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Abstract

Object recognition has remained an important research topic in computer
vision for a long time. It plays a critical role in the area of robotics. Robots
need to extract useful information from rich visual feedback and convert it to
high-level semantic knowledge, and hence can lead to intelligence. However,
until the emerging of Convolutional Neural Networks (CNNs), the fundamen-
tal ability to recognize objects is still insufficient. Since Alex Krizhevsky suc-
cessfully applied deep CNNs on large scale image classification, CNNs has
been bringing lots of success in the community of computer vision. Yet, lots
of practical concerns still need to be overcome to make intelligent systems
truly useful.

In this thesis, we focus on a practical issue which requires robots to be able
to incrementally learn new objects. We first reason that an intelligent service
robot working in a particular environment needs to recognize instances under
different imaging conditions (scale, brightness, occlusion, etc.). Through the
advanced deep learning method, we are able to train a reliable visual system
given sufficient data. The issue, however, is that in the reality of beginning, a
complete dataset that covers all instances to be learned and provides sufficient
imaging conditions is unavailable. In practice, supervisors collect new data
and train recognition systems repeatedly and incrementally. It is necessary to
derive an incremental learning approach to meet this requirement. A direct
solution would be to reuse of every past data along with new data to ensure

performance. While this may be workable, it requires a reservoir of persis-
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tent training data for all learning stage, an assumption which may not always
hold. To this end, we investigate instance recognition in continuous learning
scenarios without the need to access previous data. Under the hood, we are
investigating how to mitigate catastrophic forgetting. Catastrophic forgetting
is a phenomenon which destroys previously learned knowledge when train-
ing Neural Networks on new data. In the thesis, we propose pseudorehearsal
with imaging recollection and pseudo neurons to address the forgetting prob-
lem. Our approach can achieve a promising tradeoff between learning new
knowledge and preserving old knowledge. We demonstrate the feasibility of
our approach by experiments and comparison with other approaches. We also

provide insights to understand our innovation by experimental analysis.

Keywords: incremental learning, deep learning, catastrophic forgetting, and

instance recognition.
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Chapter 1

Introduction

1.1 Instance recognition

service robots to properly operate in real-world environments relies on the knowledge
about the surroundings. One of the fundamental elements is reliable visual systems on
which high-level techniques such as manipulation, navigation, and object search can be
built. For example, in a lab environment, robots are required to distinguish different de-
vices to be qualified assistants. In industry, recognizing objects in convey belt is critical
for coherent operation. In a house, specific objects need to be learned by robots to conduct
correct tasks assigned by masters. Instance recognition is very basic yet crucial ability.
Thus it is a required skill for intelligent systems like robots.

The difficulty of instance recognition is diverse image variances such as lighting, back-
ground, rotation, etc (Figure 1.1). Itis required for a perceptron system to be robust against
such variance. Traditional methods rely on extraction of key points either in 2D or 3D
geometry [1] [2]. Then learn a classifier create corresponding boundary conditions. Al-
though these methods achieve some success, they often lack the ability to against variance.
Template matching is another commonly used method but requires a large database to store
every trained model [3]. For precise recogntion, template matching often uses 3D infor-
mation like point cloud that might consume too much computation and memory. In recent

years, statistical methods has achieved tremendous breakthrough in vision community
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thanks to deep learning, or specifically, Convolutional Neural Networks (CNNs) [4] [5].
This novel kind of machine learning method constructed based on large data has reveal a

new era of solutions to vision tasks and can be utilized to benefit robotics.

Figure 1.1: Scenario of instance recognition. Instances below may appear in scenes above
with different imaging conditions

2 d0i:10.6342/NTU201703298



1.2 Deep learning

Deep learning has gained its popularity recently. One major reason is the appear-
ance of CNNs which are designed for vision community (Figure 1.2). CNNs have been
successfully adopted for solving recognition tasks and won many competitions such as
ImageNet [6], PASCAL Visual Object Classes [7] and Microsoft Common Objects in
Context [8]. A lot of advanced techniques [9] [10] [11] [12] are then further proposed
to accelerate the development of relevant research. Resorting to CNNs for solving high
level vision task is now the first alternative for many researchers or engineers [13]. In-
deed, almost every proposed methods in public competitions are using deep learning skill

nowadays.

128 2048 2048 \dense
dense’| |dense
1000
128 Max Joah
Max 128 Max pooling * 2048
pooling pooling

Figure 1.2: AlexNet model structure [5].

Other than CNNs, deep learning is also adopted in many fields. For example, speech
recognition [14] and machine translation [15] that posses sequential information are ap-
proached using Recurrent Neural Network (RNN) [16] (Figure 1.3), which also belongs to
one branch of deep learning. For representation learning, Deep Belief Networks (DBN)
[17] and Deep Boltzmann Machine (DBM) [18] (Figure 1.4) are utilized to reconstruct

inputs in unsupervised learning. DBN can thus learn a low dimension representations that
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encode useful information. Recently, Generative Adversarial Nets (GAN) [19] which act
as a generative model are able to create realistic images or even write a Chinese poem.

Deep learning has brought lots of possibilities to favour many research domains.

7
oD -

®

A\ 4

v

v
> —>

Figure 1.3: Recurrent neural network (RNN).

Deep Belief Network ~ Deep Boltzmann Machine

Figure 1.4: Deep Belief Networks (DBN) and Deep Boltzmann Machine (DBM).

The thesis also applies deep learning to address instance recognition. CNN-based
method [20] outperforms many state-of-art hand-crafted algorithms. Training CNNs to
recognize a bunch of distinct instances without interference dut to different type of image
variations is achievable given sufficient annotated data [21] [20]. However, despite the
advantage provided by CNNs, there are still numerous practical concerns to address for
robotic application. One of the research topic is incremental learning, which we introduce

in the next section.
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1.3 Incremental learning

One prerequisite for deep learning’s success is large amount of available data. For
service robots working in custom environments, the assumption of a complete dataset
which covers required instances and provides sufficient variety of imaging conditions in
the beginning is impractical. Data must be collected by supervisors or users from scratch.
Furthermore, the process can be assumed life-long considering dynamic environment with
variable objects. To this end, model training should be a adaptive process whenever new
training examples are ready for updating systems.

The above scenario brings us to incremental learning, a machine learning paradigm
that aims at continuously adapting learner to sequential data (Figure 1.5). This requires
model to be class-extensible, i.e. new class can be learned whenever data is available. One
solution for both deep learning and incremental learning is to extend final classification
layer of CNNs model with new capacities and finetune. Although the strategy works,
finetuning needs all previous data being attended in every training stage. It requires a
reservoir of persistent training data and thus might consume tremendous storage in long
term uasge. A more strict incremental learning [22] should free this constraint by more
sophisticated designation. We borrow the rules from Polikar et al. [22] that describes

precise formulations of incremental learning.

It should be able to learn additional information from new data.

It should not require access to the original data, used to train the existing classifier.

It should preserve previously acquired knowledge.

It should be able to accommodate new classes that may be introduced with new data.

