
doi:10.6342/NTU201703298

國立臺灣大學電機資訊學院電機工程學研究所

碩士論文
Graduate Institute of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

減緩卷積類神經網路之災難性失憶問題以有效達成物

體辨識

Mitigate Catastrophic Forgetting in Convolutional Neural
Networks for Effective Instance Recognition

柯達方

Da-Fang Ke

指導教授：羅仁權博士

Advisor: Ren.C. Luo, Ph.D.

中華民國 106年 7月
July 2017

doi:10.6342/NTU201703298

ठ謝

記得剛進入實驗室時，很多東西都不會，有好一陣子在徬徨，對自

己該做甚麼研究感到焦慮，好幾次覺得自己是不是走錯路了，現在回

想起來都覺得能熬過那段日子到現在能夠獨立做一些小研究感到不可

思議，對我來說，研究所兩年真的過得很快，每一天都覺得有好多東

西要學，時間根本不夠用，但真的如指導教授羅仁權老師所講的，在

壓力下才可能激發一個人的潛力，在兩年靠著不鬆懈的努力，最後還

是找到了研究的方向及興趣，當中特別感謝老師及憲章學長，因為老

師的支持及献章學長剛開始的引導，我才得以接觸、認識到稍微深入

的研究”深度學習”這門領域。

而在研究所這段旅程中，還要感謝很多人，從修課、比賽到做研究

發論文，都受到太多實驗室夥伴的幫助了，感謝晴岡、柏凱、李晟、

立揚，一起為上銀比賽準備，走過沒有冷氣、熱到主機熱當的夏天；

感謝俊豪、凱鈞及仲凱，實驗室的大小事上總是能夠尋問你們；感

謝靖霖、長鈞、晴岡，在長庚比賽為我們贏得了冠軍；感謝孟勳、莉

彤、育佑不時的予以建議，討論作業等；感謝超強學弟石崴，一起做

關於深度學習的研究。研究所也許就只有這兩年，但一起度過的時光

是在腦海中一輩子的事情，希望未來還能與你們共事。還要感謝在這

段時期可以偶爾一起打鬧的朋友，不管是從小到大的死黨還是大學曾

經熱衷舞社的好友，都在學術研究之外讓我的生活更有趣跟感到不孤

單。

特別感謝家人，爸、媽及姐姐，一直以來都是最能讓我心裡感到踏

實的家，聽了我好多心裡話，也總是支持我做的決定，讓我可以很踏

實、很安心的向前走，非常慶幸能有這樣的家。最後特別感謝陳芝瑩，

如同家人一樣陪我度過好多艱困時期，不管是研究所考試、當兵、研

究所這兩年，都一直陪在我身邊，也欠了好多大大小小答應過的旅

行，今年畢業後就可以還幾個了。

i

doi:10.6342/NTU201703298

中文ᄔ要

物體辨識為電腦視覺中一項十分重要的研究主題，在機器人中

為建立認知系統的重要橋梁，機器人必須能在多變的視覺回饋下萃

取有用的特徵，進而轉化為高階的知識語言，才能夠實行一連串複

雜的任務，在近年由 Alex Krizhevsky 成功的將深度捲積網路 (Deep

Convolutional Neural Networks)實現並應用在影像分類上後，許多的辨

識問題有了突破性的發展，然而，儘管有強健穩定的辨識能力，要實

現完整的智慧機器人尚有許多實際層面的考量需要克服。

本篇論文探討以漸進式學習 (incremental learning)的方式來達到物

體辨識，機器人在特定的工作環境中往往需要強健穩定的辨識能力來

區分影像中不同狀況下的物體 (例如尺度、亮度、遮蔽變化等)，藉由

目前深度學習的方法且在資料充裕的情況下，我們可以得到強健可依

賴的辨識系統，然而，其中最大的問題是完整的影像資料在實際中是

不存在的，影像資料的收集與標籤化是循序漸進的過程，因此，我們

需要發展一個能夠漸進式的學習方法來反映這樣的需求，再者，我們

希望漸進式學習能夠模仿人類的學習模式，在學習新的知識時，可以

無需無過往資料的再檢視，而能夠在保有原有知識下再學習新的知

識，此最大的好處即是我們不需儲存非常大量的影像資料，這對於工

作於不同環境中的可適應性的機器人來說是非常具有其效益性的。

根據我們所想的學習情境當中，最大的困難是如何克服”災難性

失憶 (catastrophic forgetting)”，災難性失憶是由於類神經網路在學習

新的資訊時，新學習的知識將會複寫掉之前學習過的知識，反觀人類

的學習，人類只會輕微的遺忘而非如此嚴重的失憶，為模仿這樣的學

習模式，我們運用知識萃取當中的一項技術-Pseudorehearsal作為訓練

的機制，並貢獻了兩個能大幅增進表現的想法及理論，第一是引入了

imaging recollection，模仿人腦對某物體映像的概念，另神經網路自行

得到最能反映某物體特徵的影像；第二則是提出 pseudo neurons，使在

漸進式的訓練過程中，確保在網路最後一層的新類別神經元能夠藉由

合理正確的損失函數來訓練，論文所提出的演算法能夠很好的在學習

新的物體及保有過往學過的物體間取得很好的平衡點。藉由完整的實

ii

doi:10.6342/NTU201703298

驗我們印證所提出的演算法的可行性並分析及討論，同時也比較其他

方法來凸顯我們方法的成效。

關鍵字：漸進式學習、深度學習、災難性失憶、物體辨識

iii

doi:10.6342/NTU201703298

Abstract

Object recognition has remained an important research topic in computer

vision for a long time. It plays a critical role in the area of robotics. Robots

need to extract useful information from rich visual feedback and convert it to

high-level semantic knowledge, and hence can lead to intelligence. However,

until the emerging of Convolutional Neural Networks (CNNs), the fundamen-

tal ability to recognize objects is still insufficient. Since Alex Krizhevsky suc-

cessfully applied deep CNNs on large scale image classification, CNNs has

been bringing lots of success in the community of computer vision. Yet, lots

of practical concerns still need to be overcome to make intelligent systems

truly useful.

In this thesis, we focus on a practical issue which requires robots to be able

to incrementally learn new objects. We first reason that an intelligent service

robot working in a particular environment needs to recognize instances under

different imaging conditions (scale, brightness, occlusion, etc.). Through the

advanced deep learning method, we are able to train a reliable visual system

given sufficient data. The issue, however, is that in the reality of beginning, a

complete dataset that covers all instances to be learned and provides sufficient

imaging conditions is unavailable. In practice, supervisors collect new data

and train recognition systems repeatedly and incrementally. It is necessary to

derive an incremental learning approach to meet this requirement. A direct

solution would be to reuse of every past data along with new data to ensure

performance. While this may be workable, it requires a reservoir of persis-

iv

doi:10.6342/NTU201703298

tent training data for all learning stage, an assumption which may not always

hold. To this end, we investigate instance recognition in continuous learning

scenarios without the need to access previous data. Under the hood, we are

investigating how to mitigate catastrophic forgetting. Catastrophic forgetting

is a phenomenon which destroys previously learned knowledge when train-

ing Neural Networks on new data. In the thesis, we propose pseudorehearsal

with imaging recollection and pseudo neurons to address the forgetting prob-

lem. Our approach can achieve a promising tradeoff between learning new

knowledge and preserving old knowledge. We demonstrate the feasibility of

our approach by experiments and comparison with other approaches. We also

provide insights to understand our innovation by experimental analysis.

Keywords: incremental learning, deep learning, catastrophic forgetting, and

instance recognition.

