
doi:10.6342/NTU201703341

國立臺灣大學電機資訊學院電機工程學研究所

碩士論文

Graduate Institute of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

智慧服務機器人基於遞迴類神經網路進行

未知室內語意導航之研究

Unknown Indoor Semantic Navigation Based on

Recursive Neural Network for Intelligent Service Robotics

陳長鈞

Chang-Jiun Chen

指導教授：羅仁權 博士

Advisor: Ren.C. Luo, Ph.D.

中華民國 106年 7 月

July 2017

doi:10.6342/NTU201703341

 i

誌謝

就讀碩士班的這兩年是我人生中一段美好的回憶。時光匆匆飛逝，一轉眼就

到了鳳凰花開的時刻。特別感謝父母親辛苦地栽培與教誨，給予我支持與鼓勵，

讓我能夠無憂無慮地專心於課業上。感謝我的指導教授羅仁權教授，提供我們豐

富的資源以及在研究過程與論文的指導，同時培養我們大至國際觀、小至做人處

事的道理。過程中所經歷的一切都是一輩子難得的體驗，也從其中學到非常多寶

貴的知識與經驗。二年的碩士生涯中，老師充分地展現出國際級專家學者的風範

與視野，不僅帶領我們探索學術知識上的深度與廣度，更給予我們充分的機會去

體驗研究以外的經驗，期望我們成為均衡發展的人才。在待人處事方面，老師更

是教給我們許多社會上應對進退的準則，這一切都使我獲益良多。

在國立臺灣大學智慧機器人及自動化國際研究中心（NTU- iCeiRA）兩年的研

究生活中，我要感謝鐿文、瑋隆、東榕、繼棠、金成、昕昳、旭佳、禮聰、志遠、

献章等博班學長；他們不僅不厭其煩的給我指導，並且也教我如何自己摸索出問

題的答案。還要感謝碩班學長銘駿、建安、士紘、煒森、文謙、金博、建偉、冠

志、柏宏、榮育，從優秀的學長們身上我學到很多，也常把他們當做努力的榜樣，

期許自己也能跟學長們一樣厲害。更不能忘記同屆一起努力奮鬥的伙伴俊豪、莉

彤、李晟、晴岡、靖霖、昱佑、達方、凱鈞、仲凱、孟勳、柏凱，和你們一起窩

在實驗室，不論是做研究、忙比賽還是一起玩樂，都是我碩班生涯最快樂的事情

之一。謝謝積極認真又貼心的學弟妹們，培淳、石崴、武昱、嵩詠、智堅、威辰、

錦賢、育榕、育澤、名彥、展嘉、何鑫、王昊、曾旻，幫忙大大小小的事務，一

起打球運動。也要感謝默默在背後幫我們完成許多瑣事的雯雅 (Tracy) 、煜倫

(Dornin)、姿伶(Amy)、芳嫻 (Helen)、佩芸(Winnie)等助理們。

最後，感謝我的朋友們在背後給予我莫大的鼓勵，你們的存在是我前進的動

力，希望我們的友誼能夠持續一輩子。能完成這篇論文，我要感謝在我生命中出

現的每一個人，真的非常謝謝你們。

陳長鈞 謹誌

民國一百零六年七月

doi:10.6342/NTU201703341

 ii

中文摘要

近年的研究已經讓服務型機器人具備能在複雜的室內環境中移動之功能。然

而，這些技術往往需要根基於事先建立好的環境地圖，因而無法應用在未知的環

境中。與此相對，人類在進入未知的環境時，常依靠問路這一方法，來得知如何

抵達某一地點，並進一步移動到該處。目前的移動型機器人，尚缺乏這種依據接

收到的口頭指令，在未知的環境中導航的能力。

在本研究中，我們的目標是將於未知環境中導航的功能，實作在移動型機器

人上。我們以室內環境作為主體，利用遞迴類神經網路的方法，讓機器人學習人

類導航的方法。我們設計了一個導航系統，並以人類的導航紀錄和相對應的導航

指令來訓練此系統。我們將導航指令進行分割，並將每個切割出來的簡單指令分

類到十個我們所定義的基本指令集當中；而每筆人類的導航紀錄，都是根據某一

類基本指令來進行收集的。在訓練類神經網路模型的過程中，我們更提出一驗證

的方法來檢驗訓練之模型的有效性。

最後，我們在模擬和實際的環境中測試此導航系統。我們在搬運機器人「企

鵝」上實作我們的系統，並實驗其是否能根據不同的導航指令，移動到對應的地

點。我們將機器人的移動路徑，與接受同樣指令的人類所走出來的路徑進行比較；

而結果顯示，基於此一導航系統的移動型機器人，能達到接近於人類的導航表現。

關鍵字：服務型機器人，移動型機器人、語意式導航、機器人深度學習、人機互

動

doi:10.6342/NTU201703341

 iii

ABSTRACT

Recent researches have made service robots capable of navigating through

complex and clustered indoor environments. However, such techniques require prebuilt

maps and cannot be applied to unknown environments. By contrast, when entering an

unknown environment, humans can ask someone for directions to figure out how to get

to a specific location, and further navigate to the destination by following the

instructions. Present mobile robots lack the ability of navigating under unknown

environments according to the given verbal instructions.

In this research, we aim to implement the ability of navigating through unknown

environments on mobile robots. We focus on indoor environments, using recursive

neural networks to make robots learn the methods of navigating from humans. We

design a navigation system, which is trained by human-controlled navigating records

along with instructions. Instructions are split and then classified into ten basic classes,

and each navigating record is collected according to one of these basic instruction

classes. During the training process, we propose a validating method to evaluate the

effectiveness of our models.

Finally, we put our system to the test under both simulation and real environments.

We implement the system on a warehouse robot called ‘Penguin’, and test whether it

can get to desired positions according to different given instructions. We compare the

navigation paths of our mobile robot with those of humans following the same verbal

instructions. The results show that our mobile robot can achieve similar performance to

that of humans.

doi:10.6342/NTU201703341

 iv

Keywords: service robotics, mobile robotics, semantic navigation, deep learning in

robotics and automation, human-robot interaction

doi:10.6342/NTU201703341

 v

CONTENTS

口試委員會審定書

誌謝 ..i

中文摘要 .. ii

ABSTRACT ... iii

CONTENTS ... v

LIST OF FIGURES ... viii

LIST OF TABLES ... x

Chapter 1 Introduction ... 1

1.1 Problem Statement .. 1

1.2 Related Works ... 4

1.3 Research Objective ... 6

1.4 Thesis Structure .. 7

Chapter 2 System Architecture .. 8

2.1 Hardware Specifications ... 8

2.1.1 Motors .. 9

2.1.2 Sensor .. 10

2.1.3 Central Control Computer ... 14

2.1.4 Power Supply System .. 16

2.2 Software Architecture ... 18

2.2.1 Overview ... 18

2.2.2 Laser Range Finder Layer ... 20

 Interpolation ... 20 2.2.2.1

 Preprocessing ... 22 2.2.2.2

doi:10.6342/NTU201703341

 vi

2.2.3 Instruction Layer.. 23

 Speech Recognition .. 24 2.2.3.1

 Conversion ... 24 2.2.3.2

2.2.4 Neural Network Model .. 25

2.2.5 Post-processing Layer ... 26

 Speed Adjusting Function .. 26 2.2.5.1

 Halting Counter .. 27 2.2.5.2

Chapter 3 Training Data Set .. 29

3.1 Instruction ... 29

3.2 Basic Instruction Sets ... 32

3.3 Human-Controlled Navigating Records ... 36

3.3.1 Database... 36

3.3.2 Teleoperation Program .. 37

3.4 Features and Advantages .. 39

Chapter 4 Training and Experiments .. 41

4.1 Training Models .. 41

4.1.1 Implementation .. 41

4.1.2 Validation ... 42

4.1.3 Monitors .. 43

4.2 Experiments and Results... 45

4.2.1 Simulation .. 45

4.2.2 Real Environment .. 45

4.2.3 Interpolation .. 46

4.2.4 Comparisons .. 52

Chapter 5 Conclusions and Future Works .. 55

doi:10.6342/NTU201703341

 vii

REFERENCE .. 57

VITA ... 62

doi:10.6342/NTU201703341

 viii

LIST OF FIGURES

Fig. 1.1.1 Navigating under unknown indoor environment .. 2

Fig. 1.1.2 Example of expressing a navigation path by different instructions 3

Fig. 2.1.1 iCeiRA warehouse robot ‘Penguin’ .. 8

Fig. 2.1.2 Servomotors and motion controllers ... 9

Fig. 2.1.3 Different environment structures observed from laser range finder 11

Fig. 2.1.4 Two series of Laser Range Finder being used in our research 14

Fig. 2.1.5 Control diagram of navigation system .. 16

Fig. 2.1.6 The overall circuit diagram implemented onboard .. 17

Fig. 2.1.7 DR-UPS40 by Mean Well .. 18

Fig. 2.2.1 Structure of our navigation program ... 19

Fig. 2.2.2 Executing process of our navigation system ... 20

Fig. 2.2.3 Modified saturation function ... 23

Fig. 2.2.4 Structure of neural network model .. 25

Fig. 3.1.1 Ten paths corresponding to ten classes of simple instructions 31

Fig. 3.1.2 Example of executing a complex instruction .. 32

Fig. 3.2.1 Process of generating a complete instruction sentence 33

Fig. 3.3.1 Example of the recording files .. 37

Fig. 3.3.2 Control method of teleop_twist_keyboard .. 38

Fig. 3.3.3 Control keys of our teleoperation program ... 39

Fig. 4.1.1 Loss monitor and validation monitor .. 44

Fig. 4.2.1 Floor plans of Building for Research Excellence ... 47

Fig. 4.2.2 Screenshot of the demonstration video ... 48

Fig. 4.2.3 Experiment results of Class 1 and Class 2 instructions 49

file:///C:/Users/CJ-Chen/Desktop/0810%20Master%20Thesis/CJChen%20-%20MasterThesis%20-%20Draft.docx%23_Toc490229413

doi:10.6342/NTU201703341

 ix

Fig. 4.2.4 Experiment results of Class 3 and Class 4 instructions 50

Fig. 4.2.5 Experiment results of Class 5 and Class 6 instructions 51

Fig. 4.2.6 Experiment results of Class 7 and Class 8 instructions 52

doi:10.6342/NTU201703341

 x

LIST OF TABLES

Table 2.1-1 Technical specifications of Hokuyo UTM-30LX ... 12

Table 2.1-2 Technical specifications of Hokuyo URG-04LX .. 13

Table 3.1-1 Class of simple instructions .. 30

Table 4.2-1 Success rate of each basic instruction .. 48

doi:10.6342/NTU201703341

 1

Chapter 1 Introduction

1.1 Problem Statement

 Suppose you are attending an interview in an office building. During the break you

need to go to the restroom. However, since it is the first time you have been to this

location, you do not know the direction. You might look for a floor plan or signs to find

your way, or ask someone for directions. In the latter case, you may receive

straightforward instructions, such as ‘You just go down this aisle and turn left at the

second corner, and you will see it.’ Even though you had never walked along this path,

nor had you seen the map, you are still able to reach the destination by following the

instruction. In our daily life, we often ask for directions to find out how to get to

specific locations. Humans possess the ability to navigate through unfamiliar

environment according to simple instructions. By contrast, can robots achieve the same

thing?

