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中文摘要 

近年的研究已經讓服務型機器人具備能在複雜的室內環境中移動之功能。然

而，這些技術往往需要根基於事先建立好的環境地圖，因而無法應用在未知的環

境中。與此相對，人類在進入未知的環境時，常依靠問路這一方法，來得知如何

抵達某一地點，並進一步移動到該處。目前的移動型機器人，尚缺乏這種依據接

收到的口頭指令，在未知的環境中導航的能力。 

在本研究中，我們的目標是將於未知環境中導航的功能，實作在移動型機器

人上。我們以室內環境作為主體，利用遞迴類神經網路的方法，讓機器人學習人

類導航的方法。我們設計了一個導航系統，並以人類的導航紀錄和相對應的導航

指令來訓練此系統。我們將導航指令進行分割，並將每個切割出來的簡單指令分

類到十個我們所定義的基本指令集當中；而每筆人類的導航紀錄，都是根據某一

類基本指令來進行收集的。在訓練類神經網路模型的過程中，我們更提出一驗證

的方法來檢驗訓練之模型的有效性。 

最後，我們在模擬和實際的環境中測試此導航系統。我們在搬運機器人「企

鵝」上實作我們的系統，並實驗其是否能根據不同的導航指令，移動到對應的地

點。我們將機器人的移動路徑，與接受同樣指令的人類所走出來的路徑進行比較；

而結果顯示，基於此一導航系統的移動型機器人，能達到接近於人類的導航表現。 

 

 

關鍵字：服務型機器人，移動型機器人、語意式導航、機器人深度學習、人機互

動 
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ABSTRACT 

Recent researches have made service robots capable of navigating through 

complex and clustered indoor environments. However, such techniques require prebuilt 

maps and cannot be applied to unknown environments. By contrast, when entering an 

unknown environment, humans can ask someone for directions to figure out how to get 

to a specific location, and further navigate to the destination by following the 

instructions. Present mobile robots lack the ability of navigating under unknown 

environments according to the given verbal instructions. 

In this research, we aim to implement the ability of navigating through unknown 

environments on mobile robots. We focus on indoor environments, using recursive 

neural networks to make robots learn the methods of navigating from humans. We 

design a navigation system, which is trained by human-controlled navigating records 

along with instructions. Instructions are split and then classified into ten basic classes, 

and each navigating record is collected according to one of these basic instruction 

classes. During the training process, we propose a validating method to evaluate the 

effectiveness of our models.  

Finally, we put our system to the test under both simulation and real environments. 

We implement the system on a warehouse robot called ‘Penguin’, and test whether it 

can get to desired positions according to different given instructions. We compare the 

navigation paths of our mobile robot with those of humans following the same verbal 

instructions. The results show that our mobile robot can achieve similar performance to 

that of humans. 

 

 



doi:10.6342/NTU201703341

 iv 

Keywords: service robotics, mobile robotics, semantic navigation, deep learning in 
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Chapter 1 Introduction 

1.1 Problem Statement 

 Suppose you are attending an interview in an office building. During the break you 

need to go to the restroom. However, since it is the first time you have been to this 

location, you do not know the direction. You might look for a floor plan or signs to find 

your way, or ask someone for directions. In the latter case, you may receive 

straightforward instructions, such as ‘You just go down this aisle and turn left at the 

second corner, and you will see it.’ Even though you had never walked along this path, 

nor had you seen the map, you are still able to reach the destination by following the 

instruction. In our daily life, we often ask for directions to find out how to get to 

specific locations. Humans possess the ability to navigate through unfamiliar 

environment according to simple instructions. By contrast, can robots achieve the same 

thing? 

To execute a variety of tasks, service robots often need to have the ability of 

navigating and avoiding obstacles under different environments. Many methods have 

been developed to achieve this, including the effective simultaneous localization and 

mapping (SLAM) algorithms. Although these kinds of algorithms can make mobile 

robots navigate to destinations properly, they all depend on the understanding of the 

entire environment. In other words, robots need to construct the map of environment 

before starting to conduct their missions. On the other hand, exploration algorithms let 

robots able to navigate and construct maps under unknown environments. However, 

these algorithms cannot command robots to explore specific locations. Therefore, there 

has not been any algorithm that can have robots move to desired locations to execute 

tasks right after they enter a new, unknown space. 
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Fig. 1.1.1 Navigating under unknown indoor environment 

In addition to the necessity of building maps for navigation, to let robots 

understand the navigating instructions from human, the efficient communication 

between human and robots is also a critical issue. Maps that robots use for localization 

and navigation, such as occupancy grid map, lack semantic information. Meanwhile, it 

is not easy to express natural language by mathematical models. To solve these 

problems, researches have been done to construct semantic maps for users. Robots 

classify their positions into different locations, such as corridors, halls or room 302, 

adding semantic information to the maps. Other researches establish probabilistic 

models for the instructions written in commonly verbal expressions, helping the control 
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system of robots handle the uncertainty and ambiguity inside human verbal instructions. 

Nonetheless, due to the variety and complexity of verbal instructions, it is hard to 

express all the possible patterns of instructions in mathematical models. For example, 

we can clearly see that the following two instructions refer to the same navigation path 

according to the map shown in Fig. 1.1.2, although they are expressed in such different 

ways: 

 Go straight to the end, turn right, and then enter the second room on your left hand 

side. 

 You just turn right at the end of this aisle, and then turn left at the second entry. 

It is proper to claim that there are thousands of ways to express a same navigation 

path, and building models for all of them is impossible. Therefore, constructing an 

efficient algorithm for mobile robots to understand instructions received from human 

and execute navigation is never a simple work. 

 

Fig. 1.1.2 Example of expressing a navigation path by different instructions 
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The problem we want to solve in our research has two aspects. First, robots cannot 

navigate to a certain location before constructing a map of the unknown environment. 

Second, it is hard for robots to follow human commands due to the complexity and 

variety of verbal instructions. Therefore, our question is: Given an indoor environment 

which is unknown to a mobile robot, can the robot navigate to a certain location by 

following human verbal instructions? 

Before we describe the detailed objectives of this research and our method for the 

above question, we will first discuss some previous researches related to this topic in the 

next section. 

1.2 Related Works 

Moving to a specific location according to semantic instructions is a very intuitive 

way of navigation for mobile robots. However, this is never an easy task. To have robots 

efficiently use semantic information, a method using topological-semantic-metric map 

and Bayesian models is proposed to construct semantic maps for human-like navigation 

[1]. The direction of moving is computed from probabilistic models, and obstacles are 

avoided during semantic navigation. This research shows a great success in navigating 

robots to goal positions using symbolic descriptions. 

An abstract map is implemented to represent unseen environments for mobile 

robots to navigate using only symbolic language phrases [2]. In addition, another 

research aims to plan semantic paths for human by integrating multiple sensors and 

using results from simultaneous localization and mapping (SLAM) algorithms [3]. 

These researches all try to bridge the gap between verbal instructions human use for 

instructing and mathematical models machines use for executing tasks.  

To construct efficient communication between human and robots, many researches 
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use the methods of machine learning to do semantic mapping under indoor 

environments, classifying positions into different locations for human to understand 

easily. A supervised learning algorithm—Adaboost, has been used to classify each 

position into corridor, room or doorway [4]. They use 2D laser range finders as sensors, 

and have the system recognize environmental shapes around the position. Some 

researches afterward improve the performance of it. K-means and Learning Vector 

Quantization methods, as well as the Markov model have been used to improve the 

classification rate of door [5]. A learning algorithm using the classification results from 

SVM and CRF is proposed, and experiments have been conducted on various 

environments to demonstrate its performance over real-world task [6]. In addition, 

different kinds of sensors are used to classify the location more precisely. A place 

categorization system is built upon convolutional network, and its accuracy has been 

evaluated using 3 different types of cameras [7]. The convolutional neural network is 

also applied to classify places, where LIDAR sensor is used to create occupancy grids 

data [8]. These efforts are all successful in adding semantic information to known or 

new environments. 

