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中文摘要 

 

本文的目的是提出一種社交型協作機器人應用情境的涵意，學習並預測人類

的想法，進而提供「剛剛好的服務」。為了在人類社交環境中與人友善的互動，

機器人應具有情境感知瞭解人類社交技巧的能力並且表現出得體的行為。 

 

在本文中，情境式上下文著重在讓機器人感知他人是否需要幫助，根據預測

的人類想法，機器人提供剛剛好的服務。剛剛好的概念來自鼎泰豐餐廳的董事長，

他說：「服務不足，是怠慢；殷勤過頭，變成打擾，『剛剛好的服務』是鼎泰豐

團隊努力追求的目標」。在服務業方面，當顧客需要幫助時，服務員主動提供服

務是非常暖心的。換句話說，當顧客不需要幫助時，不去打擾他們是很體貼的。 

 

我們提出兩個深度學習模型，作為機器人的情境式上下文感知，並從人機互

動中觀察並學習判斷人類的意圖。基於深度學習模型，我們賦予機器人感知人的

意向的能力。因此，機器人可以基於預測的人類心理狀態，做出適當的社交行為。

實驗結果表明，與常規分類器相比，我們提出的深度學習模型可以使機器人顯著

提高預測人類思維的準確性。此外，在判斷人是否需要幫忙的任務上，基於情境

式上下文的預測結果與服務業人士的意見保持高度一致。 

 

關鍵字：人機互動、深度學習、情境感知
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Abstract 
The objective of this thesis is to develop a social co-robot for provision of “just-good 

services” using situational context perception for learning and predicting human’s 

mentation. To interact with humans in Human Social Environments (HSEs), robots are 

expected to possess the ability of situational context perception and behave appropriately.  

In this paper, we employ the concept of situational context to our work, which 

mainly focus on making robots perceive others’ needing assistance and provide “just-

good service”. The just-good concept is stem from the owner of Din Tai Fung restaurant, 

and he says:�Inadequate service is neglecting; too diligent become disturbing, just-good 

service is the goal Ding Tai Fung team pursue.” In service industry, it is indeed friendly 

to help others as they need. In other words, it is actually considerate not to bother others 

when they don’t need help.  

We propose two deep learning models, as situational context perception of robot, to 

learn from observations of human-robot interaction. Based on these models, we endow 

robot the capability of perceiving human’s mentation. Thus, the appropriate social 

behaviors can be performed by the robot with respect to human’s mental state. The 

experimental results demonstrate that robot can significantly improve the accuracy of 

predicting a person’s mentation through the proposed deep learning models by 

comparison with conventional classifiers. Furthermore, the prediction of our situational 

context perception keep highly consistent with the opinion made by people who work in 

service industry.  

Keywords: Human-Robot Interaction, Deep Learning, Situational Context Perception  
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Chapter 1 INTRODUCTION 

The main topic of this thesis is to present a situational context perception for a social 

co-robot to learn and to predict a person’s mentation by deep learning models. The 

person’s mentation in our research focuses on whether a person need help or not. The 

robot’s appropriate behavior is determined upon the prediction of a person’s mentation. 

We believe that it is indeed friendly take the initiative to help others as they need. In other 

words, it is actually considerate not to bother others when they don’t need help.  

In this Chapter, the motivation of the thesis is elaborated in Section 1.1. In Section 1.2, 

introduces the clear objective of the research. In Section 1.3, the related work provides a 

brief description of the existing work on the determination of robot’s appropriate 

behaviors. In Section 1.4, presents the contribution of this research. Eventually, the 

overall organization of this thesis and the relationship among all Chapters are illustrated 

in Section 1.5. 

 

1.1  MOTIVATION 

Along with the highly mature technologies of mobile robot’s location and navigation 

[1][2][3][4], there will be more and more robots involved in human’s lives. However, if 

robots want to truly take part in our livelihood, they need not only possess the ability of 

perception and cognition but also act properly. A kind of robots, defined as social co-

robots [5], have the ability to realize a proxemic interaction with humans in Human Social 
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Environments (HSEs). Furthermore, robots can become more human friendly, lovely and 

attractive when they are capable of having awareness of situational context [6][7][8]. The 

situational context [9] describes the reason why something is occurring and the 

appropriate behavior and actions associated with the situation. Consequently, the 

situational context plays an essential role in research of social co-robots. The first 

approach employ this concept is proposed by Nigam et al. [10]. The interesting results 

inspire us to pursue another challenging task, perceiving others’ needs to provide just-

good service. The concept of ‘just-good service’ is come from the owner of Din Tai Fung 

restaurant, and he says: "Inadequate service is neglecting; too diligent become disturbing, 

`just-good service' is the goal Ding Tai Fung team (as shown in Figure 1-1) pursue." In 

service industry, it is indeed friendly taking the initiative to help others as they need. In 

other words, it is actually considerate not to bother others when they don’t need help. We 

believe that once robots are equipped with just-good concept, they will become more 

human friendly, lovely and attractive in human societies. 

 
 

 
 

Figure 1-1 Ding Tai Fung team 
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1.2  OBJECTIVE 

 The objective of this paper is to develop a social co-robot for provision of “just-good 

service” using situational context based perception for perceiving human’s mentation. 

Human’s mentation in our study focuses on whether a person needs help or not. The 

overall observation scenario is shown in Figure 1-2 . We propose two supervised learning 

models for perceiving needing assistance. In order to make robot learn from the 

observations, we develop two deep learning models to learn from a sequence of features. 

Consequently, the robot could possess the ability to analyze sequential features which 

reveal human’s mentation.  

 
 

Figure 1-2 A robot developed in our lab observes hundreds of human data in real-world, 
then asking whether they need help or not. Two images are shown at the robot’s view. 
Top: is a girl from France takes internship in our lab and seeking for instruments. 
Bottom: is a person just pass-by in the lobby at first floor of NTU research building. 
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 In our study, we utilize two kinds of artificial neural networks as follows: (1) 

Convolutional Neural Networks (CNNs) and (2) Long Short-term Memory Networks 

(LSTMs). The convolutional auto-encoder based upon CNNs works as a situational 

context compression for raw images input and tackle the problem of extremely large 

computation cost for analysis. The LSTM-based classifier is employed as learning 

human’s mentation from descriptor, in sequence. 

1.3  LITERATURE REVIEW 

The deep learning model we proposed enable robot to learn from experience 

interacting with people, and determine robot’s appropriate social behavior. This section 

demonstrates related works which contain the topic of human-robot interaction and 

corresponding appropriate behaviors.  

The work by Qureshi et al [11] shows that the robot can determine whether it is 

appropriate to shake hands with people in a certain interaction period by utilizing deep 

reinforcement learning. The work in [12] tries to map a human’s verbal behavior to a 

corresponding combined robot’s verbal-nonverbal appropriate social behavior. The 

results present that individuals preferred more to interact with a robot that had the same 

personality with theirs. In [13], the author depicts that robots must display appropriate 

proxemic behavior — that is, follow societal norms in establishing their physical and 

psychological distancing with people. The results point out the participants who disliked 

the robot compensated for the increase in the robot’s gaze by maintaining a greater 

physical distance from the robot. The research in [14] proposes that in a shopping scenario, 

the robot needs to understand which locations are appropriate for waiting as they are 
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waiting for users. The experimental results reveal that the user found robot, equipped with 

autonomous waiting skill, chose more appropriate location than a robot with random 

choice. The aforementioned works present robot’s appropriate behaviors with respect to 

different human-robot interactions, and demonstrate interesting results.  

So far, the deep learning methodology has been applied to areas, though include 

robotics, which have little to do with the domain of human-robot interaction. To the best 

knowledge of authors, we are the first team to let robot provide just-good service via 

making robot perceive the person’s needs by deep learning methodology.  

 

1.4  THESIS STRUCTURE 

 This thesis is organized as follows: In Chapter 1, we elaborate our motivation, 

objectives and the literature review of Human-Robot Interaction which is relevant to 

robot’s appropriate behaviors. In Chapter 2, presents our system architecture, including 

hardware and software. In Chapter 3, introduces psychological background and the initial 

work. In Chapter 4, describes the proposed deep learning models for learning and 

predicting a person’s need. In Chapter 5, demonstrates experimental results to evaluate 

our deep learning models. The conclusions, contributions and future works are described 

in Chapter 6.  
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Chapter 2 SYSTEM STRUCTURE 

In this Chapter, the overall system, including hardware structure and software 

structure, is described. The hardware platform, we use a mobile-based service robot and 

RGB-D sensor, is covered in Section 2.1. The software platform, discussed in Section 2.2, 

briefly introduce as followed.  

2.1  HARDWARE STRUCTURE 

2.1.1 RenBo-S Service Robot 

In this thesis, we utilize “RenBo-S”, as shown in Figure 2-1, domestic service robot as 

our platform to perceive and predict a person’s mentation. As for the sensor, the Kinect 

sensor is chosen to mounted on the head of RenBo-S for retrieving RGB and depth 

information to implement of our situational context perception. This robot is equipped 

with an RGB-D camera mounted on its head, a user interface panel in the chest, two 5 

degrees of freedom manipulators, UTM-30LX laser range finder mounted at the front, 

and a mobile platform.  