5 d0i:10.6342/NTU201703298



These rules mimic the behaviour of human learning. Human can learn new items without
the need to access previous items and only suffers minor extent of forgetting. Investigat-
ing a mechanism that carries out these properties would be crucial development towards
real artificial intelligence. Neural networks, however, breaks the third rule because para-
metric models especially for NNs that store large amount of weights always suffer from
catastrophic forgetting” and so do CNNs. Catastrophic forgetting causes the model losing
previous knowledge drastically if only trained on new items when incremental learning.
The thesis hence copes with the forgetting problem and propose possible solutions. We
present an effective approach to mitigate catastrophic forgetting in CNNs and apply the

approach on instance recognition to enable incremental learning.

[ = | ‘|

\ Dataset1 / \ Dataset3 /

Incrgmtgrlltal Incremental Incremental
/ (or initial) training / training
training l l
model M, model M; model M, model M3

Figure 1.5: Illustration of incremental learning for instance recognition.

Dataset 2

1.4 Thesis structure

The organization of the thesis is as follows. In chapter 2, the background and operation
of Convolutional Neural Networks will be introduced. Chapter 3 includes detailed phe-

nomenon of catastrophic forgetting and related works which cope with forgetting problem.
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The proposed methodology is fully covered in Chapter 4. Chapter 5 contains description
of experiment methods such as naive approach and our proposed methods. Other proposed
works are also experimented for comparisons. Final conclusion in Chapter 6 summarizes

our work and draw some vision for future works.
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Chapter 2

Convolutional Neural Networks

The history of Convolutional Neural Networks (CNNs) traces back to Lecun et al. [4],
who combine stacked parametric filters and the concept of multi-layer perceptron (MLP)
to form CNNs (Figure 2.1). This parametric model is then trained by optimizing error
functions using gradient descent method to solve character recognition task. Later, Alex
et al. [5] successfully develop deeper and more complex CNNs and applied the model
on large-scale competition [6]. This powerful capability has continued to make a break-
through on many vision tasks. Understanding the fundamentals of CNNs is important
for comprehensibility for subsequent context. In whis chapter, we therefore introduce re-
quired knowledge about how CNNs operate and how gradient descent is utilized to train
models.

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT 6@28x28 $2: 1. maps r
r
-

32x32 s2.1, mar r
T

C5:1ayer Fe:jayer OUTPUT
20 s 0 10

Full conrllection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Figure 2.1: LeNet model struture [4].
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2.1 Operation

Function of CNNs can be basically described as the result obtained from a series of
operations such as convolution, activation, pooling, flattening and dense multiplication.
We use VGG16 [23] as example due to the structure’s simplicity (see Figure 2.2).

224 % 224 % 3 224 x 224 x 64

@ Convolution + RelU
112 % 112 x 128 ‘_f,l maxpooling
) () Fully connected + ReLU

r _fj softmax

56 x 56 x 256

28 %28 x 512 7% 7 %512

14 x 14 % 512

/m 1x1x4096 1x1x 1000
i | I 1
g

Figure 2.2: VGG16 model struture. Figure extracted from [24].

convolution

A convolutional layer is composed of numerous parametric! filters that conduct con-
volution” upon input image or intermediate feature maps. Usually we will let the resulting
next feature maps have same width and height by padding. For instance, the first convolu-
tion in Figure 2.2 takes 3-channel image as input, and then applies 64 filters with stride 1
and padding to output a feature map which has 64-channel and the same width and height

as input image. This output map will be inputs to next layer.

activation

Activation functions which are non-linear and are applied after linear operations (con-

volution, dense multiplication) are used to augment networks’ representability. Well-

1”Parametric” means there are tunable parameters that will be learned during training by optimization
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1 pixel stride

-

filter

image

Figure 2.3: Convolution. A filter scans the an image from left-top to right-bottom with
stride 1.

known activation functions include sigmoid, tanh, and ReLU.

. . 1
sigmoid(z) = Fp— (2.1)
tanh(zr) = e (2.2)
exp? +exp—~?
x, x>0
ReLU = (2.3)
0, else

In CNNs, ReLU is usually selected as activation function for its ability for avoiding gra-

dient vanishing?”.

pooling

Pooling, or subsampling aim at dimension reduction and manageable usage. It is also
adopted to preserve important signal. There are max pooling and average pooling which

are frequently used in CNNs. Figure 2.4 shows an example using max pooling and Fig-

2Gradient vanishing occers because derivatives obtained from some kind of activaiton function such as
sigmoid and tanh are samller than 1.0. Hence when backpropagating to shallower layers, gradients become
very small and fail to improve early layers’ parameters.
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ure 2.5 for average pooling.

flattening

1123 4
5|67 |8 max pool 6|8
9 11011 |12 14 | 16
13|14 |15 |16
Figure 2.4: Illustration of max pooling.

1234

35|55
S|617|8 average pool
9 10|11 |12 11.5|13.5
13|14 (15|16

Figure 2.5: Illustration of average pooling.

Because outputs from convolution layer are image-like 2D feature maps with channels.

To feed the output to fully connected layers (MLP), the maps need to be flattened into 1

dimension vector.

dense multiplication

After flattening, dense multiplication contains parametric matrix and applies it on in-

put vector to output a new vector. The operation is a basic element in every neural net-

works like structures. The corresponding operation in VGG16 is the right part (blue) in

Figure 2.2, which will finally output 1000-dimension class scores.

11
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2.2 Optimization

The weights of CNNs are often randomly initialized based on normal distribution. To
tune the weights to accommodate tasks ,optimization is applied according to objective
function (loss) and updating algorithms. An objective function which is designed to fit a
training data set X and parametrized by model weights ¢ is denoted as J(X; #). Minimiz-
ing J(X; 0) renders us an optimized set of weights that can approach desired solutions.

Normally, mini-batch gradient descent is one of the most popular algorithms to per-
form optimization and by far the most common way to optimize neural networks. With a
mini-batch of data x; 1, z; 9, ..., 7;. y and current model weights ¢, the objective func-
tion in current iteration is J(z;41.;. n; 6°). By derivation and chain rule, we can compute
the corresponding gradient with respect to model’s parameters AgJ (24154 n; 0'). Then
according to learning rate 7, which indicates the size of one step parameters are updating,

parameters are updated in the opposite direction to minimize error function.

Ot = 0" — A J (Tig1:ian; 0°) (2.4)
where
1 i+ N
A9J<xi+1:i+N; Ht) = — Z AQJ(LC], 9t> (25)
szi—l—l

There several challenges for this vanilla gradient descent method such as convergence
speed, choice to anneal learning rate, and worse convergence. Luckily, deep learning
community has develop different kinds of optimizer that can improve training. We list

three common optimizers and their updating rules.

* Momentum [25]

v = yur_1 + Nl J(6) (2.6)
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it =gt — (2.7)

where ~ controls the fraction of momentum. The value is usually set to 0.9.

* RMSProp [26]

For simplicity, we denote Ay J(6") as g;.