v

doi:10.6342/NTU201703298

Contents

ठ謝 i

中文ᄔ要 ii

Abstract iv

Contents vi

List of Figures viii

List of Tables x

Chapter 1 Introduction 1

1.1 Instance recognition . 1

1.2 Deep learning . 3

1.3 Incremental learning . 5

1.4 Thesis structure . 6

Chapter 2 Convolutional Neural Networks 8

2.1 Operation . 9

2.2 Optimization . 12

Chapter 3 Catastrophic Forgetting 15

3.1 The phenomenon . 15

vi

doi:10.6342/NTU201703298

3.2 Related Work . 16

3.2.1 Rehearsal . 16

3.2.2 Reduce representational overlap 16

3.2.3 Ensemble of experts . 17

3.2.4 Knowledge distillation . 19

Chapter 4 Pseudo Rehearsal with Imaging Recollection and Pseudo Neurons 20

4.1 Problem Statement . 21

4.2 Pseudorehearsal . 21

4.3 Imaging Recollection . 23

4.4 Pseudo Neurons . 26

Chapter 5 Experiment 32

5.1 Incremental learning instance . 32

5.1.1 RGB-D Dataset . 32

5.1.2 Implementation Details . 33

5.1.3 Results . 37

5.2 Learning Invariance . 39

5.2.1 GMU Kitchen Dataset . 39

5.2.2 Results . 40

5.2.3 Discussion . 40

5.3 Analysis of Imaging Recollection and Pseudo Neurons 41

5.3.1 Imaging Recollection . 41

5.3.2 Pseudo Neurons . 43

5.4 Extended Experiment: Various Pseudo Resource 45

vii

doi:10.6342/NTU201703298

Chapter 6 Conclusion and future work 49

Appendix AComplete training pipeline 50

Reference 51

VITA 57

List of Figures

1.1 Scenario of instance recognition. Instances below may appear in scenes

above with different imaging conditions 2

1.2 AlexNet model structure [5]. 3

1.3 Recurrent neural network (RNN). 4

1.4 Deep Belief Networks (DBN) and Deep Boltzmann Machine (DBM). . . 4

1.5 Illustration of incremental learning for instance recognition. 6

2.1 LeNet model struture [4]. 8

2.2 VGG16 model struture. Figure extracted from [24]. 9

2.3 Convolution. A filter scans the an image from left-top to right-bottom

with stride 1. 10

2.4 Illustration of max pooling. 11

2.5 Illustration of average pooling. 11

3.1 A Local Winner Takes All network (figure from [31]). 17

3.2 Elastic weight consolidation (ELC) (figure from [32]). 18

viii

doi:10.6342/NTU201703298

3.3 Ensemble system consisting of experts 18

4.1 Overview of our learning approach. We use the mechanism of pseudore-

hearsal and combine our two contributed approaches. 20

4.2 Illustration of pseudorehearsal. The dotted neurons on the right side rep-

resent new classes (if any). 23

4.3 Examples of synthsized image by activation maximization and regulariza-

tion (figure from [43]) . 24

4.4 Illustration of imaging recollection. 25

4.5 The arrangement of output neurons without (a) and with (b) pseudo neurons. 27

4.6 Distributions of output logits (a) without pseudo neurons and (b) with

pseudo neurons after learning one new class. Each column computes

means and standard deviations of one batch of data of same class. Value

of correct class index are coloured blue while value of new class index are

coloured yellow for clear comparison. 30

5.1 Information table of the 11 scene datasets and appearances of each instance. 33

5.2 ZF model. 34

5.3 Demonstration of trainable weights for method ”fix representation” in the

condition where current dataset contains both new class and old class. . . 35

5.4 Modified version of [39] to allow class-extensible. 36

5.5 Curve demonstrating how much knowledge is preserved by testing model

on accumulated testing data. 38

5.6 Examples of the recollective images (bottom row) that represent the con-

cept of cap_1, cereal_box_2 and flashlight_2, and the truly

instances from RGB-D Object Dataset (top row). 42

ix

doi:10.6342/NTU201703298

5.7 t-SNE results of (a) fc6, (b) fc7, and (c) conv5 from recollective im-

ages and (d) conv5 from real training data. Different color indicates dif-

ferent class. 43

5.8 Example of recorded instance on a turntable in RGB-D Object Dataset. . 46

5.9 Examples images from 2008 PASCAL VOC dataset. 47

5.10 Accurcy curve by altering data resource for knowledge distillation 47

A.1 Step-by-step illustration of our incremental learning approach. 50

List of Tables

5.1 % Accuracy on testset1 and testset2 after incremental training 38

5.2 % (testset1/testset2) Accuracy over 4 trials 39

5.3 % Accuracy of invariance learning on GMU datasets 40

5.4 The effects of using recollective images 44

5.5 The effects of pseudo neurons . 44

5.6 % Accuracy of 10 instances with/without Pseudo Neurons (PN) 45

x

doi:10.6342/NTU201703298

Chapter 1

Introduction

1.1 Instance recognition

service robots to properly operate in real-world environments relies on the knowledge

about the surroundings. One of the fundamental elements is reliable visual systems on

which high-level techniques such as manipulation, navigation, and object search can be

built. For example, in a lab environment, robots are required to distinguish different de-

vices to be qualified assistants. In industry, recognizing objects in convey belt is critical

for coherent operation. In a house, specific objects need to be learned by robots to conduct

correct tasks assigned by masters. Instance recognition is very basic yet crucial ability.

Thus it is a required skill for intelligent systems like robots.

The difficulty of instance recognition is diverse image variances such as lighting, back-

ground, rotation, etc (Figure 1.1). It is required for a perceptron system to be robust against

such variance. Traditional methods rely on extraction of key points either in 2D or 3D

geometry [1] [2]. Then learn a classifier create corresponding boundary conditions. Al-

though these methods achieve some success, they often lack the ability to against variance.

Templatematching is another commonly usedmethod but requires a large database to store

every trained model [3]. For precise recogntion, template matching often uses 3D infor-

mation like point cloud that might consume too much computation and memory. In recent

years, statistical methods has achieved tremendous breakthrough in vision community

1

doi:10.6342/NTU201703298

thanks to deep learning, or specifically, Convolutional Neural Networks (CNNs) [4] [5].

This novel kind of machine learning method constructed based on large data has reveal a

new era of solutions to vision tasks and can be utilized to benefit robotics.

Figure 1.1: Scenario of instance recognition. Instances below may appear in scenes above
with different imaging conditions

2

doi:10.6342/NTU201703298

1.2 Deep learning

Deep learning has gained its popularity recently. One major reason is the appear-

ance of CNNs which are designed for vision community (Figure 1.2). CNNs have been

successfully adopted for solving recognition tasks and won many competitions such as

ImageNet [6], PASCAL Visual Object Classes [7] and Microsoft Common Objects in

Context [8]. A lot of advanced techniques [9] [10] [11] [12] are then further proposed

to accelerate the development of relevant research. Resorting to CNNs for solving high

level vision task is now the first alternative for many researchers or engineers [13]. In-

deed, almost every proposed methods in public competitions are using deep learning skill

nowadays.

Figure 1.2: AlexNet model structure [5].

Other than CNNs, deep learning is also adopted in many fields. For example, speech

recognition [14] and machine translation [15] that posses sequential information are ap-

proached using Recurrent Neural Network (RNN) [16] (Figure 1.3), which also belongs to

one branch of deep learning. For representation learning, Deep Belief Networks (DBN)

[17] and Deep Boltzmann Machine (DBM) [18] (Figure 1.4) are utilized to reconstruct

inputs in unsupervised learning. DBN can thus learn a low dimension representations that

3

doi:10.6342/NTU201703298

encode useful information. Recently, Generative Adversarial Nets (GAN) [19] which act

as a generative model are able to create realistic images or even write a Chinese poem.

Deep learning has brought lots of possibilities to favour many research domains.

Figure 1.3: Recurrent neural network (RNN).

Figure 1.4: Deep Belief Networks (DBN) and Deep Boltzmann Machine (DBM).

The thesis also applies deep learning to address instance recognition. CNN-based

method [20] outperforms many state-of-art hand-crafted algorithms. Training CNNs to

recognize a bunch of distinct instances without interference dut to different type of image

variations is achievable given sufficient annotated data [21] [20]. However, despite the

advantage provided by CNNs, there are still numerous practical concerns to address for

robotic application. One of the research topic is incremental learning, which we introduce

in the next section.

4

doi:10.6342/NTU201703298

1.3 Incremental learning

One prerequisite for deep learning’s success is large amount of available data. For

service robots working in custom environments, the assumption of a complete dataset

which covers required instances and provides sufficient variety of imaging conditions in

the beginning is impractical. Data must be collected by supervisors or users from scratch.

Furthermore, the process can be assumed life-long considering dynamic environment with

variable objects. To this end, model training should be a adaptive process whenever new

training examples are ready for updating systems.

The above scenario brings us to incremental learning, a machine learning paradigm

that aims at continuously adapting learner to sequential data (Figure 1.5). This requires

model to be class-extensible, i.e. new class can be learned whenever data is available. One

solution for both deep learning and incremental learning is to extend final classification

layer of CNNs model with new capacities and finetune. Although the strategy works,

finetuning needs all previous data being attended in every training stage. It requires a

reservoir of persistent training data and thus might consume tremendous storage in long

term uasge. A more strict incremental learning [22] should free this constraint by more

sophisticated designation. We borrow the rules from Polikar et al. [22] that describes

precise formulations of incremental learning.

• It should be able to learn additional information from new data.

• It should not require access to the original data, used to train the existing classifier.

• It should preserve previously acquired knowledge.

• It should be able to accommodate new classes that may be introduced with new data.

5

doi:10.6342/NTU201703298

These rules mimic the behaviour of human learning. Human can learn new items without

the need to access previous items and only suffers minor extent of forgetting. Investigat-

ing a mechanism that carries out these properties would be crucial development towards

real artificial intelligence. Neural networks, however, breaks the third rule because para-

metric models especially for NNs that store large amount of weights always suffer from

”catastrophic forgetting” and so do CNNs. Catastrophic forgetting causes themodel losing

previous knowledge drastically if only trained on new items when incremental learning.

The thesis hence copes with the forgetting problem and propose possible solutions. We

present an effective approach to mitigate catastrophic forgetting in CNNs and apply the

approach on instance recognition to enable incremental learning.

Figure 1.5: Illustration of incremental learning for instance recognition.

1.4 Thesis structure

The organization of the thesis is as follows. In chapter 2, the background and operation

of Convolutional Neural Networks will be introduced. Chapter 3 includes detailed phe-

nomenon of catastrophic forgetting and related works which cope with forgetting problem.

6

doi:10.6342/NTU201703298

The proposed methodology is fully covered in Chapter 4. Chapter 5 contains description

of experiment methods such as naive approach and our proposedmethods. Other proposed

works are also experimented for comparisons. Final conclusion in Chapter 6 summarizes

our work and draw some vision for future works.