To execute a variety of tasks, service robots often need to have the ability of

navigating and avoiding obstacles under different environments. Many methods have

been developed to achieve this, including the effective simultaneous localization and

mapping (SLAM) algorithms. Although these kinds of algorithms can make mobile

robots navigate to destinations properly, they all depend on the understanding of the

entire environment. In other words, robots need to construct the map of environment

before starting to conduct their missions. On the other hand, exploration algorithms let

robots able to navigate and construct maps under unknown environments. However,

these algorithms cannot command robots to explore specific locations. Therefore, there

has not been any algorithm that can have robots move to desired locations to execute

tasks right after they enter a new, unknown space.

doi:10.6342/NTU201703341

 2

Fig. 1.1.1 Navigating under unknown indoor environment

In addition to the necessity of building maps for navigation, to let robots

understand the navigating instructions from human, the efficient communication

between human and robots is also a critical issue. Maps that robots use for localization

and navigation, such as occupancy grid map, lack semantic information. Meanwhile, it

is not easy to express natural language by mathematical models. To solve these

problems, researches have been done to construct semantic maps for users. Robots

classify their positions into different locations, such as corridors, halls or room 302,

adding semantic information to the maps. Other researches establish probabilistic

models for the instructions written in commonly verbal expressions, helping the control

doi:10.6342/NTU201703341

 3

system of robots handle the uncertainty and ambiguity inside human verbal instructions.

Nonetheless, due to the variety and complexity of verbal instructions, it is hard to

express all the possible patterns of instructions in mathematical models. For example,

we can clearly see that the following two instructions refer to the same navigation path

according to the map shown in Fig. 1.1.2, although they are expressed in such different

ways:

 Go straight to the end, turn right, and then enter the second room on your left hand

side.

 You just turn right at the end of this aisle, and then turn left at the second entry.

It is proper to claim that there are thousands of ways to express a same navigation

path, and building models for all of them is impossible. Therefore, constructing an

efficient algorithm for mobile robots to understand instructions received from human

and execute navigation is never a simple work.

Fig. 1.1.2 Example of expressing a navigation path by different instructions

doi:10.6342/NTU201703341

 4

The problem we want to solve in our research has two aspects. First, robots cannot

navigate to a certain location before constructing a map of the unknown environment.

Second, it is hard for robots to follow human commands due to the complexity and

variety of verbal instructions. Therefore, our question is: Given an indoor environment

which is unknown to a mobile robot, can the robot navigate to a certain location by

following human verbal instructions?

Before we describe the detailed objectives of this research and our method for the

above question, we will first discuss some previous researches related to this topic in the

next section.

1.2 Related Works

Moving to a specific location according to semantic instructions is a very intuitive

way of navigation for mobile robots. However, this is never an easy task. To have robots

efficiently use semantic information, a method using topological-semantic-metric map

and Bayesian models is proposed to construct semantic maps for human-like navigation

[1]. The direction of moving is computed from probabilistic models, and obstacles are

avoided during semantic navigation. This research shows a great success in navigating

robots to goal positions using symbolic descriptions.

An abstract map is implemented to represent unseen environments for mobile

robots to navigate using only symbolic language phrases [2]. In addition, another

research aims to plan semantic paths for human by integrating multiple sensors and

using results from simultaneous localization and mapping (SLAM) algorithms [3].

These researches all try to bridge the gap between verbal instructions human use for

instructing and mathematical models machines use for executing tasks.

To construct efficient communication between human and robots, many researches

doi:10.6342/NTU201703341

 5

use the methods of machine learning to do semantic mapping under indoor

environments, classifying positions into different locations for human to understand

easily. A supervised learning algorithm—Adaboost, has been used to classify each

position into corridor, room or doorway [4]. They use 2D laser range finders as sensors,

and have the system recognize environmental shapes around the position. Some

researches afterward improve the performance of it. K-means and Learning Vector

Quantization methods, as well as the Markov model have been used to improve the

classification rate of door [5]. A learning algorithm using the classification results from

SVM and CRF is proposed, and experiments have been conducted on various

environments to demonstrate its performance over real-world task [6]. In addition,

different kinds of sensors are used to classify the location more precisely. A place

categorization system is built upon convolutional network, and its accuracy has been

evaluated using 3 different types of cameras [7]. The convolutional neural network is

also applied to classify places, where LIDAR sensor is used to create occupancy grids

data [8]. These efforts are all successful in adding semantic information to known or

new environments.

While moving to unknown places, predicting the location we are about to enter

helps us decide the next action to be taken. For example, if we want to go to room 305,

and we have seen room 301, 302 sequentially, we may assume that our direction is

correct, and we need to walk through the aisle and pass by two more rooms before

seeing our destination. This predicting ability allows us to avoid wasting time on

searching more information about the environments, such as entering room 304 to check

whether it is the correct one. Researchers implement this predicting ability on mobile

robots to improve the performance of mapping, localization and navigation. An

algorithm called P-SLAM is introduced to look-ahead mapping [9]. This algorithm uses

doi:10.6342/NTU201703341

 6

the built map of explored regions to decide whether there is a similar structure inside the

unexplored regions. Besides, similarities between current surroundings and built map

have been used to actively predict close loops in unexplored areas and reduce the

uncertainty during exploration [10].

1.3 Research Objective

In this research, our motivation is to make the robot ‘understand’ human verbal

instructions used in navigation instructions, and move to the corresponding destinations

without having any pre-knowledge about the indoor environment. We now specify the

detailed objectives we aim to achieve, as well as the methods we plan to use.

 We design a navigation system, which can be applied on our mobile platform. This

system receives verbal instructions from humans, and controls the robot to

navigate through unknown environments in both simulation and real world.

 We use the method of machine learning to construct the main body of our

navigation system. The neural network model is trained to learn the way human

navigate according to some instructions.

 The neural network model takes instructions and data acquired by sensor as its

input, and outputs moving and rotating velocity commands to the mobile robot,

instead of local or global goal positions in the environment.

 We give restrictions to the instructions applied in this research. They need to be a

certain type of instructions, and they should be legal. A legal instruction is defined

to be an instruction that can be successfully execute under the given environment.

For example, if you cannot turn right ahead, then an instruction telling you to turn

right at the front is not legal. We will explain the type of instructions we consider

in Chapter 3.

doi:10.6342/NTU201703341

 7

 Sensor we choose should be able to recognize the structures of indoor

environments. We choose to use 2D laser range finder as our sensor, and we will

explain our reasons in Chapter 2.

 We use navigation records to train our neural network model. These records, called

human-controlled navigating records, are generated by manually control robots to

navigate by different people.

 We train our model using data collected in simulation, and the navigation system

should be able to apply in real environment.

By achieving the above objectives, we aim to give a proper solution to the stated

question.

1.4 Thesis Structure

In Chapter 2, we introduce the system architecture, including the specifications of

hardware components we use on our experiment platform, and the structure of presented

software. Chapter 3 describes the training data set we use to train our neural network

model. We will also describe the categories of instructions we consider in our research,

as well as our method of collecting training data.

In Chapter 4, we introduce the process of training our neural networks, and the

method we use to validate the efficiency of models. Next, we describe the details of

experiments conducted under simulation and real environments. We will analyze the

results and do some comparisons to examine the performance of our navigation system.

Finally, Chapter 5 provides conclusions to our effort, explains the contributions of this

research, and discusses the future works.

doi:10.6342/NTU201703341

 8

Chapter 2 System Architecture

In this chapter, we first introduce the hardware we use to test our navigation system. We

will describe the specification of each component on the mobile platform, including

motors, sensors, control computer and the power supply system. We will also explain

the reasons for choosing these components, as well as our concerns while designing this

platform. In the second part of this chapter, we describe the software architecture. Our

navigation system consists of several functional layers and the recursive neural network

model. We will introduce the function of each layer, and how we implement these layers.

The structure of our neural network model will also be discussed.

2.1 Hardware Specifications

In this research, we implement our navigation system on the warehouse robot

called ‘Penguin’, which is shown in Fig. 2.1.1. This robot is equipped with two

differential wheels, one laser range finder mounted at the top, an Xtion Pro Live RGB-D

camera, and a central control computer. In the following paragraphs, we will describe

the specifications of these components.

Fig. 2.1.1 iCeiRA warehouse robot ‘Penguin’

doi:10.6342/NTU201703341

 9

2.1.1 Motors

The warehouse robot has two differential wheels and two omnidirectional wheels

served as passive wheels. The former are driven by two Faulhaber 4490H048B

Brushless DC-Servomotors with reduction of 66:1. Each servomotor is connected to a

corresponding MCBL 3006 Motion controller. The motion controllers are connected via

a RS232-USB signal cable to the CPU’s USB port.