While moving to unknown places, predicting the location we are about to enter 

helps us decide the next action to be taken. For example, if we want to go to room 305, 

and we have seen room 301, 302 sequentially, we may assume that our direction is 

correct, and we need to walk through the aisle and pass by two more rooms before 

seeing our destination. This predicting ability allows us to avoid wasting time on 

searching more information about the environments, such as entering room 304 to check 

whether it is the correct one. Researchers implement this predicting ability on mobile 

robots to improve the performance of mapping, localization and navigation. An 

algorithm called P-SLAM is introduced to look-ahead mapping [9]. This algorithm uses 
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the built map of explored regions to decide whether there is a similar structure inside the 

unexplored regions. Besides, similarities between current surroundings and built map 

have been used to actively predict close loops in unexplored areas and reduce the 

uncertainty during exploration [10]. 

1.3 Research Objective 

In this research, our motivation is to make the robot ‘understand’ human verbal 

instructions used in navigation instructions, and move to the corresponding destinations 

without having any pre-knowledge about the indoor environment. We now specify the 

detailed objectives we aim to achieve, as well as the methods we plan to use. 

 We design a navigation system, which can be applied on our mobile platform. This 

system receives verbal instructions from humans, and controls the robot to 

navigate through unknown environments in both simulation and real world. 

 We use the method of machine learning to construct the main body of our 

navigation system. The neural network model is trained to learn the way human 

navigate according to some instructions. 

 The neural network model takes instructions and data acquired by sensor as its 

input, and outputs moving and rotating velocity commands to the mobile robot, 

instead of local or global goal positions in the environment. 

 We give restrictions to the instructions applied in this research. They need to be a 

certain type of instructions, and they should be legal. A legal instruction is defined 

to be an instruction that can be successfully execute under the given environment. 

For example, if you cannot turn right ahead, then an instruction telling you to turn 

right at the front is not legal. We will explain the type of instructions we consider 

in Chapter 3. 
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 Sensor we choose should be able to recognize the structures of indoor 

environments. We choose to use 2D laser range finder as our sensor, and we will 

explain our reasons in Chapter 2. 

 We use navigation records to train our neural network model. These records, called 

human-controlled navigating records, are generated by manually control robots to 

navigate by different people. 

 We train our model using data collected in simulation, and the navigation system 

should be able to apply in real environment. 

By achieving the above objectives, we aim to give a proper solution to the stated 

question. 

1.4 Thesis Structure 

In Chapter 2, we introduce the system architecture, including the specifications of 

hardware components we use on our experiment platform, and the structure of presented 

software. Chapter 3 describes the training data set we use to train our neural network 

model. We will also describe the categories of instructions we consider in our research, 

as well as our method of collecting training data.  

In Chapter 4, we introduce the process of training our neural networks, and the 

method we use to validate the efficiency of models. Next, we describe the details of 

experiments conducted under simulation and real environments. We will analyze the 

results and do some comparisons to examine the performance of our navigation system. 

Finally, Chapter 5 provides conclusions to our effort, explains the contributions of this 

research, and discusses the future works. 
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Chapter 2 System Architecture 

In this chapter, we first introduce the hardware we use to test our navigation system. We 

will describe the specification of each component on the mobile platform, including 

motors, sensors, control computer and the power supply system. We will also explain 

the reasons for choosing these components, as well as our concerns while designing this 

platform. In the second part of this chapter, we describe the software architecture. Our 

navigation system consists of several functional layers and the recursive neural network 

model. We will introduce the function of each layer, and how we implement these layers. 

The structure of our neural network model will also be discussed. 

2.1 Hardware Specifications 

In this research, we implement our navigation system on the warehouse robot 

called ‘Penguin’, which is shown in Fig. 2.1.1. This robot is equipped with two 

differential wheels, one laser range finder mounted at the top, an Xtion Pro Live RGB-D 

camera, and a central control computer. In the following paragraphs, we will describe 

the specifications of these components. 

  

Fig. 2.1.1 iCeiRA warehouse robot ‘Penguin’ 
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2.1.1 Motors 

The warehouse robot has two differential wheels and two omnidirectional wheels 

served as passive wheels. The former are driven by two Faulhaber 4490H048B 

Brushless DC-Servomotors with reduction of 66:1. Each servomotor is connected to a 

corresponding MCBL 3006 Motion controller. The motion controllers are connected via 

a RS232-USB signal cable to the CPU’s USB port. 

We set the maximum speed of two motors to be 10000rpm  via motion 

controllers. The gear ratios of two differential wheels are both 3, thus the overall gear 

ratio is equal to 200. Radius of the differential wheel is 0.075m. Therefore, the 

theoretical maximum velocity of our robot is approximately 0.4m/s. However, due to 

robot’s weight the maximum velocity will be smaller in practice. This specification is 

used when collecting training data and training our neural network models. 

The wheel odometry is attached on the servomotor. We are not completely certain 

which kind of encoder has been mounted on the servomotors, but the documentation 

suggests the servomotor model type can co-operate with two-channel or three-channel 

optical or magnetic encoders. 

              

(a) Faulhaber 4490H048B                 (b) MCBL 3006 

Fig. 2.1.2 Servomotors and motion controllers 
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2.1.2 Sensor 

We only use the laser range finder to gather information form the environment. The 

RGB-D camera is not used in our research. We now explain why we choose to use laser 

range finder as the main sensor. 

To get a well-trained neural network model, it is essential to prepare a sufficient 

amount of training data. However, collecting data in real environments is 

time-consuming and difficult, especially when we want to record the entire navigation 

process. Therefore, we aim to collect our training data under simulation environment. In 

such case, using laser range finder as sensor has many advantages. 

First of all, the amount of data returned by a laser range finder is much less than 

that by other sensors, such as camera. As a result, speed of calculation become faster, 

and delay of navigation system is prevented. 

Next, although the amount of data is small, it is sufficient to realize the structure of 

indoor environment through laser range finder. We take Fig. 2.1.3 as an example. A 

mobile robot is navigating through an indoor environment, and the collected sensor data 

is visualized in rviz, a 3D visualization tool of ROS. From Fig. 2.1.3 (a), we can tell that 

the robot is moving along a corridor, while Fig. 2.1.3 (b) shows that there is a crossroad 

in front of the robot. Thus, robots and humans can decide their actions according to the 

sensor measurements. 

Last but not least, the effect of noise on laser range finder is small. The sensor 

measurements collected from simulation environments have similar performance to 

those from real environments. Therefore, it is appropriate to train our system using the 

records collected in simulation, and test it in the real world. In contrast, if we use 

camera as the main sensor, the training process will be completely different. We cannot 
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use simulation images to train out navigation model, since the situation varies a lot in 

real world due to several factors, such as influence of light. 

To sum up, we consider laser range finder an appropriate sensor to achieve this 

navigation task. The structures of indoor environments can be observed, and training 

can be done using simulation data without considering the effect of noise. 

The laser range finder we use in our research is Hokuyo UTM-30LX. Table 2.1-1 

describes its technical specifications. It should be noticed that UTM-30LX has a 

scanning range of 270 degrees. If we place the laser range finder at the front of our 

warehouse robot, both sides of it will be blocked by the robot. This will results in being 

unable to get the full scanning range. Therefore, we mount the laser range finder on top 

of the mobile robot. Height of the sensor is 45cm from ground.  