Blg’]; = 0.9E[¢%);-1 + 0.1g; (2.8)
gt =o' — Agt (2.9)
Elg?]i + €

where E[g%]; denotes the running average accumulated up to ¢ for each parameter

6. € is a small value to avoid division by zero.

o Adam [12]

my = Simy_1 + (1 — B1)ge (2.10)

vy = Povp_q + (1 - 62)9? (2.11)

m, and v, are thus estimates of the first moment and the second moment. Further-
more, the author observed that zero initialization of m; and v, is unfavourable to

training. Therefore they correct the term by division of 3 with power to ¢

(2.12)
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(2.13)

Then the update would be

o =0 — i 2.14
mmt ( )

In the thesis, we employ Adam for its popularity of quick convergence and better perfor-
mance among other adaptive optimizers. However, altering optimizer is also possible and

will not affect our main research.
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Chapter 3

Catastrophic Forgetting

3.1 The phenomenon

Catastrophic forgetting is a severe loss of previous memory when trying to learn new
information. In a learning environment where new data becomes available, learner is
trained on new source to acquire new knowledge. Systems like Multi Layer Perceptron
(MLP) or Neural Networks (NNs) will suffer from catastrophic forgetting due to exhaust-
ing the capacity to accommodate new information. The weights (the capacity) are tuned
to fit new learned problems or items as fast as possible, disregarding previously learned
knowledge. Usually one new stage for new items can destroy old knowledge heavily.
The phenomenon thus becomes even worse when systems experience several subsequent
learning stages, losing the ability to solve previous problems.

Possible solutions to solve or mitigate catastrophic forgetting contains rehearsal meth-
ods, reduction of overlapped representation, ensemble of experts, etc. We introduce sev-
eral works that share similar concepts or differ in essence in the following section, includ-
ing early attempts to solve forgetting problems in relatively shallow networks and recently

deep networks.

15 d0i:10.6342/NTU201703298



3.2 Related Work

3.2.1 Rehearsal

rehearsal method reuses part or all previous data to maintain learned knowledge. Early

approaches including recency rehearsal, random rehearsal, and sweep rehearsal [27],

each with different sampling strategy. Rebufti ez al. [28] latest proposed integrated strat-

egy in deep networks. Their rehearsal method keeps a predefined number of old data to

constrain memory usage by constructing an exemplar set. 1 shows the overall algorithm

(see Rebuffi et al. [28] for more details) Although rehearsal method guarantees certain

performance, it still need to access previous data and cope with memory usage, which

differs from our scenario.

Algorithm 1 1CaRL

Input:
1: Dy, ..., D,: New training examples in per-class sets
2. P=PF,,..., P,_q: Current examplar sets
3: ¢: Current model weights
4: M: Memory constraint size
Output: P 0

N AR

10:
11:
12:
13:
14:

0 < UPDATEMODLE (D, ..., D, P, )
N < M/t: allowed number of example in each exampler set
fory=20,...,.s —1do
P, < REDUCEEXAMPLERSET(P,, N)
end for
fory=s,...,vdo
P, <~ CONSTRUCTEXAMPLERSET(D,, N)
end for
P=Fr,..»P,
return P, 0,

3.2.2 Reduce representational overlap

French et al. [29] [30] demonstrated that by increasing sparsity of networks, represen-

tational overlap between old data and new data is reduced, so parameters that represent
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old knowledge are more likely to remain unchanged when training on new data. Simi-
larly, Srivastava et al. [31] introduced Local-Winner-Takes-All (LWTA) to let neurons in
a block compete and only the max one can pass value to next layer. This results in sparse
distributions of network, which can reduce forgetting problem. Their proposed connec-
tion structure of network is shown in Figure 3.1, where only one neuron (black) in a block
is able to transmit signal to next layer. Kirkpatrick et al. [32] also adopt similar rule but
also introduce elasticity. By introducing “elastic weight consolidation” (EWC), The au-
thors record each parameter’s responsibility for how important it is to original task and
thus control the changes of those parameters when learning new task. The method finds
an optimal updating direction to situate the resulting weights at the proper position which

support both new and old tasks (see Figure 3.2).

R
:\\ r’;@ ’\j:.,...‘ \

7

Figure 3.1: A Local Winner Takes All network (figure from [31]).

3.2.3 Ensemble of experts

Polikar et al. [22] proposed Learn ++. Learn ++ adds new classifiers to accommo-
date new information. New classifiers are trained to guarantee certain performance on

new samples, hence every classifier becomes an “expert” for specific data distributions.
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— Low error for task B = EWWC
= Low error for task A = L2

. ' == NO penalty

Figure 3.2: Elastic weight consolidation (ELC) (figure from [32]).

Muhlbaier et al. [33] further improved Learn ++ by introducing voting and weighting
mechanism (Figure 3.3) to address the imbalance problem of classifier’s number . Le et
al. [34] also probed catastrophic forgetting in deep networks by proposing a dual memory
architecture consisting of ensemble of three-layer networks, which can continuously learn
representations. However, the work proposed by Le ef al. approach still need to access
previous data to accomplish representational learning.

prediction

Decision Maker

train

&

(&

S

Figure 3.3: Ensemble system consisting of experts
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3.2.4 Knowledge distillation

Knowledge distillation is commonly used for model compression [35] , transfer learn-
ing [36] [13] [37] and domain adaptation [38] [39] in deep networks. The main idea is
to take source model’s predictions of unlabelled data as groundtruth labels and use them
to train target model. For example, Jung et al. [39] incrementally trained model to adapt
different input domains by matching logits of the last feature layer. They also reason that
the final layer acts as linear classifier and forms decision boundary, which shouldn’t be
changed. Based on the two criteria, they are able to incrementally train a model to accom-
modate both color domain and gray level domain. Another example is Li and Hoiem [37]’s
work. They propose muti-task learning in incremental manner via distillation loss [35] and
show a promising performance on several datasets without suffering severe catastrophic
forgetting. In fact, distillation has been applied on mitigating catastrophic forgetting in
early stage [40] [28] [39] [37]. Robins [40] proposed pesudorehearsal which is able to
preserve original model’s behaviour by distilling knowledge from pseudo data. This work
can be seen as one of the earliest attempts to address forgetting issue and works quite
successfully in shallow networks.

Our approach is also related to knowledge distillation and is inspired by the usage of
pseudo data [40]. Based on pesudorehearsal, we propose two significant improvements
to further combat forgetting problem. Playing a critical role as our baseline methodology,

we give more details of the mechanism of pesudorehearsal in the next chapter.
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Chapter 4

Pseudo Rehearsal with Imaging

Recollection and Pseudo Neurons

Based on pseudo rehearsal, we propose two significant improvements to enhance the
effects against catastrophic forgetting. Namely, the use of recollective images as pseudo
data and the joining of pseudo neurons. Our approach allows data of unseen class or
existing class but with different imaging conditions to be learned incrementally without
catastrophic forgetting. This chapter begins with a problem formulation of our learning
scenario. Then a description of how pesudorehearsal works is given. Finally we demon-
strate our two innovations. Our core idea and incremental learning pipeline can be seen

schematically in Figure 4.1

pseudorehearsal pseudorehearsal

J
=~ =

pseudo data new data pseudo dat: pseudo data

learned class
new class
pseudo neurons

Figure 4.1: Overview of our learning approach. We use the mechanism of pseudorehearsal
and combine our two contributed approaches.
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4.1 Problem Statement

Data is usually collected sequentially in either supervised or semi-supervised way. Our
goal is to enable robots to incrementally learn new information without suffering catas-
rophic forgetting to fulfil life-long usage. As depicted in Figure 4.1, we denote dataset
which becomes available at different time point ¢ as D' = {({,), (1)) > (T(e)> Y(nt)) }»

where N* is the number of examples in t*"

dataset, and z{; is one example with the cor-
responding one-hot ground truth vector yfi). We do not assume newly collected data to
belong to only unseen class or existing class so that both kinds of data can be incremen-
tally learned for different purpose, i.e., extension of class list or learning invariance, re-
spectively. Initially we assume a pre-trained model M, which has already learned rich

hierarchical feature representations is available, e.g. a CNN model trained on ImageNet.

