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中文摘要 

目前工廠自動化發展的瓶頸是執行任務間，人與機器的互動模式。機器人為

了可以在生產線上快速地進行辨識和抓取，像人一樣具備高準確率之外，也要能

夠感知外在環境發生的變化。在現行的機器人研究領域，物件追蹤技術在生產線

裝配上已經屬於機械手臂的基本技術。傳統而言，機器人執行任務都是步驟進行，

一旦第一個步驟失敗，將會導致接續的子步驟，難以進行。 

現況而言，要在工業上解決這個問題，多半是依靠視覺系統的輔助為主。這

是其中一種機器人的感知系統，機器人可以藉著他們的輔助做好事前準備，能更

完美的完成任務。然後，每當無預期的事件發生時，傳統固定形式的步驟，由於

不具備動態更新動作，不僅造成任務突然終止，也容易對環境造成不良的影響。

即使依靠了視覺輔助，也僅能解決部分的突發狀況。 

要解決這個問題的方法，一樣還是要依靠機器人視覺。在傳統情境中，輸送

帶上的物體是靜止不動，機器人會根據命令進行物件抓取。當目標物開始在生產

線上移動，任務的複雜性也隨之提升。這時使用視覺回授系統會是絕佳的解決方

法。 

因此本研究主題，提供了一個視覺辨識抓取兼追蹤系統，每次抓取姿態都是

由回授系統來決定。這個系統架構分兩塊，各自擁有核心的演算法來進行物件追

蹤。因為受限於環境的條件，整體實驗操作情形會有細節描述。此外對於追蹤時

的抓取姿態，也有改良演算法去記錄補償值，有利於下一次的追蹤。 

 

 

關鍵字：機器人視覺系統、物件抓取、追蹤系統、工廠自動化 
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ABSTRACT 

One of the bottlenecks for manufacturing automation is the interaction between 

robot and humans among tasks. Robots are not able to recognize the element from the 

assembly line quickly and accurately just like human operators do. Besides, in recent 

robotic field, conveyor tracking is one of fundamental function in the robot manipulator.  

Once this very first step fails in the production line, the latter subsequent operations are 

hardly to complete. 

Currently, the manufacturers solve this problem by using the vision in the 

environment. The robot arm now can perform the task and manipulate the work based 

on the precondition. Afterwards, something that may occur will be regarded as a kind of 

unpredictable circumstance among the task. Due to traditional static process, the 

condition may not only cancel the work but also have bad impacts on the environment. 

The problem is also about vision. 

In order to solve the dilemma, the practicable way is also based on robot vision 

system. In traditional scenario, the object keep stable pose on the assembly line. The 

manipulator follows commands to grasp the object. While the target is moving on the 

production line, the task becomes sophisticated problems. Thus, a distinct grasping 

method under visual control system is definitely one of the essential solutions.  

In this thesis, we propose a tracking strategy on moving objects for a robot arm 

object fetching system combined with distinct recognition algorithm. In addition, the 

grasping pose of robot arm is correct by visual feedback system. The system is 

separated into two parts: eye to hand and eye in hand, and discussed in detail. Each part 

owns its core algorithm to complete industrial tracking and fetching tasks. Because of 

limitation from the environment, the working conditions will also be illustrated. 
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Grasping pose for each type of element is adjusted by tracking and modification 

algorithms.  

 

 

 

Keywords: robotic vision system, object fetching, tracking system, factory automation 
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Chapter 1 Introduction 

1.1 History 

For many years, the robotic technology has been widely applied to our industry in 

order to enhance the performance of production in factories. Usually, when the 

industrial elements have been processed, the associated step may be doing further 

procedures such as cutting, gluing, wielding, coating, deburring, and etc. Among 

different process, the element is held by the robot manipulator to move from this stage 

to the next one. 

1.1.1 Traditional industrial robot arms 

Traditional industrial robot arms feature high payload, high speed, high precision, 

and high stiffness. A typical example of FANUC robot arm is shown in Fig. 1.1. They 

are usually large in size for a large workspace and actuated by hydraulic pump for high 

payload and stiffness. Most of them are 6 degree of freedoms or less depending on the 

target application. Those robots are targeting on tasks that require much strength high 

precision and tasks they are boring and repetitive or dangerous such as material 

handling, welding, automotive manufacturing, etc. Due to their strength, the robot arm 

must be fenced when they are working and no humans are allowed to enter the 

workspace. This excludes the possibility of human robot co-existence and human robot 

collaboration. Although these robots hardly cooperate with humans directly, the 

programming is often based on teaching by touching technique. With more and more 

application combined with vision system in small size of robot manipulators, there are 

some research topics to build up vision-based system in the robot assembly lines [1]. 

