization and the two LMs have similar trend. The 

MRR gradually increases with α for small α values, but when α increases above 0.5, 

the performance drops sharply. This also supports the point that the information about the 

target should have certain impact in the process of decision. If LM score is emphasized 
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too much, the result correction could change the original meaning of the sentence segment. 

 

 

Figure 6-3 The effect of parameter α in LM re-ranking. 

 

6.7 Human Evaluation 

6.7.1 Motivation for Human Evaluation 

In the automatic evaluation, there is only one answer for each test instance. However, 

correction can be subjective and alternatives may exist. Moreover, since we divide the 

essays into sentences and further into segments, the model has no access to the context 

outside of the segment. This results in difficulties in making the choice among several 

candidate corrections that are with different meanings but all seem to be acceptable in 

given the segment. Table 6-7 shows an example. 
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Wrong segment 不過 我們 要以 堅定 的 定心 與 病 對抗 

System rank 1 correction 不過 我們 要以 堅定 的 自信 與 病 對抗 

System rank 2 correction 不過 我們 要以 堅定 的 信念 與 病 對抗 

System rank 3 correction 不過 我們 要以 堅定 的 理智 與 病 對抗 

System rank 4 correction 不過 我們 要以 堅定 的 自信心 與 病 對抗 

System rank 5 correction 不過 我們 要以 堅定 的 毅力 與 病 對抗 

Ground-truth correction 不過 我們 要以 堅定 的 決心 與 病 對抗 

Table 6-7 An example of alternative corrections. 

 

In Table 6-7, the top five candidates proposed by our system are all differ from the 

ground-truth correction. However, except for the rank 3 candidate, all other four 

candidates result in acceptable corrections. This example shows that the single-answer 

automatic evaluation can underestimate the performance of our system. Therefore, we 

perform human evaluation, in which the top candidates proposed by our model are judged 

by annotators. 

6.7.2 Annotation Guideline 

Each instance of annotation consists of two sentence segments: 

(S0) The original wrong segment written by non-native Chinese learners 

(S1) A correction segment, which is either the ground-truth or one of the top 𝑘 

candidates proposed by our system. 

We set 𝑘 = 5 ; however, only the candidates ranked before the ground-truth need 

annotation. For example, if our system gives rank 3 to the ground-truth correction, only 
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the ground-truth, the first candidate and the second candidate need to be judged by human. 

For the 1,025 test segments, a total of 3,692 annotation instances are generated. 

An annotator is asked to answer (at most) two questions for each annotation instance. 

Q1 (is_g): Is (S1) syntactically and semantically correct? 

Q2 (is_c): Is (S1) a correction of (S0)? 

The answers to both questions are either Yes (1) or No (0). If the answer to Q1 is No, the 

answer to Q2 must be No, since (S1) violates the correctness criterion; we will skip Q2 

in such cases. 

There are 10 annotators. All of them are native speakers of Chinese in Taiwan. We 

use OpenCC 15  to convert the original simplified Chinese HSK data into traditional 

Chinese. Given that the conversion is not perfect, we also provide a button which can be 

clicked and then the simplified Chinese version will be shown.  

The instructions in Table 6-8 are given to the annotators. 

 

                                                 

15 https://github.com/BYVoid/OpenCC 

https://github.com/BYVoid/OpenCC
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Question Instructions 

Q1 

1. If (S1) is ungrammatical, please answer No. 

2. If (S1) is grammatical but its semantics is not logical, or violates 

some common-sense knowledge, please also answer No. 

3. Since we split sentences into segments by punctuation marks, if you 

encounter an “incomplete” sentence, please answer Yes to it, if it is 

itself correct and can be completed in some reasonable way. 

Q2 

1. This question will be presented only if you answered Yes to Q1. 

2. If the meaning of (S1) is not the intended meaning of (S0), please 

answer No. 

3. If you cannot understand the meaning of (S0), please answer Yes. 

4. If you think that both (S0) and (S1) are correct, and their meanings 

are similar, please answer Yes. 

Table 6-8 WUE correction annotation instructions. 