Figure 2-1 RenBo-S service robot. 
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2.1.2 Kinect RGB-D Camera 

 Kinect is a line of motion sensing devices developed by Microsoft for Xbox 360 and 

Microsoft Windows PCs. Based upon a webcam-style, Kinect enables users to control 

and interact with their console/computer without the need for a game controller, through 

a natural user interface (UI) via using gestures and spoken commands. Through natural 

gesture and speech command, Kinect becomes a popular input device that can be applied 

in human robot interaction applications. Through the infrared and camera mounted on 

Kinect (see Figure 2-2, Table 2-1), RGB and depth information of the environment can 

be retrieved, and this supports us to implement more applications, such as human body 

detection, gesture detection, or 3D recognition and tracking. Since the price of Kinect is 

much cheaper than traditional 3D cameras, it has been utilized in areas.  

Figure 2-2 The Kinect sensor. 
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Kinect Array Specifications 

Viewing angle 43° vertical by 57° horizontal field of view 

Vertical tilt range ±27° 

Frame rate (depth and 
color stream) 

30 frames per second (FPS) 

Audio format 16-kHz, 24-bit mono pulse code modulation (PCM) 

Audio input 
characteristics 

A four-microphone array with 24-bit analog-to-digital converter (ADC) and 
Kinect-resident signal processing including acoustic echo cancellation and 
noise suppression 

Accelerometer 
characteristics 

A 2G/4G/8G accelerometer configured for the 2G range, with a 1° accuracy 
upper limit. 

Table 2-1 Documentation of Kinect. 
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2.2  SOFTWARE STRUCTURE 

2.2.1 Point Cloud Library (PCL) 

PCL [15] is an open-source library of algorithms for point cloud processing tasks 

and 3D geometry processing, such as occur in three-dimensional computer vision. The 

PCL framework contains numerous state-of-the-art algorithms including filtering, feature 

estimation, surface reconstruction, registration, model fitting and segmentation. These 

algorithms have been used, for example, for perception in robotics to filter outliers from 

noisy data, stitch 3D point clouds together, segment relevant parts of a scene, extract 

keypoints and compute descriptors to recognize objects in the world based on their 

geometric appearance, and create surfaces from point clouds and visualize them.  

PCL is released under the terms of the 3-clause BSD license and is open source 

software. It is free for commercial and research use. PCL is cross-platform, and has been 

successfully compiled and deployed on Linux, MacOS, Windows, and Android/iOS. To 

simplify development, PCL is split into a series of smaller code libraries, that can be 

compiled separately. This modularity is important for distributing PCL on platforms with 

reduced computational or size constraints. Another way to think about PCL is as a graph 

of code libraries, similar to the Boost set of C++ libraries (see Figure 2-3). The 

development of the Point Cloud Library started in March 2010 at Willow Garage.  
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Figure 2-3 Framework of PCL algorithms. 

2.2.2 Open Source Computer Vision Library 

(OpenCV) 

OpenCV [16] is an open source computer vision and machine learning software 

library. OpenCV was built to provide a common infrastructure for real-time computer 

vision applications and to accelerate the usage of machine perception in the commercial 

products. The library is free for use thanks to being under the open-source BSD license. 

Therefore, it is easy for businesses to utilize and modify the code.  

The library contains more than 500 optimized algorithms, which includes a 

comprehensive set of both classic and state-of-the-art computer vision and machine 

learning algorithms. These algorithms can be applied in areas, such as: classify human 

actions in videos, detect and recognize faces, identify objects, track moving objects, 

extract 3D models of objects, produce 3D point clouds from stereo cameras, stitch images 

together to produce a high resolution image of an entire scene, find similar images from 

an image database, remove red eyes from images taken using flash, follow eye 

movements, recognize scenery and establish markers to overlay it with augmented reality, 

etc (see Figure 2-4). OpenCV possess more than 47 thousand people of user community 
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and estimated number of downloads exceeding 14 million. The library is used extensively 

in companies, research groups and by governmental bodies.  

From a historical point of view, OpenCV originally developed by Intel in the 1990 as a 

method to demonstrate how to accelerate certain algorithms in hardware. In 2000, Intel 

released OpenCV to the open source community as a beta version, followed by v1.0 in 

2006. In 2008, Willow Garage took over to support and immediately released v1.1. 

Nowadays, OpenCV is maintained by Itseez. 

OpenCV v2.0, released in 2009, contained many improvements and upgrades. Initially, 

OpenCV was primarily a C library. Subsequent versions of OpenCV added Python 

support, along with Windows, Linux, iOS and Android OS support, transforming 

OpenCV (currently at v3.2) into a cross-platform tool. OpenCV v3.2 contains more than 

2500 supported functions.  

Figure 2-4 OpenCV Overview: computer vision library. 
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2.2.3 Scikit-Learn 

Scikit-Learn [17] is a free software library for machine learning and support Python 

programming language. It contains various classification, regression, and clustering 

algorithms, such as Support Vector Machine (SVM), Random Forests, gradient boosting 

and k-means. Scikit-Learn is designed to interoperate with the Python numerical (NumPy) 

and scientific libraries (SciPy). 

Scikit-Learn provides a range of supervised and unsupervised learning algorithms via a 

consistent interface in Python. Some popular groups of models (as shown in Figure 2-5) 

provided by Scikit-Learn include: 

l Clustering: for grouping unlabeled data such as K-Means. 

l Cross Validation: for estimating the performance of supervised models on 

unseen data. 

l Datasets: for test datasets and for generating datasets with specific properties 

for investigating model behavior. 

l Dimensionality Reduction: for reducing the number of attributes in data for 

summarization, visualization and feature selection such as Principal component 

analysis. 

l Ensemble methods: for combining the predictions of multiple supervised 

models. 

l Feature extraction: for defining attributes in image and text data. 

l Feature selection: for identifying meaningful attributes from which to create 

supervised models. 

l Parameter Tuning: for getting the most out of supervised models. 

l Manifold Learning: For summarizing and depicting complex multi-
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dimensional data. 

l Supervised Models: a vast array not limited to generalized linear models, 

discriminate analysis, naive bayes, lazy methods, neural networks, support 

vector machines and decision trees. 

 

From the historical point of view: Scikit-learn was initially developed by David 

Cournapeau as a Google summer of code project in 2007. Later, Matthieu Brucher joined 

the project and started to utilize it as a part of his thesis work. In 2010 INRIA got involved 

and the first public release (v0.1 beta) was published in late January 2010. 

 

Figure 2-5 Scikit-learn: a machine learning software library. 
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2.2.4 KERAS 

Keras [18] is an open source high-level neural networks Application Programming 

Interface (API), written in Python and capable of running on top of either TensorFlow, 

CNTK or Theano. The logo of Keras is shown in Figure 2-6. It was developed with a 

focus on enabling fast experimentation upon deep learning models. The core concept of 

Keras is that being able to go from idea to result with the least possible delay is key to 

doing good research. 

The dominant characteristics of developing deep learning models via Keras are usr 

friendliness, modularity, easy extensibility, and work with python. These features enable 

us to construct deep neural network (DNN), recurrent neural network (RNN) and 

convolutional neural network (CNN) more effortless than before. The detail properties is 

elaborated as followed: 

l User friendliness: Keras is an API designed for human beings, not machines. It puts 

user experience (UX) front and center. Keras follows best practices for reducing 

cognitive load: it offers consistent & simple APIs, it minimizes the number of user 

actions required for common use cases, and it provides clear and actionable feedback 

upon user error. 

l Modularity: A model is understood as a sequence or a graph of standalone, fully-

configurable modules that can be plugged together with as little restrictions as 

possible. In particular, neural layers, cost functions, optimizers, initialization 

schemes, activation functions, regularization schemes are all standalone modules 

that you can combine to create new models. 

l Easy extensibility: New modules are simple to add (as new classes and functions), 

and existing modules provide ample examples. To be able to easily create new 
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modules allows for total expressiveness, making Keras suitable for advanced 

research. 

l Work with Python: No separate models configuration files in a declarative format. 

Models are described in Python code, which is compact, easier to debug, and allows 

for ease of extensibility. 

 

In 2017, Google's TensorFlow team decided to support Keras in TensorFlow's core library. 

Chollet, the original author of Keras, explained that Keras was conceived to be an 

interface rather than an end-to-end machine-learning framework. It presents a higher-

level, more intuitive set of abstractions that make it easy to configure neural networks 

regardless of the backend scientific computing library. Microsoft has been working to add 

a CNTK backend to Keras as well and the functionality is currently in beta release with 

CNTK v2.0. 