   

(a) Corridor                         (b) Crossroad 

Fig. 2.1.3 Different environment structures observed from laser range finder 
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Table 2.1-1 Technical specifications of Hokuyo UTM-30LX 

Model No. UTM-30LX 

Power Source 

12VDC±10% 

(Current consumption: Max: 1A, Normal 0.7A) 

Light Source 

Semiconductor laser diode(λ=905nm) 

Laser safety Class 1(FDA) 

Detection Range 

0.1 to 30m (White Square Kent Sheet 500nm 

or more), Max. 60m 270oC 

Accuracy 0.1 to 10m:±30mm, 10 to 30m: ±50mm ∗1 

Angular Resolution 0.25◦(360 ◦/1,440 steps) 

Scan Time 25msec/scan 

Sound Level Less than 25 dB 

Interface USB2.0(Full speed) 

Synchronous output NPN open collector 

Command system Exclusively designed command SCIP Ver. 2.0 

Connection 

Power and Synchronous output: 2m flying lead wire 

USB:2m cable with type-A connector 

Ambient 

(Temperature/Humidity) 

-10 to +50 ◦ C, less than 85%RH(without drew and frost) 

Vibration Resistance 

Double amplitude 1.5mm 10 to 55Hz, 

2 hours each in X,Y, and Z direction 

Impact Resistance 196m/s2, 10 times in X, Y, and Z direction 

Weight Approx. 370g (with cable attachment) 
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Table 2.1-2 Technical specifications of Hokuyo URG-04LX 

Model No. URG-04LX-UG01 

Power Source 5VDC±5%(USB Bus Power) 

Light Source 

Semiconductor laser diode (λ=785nm), 

laser safety class 1 

Measuring area 

20 to 5600nm (white paper 

with 70nmx70nm), 240 degrees 

Accuracy 

60 to 1,000nm: ±30nm 

1,000 to 4,095nm: ±3% of measurement 

Angular resolution 

Step angle: approx. 0.36◦ 

(360◦/1,024 steps) 

Scanning time 100 ms/scan 

Noise 25 dB or less 

Interface USB2.0/1.1 [Mini B] (Full speed) 

Command System SCIP Ver. 2.0 

Ambiance Illuminance ∗1 

Halogen/Mercury lamp: 10,000Lux 

or less, Florescent: 6000 Lux (Max.) 

Ambient temperature/Humidity 

-10 to +50 ◦C, 85% or less 

(Not condensing, not icing) 

Vibration resistance 

10 to 55Hz, double amplitude 1.5mm 

each 2 hours in X, Y, and Z directions 

Impact Resistance 

196m/s2, Each 10 times 

in X, Y, and Z directions 

Weight Approx 160g 
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To verify that our navigation system could be implemented on different mobile 

platform, we conduct experiments in simulation using mobile robot equipped with other 

type of laser range finder. The laser range finder we use here is URG-04LX. Table 2.1-2 

describes its technical specifications. It should be noticed that the scanning range and 

the number of measurement steps of URG-04LX are different from those of 

UTM-30LX. To make our neural network model work properly, some efforts need to be 

done to eliminate this difference. We will describe the method we use in the software 

section. 

             

(a) Hokuyo UTM-30LX               (b) Hokuyo URG-04LX  

Fig. 2.1.4 Two series of Laser Range Finder being used in our research 

2.1.3 Central Control Computer 

Our central control computer is the Jetson TX1 Developer Board. Its main function 

is to control the robot movement and receive sensor data. On the central control 

computer we run the Robot Operating System (ROS) [11]. Two major ROS nodes are 

used to achieve such tasks. 

 ros_control [12] 

In brief, it controls the rotation of two wheel motors. Our navigation program, as 

well as the teleoperation program, publishes the command velocity to this node. 
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And then, ros_control calculates the corresponding rotational speeds of two 

differential wheels and the driving servomotors. 

 hokuyo_node [13] 

This node handles the sensor data acquired from 2D laser range finder. Some 

parameters in this node can be adjusted to deal with the situation of using different 

laser range finders, where the detection ranges and angular resolutions are both 

different. 

 In addition to these two nodes, the ROS node teleop_twist_keyboard is used to 

remotely control the robot while our navigation program is not running [14]. It serves as 

a teleoperation program, however in the next chapter we will mention that we design 

our own teleoperation program and the reason for doing that. 

To conduct our experiments more efficiently, we run our navigation program on a 

remote computer so that we can modify our program immediately. The central control 

computer and the remote computer are connected to the same local area network. 

Through the network ROS node hokuyo_node publishes readings of the laser range 

finder to the remote laptop, and after computation our navigation program publishes the 

command velocity back to ros_control node. Our program is packaged in a ROS node, 

and the exchange of messages is achieved through ROS topics. 

The local area network can be provided by a cellphone. Fig. 2.1.5 shows the 

control diagram of our navigation system. 
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Fig. 2.1.5 Control diagram of navigation system 

2.1.4 Power Supply System 

The electric circuit used on-board consumes exclusively DC current, which means 

that any AC flow should be converted to DC flow previous to usage, and thus we deploy 

a DC Power Supply unit to import appropriate voltage and current flow. Normally the 

power system is supplied no more than 30V and 6A. If the supplied current exceeds that 

upper bound, fuse and UPS may serve as buffers and safety measure. The power system 

is designed under the following prerequisites: 

 Safety first 

 Ease of maintenance. All input/output ports are located at the rear of the robot. 

 The circuit should be as precise and succinct as possible containing only necessary 

components. 

 When connected to external power supply, the circuit works as one single close- 

loop. Such design ensures that the batteries are safely and efficiently charged and 

discharged. 
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 When the external power source is unplugged, there should be two independently 

functional close-loops circuits. One loop supplies power exclusively to the 

computer, while another loop to the motors and the controllers. 

 Ensure that the batteries would not discharge and charge simultaneously, making 

sure to extend the batteries life-span. 

 An emergency stop button is placed in the motor’s power supply circuit to cut the 

power toward the motor if the robot runs into problems. Likewise, a toggle switch 

is placed at the computer’s power circuit for ease of maintenance. 

 The circuit implementation needs to follow industrial standards and convention. 

 Voltmeters and Ammeters are placed to monitor on-board power supply level in 

real-time scale. 

 Following the mentioned demands, the designed circuit is shown in Fig. 2.1.6. 

 

Fig. 2.1.6 The overall circuit diagram implemented onboard 

We use relay as an automated and analogue switch to link and break both loops of 

the circuit. Once an external power source is connected, the current pass through the 

main switchboard, where all grounds are connected with the physical ground, while two 
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live wires supply the current for sub-loops with roughly the same voltage. For each loop, 

the first node to connect with the main power supply is located at the Uninterrupted 

Power Supply (UPS). By connecting in a redundant manner, the UPS not only serves as 

an intermediary hub for supplying the load, but also to charge and discharge the batteries, 

hence playing an intermediary and buffer role of power regulator between the main power 

source, the battery and the load. Considering the reliability, robustness, and durability of 

such key role, we utilized one DR-UPS40 for each sub-circuit. 

 

Fig. 2.1.7 DR-UPS40 by Mean Well 

2.2 Software Architecture 

2.2.1 Overview 

Fig. 2.2.1 shows the overall structure of our navigation program. It is composed of 

one neural network model and several processing layers. We will describe functions of 

these components later. 

Fig. 2.2.2 shows the executing process of our navigation system. At a certain time 

step, the navigation system takes the current laser range finder readings, as well as the 

instruction given by user as its input. After computing it outputs the desired moving and 

rotating velocity of mobile robot. The robot will navigate in the given speed for a time 

period, entering a different position. This leads to different readings of the laser range 
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finder at the next time step. Thus, the model will take the new readings and the same 

instruction as its new input, and decide velocity of the next time step. 

 In the following sections, we will introduce the function of each layer as well as 

the structure of our neural network. 

 

Fig. 2.2.2 Executing process of our navigation system 

2.2.2 Laser Range Finder Layer 

This layer consists of two stages: the interpolation stage, and the preprocessing 

stage. 

 Interpolation 2.2.2.1

We use Hokuyo UTM-30LX as our main sensor in this research. However, in order 

to expand the usage of our system to different mobile robots, we need to consider the 

cases when different laser range finders are used. 

 Different laser range finders have different detection ranges and angular 

resolutions. If our system use the entire scanning range of UTM-30LX, changing the 

sensor to a laser range finder with smaller scanning range, such as Hokuyo URG-04LX, 

will be difficult. The reason is that even if we disregard the difference between their 



doi:10.6342/NTU201703341

 21 

maximum measuring distances, getting measurements from angles that are beyond the 

scanning range of URG-04LX is impossible. Therefore, we only use 220 degrees of 

UTM-30LX’s scanning range. Since this value is larger than 180, objects behind the left 

part and right part of the robot can be detected. It is thus sufficient for our system to 

recognize the environment structures using such scanning range. 