7

doi:10.6342/NTU201703298

Chapter 2

Convolutional Neural Networks

The history of Convolutional Neural Networks (CNNs) traces back to Lecun et al. [4],

who combine stacked parametric filters and the concept of multi-layer perceptron (MLP)

to form CNNs (Figure 2.1). This parametric model is then trained by optimizing error

functions using gradient descent method to solve character recognition task. Later, Alex

et al. [5] successfully develop deeper and more complex CNNs and applied the model

on large-scale competition [6]. This powerful capability has continued to make a break-

through on many vision tasks. Understanding the fundamentals of CNNs is important

for comprehensibility for subsequent context. In whis chapter, we therefore introduce re-

quired knowledge about how CNNs operate and how gradient descent is utilized to train

models.

Figure 2.1: LeNet model struture [4].

8

doi:10.6342/NTU201703298

2.1 Operation

Function of CNNs can be basically described as the result obtained from a series of

operations such as convolution, activation, pooling, flattening and dense multiplication.

We use VGG16 [23] as example due to the structure’s simplicity (see Figure 2.2).

Figure 2.2: VGG16 model struture. Figure extracted from [24].

convolution

A convolutional layer is composed of numerous parametric1 filters that conduct ”con-

volution” upon input image or intermediate feature maps. Usually we will let the resulting

next feature maps have same width and height by padding. For instance, the first convolu-

tion in Figure 2.2 takes 3-channel image as input, and then applies 64 filters with stride 1

and padding to output a feature map which has 64-channel and the same width and height

as input image. This output map will be inputs to next layer.

activation

Activation functions which are non-linear and are applied after linear operations (con-

volution, dense multiplication) are used to augment networks’ representability. Well-
1”Parametric” means there are tunable parameters that will be learned during training by optimization

9

doi:10.6342/NTU201703298

Figure 2.3: Convolution. A filter scans the an image from left-top to right-bottom with
stride 1.

known activation functions include sigmoid, tanh, and ReLU.

sigmoid(x) = 1
1 + exp− x

(2.1)

tanh(x) = expz − exp−z

expz + exp−z
(2.2)

ReLU =


x, x > 0

0, else

(2.3)

In CNNs, ReLU is usually selected as activation function for its ability for avoiding ”gra-

dient vanishing2”.

pooling

Pooling, or subsampling aim at dimension reduction and manageable usage. It is also

adopted to preserve important signal. There are max pooling and average pooling which

are frequently used in CNNs. Figure 2.4 shows an example using max pooling and Fig-
2Gradient vanishing occers because derivatives obtained from some kind of activaiton function such as

sigmoid and tanh are samller than 1.0. Hence when backpropagating to shallower layers, gradients become
very small and fail to improve early layers’ parameters.

10

doi:10.6342/NTU201703298

ure 2.5 for average pooling.

Figure 2.4: Illustration of max pooling.

Figure 2.5: Illustration of average pooling.

flattening

Because outputs from convolution layer are image-like 2D featuremaps with channels.

To feed the output to fully connected layers (MLP), the maps need to be flattened into 1

dimension vector.

dense multiplication

After flattening, dense multiplication contains parametric matrix and applies it on in-

put vector to output a new vector. The operation is a basic element in every neural net-

works like structures. The corresponding operation in VGG16 is the right part (blue) in

Figure 2.2, which will finally output 1000-dimension class scores.

11

doi:10.6342/NTU201703298

2.2 Optimization

The weights of CNNs are often randomly initialized based on normal distribution. To

tune the weights to accommodate tasks ,optimization is applied according to objective

function (loss) and updating algorithms. An objective function which is designed to fit a

training data set X and parametrized by model weights θ is denoted as J(X; θ). Minimiz-

ing J(X; θ) renders us an optimized set of weights that can approach desired solutions.

Normally, mini-batch gradient descent is one of the most popular algorithms to per-

form optimization and by far the most common way to optimize neural networks. With a

mini-batch of data xi+1, xi+2, ..., xi+N and current model weights θt, the objective func-

tion in current iteration is J(xi+1:i+N ; θt). By derivation and chain rule, we can compute

the corresponding gradient with respect to model’s parameters ∆θJ(xi+1:i+N ; θt). Then

according to learning rate η, which indicates the size of one step parameters are updating,

parameters are updated in the opposite direction to minimize error function.

θt+1 = θt − η∆θJ(xi+1:i+N ; θt) (2.4)

where

∆θJ(xi+1:i+N ; θt) = 1
N

i+N∑
j=i+1

∆θJ(xj; θt) (2.5)

There several challenges for this vanilla gradient descent method such as convergence

speed, choice to anneal learning rate, and worse convergence. Luckily, deep learning

community has develop different kinds of optimizer that can improve training. We list

three common optimizers and their updating rules.

• Momentum [25]

vt = γvt−1 + η∆θJ(θ) (2.6)

12

doi:10.6342/NTU201703298

θt+1 = θt − vt (2.7)

where γ controls the fraction of momentum. The value is usually set to 0.9.

• RMSProp [26]

For simplicity, we denote ∆θJ(θt) as gt.

E[g2]t = 0.9E[g2]t−1 + 0.1g2
t (2.8)

θt+1 = θt − η√
E[g2]t + ϵ

gt (2.9)

where E[g2]t denotes the running average accumulated up to t for each parameter

θ. ϵ is a small value to avoid division by zero.

• Adam [12]

mt = β1mt−1 + (1− β1)gt (2.10)

vt = β2vt−1 + (1− β2)g2
t (2.11)

mt and vt are thus estimates of the first moment and the second moment. Further-

more, the author observed that zero initialization of mt and vt is unfavourable to

training. Therefore they correct the term by division of β with power to t

m̂t = mt

1− βt
1

(2.12)

13

doi:10.6342/NTU201703298

v̂t = vt

1− βt
2

(2.13)

Then the update would be

θt+1 = θt − η√
v̂t + ϵ

m̂t (2.14)

In the thesis, we employ Adam for its popularity of quick convergence and better perfor-

mance among other adaptive optimizers. However, altering optimizer is also possible and

will not affect our main research.

14

doi:10.6342/NTU201703298

Chapter 3

Catastrophic Forgetting

3.1 The phenomenon

Catastrophic forgetting is a severe loss of previous memory when trying to learn new

information. In a learning environment where new data becomes available, learner is

trained on new source to acquire new knowledge. Systems like Multi Layer Perceptron

(MLP) or Neural Networks (NNs) will suffer from catastrophic forgetting due to exhaust-

ing the capacity to accommodate new information. The weights (the capacity) are tuned

to fit new learned problems or items as fast as possible, disregarding previously learned

knowledge. Usually one new stage for new items can destroy old knowledge heavily.

The phenomenon thus becomes even worse when systems experience several subsequent

learning stages, losing the ability to solve previous problems.

Possible solutions to solve or mitigate catastrophic forgetting contains rehearsal meth-

ods, reduction of overlapped representation, ensemble of experts, etc. We introduce sev-

eral works that share similar concepts or differ in essence in the following section, includ-

ing early attempts to solve forgetting problems in relatively shallow networks and recently

deep networks.

15

doi:10.6342/NTU201703298

3.2 Related Work

3.2.1 Rehearsal

rehearsal method reuses part or all previous data to maintain learned knowledge. Early

approaches including recency rehearsal, random rehearsal, and sweep rehearsal [27],

each with different sampling strategy. Rebuffi et al. [28] latest proposed integrated strat-

egy in deep networks. Their rehearsal method keeps a predefined number of old data to

constrain memory usage by constructing an exemplar set. 1 shows the overall algorithm

(see Rebuffi et al. [28] for more details) Although rehearsal method guarantees certain

performance, it still need to access previous data and cope with memory usage, which

differs from our scenario.

Algorithm 1 iCaRL
Input:
1: Ds, ..., Dv: New training examples in per-class sets
2: P = P0, ..., Ps−1: Current examplar sets
3: θ: Current model weights
4: M : Memory constraint size
Output: P, θ
5: θ ← UPDATEMODLE(Ds, ..., Dv, P, θ)
6: N ←M/t: allowed number of example in each exampler set
7: for y = 0, ..., s− 1 do
8: Py ← REDUCEEXAMPLERSET(Py, N)
9: end for
10: for y = s, ..., v do
11: Py ← CONSTRUCTEXAMPLERSET(Dy, N)
12: end for
13: P = P0, ..., Pv

14: return P, θ;

3.2.2 Reduce representational overlap

French et al. [29] [30] demonstrated that by increasing sparsity of networks, represen-

tational overlap between old data and new data is reduced, so parameters that represent

16

doi:10.6342/NTU201703298

old knowledge are more likely to remain unchanged when training on new data. Simi-

larly, Srivastava et al. [31] introduced Local-Winner-Takes-All (LWTA) to let neurons in

a block compete and only the max one can pass value to next layer. This results in sparse

distributions of network, which can reduce forgetting problem. Their proposed connec-

tion structure of network is shown in Figure 3.1, where only one neuron (black) in a block

is able to transmit signal to next layer. Kirkpatrick et al. [32] also adopt similar rule but

also introduce elasticity. By introducing ”elastic weight consolidation” (EWC), The au-

thors record each parameter’s responsibility for how important it is to original task and

thus control the changes of those parameters when learning new task. The method finds

an optimal updating direction to situate the resulting weights at the proper position which

support both new and old tasks (see Figure 3.2).

Figure 3.1: A Local Winner Takes All network (figure from [31]).

3.2.3 Ensemble of experts

Polikar et al. [22] proposed Learn ++. Learn ++ adds new classifiers to accommo-

date new information. New classifiers are trained to guarantee certain performance on

new samples, hence every classifier becomes an ”expert” for specific data distributions.