 

Figure 2-6 Keras: a high-level neural networks API. 
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2.2.5 API.AI 

Api.ai [19] (formerly Speaktoit) is a developer of human–computer interaction 

technologies based on natural language conversations. The company is best known for 

creating the Assistant (by Speaktoit), a virtual buddy for Android, iOS, and Windows 

Phone smartphones that performs tasks and answers users' question in a natural language. 

Speaktoit has also created a natural language processing engine that incorporates 

conversation context like dialogue history, location and user preferences. 

 

In May 2012, Speaktoit received a venture round (funding terms undisclosed) from 

Intel Capital.In July 2014, Speaktoit closed their Series B funding led by Motorola 

Solutions Venture Capital with participation from new investor Plug and Play Ventures 

and existing backers Intel Capital and Alpine Technology Fund. In September 2014, 

Speaktoit released api.ai (the voice-enabling engine that powers Assistant) to third-party 

developers, allowing the addition of voice interfaces to apps based on Android, iOS, 

HTML5, and Cordova. The SDK's contain voice recognition, natural language 

understanding, and text-to-speech. api.ai offers a web interface to build and test 

conversation scenarios. The platform is based on the natural language processing engine 

built by Speaktoit for its Assistant application. Api.ai allows Internet of Things 

developers to include natural language voice interfaces in their products. Assistant and 

Speaktoit's websites now redirect to api.ai's website. Google bought the company in 

September 2016 and it is now known as API.AI; it provides tools to developers building 

apps ("Actions") for the Google Assistant virtual assistant. 

 

 



doi:10.6342/NTU201703477

17 

 

API.AI contains two major modules in dialogue system: (1) Natural Language 

Understanding (NLU) and Dialogue Management (DM). API.AI receives a query as input 

data. A query is either text in natural language or an event name sent to API.AI. API.AI 

matches the query to the most suitable intent based on information contained in the intent 

(examples, entities used for annotations, contexts, parameters, events) and the agent's 

machine learning model. API.AI transforms the query text into actionable data and returns 

output data as a JSON response object. The process of transforming natural language into 

actionable data is called Natural Language Understanding (NLU). Dialog management 

tools such as contexts and intent priorities allow developers to control the conversation 

flow. 

The character of API.AI in the whole conversation between human and robot is 

shown in Figure 2-7. In the diagram, the green is provided by the API.AI platform. Your 

app / bot / device code provides the input and output methods and responds to actionable 

data. You can also provide an optional webhook implementation which API.AI uses to 

connect to your web service. Your web service can then perform business logic, call 

external APIs, or access data stores. 

Figure 2-7 The character of API.AI 
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2.2.6 Robot Operating System (ROS) 

ROS [20] is a flexible framework for writing robot software. It is a collection of 

tools, libraries, and conventions that aim to simplify the task of creating complex and 

robust robot behavior across a wide variety of robotic platforms. ROS, as shown in Figure 

2-8, provides standard operating system services such as hardware abstraction, low-level 

device control, implementation of commonly used functionality, message-passing 

between processes, and package management. Running sets of ROS-based processes are 

represented in a graph architecture where processing takes place in nodes that may receive, 

post and multiplex sensor, control, state, planning, actuator and other messages. 

 

 

Figure 2-8 ROS logo. 
 
ROS was built from the ground up to encourage collaborative robotics software 

development. For example, one laboratory might have experts in mapping indoor 

environments, and could contribute a world-class system for producing maps. Another 

group might have experts at using maps to navigate, and yet another group might have 

discovered a computer vision approach that works well for recognizing small objects in 

clutter. ROS was designed specifically for groups like these to collaborate and build upon 

each other's work. 
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For the general concepts of ROS, it starts with the ROS Master. The Master allows all 

other ROS pieces of software (Nodes) to find and talk to each other. That way, we do not 

have to ever specifically state “Send this sensor data to that computer at 127.0.0.1". We 

can simply tell Node 1 to send messages to Node 2 as shown as Fig. 2-9. The Nodes do 

this by publishing and subscribing to Topics. 

 

If we have a camera on our Robot. We want to be able to see the images from the camera, 

both on the Robot itself, and on another laptop. For instance, we can write a Camera Node 

that takes care of communication with the camera, a Image Processing Node on the robot 

that process image data, and a Image Display Node that displays 

 

images on a screen as shown in Fig. 2-10. To start with, all Nodes have registered with 

the Master. Think of the Master as a lookup table where all the nodes go to find where 

exactly to send messages. In registering with the ROS Master, the Camera Node states 

that it will Publish a Topic called /image_data. Both of the other Nodes register that they 

are Subscribed to the Topic /image_data. Thus, once the Camera Node receives some data 

from the Camera, it sends the /image_data message directly to the other two nodes. 

 

The main ROS client libraries (C++, Python, LISP) are geared toward a Unix-like system, 

primarily because of their dependence on large collections of open-source software 

dependencies. For these client libraries, Ubuntu Linux is listed as "Supported" while other 

variants such as Fedora Linux, Mac OS X, and Microsoft Windows are designated 

"Experimental" and are supported by the community. Being such a powerful tool, ROS 

has been used in many robot platforms as shown in Figure 2-9. 
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Software in the ROS Ecosystem can be separated into three groups: 

l Language-and platform-independent tools used for building and distributing 

ROS-based software; 

l ROS client library implementations such as roscpp, rospy, and roslisp; 

l Packages containing application-related code which uses one or more ROS 

client libraries. 

 

ROS was originally developed in 2007 under the name switchyard by the Stanford 

Artificial Intelligence Laboratory in support of the Stanford AI Robot STAIR project. 

From 2008 until 2013, development was performed primarily at Willow Garage, a 

robotics research institute/incubator. During that time, researchers at more than twenty 

institutions collaborated with Willow Garage engineers in a federated development model. 

In February 2013, ROS stewardship transitioned to the Open Source Robotics Foundation. 

In August 2013, a blog posting announced that Willow Garage would be absorbed by 

another company started by its founder, Suitable Technologies. The support 

responsibilities for the PR2 created by Willow Garage were also subsequently taken over 

by Clearpath Robotics. Until 2016, The ROS distribution has a variety of versioned set 

of ROS packages as shown in Figure 2-10. 
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Figure 2-9 Robots which is ROS inside. 
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Figure 2-10 The distribution of ROS. 
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Chapter 3 BACKGROUND and INITIAL 

WORK 

In this chapter, the background of context is elaborated and how the context is 

utilized in Human-Robot Interaction. The definition of context, context-awareness 

application and situational context perception are also integral demonstrated. The overall 

scenario of this thesis, including situational context perception and corresponding 

appropriate robot’s behavior, is intact defined. Lastly, the initial work for observation 

from robot’s view is presented. 

3.1  UNDERSTANDING and USING CONTEXT 

Humans are good at ideas conveying to each other and react with an appropriate 

manner. We can understand others intention due to many factors, such as the background 

we shared, the richness language we utilized, and the implicit understanding of situations. 

During a conversation, humans are able to apply implicit situational information, or 

context, to increase the bandwidth of conversation. Unfortunately, this talent is not well 

comprehended by robot. In a human-robot interaction, robots still have impoverished 

information to naturally interact with humans. Thus, we should understand what the 

context is and how it can be employed to well determine what robot’s context-aware 

behaviors to support user-friendly service application. 
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3.1.1 Definition of Context 

While context definition varies across fields. the most general definition accepted 

by researchers is made by Dey. He defines context as: "Context is any information that 

can be used to characterize the situation of an entity. An entity is a person, place, or object 

that is considered relevant to the interaction between a user and an application, including 

the user and applications themselves. " 

This definition simplifies the procedure to define an application scenario on enumerating 

the context. In a human-robot interaction, if a piece of information can be used to 

described this interaction then we can call that information is context. 

3.1.2 Definition of Context-Aware 

In Dey’s definition: "A system is context-aware if it uses context to provide relevant 

information and/or services to the user, where relevancy depends on the user’s task." He 

proposes there are three categories of features that an application equipped with context-

aware can support. First, presentation of information and services to a user. Second, 

automatic execution of a service for a user. Lastly, tagging of context to information to 

support later retrieval.  

The Dey’s definition of context-aware can easily elaborate in human-robot 

interaction for service application. From author’s point of view, if a robot is capable to 

understand a user’s intent or mentation for provision of human-friendly services which 

user needed, we can call it as context-aware robot application. The robot possesses the 

concept of context-aware will make it more easier take part in human livelihood. 
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3.2  JUST-GOOD SERVICES and ROBOT’S 

APPROPRIATE BEHAVIORS   

The definition of just-good and the corresponding robot’s appropriate are 

demonstrated in this section. Along with the mobile robot localization and object pose 

grasping problems in a working environment have been central research and get well 

performance, there are an increasing number of service robots participate in service 

industry. Take restaurants as an example, if a restaurant manager wishes to create a 

successful robotics service restaurant model, one of the key components is that service is 

customer-oriented. Therefore, the robot must be equipped with situational context 

perception to understand human’s intention for provision human-friendly services. In this 

thesis we believe that just-good service is one of the most human-friendly services.  