 However, due to the difference between angular resolutions, sometimes we cannot 

get measurement from a particular angle using other sensors. Interpolation stage is thus 

designed to solve this problem. As its name implies, in this stage we use the method of 

linear interpolation to calculate the desired measurements. Details of our method are 

described as follows: 

Consider two different laser range finders A and B. Assume B is the original sensor 

we use on the mobile robot, and A is the substitute. Now, we want to get the 

measurements of sensor B using sensor A. Since some angle measurements of B cannot 

be obtained by A, we apply the following interpolation method: 

We define 𝐴𝑗 and 𝐵𝑘 to be the measurements of A and B. Here 

 0 ≤ 𝑗 < 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑡𝑒𝑝𝑠 𝑜𝑓 𝐴 (2.2-1) 

 0 ≤ 𝑘 < 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑡𝑒𝑝𝑠 𝑜𝑓 𝐵 (2.2-2) 

For example, the number of measurement steps of UTM-30LX is 1440, while that 

of URG-04LX is 683. We define 𝐴𝑚𝑖𝑛 and 𝐵𝑚𝑖𝑛 as the minimal measuring angles of 

A and B. For instance, the minimal measuring angle of Hokuyo UTM-30LX is −135°. 

Next, we define 𝐴𝑑𝑖𝑓𝑓 and 𝐵𝑑𝑖𝑓𝑓 to be angular resolutions of A and B. 𝐵𝑠𝑡𝑒𝑝𝑠 is the 

number of measurements we want to obtain, while 𝐵𝑠𝑡𝑎𝑟𝑡 is the starting step. For 

example, if we take Hokuyo URG-04LX as sensor B, and we want to discard the 

leftmost and rightmost 30 steps of the measurements, then we will let 𝐵𝑠𝑡𝑎𝑟𝑡 = 30 and 
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𝐵𝑠𝑡𝑒𝑝𝑠 = 623. 

Now, for all the steps we consider, we first calculate their angles: 

 𝑎𝑛𝑔𝑙𝑒 = 𝐵𝑚𝑖𝑛 + (𝐵𝑠𝑡𝑎𝑟𝑡 + 𝑖) ∗ 𝐵𝑑𝑖𝑓𝑓, 0 ≤ 𝑖 < 𝐵𝑠𝑡𝑒𝑝𝑠 (2.2-3) 

Here every angle is guaranteed to lie in the scanning range of sensor A. Next, the 

following two variables are calculated for each of the steps: 

 𝑆𝐴𝑀𝑃𝑖 = ⌊
𝑎𝑛𝑔𝑙𝑒−𝐴𝑚𝑖𝑛

𝐴𝑑𝑖𝑓𝑓
⌋ , 0 ≤ 𝑖 < 𝐵𝑠𝑡𝑒𝑝𝑠 (2.2-4) 

 𝐼𝑁𝑇𝐸𝑅𝑖 = (𝑎𝑛𝑔𝑙𝑒 − 𝐴𝑚𝑖𝑛) 𝑚𝑜𝑑 𝐴𝑑𝑖𝑓𝑓 , 0 ≤ 𝑖 < 𝐵𝑠𝑡𝑒𝑝𝑠 (2.2-5) 

 Finally, given all the measurements 𝐴𝑗 obtained from sensor A, we calculate the 

measurement for each step we consider by the following equation: 

 𝐵𝑖 = 𝐴𝑆𝐴𝑀𝑃𝑖
+ (𝐴𝑆𝐴𝑀𝑃𝑖+1

− 𝐴𝑆𝐴𝑀𝑃𝑖
) ∗

𝐼𝑁𝑇𝐸𝑅𝑖

𝐴𝑑𝑖𝑓𝑓
, 0 ≤ 𝑖 < 𝐵𝑠𝑡𝑒𝑝𝑠 (2.2-6) 

 By applying the linear interpolation method, we obtain the measurements 𝐵𝑖 of 

sensor B from measurements 𝐴𝑗 of sensor A. We do some experiments to verify the 

effectiveness of our interpolation stage. The results will be discussed in Chapter 4. 

 Preprocessing 2.2.2.2

Before applying input data to the neural network, we preprocess data obtained by 

laser range finder to improve the performance of our neural network. 

First, to deal with the difference in maximum measuring distances between 

different laser range finders, we set a threshold value to the received measurements. 

Readings exceeding 5 meters will be modified to 5. That is, objects 5 meters away from 

the sensor will not be detected due to this saturation function. However, to create greater 

difference between empty spaces and barriers, we change the modified value from 5 to 

10 meters. 
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To sum up, we modify the input data as follows: 

 𝑓(𝑥𝑖) = {
𝑥𝑖, 𝑥𝑖 < 5

10, 𝑥𝑖 ≥ 5
 (2.2-7) 

Here 𝑥𝑖 represents the sensor measurements. 

 0 ≤ 𝑖 < 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑡𝑒𝑝𝑠 (2.2-8) 

Fig. 2.2.3 explains our saturation function more clearly. 

After applying the modified saturation function, we normalize the input data using 

the following equation: 

 �̂�𝑖 =
𝑓(𝑥𝑖)

√∑ 𝑓(𝑥𝑘)2𝑁
𝑘=1

 (2.2-9) 

We use the normalization function provided by Scikit-learn [15]. Finally, the 

preprocessed data is fed into our neural network. 

 

Fig. 2.2.3 Modified saturation function 

2.2.3 Instruction Layer 

This layer also consists of two stages: the speech recognition stage, and the 

conversion stage. 
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 Speech Recognition 2.2.3.1

We implement the speech recognition stage to make our robot receive human 

instructions directly. Users can command the robot verbally instead of typing 

instructions into the remote computer. 

In this research, we use the python package, SpeechRecognition, to implement our 

speech recognition function [16]. This package supports seven speech recognition 

engines and APIs, namely CMU Sphinx, Google Speech Recognition, Google Cloud 

Speech API, Wit.ai, Microsoft Bing Voice Recognition, Houndify API, and IBM Speech 

to Text. We choose to use Google Speech Recognition due to its ease of implementation 

and high recognition accuracy. 

Verbal instruction inputted will be converted into text in this stage. 

 Conversion 2.2.3.2

The conversion stage first splits the input instruction into several shorter ones to 

handle the situation where the given instruction is too long and complex. The split 

instructions are called simple instructions, and they are inputted into the neural 

network sequentially. We will explain the method of splitting in the next chapter. 

Before inputting a simple instruction into the neural network, the conversion stage 

converts each word in the instruction into vector. A pre-trained Global Vectors for Word 

Representation (GloVe) model is used here, and we decide to use a 100-dimension 

vector to represent one word [17]. We use the concept of word vectors to have our 

program consider the semantic information contained in user instructions. 

For each simple instruction, we sequentially fed its word vectors into our neural 

network. The set of all word vectors of a simple instruction is called the sentence 

vector of that instruction. 
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2.2.4 Neural Network Model 

Fig. 2.2.4 shows the structure of our neural network model. It consists of two 

stages. The red box in Fig. 2.2.4 indicates the first one. 

 

Fig. 2.2.4 Structure of neural network model 

The first stage is a Long short-term memory (LSTM) layer 𝐿𝑆𝑇𝑀𝑤. It takes the 

sequence of word vectors (𝑤1, 𝑤2, … , 𝑤𝑛), which is generated from a simple instruction, 

as input, and outputs the instruction vector 𝑍𝑤 to the second stage. Here 𝑛 is variant 

since the length of each simple instruction is not fixed. 

𝐿𝑆𝑇𝑀𝑤 serves as an instruction classifier. We aim to use vector 𝑍𝑤 to represent 

the class of the given simple instruction. We define ten basic instruction classes in our 

research. Each simple instruction will be classified into one of these classes, and the 

navigation system will decide the actions to take according to the obtained class. We 

will give a definition of basic instruction class, and explain how we classify instructions 

into ten classes in Chapter 3. 

Since we aim to classify simple instructions into different classes, Softmax 

activation function is used in 𝐿𝑆𝑇𝑀𝑤: 

 𝜎(𝒁)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑘𝑁
𝑘=1

 (2.2-11) 
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The second stage combines a fully-connected neural network with another LSTM 

layer 𝐿𝑆𝑇𝑀𝑓𝑢𝑠𝑒𝑑. At time step 𝑖, the fully-connected neural network uses the sensor 

data (𝑙𝑖1, 𝑙𝑖2, … , 𝑙𝑖𝑁) from laser range finder to calculate its output 𝑍𝑠𝑖. 𝑁 denotes the 

number of measurement steps, and 𝑙𝑖𝑘 represents the k
th

 sampling point. Next, 𝑍𝑤 and 

𝑍𝑠𝑖  are concatenated and fed into 𝐿𝑆𝑇𝑀𝑓𝑢𝑠𝑒𝑑 . The second LSTM layer will then 

calculate the velocity pair (moving, rotating) for controlling the mobile robot. 