Then at each time point ¢ = k, we continuously train the current model M on new dataset

D,

4.2 Pseudorehearsal

We first introduce how pseudorehearsal [40] works as one of the early successful meth-
ods to avoid catastrophic forgetting. While common rehearsal methods still rely on previ-
ous data to preserve old knowledge, pseudorehearsal is able to rehearse without old items.
Innovatively, it manufactures data by randomizing input images (image with random value
from 0 to 255 at each pixel) and whatever outputs generated from the current model form
the corresponding targets. Before new training process begins, a number of pseudo data is
generated and will be trained along with real data. We denote the pseudo dataset formed at

current time point ¢ = k as D = {(@y, f(’j)), s (i’(“ﬁk), ~(’“ﬁk))} where 7{;, is one pseudo
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sample (randomized image in this case), f('j) is the corresponding output targets generated

from M, (see Figure 4.2), and N* is the number of psuedo samples. During training,

both real data and pseudo data are trained using standard stochastic gradient descent but

with different loss functions:

L= )\disLdis + /\cls'acls

Co 1 -
Lais = Z Z*Hfz fz||2
(z,f)eD = 12
Co+Ch
cls - Z Z Yi IOg gl €, 9))
(z,y)eD =1

The update with respect to one pseudo sample and one true sample is:

a'C’ dis aL dis af

00— Of 00
C, (70
= ;(fi(j;e) - ZJz') ) aflée’)

a'Ccls o a'E’cls af

00— of o0
CotCn Ofi(z;0)  Of(x;0)

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

where, Ay and ). are the loss weights of Euclidean loss £4;; and cross-entropy loss

L., respectively, @ is trainable weights of the model, f;, ¢;, and y; are the i*"

values of

output vector, output vector before softmax layer and one-hot groundtruth vector, and ¢ is

the target index (y; = 1). C, and C), represent the old classes and new classes. We use

Euclidean loss as distillation loss to penalize the predicted outputs (logits) before softmax

layer according to Ba and Caruana [36]. This helps the current model to preserve certain

22
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Euclidean loss cross-entropy loss

oy
Dol

| pseudo input patterns | training data | targets |

Figure 4.2: Illustration of pseudorehearsal. The dotted neurons on the right side represent
new classes (if any).

degree of old model’s mapping function by learning the relation between pseudo inputs

and pseudo targets. New information can be gradually embedded to the model via standard

0L s
of

8Lcls

o7 or fine tune Ay;,

classification loss. One is free to normalize derivatives and

and )\, to prevent unequally impact introduced by different losses. Our empirical findings
show that this may be unnecessary, as neural network seems to be able to reach a stable
state by itself, hence we don’t adopt this strategy. Schematic illustration of the training

process can be seen in Figure 4.2.

4.3 Imaging Recollection

Original work [40] uses randomized input data as pseudo data. However, in the lit-
erature [41], the authors pointed out that randomized inputs may blur the abstraction of
originally learned data and thus less effective to preserve old knowledge. To obtain more
informative data, we borrow the idea from Erhan ef al.. Erhan et al. [42] introduces “ac-
tivation maximization” to visualize what neural networks “’thinks” given a concept of in-
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terest. This technique is then combined with regularization terms [43] to synthesize more
recognizable images to human (see Figure 4.3 for synthesized images). While both works
make the efforts to understand and visualize deep networks, we believe this kind of data
is more informative, and can serve as a good data source to conduct pseudorehearsal. We
intuitively treat this procedure as kind of “imaging recollection” as images are inversely
generated given a concept (see Figure 4.4). Our intuition, for example, is that when human
recalls the object coffee mug”, there may be some kind of impression shown as image
in our memory. Corresponds to this behaviour, we want to generate an image which can
maximally trigger the concept of “coffee mug” in neural networks. We expect these rec-

ollective images to be able to encode more relevant information that can better preserve

old knowledge.

Flamingo Billiard Table School Bus

Ground Beetle Black Swan Tricycle

Figure 4.3: Examples of synthsized image by activation maximization and regularization
(figure from [43])
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C0000000000

Figure 4.4: Illustration of imaging recollection.

derivation of generated image is described as follows. By first choosing one output
unit which represents some specific concept, we form one-hot label vector y where the
j'" element is the target and equals to 1 while the remaining elements equal to 0. We then

minimize the loss in (4.3) by finding the target image ¥ where

T = argmin L.(z,y,0) (4.6)

which is equivalent to maximize the j** element of networks’ output:
T = argmax g¢;(z;0) 4.7)

This can be solved by rendering an initial random image = and adopting gradient ascent
with respect to z. Specifically, for all pixel values ], with the corresponding position
m, n and current training step 7. We have

gt =al o+l 99;(x7:6)

mn mn o™
mn

(4.8)
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where [r is learning rate for one training step. We stop the process when confidence
value g;(x™; 0) surpasses some pre-define threshold, as a high confidence indicates that
CNNs have regarded the image ™! as a strong representation of some concept. The
resulting pair (Z, f(Z; 0)) (recall that f is the output vector before g) thus form one pseudo
sample and the corresponding pseudo target. Before each incremental training begins, the
procedure described above is conducted for several times to generate N* pseudo samples

to form the pseudo dataset for current training stage. Note that

N'=nC, (4.9)

where 7 is a hyperparameter indicating the number of pseudo samples per class.

4.4 Pseudo Neurons

When training on new dataset, we rely on distillation loss to preserve previous be-
haviour of model and acquire novel knowledge through classification loss. However,
such a training process blinds new added neurons from taking account old information in-
troduced by pseudo data, resulting in asymmetrical impacts from objective functions. We
here propose pseudo neurons to let both information flows across neurons representing old
or new classes. We embed the model in the last logits layer with several additional pseudo
neurons that initially represent no class. These neurons are only trained to be less activated
for the classes initially learned. When new training stage proceeds, where new classes are
introduced, these pseudo neurons will be converted to capacities for new classes.

Because of the setting of pseudo neurons, f is now including both new class neurons
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and pseudo neurons. Equation (4.2) and (4.3) are now modified to

Co+Cn+Chpo 1 ~
Lais = Z 5”]61(3:“, 0) — szg (4.10)

@fep =1

Co+Cn+cpo+Cpn
Las=— Y > y;i log(gi(z;9)) (4.11)
(z,y)€D i=1

where C,, C,,, Cp,, and C),, are the numbers of old classes, new classes, old pseudo neu-
rons remained, and newly added pseudo neurons respectively. Note that neurons in C,
are obtained by converting some pseudo neurons.