3.2.1 Definition of Just-Good 

The definition of just-good service is come from the owner of Din Tai Fung, as shown in 

Figure 3-1. 

Figure 3-1 The Logo of DIN TAI FUNG 
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Din Tai Fung is one of the world-famous restaurants known for the amazing steamed 

dumplings as shown in Figure 3-2. The owner of Din Tai Fung restaurant says: 

“Inadequate service is neglecting; too diligent become disturbing, ‘just-good service’ is 

the goal Ding Tai Fung team pursue.”. From author’s point of view, the definition of just-

good is that social a co-robot can serve appropriately, neither neglecting nor disturbing, 

in service industry.  

3.2.2 Robot’s Appropriate Behaviors 

 In this article, we focus on the event: “whether people need help or not?” At the Ji-

Hua, Yang’s point of view, the magic of the service is that serve before customers ask. 

Therefore, we wish that a robot can identify a person needs help or not before he/she 

begins to ask. We believe that it’s a truly magic and playing a key role for robots to be 

involved in human’s lives. Thus, our scenario is clearly defined as a robot observes the 

procedure of a human entering in a social environment, and ask whether he/she needs 

help or not. Simultaneously, in order to achieve the target: ‘Just-good service.’, the robot 

begins to ask whether he/she needs help only when the person truly needs it, for the 

purpose of serving appropriately to prevent neglecting or disturbing.  

Figure 3-2 The amazing food, including steamed dumpling, fried rice and soup, supplied 
by DIN TAI FUNG 
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3.3 INITIAL WORK 

Figure 3-3 An overview of system architecture based on ROS for data collection via 
kinect sensor. 

3.3.1 Data Collection 

Our initial work aims at collecting context information to determine the robot’s 

proper behavior. Take not only a human and a robot but also the environment into 

considerations, the perception and behaviors can interact synergistically via the 

environment. We suppose that only the raw images can fully represent the proxemics 

among humans, social environments and robots.  

1) Data Collection: We collect data from real-world. In our ultimate goal, we wish the 

robots with situational context perception which can learn from naturalistic data and 

reflect to the real situation. Therefore, we choose one domestic place and one public place 

around Research Building at National Taiwan University which is located in our campus. 

The domestic one is the room 304 of our lab on the third floor. For the public one, we 

choose the lobby on the first floor. In the lab, two main contexts can occur, one is going 

to do research context and another is finding something or somebody context. Thus, the 

human in the finding something or somebody context may need help. In the lobby, there 

are multiple situational contexts. For example, going to work context, going to study 

context, joining the course of D-School on the fourth floor context, etc.  
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In the lobby case, students who join the course of D-School for the first time and people 

who go to the lavatory may need help. All the contexts aforementioned include varied 

levels of surrounding noise and having large different behaviors among people even in 

the same context. However, this is also the interesting part of doing this research.  

The overall interaction architecture is shown in Figure 3-3. During the procedure of 

data collection, our robot is set to be as a counter staff, and stand still in front of a door to 

observe human behavior. The observation is triggered by the showing of a person and our 

robot would begin to greeting with he/she. After the five second observation, robot would 

ask the person whether he/she needs help or not and the person’s answer is regard as label. 

To gather robust data set, we collect data across several days, and collection occurs during 

different times (morning, afternoon, evening). Totally, we collected 200 observations and 

labels. There are two responses, positive (the person need assistance) and negative (the 

person doesn’t need assistance) as shown in Table 3-1. 

Table 3-1Needing assistance distribution of observational data collected from Laboratory 
and Lobby.  
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Chapter 4 SITUATIONAL CONTEXT 

PERCEPTION for JUST-GOOD SERVICES 

In chapter 4, we will mainly focus on demonstrating the situational context perception 

for provision of just-good service in human-robot interaction. The definition of situational 

context perception is described, and relevant technical methodologies are also presented. 

4.1 DEFINITION OF SITUATIONAL CONTEXT 

PERCEPTION 

 In this thesis, we focus on making robot perceive a person’s needs, and provide just-

good services. Therefore, the human and robot are the context in human-robot interaction, 

as shown in Figure 4-1 , for service application. The contexts in our scenario includes the 

position, facing direction, duration of observation of our social co-robot and the walking 

trajectory, walking speed, and human body language of a person. In our setting, the 

definition of situational context perception is that our social co-robot possesses the 

capability to perceive a person’s need via situational context we defined. 

Figure 4-1 present the scenario of human-robot interaction. 
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4.2  ANALYSIS and TRAINING METHDOLOGY 

 Our situational context perception learning model, for perceiving a person’s needs, 

consists of two parts. The first part (learning) is gathering observation to train our deep 

LSTM-RNN perceptual model. The second part (association) is putting testing data set to 

perceptual model for evaluation. Each observation is record with ten Hz during five 

seconds. Every piece of image is considered as one keyframes. Therefore, it is composed 

of totally 50 keyframes per observation. In order to learn sequential data, the first obstacle 

we have to face is computational cost. The dimension reduction mechanism should be 

included. Thus, the Convolutional auto-encoder based on Convolutional Neural Networks 

(CNNs), as shown in Figure 4-2, is utilized as an image encoder. In our opinion, the 

hidden layer information of CNNs auto-encoder may fully represent the original image 

and contains some hidden messages. The encoded images are taken as features, then we 

use LSTM-RNN to learn features in sequence.  

Figure 4-2 An example of a convolutional neural network. 
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4.3 FEATURE EXTRACTION 

4.3.1 Handcraft Feature 

For the purpose of perceiving a person’s needs via applying situational context 

perception in a human-robot interaction, we should understand which key context is to 

pursue our goal, making robot provide just-good services. From author’s point of view, 

human body language would be the key context in this scenario. Thus, Histogram of 

Oriented Gradient (HOG) and Optical Flow are employed as our handcraft features for 

comparison with encoded images.  

 

l Histogram of Oriented Gradient (HOG) 

 The histogram of oriented gradients is a feature descriptor utilized in image process 

and computer vision. HOG feature is well-known for the application upon human 

detection [21] with support vector machine (SVM) classifier. An example of raw image 

and varies hog features are shown in Figure 4-3. 

Figure 4-3 A presentation of raw image and hog feature variation. 
 

 



doi:10.6342/NTU201703477

32 

 

l Optical Flow 

Optical flow [22] is one of feature in computer vision for detecting motion of objects, 

surfaces, and edges in visual system. The motion is caused by the relative motion between 

an observer and a scene. The first introduce Optical flow is James J. Gibson, an American 

psychologist. Gibson emphasize that optical flow is important for affordance perception, 

the ability to discriminate the action within the environment. The observer’s, such as a 

monitor system or a robot, perception of movement can be benefit from the optical flow 

feature. The advantage of Optical Flow feature is that it takes Spatio-Temporal factor into 

account and could be utilized in transition people motion analysis, as shown in Figure 4-4. 

Figure 4-4 An optical flow feature applies in human motion scenario. 
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4.3.2 Convolutional Neural Networks Auto-encoder 

Figure 4-5 The architecture of an auto-encoder. 
 

Autoencoding [23] is a data compression algorithm for dimension reduction. Auto-

encoder, as shown in Figure 4-5, consists of two parts, compression and decompression, 

which are learned automatically from data instead of human engineering. To establish an 

auto-encoder, we should prepare three things: and encoding function, a decoding function, 

and a loss function to evaluate the similarity between output (reconstructed part) and the 

origin input. The encoding and decoding parts would be parametric functions, especially 

neural networks, and to be differentiable with respect to loss function, hence the 

parameter of encoder/decoder functions can be optimized to reduce the error between 

reconstructed input and original input (i.e. minimize loss function).  

 

Nowadays, auto-encoder technology is applied in two interesting practical 

applications, which are data denoising and dimensionality reduction for visual data. In 

this topic, we would like to implement auto-encoder in dimension reduction application. 

With proper dimensionality and sparsity constraints, auto-encoders can learn data 

projections which possess more interesting results than Principal Component Analysis 

(PCA) or other conventional technologies. 
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Figure 4-6 The proposed convolutional auto-encoder. In our image auto-encoder 
architecture, the encoder part consists of three convolution layers and three max-pooling 
layers in stack. The decoder part is composed of three deconvolution layers and three 
unpooling layers in stack.  

 

For the purpose of resolving the computational cost and extracting meaningful 

features, we adopt convolutional auto-encoder to be descriptor extractor. In deep learning, 

auto-encoders are usually applied convolution neural networks as they are employed in 

image processing. CNNs auto-encoder is composed of an encoder and a decoder. The 

proposed convolutional auto-encoder is shown in Figure 4-6. The detail components to 

build an CNNs auto-encoder are elaborated as followed: 

l Encoder 

In our model, the encoder part is composed of convolutional layer and max-pooling 

layer in stack. Totally, there are three convolutional layers and three max-pooling layers. 