We set the maximum speed of two motors to be 10000rpm via motion

controllers. The gear ratios of two differential wheels are both 3, thus the overall gear

ratio is equal to 200. Radius of the differential wheel is 0.075m. Therefore, the

theoretical maximum velocity of our robot is approximately 0.4m/s. However, due to

robot’s weight the maximum velocity will be smaller in practice. This specification is

used when collecting training data and training our neural network models.

The wheel odometry is attached on the servomotor. We are not completely certain

which kind of encoder has been mounted on the servomotors, but the documentation

suggests the servomotor model type can co-operate with two-channel or three-channel

optical or magnetic encoders.

(a) Faulhaber 4490H048B (b) MCBL 3006

Fig. 2.1.2 Servomotors and motion controllers

doi:10.6342/NTU201703341

 10

2.1.2 Sensor

We only use the laser range finder to gather information form the environment. The

RGB-D camera is not used in our research. We now explain why we choose to use laser

range finder as the main sensor.

To get a well-trained neural network model, it is essential to prepare a sufficient

amount of training data. However, collecting data in real environments is

time-consuming and difficult, especially when we want to record the entire navigation

process. Therefore, we aim to collect our training data under simulation environment. In

such case, using laser range finder as sensor has many advantages.

First of all, the amount of data returned by a laser range finder is much less than

that by other sensors, such as camera. As a result, speed of calculation become faster,

and delay of navigation system is prevented.

Next, although the amount of data is small, it is sufficient to realize the structure of

indoor environment through laser range finder. We take Fig. 2.1.3 as an example. A

mobile robot is navigating through an indoor environment, and the collected sensor data

is visualized in rviz, a 3D visualization tool of ROS. From Fig. 2.1.3 (a), we can tell that

the robot is moving along a corridor, while Fig. 2.1.3 (b) shows that there is a crossroad

in front of the robot. Thus, robots and humans can decide their actions according to the

sensor measurements.

Last but not least, the effect of noise on laser range finder is small. The sensor

measurements collected from simulation environments have similar performance to

those from real environments. Therefore, it is appropriate to train our system using the

records collected in simulation, and test it in the real world. In contrast, if we use

camera as the main sensor, the training process will be completely different. We cannot

doi:10.6342/NTU201703341

 11

use simulation images to train out navigation model, since the situation varies a lot in

real world due to several factors, such as influence of light.

To sum up, we consider laser range finder an appropriate sensor to achieve this

navigation task. The structures of indoor environments can be observed, and training

can be done using simulation data without considering the effect of noise.

The laser range finder we use in our research is Hokuyo UTM-30LX. Table 2.1-1

describes its technical specifications. It should be noticed that UTM-30LX has a

scanning range of 270 degrees. If we place the laser range finder at the front of our

warehouse robot, both sides of it will be blocked by the robot. This will results in being

unable to get the full scanning range. Therefore, we mount the laser range finder on top

of the mobile robot. Height of the sensor is 45cm from ground.

(a) Corridor (b) Crossroad

Fig. 2.1.3 Different environment structures observed from laser range finder

doi:10.6342/NTU201703341

 12

Table 2.1-1 Technical specifications of Hokuyo UTM-30LX

Model No. UTM-30LX

Power Source

12VDC±10%

(Current consumption: Max: 1A, Normal 0.7A)

Light Source

Semiconductor laser diode(λ=905nm)

Laser safety Class 1(FDA)

Detection Range

0.1 to 30m (White Square Kent Sheet 500nm

or more), Max. 60m 270oC

Accuracy 0.1 to 10m:±30mm, 10 to 30m: ±50mm ∗1

Angular Resolution 0.25◦(360 ◦/1,440 steps)

Scan Time 25msec/scan

Sound Level Less than 25 dB

Interface USB2.0(Full speed)

Synchronous output NPN open collector

Command system Exclusively designed command SCIP Ver. 2.0

Connection

Power and Synchronous output: 2m flying lead wire

USB:2m cable with type-A connector

Ambient

(Temperature/Humidity)

-10 to +50 ◦ C, less than 85%RH(without drew and frost)

Vibration Resistance

Double amplitude 1.5mm 10 to 55Hz,

2 hours each in X,Y, and Z direction

Impact Resistance 196m/s2, 10 times in X, Y, and Z direction

Weight Approx. 370g (with cable attachment)

doi:10.6342/NTU201703341

 13

Table 2.1-2 Technical specifications of Hokuyo URG-04LX

Model No. URG-04LX-UG01

Power Source 5VDC±5%(USB Bus Power)

Light Source

Semiconductor laser diode (λ=785nm),

laser safety class 1

Measuring area

20 to 5600nm (white paper

with 70nmx70nm), 240 degrees

Accuracy

60 to 1,000nm: ±30nm

1,000 to 4,095nm: ±3% of measurement

Angular resolution

Step angle: approx. 0.36◦

(360◦/1,024 steps)

Scanning time 100 ms/scan

Noise 25 dB or less

Interface USB2.0/1.1 [Mini B] (Full speed)

Command System SCIP Ver. 2.0

Ambiance Illuminance ∗1

Halogen/Mercury lamp: 10,000Lux

or less, Florescent: 6000 Lux (Max.)

Ambient temperature/Humidity

-10 to +50 ◦C, 85% or less

(Not condensing, not icing)

Vibration resistance

10 to 55Hz, double amplitude 1.5mm

each 2 hours in X, Y, and Z directions

Impact Resistance

196m/s2, Each 10 times

in X, Y, and Z directions

Weight Approx 160g

doi:10.6342/NTU201703341

 14

To verify that our navigation system could be implemented on different mobile

platform, we conduct experiments in simulation using mobile robot equipped with other

type of laser range finder. The laser range finder we use here is URG-04LX. Table 2.1-2

describes its technical specifications. It should be noticed that the scanning range and

the number of measurement steps of URG-04LX are different from those of

UTM-30LX. To make our neural network model work properly, some efforts need to be

done to eliminate this difference. We will describe the method we use in the software

section.

(a) Hokuyo UTM-30LX (b) Hokuyo URG-04LX

Fig. 2.1.4 Two series of Laser Range Finder being used in our research

2.1.3 Central Control Computer

Our central control computer is the Jetson TX1 Developer Board. Its main function

is to control the robot movement and receive sensor data. On the central control

computer we run the Robot Operating System (ROS) [11]. Two major ROS nodes are

used to achieve such tasks.

 ros_control [12]

In brief, it controls the rotation of two wheel motors. Our navigation program, as

well as the teleoperation program, publishes the command velocity to this node.

doi:10.6342/NTU201703341

 15

And then, ros_control calculates the corresponding rotational speeds of two

differential wheels and the driving servomotors.

 hokuyo_node [13]

This node handles the sensor data acquired from 2D laser range finder. Some

parameters in this node can be adjusted to deal with the situation of using different

laser range finders, where the detection ranges and angular resolutions are both

different.

 In addition to these two nodes, the ROS node teleop_twist_keyboard is used to

remotely control the robot while our navigation program is not running [14]. It serves as

a teleoperation program, however in the next chapter we will mention that we design

our own teleoperation program and the reason for doing that.

To conduct our experiments more efficiently, we run our navigation program on a

remote computer so that we can modify our program immediately. The central control

computer and the remote computer are connected to the same local area network.

Through the network ROS node hokuyo_node publishes readings of the laser range

finder to the remote laptop, and after computation our navigation program publishes the

command velocity back to ros_control node. Our program is packaged in a ROS node,

and the exchange of messages is achieved through ROS topics.

The local area network can be provided by a cellphone. Fig. 2.1.5 shows the

control diagram of our navigation system.

doi:10.6342/NTU201703341

 16

Fig. 2.1.5 Control diagram of navigation system

2.1.4 Power Supply System

The electric circuit used on-board consumes exclusively DC current, which means

that any AC flow should be converted to DC flow previous to usage, and thus we deploy

a DC Power Supply unit to import appropriate voltage and current flow. Normally the

power system is supplied no more than 30V and 6A. If the supplied current exceeds that

upper bound, fuse and UPS may serve as buffers and safety measure. The power system

is designed under the following prerequisites:

 Safety first

 Ease of maintenance. All input/output ports are located at the rear of the robot.

 The circuit should be as precise and succinct as possible containing only necessary

components.

 When connected to external power supply, the circuit works as one single close-

loop. Such design ensures that the batteries are safely and efficiently charged and

discharged.

doi:10.6342/NTU201703341

 17

 When the external power source is unplugged, there should be two independently

functional close-loops circuits. One loop supplies power exclusively to the

computer, while another loop to the motors and the controllers.

 Ensure that the batteries would not discharge and charge simultaneously, making

sure to extend the batteries life-span.

 An emergency stop button is placed in the motor’s power supply circuit to cut the

power toward the motor if the robot runs into problems. Likewise, a toggle switch

is placed at the computer’s power circuit for ease of maintenance.

 The circuit implementation needs to follow industrial standards and convention.

 Voltmeters and Ammeters are placed to monitor on-board power supply level in

real-time scale.

 Following the mentioned demands, the designed circuit is shown in Fig. 2.1.6.

Fig. 2.1.6 The overall circuit diagram implemented onboard

We use relay as an automated and analogue switch to link and break both loops of

the circuit. Once an external power source is connected, the current pass through the

main switchboard, where all grounds are connected with the physical ground, while two

doi:10.6342/NTU201703341

 18

live wires supply the current for sub-loops with roughly the same voltage. For each loop,

the first node to connect with the main power supply is located at the Uninterrupted

Power Supply (UPS). By connecting in a redundant manner, the UPS not only serves as

an intermediary hub for supplying the load, but also to charge and discharge the batteries,

hence playing an intermediary and buffer role of power regulator between the main power

source, the battery and the load. Considering the reliability, robustness, and durability of

such key role, we utilized one DR-UPS40 for each sub-circuit.

Fig. 2.1.7 DR-UPS40 by Mean Well

2.2 Software Architecture

2.2.1 Overview

Fig. 2.2.1 shows the overall structure of our navigation program. It is composed of

one neural network model and several processing layers. We will describe functions of

these components later.