 

The third instruction of Q2 corresponds to our previous claim that the correctness criterion 

is more important, especially when the similarity criterion is difficult to meet. The 

annotation guideline is presented to the annotators in traditional Chinese. The content is 

shown in Figure 4-1. The example segments are selected from the validation set to prevent 

guiding the annotator’s response to specific test instances. 
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Figure 6-4 The annotation guideline presented to the annotators. 

 

Each annotation instance is randomly assigned to two annotators. If the two 

annotators disagree on either question, a third annotator is introduced to break the tie. We 

use majority voting to determine the final answer. 
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6.7.3 Annotation Agreement 

We evaluate the inter-annotator agreement of the first two annotators with Cohen’s 

Kappa: 

κ =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

 

, where 𝑝𝑜 is the observed rate of agreement and 𝑝𝑒 is the expected rate of agreement 

when the annotators label the data randomly. Since the labels for both questions are binary, 

we have 

𝑝𝑒 =
1

𝑁2
(𝑛𝑌1𝑛𝑌2 + 𝑛𝑁1𝑛𝑁2) 

, where 𝑛𝑌𝑖 and 𝑛𝑁𝑖 are the number of times annotator 𝑖 (𝑖 = 1,2) answers Yes and 

No respectively. 

Since the annotators are assigned randomly, we can assume that the difficulty of the 

data assigned to each annotator is the same. Therefore, we report average κ of all pairs 

of annotators in Table 6-9. 

 

 
Average κ 

is_g is_c 

Ground-truth 0.2778 0.3086 

System candidates ranked 

before ground-truth 
0.4025 0.3567 

All annotation instances 0.4205 0.4070 

Table 6-9 Average κ of the annotation. 
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As can be seen, the levels of agreement are from fair to moderate. The relatively low 

agreement on the ground-truth indicates that correction can be subjective. Note that κ 

evaluates relative level of agreement. In each of the three rows of Table 6-9, different 𝑝𝑒 

is used for calculating κ. For the ground-truth part, since it is expected that the ground-

truth corrections are suitable in most of the cases, all annotators have high probability to 

answer Yes, that is, both 𝑛𝑌1 and 𝑛𝑌2 are large. Therefore, the value of 𝑝𝑒 is larger 

and the agreement is evaluated more strictly. In contrast, when ground-truth and system 

candidates are mixed, 𝑝𝑒 would not be that large. 

6.7.4 Evaluation with Human Annotation 

We first examine the correctness criterion and show the result in Table 6-10. Given 

that more than 95% of the ground-truth corrections are judged as correct by the annotators, 

the quality of the ground-truth is not an issue. About 82% of the system top candidates 

are correct, which is lower than that of the ground-truth but still acceptable. 

 

 % Correct (is_g) 

Ground-truth 95.60% 

System rank 1 candidate 82.73% 

Table 6-10 Proportion of candidates that meet the correctness criterion. 

 

 We can then use the annotation result to update the rank of each test instance, and 

use the new ranks to re-calculate the evaluation metrics. For each test instance, let 𝑟 be 
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the original rank calculated with the single-answer ground-truth, 𝑐𝑡  be the proposed 

candidate with rank 𝑡 , and A be a table containing the annotation results. We use 

Algorithm 6-1 to obtain the updated rank �̅� = update_rank(𝑟, A). 

 

Algorithm 6-1: update ranks according to annotation results 

update_rank(𝑟, A) 

    for 𝑡 = 1 to 𝑘 

        if A.is_g(𝑐𝑡) and A.is_c(𝑐𝑡) 

            return 𝑡 

    return 𝑟 

 

With the updated ranks, we can re-evaluate our best model. The performance metrics 

before and after applying annotation results are shown in Table 6-11. As can be seen, there 

is large performance increase in all metrics, verifying the existence of alternative 

corrections. Both accuracy and MRR increase by more than 30%. Moreover, the hit@5 

rate is above 91%, which means that for most of the test data, at least one of the top five 

candidates is an acceptable correction. A language learner can therefore choose the one 

that is close to his or her intended meaning from the list of five candidates. In fact, only 

the writer knows the exact “intended meaning” and it is nearly impossible for a system to 

guess the right meaning all the time. Therefore, we argue that a fairly short list of 

candidates can be helpful for learning foreign languages. 
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Evaluation Acc. MRR Hit@5 Hit@10 Hit@50 Hit@100 

Ground-truth 0.3727 0.4605 0.5561 0.6439 0.8039 0.8488 

+ Annotation 0.6829 0.7784 0.9122 0.9171 0.9502 0.9600 

Table 6-11 Correction performance with human evaluation. 