In a deep learning model, it makes sense to utilize convolutional layers in feature 

extraction. The role of max-pooling layers is employed for spatial down-sampling to 

satisfy our goal: dimensionality reduction for extracting meaningful descriptor. The 

activation function in convolutional layers, we choose, is Rectified Linear Unit (ReLU). 

In convolutional networks, it is more effectively to utilize ReLU than the widely used 

logistic sigmoid function. 
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l Decoder 

The decoding function is in opposite site as encoding function. The decoder is made 

up with deconvolutional layer and up-sampling layer in stack. Deconvolutional layer is a 

reverse of convolutional layer, and up-sampling layer is a contrary to max-pooling layer. 

In practical, the deconvolutional layers is just as same as convolutional layer, hence the 

activation we choose is also ReLU. 

 

l Loss Function 

A loss/cost function is a function that maps an event to a real number to represent 

some cost associated with the event. In an auto-encoder, as a self-supervised learning, we 

should define a loss/cost function to evaluate the model. The Loss function must be 

differentiable. In our proposed auto-encoder, the loss function represents the distance 

between the reconstructed image and the original input. Hence we define our loss function 

as Mean Square Error (MSE) as shown in equation ( 4.1 ). The MSE assesses the quality 

of a model. It is definitely non-zero, the value of MSE is better to be closer to zero. 

In auto-encoder,	- is the original image for model trying to reconstruct. - means 

the reconstructed image made by auto-encoder. ) is the total number of images in a 

batch size. 

ℒ/01 = 	
1
)

-2 − -2 4

5

267

 
 
( 4.1 ) 
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l Architecture built upon Keras 

In order to extract meaningful features, we adopt Convolutional Auto-encoder to be 

descriptor extractor. In practice, auto-encoders are usually applied Convolution Neural 

Networks as they are employed in image processing. In encoder part, it is comprises 

convolutional layers and max- pooling layers in stack. The input raw images (3x120x160) 

are given to the first convolutional layer which convolves 32 filters of 5x5 with stride 1 

followed by ReLU results in 32 feature maps and each of size is 120x160. Then feed the 

32 feature maps into 2x2 max-pooling layer with the stride 1 for downsampling and the 

result become 32 feature maps with each size of 60x80 . Overall, the encoder part is three 

convolutional layers and max-pooling in stack. The last layer of encoder possesses 16 

feature maps with size 15x20, and we call this layer encoded image which we take it as 

meaningful features. In decoder part, it is composed of deconvolutional layers and un-

pooling in stack. The encoded images (16x15x20) is given to the first deconvoltional layer 

of decoder which convolves 16 filters of 5x5 filters with stride 1 followed by ReLU results 

in 16 feature maps and each of size is 15x20. Then feed the 16 feature maps into 2x2 un-

pooling layer with stride 1 for upsampling and the result become 16 feature maps with 

each size of 30x40. Overall, the decoder part, the inverse of encoder part, is three 

deconvolutional layers and un-pooling in stack. The last layer of decoder is decoded 

image which possess the 3 feature maps with size 120x160 as same as original input 

image. The auto-encoder can learn automatically from data and the optimizer we chose 

is RMSprop. The auto-encoder system built upon Keras is present in Figure 4-7. We can 

see the detailed number of feature maps and corresponding feature size in the Keras 

structure. 
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Figure 4-7 The architecture of CNNs auto-encoder built upon Keras. 
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l Visualization of Auto-encoder 

The visualization of auto-encoder around encoded images and decoded images 

sample is presented in Figure 4-8. The first row is raw image, the second and third 

rows extract (1,3,5) and (2,4,6) filters of encoded image to be input of RGB value. 

The last row is decoded image. We would like to visualize the message hided in 

encoded images, and how the decoded images appearance. We may see that the 

decoded images possess the high similarity to the original images although there are 

some blurring due to the downsampling and upsampling. The results show that auto-

encoder can project image into more meaningful low-dimension (i.e. encoded 

imaged), which we regard as features. 

 

 

Figure 4-8 Visualization of autoencoder results.  
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Autoencoding is a data compression algorithm where the compression and decompression 

functions are 1) data-specific, 2) lossy, and 3) learned automatically from examples rather 

than engineered by a human. Additionally, in almost all contexts where the term 

"autoencoder" is used, the compression and decompression functions are implemented 

with neural networks. 

1. Autoencoders are data-specific, which means that they will only be able to compress 

data similar to what they have been trained on. An autoencoder trained on pictures 

of faces would do a rather poor job of compressing pictures of trees, because the 

features it would learn would be face-specific. 

2. Autoencoders are lossy, which means that the decompressed outputs will be 

degraded compared to the original inputs (similar to MP3 or JPEG compression). 

This differs from lossless arithmetic compression. 

3. Autoencoders are learned automatically from data examples, which is a useful 

property: it means that it is easy to train specialized instances of the algorithm that 

will perform well on a specific type of input. It doesn't require any new engineering, 

just appropriate training data. 

To build an autoencoder, you need three things: an encoding function, a decoding function, 

and a distance function between the amount of information loss between the compressed 

representation of your data and the decompressed representation (i.e. a "loss" function). 

The encoder and decoder will be chosen to be parametric functions (typically neural 

networks), and to be differentiable with respect to the distance function, so the parameters 

of the encoding/decoding functions can be optimized to minimize the reconstruction loss, 

using Stochastic Gradient Descent.  
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Today two interesting practical applications of autoencoders are data denoising 

(which we feature later in this post), and dimensionality reduction. With appropriate 

dimensionality and sparsity constraints, autoencoders can learn data projections that are 

more interesting than PCA or other basic techniques. 

One of the main reason why autoencoder have attracted so much research and 

attention is because they have long been thought to be a potential avenue for solving the 

problem of unsupervised learning, i.e. the learning of useful representations without the 

need for labels. Then again, autoencoders are not a true unsupervised learning technique 

(which would imply a different learning process altogether), they are a self-supervised 

technique, a specific instance of supervised learning where the targets are generated from 

the input data. In order to get self-supervised models to learn interesting features, you 

have to come up with an interesting synthetic target and loss function, and that's where 

problems arise: merely learning to reconstruct your input in minute detail might not be 

the right choice here. At this point there is significant evidence that focusing on the 

reconstruction of a picture at the pixel level, for instance, is not conductive to learning 

interesting, abstract features of the kind that label-supervized learning induces (where 

targets are fairly abstract concepts "invented" by humans such as "dog", "car"...). In fact, 

one may argue that the “best features” in this regard are those that are the worst at exact 

input reconstruction while achieving high performance on the main task that you are 

interested in (classification, localization, etc). 
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l Convolutional Layers 

Convolutional layers (convolutional neural networks) are a category of feed-forward 

artificial neural network than have proven significantly effective in computer vision field 

such as image recognition and classification. CNNs have successful in identifying faces, 

classifying facial expression, object recognition, etc. For example, CNNs are widely 

utilized in categories classification [24] as shown in Figure 4-9. Today, convolutional 

neural networks are an essential tool for machine learning implementation. 

 

Figure 4-9 An implementation of CNNs in category classification. 
 

The most function in CNNs is the convolution operator. The prime purpose of CNNs 

is to extract features from the input images. There are some terminologies in CNNs should 

be introduced first to elaborate convolution operator. Channel: A standard image has three 

channels-red, green, blue. A grayscale image has only one channel. Filter: also called 

kernel is a matrix to exact feature from image. Each kind of filter can extract different 

kind of feature while taking a same image input. For example, edge detection, sharpening, 

and blurring. Stride: is the number of pixels for our filter to slide over the input image. 

Zero-padding: pad the input image with zero around border mainly for the purpose of 

making feature map as same size as input image. 
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There is an example for demonstrating the convolution operator as shown in Figure 

4-10. A see a 585 matrix as an input image, a 383 matrix as a filter. Channel of input 

image is one, stride of convolution step is 1, and zero-padding is none. 

Figure 4-10 The demonstration of convolution operator. 
 

l Pooling Layers 

The pooling layers (also called subsampling) are designed for the 

dimensionality reduction of each feature map and retain the most important 

information in the windows. There are vary kind of pooling such as max-pooling, 

average-pooling, sum-pooling, etc. Take max-pooling as shown in Figure 4-11, we 

utilize in our proposed deep auto-encoder, for example. We can define a neighbor 

relationship between pixels, defined as 282 window, and extract max element from 

this window to be our most important information. 

 

 

 

 

 

 

Figure 4-11 A demonstration of max pooling. 
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l Activation Function 

There are vary activation function applies in artificial neural networks. The role of 

an activation function [25], as shown in Figure 4-12, is to make a neural networks non-

linear. In this part we would like to introduce some common activation function.  

 

Figure 4-12 The role of an activation function in a neuron cell. 

Linear  
The linear activation function mathematical expression is shown in equation ( 4.2 ) 

and the the mathematical image is shown in Figure 4-13. 

! 8 = 8 ( 4.2 ) 

 

 

Figure 4-13 Presentation of linear function. 
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Sigmoid  
The sigmoid activation function mathematical expression is in equation ( 4.3 ) and 

the the mathematical image is shown in Figure 4-14 Presentation of sigmoid function. 