As for the activation functions, we choose to use ReLU in the fully-connected 

neural network, since all the input data from laser range finder are positive: 

 𝜎(𝒁)𝑖 = max (0, 𝑧𝑖) (2.2-11) 

In 𝐿𝑆𝑇𝑀𝑓𝑢𝑠𝑒𝑑 , we simply choose linear activation function since the outputs 

represent speeds and can be either positive or negative. 

It should be noticed that the output of our neural network model will affect the 

input of it. That is, different velocity commands will lead the robot to different positions, 

and thus readings of the laser range finder will be different. 

2.2.5 Post-processing Layer 

The post-processing layer is composed of two functions: the speed adjusting 

function, and the halting counter. 

 Speed Adjusting Function 2.2.5.1

The speed adjusting function consists of two sub-functions. It is unlikely that the 

neural network will output pure zero. Therefore, when the output is below a certain 

value, we assume that the neural network is intending to stop the robot. We define the 

minimum value 𝑣𝑚𝑖𝑛 to be 10−3. The first sub-function changes either the moving 

velocity or rotating velocity to 0 when its absolute value is smaller than 𝑣𝑚𝑖𝑛. 

The second sub-function prevents the navigation program from outputting 
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velocities which are too slow for the mobile robot to move with. Due to the physical 

constraints, such as friction, in real world, it is not possible for the robot to move with a 

speed which is below some certain value. However, when the output is above the 

minimum value 𝑣𝑚𝑖𝑛, we assume that the neural network is intending to move the robot. 

Therefore, we need to increase the output velocity when the output lies in this range in 

order to make the robot move. We define the minimum moving velocity 𝑣𝑚𝑜𝑣𝑒 to be 

2 ∗ 10−2. When the absolute value of output velocity is above 𝑣𝑚𝑖𝑛 and below 𝑣𝑚𝑜𝑣𝑒, 

the second sub-function will pull it up to 𝑣𝑚𝑜𝑣𝑒. This prevents the robot from getting 

stuck at the same position while the network is telling the robot to move. 

To sum up, the speed adjusting function can be expressed by the following 

equation: 

 𝑓(𝑣) = {

0, |𝑣| ≤ 𝑣𝑚𝑖𝑛

𝑠𝑔𝑛(𝑣) ∗ 𝑣𝑚𝑜𝑣𝑒 , 𝑣𝑚𝑖𝑛 < |𝑣| ≤ 𝑣𝑚𝑜𝑣𝑒

𝑣, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.2-12) 

 Here 𝑣𝑚𝑖𝑛 = 10−3  and 𝑣𝑚𝑜𝑣𝑒 = 2 ∗ 10−2 , and 𝑣  represents the moving or 

rotating velocity outputted by the neural network model. 

 Halting Counter 2.2.5.2

This counter decides when the program stops. When completing the navigation 

process, the mobile robot should stop at its final position. Therefore, if the neural 

network model is trained well, our program should constantly output (𝑚𝑜𝑣𝑖𝑛𝑔,

𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔) = (0, 0) after the robot reach its destination. We can assume that the robot 

has completed its navigation if the program continuously outputs (0, 0) for a number 

of time steps.  

The halting counter counts the number of continuous zero outputs. If this number 

is above a certain value, the counter sends a stopping signal back to the neural network 
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layer and the conversion stage inside the instruction layer. The former will clear its 

memory, preparing to execute a new navigation task. The latter will load the next 

instruction into the network model. After that, the counter is set to zero, and the 

program continues the navigation. If there is no instruction left, the entire program 

stops. 

In this research, we set the number of time steps to stop the process to be 50, which 

is approximately 5 seconds. 
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Chapter 3 Training Data Set 

In this chapter, we will describe the training data set we use to train our neural network 

model. The training data set is composed of two parts: basic instruction sets, and human 

controlled navigating records. We will first describe the type of instructions we consider 

in our research. Next, we explain our method of generating the instruction training data 

set and that of collecting the navigation records. We will also introduce the teleoperation 

program we design for this research, and discuss the advantages of using such data 

structure for our training database. 

 

3.1 Instruction 

In the previous chapter, we have mentioned that we use laser range finder as the 

main sensor of our system. Despite the advantages we discussed, some information 

cannot be acquired by the laser range finder. For example, it is not easy to achieve 

object recognition using such sensor. Room number cannot be detected, either. Thus, we 

have to specify the instructions we consider in our research more clearly. 

In short, we only consider instructions describing the structure of indoor 

environments. That is, aisles, corners and rooms are to be discussed. Higher level 

semantic instructions are not considered, such as room or aisle number, which needs 

more sensors to get enough information. 

In our application, most of the given instructions are short and simple, like ‘Turn 

right, and then go straight to the end of the aisle.’ However, for cases with complex 

indoor environments, the longer the path that instructors command the robot to move, 

the more complex their instructions become. We consider it difficult for the robot to 

complete such complicated instructions, since it is not possible for the neural network to 
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‘remember’ so much information contained in the instruction. Therefore, our method is 

to split the original instruction into several shorter, simpler instructions. 

 After we divide the original instruction into many simple instructions, the goal of 

our navigation system is to make the mobile robot move to specific positions according 

to these simple instructions in sequence. To decide what actions to take for each simple 

instruction, we classify instructions into several classes. A basic instruction class is 

defined to be a set of simple instructions that have similar meanings. Each class has a 

basic instruction that represents the class. Fig. 3.1.1 and Table 3.1-1 show the ten basic 

instruction classes we define in this research, as well as their representative basic 

instructions. 

Path / Class Number Representative Basic Instructions 

1 Go straight to the end 

2 Turn right 

3 Turn left 

4 Go back (turn around) 

5 Turn right at the second corner 

6 Turn left at the second corner 

7 Turn right at the third corner 

8 Turn left at the third corner 

9 Go straight to the end and turn right 

10 Go straight to the end and turn left 

 

Table 3.1-1 Class of simple instructions 
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Fig. 3.1.1 Ten paths corresponding to ten classes of simple instructions 

 It should be noticed that the second basic instruction contains two different 

meanings: ‘Turn right immediately’, and ‘Turn right at the first corner’. So is the third 

instruction.  

Since our application is under indoor environments, and we use laser range finder 

as the sensor, we assume that these ten basic instructions suffice to describe the 

sequential steps of conducting a complete navigation. That is, we can use these basic 

instructions to construct all the legal instructions we consider in this research. Therefore, 

all the simple instructions split out from the original instruction can be classified into 

one of these basic instruction classes. 

Now we explain our method of splitting user commands into simple instructions. 

Since each basic instruction contains enough information, it is not possible that a person 

may say such a long sentence containing more information than the basic instruction 

without a pause. Therefore, we simply use punctuation marks to split sentences into 

simple instruction. 

 The idea of splitting instruction into simple ones, converting each word into word 

vector to construct the sentence vectors for each simple instruction, and executing them 

sequentially can be described by Fig. 3.1.2. After completing the execution of some 

simple instruction, the robot will enter a different position from its previous point. And 

then, it will execute the next simple instruction to reach its next local destination. By 
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executing these instructions sequentially, the robot will finally get to the location 

indicated by the original instruction. 

 

Fig. 3.1.2 Example of executing a complex instruction 

 We collect ten sets of simple instructions corresponding to the above ten classes to 

train our model. These ten sets are called basic instruction sets, and each of them 

should be a subset of their corresponding basic instruction class. In the next section, we 

describe how we construct these ten sets. 