 

6.8 Error Analysis 

 The human evaluation result is used to perform further analysis. 

6.8.1 Performance on Different POS Tags 

 

POS (# instances) Accuracy MRR Mean rank 

VV (316) 0.67 0.77 26.12 

NN (277) 0.64 0.73 73.97 

AD (130) 0.65 0.75 96.16 

P (62) 0.81 0.88 3.10 

VA (45) 0.60 0.76 1.98 

DEV (23) 1.00 1.00 1.00 

PN (21) 0.71 0.80 2.33 

Table 6-12 System performance on most frequent POS tags of the erroneous token. 

 

We analyze the system performance on different POS tags of the erroneous token. 

The results of POS tags that occur more than 20 times are shown in Table 6-12. The most 

frequent POS tags, VV and NN, which are open-set word types, contribute the most 

difficult cases. The accuracy is less than 70% and MRR is less than 80%. Similarly, the 

set of Chinese adverbs (AD) is also rather open, and the performance is similar to that of 

verbs and nouns. On the other hand, for closed-set word type such as prepositions (P), 
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our system performs very well, reaching accuracy 0.81 and MRR 0.88. DEV, the POS tag 

of adverb marker “地”, inherits very regular usage, and regular pattern of learner errors. 

As a result, the system can achieve perfect performance. 

6.8.2 Error Cases 

We analyze the test segments where our system fails to propose an acceptable 

correction within the top five candidates and discuss two main sources of system errors 

below. 

1. Segmentation error 

Segmentation error could have large impact on correction generation, since some 

crucial grammatical structures cannot be recognized due to improper word boundary. 

Table 6-13 shows an example. The ground-truth correction is actually a “把 + noun + 

verb + 得 + complement” construction. In fact, this example is not a case in which the 

error can be corrected by replacing a single token. However, the verb “弄” and “得” are 

incorrectly merged into one word, so we did not filter out this instance in the dataset 

preparation step. This segmentation error makes correction extremely hard under our 

framework, since “弄得” is not so similar to the target “造成”. Neither is it “frequent” 

enough to result in sufficiently high LM score. Moreover, “倒把” is also a problematic 

merge of two words “倒” and “把”, making the important component “把” of the 

construction invisible to both the language model and Context2vec context encoder, 
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which adds another level of difficulty. The low DNN and LM rank reflect this fact. The 

proposed candidates are by and large those similar to the erroneous token “造成”. 

 

Wrong segment 倒把 事 造成 更 糟 

System rank 1 correction 倒把 事 不 更 糟 

System rank 2 correction 倒把 事 導致 更 糟 

System rank 3 correction 倒把 事 引發 更 糟 

System rank 4 correction 倒把 事 本身 更 糟 

System rank 5 correction 倒把 事 引起 更 糟 

Ground-truth correction 
倒把 事 弄得 更 糟 

DNN rank: 593 LM rank: 1250 

Table 6-13 Example in which segmentation error is the source of error. 

 

To take a closer look at the influence of segmentation error on LM, we show the n-

gram LM scores of the correct and wrong segmentation in Table 6-14. The values are log 

probabilities with base 10. 

 

Correct segmentation LM log prob. Wrong segmentation LM log prob. 

弄 得 -10.92 弄得 -10.95 

弄 得 更 -13.44 弄得 更 -14.32 

弄 得 更 糟 -14.96 弄得 更 糟 -17.83 

Table 6-14 Comparison of n-gram LM base 10 log probabilities of correct and 

wrong segmentation results. 

 

In normal cases, longer sequence of words would have lower log probabilities than shorter 

ones. However, the score of the single token “弄得” is less than that of two tokens “弄 
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得”, indicating “弄得” is a result of incorrect segmentation with extremely low frequency. 

When we incrementally add words to the sequences, the difference between correct and 

wrong segmentation in LM scores becomes even larger. Thus, a segmentation error can 

have serious impact on evaluating the suitability of correction candidates. 