17

doi:10.6342/NTU201703298

Figure 3.2: Elastic weight consolidation (ELC) (figure from [32]).

Muhlbaier et al. [33] further improved Learn ++ by introducing voting and weighting

mechanism (Figure 3.3) to address the imbalance problem of classifier’s number . Le et

al. [34] also probed catastrophic forgetting in deep networks by proposing a dual memory

architecture consisting of ensemble of three-layer networks, which can continuously learn

representations. However, the work proposed by Le et al. approach still need to access

previous data to accomplish representational learning.

Figure 3.3: Ensemble system consisting of experts

18

doi:10.6342/NTU201703298

3.2.4 Knowledge distillation

Knowledge distillation is commonly used for model compression [35] , transfer learn-

ing [36] [13] [37] and domain adaptation [38] [39] in deep networks. The main idea is

to take source model’s predictions of unlabelled data as groundtruth labels and use them

to train target model. For example, Jung et al. [39] incrementally trained model to adapt

different input domains by matching logits of the last feature layer. They also reason that

the final layer acts as linear classifier and forms decision boundary, which shouldn’t be

changed. Based on the two criteria, they are able to incrementally train a model to accom-

modate both color domain and gray level domain. Another example is Li and Hoiem [37]’s

work. They propose muti-task learning in incremental manner via distillation loss [35] and

show a promising performance on several datasets without suffering severe catastrophic

forgetting. In fact, distillation has been applied on mitigating catastrophic forgetting in

early stage [40] [28] [39] [37]. Robins [40] proposed pesudorehearsal which is able to

preserve original model’s behaviour by distilling knowledge from pseudo data. This work

can be seen as one of the earliest attempts to address forgetting issue and works quite

successfully in shallow networks.

Our approach is also related to knowledge distillation and is inspired by the usage of

pseudo data [40]. Based on pesudorehearsal, we propose two significant improvements

to further combat forgetting problem. Playing a critical role as our baseline methodology,

we give more details of the mechanism of pesudorehearsal in the next chapter.

19

doi:10.6342/NTU201703298

Chapter 4

Pseudo Rehearsal with Imaging

Recollection and Pseudo Neurons

Based on pseudo rehearsal, we propose two significant improvements to enhance the

effects against catastrophic forgetting. Namely, the use of recollective images as pseudo

data and the joining of pseudo neurons. Our approach allows data of unseen class or

existing class but with different imaging conditions to be learned incrementally without

catastrophic forgetting. This chapter begins with a problem formulation of our learning

scenario. Then a description of how pesudorehearsal works is given. Finally we demon-

strate our two innovations. Our core idea and incremental learning pipeline can be seen

schematically in Figure 4.1

Figure 4.1: Overview of our learning approach. We use the mechanism of pseudorehearsal
and combine our two contributed approaches.

20

doi:10.6342/NTU201703298

4.1 Problem Statement

Data is usually collected sequentially in either supervised or semi-supervised way. Our

goal is to enable robots to incrementally learn new information without suffering catas-

rophic forgetting to fulfil life-long usage. As depicted in Figure 4.1, we denote dataset

which becomes available at different time point t as Dt = {(xt
(1), yt

(1)), ..., (xt
(Nt), yt

(Nt))},

where N t is the number of examples in tth dataset, and xt
(i) is one example with the cor-

responding one-hot ground truth vector yt
(i). We do not assume newly collected data to

belong to only unseen class or existing class so that both kinds of data can be incremen-

tally learned for different purpose, i.e., extension of class list or learning invariance, re-

spectively. Initially we assume a pre-trained model M0 which has already learned rich

hierarchical feature representations is available, e.g. a CNN model trained on ImageNet.

Then at each time point t = k, we continuously train the current model M on new dataset

Dk.

4.2 Pseudorehearsal

We first introduce how pseudorehearsal [40] works as one of the early successful meth-

ods to avoid catastrophic forgetting. While common rehearsal methods still rely on previ-

ous data to preserve old knowledge, pseudorehearsal is able to rehearse without old items.

Innovatively, it manufactures data by randomizing input images (image with random value

from 0 to 255 at each pixel) and whatever outputs generated from the current model form

the corresponding targets. Before new training process begins, a number of pseudo data is

generated and will be trained along with real data. We denote the pseudo dataset formed at

current time point t = k as D̃k = {(x̃k
(1), f̃k

(1)), ..., (x̃k
(Ñk)

, f̃k
(Ñk)

)} where x̃k
(i) is one pseudo

21

doi:10.6342/NTU201703298

sample (randomized image in this case), f̃k
(i) is the corresponding output targets generated

from Mk−1 (see Figure 4.2), and Ñk is the number of psuedo samples. During training,

both real data and pseudo data are trained using standard stochastic gradient descent but

with different loss functions:

L = λdisLdis + λclsLcls (4.1)

Ldis =
∑

(x̃,f̃)∈D̃

Co∑
i=1

1
2
∥fi(x̃; θ)− f̃i∥2

2 (4.2)

Lcls = −
∑

(x,y)∈D

Co+Cn∑
i=1

yi log(gi(x; θ)) (4.3)

The update with respect to one pseudo sample and one true sample is:

∂Ldis

∂θ
= ∂Ldis

∂f
· ∂f

∂θ

=
Co∑
i=1

(fi(x̃; θ)− ỹi) ·
∂fi(x̃; θ)

∂θ

(4.4)

∂Lcls

∂θ
= ∂Lcls

∂f
· ∂f

∂θ

=
Co+Cn∑

i=1
gi(x; θ) · ∂fi(x; θ)

∂θ
− ∂ft(x; θ)

∂θ

(4.5)

where, λdis and λcls are the loss weights of Euclidean loss Ldis and cross-entropy loss

Lcls, respectively, θ is trainable weights of the model, fi, gi, and yi are the ith values of

output vector, output vector before softmax layer and one-hot groundtruth vector, and t is

the target index (yt = 1). Co and Cn represent the old classes and new classes. We use

Euclidean loss as distillation loss to penalize the predicted outputs (logits) before softmax

layer according to Ba and Caruana [36]. This helps the current model to preserve certain

22

doi:10.6342/NTU201703298

Figure 4.2: Illustration of pseudorehearsal. The dotted neurons on the right side represent
new classes (if any).

degree of old model’s mapping function by learning the relation between pseudo inputs

and pseudo targets. New information can be gradually embedded to themodel via standard

classification loss. One is free to normalize derivatives ∂Ldis

∂f
and ∂Lcls

∂f
or fine tune λdis

and λcls to prevent unequally impact introduced by different losses. Our empirical findings

show that this may be unnecessary, as neural network seems to be able to reach a stable

state by itself, hence we don’t adopt this strategy. Schematic illustration of the training

process can be seen in Figure 4.2.

4.3 Imaging Recollection

Original work [40] uses randomized input data as pseudo data. However, in the lit-

erature [41], the authors pointed out that randomized inputs may blur the abstraction of

originally learned data and thus less effective to preserve old knowledge. To obtain more

informative data, we borrow the idea from Erhan et al.. Erhan et al. [42] introduces ”ac-

tivation maximization” to visualize what neural networks ”thinks” given a concept of in-

23

doi:10.6342/NTU201703298

terest. This technique is then combined with regularization terms [43] to synthesize more

recognizable images to human (see Figure 4.3 for synthesized images). While both works

make the efforts to understand and visualize deep networks, we believe this kind of data

is more informative, and can serve as a good data source to conduct pseudorehearsal. We

intuitively treat this procedure as kind of ”imaging recollection” as images are inversely

generated given a concept (see Figure 4.4). Our intuition, for example, is that when human

recalls the object ”coffee mug”, there may be some kind of impression shown as image

in our memory. Corresponds to this behaviour, we want to generate an image which can

maximally trigger the concept of ”coffee mug” in neural networks. We expect these rec-

ollective images to be able to encode more relevant information that can better preserve

old knowledge.

Figure 4.3: Examples of synthsized image by activation maximization and regularization
(figure from [43])

24

doi:10.6342/NTU201703298

Figure 4.4: Illustration of imaging recollection.

derivation of generated image is described as follows. By first choosing one output

unit which represents some specific concept, we form one-hot label vector y where the

jth element is the target and equals to 1 while the remaining elements equal to 0. We then

minimize the loss in (4.3) by finding the target image x̃ where

x̃ = argmin
x

Lcls(x, y, θ) (4.6)

which is equivalent to maximize the jth element of networks’ output:

x̃ = argmax
x

gj(x; θ) (4.7)

This can be solved by rendering an initial random image x and adopting gradient ascent

with respect to x. Specifically, for all pixel values xτ
mn with the corresponding position

m, n and current training step τ . We have

xτ+1
mn = xτ

mn + lr · ∂gj(xτ ; θ)
∂xτ

mn

(4.8)

25

doi:10.6342/NTU201703298

where lr is learning rate for one training step. We stop the process when confidence

value gj(xτ+1; θ) surpasses some pre-define threshold, as a high confidence indicates that

CNNs have regarded the image xτ+1 as a strong representation of some concept. The

resulting pair (x̃, f(x̃; θ)) (recall that f is the output vector before g) thus form one pseudo

sample and the corresponding pseudo target. Before each incremental training begins, the

procedure described above is conducted for several times to generate Ñ t pseudo samples

to form the pseudo dataset for current training stage. Note that

Ñ t = ñCo (4.9)

where ñ is a hyperparameter indicating the number of pseudo samples per class.