3.2 Basic Instruction Sets 

In Chapter 2, we mention that we design a neural network model that classifies 

verbal instructions into ten basic instruction classes. To construct a database for training 

such a classification model, a straightforward approach is to collect thousands of 

instructions and label them manually. However, there is no online instruction database 

that can be direct used for training our model. Most of the commonly used databases 

contain high-level semantic information, such as room numbers or features that can only 

be captured by camera. These instructions cannot be classified into any of our 

instruction classes. Besides, typing numerous different instructions will be a tedious 

work. Therefore, we design an algorithm that can generate instructions using small 

collections of phrases. 
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To construct a sufficient training database, we first manually create sets of phrases. 

Each of these sets plays a different role in constructing a complete instruction sentence. 

While generating instructions, our algorithm chooses some of these sets, randomly picks 

one phrase from every chosen set, combines these phrases to form an instruction 

sentence, and labels the sentence according to the sets it chose. The process of 

generating a complete instruction sentence is described by Fig. 3.2.1. Each of the boxes 

represents a collection of phrases. 

 

Fig. 3.2.1 Process of generating a complete instruction sentence 

The sets of phrases are as follows: 

1. Prefix: Phrases or words that can be attached to the beginning of instruction 

sentences, without changing the meaning of instructions. 

For example: ‘Please …’, ‘Would you …’, ‘I need you to …’ 

2. Suffix: Phrases or words that can be attached to the end of instruction sentences, 

without changing the meaning of instructions. 

For example: ‘… please.’, ‘… and stop.’, ‘… thank you.’ 

3. Class 1: Phrases used to construct Class 1 instruction sentences. 

For example: ‘go straight to the end’, ‘walk down this aisle’ 
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4. Class Turn: Phrases used to construct Class 2, Class 3, and Class 5 to Class 10 

instruction sentences. Phrases belonging to this set can be directly classified into 

Class 2 or Class 3 basic instruction, and appending phrases from the Suffix Turn 

set to their end may make them become Class 5 to Class 10 basic instruction. 

For example: ‘turn right’, ‘make a left’ 

5. Prefix Turn: Phrases that can be attached to the front of phrases from Class Turn 

without changing the meaning of constructed instruction sentences. 

For example: ‘go straight and’, ‘walk down this way and’ 

6. Suffix Turn:  

There are two kinds of phrases that belong to this set: 

A. Phrases that can be attached to the end of phrases from Class Turn without 

changing their classification. For instance, ‘turn right’ and ‘turn right at the corner’ 

both belong to Class 2 basic instruction. 

For example: ‘at the corner’, ‘at the crossroad’ 

B. Phrases that can be attached to the end of phrases from Class Turn to change their 

classification, making them become Class 5 to Class 10 basic instruction. For 

instance, ‘turn right’ belongs to Class 2 basic instruction, but ‘turn right at the 

second corner’ belongs to Class 5 basic instruction. 

For example: ‘at the second corner’, ‘at the end of this aisle’ 

7. Class 4: Phrases used to construct Class 4 instruction sentences. 

For example: ‘go back’, ‘turn around’ 

8. Others: Phrases that cannot be classified into any of the above sets. 

For example: ‘go straight to the end and turn right’ 

It should be noticed that we convert each word in the instruction into word vector 

by GloVe before importing into our neural network. Since word vector represents the 



doi:10.6342/NTU201703341

 35 

meaning of that word to a certain extent, we assume that our model can be trained 

successfully without having seen every word. Therefore, the collections of phrases do 

not need to contain every possible phrase. 

Now, we give some examples of generating instruction sentences for our training 

database, i.e., the ten basic instruction sets. 

 Prefix + Class 1 + Suffix → Class 1 basic instruction 

‘Could you’ + ‘go straight till the end’ + ‘please’ = ‘Go straight to the end’ 

 Prefix Turn + Class Turn + Suffix → Class 2 basic instruction 

‘Go straight and’ + ‘make a right turn’ + ‘please’ = ‘turn right’ 

 Prefix + Class Turn + Suffix Turn → Class 5 basic instruction 

‘Please’ + ‘make a right turn’ + ‘at the second intersection’ = ‘Turn right at the 

second corner’ 

For each basic instruction set, we consider all possible combinations of sets of 

phrases that generate sentences for it. This method greatly increases the amount of 

training data for training our neural network model. Experiments show that the 

classification accuracy of our model, as well as the ability to handle new, unfamiliar 

instructions is improved using such expanded database. 

It should be noticed that some of the generated sentences are not grammatically 

correct. For example, the sentence ‘Please turn right please’ is not proper since the word 

‘please’ is used twice. However, we consider that including such sentences in our 

training database is legal.  

Our neural network model does not need to know what kinds of instructions are 

grammatically correct. Its function is to classify instructions, extracting semantic 

information from user commands. As long as the given sentence refers to the correct 
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class of basic instruction, we consider it useful in training. Besides, people often use 

incorrect grammar when speaking. Using such sentences in our training database gives 

our model the ability to handle the variety and complexity of verbal instructions. 

3.3 Human-Controlled Navigating Records 

3.3.1 Database 

A human-controlled navigating record is a set of recording sequences. Each 

recording sequence contains hundreds of sampling data, where every sampling data 

consists of the velocity of the robot and readings of its laser range finder at that 

sampling moment. One recording sequence is considered as one training data sequence. 

While collecting training data, we let a person remote robot to the destination according 

to a specific basic instruction, and during the navigation we collect the (𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦,

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) pairs. By doing so we obtain a sequence that describe the expected 

behavior of a robot after receiving an instruction. 

Fig. 3.3.1 shows an example of our recording files. An indicator is added to the 

beginning of every recording sequence, while another one is used at the end of each 

sequence. In Fig. 3.3.1 we use red box and blue box to annotate the starting and ending 

indicator. The starting indicator also shows the class of the recording sequence. 

The yellow underline in Fig. 3.3.1 shows an example of a sampling data. The 

former part is the (moving, rotating) velocity pair, while the latter part is the 

measurements from laser range finder. After preprocessing the latter part is used as part 

of the input of our neural network, while the former part serves as the referenced label 

during training process. 
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Fig. 3.3.1 Example of the recording files 

3.3.2 Teleoperation Program 

To collect human-controlled navigating records, we give users some basic 

instructions and record the (velocity, measurement) pairs during their navigation. To 

fulfill such task, a teleportation program is required to let the user control and navigate 

the robot. Since we develop our navigation system on ROS, a straightforward method is 

to use the ROS node teleop_twist_keyboard [14]. However, it is hard to perform natural 

navigation using such program due to its maneuverability. To let the user navigate the 

robot smoothly, we design our unique teleoperation program. 

We first describe the disadvantages of using teleop_twist_keyboard as the 

teleportation program. Fig. 3.3.2 shows the control method of teleop_twist_keyboard. 

Eight keys are used to control the direction of moving, while six keys are used for 

adjusting the speed. Some problems of using this program are as follows: 

 If you want the robot to move continuously, you need to hold the keys. Pressing the 

key once will make the robot move for a small distance and stop. 

 It is hard to adjust the rotating velocity, i.e., the angular speed. That is, when the 
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robot is moving straight, controlling it to rotate is difficult. 

 Extra keys are needed to adjust the speed of moving. It will be tedious to gradually 

slow down or speed up the robot. 

 The control is not intuitive. Using arrow keys will be much better. 

 

Fig. 3.3.2 Control method of teleop_twist_keyboard 

To solve the above questions, we develop our teleoperation program. Its control 

method is shown in Fig. 3.3.3.  

It should be noticed that the robot rotates only when the user is holding the Left or 

Right key. For example, although the rotating velocity gradually increases when the user 

holds the Left key, it will be set to 0 when user releases the button. Therefore, the robot 

will not keep rotating once you press the arrow key. 

The advantages of our program are as follows: 

 Only five keys are used. Arrow keys are used to control the direction and speed of 

the robot, and user can directly adjust the moving and rotating velocity. Therefore, 

the control is more intuitive. 

 When the user wants to accelerate the robot, he can hold the Up key to gradually 

speed up. User can also slightly adjust robot’s moving speed. 

 Pressing Left or Right key can slightly adjust the robot’s direction, while holding it 
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can make the robot rotate and turn left or right. While rotating the robot, releasing 

the Left or Right key will stop its rotation. 