Similar cases include: 

 幾 個 月 後 阿姨 瘦 了 (*又瘦, 很多) 

 亦 需負 上 一定 的 法律 (*制裁, 責任) 

In the former segment, both the target “又瘦” and the correction “很多” are incorrect 

merge of several words into single tokens; in the latter case, the collocational combination 

“負” and “責任” cannot be composed since “負” is not segmented correctly. 

 

2. Context-dependent Similarity 

In some cases, the correction is similar to the target erroneous token in restricted 

types of scenario or context. That is, the similarity may not apply in all the cases. Table 

6-15 shows an example illustrating this kind of restricted similarity. 
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Wrong segment 可是 最近 的 年輕 人 的 自己 主張 很 強 

System rank 1 correction 可是 最近 的 年輕 人 的 教育 主張 很 強 

System rank 2 correction 可是 最近 的 年輕 人 的 他們 主張 很 強 

System rank 3 correction 可是 最近 的 年輕 人 的 他 主張 很 強 

System rank 4 correction 可是 最近 的 年輕 人 的 政治 主張 很 強 

System rank 5 correction 可是 最近 的 年輕 人 的 別人 主張 很 強 

Ground-truth correction 
可是 最近 的 年輕 人 的 自我 主張 很 強 

DNN rank: 18 LM rank: 16 

Table 6-15 Example in which the similarity between the target and the correction is 

context-dependent. 

 

From a certain point of view, the correction “自我” is similar to the target “自己”. 

However, “自己” has another usage where it works as a pronoun and “別人” is its 

counterpart. In fact, in this wrong segment, “自己” is given POS tag “PN” in our linguistic 

processing step, which can guide the model through the wrong direction. The rank 2, 3, 5 

candidates are probably selected based on this kind of usage, while the rank 1 and 4 

candidates are promoted because of strong collocations such as “年輕 人 的 教育” or 

“政治 主張”. Both DNN and LM rank of the ground-truth are not too low, but combined 

rank does not outperform the proposed top candidates. Therefore, the system misses the 

ground-truth correction. 

Below is another example. “沒有” and “癒合” do not sound “similar” in general 

cases. The association would not be considered valid without the given topic “傷口”. In 

this case, neither does the n-gram LM rank the ground-truth within top 100, probably 
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because the dependency between “傷口” and “癒合” is a rather long one. It turns out that 

our system proposes candidates such as “不”, which is more similar to “沒有” in general. 

我的 傷口 也 不知不覺 地 (*沒有, 癒合) 了 

 

6.9 Conclusion for WUE Correction 

In this stage, given a wrong segment with a known error position, we aim to generate 

correction candidates that not only result in a correct Chinese sentence segment, but also 

preserve the original meaning of the writer. Our DNN correction generation model takes 

target and context features as input and output a correction vector, which can be compared 

against the vectors of words in the candidate set. We apply language model re-ranking to 

put emphasis on correctness of the candidates, avoiding generating corrections that 

mislead the language learners. 

In the single-ground-truth automatic evaluation, we achieve accuracy 0.3727 and 

MRR 0.4605. Since alternative corrections may exist, we perform human evaluation. The 

top five candidates proposed by our system are judged by human annotators. With the 

annotation results, a second evaluation is performed, and the accuracy increases to 0.6829 

and MRR to 0.7784. Moreover, the hit@5 rate reaches 0.9122, which means that at least 

one of the top five proposed candidates is an acceptable correction in more than 91% of 

the cases. Since a list of five candidates is rather short, a language learner can choose a 
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suitable one from the candidate list and revise his or her sentences even without the help 

of a language teacher. 
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Chapter 7 Conclusion and Future Work 

 

7.1 Conclusion 

In this thesis, we deal with Chinese word usage errors with three stages, namely, the 

segment-level detection stage, the token-level detection stage, and the correction stage. 

The information used in each stage is summarized in Table 7-1.  

 

 
Segment-level 

detection 

Token-level 

detection 
Correction 

Character 

• Single 

character 

features 

 

• CWE word 

& character 

embedding 

 

Word 

• N-gram 

probability 

• CBOW/SG 

• CWIN/ 

Struct-SG 

• N-gram 

probability 

• Context2vec 

• N-gram LM 

POS  
• POS 

embedding 
• POS one-hot encoding 

Dependency 
• Dep. count 

• Dep. bigram 
* Evaluation  

Table 7-1 Summary of information used in each stage. 