4.4 Pseudo Neurons

When training on new dataset, we rely on distillation loss to preserve previous be-

haviour of model and acquire novel knowledge through classification loss. However,

such a training process blinds new added neurons from taking account old information in-

troduced by pseudo data, resulting in asymmetrical impacts from objective functions. We

here propose pseudo neurons to let both information flows across neurons representing old

or new classes. We embed the model in the last logits layer with several additional pseudo

neurons that initially represent no class. These neurons are only trained to be less activated

for the classes initially learned. When new training stage proceeds, where new classes are

introduced, these pseudo neurons will be converted to capacities for new classes.

Because of the setting of pseudo neurons, f is now including both new class neurons

26

doi:10.6342/NTU201703298

and pseudo neurons. Equation (4.2) and (4.3) are now modified to

Ldis =
∑

(x̃,f̃)∈D̃

Co+Cn+Cpo∑
i=1

1
2
∥fi(x̃; θ)− f̃i∥2

2 (4.10)

Lcls = −
∑

(x,y)∈D

Co+Cn+Cpo+Cpn∑
i=1

yi log(gi(x; θ)) (4.11)

where Co, Cn, Cpo, and Cpn are the numbers of old classes, new classes, old pseudo neu-

rons remained, and newly added pseudo neurons respectively. Note that neurons in Cn

are obtained by converting some pseudo neurons.

Figure 4.5: The arrangement of output neurons without (a) and with (b) pseudo neurons.

To see how pseudo neurons being arranged compared to the original one without

pseudo neurons see Figure 4.5. In Figure 4.5 (a), new neurons of new classes are added

directly. Penalizing dissimilarity between previous model and currently trained model by

pseudo data, distillation loss can be only applied on already existing neurons. On the other

hand, the setting of Figure 4.5 (b) enables distillation loss applied on converted neurons.

27

doi:10.6342/NTU201703298

To ablate the reason why such a simple arrangement boosts performance, we consider

following two cases with or without the addition of pseudo neurons.

We first see original version where no pseudo neuron is added. Consider an extreme

case where only one new class is introduced from new data (Cn = 1). We form one

minibatch consisting only one pseudo sample (x̃old, f̃old) representing old knowledge and

one true sample (xnew, ynew) of new class. The target index t of new data sample thus lies

on the position of Co + 1. Then by (4.2) and (4.3), the summation of two losses given one

minibatch is

L =
Co∑
i=1

1
2
∥fi(x̃old; θ)− f̃i∥2

2

−
Co+1∑
i=1

yi log(gi(xnew; θ)) (4.12)

The optimized state where L ≈ 0 can be achieved when

fi(x̃old; θ) ≈ f̃i, for i ̸= Co + 1 (4.13)

and

eft(xnew;θ) ≫
Co∑
i=1

efi(xnew;θ) (4.14)

To see how gradient descent results in this condition, we compute gradients from total

loss:

∂L

∂θ
= ∂L

∂f

∂f(x̃old; θ)
∂θ

+ ∂L

∂f

∂f(xnew; θ)
∂θ

(4.15)

28

doi:10.6342/NTU201703298

and rewrite the equation with respect to derivative ∂L
∂fi

:

∂L

∂fi

∂fi

∂θ
=



(fi(x̃old; θ)− f̃i) ·
∂fi(x̃old, θ))

∂θ

+gi(xnew, θ) · ∂fi(xnew, θ)
∂θ

, i ̸= t

(gi(xnew, θ)− 1) · ∂fi(xnew, θ)
∂θ

, i = t

(4.16)

To reach optimized state, weights would update toward the direction where all derivative

terms ∂L
∂fi

approximate to 01. As ft(x; θ) is only subject to classification loss, it’s free to

grow to a large enough value to satisfy (4.14), which yields gt(xnew, θ) very close to 1 and

gi(xnew, θ) very close to 0 for i ̸= t, hence the gradients introduced by classification loss

term approximate to 0. Given this condition, fi(x; θ) is now only subject to distillation

loss as gi(xnew, θ) ≈ 0 for i ̸= t. The optimization of distillation loss then results in the

condition of (4.13).

We can now reasonably refer that f(xnew; θ) would be a logits vector in which the

t’th element surpasses other elements, which is desired because the resulting probability

of the target class gt(xnew; θ) can be very close to 1. However, such an optimization will

cause some confusing situations for images of old class. As encoded representations of

images from different class are not possible to be complete orthogonal, they must share

some similar information. So normally the resulting representational distributions of xold

will also cause a high ft(xold; θ), which will be a competitive or even exceeding value

than the logits fto(xold; θ), where to is the target index of xold. Consequently, the network

is confused due to two high logits fto(xold; θ) and ft(xold; θ)2.

We turn to see the proposed alternative which uses pseudo neurons. For simplicity,
1One possible condition to reach stable state is ∂fi

∂θ ≈ 0 instead of ∂L
∂fi
≈ 0, which indicates training is

stuck at a saddle point. However, such a condition may not exist from the observation by Goodfellow et
al. [44].

2So in this way, neural network does not really forget old knowledge as it still retain a high score for
correct class.

29

doi:10.6342/NTU201703298

we set the number of pseudo neurons to 1, which is converted to the capacity of new class

during training, and we don’t add new pseudo neuron back to make the equation clear.

Thus Cpo = Cpn = 0 and Cn = 1. Then the gradients of (4.10) and (4.11) become

∂L

∂fi

∂fi

∂θ
=



(fi(x̃old; θ)− f̃i) ·
∂fi(x̃old, θ))

∂θ

+gi(xnew, θ) · ∂fi(xnew, θ)
∂θ

, i ̸= t

(fi(x̃old; θ)− f̃i) ·
∂fi(x̃old, θ))

∂θ

+(gi(xnew, θ)− 1) · ∂fi(xnew, θ)
∂θ

, i = t

(4.17)

The logits ft(x; θ) is now also subject to distillation loss. Consequently, ft(x; θ) will be

high when input image is of new class and, when input is of old class, ft(x; θ) will be

suppressed because of the penalization from distillation loss during training time. The

confusion happens in the original version without pseudo neurons can thus be addressed.

Figure 4.6: Distributions of output logits (a) without pseudo neurons and (b) with pseudo
neurons after learning one new class. Each column computes means and standard devi-
ations of one batch of data of same class. Value of correct class index are coloured blue
while value of new class index are coloured yellow for clear comparison.

To further demonstrate the phenomenon, we show experimental observation by ini-

tially training a CNN model using data of 9 randomly selected instances from RGB-D

Object Dataset [45] and then incrementally train the model to learn one new instance class.

30

doi:10.6342/NTU201703298

Figure 4.6 shows the resulting distributions of f(x; θ). Each distribution is obtained by

averaging the output logits f(x; θ) among batch of testing images. Images in the same

batch belong to the same class,e.g. the 3’rd column is obtained from a batch of data that

all belongs to the 3’rd instance class. We can see with pseudo neurons (Figure 4.6 bottom

row), ft(xold; θ) is more suppressed than the one without pseudo neurons (Figure 4.6 top

row), meaning that new class neuron is less likely to effect the final decision from CNNs

to predict the right answer when seeing images of old class. Also see Table 5.6 in Chap-

ter 5.3 for resulting accuracies. Note that data in RGB-D Object Dataset is recorded on

turntable and only has variance of rotation. When using more challenging data or when

CNN model has initially learned more classes, the phenomenon will enlarge and lead to a

significant gap of performance between the one with pseudo neurons and the one without

pseudo neurons (see Chapter 5.1).

31

doi:10.6342/NTU201703298

Chapter 5

Experiment

We implement all approaches using Caffe [46], an open source library that is specif-

ically built for designing CNN models and support GPU computation. We run our pro-

gramme on NVIDIA GEFORCE GTX 960M.

5.1 Incremental learning instance

We show the feasibility of our proposed work by several experiments in this chapter.

We mainly conduct three experiments. The first experiment focuses on the overall perfor-

mance about ”whether the approach can incrementally learn new instance without losing

previous knowledge”. Then we perform ”whether the approach can learn robustness given

more diverse image conditions of an existing class”. Secondly, we give insightful anal-

ysis of our two innovations to show each component’s effectiveness. Finally, our recent

attempts reveal a new kind of pseudo data, which replaces recollective data and can largely

save training time for deriving activation maximized images.

5.1.1 RGB-D Dataset

We demonstrate the feasibility of our approach in practical scenario by using RGB-D

Scenes Dataset [45]. The dataset is collected from natural scenes in everyday life. More-

over, we augment the dataset with additional four scene data in RGB-D Scenes Dataset v.

32

doi:10.6342/NTU201703298

2 [47]. The overall dataset is composed of 11 scene datasets1 and totally 28 instances2 (see

Figure 5.1). We separate 11 datasets into 8 datasets and 3 datasets. We subsample each of

the 8 datasets by taking every fifth video frame to form training data, and the remaining

for testing. The 8 testing datasets are thus consisted of instances with different view points

compared to training data. We denote the 8 testing datasets as testset1. In addition, the

other 3 datasets (the last three in Figure 5.1) from totally different scenes with more imag-

ing conditions (illumination, occlusion, background, etc.) which are not seen in training

datasets are selected to evaluate the final performance. We denote this second testing set

as testset2.