 You do not need to hold the keys to make the robot move continuously. After 

pressing the Up key, the robot will continue moving until moving velocity is 

decreased. 

 

Fig. 3.3.3 Control keys of our teleoperation program 

 By using such teleoperation program, it will be much easier to control the robot 

and collect the navigation records for training database. Natural navigation can also be 

achieved. 

3.4 Features and Advantages 

As mentioned before, our training data set consists of the human-controlled 

navigating records and ten basic instructions sets. All instructions in each basic 

instruction set have similar meanings, and can be represented by the basic instruction of 

that set. Each recording sequence contains a sequence of (𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) 

pairs, and is collected according to some basic instruction. 

During training process, the neural network model uses measurement as part of the 

input—the other part comes from basic instructions sets—and the velocity as referenced 

labels. This model tries to make its outputs correspond to the reference velocities given 

by human. Thus, by using this model, robots would adjust its velocity according to the 
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readings of its sensor at that moment and the given initial instruction. It can be expected 

that the robot will move smoothly as if there is a person controlling it. 

While training neural network model, for instance if we want to train the ‘turn right’ 

instruction, our algorithm will randomly pick one instruction from the ‘turn right’ basic 

instruction set, convert it into sentence vector, and use the vector as part of the input. 

For one training data sequence, this sentence vector will be fixed; however, for one 

recording sequence, we may pick different instructions from the same set, and thus 

would obtain different training input. By doing so, we make great use of the navigating 

records. For example, supposing we records 1,000 sequences for the ‘turn left’ 

instructions, and we construct its instruction set to have 100 instructions. By combining 

these two we obtain 100,000 different training sequences, and thus we could gather 

huge amount of training data using fewer recording sequences. 

Another benefit of using such data structure for our training database is that we can 

easily add more instructions into the instruction sets to extend them, without having to 

collect the training data sequences again. Also, when recording new training sequences, 

there is no need to give a precise instruction. We will only need to specify the class of 

basic instructions being executed. Therefore, it would be much easier to expand the 

training data set. This method also gives good extensibility to the model. In this paper 

we classify simple instructions into ten basic instruction classes. If we want to add more 

classes of basic instructions into the original model, we only need to construct a new set 

of instructions, and records new sequences to train the model. 
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Chapter 4 Training and Experiments 

In this chapter, we first describe how we implement and train our neural network model. 

We will also discuss how we choose which model to use and how we validate the model. 

Next, we describe the experiments conducted in simulation and real environment. We 

analyze the effectiveness of our navigation system by observing the recorded navigation 

paths and comparing the results with those of humans. 

 

4.1 Training Models 

4.1.1 Implementation 

We use Keras to implement our neural network [18]. The network structure is as 

described in Chapter 2. Since our application can be considered a regression problem, 

we use mean squared error (MSE) function as the loss function. Our training program 

consists of the following steps: 

1. Load in the GloVe model for converting words into vectors. 

2. Load in the training data set. For each recording sequence, a corresponding simple 

instruction sentence is assigned. 

3. Build the neural network model, or load in an old, pre-trained model for further 

training. 

4. Start training. The batch size is set to be the maximum value that the computer can 

afford in memory 

5. At the end of every epoch, the model is validated. Models with the lowest loss 

value or the best validation result will be saved. We will describe this part in the 

next section. 

6. The training process stops only when user interrupts it. If the user interrupts the 

program, current model is saved. 
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Model with the lowest loss value is usually the best one. However, to prevent 

overfitting, we need to validate the model using testing data. 

4.1.2 Validation 

We evaluate the effectiveness of our neural network during the training process 

from two aspects. One is the value returned by loss function. Since we use moving and 

rotating speeds as training labels, the overall problem should be considered as a 

regression problem instead of classification. Thus, the loss value could present the 

effectiveness of our models to a certain extent. However, to prevent overfitting, we 

develop a validation function to evaluate our models over testing data. 

The validation function aims to classify the velocity output of each time step into 

‘correct’ or ‘wrong’ output. In the function, error between each label and the network 

output is calculated. If the value is below a certain threshold, we consider the output a 

correct one. Besides, if all outputs of an input sequence are correct, we assume that the 

destination could be reached. During the training process, we count the number of 

correct outputs in each sequence, and the number of destinations that could be reached. 

These two values are used to evaluate the effectiveness of models. 

However, it should be noticed that the outputs of our navigation system will affect 

the input of it. That is, moving at different speeds may result in getting different sensor 

data. If the output varies a lot from the label, input sequence after this output should be 

considered invalid. Accumulation of small errors will also produce the same effect. 

Thus, the validation function should stop counting the number of correct outputs after 

the accumulation of errors exceeds a certain threshold. Whether the destination would 

be reached should not be considered either. 

To sum up, we define the error of moving and rotating speed at time step 𝑖 as 

follows: 
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 𝑑𝑖 = 𝑣𝑖,𝑟𝑒𝑓 − 𝑣𝑖,𝑜𝑢𝑡 (4.2-1) 

 𝑒𝑖 = 𝜔𝑖,𝑟𝑒𝑓 − 𝜔𝑖,𝑜𝑢𝑡 (4.2-2) 

 Here 𝑑𝑖 and 𝑒𝑖 refer to the error of moving and rotating speed respectively. In 

addition, 𝑣 and 𝜔 refer to moving velocity and angular velocity, while 𝑟𝑒𝑓 and 𝑜𝑢𝑡 

denotes the velocity of labels and network outputs respectively. 

Next, we define the accumulation of errors after 𝑖 time steps as follows: 

 𝐷𝑖 = ∑
𝑑𝑖

𝑓

𝑖
𝑘=1  (4.2-3) 

 𝐸𝑖 = ∑
𝑒𝑖

𝑓

𝑖
𝑘=1  (4.2-4) 

Here 𝑓 denotes the sampling frequency of the laser range finder, while 𝐷𝑖 and 

𝐸𝑖 represents the errors in distance and angles after 𝑖 time steps respectively. At last, 

we define four threshold values. They give restrictions to the maximum tolerable errors 

at every time step, and the tolerable accumulated errors. For each testing sequence, the 

validation function calculates 𝑑𝑖, 𝑒𝑖, 𝐷𝑖 and 𝐸𝑖 over each time step. If both 𝑑𝑖 and 

𝑒𝑖 are below their threshold values, the output is considered correct. Once 𝐷𝑖 or 𝐸𝑖 

exceeds the threshold value, the function stops testing on that sequence of data and 

continue to the next one. Finally, we use the number of correct outputs and reached 

destinations to evaluate our network model. 

Each validated model has two validation values [𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛] . We 

assume that models with higher 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 values are better than those with lower 

values. If two models have the same 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 values, one with higher 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 

value is considered better. 

4.1.3 Monitors 

To decide which model to use at last, we design two monitors to keep track on the 

loss value and validation values. 
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The first monitor is called loss monitor. While training, we can obtain the loss 

value of current model. Loss monitor records the lowest loss value we had ever obtained. 

It helps decide whether to save the current model. If the model’s loss value is lower than 

that recorded in loss monitor, the model is saved and the monitor is updated. 

The second monitor is called the validation monitor. Similarly, it records the best 

validation values, and helps save the model with the best validation result. 

Fig. 4.1.1 shows how these monitors work during training process. It can be seen 

that both monitors are updated once, and thus two new models are saved. 

 

Fig. 4.1.1 Loss monitor and validation monitor 

To sum up, we keep 3 models during our training process. One is the current model, 

which will be saved when the program stops. Another one is the model with the lowest 

loss value. Its loss value is recorded by the loss monitor. The last one is the model with 

the best validation result. Its validation values [𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛] are recorded by 

the validation monitor. 

We found that models with lower loss values often have better validation results. 

That is, two monitors show consistency in our research. 
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4.2 Experiments and Results 

4.2.1 Simulation 

We simulate our system under the Gazebo simulating environments [19]. We 

choose twenty different starting positions among all the maps, and at each position we 

let the robot execute 100 legal simple instructions. 80 of them are instructions recorded 

in the basic instruction sets, while the rest are new instructions with similar meanings to 

some basic instructions. If the robot stops its navigation at a proper position without 

bumping into any obstacle, we consider it a successful navigation. The results show that 

for each basic instruction, the robot can navigate to the desired positions. 