Fig. 2.2.2 shows the executing process of our navigation system. At a certain time

step, the navigation system takes the current laser range finder readings, as well as the

instruction given by user as its input. After computing it outputs the desired moving and

rotating velocity of mobile robot. The robot will navigate in the given speed for a time

period, entering a different position. This leads to different readings of the laser range

doi:10.6342/NTU201703341

 19

F
ig

. 2
.2

.1
 S

tru
ctu

re o
f o

u
r n

av
ig

atio
n
 p

ro
g
ram

doi:10.6342/NTU201703341

 20

finder at the next time step. Thus, the model will take the new readings and the same

instruction as its new input, and decide velocity of the next time step.

 In the following sections, we will introduce the function of each layer as well as

the structure of our neural network.

Fig. 2.2.2 Executing process of our navigation system

2.2.2 Laser Range Finder Layer

This layer consists of two stages: the interpolation stage, and the preprocessing

stage.

 Interpolation 2.2.2.1

We use Hokuyo UTM-30LX as our main sensor in this research. However, in order

to expand the usage of our system to different mobile robots, we need to consider the

cases when different laser range finders are used.

 Different laser range finders have different detection ranges and angular

resolutions. If our system use the entire scanning range of UTM-30LX, changing the

sensor to a laser range finder with smaller scanning range, such as Hokuyo URG-04LX,

will be difficult. The reason is that even if we disregard the difference between their

doi:10.6342/NTU201703341

 21

maximum measuring distances, getting measurements from angles that are beyond the

scanning range of URG-04LX is impossible. Therefore, we only use 220 degrees of

UTM-30LX’s scanning range. Since this value is larger than 180, objects behind the left

part and right part of the robot can be detected. It is thus sufficient for our system to

recognize the environment structures using such scanning range.

 However, due to the difference between angular resolutions, sometimes we cannot

get measurement from a particular angle using other sensors. Interpolation stage is thus

designed to solve this problem. As its name implies, in this stage we use the method of

linear interpolation to calculate the desired measurements. Details of our method are

described as follows:

Consider two different laser range finders A and B. Assume B is the original sensor

we use on the mobile robot, and A is the substitute. Now, we want to get the

measurements of sensor B using sensor A. Since some angle measurements of B cannot

be obtained by A, we apply the following interpolation method:

We define 𝐴𝑗 and 𝐵𝑘 to be the measurements of A and B. Here

 0 ≤ 𝑗 < 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑡𝑒𝑝𝑠 𝑜𝑓 𝐴 (2.2-1)

 0 ≤ 𝑘 < 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑡𝑒𝑝𝑠 𝑜𝑓 𝐵 (2.2-2)

For example, the number of measurement steps of UTM-30LX is 1440, while that

of URG-04LX is 683. We define 𝐴𝑚𝑖𝑛 and 𝐵𝑚𝑖𝑛 as the minimal measuring angles of

A and B. For instance, the minimal measuring angle of Hokuyo UTM-30LX is −135°.

Next, we define 𝐴𝑑𝑖𝑓𝑓 and 𝐵𝑑𝑖𝑓𝑓 to be angular resolutions of A and B. 𝐵𝑠𝑡𝑒𝑝𝑠 is the

number of measurements we want to obtain, while 𝐵𝑠𝑡𝑎𝑟𝑡 is the starting step. For

example, if we take Hokuyo URG-04LX as sensor B, and we want to discard the

leftmost and rightmost 30 steps of the measurements, then we will let 𝐵𝑠𝑡𝑎𝑟𝑡 = 30 and

doi:10.6342/NTU201703341

 22

𝐵𝑠𝑡𝑒𝑝𝑠 = 623.

Now, for all the steps we consider, we first calculate their angles:

 𝑎𝑛𝑔𝑙𝑒 = 𝐵𝑚𝑖𝑛 + (𝐵𝑠𝑡𝑎𝑟𝑡 + 𝑖) ∗ 𝐵𝑑𝑖𝑓𝑓, 0 ≤ 𝑖 < 𝐵𝑠𝑡𝑒𝑝𝑠 (2.2-3)

Here every angle is guaranteed to lie in the scanning range of sensor A. Next, the

following two variables are calculated for each of the steps:

 𝑆𝐴𝑀𝑃𝑖 = ⌊
𝑎𝑛𝑔𝑙𝑒−𝐴𝑚𝑖𝑛

𝐴𝑑𝑖𝑓𝑓
⌋ , 0 ≤ 𝑖 < 𝐵𝑠𝑡𝑒𝑝𝑠 (2.2-4)

 𝐼𝑁𝑇𝐸𝑅𝑖 = (𝑎𝑛𝑔𝑙𝑒 − 𝐴𝑚𝑖𝑛) 𝑚𝑜𝑑 𝐴𝑑𝑖𝑓𝑓 , 0 ≤ 𝑖 < 𝐵𝑠𝑡𝑒𝑝𝑠 (2.2-5)

 Finally, given all the measurements 𝐴𝑗 obtained from sensor A, we calculate the

measurement for each step we consider by the following equation:

 𝐵𝑖 = 𝐴𝑆𝐴𝑀𝑃𝑖
+ (𝐴𝑆𝐴𝑀𝑃𝑖+1

− 𝐴𝑆𝐴𝑀𝑃𝑖
) ∗

𝐼𝑁𝑇𝐸𝑅𝑖

𝐴𝑑𝑖𝑓𝑓
, 0 ≤ 𝑖 < 𝐵𝑠𝑡𝑒𝑝𝑠 (2.2-6)

 By applying the linear interpolation method, we obtain the measurements 𝐵𝑖 of

sensor B from measurements 𝐴𝑗 of sensor A. We do some experiments to verify the

effectiveness of our interpolation stage. The results will be discussed in Chapter 4.

 Preprocessing 2.2.2.2

Before applying input data to the neural network, we preprocess data obtained by

laser range finder to improve the performance of our neural network.

First, to deal with the difference in maximum measuring distances between

different laser range finders, we set a threshold value to the received measurements.

Readings exceeding 5 meters will be modified to 5. That is, objects 5 meters away from

the sensor will not be detected due to this saturation function. However, to create greater

difference between empty spaces and barriers, we change the modified value from 5 to

10 meters.

doi:10.6342/NTU201703341

 23

To sum up, we modify the input data as follows:

 𝑓(𝑥𝑖) = {
𝑥𝑖, 𝑥𝑖 < 5

10, 𝑥𝑖 ≥ 5
 (2.2-7)

Here 𝑥𝑖 represents the sensor measurements.

 0 ≤ 𝑖 < 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑡𝑒𝑝𝑠 (2.2-8)

Fig. 2.2.3 explains our saturation function more clearly.

After applying the modified saturation function, we normalize the input data using

the following equation:

 �̂�𝑖 =
𝑓(𝑥𝑖)

√∑ 𝑓(𝑥𝑘)2𝑁
𝑘=1

 (2.2-9)

We use the normalization function provided by Scikit-learn [15]. Finally, the

preprocessed data is fed into our neural network.

Fig. 2.2.3 Modified saturation function

2.2.3 Instruction Layer

This layer also consists of two stages: the speech recognition stage, and the

conversion stage.

0

2.5

5

7.5

10

12.5

0 1 2 3 4 5 6 7 8 9 10

output reading
(m)

input reading (m)

doi:10.6342/NTU201703341

 24

 Speech Recognition 2.2.3.1

We implement the speech recognition stage to make our robot receive human

instructions directly. Users can command the robot verbally instead of typing

instructions into the remote computer.

In this research, we use the python package, SpeechRecognition, to implement our

speech recognition function [16]. This package supports seven speech recognition

engines and APIs, namely CMU Sphinx, Google Speech Recognition, Google Cloud

Speech API, Wit.ai, Microsoft Bing Voice Recognition, Houndify API, and IBM Speech

to Text. We choose to use Google Speech Recognition due to its ease of implementation

and high recognition accuracy.

Verbal instruction inputted will be converted into text in this stage.

 Conversion 2.2.3.2

The conversion stage first splits the input instruction into several shorter ones to

handle the situation where the given instruction is too long and complex. The split

instructions are called simple instructions, and they are inputted into the neural

network sequentially. We will explain the method of splitting in the next chapter.

Before inputting a simple instruction into the neural network, the conversion stage

converts each word in the instruction into vector. A pre-trained Global Vectors for Word

Representation (GloVe) model is used here, and we decide to use a 100-dimension

vector to represent one word [17]. We use the concept of word vectors to have our

program consider the semantic information contained in user instructions.

For each simple instruction, we sequentially fed its word vectors into our neural

network. The set of all word vectors of a simple instruction is called the sentence

vector of that instruction.

doi:10.6342/NTU201703341

 25

2.2.4 Neural Network Model

Fig. 2.2.4 shows the structure of our neural network model. It consists of two

stages. The red box in Fig. 2.2.4 indicates the first one.

Fig. 2.2.4 Structure of neural network model

The first stage is a Long short-term memory (LSTM) layer 𝐿𝑆𝑇𝑀𝑤. It takes the

sequence of word vectors (𝑤1, 𝑤2, … , 𝑤𝑛), which is generated from a simple instruction,

as input, and outputs the instruction vector 𝑍𝑤 to the second stage. Here 𝑛 is variant

since the length of each simple instruction is not fixed.

𝐿𝑆𝑇𝑀𝑤 serves as an instruction classifier. We aim to use vector 𝑍𝑤 to represent

the class of the given simple instruction. We define ten basic instruction classes in our

research. Each simple instruction will be classified into one of these classes, and the

navigation system will decide the actions to take according to the obtained class. We

will give a definition of basic instruction class, and explain how we classify instructions

into ten classes in Chapter 3.

Since we aim to classify simple instructions into different classes, Softmax

activation function is used in 𝐿𝑆𝑇𝑀𝑤:

 𝜎(𝒁)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑘𝑁
𝑘=1

 (2.2-11)

doi:10.6342/NTU201703341

 26

The second stage combines a fully-connected neural network with another LSTM

layer 𝐿𝑆𝑇𝑀𝑓𝑢𝑠𝑒𝑑. At time step 𝑖, the fully-connected neural network uses the sensor

data (𝑙𝑖1, 𝑙𝑖2, … , 𝑙𝑖𝑁) from laser range finder to calculate its output 𝑍𝑠𝑖. 𝑁 denotes the

number of measurement steps, and 𝑙𝑖𝑘 represents the k
th

 sampling point. Next, 𝑍𝑤 and

𝑍𝑠𝑖 are concatenated and fed into 𝐿𝑆𝑇𝑀𝑓𝑢𝑠𝑒𝑑 . The second LSTM layer will then

calculate the velocity pair (moving, rotating) for controlling the mobile robot.