(a) learned classes

: : new capacities

incre. step for new classes

o
distillation loss

classification loss

(b) learned classes pseudo neurons

new capacities
incre. step new classes for pseudg neurons

o
distillation loss

classification loss

Figure 4.5: The arrangement of output neurons without (a) and with (b) pseudo neurons.

To see how pseudo neurons being arranged compared to the original one without
pseudo neurons see Figure 4.5. In Figure 4.5 (a), new neurons of new classes are added
directly. Penalizing dissimilarity between previous model and currently trained model by
pseudo data, distillation loss can be only applied on already existing neurons. On the other

hand, the setting of Figure 4.5 (b) enables distillation loss applied on converted neurons.
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To ablate the reason why such a simple arrangement boosts performance, we consider
following two cases with or without the addition of pseudo neurons.

We first see original version where no pseudo neuron is added. Consider an extreme
case where only one new class is introduced from new data (C,, = 1). We form one
minibatch consisting only one pseudo sample (Z 4, fold) representing old knowledge and
one true sample (Zyew, Ynew) Of new class. The target index ¢ of new data sample thus lies
on the position of C', + 1. Then by (4.2) and (4.3), the summation of two losses given one

minibatch is
C, 1 ~ 19
L :Z §||fi(%1d; 0) — filla
i=1
Co+1

- Z Yi log(gi('rnew; 9)) (412)

i=1

The optimized state where £ ~ 0 can be achieved when

fi(@aa0) = fi,  fori#C,+1 (4.13)
and
Co
eft(xnew;e) >> Z efi(xnewie) (414)

i=1
To see how gradient descent results in this condition, we compute gradients from total

loss:

0L _ 0L 0f(ioa:8) | 0L Of (newi6)

00 of 06 of 06 (4.15)
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oK.

and rewrite the equation with respect to derivative § I

3 6 i ~o 79
(fi(Zora; 0) — fi) - f("géd))
oL o, |
WJ; = {0 0) - LoD (4.16)
61' neune
(i (Tnew, ) — 1) - f(fﬂag)’ P—t

To reach optimized state, weights would update toward the direction where all derivative
terms g—ﬁ_ approximate to 0'. As f;(x;0) is only subject to classification loss, it’s free to
grow to a large enough value to satisfy (4.14), which yields g; (2,0, 0) very close to 1 and
9i(Tpnew, ) very close to 0 for ¢ # t, hence the gradients introduced by classification loss
term approximate to 0. Given this condition, f;(x;#) is now only subject to distillation
loss as g;(Tpew, @) = 0 for i # t. The optimization of distillation loss then results in the
condition of (4.13).

We can now reasonably refer that f(x,..;6) would be a logits vector in which the
t’th element surpasses other elements, which is desired because the resulting probability
of the target class g;(,ew; 0) can be very close to 1. However, such an optimization will
cause some confusing situations for images of old class. As encoded representations of
images from different class are not possible to be complete orthogonal, they must share
some similar information. So normally the resulting representational distributions of x4
will also cause a high f;(z,4; ), which will be a competitive or even exceeding value
than the logits f;,(xq4; 0), where to is the target index of x,4. Consequently, the network
is confused due to two high logits fio(Zoq;0) and fi(zea; 0)%.

We turn to see the proposed alternative which uses pseudo neurons. For simplicity,

!One possible condition to reach stable state is % ~ 0 instead of g—L ~ 0, which indicates training is
stuck at a saddle point. However, such a condition may not exist from the observation by Goodfellow et
al. [44].

2S0 in this way, neural network does not really forget old knowledge as it still retain a high score for
correct class.
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we set the number of pseudo neurons to 1, which is converted to the capacity of new class
during training, and we don’t add new pseudo neuron back to make the equation clear.

Thus Cp, = Cp, = 0 and C,, = 1. Then the gradients of (4.10) and (4.11) become

(s 0) — fi) - 21 0)
o (s 0) — o) - 21 0) |
+(9¢(xnew,«9)—1).W, P—t

The logits f;(x;6) is now also subject to distillation loss. Consequently, f;(z;6) will be
high when input image is of new class and, when input is of old class, f;(z;6) will be
suppressed because of the penalization from distillation loss during training time. The

confusion happens in the original version without pseudo neurons can thus be addressed.

class 0 class 1 class 2 class 3 class 4 class 5 class 6 class7 class 8 class 9

i

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

E

ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

Figure 4.6: Distributions of output logits (a) without pseudo neurons and (b) with pseudo
neurons after learning one new class. Each column computes means and standard devi-
ations of one batch of data of same class. Value of correct class index are coloured blue
while value of new class index are coloured yellow for clear comparison.

To further demonstrate the phenomenon, we show experimental observation by ini-

tially training a CNN model using data of 9 randomly selected instances from RGB-D

Object Dataset [45] and then incrementally train the model to learn one new instance class.
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Figure 4.6 shows the resulting distributions of f(x; ). Each distribution is obtained by
averaging the output logits f(z;6) among batch of testing images. Images in the same
batch belong to the same class,e.g. the 3’rd column is obtained from a batch of data that
all belongs to the 3°rd instance class. We can see with pseudo neurons (Figure 4.6 bottom
row), fi(z,4; 0) is more suppressed than the one without pseudo neurons (Figure 4.6 top
row), meaning that new class neuron is less likely to effect the final decision from CNNs
to predict the right answer when seeing images of old class. Also see Table 5.6 in Chap-
ter 5.3 for resulting accuracies. Note that data in RGB-D Object Dataset is recorded on
turntable and only has variance of rotation. When using more challenging data or when
CNN model has initially learned more classes, the phenomenon will enlarge and lead to a
significant gap of performance between the one with pseudo neurons and the one without

pseudo neurons (see Chapter 5.1).
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Chapter 5

Experiment

We implement all approaches using Caffe [46], an open source library that is specif-
ically built for designing CNN models and support GPU computation. We run our pro-

gramme on NVIDIA GEFORCE GTX 960M.

5.1 Incremental learning instance

We show the feasibility of our proposed work by several experiments in this chapter.
We mainly conduct three experiments. The first experiment focuses on the overall perfor-
mance about “whether the approach can incrementally learn new instance without losing
previous knowledge”. Then we perform “whether the approach can learn robustness given
more diverse image conditions of an existing class”. Secondly, we give insightful anal-
ysis of our two innovations to show each component’s effectiveness. Finally, our recent
attempts reveal a new kind of pseudo data, which replaces recollective data and can largely

save training time for deriving activation maximized images.

5.1.1 RGB-D Dataset

We demonstrate the feasibility of our approach in practical scenario by using RGB-D
Scenes Dataset [45]. The dataset is collected from natural scenes in everyday life. More-

over, we augment the dataset with additional four scene data in RGB-D Scenes Dataset v.