To analyze the results and compare our navigation paths with human controlled 

navigation path, we use rviz to record the paths and structures of environments 

observed by laser range finder during navigation [20]. Fig. 4.2.3 to Fig. 4.2.6 shows 

some examples of the success navigation paths and the indoor environment structures. 

In these figures, the red paths represent results from our system, while green paths 

indicate the paths produced by humans. The circles indicate the staring positions, while 

triangles specify stopping positions. However, for the results of Class 4 instructions 

‘Turn around’, we use red arrows to indicate the starting positions and directions of the 

robot, and green arrows to represent the stopping ones. 

We will discuss the experiment results and comparisons in the Comparison section. 

4.2.2 Real Environment 

We test our navigation system on the first and third floors of National Taiwan 

University Building for Research Excellence . We choose several different starting 

positions, giving different simple instructions to the robot and observe its behaviors. It 

turns out that the robot could end up at the proper positions as well. A demonstration 
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video is provided to show our results. 

Fig. 4.2.1 shows the environment in which we test our system. The red dots 

indicate the staring positions, while the blue ones specify the destinations. Some 

instructions are designed to make the robot navigate from these starting positions to 

these particular destinations. We aim to have the robot move to these locations using 

such instructions, instead of giving it a legal simple instruction and see whether it can 

stop at a proper position. The results show that as long as the instruction is correct, our 

robot is able to navigate to the desired location. 

Fig. 4.2.2 shows a screenshot of our demonstration video. The sub-screen shows 

the measurements obtained by the laser range finder, which are displayed in rviz. We 

can observe the structure of environment from the sub-screen. Therefore, we can judge 

whether our robot is taking the right action at that moment. 

4.2.3 Interpolation 

We use Hokuyo UTM-30LX on our warehouse robot ‘Penguin’. To verify the 

effectiveness of our interpolation stage, we change the laser range finder to URG-04LX 

in simulation. Their detection ranges, angular resolutions and maximum measuring 

distance are all different. However, the results show that robot using URG-04LX as its 

sensor has similar performance to that using the original sensor. 

In each experiment, the starting position and the given instruction remain the same. 

We only change the type of laser range finder to observe the changes in behavior during 

navigation. In short, we find little difference between navigation paths generated by 

UTM-30LX and those by URG-04LX. It is proper to say that our interpolation function 

works well. 
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(a) Floor plan for 1
st
 floor 

 

(b) Floor plan for 3
rd

 floor 

Fig. 4.2.1 Floor plans of Building for Research Excellence 
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Fig. 4.2.2 Screenshot of the demonstration video 

Instruction Number Testing Times Success Times Success Rate 

1 263 242 0.9202 

2 257 185 0.7198 

3 264 177 0.6705 

4 241 209 0.8672 

5 178 74 0.4157 

6 185 83 0.4486 

7 76 17 0.2237 

8 62 14 0.2258 

9 238 133 0.5588 

10 236 140 0.5932 

Total 2000 1274 0.6370 

 

Table 4.2-1 Success rate of each basic instruction 
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Class 1 Class 2 

 

 

 
 

 

 

 

Fig. 4.2.3 Experiment results of Class 1 and Class 2 instructions 

(a) (d) 

(e) (b) 

(c) (f) 
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Class 3 Class 4 

 

 

  

  

 

Fig. 4.2.4 Experiment results of Class 3 and Class 4 instructions 

(a) 

(d) 

(e) (b) 

(c) (f) 
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Class 5 Class 6 

 

 

  

 

Fig. 4.2.5 Experiment results of Class 5 and Class 6 instructions 

(a) 

(d) 

(b) 

(c) 
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Class 7 Class 8 

  

 

Fig. 4.2.6 Experiment results of Class 7 and Class 8 instructions 

4.2.4 Comparisons 

We can compare the results of our system with those produced by humans in the 

above figures. Table 4.2-1 shows the success rate of each basic instruction. Some 

features and problems can be observed: 

 In most cases, our system can navigate the robot smoothly. The generated paths are 

straightforward and intuitive, and are very close to the shortest paths to complete 

these instructions. Examples can be seen in Fig. 4.2.4 (b), Fig. 4.2.5 (b) and Fig. 

4.2.6 (a). In such case, there is little difference between the path of our system and 

(a) (b) 
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that of humans. 

 The paths generated by humans have sharper turns than those generated by our 

navigation system. 

 While executing the ‘Go straight to the end’ instruction, our system usually stops 

the robot at a closer distance than human does. This can be seen in Fig. 4.2.3 (a) 

and Fig. 4.2.3 (b), where the red triangles are closer to the walls than the green 

ones. 

 Compared with the robot controlled by humans, robot controlled by our system 

often stops at a position closer to the side wall after performing a right or left turn. 

This can be observed in Fig. 4.2.4 (c) and Fig. 4.2.5 (c). 

 While turning right or left, the robot often performs a two-stage turn in our system. 

Fig. 4.2.4 (c) and Fig. 4.2.5 (c) shows some examples. This results in a longer 

navigation path. 

 It is hard for our system to control the robot to stay in the middle of the road. The 

robot sometimes gradually moves close to the side walls, and ends up bumping 

into them. This phenomenon can be observed in Fig. 4.2.4 (c) and Fig. 4.2.6 (b). 

Therefore, when the distance of path become longer, the success rate drops. 

 Although it cannot be seen from the figure, the cost of time for these navigations 

are all very low; sometimes the robot even moves with a faster speed than human 

does, and the destination can still be reached successfully. 

 The system spends most of its time turning right and left. When performing a 

two-stage turn, the robot often temporarily stops in the middle of the road. 

However, the robot can still get to the correct position eventually. 

 The mobile robot may execute wrong instructions during navigation. For example, 

while executing the ‘go straight to the end’ instruction, seldom it will choose to 
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turn right when it observes that there is a way on its right hand side. We observe 

that adding more training data to the training set would improve this situation to 

some extent. 

 From Table 4.2-1, we can observe that the success rate drops when the distance of 

path become longer. We assume that when robots need to travel long distances, the 

chance of making wrong decisions increases, and the accumulation of small errors 

may result in failure. This is because the output of our program will affect its input, 

and thus any small error in the output velocity has a great effect on the final result 

of navigation. 

 

Some of the above problems will affect the execution of the next instruction, such 

as stopping at a position close to the wall, or executing wrong instructions. Therefore, to 

make our robot execute more complex navigation instructions, we aim to find solutions 

for these problems in the future. 
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Chapter 5 Conclusions and Future Works 

In this paper we present a neural network based model that make mobile robots 

capable of navigating through unknown indoor environments according to the given 

verbal instructions. The navigating system splits instructions expressed in natural 

language into several simple instructions, and compute the sentence vector for each of 

them. The sentence vector along with the readings of laser range finder mounted on the 

mobile robots is given to the neural network as input data. The model will calculate the 

moving and rotating speed of robot, leading it to new positions. New data acquired from 

sensor will then be used to calculate the next movement of the robot. The process will 

continue until the robot stops at one position for a time period—that is, the robot arrives 

at the destination. And then, the next sentence vector will be executed. 

The difference between our methods and others is that we do not decide local or 

global goal positions for robots to navigate to, since the application is under unknown 

environment. Instead we decide the velocity at the next time step. Moreover, we do not 

aim to construct probabilistic models for keywords used in instructions. We use the 

concept of word vector and machine learning to handle the complexity and variety of 

instructions. We provide a unique solution to the problem of auto navigation under 

unknown indoor environments, and experiments show that our system could make 

mobile robots navigate to the correct positions under both simulation and real-world 

environments. 

For future work, we first plan to add more sensors to our system. Using visual 

sensors will allow robots to handle higher level instructions. In addition, extra sensors 

could also be used to detect dynamic objects. We plan to add different types of training 

data into the training set gradually, including the records of avoiding obstacles and 
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searching for the right directions. We expect that the model could learn to handle more 

issues during navigation. Besides, we plan to increase complexity of the instructions, 

adding and modifying the basic instruction sets. Problems proposed in Chapter 4, such 

as decreasing of success rate under long traveling distances, are to be solved too. 
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