 

In the first stage, we formulate segment-level detection as a binary classification task 

and explore various features to train machine learning classifiers. The features cover 

character, word and dependency information. 

In the second stage, we formulate token-level detection as a sequence labeling task 
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and use (bidirectional) LSTM models to predict the incorrectness score of each token. 

Words and POS tags are represented by real-valued vectors, and n-gram probability 

features are also adopted. We do not use dependency information in the model, but we 

use dependency distance to verify that the top two proposed candidates are closely-related 

words. 

In the third stage, we use a DNN that takes context and target features as input and 

generates a correction vector. We use CWE, which is a joint character and word 

embedding model, to represent the target erroneous token, and use Context2vec to 

represent the context. POS information is also provided for the model to learn different 

transformations for target with different POS tags. In order to enhance the correctness, 

we further use n-gram LM to re-rank the candidates. 

 

Segment-level 

detection 
Token-level detection Correction 

Accuracy: 0.8425 Accuracy: 0.5138 Accuracy: 0.6829 

Precision: 0.9450 MRR: 0.6789 MRR: 0.7784 

Recall: 0.7274 Hit@2: 0.8097 Hit@5: 0.9122 

F1: 0.8220 Hit@20%: 0.7479 Hit@50: 0.9502 

Table 7-2 Summary of the best performance of each stage. 

The best performance of each stage is summarized in Table 7-2. Our segment-level 

WUE detection model has high precision, which means it seldom marks a correct segment 

as wrong. The token-level detection accuracy is just above 51%. The major challenge is 
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to determine which token needs correction when the WUE involves a pair of words. If 

the model proposes two candidates, the hit rate can exceed 80%. For the correction stage, 

we perform human evaluation since alternative corrections may exist. The correction 

model can suggest at least one acceptable correction in a list of five candidates for more 

than 91% of the cases. 

 

7.2 Future Work 

In this thesis, we start at the segment level to detect and correct Chinese WUEs. One 

future direction is to exploit the information of wider context such as sentence and 

paragraph. For example, in the following cases, the WUE cannot be recognized without 

looking at the context outside of the segment. 

 Conjunction 

(*終於, 所以)我只好放棄自己的希望 

(*還是, 並且)努力要理解媽媽時代的思想和看法 

In the above two segments, the ground-truth corrections are replacing a conjunction 

with another. To determine which conjunction is suitable, the relationship of current 

segment with other segments must be considered. 

 Discourse dependent 

如果我是(*我, 她)的話 
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To determine that “我” should be replaced with “她”, there must be a reference to 

someone, who is a female, in the wider context. Without additional contextual 

information, “你” can also be an acceptable correction. 

 Meaning changed 

(*理解, 解決)各種的問題 

The meaning of “理解” and “解決” are different. The ground-truth correction seems 

to violate the similarity criterion. However, there might be some clues in the context, 

so that the human annotator inferred that the intended meaning is that of “解決” 

instead of “理解”. 

In our system, segment-level detection and token-level detection are two stages. We 

may also consider constructing a model that jointly predicts segment-level and token-

level incorrectness. In Chapter 5 we discussed the case in which it is difficult to make a 

decision between a pair of closely related words. In such cases, even if the model does 

not rank the ground-truth error position first, the token-level information can still be 

helpful for determining the segment-level incorrectness. 

For the correction task, we argue that besides the correctness criterion, the similarity 

criterion is also important, since a correction whose meaning is close to the original 

intended meaning is considered better. We have dealt with the similarity in overlapping 

Chinese characters, through character embedding terms in common, and semantic 
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similarity, through the information encoded in word and character embeddings. 

Nevertheless, we have not handled phonetical similarity. The following are some 

examples. 

最深刻的(*影響, 印象)是島上的小學運動會 

就會(*揮服, 恢復)到以前的穩定的經濟情況了 

In the above two examples, the similar pronunciation of the erroneous token and 

corresponding correction is the source of the mistakes. Since homophones are very 

common in Chinese, this kind of error-making regularities is worth considering. If 

pronunciation information is provided, the model can get more clues, and it is more likely 

that the suitable correction can be selected. 
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