32 d0i:10.6342/NTU201703298



2 [47]. The overall dataset is composed of 11 scene datasets' and totally 28 instances? (see
Figure 5.1). We separate 11 datasets into 8 datasets and 3 datasets. We subsample each of
the 8 datasets by taking every fifth video frame to form training data, and the remaining
for testing. The 8 testing datasets are thus consisted of instances with different view points
compared to training data. We denote the 8 testing datasets as festset/. In addition, the
other 3 datasets (the last three in Figure 5.1) from totally different scenes with more imag-
ing conditions (illumination, occlusion, background, etc.) which are not seen in training
datasets are selected to evaluate the final performance. We denote this second testing set

as testset?2.

e
15

Instance
Scene b2 b3 b4 b7 b8 cl
desk - V. V. - - - - -V v - - - - v - - vV - Vv Vv - - - v - v
kitchen_small | - - v v v - v v v v v v
meeting_small | v v - v v v v - v v v v v v v
table v v v - v v v - v v
scene_05 - - - Vv v v - v
scene_07 Vo= - - - - v - - v - - v - - - - - - - - - - - - - - v
scene_09 - - - - Vo= - - - v - - - - - - - - - - - - v
scene_10 V = = = = = = y = - v
table_small - -V - - - - -V v - v v - - - - - - - - v - v -
scene_13 vVoo- - - - - - e - v - - - - - v - - - - - - - - - v
scene_14 - - - - vV - v - - - - - - v - - - - - - - - - - - - v

Figure 5.1: Information table of the 11 scene datasets and appearances of each instance.

5.1.2 Implementation Details

We implement several approaches that also deal with catastrophic forgetting as com-
parison. For all approaches, we adopt network architecture proposed by Zeiler and Fer-
gus [48] and pre-train models on ImageNet [6]. Specifically, the model we denote as ZF

net has 8 layers (see Figure 5.2). When an input image is fed into ZF net, the image is

Iwe merge desk [1-3] todeskand table small [1-2] to table small.
’b, ¢, cb, cm, £ and sc are the abbreviations of bowl, cap, ceareal box, coffee mug,
flashlight and soda_can respectively

33 d0i:10.6342/NTU201703298



convolved with 96 different 1st layer filters, each of size 7 by 7 and with stride size of 2 in
both x and y direction. The resulting feature maps are then: (i) passed through a rectified
linear function (ReLU), (ii) max pooling operation within 3x3 regions, using stride size of
2 and (ii1) contrast normalized across feature maps to give 96 different 55 by 55 element
feature maps. Similar operations are repeated in layers 2,3,4,5. See Figure 5.2) for de-
tailed difference. After convolutions are two dense layers, which first flatten features from
the top convolutional layer to form a 9216-dimension (6 - 6 - 256) vector and then output
4096-dimension feature vector. The final layer is a classification layer which acts on the
feature vector and output a predefined C-dimension vector, where C is a prdefined number
of classes. To enable incremental learning, we discard the final layer and add extensible
classification layer to accommodate new classes. Additionally, we add ROIPooling
layer [49] right before fc6 layer so that networks are able to accommodate different size

images and classify local patches of an image.

image size 224 110 26 13 13 13 _ _
filter size 7 ‘1’3 13
1 w384 | V1 384 256
'\2‘56 N N N
stride 2 Kfa6 3x3 max 3x3 max C
3x3 max pooi contras pool| | contrast pool 4096 4096 class
stride 2 norm. stride 2 | norm. stride 2 units! units softmax
3 ssll | P 3
N 2 Lo "IV 6 256
Input Image ‘\ ‘\2‘56 \ - -
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer7 Output

Figure 5.2: ZF model.

During training, we let all parameters after conv5 be finetuned? for all approaches ex-
cept for fixed representation. During training, we set fixed learning rate of 0.0001, weight
decay of 0.0005 and mini-batch of 5 images (around 25 samples) per iteration. Each in-
cremental training stage consists of 80 epochs or stops early if average classification loss

over one epoch is below 0.005.

3Finetuning to early layers reduce the performance for all approaches. This is because finetuning to early
layers harms the ability of rich feature representations obtained by pre-training on ImageNet
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Baseline

the baseline solution is fixed representation, which only learns the weights of new
classifiers or existing classifiers depending on whether current training dataset contains
old classes or only new classes. This approach avoids forgetting old knowledge by fixing
exiting classifiers’ weights. Figure 5.3 draws learnable part for the condition where current

dataset contains both new class and old class.

old class neurons

new class neurons learnable
fixed

)
/

condition: current dataset
contains new class and old class

Figure 5.3: Demonstration of trainable weights for method “’fix representation” in the
condition where current dataset contains both new class and old class.

Less-forgetting Learning in Deep Neural Networks

Jung et al.’s work [39] mainly deals with domain adaptation. As the task doesn’t
require adding new class neuron in final layer, we manually modify their approach to be
class-extensible and leave other elements unchanged. Their approach tries to maintain
final classifier’s decision boundary by fixing weights and keep feature representations
from last layer (before classification layer) by using Euclidean loss. In addition, they
allow intermediate layers trainable. We show modified version in Figure 5.4 and denote

the version as LF*,
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Softmax loss

Euclidean loss learnable

y &

Figure 5.4: Modified version of [39] to allow class-extensible.

A 4

Compete to Compute

We implement Local-Winner-Takes-All (LWTA) [31] in £c6 and fc7 with blocks
of size equal to 16 which yields the best performance among 4, 8§ and 16. Training with
LWTA is exactly the same as finetuning the current model. The difference is signal tran-

sition is now constrained by only permitting max value to be passed between each layer.

Learning without Forgetting

Li and Derek’s work [37] can be directly fit into our scenario by simply taking multi-
task learning as multi-class learning. We denote the method as LwF. The training rule is
very similar to pseudorehearsal that also distil old model’s knowledge. The distinction is
that instead of using additional data (e.g. pseudo data), LwF leverages current available
data as source to preserve knowledge. Besides, LWF uses the distillation loss proposed by
Hinton et al. [35] rather than L2 distance loss we adopt in our approach. The loss used in

LwF [37] is defined as

Co
Lasrwr = > > gi(z;0" ") log g;(; 0%) (5.1)

(z,y)eD i=1
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where g;(z;0%1) is the i" element of output probabilities from old model Mj,_; with
fixed weights 6*~!. 0 is thr current model’s weights, which are trainable. The overall

loss is thus summation of common classification loss in (4.3) and LwF distillation loss in

(5.1).

Pseudo Rehearsal

For original pseudorehearsal [40], we set 72 (the number of pseudo sample per class)
equal to 80. Before one training stage, randomized images as pseudo data are generated for
later usage. During training, loss weights A\, and )y are set to 0.1 and 0.1 respectively.

Batch size for pseudo data is set to 16 samples per iteration.

Pseudo Rehearsal with Imaging Recollection and Pseudo Neurons

The training settings of our approach is the same as pseudorehearsal. Additionally,

regarding the proposed pseudo neurons, the number of pseudo neurons is set to 10.