Figure 5.1: Information table of the 11 scene datasets and appearances of each instance.

5.1.2 Implementation Details

We implement several approaches that also deal with catastrophic forgetting as com-

parison. For all approaches, we adopt network architecture proposed by Zeiler and Fer-

gus [48] and pre-train models on ImageNet [6]. Specifically, the model we denote as ZF

net has 8 layers (see Figure 5.2). When an input image is fed into ZF net, the image is
1We merge desk_[1-3] to desk and table_small_[1-2] to table_small.
2b, c, cb, cm, f and sc are the abbreviations of bowl, cap, ceareal_ box, coffee_mug,

flashlight and soda_can respectively

33

doi:10.6342/NTU201703298

convolved with 96 different 1st layer filters, each of size 7 by 7 and with stride size of 2 in

both x and y direction. The resulting feature maps are then: (i) passed through a rectified

linear function (ReLU), (ii) max pooling operation within 3x3 regions, using stride size of

2 and (iii) contrast normalized across feature maps to give 96 different 55 by 55 element

feature maps. Similar operations are repeated in layers 2,3,4,5. See Figure 5.2) for de-

tailed difference. After convolutions are two dense layers, which first flatten features from

the top convolutional layer to form a 9216-dimension (6 · 6 · 256) vector and then output

4096-dimension feature vector. The final layer is a classification layer which acts on the

feature vector and output a predefined C-dimension vector, where C is a prdefined number

of classes. To enable incremental learning, we discard the final layer and add extensible

classification layer to accommodate new classes. Additionally, we add ROIPooling

layer [49] right before fc6 layer so that networks are able to accommodate different size

images and classify local patches of an image.

Figure 5.2: ZF model.

During training, we let all parameters after conv5 be finetuned3 for all approaches ex-

cept for fixed representation. During training, we set fixed learning rate of 0.0001, weight

decay of 0.0005 and mini-batch of 5 images (around 25 samples) per iteration. Each in-

cremental training stage consists of 80 epochs or stops early if average classification loss

over one epoch is below 0.005.
3Finetuning to early layers reduce the performance for all approaches. This is because finetuning to early

layers harms the ability of rich feature representations obtained by pre-training on ImageNet

34

doi:10.6342/NTU201703298

Baseline

the baseline solution is fixed representation, which only learns the weights of new

classifiers or existing classifiers depending on whether current training dataset contains

old classes or only new classes. This approach avoids forgetting old knowledge by fixing

exiting classifiers’ weights. Figure 5.3 draws learnable part for the conditionwhere current

dataset contains both new class and old class.

Figure 5.3: Demonstration of trainable weights for method ”fix representation” in the
condition where current dataset contains both new class and old class.

Less-forgetting Learning in Deep Neural Networks

Jung et al.’s work [39] mainly deals with domain adaptation. As the task doesn’t

require adding new class neuron in final layer, we manually modify their approach to be

class-extensible and leave other elements unchanged. Their approach tries to maintain

final classifier’s decision boundary by fixing weights and keep feature representations

from last layer (before classification layer) by using Euclidean loss. In addition, they

allow intermediate layers trainable. We show modified version in Figure 5.4 and denote

the version as LF*.

35

doi:10.6342/NTU201703298

Figure 5.4: Modified version of [39] to allow class-extensible.

Compete to Compute

We implement Local-Winner-Takes-All (LWTA) [31] in fc6 and fc7 with blocks

of size equal to 16 which yields the best performance among 4, 8 and 16. Training with

LWTA is exactly the same as finetuning the current model. The difference is signal tran-

sition is now constrained by only permitting max value to be passed between each layer.

Learning without Forgetting

Li and Derek’s work [37] can be directly fit into our scenario by simply taking multi-

task learning as multi-class learning. We denote the method as LwF. The training rule is

very similar to pseudorehearsal that also distil old model’s knowledge. The distinction is

that instead of using additional data (e.g. pseudo data), LwF leverages current available

data as source to preserve knowledge. Besides, LwF uses the distillation loss proposed by

Hinton et al. [35] rather than L2 distance loss we adopt in our approach. The loss used in

LwF [37] is defined as

Ldis,LwF =
∑

(x,y)∈D

Co∑
i=1

gi(x; θk−1) log gi(x; θk) (5.1)

36

doi:10.6342/NTU201703298

where gi(x; θk−1) is the ith element of output probabilities from old model Mk−1 with

fixed weights θk−1. θk is thr current model’s weights, which are trainable. The overall

loss is thus summation of common classification loss in (4.3) and LwF distillation loss in

(5.1).

Pseudo Rehearsal

For original pseudorehearsal [40], we set ñ (the number of pseudo sample per class)

equal to 80. Before one training stage, randomized images as pseudo data are generated for

later usage. During training, loss weights λcls and λdis are set to 0.1 and 0.1 respectively.

Batch size for pseudo data is set to 16 samples per iteration.

Pseudo Rehearsal with Imaging Recollection and Pseudo Neurons

The training settings of our approach is the same as pseudorehearsal. Additionally,

regarding the proposed pseudo neurons, the number of pseudo neurons is set to 10.

5.1.3 Results

Figure 5.5 shows the curve indicating the degree of how much the networks preserve

the old knowledge by retrospecting testing data of previous scenes. Among all works

that mitigate catastrophic forgetting, ours outperforms all of them in intermediate stages

and final stage. The most closest one to us is LwF, which is behind ours by around 5%.

Nonetheless, as our goal is to train a robust recognition system in incremental manner, the

results by testing on a testset2 which contains various imaging conditions is more repre-

sentative. Table 5.1 shows the overall performance on testset1 and testset2 after training

on the 8 datasets. We can see that after incrementally learning 28 instances from different

scenes, our approach learns better invariance compared to others, reaching 74.48% accu-

37

doi:10.6342/NTU201703298

Figure 5.5: Curve demonstrating how much knowledge is preserved by testing model on
accumulated testing data.

racy on testset2 and outperforming the second best LwF with a margin of 13.12%. We

further report the accuracies (see Table 5.2) over additional 4 trials with random training

order of the 8 datasets to avoid any special case. All the results are consistent and show

that our approach outperforms the others.

Table 5.1: % Accuracy on testset1 and testset2 after incremental training

Approach testset1 testset2
Fix rep. 35.30± 1.98 22.53± 1.54
LF* [39] 50.38± 2.22 39.54± 2.50
PR [40] 59.55± 3.07 47.93± 3.11

LWTA [31] 65.27± 3.51 48.79± 2.78
LwF [37] 82.54± 5.12 61.32± 4.72
Ours 87.23± 3.02 74.48± 2.21

38

doi:10.6342/NTU201703298

Table 5.2: % (testset1/testset2) Accuracy over 4 trials

Approach trial 1 trial 2 trial 3 trial 4 average
Fix rep. 35.3 / 22.5 50.1 / 36.2 62.7 / 44.9 28.1 / 16.0 46.2 / 33.2
LF* [39] 39.6 / 34.8 73.6 / 48.0 55.2 / 32.6 54.8 / 47.8 54.7 / 40.5
PR [40] 64.7 / 47.1 68.6 / 52.9 58.1 / 35.2 64.0 / 54.8 63.0 / 47.6

LWTA [31] 76.8 / 52.6 75.0 / 50.2 67.1 / 42.8 66.8 / 51.6 71.0 / 50.2
LwF [37] 85.0 / 66.7 84.8 / 66.1 86.4 / 63.7 72.1 / 54.1 82.2 / 62.4
Ours 95.2 / 81.9 90.9 / 76.3 88.4 / 75.3 81.5 / 72.7 88.6 / 76.1

5.2 Learning Invariance

We have already shown the overall performance of our approach on RGB-D Scenes

Dataset that contains data of new classes or different imaging conditions in each incre-

mental training stage. In this part, we separately investigate whether our approach can

learn invariance by seeing same objects but with different imaging conditions.

5.2.1 GMU Kitchen Dataset

In this experiment, we rely on GMU Kitchen Dataset [50], which is similar to RGB-

D Scene Dataset but with more challenging imaging conditions. The dataset contains 9

cluttered environments each with 9 to 11 objects4 We select 7 scene datasets that include

the 11 objects. Then among the 7 datasets, we randomly chose 3 datasets for incremental

training and the remaining 4 for testing. Similar to RGB-D Scene Dataset, training data

are collected by subsampling every 5 frames for each training dataset. Implementation set-

tings of approaches are also the same. We conduct 3 trials with different training datasets

and testing data. Every trial is run for 5 times to obtain average performance. We report

fixed representation as baseline, LwF, and our approach.
4The dataset contains main objects and extra objects. We use main objects here.

39

doi:10.6342/NTU201703298

5.2.2 Results

Table 5.3 summarizes the results. Surprisingly, all approaches can stably improve

invariance by looking more data while previous data is not present, even for fixed repre-

sentation. The gaps between approaches are inapparent in this aspect. The finding also

implies the major difference comes from the ability to generalize new classes while not

forgetting old classes.