! 8 = 	
1

1 +	:;<
 ( 4.3 ) 

 

 

Figure 4-14 Presentation of sigmoid function. 

Tanh  
The linear activation function mathematical expression is in equation ( 4.4 ) and the 

the mathematical image is shown in Figure 4-15. 

! 8 =
:< − :;<

:< + :;<
 ( 4.4 ) 

 

 

Figure 4-15 Presentation of tanh function. 
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ReLU 
 

The rectified linear unit (ReLU) activation function mathematical expression is in 

equation ( 4.5 ) and the the mathematical image is shown in Figure 4-16. 

! 8 = 	max	(0, 8) ( 4.5 ) 

 

 

Figure 4-16 Presentation of ReLU function. 

Softmax  
 
The softmax activation function mathematical expression is shown in equation ( 4.6 ). 

The softmax activation function is also called normalized exponential. This activation is 

usually utilized in the output layer, due to it’s value is depend on the other neurons of that 

layers. Usually, softmax activation us employed in categorical classification to represent 

the probability, since the sum of the value of output neurons would be 1. 

 

!(8)@ = 	
:<A

:<BC
D67

				∀F ∈ 1,… , H ( 4.6 ) 

Where K is the total number neurons of such layers. 
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l Gradient Descent Optimizer 

Gradient descent [26] is the most common and popular way to optimize neural 

networks. There are three variant gradient descents and many challenge need to be 

resolved to optimize a neural network model. Three types of gradient descents are batch 

gradient descent, stochastic gradient descent (SGD), and mini-batch gradient descent. It 

depends on how many samples would be seen for a model to perform a parameter update. 

Stochastic is to do a parameter update upon a sample. Batch is to do update upon whole 

dataset. Mini-batch is between these two types. There are some challenges should be 

solved to execute a better optimization, such as choosing a proper learning rate is difficult, 

preventing stock on a saddle point is notoriously hard for SGD, etc. In this part we would 

like to introduce some methodologies help us to overcome aforementioned obstacles. 

Momentum 
 

Stochastic gradient descent is hard to convergence in the case of a two dimensions 

curve with the property which one dimension is more steeply than another. Hence if the 

momentum is utilized in SGD would help converge faster. The demonstration is shown 

in Figure 4-17. 

 

Figure 4-17 The presentation of SGD with/without momentum. 
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Adagrad 

Choosing an appropriate learning rate is difficult. A proper learning rate can lead to 

a better result. The Adagrad is a algorithm for gradient-based optimization to adapts its 

learning rate. Adagrad perform larger update for the infrequently parameter and perform 

smaller update for the frequent parameter. Adagrad parameter update is shown in equation 

( 4.7 ). 

IJK7,L = IJ,L −
M

NJ,LL + 	O
	 ∙ QJ,L ( 4.7 ) 

 

where QJ,L is the gradient of the cost function w.r.t. the parameter ILat time the time step 

t. NJ ∈ RS×S is a diagonal matrix with each diagonal element U,	U is the sum of square 

of gradients with respect to IL  and O is a small number (usually 1×10;V) to avoid 

division by zero. 

 

RMSprop 

 RMSProp is one of Adagrad deformation to resolve the adagrad radical diminish 

gradient problem. The adagrad radical diminish problem is stem from the accumulation 

sum of gradients. This cause the learning rate to shrink and become infinites small.  The 

RMSprop mathematical expression is shown in equation ( 4.8 )- ( 4.9 ). 

Ε Q4 J = 	XΕ Q4 J;7 +	 1 − 	X QJ
4 ( 4.8 ) 

IJK7 = 	IJ −	
M

Ε Q4 J + 	O
QJ ( 4.9 ) 

 Where X	is a constant parameter (usually set as 0.9) to define the past or current 

gradient which one is important.  
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Adam 

Adam is one the gradient descent optimizer, which take the adaptive learning rate 

and momentum into consideration. The mathematical expression of adam is shown in 

equation ( 4.10 ) - ( 4.14 ). 

YJ = Z7YJ;7 + 1 − Z7 QJ ( 4.10 ) 
 

[J = Z4[J;7 + 1 − Z4 QJ
4 

 
( 4.11 ) 
 

YJ = YJ/(1 − Z7
J) ( 4.12 ) 

 
[J = [J/(1 − Z4

J) ( 4.13 ) 
 

IJK7 = IJ −	
M

[J + O
YJ	 ( 4.14 ) 

 
 

Where Z7 ,Z4  and O  are constant and also default as 0.9, 0.999 and 1×10;V , 

respectively.  

Early Stopping 

In order to training neural networks for retrieving better performance, numerous 

decisions need to be made regarding the settings (parameters) utilized. Once the 

parameter is the training epochs: that is, how many turns the full data set (epochs) are 

been seen for training. Once the fewer epochs we use, the model would fall into 

underfitting (i.e. unable to learn everything from training set). If too epochs we utilize, 

the model would become overfitting (i.e. learn training set too detailed so the ‘noise’ of 

training set is also considered, however can’t use in general case and would conduct poor 

performance on testing set). Early stopping attempt to set this value automatically to 

prevent model from overfitting. The early stop epoch picture [27] is shown in Figure 4-18. 
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Figure 4-18 The early stopping epoch to prevent overfitting. 
 

Dropout  

To overcome the overfitting: that is, the model only learns training set to classifier 

and adapt itself to the training example instead of learning decision capable of classifying 

generic instances. The Dropout, as shown in Figure 4-19, is design to resolve overfitting 

by ensemble the deep learning models. 

 

Figure 4-19 Left one is standard NNs, Right one is after applying dropout NNs. 
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4.4  CLASSIFIER IMPLEMENTATION 

4.4.1 Deep Learning Based Classifiers 

To analyze features in sequence, we apply Long Short Term Memory (LSTM), one 

type of recurrent neural networks, in our research. 

l LSTM-based Classifier 

Recurrent Neural Networks (RNNs) is the most renowned model for sequence 

learning [28] [29] [30]. Different from conventional feedforward neural networks, RNNs 

have cyclic connections making them be able to map from entire history of previous 

inputs to target vectors. In supervised learning, RNNs can be trained via Backpropagation 

Through Time (BPTT) with sequential input data and output target. However, the gradient 

exploding or vanishing problems during BPTT of model training obstruct the 

performance of RNNs. The phenomenon of gradient exploding or vanishing would cause 

the LSTM-based deep learning model hard to converge and perform poorly. It implies 

basic RNNs may not handle long term dependencies [31]. Consequently, Long Short-

Term Memory networks (LSTMs) is an architecture which is proposed to prevent these 

problems [32]. One LSTM cell is composed of three gates and cell state, the equations of 

LSTM cell are shown in equations ( 4.15 ) - ( 4.19 ).  

UJ = 	] <̂L8J +	 _̂LℎJ;7 +	 âLbJ;7 +	cL  ( 4.15 ) 
 

!J = 	] <̂d +	 _̂dℎJ;7 +	 âdbJ;7 +	cd  ( 4.16 ) 
 

bJ = 	!JbJ;7 +	 UJ tanh <̂a8J +	 _̂aℎJ;7 +	ca  ( 4.17 ) 
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hJ = 	] <̂i8J +	 _̂iℎJ;7 +	 âibJ +	ci  ( 4.18 ) 
 

ℎJ = 	hJ tanh bJ  ( 4.19 ) 
 

ℒj1 = 	−
1
)

-2	log-2 + (1	 −	-2)log(1 − -2)

5

267

 
( 4.20 ) 
 

 

Where σ is the logistic sigmoid activation function, and i, f, o and c are the input 

gate, forget gate, output gate and cell state, respectively. In LSTMs, three gates are a way 

to optionally let information through. The input gate is to determine which new 

information is going to be stored in the cell state. The ratio of input is calculated in 

equation ( 4.15 ) and affect on the equation ( 4.17 ). The forget gate is to decide which 

information is going to be discarded from the cell state. The ratio of the previous memory 

is shown in the equation ( 4.16 ) and utilized in the equation ( 4.17 ). The output gate is 

to determine whether passing the output of memory cell or not. The equation ( 4.19 ) 

shows this process. By using LSTMs, the gradient vanishing and exploding problems 

would be resolved due to the three gates. That is the reason why we adopt LSTM- RNN 

architecture to learn our sequential data. Furthermore, Binary Cross-Entropy (CE) 

function, as shown in equation ( 4.20 ), holds sharper loss property for not falling into 

local minimum with relative to root mean square function. Thus we adopt it as loss 

function in the proposed LSTM-based classifier, as shown in Figure 4-20. LSTM-RNN 

classifier comprises a LSTM layer, with 32 neurons, followed by a Multiple Layer 

Perceptron (MLP) which is composed of three layers in each filled with 128, 256, 2 

neurons, respectively. The activation function in LSTM layer is sigmoid function, in MLP 

layer is ReLU function and in the last layer is to be softmax function. The detailed 

architecture of LSTM-based classifier implemented upon Keras is shown in Figure 4-21. 



doi:10.6342/NTU201703477

52 

 

                 

Figure 4-20 The proposed LSTM-based classifier architecture. Where!D = (!n, !7, … , !5) 
and +D  denote as sequence features and probability prediction of k-th observation to 
learning and predicting human’s mentation by analyzing features, in sequence.  