As for the activation functions, we choose to use ReLU in the fully-connected

neural network, since all the input data from laser range finder are positive:

 𝜎(𝒁)𝑖 = max (0, 𝑧𝑖) (2.2-11)

In 𝐿𝑆𝑇𝑀𝑓𝑢𝑠𝑒𝑑 , we simply choose linear activation function since the outputs

represent speeds and can be either positive or negative.

It should be noticed that the output of our neural network model will affect the

input of it. That is, different velocity commands will lead the robot to different positions,

and thus readings of the laser range finder will be different.

2.2.5 Post-processing Layer

The post-processing layer is composed of two functions: the speed adjusting

function, and the halting counter.

 Speed Adjusting Function 2.2.5.1

The speed adjusting function consists of two sub-functions. It is unlikely that the

neural network will output pure zero. Therefore, when the output is below a certain

value, we assume that the neural network is intending to stop the robot. We define the

minimum value 𝑣𝑚𝑖𝑛 to be 10−3. The first sub-function changes either the moving

velocity or rotating velocity to 0 when its absolute value is smaller than 𝑣𝑚𝑖𝑛.

The second sub-function prevents the navigation program from outputting

doi:10.6342/NTU201703341

 27

velocities which are too slow for the mobile robot to move with. Due to the physical

constraints, such as friction, in real world, it is not possible for the robot to move with a

speed which is below some certain value. However, when the output is above the

minimum value 𝑣𝑚𝑖𝑛, we assume that the neural network is intending to move the robot.

Therefore, we need to increase the output velocity when the output lies in this range in

order to make the robot move. We define the minimum moving velocity 𝑣𝑚𝑜𝑣𝑒 to be

2 ∗ 10−2. When the absolute value of output velocity is above 𝑣𝑚𝑖𝑛 and below 𝑣𝑚𝑜𝑣𝑒,

the second sub-function will pull it up to 𝑣𝑚𝑜𝑣𝑒. This prevents the robot from getting

stuck at the same position while the network is telling the robot to move.

To sum up, the speed adjusting function can be expressed by the following

equation:

 𝑓(𝑣) = {

0, |𝑣| ≤ 𝑣𝑚𝑖𝑛

𝑠𝑔𝑛(𝑣) ∗ 𝑣𝑚𝑜𝑣𝑒 , 𝑣𝑚𝑖𝑛 < |𝑣| ≤ 𝑣𝑚𝑜𝑣𝑒

𝑣, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.2-12)

 Here 𝑣𝑚𝑖𝑛 = 10−3 and 𝑣𝑚𝑜𝑣𝑒 = 2 ∗ 10−2 , and 𝑣 represents the moving or

rotating velocity outputted by the neural network model.

 Halting Counter 2.2.5.2

This counter decides when the program stops. When completing the navigation

process, the mobile robot should stop at its final position. Therefore, if the neural

network model is trained well, our program should constantly output (𝑚𝑜𝑣𝑖𝑛𝑔,

𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔) = (0, 0) after the robot reach its destination. We can assume that the robot

has completed its navigation if the program continuously outputs (0, 0) for a number

of time steps.

The halting counter counts the number of continuous zero outputs. If this number

is above a certain value, the counter sends a stopping signal back to the neural network

doi:10.6342/NTU201703341

 28

layer and the conversion stage inside the instruction layer. The former will clear its

memory, preparing to execute a new navigation task. The latter will load the next

instruction into the network model. After that, the counter is set to zero, and the

program continues the navigation. If there is no instruction left, the entire program

stops.

In this research, we set the number of time steps to stop the process to be 50, which

is approximately 5 seconds.

doi:10.6342/NTU201703341

 29

Chapter 3 Training Data Set

In this chapter, we will describe the training data set we use to train our neural network

model. The training data set is composed of two parts: basic instruction sets, and human

controlled navigating records. We will first describe the type of instructions we consider

in our research. Next, we explain our method of generating the instruction training data

set and that of collecting the navigation records. We will also introduce the teleoperation

program we design for this research, and discuss the advantages of using such data

structure for our training database.

3.1 Instruction

In the previous chapter, we have mentioned that we use laser range finder as the

main sensor of our system. Despite the advantages we discussed, some information

cannot be acquired by the laser range finder. For example, it is not easy to achieve

object recognition using such sensor. Room number cannot be detected, either. Thus, we

have to specify the instructions we consider in our research more clearly.

In short, we only consider instructions describing the structure of indoor

environments. That is, aisles, corners and rooms are to be discussed. Higher level

semantic instructions are not considered, such as room or aisle number, which needs

more sensors to get enough information.

In our application, most of the given instructions are short and simple, like ‘Turn

right, and then go straight to the end of the aisle.’ However, for cases with complex

indoor environments, the longer the path that instructors command the robot to move,

the more complex their instructions become. We consider it difficult for the robot to

complete such complicated instructions, since it is not possible for the neural network to

doi:10.6342/NTU201703341

 30

‘remember’ so much information contained in the instruction. Therefore, our method is

to split the original instruction into several shorter, simpler instructions.

 After we divide the original instruction into many simple instructions, the goal of

our navigation system is to make the mobile robot move to specific positions according

to these simple instructions in sequence. To decide what actions to take for each simple

instruction, we classify instructions into several classes. A basic instruction class is

defined to be a set of simple instructions that have similar meanings. Each class has a

basic instruction that represents the class. Fig. 3.1.1 and Table 3.1-1 show the ten basic

instruction classes we define in this research, as well as their representative basic

instructions.

Path / Class Number Representative Basic Instructions

1 Go straight to the end

2 Turn right

3 Turn left

4 Go back (turn around)

5 Turn right at the second corner

6 Turn left at the second corner

7 Turn right at the third corner

8 Turn left at the third corner

9 Go straight to the end and turn right

10 Go straight to the end and turn left

Table 3.1-1 Class of simple instructions

doi:10.6342/NTU201703341

 31

Fig. 3.1.1 Ten paths corresponding to ten classes of simple instructions

 It should be noticed that the second basic instruction contains two different

meanings: ‘Turn right immediately’, and ‘Turn right at the first corner’. So is the third

instruction.

Since our application is under indoor environments, and we use laser range finder

as the sensor, we assume that these ten basic instructions suffice to describe the

sequential steps of conducting a complete navigation. That is, we can use these basic

instructions to construct all the legal instructions we consider in this research. Therefore,

all the simple instructions split out from the original instruction can be classified into

one of these basic instruction classes.

Now we explain our method of splitting user commands into simple instructions.

Since each basic instruction contains enough information, it is not possible that a person

may say such a long sentence containing more information than the basic instruction

without a pause. Therefore, we simply use punctuation marks to split sentences into

simple instruction.

 The idea of splitting instruction into simple ones, converting each word into word

vector to construct the sentence vectors for each simple instruction, and executing them

sequentially can be described by Fig. 3.1.2. After completing the execution of some

simple instruction, the robot will enter a different position from its previous point. And

then, it will execute the next simple instruction to reach its next local destination. By

doi:10.6342/NTU201703341

 32

executing these instructions sequentially, the robot will finally get to the location

indicated by the original instruction.

Fig. 3.1.2 Example of executing a complex instruction

 We collect ten sets of simple instructions corresponding to the above ten classes to

train our model. These ten sets are called basic instruction sets, and each of them

should be a subset of their corresponding basic instruction class. In the next section, we

describe how we construct these ten sets.

3.2 Basic Instruction Sets

In Chapter 2, we mention that we design a neural network model that classifies

verbal instructions into ten basic instruction classes. To construct a database for training

such a classification model, a straightforward approach is to collect thousands of

instructions and label them manually. However, there is no online instruction database

that can be direct used for training our model. Most of the commonly used databases

contain high-level semantic information, such as room numbers or features that can only

be captured by camera. These instructions cannot be classified into any of our

instruction classes. Besides, typing numerous different instructions will be a tedious

work. Therefore, we design an algorithm that can generate instructions using small

collections of phrases.

doi:10.6342/NTU201703341

 33

To construct a sufficient training database, we first manually create sets of phrases.

Each of these sets plays a different role in constructing a complete instruction sentence.

While generating instructions, our algorithm chooses some of these sets, randomly picks

one phrase from every chosen set, combines these phrases to form an instruction

sentence, and labels the sentence according to the sets it chose. The process of

generating a complete instruction sentence is described by Fig. 3.2.1. Each of the boxes

represents a collection of phrases.

Fig. 3.2.1 Process of generating a complete instruction sentence

The sets of phrases are as follows:

1. Prefix: Phrases or words that can be attached to the beginning of instruction

sentences, without changing the meaning of instructions.

For example: ‘Please …’, ‘Would you …’, ‘I need you to …’

2. Suffix: Phrases or words that can be attached to the end of instruction sentences,

without changing the meaning of instructions.

For example: ‘… please.’, ‘… and stop.’, ‘… thank you.’

3. Class 1: Phrases used to construct Class 1 instruction sentences.

For example: ‘go straight to the end’, ‘walk down this aisle’

doi:10.6342/NTU201703341

 34

4. Class Turn: Phrases used to construct Class 2, Class 3, and Class 5 to Class 10

instruction sentences. Phrases belonging to this set can be directly classified into

Class 2 or Class 3 basic instruction, and appending phrases from the Suffix Turn

set to their end may make them become Class 5 to Class 10 basic instruction.

For example: ‘turn right’, ‘make a left’

5. Prefix Turn: Phrases that can be attached to the front of phrases from Class Turn

without changing the meaning of constructed instruction sentences.

For example: ‘go straight and’, ‘walk down this way and’

6. Suffix Turn:

There are two kinds of phrases that belong to this set:

A. Phrases that can be attached to the end of phrases from Class Turn without

changing their classification. For instance, ‘turn right’ and ‘turn right at the corner’

both belong to Class 2 basic instruction.