Table 5.3: % Accuracy of invariance learning on GMU datasets

Testing set: gmu_scene_[05,06,07,09]
Training order gmu_scene_01 gmu_scene_03 gmu_scene_04

Fix rep. 54.42± 0.35 60.42± 0.33 69.40± 0.51
LwF [37] 54.14± 0.64 61.74± 0.14 70.23± 0.13
Ours 53.87± 0.78 63.48± 0.20 72.08± 0.21

Testing set: gmu_scene_[01,03,04,05]
Training order gmu_scene_06 gmu_scene_07 gmu_scene_09

Fix rep. 50.94± 0.77 62.99± 0.33 63.00± 0.37
LwF [37] 51.89± 0.36 63.97± 0.97 63.65± 0.58
Ours 51.95± 0.73 64.42± 0.52 66.87± 0.50

Testing set: gmu_scene_[01,04,06,09]
Training order gmu_scene_03 gmu_scene_05 gmu_scene_07

Fix rep. 47.45± 1.16 64.18± 0.26 67.68± 0.48
LwF [37] 48.76± 0.53 64.68± 0.22 68.99± 0.32
Ours 47.55± 0.33 64.24± 0.16 69.86± 0.31

5.2.3 Discussion

CNNs pretrained on ImageNet [6] do not possess the property to be robust against

imaging variance according to [51], yet CNNs seems to be able to incrementally learn this

property without degeneration. The finding is somehow valuable as it suggests that when

vision task is to recognize some certain objects (or human faces) under different imaging

conditions, one do not need to keep the whole database but is able to directly train CNNs

40

doi:10.6342/NTU201703298

model on new data without suffering forgetting problem. In addition, this attribute largely

relates to the work proposed by Held et al. [20]. We would like to investigate this as one

of our future works.

5.3 Analysis of ImagingRecollection andPseudoNeurons

In this section we provide additional analysis of the proposed approach. Our approach

is mainly composed of two components described in previous sections. The first one is the

replacement of randomized images by recollective images. The second one is the usage

of pseudo neurons. To demonstrate the effectiveness of both components, we individually

analyze them with different parameter settings, and to be clear, we only report the results

of testset2. Note that the experiments conducted are performed using the training order of

scene datasets as shown in Figure 5.1. Also note that if we use randomized data and no

pseudo neurons, our approach is the same as the original pseudorehearsal [40].

5.3.1 Imaging Recollection

we first show the results of using randomized images and using recollective images

with varying number, all without pseudo neurons. The results shown in Table 5.4 demon-

strate the advantage of using recollective images, which improves around %10 compared

to the randomized one. It meets our expectations that even though the images are not rec-

ognizable for human (see Figure 5.6 for example), they are the associations reflecting some

important concepts the networks learned in early stages, hence serving as a good source

for pseudorehearsal. On the other hand, the improvements by augmenting the amount of

pseudo data are minor for both cases. This implies that although the appearances of large

recollective images representing the same concept are different from each other, the trig-

41

doi:10.6342/NTU201703298

Figure 5.6: Examples of the recollective images (bottom row) that represent the concept
of cap_1, cereal_box_2 and flashlight_2, and the truly instances from RGB-D
Object Dataset (top row).

gered distributions of representations inside the networks are similar. Consequently, in

training time the weights will be updated toward a similar direction. The diversity pro-

vided by large amount of data is thus limited and the performance is quickly saturated.

To inspect this property, we project feature representations of recollective images from

layer conv5, fc6, and fc7 into lower dimension by applying t-SNE [52]. Figure 5.7

(a), (b), and (c) show the resulting clusters of 10 selected classes from each layer. The

phenomenon of assembling already emerge in conv5 layer, and is more convergent in

fc7 layer. Different from inference time, where an early convergent phenomenon may

be desired, we wish the resulting feature maps of conv55 are diverse distributions and
5Representations from conv5 are ”raw data” to CNNs as they are unchangeable due to fixed weights in

our experiments. If we instead fintune this layer, then ”raw data” for CNNs is representations from conv4
layer.

42

doi:10.6342/NTU201703298

Figure 5.7: t-SNE results of (a) fc6, (b) fc7, and (c) conv5 from recollective images
and (d) conv5 from real training data. Different color indicates different class.

can properly represent data of old classes. As a comparison with pseudo data, we show the

feature projection (see Figure 5.7 (d)) from conv5 using original training images of the

10 classes. We can see from real training data, distributions of encoded representations are

diverse. This means that although recollective data encode useful information, it is lack

of diversity to represent all possible data of old class. We leave the possibility to enhance

diversity of data for distilling knowledge in Chapter 5.5.

5.3.2 Pseudo Neurons

Table 5.5 shows the improvements obtained by the addition of pseudo neurons. Firstly,

pseudo neurons improve the original pseudorehearsal from 45.52% to 51.26%, and maxi-

mally to 57.26%. This demonstrates the generality that the advantage of pseudo neurons is

not a special case for recollective images. Moreover, combining recollective images with

43

doi:10.6342/NTU201703298

Table 5.4: The effects of using recollective images

Settings testset2
randomized images per class

16 48.97
32 45.52
80 47.93

recollective images per class
16 57.18
32 58.68
80 59.48
160 59.77
320 59.71

Table 5.5: The effects of pseudo neurons

Settings testset2
pseudo neurons with 32

randomized images per class
0 45.52
5 51.26
10 53.62
20 54.54
30 57.29
50 57.18

pseudo neurons with 32
recollective images per class

0 58.68
5 72.48
10 71.95
20 73.97
30 73.90

5 pseudo neurons surprisingly boosts the accuracy from 58.68% to 72.48%, a consider-

able improvement of 13.8%. The results conform our thoughts in Chapter 4.4, where the

confusing situation is alleviated by adopting pseudo neurons. We also report the resulting

accuracies corresponding to Figure 4.6 in Table 5.6. These results reflect the impact as we

mentioned in Chapter 4.4. Without pseudo neurons, the accuracies degenerate to different

extents for some classes. On the contrary, with pseudo neurons only the accuracy of one

44

doi:10.6342/NTU201703298

class declines slightly.

Table 5.6: % Accuracy of 10 instances with/without Pseudo Neurons (PN)

without PN:
class ins0 ins1 ins2 ins3 ins4 ins5 ins6 ins7 ins8 ins9
init. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 -
incre. 77.08 0.00 100.00 67.57 98.31 100.00 100.00 97.22 98.08 100.00

with PN:
class ins0 ins1 ins2 ins3 ins4 ins5 ins6 ins7 ins8 ins9
init. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 -
incre. 100.00 100.00 100.00 97.30 100.00 100.00 100.00 100.00 100.00 100.00

init.: After initially learn 9 instances.
incre.: After incrementally learn 1 new instance.

5.4 Extended Experiment: Various Pseudo Resource

In this extended experiment, we seek other alternative type of data to serve as pseudo

data. Randomized images utilized by original pseudorehearsal [40] lack insufficient infor-

mation and thus perform poor preservation of previous knowledge. Our proposed recol-

lective image data although addresses this issue and gain significant improvements, gen-

eration of activation maximized images takes too much time to form pseudo dataset in

each incremental training stage. To this end, we are interested in other possible kind of

image that can save time for generation and maintain informative. We turn our focus to

the option of using natural images. Though we are not allow to use previous real data, in

real world we can always access other realistic and available datasets such as ImageNet

data [6] or PASCAL VOC data [7]. We are curious whether the sample pair composed of

arbitrary natural image and the corresponding targets which are soft outputs from previous

model can also serve as a good resource to recall old knowledge. Such image data leave

out the time needed for generation and we thus only need to see whether it also encode

45

doi:10.6342/NTU201703298

Figure 5.8: Example of recorded instance on a turntable in RGB-D Object Dataset.

useful information like recollective image or not.

We simply choose two kinds of natural image data to investigate this option, one using

data from RGB-D Object Dataset [45] (different from RGB-D Scene Dataset), which is

form by recording instances on a turn table6 (Figure 5.8), and the other using 2008 PAS-

CAL VOC images for classification/detection task7 (Figure 5.9). Some partial instances

from RGB-D Object Dataset are actually instances from RGB-D Scene Dataset. The rea-

son we apply this alternative is that although we do not have previous data that offers

diverse conditions, we may be allowed to use minimum images that represent one certain

instance. Once CNN model learns an instance from data containing diverse conditions,

the model may be able to recall knowledge by only looking at a small amount of images

of this instance when conducting incremental learning. On the other side, the usage of

PASCAL VOC dataset is to examine the utility of a very diverse dataset as resource to

preserve old knowledge.

Experiment is conducted using the setting similar to the one in Chapter 5.1 (see Fig-

ure 5.5) and we show the accuracy curves of testset1 by altering data resource for knowl-
6So the data contains multi view video frames
7The dataset contains about ten thousands images

46

doi:10.6342/NTU201703298

Figure 5.9: Examples images from 2008 PASCAL VOC dataset.

Figure 5.10: Accurcy curve by altering data resource for knowledge distillation

edge distillation in Figure 5.10.

The results are surprising as we observe that using cheap natural image data has com-

parable affect for preserving old knowledge, especially for the alternative using PASCAL

VOC images. Natural data not only discard the time needed for generation but maintains

promising performance same as using recollective pseudo image data. We infer this is

47

doi:10.6342/NTU201703298

because natural images containing realistic and diverse patterns and textures can provide

a large ”information pool” for model. CNN model trained with the combination of dis-

tillation loss and classification loss is able to both extract useful information from such a

pool.

48

doi:10.6342/NTU201703298

Chapter 6

Conclusion and future work

In the thesis we propose an incremental learning approach in which data with unseen

classes or existing classes but with different imaging conditions can be well learned in

incremental manner without access to previous data. We develop our approach based on

pseudorehearsal with two contributed ideas. We show that images generated by activation

maximization encode useful information that can serve as a good data source to review

old knowledge. Such a generative procedure we interpret as a behaviour of ”recollection”.