 

 

Figure 4-21 The architecture of LSTM-based classifier implemented on Keras. 
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l CNN Followed by LSTM Classifier 

In order to take spatial and temporal factor into consideration simultaneously, we 

propose a convolutional neural networks followed by LSTM. Thus, our situational 

context perception can perceive a person’s mentation by analyzing features, in sequence. 

In Figure 4-22, demonstrates the deep learning model we proposed which is a convolution 

neural networks followed by a recurrent neural networks. In terms of convolution neural 

networks we also employ convolution layer and max-pooling layer then flatten as one 

dimension to fit LSTM input. Last step is classified via MLP to predict whether the person 

needing assistances. The activation function in Convolutional Net and MLP is ReLU, in 

LSTM is sigmoid. The cost function is binary cross-entropy.  The detailed architecture 

built upon Keras is shown in Figure 4-23. 

 

Figure 4-22 Present the proposed CNNs followed by LSTM architecture 
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Figure 4-23 The CNNs followed by LSTM architecture implemented on Keras. 
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4.4.2 Conventional Classifiers 

l Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised learning model. SVM is usually 

utilized in classification [33], as shown in Figure 4-24 , and regression analysis. The SVM 

classifier is well-known for the pedestrian detection with HOG features. 

 

 

Figure 4-24 Linear SVM classification. Blue points are one class and green points are 

another class. SVM tries to classify two class. 

 

l Gaussian Naïve Bayes  

Naïve Bayes is one kind of simple probabilistic classifiers in machine learning which 

is based on employing Bayes’ theorem with the assumptions of independent between 

features. As processing continuous data, it is classical assumption to regard the 

continuous value associated with each class are Gaussian distribution. Gaussian Naive 

Bayes is chosen in our research, since it’s simple property and has advantage for 

performing on small training set. 
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4.5  SOCIAL CO-ROBOT VERSUS PEOPLE in 

SERVICE INDUSTRY 

In this section, we would like to analysis how the similarity between prediction of 

social robot and decision made by people in service industry. Therefore, we make the 

deep learning model (CNNs followed by LSTM) run online, thus robot can observe a 

person’s behaviors and predict him/her mentation in real-time. The overall scenario of 

interaction is shown in Figure 4-25.  

 

 

Figure 4-25 The situational context perception apply upon Human-robot interaction. 
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As a person appear, robot begins to greeting at first and start to observe the person’s 

behavior around five seconds. Then, robot will respond appropriately with respect to 

prediction of human’s mentation. If only if prediction of human’s mentation is True (i.e. 

people may need some help), robot will take the initiative to polite say “may I help you?”. 

Otherwise, robot will keep silence to prevent bother the person. 

Eventually, there are 29 human-robot interaction are observed in total. Then, these 

observations are also evaluated by 17 service workers which include employee of Ding 

Tai Feng, chef and employee in restaurant, restaurant owner, intern in hospital, etc. The 

service employees are asked observe the person’s behavior at our social co-robot’s point 

of view and answer one question which is shown in Figure 4-26 for each observation. The 

final decision whether people will courteous ask “may I help you?” in each observation 

are made by voting. We make people serve in Ding Tai Feng has three votes each person, 

and the others has one vote in each.  

 

 

Figure 4-26  The question is answered by people after observing the person’s behavior. 
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Chapter 5 EXPERIMENTAL RESULTS 

In chapter 5, we will show some experimental results which divided into two parts. 

In the first part, the evaluation of proposed deep learning models by 5-fold cross-

validation is present. The features comparison, classifiers appropriateness, Multi-feature 

fusion, and deep learning models comparison (Mentioned in Section 4.1-4.4) are 

elaborated. In the second part, the evaluation of situational context perception is exhibited 

to analyze the similarity between prediction of social co-robot and decision made by 

people in service industry (Mentioned in Section 4.5). 

5.1  DEEP LEARNING MODELS EVALUATION 

5.1.1 K-fold Cross-Validation 

K-fold cross-validation is to partition labeled data into K equal size subsamples 

(folds). Among the K folds, a single fold would be left as the testing set and the retained 

K-1 folds are utilized as training set. The process of cross-validation is then repeat k times 

with each k fold is used exactly once as the testing set. The K results can be averaged to 

produce a single estimation. 

5.1.2 Features Comparison 

We utilize CNN auto-encoder to extract feature from raw image and employed 

encoded image as feature. Employing encoded image provides two advantages. One is 

that it reduces the dimension of raw image which dimension is 57600 (3 × 120 × 160) via 

encoder the image turns into a more meaningful space which holds only 4800 dimension. 
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The other is that encoded image has potentiality to reconstruct original image from 

relative reduced dimension. In validation stage, we compare the proposed encoded 

images to two other kinds of handcraft features, HOG and Optical Flow, with the same 

LSTM classifier. 

l Handcraft Feature Selection 

Regards to the situational context. We consider that human body language would be 

the key factor in this scenario. Thus, HOG and Optical Flow are employed as our 

handcraft features for comparison. HOG feature is commonly applied in human detection 

and raise well results especially in pedestrian detection [34]. And the advantage of Optical 

Flow feature is that it takes Spatio-Temporal factor into account and could be utilized in 

transition people motion analysis [35]. As a result of variation of dimension across 

features. Principal Component Analysis (PCA) is employed for reducing both HOG and 

Optical Flow feature to the dimension of 4800 to be as same as encoded image. 

l Results and Discussion 

The LSTM architecture is employed as classifier and we apply some training 

strategy as follows: epoch 30, batch size 8, initial learning rate 0.001, gradient descent 

optimization algorithms Adam [36] which contains the concept of adapting learning rate 

and momentum. The initial parameters are set as he_normal distribution which is normal 

distribution centered on 0 with standard deviation equals to square root of (2/!pq_Uq) 

where !pq_Uq is the input units in the weight tensor. Dropout is employed to prevent 

overfitting. The experimental results are shown in Table 5-1. There are two interesting 

aspects to be discussed. First, the three proposed features yield significantly high accuracy  
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Table 5-1 Results from features comparison by 5-fold cross-validation, applying LSTM 
architecture to learn from different features.  

 

on training set. It represents that our hypothesis is truthful, the human body language 

plays a key role to our target, perceiving the needing assistance for providing 

heartwarming services. Second, due to the variation among people, there must exist noise 

from person to person. It may easily raise poor performance on testing set. However, 

encoded image, HOG feature, and Optical Flow feature yield 73%, 69% and 63% 

accuracy (chance = 50%), respectively. That means our LSTM-based classifier 

successfully learned variety of body language from sequential data. Next step, we would 

like to examine that the sequence characteristic is really crucial or not.  

5.1.3 Classifier Appropriateness 

In this experiment, we would like to figure out whether take the sequential 

information into consideration would perform better. Thus, we compare our LSTM-based 

classifier to two prevalent classifiers, SVM and Naive Bayes classifiers. In each 

observation, the input dimension of LSTM-based classifier would be 50 × 4800 (a 

sequence of 50 keyframes, 4800 feature dimension) and in SVM and Naive Bayes 

dimension would be 24000.  
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Table 5-2 Results from Experiment of classifier appropriateness, applying LSTM-RNN 
architecture, SVM and Gaussian Naive Bayes to classify needing assistance from 
aforementioned features.  

l Classifier Selection 

Gaussian Naive Bayes is chosen, since it’s simple property and has advantage for 

performing on small training set. And the reason why we chose SVM is that it yields high 

accuracy, nice theoretical guarantees regarding overfitting and often used in people 

detection especially detection of pedestrians.  

l Results and Discussion 

In these experiments, LSTM- based, SVM, and Gaussian Naive Bayes classifiers are 

employed on three kinds of features as shown in Table 5-2. Based on the results in 

previous experiment, the discussion here mainly focuses on testing accuracy to evaluate 

the classifier performance. By using encoded image and HOG as our features, we could 

see that LSTM-based classifier perform more outstanding than the other two classifiers. 

On the encoded image aspect, LSTM-based classifier raises more 23.5% and 7% accuracy 

compared to SVM and Gaussian Naive Bayes classifiers, respectively. On the HOG 

aspect, LSTM-based raises more 19.5% and 9% accuracy relative to SVM and Gaussian 

Naive Bayes classifiers, respectively. However, at the view of Optical Flow feature, 

LSTM drops a little in terms of accuracy less than SVM with about 3%. From our 

perspective, Optical Flow feature already takes the transition of two image into 

consideration. Hence, this feature is just a little suitable on SVM classifier. The results  
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Table 5-3 Results from multi-feature fusion, applying LSTM-RNN architecture, SVM 
and Gaussian Naive Bayes to classifier needing assistances from concatenated two kinds 
of aforementioned features. 
 

shown in this experiment meets our hypothesis that the perception of needing assistance 

is not an impulse trigger, however a sequence of features will considerably raise accuracy.  