For example: ‘at the corner’, ‘at the crossroad’

B. Phrases that can be attached to the end of phrases from Class Turn to change their

classification, making them become Class 5 to Class 10 basic instruction. For

instance, ‘turn right’ belongs to Class 2 basic instruction, but ‘turn right at the

second corner’ belongs to Class 5 basic instruction.

For example: ‘at the second corner’, ‘at the end of this aisle’

7. Class 4: Phrases used to construct Class 4 instruction sentences.

For example: ‘go back’, ‘turn around’

8. Others: Phrases that cannot be classified into any of the above sets.

For example: ‘go straight to the end and turn right’

It should be noticed that we convert each word in the instruction into word vector

by GloVe before importing into our neural network. Since word vector represents the

doi:10.6342/NTU201703341

 35

meaning of that word to a certain extent, we assume that our model can be trained

successfully without having seen every word. Therefore, the collections of phrases do

not need to contain every possible phrase.

Now, we give some examples of generating instruction sentences for our training

database, i.e., the ten basic instruction sets.

 Prefix + Class 1 + Suffix → Class 1 basic instruction

‘Could you’ + ‘go straight till the end’ + ‘please’ = ‘Go straight to the end’

 Prefix Turn + Class Turn + Suffix → Class 2 basic instruction

‘Go straight and’ + ‘make a right turn’ + ‘please’ = ‘turn right’

 Prefix + Class Turn + Suffix Turn → Class 5 basic instruction

‘Please’ + ‘make a right turn’ + ‘at the second intersection’ = ‘Turn right at the

second corner’

For each basic instruction set, we consider all possible combinations of sets of

phrases that generate sentences for it. This method greatly increases the amount of

training data for training our neural network model. Experiments show that the

classification accuracy of our model, as well as the ability to handle new, unfamiliar

instructions is improved using such expanded database.

It should be noticed that some of the generated sentences are not grammatically

correct. For example, the sentence ‘Please turn right please’ is not proper since the word

‘please’ is used twice. However, we consider that including such sentences in our

training database is legal.

Our neural network model does not need to know what kinds of instructions are

grammatically correct. Its function is to classify instructions, extracting semantic

information from user commands. As long as the given sentence refers to the correct

doi:10.6342/NTU201703341

 36

class of basic instruction, we consider it useful in training. Besides, people often use

incorrect grammar when speaking. Using such sentences in our training database gives

our model the ability to handle the variety and complexity of verbal instructions.

3.3 Human-Controlled Navigating Records

3.3.1 Database

A human-controlled navigating record is a set of recording sequences. Each

recording sequence contains hundreds of sampling data, where every sampling data

consists of the velocity of the robot and readings of its laser range finder at that

sampling moment. One recording sequence is considered as one training data sequence.

While collecting training data, we let a person remote robot to the destination according

to a specific basic instruction, and during the navigation we collect the (𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦,

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) pairs. By doing so we obtain a sequence that describe the expected

behavior of a robot after receiving an instruction.

Fig. 3.3.1 shows an example of our recording files. An indicator is added to the

beginning of every recording sequence, while another one is used at the end of each

sequence. In Fig. 3.3.1 we use red box and blue box to annotate the starting and ending

indicator. The starting indicator also shows the class of the recording sequence.

The yellow underline in Fig. 3.3.1 shows an example of a sampling data. The

former part is the (moving, rotating) velocity pair, while the latter part is the

measurements from laser range finder. After preprocessing the latter part is used as part

of the input of our neural network, while the former part serves as the referenced label

during training process.

doi:10.6342/NTU201703341

 37

Fig. 3.3.1 Example of the recording files

3.3.2 Teleoperation Program

To collect human-controlled navigating records, we give users some basic

instructions and record the (velocity, measurement) pairs during their navigation. To

fulfill such task, a teleportation program is required to let the user control and navigate

the robot. Since we develop our navigation system on ROS, a straightforward method is

to use the ROS node teleop_twist_keyboard [14]. However, it is hard to perform natural

navigation using such program due to its maneuverability. To let the user navigate the

robot smoothly, we design our unique teleoperation program.

We first describe the disadvantages of using teleop_twist_keyboard as the

teleportation program. Fig. 3.3.2 shows the control method of teleop_twist_keyboard.

Eight keys are used to control the direction of moving, while six keys are used for

adjusting the speed. Some problems of using this program are as follows:

 If you want the robot to move continuously, you need to hold the keys. Pressing the

key once will make the robot move for a small distance and stop.

 It is hard to adjust the rotating velocity, i.e., the angular speed. That is, when the

doi:10.6342/NTU201703341

 38

robot is moving straight, controlling it to rotate is difficult.

 Extra keys are needed to adjust the speed of moving. It will be tedious to gradually

slow down or speed up the robot.

 The control is not intuitive. Using arrow keys will be much better.

Fig. 3.3.2 Control method of teleop_twist_keyboard

To solve the above questions, we develop our teleoperation program. Its control

method is shown in Fig. 3.3.3.

It should be noticed that the robot rotates only when the user is holding the Left or

Right key. For example, although the rotating velocity gradually increases when the user

holds the Left key, it will be set to 0 when user releases the button. Therefore, the robot

will not keep rotating once you press the arrow key.

The advantages of our program are as follows:

 Only five keys are used. Arrow keys are used to control the direction and speed of

the robot, and user can directly adjust the moving and rotating velocity. Therefore,

the control is more intuitive.

 When the user wants to accelerate the robot, he can hold the Up key to gradually

speed up. User can also slightly adjust robot’s moving speed.

 Pressing Left or Right key can slightly adjust the robot’s direction, while holding it

doi:10.6342/NTU201703341

 39

can make the robot rotate and turn left or right. While rotating the robot, releasing

the Left or Right key will stop its rotation.

 You do not need to hold the keys to make the robot move continuously. After

pressing the Up key, the robot will continue moving until moving velocity is

decreased.

Fig. 3.3.3 Control keys of our teleoperation program

 By using such teleoperation program, it will be much easier to control the robot

and collect the navigation records for training database. Natural navigation can also be

achieved.

3.4 Features and Advantages

As mentioned before, our training data set consists of the human-controlled

navigating records and ten basic instructions sets. All instructions in each basic

instruction set have similar meanings, and can be represented by the basic instruction of

that set. Each recording sequence contains a sequence of (𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)

pairs, and is collected according to some basic instruction.

During training process, the neural network model uses measurement as part of the

input—the other part comes from basic instructions sets—and the velocity as referenced

labels. This model tries to make its outputs correspond to the reference velocities given

by human. Thus, by using this model, robots would adjust its velocity according to the

doi:10.6342/NTU201703341

 40

readings of its sensor at that moment and the given initial instruction. It can be expected

that the robot will move smoothly as if there is a person controlling it.

While training neural network model, for instance if we want to train the ‘turn right’

instruction, our algorithm will randomly pick one instruction from the ‘turn right’ basic

instruction set, convert it into sentence vector, and use the vector as part of the input.

For one training data sequence, this sentence vector will be fixed; however, for one

recording sequence, we may pick different instructions from the same set, and thus

would obtain different training input. By doing so, we make great use of the navigating

records. For example, supposing we records 1,000 sequences for the ‘turn left’

instructions, and we construct its instruction set to have 100 instructions. By combining

these two we obtain 100,000 different training sequences, and thus we could gather

huge amount of training data using fewer recording sequences.

Another benefit of using such data structure for our training database is that we can

easily add more instructions into the instruction sets to extend them, without having to

collect the training data sequences again. Also, when recording new training sequences,

there is no need to give a precise instruction. We will only need to specify the class of

basic instructions being executed. Therefore, it would be much easier to expand the

training data set. This method also gives good extensibility to the model. In this paper

we classify simple instructions into ten basic instruction classes. If we want to add more

classes of basic instructions into the original model, we only need to construct a new set

of instructions, and records new sequences to train the model.

doi:10.6342/NTU201703341

 41

Chapter 4 Training and Experiments

In this chapter, we first describe how we implement and train our neural network model.

We will also discuss how we choose which model to use and how we validate the model.

Next, we describe the experiments conducted in simulation and real environment. We

analyze the effectiveness of our navigation system by observing the recorded navigation

paths and comparing the results with those of humans.

4.1 Training Models

4.1.1 Implementation

We use Keras to implement our neural network [18]. The network structure is as

described in Chapter 2. Since our application can be considered a regression problem,

we use mean squared error (MSE) function as the loss function. Our training program

consists of the following steps:

1. Load in the GloVe model for converting words into vectors.

2. Load in the training data set. For each recording sequence, a corresponding simple

instruction sentence is assigned.

3. Build the neural network model, or load in an old, pre-trained model for further

training.

4. Start training. The batch size is set to be the maximum value that the computer can

afford in memory

5. At the end of every epoch, the model is validated. Models with the lowest loss

value or the best validation result will be saved. We will describe this part in the

next section.

6. The training process stops only when user interrupts it. If the user interrupts the

program, current model is saved.

doi:10.6342/NTU201703341

 42

Model with the lowest loss value is usually the best one. However, to prevent

overfitting, we need to validate the model using testing data.

4.1.2 Validation

We evaluate the effectiveness of our neural network during the training process

from two aspects. One is the value returned by loss function. Since we use moving and

rotating speeds as training labels, the overall problem should be considered as a

regression problem instead of classification. Thus, the loss value could present the

effectiveness of our models to a certain extent. However, to prevent overfitting, we

develop a validation function to evaluate our models over testing data.

The validation function aims to classify the velocity output of each time step into

‘correct’ or ‘wrong’ output. In the function, error between each label and the network

output is calculated. If the value is below a certain threshold, we consider the output a

correct one. Besides, if all outputs of an input sequence are correct, we assume that the

destination could be reached. During the training process, we count the number of

correct outputs in each sequence, and the number of destinations that could be reached.

These two values are used to evaluate the effectiveness of models.

However, it should be noticed that the outputs of our navigation system will affect

the input of it. That is, moving at different speeds may result in getting different sensor

data. If the output varies a lot from the label, input sequence after this output should be

considered invalid. Accumulation of small errors will also produce the same effect.