5.1.3 Results

Figure 5.5 shows the curve indicating the degree of how much the networks preserve
the old knowledge by retrospecting testing data of previous scenes. Among all works
that mitigate catastrophic forgetting, ours outperforms all of them in intermediate stages
and final stage. The most closest one to us is LwF, which is behind ours by around 5%.
Nonetheless, as our goal is to train a robust recognition system in incremental manner, the
results by testing on a festset2 which contains various imaging conditions is more repre-
sentative. Table 5.1 shows the overall performance on festset! and festset? after training
on the 8 datasets. We can see that after incrementally learning 28 instances from different

scenes, our approach learns better invariance compared to others, reaching 74.48% accu-
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Figure 5.5: Curve demonstrating how much knowledge is preserved by testing model on
accumulated testing data.

racy on testset?2 and outperforming the second best LwF with a margin of 13.12%. We
further report the accuracies (see Table 5.2) over additional 4 trials with random training
order of the 8 datasets to avoid any special case. All the results are consistent and show

that our approach outperforms the others.

Table 5.1: % Accuracy on festset] and testset2 after incremental training

Approach testsetl testset2
Fix rep. 35.30 £1.98 | 22.53 £ 1.54
LF*[39] | 50.38 +2.22 | 39.54 4+ 2.50
PR [40] 59.55 £ 3.07 | 47.93 + 3.11
LWTA [31] | 65.27 £ 3.51 | 48.79 £ 2.78
LwF [37] | 82.544+5.12 | 61.32 +£4.72
Ours 87.23 +3.02 | 74.48 +2.21
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Table 5.2: % (testsetl/testset?) Accuracy over 4 trials

Approach trial 1 trial 2 trial 3 trial 4 average
Fix rep. 35.3/225 50.1/36.2 62.7/44.9 28.1/16.0 46.2/33.2
LF* [39] 39.6/34.8 73.6/48.0 55.2/32.6 54.8/47.8 54.7/40.5
PR [40] 64.7/47.1 68.6/52.9 58.1/35.2 64.0/54.8 63.0/47.6

LWTA [31] 76.8/52.6 75.0/50.2 67.1/42.8 66.8/51.6 71.0/50.2

LwF [37] 85.0/66.7 84.8/66.1 86.4/63.7 72.1/54.1 822/624

Ours 95.2/81.9 90.9/76.3 88.4/753 81.5/72.7 88.6/76.1

5.2 Learning Invariance

We have already shown the overall performance of our approach on RGB-D Scenes

Dataset that contains data of new classes or different imaging conditions in each incre-

mental training stage. In this part, we separately investigate whether our approach can

learn invariance by seeing same objects but with different imaging conditions.

5.2.1 GMU Kitchen Dataset

In this experiment, we rely on GMU Kitchen Dataset [50], which is similar to RGB-

D Scene Dataset but with more challenging imaging conditions. The dataset contains 9

cluttered environments each with 9 to 11 objects* We select 7 scene datasets that include

the 11 objects. Then among the 7 datasets, we randomly chose 3 datasets for incremental

training and the remaining 4 for testing. Similar to RGB-D Scene Dataset, training data

are collected by subsampling every 5 frames for each training dataset. Implementation set-

tings of approaches are also the same. We conduct 3 trials with different training datasets

and testing data. Every trial is run for 5 times to obtain average performance. We report

fixed representation as baseline, LwF, and our approach.

“The dataset contains main objects and extra objects. We use main objects here.

39

d0i:10.6342/NTU201703298



5.2.2 Results

Table 5.3 summarizes the results. Surprisingly, all approaches can stably improve

invariance by looking more data while previous data is not present, even for fixed repre-

sentation. The gaps between approaches are inapparent in this aspect. The finding also

implies the major difference comes from the ability to generalize new classes while not

forgetting old classes.

Table 5.3: % Accuracy of invariance learning on GMU datasets

Testing set: gmu_scene [05,06,07,09]

Training order | gmu_scene 01 | gmu scene 03 | gmu scene 04
Fix rep. 54.42 £0.35 60.42 £+ 0.33 69.40 £ 0.51
LwF [37] 54.14 £ 0.64 61.74 £0.14 70.23 £0.13
Ours 53.87 £0.78 63.48 +0.20 72.08 £0.21
Testing set: gmu_scene [01,03,04,05]
Training order | gmu_scene 06 | gmu scene 07 | gmu_scene 09
Fix rep. 50.94 £0.77 62.99 £+ 0.33 63.00 £ 0.37
LwF [37] 51.89 £0.36 63.97 £ 0.97 63.65 £ 0.58
Ours 51.95+0.73 64.42 £ 0.52 66.87 £ 0.50
Testing set: gmu_scene [01,04,06,09]
Training order | gmu_scene 03 | gmu scene 05 | gmu scene 07
Fix rep. 4745+ 1.16 64.18 £ 0.26 67.68 £+ 0.48
LwF [37] 48.76 £ 0.53 64.68 £ 0.22 68.99 £+ 0.32
Ours 47.55 £ 0.33 64.24 £ 0.16 69.86 = 0.31

5.2.3 Discussion

CNNs pretrained on ImageNet [6] do not possess the property to be robust against

imaging variance according to [51], yet CNNs seems to be able to incrementally learn this

property without degeneration. The finding is somehow valuable as it suggests that when

vision task is to recognize some certain objects (or human faces) under different imaging

conditions, one do not need to keep the whole database but is able to directly train CNNs
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model on new data without suffering forgetting problem. In addition, this attribute largely
relates to the work proposed by Held et al. [20]. We would like to investigate this as one

of our future works.

5.3 Analysis of Imaging Recollection and Pseudo Neurons

In this section we provide additional analysis of the proposed approach. Our approach
is mainly composed of two components described in previous sections. The first one is the
replacement of randomized images by recollective images. The second one is the usage
of pseudo neurons. To demonstrate the effectiveness of both components, we individually
analyze them with different parameter settings, and to be clear, we only report the results
of testset2. Note that the experiments conducted are performed using the training order of
scene datasets as shown in Figure 5.1. Also note that if we use randomized data and no

pseudo neurons, our approach is the same as the original pseudorehearsal [40].

5.3.1 Imaging Recollection

we first show the results of using randomized images and using recollective images
with varying number, all without pseudo neurons. The results shown in Table 5.4 demon-
strate the advantage of using recollective images, which improves around %10 compared
to the randomized one. It meets our expectations that even though the images are not rec-
ognizable for human (see Figure 5.6 for example), they are the associations reflecting some
important concepts the networks learned in early stages, hence serving as a good source
for pseudorehearsal. On the other hand, the improvements by augmenting the amount of
pseudo data are minor for both cases. This implies that although the appearances of large

recollective images representing the same concept are different from each other, the trig-
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Figure 5.6: Examples of the recollective images (bottom row) that represent the concept
of cap_1,cereal box 2and flashlight 2,and the truly instances from RGB-D
Object Dataset (top row).

gered distributions of representations inside the networks are similar. Consequently, in
training time the weights will be updated toward a similar direction. The diversity pro-
vided by large amount of data is thus limited and the performance is quickly saturated.
To inspect this property, we project feature representations of recollective images from
layer conv5, fc6, and £c7 into lower dimension by applying t-SNE [52]. Figure 5.7
(a), (b), and (c) show the resulting clusters of 10 selected classes from each layer. The
phenomenon of assembling already emerge in conv5 layer, and is more convergent in
fc7 layer. Different from inference time, where an early convergent phenomenon may

be desired, we wish the resulting feature maps of conv5? are diverse distributions and

SRepresentations from conv5 are “raw data” to CNNs as they are unchangeable due to fixed weights in
our experiments. If we instead fintune this layer, then “raw data” for CNNss is representations from conv4
layer.
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Figure 5.7: t-SNE results of (a) fc#6, (b) fc7, and (¢) conv5 from recollective images
and (d) conv5 from real training data. Different color indicates different class.

can properly represent data of old classes. As a comparison with pseudo data, we show the
feature projection (see Figure 5.7 (d)) from conv5 using original training images of the
10 classes. We can see from real training data, distributions of encoded representations are
diverse. This means that although recollective data encode useful information, it is lack
of diversity to represent all possible data of old class. We leave the possibility to enhance

diversity of data for distilling knowledge in Chapter 5.5.