5.1.4 Multi-feature Fusion 

In Experiment of multi-features fusion, we would like to acknowledge whether 

concatenated two kinds of aforementioned features may achieve better performance in 

each classifier. The results are shown in Table 5-3.  

l Results and Discussion 

Previous experimental results show that encoded image and HOG are presented 

better performance on LSTM-based classifier and Optical Flow is shown to be a little 

suitable by utilizing SVM classifier. The results in Experiment 3 show that encoded image 

+ HOG via LSTM-based classifier enhance 2% accuracy, comparison to encoded image 

only. In terms of Optical flow, the accuracy slightly raises 2.5% and 1.5% via SVM by 

concatenating with encoded image and HOG, respectively. From our perspective, we take 

these three kinds of features represent as human body language, thus concatenated these 

features may have a limit benefit on accuracy. To us mind, next time we would like to 

take another kind of feature into consideration such as facial expression, maybe it would 

enhance our performance by fusing human body language with facial expression.  
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5.1.5 Deep Learning Models Comparison 

Table 5-4 Results for perceiving a person’s mentation by 5-fold cross-validation, applying 
CNNs followed by LSTM architecture to learn from different features.  

In previous experiments, we learn spatial and temporal factors separately, which 

means we extract spatial features then apply LSTMs to learn in sequence. In this 

experiment, we would like to make deep learning model automatically learn from spatio-

temporal feature in one model. The proposed CNNs followed by LSTM architecture as 

shown in Figure 4-22 may potentially keep the capability to uplift the accuracy. Therefore, 

the enhanced learning architecture is fed with raw images, HOG images, and Optical Flow 

images as input. The experimental results are shown in Table 5-4.  

l Results and Discussion 

In order to overcome computational cost, we reduce largely the numbers of filter in 

each convolutional layers. To us surprise, the raw images and HOG images input yields 

poor accuracy, it even learns nothing. from our perspective, there are two reason, one is 

that these two kinds of input may contains too much noise, we prefer to determine the 

person needing assistances via analyzing his/her sequential behaviors. Another is that we 

possess fewer observations for training model, it may have not enough data to learn such 

complex model. However, if we apply some preprocess step, such as extract Optical Flow 

feature beforehand, the training accuracy significant raise to 92.13%. It means model truly  
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learn something. In terms of testing accuracy, we may see that the Optical Flow images 

can reach 78% accuracy which beats aforementioned experiments. In this experiments, 

we come up with two conclusions. First, we know that if there are fewer training data, it 

may be a good idea to exact some simple handcraft features before learning. Second, a 

deep learning model which is composed CNNs followed by LSTMs contain more 

potentiality than two separate learning models.  

5.2  SITUATIONAL CONTEXT PERCEPTION 

EVALUATION 

 

Figure 5-1 Demonstrate two sequential human behaviors, which are observed by robot. 
Both social co-robot and people work in service industry evaluate the mentation of people 
via these data.  

In this experiment, we would like to analysis how the similarity between prediction of 

social robot and decision made by people in service industry. Therefore, we make the 
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deep learning model (CNNs followed by LSTM) run online, thus robot can observe a 

person’s behaviors and predict him/her mentation in real-time. Four observations are 

shown in Figure 5-1. First row: the woman come to our research building at first time and 

it is an appropriate behavior of robot to ask “may I help you” in this context. Second row: 

the man just pass by aisle and doesn’t need any help. Third row: We go to W Hotel to 

gather situational context of hotel. The man come for booking and needs some help. 

Fourth row: The situational context occurs at Taipei main station. The man is hand around 

and does not need any assistance.    

 

Table 5-5 This table shows the accuracy of robot’s prediction and decision made by 
voting among people in service industry with respect to ground truth.  

 
The scenario is that as a person appear, robot begins to greeting at first and start to observe 

the person’s behavior around five seconds. Then, robot will respond appropriately with 

respect to prediction of human’s mentation. If only if prediction of human’s mentation is 

True (i.e. people may need some help), robot will take the initiative to polite say “may I 

help you?”. Otherwise, robot will keep silence to prevent bother the person. Eventually, 

there are 48 human-robot interaction are observed in total. Then, these observations are 

also evaluated by 17 service workers which include employee of Ding Tai Feng, chef and 

employee in restaurant, restaurant owner, intern in hospital, etc. The service employees 

are asked observe at robot’s point of view and answer one question for each observation. 
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The final decision whether people will courteous ask “may I help you?” in each 

observation are made by voting. We make people serve in Ding Tai Feng has three votes 

each person, and the others has one vote in each. The accuracy results are shown in Table 

5-5. 

5.2.1 Results and Discussion 

In accordance with experimental results, it is very exciting that both social 

robot and people in service industry obtain over 90% accuracy.  

 

Figure 5-2 This figure shows the distribution of robot’s prediction and decision made by 
people in service industry with respect to ground truth.  

According to this interesting results, we would like to go deeper to figure out where 

are the errors come from. The distribution among prediction of robot, decision made by 

people and ground truth is demonstrated in Figure 5-2. There are 90% consistency among 

robot, people and ground truth. The second part occupies around 6% demonstrate that 
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robot and people are consistent, however the answer is not fit with ground truth. The 2% 

shows that robot’s prediction is true, but people’s decision is false with respect to ground 

truth. The another last 2% shows that robot’s prediction is false, but the people’s decision 

is true with respect to ground truth. Three case of non-consistent among robot, people and 

ground truth are shown in Figure 5-3. In the 6% case, ground truth is False (i.e. no need 

help), but the answer made by both robot and human is True (i.e determine the person 

may need help). 

Figure 5-3 Three human’s behaviors contain non-consistent opinion among robot’s 
prediction, people voting and ground truth.  

 
The people shown in Figure 5-3 (a) and (b) tell me that they indeed don’t need any 

help in that contexts, but just feel curious and would like to know what the robot will 

respond to them. In the 2% case, prediction of robot is True, but the decision of people in 

service industry and ground truth is False. The girl shown in Figure 5-3 (c) would like to 
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see the robot for a glimpse but need no help. Our robot predict this person may need help, 

however decision made by people in service industry possess another opinion and only 

two votes show that they will begin to ask whether she will need help. Although there are 

few interesting exceptions occur in human-robot interaction, the encouraging results 

show that prediction made by social robot present 96% as same as people in service 

industry.  
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Chapter 6 CONCLUSION, CONTRIBUTIONS 

and FUTURE WORKS 

6.1  CONCLUSIONS 

In this thesis, we present an exciting result that robots have potential capability to 

learn from situational context for providing “just-good services”. The situational context 

perception based on state-of-the-art deep learning models we proposed allow robot to 

successfully learn from sequential human behavior for identifying whether a person needs 

assistance. Thus, the robot can provide greater appropriate service with respect to 

person’s mentation, more friendly and more considerate.  

In the experimental results, we find that human body language reveals the messages 

of human’s mentation. Moreover, we retrieve a significant improvement on identifying 

needing assistance via taking spatio-temporal factor into consideration. With regard to 

encoded images feature, it only yields 49.5% accuracy by SVM classifier. However, the 

sequential encoded images classified through LSTM-based classifier yields a significant 

improved accuracy to 73%. The proposed CNNs followed by LSTM architecture, which 

considers spatial and temporal factors simultaneously, perform 78% accuracy with optical 

flow feature. Lastly, we implement the situational context perception on social co-robot 

to perceive a person’s mentation in real-time. The identification of robot is compared with 

the decision made by people who work in service industry on the task of providing “just-

good services”. The result show that there is 96% consistent opinion between social co-

robot and people in service industry.  
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6.2  CONTRIBUTIONS 

In this thesis, we proposed the deep learning based situational context perception upon 

perceiving a person’s mentation which focuses on needing assistance. Therefore, social 

co-robot can behave appropriately according to the person’s mentation in service industry. 

The contributions of our research can be summarized as follows: 

1. The proposed deep learning models perform significant improvement on 

identifying whether a person needs assistance by taking spatio-temporal factor 

into consideration. 

2. The deep learning based situational context perception can implement on robot 

and analyze features in real-time. 

3. The social co-robot, equipped with the proposed situational context perception, 

possess highly consistent opinion with people who work in service industry 

upon perceiving a person’s mentation. 

6.3  FUTURE WORKS 

From our perspective, data acquisition is the most challenge in our human-robot 

interaction scenario. Thus, a well-defined data collection mechanism for extending the 

knowledge of situational context perception is demand. There are three issue we plan to 

conduct for our proposed perception to adapt into varied fields in service industry. First, 

establish a reward function for people who interact with robot to score the performance. 

Second, employ reinforcement learning to make robot adapt into various situational 

context. Last, select a service for robot to fulfill and evaluate overall service process. 
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