Furthermore, to distil the knowledge from every pseudo sample while simultaneously gain

knowledge from new data, we introduce pseudo neurons as a bridge connecting both new

and old information. In this way neurons belonging to new classes are trained more rea-

sonably. Our experiments demonstrate the effectiveness of the combination of both ideas

which shows superior performance compared to other works. We then further show in-

sights of our approach by individually ablating the components, which proves our concept

of learning behaviour. Finally, we have raised some problems or phenomenons in the con-

text, which will be left as future works.

49

doi:10.6342/NTU201703298

Appendix A

Complete training pipeline

Figure A.1 displays step-by-step illustration of our incremental learning approach.

Figure A.1: Step-by-step illustration of our incremental learning approach.

50

doi:10.6342/NTU201703298

Reference

[1] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.

Computer vision–ECCV 2006, pages 404–417, 2006.

[2] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional journal of computer vision, 60(2):91–110, 2004.

[3] Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter Sturm, Nassir Navab,

Pascal Fua, and Vincent Lepetit. Gradient response maps for real-time detection

of textureless objects. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 34(5):876–888, 2012.

[4] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In Computer Vision and Pattern Recog-

nition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[7] M. Everingham, S.M. A. Eslami, L. VanGool, C. K. I.Williams, J.Winn, andA. Zis-

serman. The pascal visual object classes challenge: A retrospective. International

Journal of Computer Vision, 111(1):98–136, January 2015.

51

doi:10.6342/NTU201703298

[8] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects

in context. In European conference on computer vision, pages 740–755. Springer,

2014.

[9] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,

2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 770–778, 2016.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-

fiers: Surpassing human-level performance on imagenet classification. In Proceed-

ings of the IEEE international conference on computer vision, pages 1026–1034,

2015.

[12] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[13] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, AtsutoMaki, and Stefan

Carlsson. From generic to specific deep representations for visual recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pages 36–45, 2015.

[14] George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-trained

deep neural networks for large-vocabulary speech recognition. IEEE Transactions

on audio, speech, and language processing, 20(1):30–42, 2012.

52

doi:10.6342/NTU201703298

[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,

2014.

[16] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khu-

danpur. Recurrent neural network based language model. In Interspeech, volume 2,

page 3, 2010.

[17] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm

for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[18] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial

Intelligence and Statistics, pages 448–455, 2009.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Advances in neural information processing systems, pages 2672–2680, 2014.

[20] David Held, Sebastian Thrun, and Silvio Savarese. Robust single-view instance

recognition. In Robotics and Automation (ICRA), 2016 IEEE International Confer-

ence on, pages 2152–2159. IEEE, 2016.

[21] Giulia Pasquale, Carlo Ciliberto, Lorenzo Rosasco, and Lorenzo Natale. Object

identification from few examples by improving the invariance of a deep convolu-

tional neural network. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ

International Conference on, pages 4904–4911. IEEE, 2016.

[22] Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar. Learn++: An in-

cremental learning algorithm for supervised neural networks. IEEE transactions on

53

doi:10.6342/NTU201703298

systems, man, and cybernetics, part C (applications and reviews), 31(4):497–508,

2001.

[23] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[24] Suhang Wang, Yilin Wang, Jiliang Tang, Kai Shu, Suhas Ranganath, and Huan Liu.

What your images reveal: Exploiting visual contents for point-of-interest recom-

mendation. In Proceedings of the 26th International Conference on World Wide

Web, pages 391–400. International World Wide Web Conferences Steering Commit-

tee, 2017.

[25] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural

networks, 12(1):145–151, 1999.

[26] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient

by a running average of its recent magnitude. COURSERA: Neural networks for

machine learning, 4(2):26–31, 2012.

[27] Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed

by learning and forgetting functions. Psychological review, 97(2):285–308, 1990.

[28] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and Christoph H Lampert. icarl:

Incremental classifier and representation learning. arXiv preprint arXiv:1611.07725,

2016.

[29] Robert M French. Semi-distributed representations and catastrophic forgetting in

connectionist networks. Connection Science, 4(3-4):365–377, 1992.

54

doi:10.6342/NTU201703298

[30] Robert M French. Dynamically constraining connectionist networks to produce dis-

tributed, orthogonal representations to reduce catastrophic interference. network,

1111:00001, 1994.

[31] Rupesh K Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino Gomez, and

Jürgen Schmidhuber. Compete to compute. In Advances in neural information pro-

cessing systems, pages 2310–2318, 2013.

[32] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-

jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka

Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.

Proceedings of the National Academy of Sciences, page 201611835, 2017.

[33] Michael D Muhlbaier, Apostolos Topalis, and Robi Polikar. Learn++. nc: Combin-

ing ensemble of classifiers with dynamically weighted consult-and-vote for efficient

incremental learning of new classes. IEEE transactions on neural networks, 20(1):

152–168, 2009.

[34] Lee Sang Woo, Heo Min Oh, Kim Jiwon, Kim Jeonghee, and Zhang Byoung Tak.

Dual memory architectures for fast deep learning of stream data via an online-

incremental-transfer strategy. arXiv preprint arXiv:1506.04477, 2015.

[35] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531, 2015.

[36] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in

neural information processing systems, pages 2654–2662, 2014.

55

doi:10.6342/NTU201703298

[37] Zhizhong Li and Derek Hoiem. Learning without forgetting. In European Confer-

ence on Computer Vision, pages 614–629. Springer, 2016.

[38] Saurabh Gupta, Judy Hoffman, and Jitendra Malik. Cross modal distillation for

supervision transfer. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2827–2836, 2016.

[39] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning

in deep neural networks. arXiv preprint arXiv:1607.00122, 2016.

[40] Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connec-

tion Science, 7(2):123–146, 1995.

[41] Robert M French, Bernard Ans, and Stephane Rousset. Pseudopatterns and dual-

network memory models: Advantages and shortcomings. In Connectionist models

of learning, development and evolution, pages 13–22. Springer, 2001.

[42] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing

higher-layer features of a deep network. University of Montreal, 1341:3, 2009.

[43] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Un-

derstanding neural networks through deep visualization. arXiv preprint arXiv:

1506.06579, 2015.

[44] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[45] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical

multi-view rgb-d object dataset. In Robotics and Automation (ICRA), 2011 IEEE

International Conference on, pages 1817–1824. IEEE, 2011.

56

doi:10.6342/NTU201703298

[46] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture

for fast feature embedding. In Proceedings of the 22nd ACM international confer-

ence on Multimedia, pages 675–678. ACM, 2014.

[47] Kevin Lai, Liefeng Bo, and Dieter Fox. Unsupervised feature learning for 3d scene

labeling. In Robotics and Automation (ICRA), 2014 IEEE International Conference

on, pages 3050–3057. IEEE, 2014.

[48] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833. Springer,

2014.

[49] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1440–1448, 2015.

[50] Georgios Georgakis, Md Alimoor Reza, Arsalan Mousavian, Phi-Hung Le, and Jana

Košecká. Multiview rgb-d dataset for object instance detection. In 3D Vision (3DV),

2016 Fourth International Conference on, pages 426–434. IEEE, 2016.

[51] Ali Borji, Saeed Izadi, and Laurent Itti. ilab-20m: A large-scale controlled object

dataset to investigate deep learning. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2221–2230, 2016.

[52] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal

of Machine Learning Research, 9(Nov):2579–2605, 2008.

57

doi:10.6342/NTU201703298

VITA

姓名: 柯達方

性別: 男

生日: 民國 81年 1月 13日 (1992/01/13)

籍貫: 中華民國台北市

學歷:

1. 民國 106年 國立台灣大學電機工程學研究所畢業

2. 民國 103年 國立台灣大學工程科學與海洋工程學系畢業

3. 民國 99年 國立師範大學附屬高級中學畢業

發表著作:

1. Ren C. Luo, Da-Fang Ke, ”Mitigate Catastrophic Forgetting in CNNs for Effec-

tive Instance Recognition.” 49th International Symposium on Robotics (ISR 2017Asia),

Shanghai, China, July 5-8, 2017.

榮譽事蹟:

2016年 「2016長庚醫療財團法人醫療機器人大賽」榮獲團體組冠軍

2016年 「2016上銀智慧機器手第九屆實作競賽」榮獲團體組亞軍

2016年 「2016智慧機器人創意競賽國產工業機器人組」榮獲團體組季軍

58

	致謝
	中文摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Instance recognition
	Deep learning
	Incremental learning
	Thesis structure

	Convolutional Neural Networks
	Operation
	Optimization

	Catastrophic Forgetting
	The phenomenon
	Related Work
	Rehearsal
	Reduce representational overlap
	Ensemble of experts
	Knowledge distillation

	Pseudo Rehearsal with Imaging Recollection and Pseudo Neurons
	Problem Statement
	Pseudorehearsal
	Imaging Recollection
	Pseudo Neurons

	Experiment
	Incremental learning instance
	RGB-D Dataset
	Implementation Details
	Results

	Learning Invariance
	GMU Kitchen Dataset
	Results
	Discussion

	Analysis of Imaging Recollection and Pseudo Neurons
	Imaging Recollection
	Pseudo Neurons

	Extended Experiment: Various Pseudo Resource

	Conclusion and future work
	Complete training pipeline
	Reference
	VITA