5.3.2 Pseudo Neurons

Table 5.5 shows the improvements obtained by the addition of pseudo neurons. Firstly,
pseudo neurons improve the original pseudorehearsal from 45.52% to 51.26%, and maxi-
mally to 57.26%. This demonstrates the generality that the advantage of pseudo neurons is

not a special case for recollective images. Moreover, combining recollective images with
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Table 5.4: The effects of using recollective images

Settings testset2
# randomized 1mages per class
16 48.97
32 45.52
80 4793
# recollective images per class
16 57.18
32 58.68
80 59.48
160 59.77
320 59.71

Table 5.5: The effects of pseudo neurons

Settings testset2
# pseudo neurons with 32
randomized images per class

0 45.52
5 51.26
10 53.62
20 54.54
30 57.29
50 57.18

# pseudo neurons with 32
recollective images per class

0 58.68
5 72.48
10 71.95
20 73.97
30 73.90

5 pseudo neurons surprisingly boosts the accuracy from 58.68% to 72.48%, a consider-
able improvement of 13.8%. The results conform our thoughts in Chapter 4.4, where the
confusing situation is alleviated by adopting pseudo neurons. We also report the resulting
accuracies corresponding to Figure 4.6 in Table 5.6. These results reflect the impact as we
mentioned in Chapter 4.4. Without pseudo neurons, the accuracies degenerate to different

extents for some classes. On the contrary, with pseudo neurons only the accuracy of one
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class declines slightly.

Table 5.6: % Accuracy of 10 instances with/without Pseudo Neurons (PN)

without PN:

class | ins0 | insl | ins2 | ins3 | ins4 | ins5 | ins6 | ins7 | ins8 | ins9
init. | 100.00|100.00|100.00|100.00|100.00|100.00|100.00|100.00|100.00 -
incre. | 77.08 | 0.00 | 100.00| 67.57 | 98.31 | 100.00|100.00| 97.22 | 98.08 | 100.00

with PN:

class | ins0 | insl | ins2 | ins3 | ins4 | ins5 | ins6 | ins7 | ins8 | 1ns9
nit. | 100.00| 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00| 100.00 | 100.00 -
incre. | 100.00 | 100.00 | 100.00 | 97.30 | 100.00|100.00 | 100.00 | 100.00 | 100.00 | 100.00

init.: After initially learn 9 instances.
incre.: After incrementally learn 1 new instance.

5.4 Extended Experiment: Various Pseudo Resource

In this extended experiment, we seek other alternative type of data to serve as pseudo
data. Randomized images utilized by original pseudorehearsal [40] lack insufficient infor-
mation and thus perform poor preservation of previous knowledge. Our proposed recol-
lective image data although addresses this issue and gain significant improvements, gen-
eration of activation maximized images takes too much time to form pseudo dataset in
each incremental training stage. To this end, we are interested in other possible kind of
image that can save time for generation and maintain informative. We turn our focus to
the option of using natural images. Though we are not allow to use previous real data, in
real world we can always access other realistic and available datasets such as ImageNet
data [6] or PASCAL VOC data [7]. We are curious whether the sample pair composed of
arbitrary natural image and the corresponding targets which are soft outputs from previous
model can also serve as a good resource to recall old knowledge. Such image data leave

out the time needed for generation and we thus only need to see whether it also encode
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Figure 5.8: Example of recorded instance on a turntable in RGB-D Object Dataset.

useful information like recollective image or not.

We simply choose two kinds of natural image data to investigate this option, one using
data from RGB-D Object Dataset [45] (different from RGB-D Scene Dataset), which is
form by recording instances on a turn table® (Figure 5.8), and the other using 2008 PAS-
CAL VOC images for classification/detection task’ (Figure 5.9). Some partial instances
from RGB-D Object Dataset are actually instances from RGB-D Scene Dataset. The rea-
son we apply this alternative is that although we do not have previous data that offers
diverse conditions, we may be allowed to use minimum images that represent one certain
instance. Once CNN model learns an instance from data containing diverse conditions,
the model may be able to recall knowledge by only looking at a small amount of images
of this instance when conducting incremental learning. On the other side, the usage of
PASCAL VOC dataset is to examine the utility of a very diverse dataset as resource to
preserve old knowledge.

Experiment is conducted using the setting similar to the one in Chapter 5.1 (see Fig-

ure 5.5) and we show the accuracy curves of testset] by altering data resource for knowl-

%So the data contains multi view video frames
"The dataset contains about ten thousands images
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Figure 5.9: Examples images from 2008 PASCAL VOC dataset.
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Figure 5.10: Accurcy curve by altering data resource for knowledge distillation

edge distillation in Figure 5.10.

The results are surprising as we observe that using cheap natural image data has com-
parable affect for preserving old knowledge, especially for the alternative using PASCAL
VOC images. Natural data not only discard the time needed for generation but maintains

promising performance same as using recollective pseudo image data. We infer this is
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because natural images containing realistic and diverse patterns and textures can provide
a large ”information pool” for model. CNN model trained with the combination of dis-
tillation loss and classification loss is able to both extract useful information from such a

pool.
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Chapter 6

Conclusion and future work

In the thesis we propose an incremental learning approach in which data with unseen
classes or existing classes but with different imaging conditions can be well learned in
incremental manner without access to previous data. We develop our approach based on
pseudorehearsal with two contributed ideas. We show that images generated by activation
maximization encode useful information that can serve as a good data source to review
old knowledge. Such a generative procedure we interpret as a behaviour of ’recollection”.
Furthermore, to distil the knowledge from every pseudo sample while simultaneously gain
knowledge from new data, we introduce pseudo neurons as a bridge connecting both new
and old information. In this way neurons belonging to new classes are trained more rea-
sonably. Our experiments demonstrate the effectiveness of the combination of both ideas
which shows superior performance compared to other works. We then further show in-
sights of our approach by individually ablating the components, which proves our concept
of learning behaviour. Finally, we have raised some problems or phenomenons in the con-

text, which will be left as future works.
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Appendix A

Complete training pipeline

Figure A.1 displays step-by-step illustration of our incremental learning approach.
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Figure A.1: Step-by-step illustration of our incremental learning approach.
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