Thus, the validation function should stop counting the number of correct outputs after

the accumulation of errors exceeds a certain threshold. Whether the destination would

be reached should not be considered either.

To sum up, we define the error of moving and rotating speed at time step 𝑖 as

follows:

doi:10.6342/NTU201703341

 43

 𝑑𝑖 = 𝑣𝑖,𝑟𝑒𝑓 − 𝑣𝑖,𝑜𝑢𝑡 (4.2-1)

 𝑒𝑖 = 𝜔𝑖,𝑟𝑒𝑓 − 𝜔𝑖,𝑜𝑢𝑡 (4.2-2)

 Here 𝑑𝑖 and 𝑒𝑖 refer to the error of moving and rotating speed respectively. In

addition, 𝑣 and 𝜔 refer to moving velocity and angular velocity, while 𝑟𝑒𝑓 and 𝑜𝑢𝑡

denotes the velocity of labels and network outputs respectively.

Next, we define the accumulation of errors after 𝑖 time steps as follows:

 𝐷𝑖 = ∑
𝑑𝑖

𝑓

𝑖
𝑘=1 (4.2-3)

 𝐸𝑖 = ∑
𝑒𝑖

𝑓

𝑖
𝑘=1 (4.2-4)

Here 𝑓 denotes the sampling frequency of the laser range finder, while 𝐷𝑖 and

𝐸𝑖 represents the errors in distance and angles after 𝑖 time steps respectively. At last,

we define four threshold values. They give restrictions to the maximum tolerable errors

at every time step, and the tolerable accumulated errors. For each testing sequence, the

validation function calculates 𝑑𝑖, 𝑒𝑖, 𝐷𝑖 and 𝐸𝑖 over each time step. If both 𝑑𝑖 and

𝑒𝑖 are below their threshold values, the output is considered correct. Once 𝐷𝑖 or 𝐸𝑖

exceeds the threshold value, the function stops testing on that sequence of data and

continue to the next one. Finally, we use the number of correct outputs and reached

destinations to evaluate our network model.

Each validated model has two validation values [𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛] . We

assume that models with higher 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 values are better than those with lower

values. If two models have the same 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 values, one with higher 𝑐𝑜𝑟𝑟𝑒𝑐𝑡

value is considered better.

4.1.3 Monitors

To decide which model to use at last, we design two monitors to keep track on the

loss value and validation values.

doi:10.6342/NTU201703341

 44

The first monitor is called loss monitor. While training, we can obtain the loss

value of current model. Loss monitor records the lowest loss value we had ever obtained.

It helps decide whether to save the current model. If the model’s loss value is lower than

that recorded in loss monitor, the model is saved and the monitor is updated.

The second monitor is called the validation monitor. Similarly, it records the best

validation values, and helps save the model with the best validation result.

Fig. 4.1.1 shows how these monitors work during training process. It can be seen

that both monitors are updated once, and thus two new models are saved.

Fig. 4.1.1 Loss monitor and validation monitor

To sum up, we keep 3 models during our training process. One is the current model,

which will be saved when the program stops. Another one is the model with the lowest

loss value. Its loss value is recorded by the loss monitor. The last one is the model with

the best validation result. Its validation values [𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛] are recorded by

the validation monitor.

We found that models with lower loss values often have better validation results.

That is, two monitors show consistency in our research.

doi:10.6342/NTU201703341

 45

4.2 Experiments and Results

4.2.1 Simulation

We simulate our system under the Gazebo simulating environments [19]. We

choose twenty different starting positions among all the maps, and at each position we

let the robot execute 100 legal simple instructions. 80 of them are instructions recorded

in the basic instruction sets, while the rest are new instructions with similar meanings to

some basic instructions. If the robot stops its navigation at a proper position without

bumping into any obstacle, we consider it a successful navigation. The results show that

for each basic instruction, the robot can navigate to the desired positions.

To analyze the results and compare our navigation paths with human controlled

navigation path, we use rviz to record the paths and structures of environments

observed by laser range finder during navigation [20]. Fig. 4.2.3 to Fig. 4.2.6 shows

some examples of the success navigation paths and the indoor environment structures.

In these figures, the red paths represent results from our system, while green paths

indicate the paths produced by humans. The circles indicate the staring positions, while

triangles specify stopping positions. However, for the results of Class 4 instructions

‘Turn around’, we use red arrows to indicate the starting positions and directions of the

robot, and green arrows to represent the stopping ones.

We will discuss the experiment results and comparisons in the Comparison section.

4.2.2 Real Environment

We test our navigation system on the first and third floors of National Taiwan

University Building for Research Excellence . We choose several different starting

positions, giving different simple instructions to the robot and observe its behaviors. It

turns out that the robot could end up at the proper positions as well. A demonstration

doi:10.6342/NTU201703341

 46

video is provided to show our results.

Fig. 4.2.1 shows the environment in which we test our system. The red dots

indicate the staring positions, while the blue ones specify the destinations. Some

instructions are designed to make the robot navigate from these starting positions to

these particular destinations. We aim to have the robot move to these locations using

such instructions, instead of giving it a legal simple instruction and see whether it can

stop at a proper position. The results show that as long as the instruction is correct, our

robot is able to navigate to the desired location.

Fig. 4.2.2 shows a screenshot of our demonstration video. The sub-screen shows

the measurements obtained by the laser range finder, which are displayed in rviz. We

can observe the structure of environment from the sub-screen. Therefore, we can judge

whether our robot is taking the right action at that moment.

4.2.3 Interpolation

We use Hokuyo UTM-30LX on our warehouse robot ‘Penguin’. To verify the

effectiveness of our interpolation stage, we change the laser range finder to URG-04LX

in simulation. Their detection ranges, angular resolutions and maximum measuring

distance are all different. However, the results show that robot using URG-04LX as its

sensor has similar performance to that using the original sensor.

In each experiment, the starting position and the given instruction remain the same.

We only change the type of laser range finder to observe the changes in behavior during

navigation. In short, we find little difference between navigation paths generated by

UTM-30LX and those by URG-04LX. It is proper to say that our interpolation function

works well.

doi:10.6342/NTU201703341

 47

(a) Floor plan for 1
st
 floor

(b) Floor plan for 3
rd

 floor

Fig. 4.2.1 Floor plans of Building for Research Excellence

doi:10.6342/NTU201703341

 48

Fig. 4.2.2 Screenshot of the demonstration video

Instruction Number Testing Times Success Times Success Rate

1 263 242 0.9202

2 257 185 0.7198

3 264 177 0.6705

4 241 209 0.8672

5 178 74 0.4157

6 185 83 0.4486

7 76 17 0.2237

8 62 14 0.2258

9 238 133 0.5588

10 236 140 0.5932

Total 2000 1274 0.6370

Table 4.2-1 Success rate of each basic instruction

doi:10.6342/NTU201703341

 49

Class 1 Class 2

Fig. 4.2.3 Experiment results of Class 1 and Class 2 instructions

(a) (d)

(e) (b)

(c) (f)

doi:10.6342/NTU201703341

 50

Class 3 Class 4

Fig. 4.2.4 Experiment results of Class 3 and Class 4 instructions

(a)

(d)

(e) (b)

(c) (f)

doi:10.6342/NTU201703341

 51

Class 5 Class 6

Fig. 4.2.5 Experiment results of Class 5 and Class 6 instructions

(a)

(d)

(b)

(c)

doi:10.6342/NTU201703341

 52

Class 7 Class 8

Fig. 4.2.6 Experiment results of Class 7 and Class 8 instructions

4.2.4 Comparisons

We can compare the results of our system with those produced by humans in the

above figures. Table 4.2-1 shows the success rate of each basic instruction. Some

features and problems can be observed:

 In most cases, our system can navigate the robot smoothly. The generated paths are

straightforward and intuitive, and are very close to the shortest paths to complete

these instructions. Examples can be seen in Fig. 4.2.4 (b), Fig. 4.2.5 (b) and Fig.

4.2.6 (a). In such case, there is little difference between the path of our system and

(a) (b)

doi:10.6342/NTU201703341

 53

that of humans.

 The paths generated by humans have sharper turns than those generated by our

navigation system.

 While executing the ‘Go straight to the end’ instruction, our system usually stops

the robot at a closer distance than human does. This can be seen in Fig. 4.2.3 (a)

and Fig. 4.2.3 (b), where the red triangles are closer to the walls than the green

ones.

 Compared with the robot controlled by humans, robot controlled by our system

often stops at a position closer to the side wall after performing a right or left turn.

This can be observed in Fig. 4.2.4 (c) and Fig. 4.2.5 (c).

 While turning right or left, the robot often performs a two-stage turn in our system.

Fig. 4.2.4 (c) and Fig. 4.2.5 (c) shows some examples. This results in a longer

navigation path.

 It is hard for our system to control the robot to stay in the middle of the road. The

robot sometimes gradually moves close to the side walls, and ends up bumping

into them. This phenomenon can be observed in Fig. 4.2.4 (c) and Fig. 4.2.6 (b).

Therefore, when the distance of path become longer, the success rate drops.

 Although it cannot be seen from the figure, the cost of time for these navigations

are all very low; sometimes the robot even moves with a faster speed than human

does, and the destination can still be reached successfully.

 The system spends most of its time turning right and left. When performing a

two-stage turn, the robot often temporarily stops in the middle of the road.

However, the robot can still get to the correct position eventually.

 The mobile robot may execute wrong instructions during navigation. For example,

while executing the ‘go straight to the end’ instruction, seldom it will choose to

doi:10.6342/NTU201703341

 54

turn right when it observes that there is a way on its right hand side. We observe

that adding more training data to the training set would improve this situation to

some extent.

 From Table 4.2-1, we can observe that the success rate drops when the distance of

path become longer. We assume that when robots need to travel long distances, the

chance of making wrong decisions increases, and the accumulation of small errors

may result in failure. This is because the output of our program will affect its input,

and thus any small error in the output velocity has a great effect on the final result

of navigation.

Some of the above problems will affect the execution of the next instruction, such

as stopping at a position close to the wall, or executing wrong instructions. Therefore, to

make our robot execute more complex navigation instructions, we aim to find solutions

for these problems in the future.

doi:10.6342/NTU201703341

 55

Chapter 5 Conclusions and Future Works

In this paper we present a neural network based model that make mobile robots

capable of navigating through unknown indoor environments according to the given

verbal instructions. The navigating system splits instructions expressed in natural

language into several simple instructions, and compute the sentence vector for each of

them. The sentence vector along with the readings of laser range finder mounted on the

mobile robots is given to the neural network as input data. The model will calculate the

moving and rotating speed of robot, leading it to new positions. New data acquired from

sensor will then be used to calculate the next movement of the robot. The process will

continue until the robot stops at one position for a time period—that is, the robot arrives

at the destination. And then, the next sentence vector will be executed.

The difference between our methods and others is that we do not decide local or

global goal positions for robots to navigate to, since the application is under unknown

environment. Instead we decide the velocity at the next time step. Moreover, we do not

aim to construct probabilistic models for keywords used in instructions. We use the

concept of word vector and machine learning to handle the complexity and variety of

instructions. We provide a unique solution to the problem of auto navigation under

unknown indoor environments, and experiments show that our system could make

mobile robots navigate to the correct positions under both simulation and real-world

environments.

For future work, we first plan to add more sensors to our system. Using visual

sensors will allow robots to handle higher level instructions. In addition, extra sensors

could also be used to detect dynamic objects. We plan to add different types of training

data into the training set gradually, including the records of avoiding obstacles and

doi:10.6342/NTU201703341

 56

searching for the right directions. We expect that the model could learn to handle more

issues during navigation. Besides, we plan to increase complexity of the instructions,

adding and modifying the basic instruction sets. Problems proposed in Chapter 4, such

as decreasing of success rate under long traveling distances, are to be solved too.

doi:10.6342/NTU201703341

 57

REFERENCE

[1] D. W. Ko, C. Yi and I. H. Suh, "Semantic mapping and navigation: A Bayesian

approach," 2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems, Tokyo, 2013, pp. 2630-2636.

[2] B. Talbot, O. Lam, R. Schulz, F. Dayoub, B. Upcroft and G. Wyeth, "Find my

office: Navigating real space from semantic descriptions," 2016 IEEE

International Conference on Robotics and Automation (ICRA), Stockholm, 2016,

pp. 5782-5787.

[3] X. Zhang, B. Li, S. L. Joseph, J. Xiao, Y. Sun, Y. Tian, J. P. Muñoz and C. Yi, "A

SLAM Based Semantic Indoor Navigation System for Visually Impaired Users,"

2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon,

2015, pp. 1458-1463.

[4] O. M. Mozos, C. Stachniss and W. Burgard, "Supervised Learning of Places from

Range Data using AdaBoost," Proceedings of the 2005 IEEE International

Conference on Robotics and Automation, 2005, pp. 1730-1735.

[5] B. Kaleci, Ç. M. Şenler, H. Dutağacı and O. Parlaktuna, "A probabilistic approach

for semantic classification using laser range data in indoor environments," 2015

International Conference on Advanced Robotics (ICAR), Istanbul, 2015, pp.

375-381.

[6] L. Shi, R. Khushaba, S. Kodagoda and G. Dissanayake, "Application of CRF and

SVM based semi-supervised learning for semantic labeling of environments,"

2012 12th International Conference on Control Automation Robotics & Vision

(ICARCV), Guangzhou, 2012, pp. 835-840.

doi:10.6342/NTU201703341

 58

[7] N. Sünderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P. Corke, G. Wyeth,

B. Upcroft and M. Milford, "Place categorization and semantic mapping on a

mobile robot," 2016 IEEE International Conference on Robotics and Automation

(ICRA), Stockholm, 2016, pp. 5729-5736.

[8] R. Goeddel and E. Olson, "Learning semantic place labels from occupancy grids

using CNNs," 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Daejeon, 2016, pp. 3999-4004.

[9] H. J. Chang, C. S. G. Lee, Y. H. Lu and Y. C. Hu, "P-SLAM: Simultaneous

Localization and Mapping With Environmental-Structure Prediction," in IEEE

Transactions on Robotics, vol. 23, no. 2, pp. 281-293, April 2007.

[10] D. P. Ström, F. Nenci and C. Stachniss, "Predictive exploration considering

previously mapped environments," 2015 IEEE International Conference on

Robotics and Automation (ICRA), Seattle, WA, 2015, pp. 2761-2766.

[11] “ROS/Introduction - ROS Wiki”, http://wiki.ros.org/ROS/

Introduction, Accessed: 2017-07-12.

[12] “ros_control - ROS Wiki”, http://wiki.ros.org/ros_control,

Accessed: 2017-07-10.

[13] “hokuyo_node - ROS Wiki”, http://wiki.ros.org/hokuyo_node,

Accessed: 2017-07-10.

[14] “teleop_twist_keyboard - ROS Wiki”, http://wiki.ros.org/teleop_

twist_keyboard, Accessed: 2017-07-10.

[15] “sklearn.preprocessing.normalize — scikit-learn 0.18.2 documentation”,

http://scikit-learn.org/stable/modules/generated/sklear

n.preprocessing.normalize.html, Accessed: 2017-07-12.

[16] “SpeechRecognition 3.7.1: Python Package Index - PyPI”,

http://wiki.ros.org/ros_control

doi:10.6342/NTU201703341

 59

https://pypi.python.org/pypi/SpeechRecognition/, Accessed:

2017-07-13.

[17] J. Pennington, R. Socher, C. D. Manning, "Glove: Global vectors for word

representation", Proceedings of the Empiricial Methods in Natural Language

Processing (EMNLP 2014), vol. 12, pp. 1532-1543, 2014.

[18] “Keras Documentation”, https://keras.io/, Accessed: 2017-07-13.

[19] “Gazebo”, http://gazebosim.org/, Accessed: 2017-07-14.

[20] “rviz - ROS Wiki”, http://wiki.ros.org/rviz, Accessed: 2017-07-14.

[21] Charly Huang, “採樣式路徑規劃與立體即時建圖及定位於具社交感知之服務

型機器人應用”, 臺灣大學電機工程學研究所學位論文, pp. 1–159, 2016

[22] H. M. Gross, H. J. Boehme, C. Schroeter, S. Mueller, A. Koenig, Ch. Martin, M.

Merten and A. Bley, "ShopBot: Progress in developing an interactive mobile

shopping assistant for everyday use," 2008 IEEE International Conference on

Systems, Man and Cybernetics, Singapore, 2008, pp. 3471-3478.

[23] V. Kulyukin, C. Gharpure and J. Nicholson, "RoboCart: toward robot-assisted

navigation of grocery stores by the visually impaired," 2005 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2005, pp. 2845-2850.

[24] W. Hess, D. Kohler, H. Rapp and D. Andor, "Real-time loop closure in 2D LIDAR

SLAM," 2016 IEEE International Conference on Robotics and Automation

(ICRA), Stockholm, 2016, pp. 1271-1278.

[25] K. Sasaki, H. Tjandra, K. Noda, K. Takahashi and T. Ogata, "Neural network

based model for visual-motor integration learning of robot's drawing behavior:

Association of a drawing motion from a drawn image," 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Hamburg,

doi:10.6342/NTU201703341

 60

2015, pp. 2736-2741.

[26] G. Lidoris, F. Rohrmuller, D. Wollherr and M. Buss, "The Autonomous City

Explorer (ACE) project — mobile robot navigation in highly populated urban

environments," 2009 IEEE International Conference on Robotics and Automation,

Kobe, 2009, pp. 1416-1422.

[27] Z. Zhao and X. Chen, "Semantic mapping for object category and structural

class," 2014 IEEE/RSJ International Conference on Intelligent Robots and

Systems, Chicago, IL, 2014, pp. 724-729.

[28] S. Hemachandra, T. Kollar, N. Roy and S. Teller, "Following and interpreting

narrated guided tours," 2011 IEEE International Conference on Robotics and

Automation, Shanghai, 2011, pp. 2574-2579.

[29] Jingchen Tong, Dong Chen, Yan Zhuang and Wei Wang, "Mobile robot indoor

semantic mapping using 3D laser scanning and monocular vision," 2010 8th

World Congress on Intelligent Control and Automation, Jinan, 2010, pp.

1212-1217.

[30] W. Mei, W. Pan and L. Xie, "Semantic-understand-based landmark navigation

method of robots," 2012 IEEE International Conference on Computer Science and

Automation Engineering (CSAE), Zhangjiajie, 2012, pp. 760-764.

[31] E. A. Antonelo and B. Schrauwen, "On Learning Navigation Behaviors for Small

Mobile Robots With Reservoir Computing Architectures," in IEEE Transactions

on Neural Networks and Learning Systems, vol. 26, no. 4, pp. 763-780, April

2015.

[32] J. A. Caley, N. R. J. Lawrance and G. A. Hollinger, "Deep learning of structured

environments for robot search," 2016 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Daejeon, 2016, pp. 3987-3992.

doi:10.6342/NTU201703341

 61

[33] L. Tai, S. Li and M. Liu, "A deep-network solution towards model-less obstacle

avoidance," 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Daejeon, 2016, pp. 2759-2764.

doi:10.6342/NTU201703341

 62

VITA

姓名：陳長鈞

性別：男

生日：民國 81年 1月 26日 (1992/01/26)

籍貫：台北市

學歷：

1. 民國 106年 國立台灣大學電機工程學研究所畢業

2. 民國 103年 國立台灣大學電機工程學系畢業

3. 民國 99年 台北市立建國高級中學畢業

發表著作：

Ren C. Luo and Chang-Jiun Chen, “Recursive Neural Network Based Semantic

Navigation of an Autonomous Mobile Robot through Understanding Human Verbal

Instructions”, accepted by 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2017), Vancouver, Canada, September 24-28, 2017 (EI).

榮譽事蹟：

民國 105年 參加「長庚醫療財團法人 2016醫療機器人比賽」榮獲 冠軍

民國 105 年 參加「2016 年全國機器人創意競賽 工業機器人智慧應用創意組」榮

獲 冠軍