The function in the big robot is no longer restricted in the industrial application. 
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1.1.2 Lightweight payload robot arms 

On the other hand, some researchers and companies tried to lift robot to a higher 

level by taking the human-robot interaction (HRI) or collaboration (HRC) into 

consideration. Under the concept of HRI and HRC, the robot arm should be relatively 

smaller than traditional industrial robot arms. That is to say, some design concepts will 

follow the request to develop the skill under the circumstances of human-robot 

coexistence. For example: (a) ABB IRB 1200 is one of lightweight robot arm. Its sleek, 

smooth surfaces and enclosed design feature all wiring and air routed through the inside 

of the robot, from very close to the wrist flange all the way to the foot. This further 

enhances its compactness, and makes the new robot easy to maintain and clean, with no 

risk of dirt or dust collecting on the cables. (b) Barrett Technology WAM arm is 

controlled by several steel elastic strings and it is relatively safer than conventional 

motor driven robot. All the robots mentioned above are listed in Fig. 1.2. 

 

Fig. 1.1 FANUC R1000 series robots 
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One of the most important requirements for collaborative robot is safety. We don’t 

want the robot hurt the human that cooperate with her. As a result, they are all capable 

of sensitive collision detection. The PRob 1R collaborative robot, in Fig. 1.3, was 

developed to make customers’ lives easier. In fact, when most people think about 

robotics, they are usually afraid of programming complex routines with a non-intuitive 

platform. With the help of lightweight design, a modular end effector with soft material 

makes it safe for humans. There is a switch made through a patented-protected interface 

that allows a mechanical and electrical connect-disconnect operation to take place. The 

fingertips of the robot gripper can be adapted for specific application and are easy to 

switch once the robot is in operation. Another important feature for human robot 

collaboration is that the robot should be able to interact with human by some gestures. 

For example, a famous file shows man play table tennis with KUKA KR Aglius arm [2]. 

The arm hitting the ball is shown in Fig. 1.4. Due to its high levels of precision at fast 

speeds, the world No 1 company shows astonishing game to the society that this arm 

with incredible agility will show reaction after every human gesture. This kind of 

application verifies that the high precision in the lightweight robot arm can finish the 

work in a common but fascinating way. 

 

    (a)                     (b) 

Fig. 1.2 Lightweight payload robot arms 
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1.2 Industrial Applications 

For industrial robotic applications utilizing a robot arm, the most fundamental 

functionality required is that the arm should be able to move from the current pose to 

the target pose so that it picks the machined objects to place on the platform. 

Looking back on the industrial production line, factory automation equipped with 

 

Fig. 1.3 The PRob 1R collaborative robot 

 

Fig. 1.4 The KUKA KR Aglius is playing table tennis 
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various industrial mechanisms has already become a mainstream. In recent years, more 

and more applications have been combined with mechanical manufacture and assembly 

under the same production line. The automatic part usually refers to robot manipulator 

operation with intelligent skills. Actually, the intelligent machine preserves advantages 

to be strong and feasible. For example, the tasks in the production line often contain 

solid and simple actions. If humans have unlimited time and energy, the work will 

remain the same. However, humans have to rest periodically to stay efficient. However, 

robots can retain its performance at a certain level for much longer. Main tasks for 

machines on assembly lines include processing, assembling, packaging and distributing 

products. Furthermore, robots or machines enabled to grasp huge workpieces have not 

yet been invented. Based on diverse applications, operations are designed to solve 

problems in the production line. 

1.2.1 Object fetching 

To enhance the productivity in the industrial production line, robots will replace 

human in the labor intensive works which usually are repeated action. The advantages 

are to decrease the cost and to make sure the quality of products during the process. It 

seems that the robot manipulator is indispensable to help humans complete the 

challenges in the production line. Raising a new method is a trend to establish the 

capability of robot. The most common work is about object fetching, which is also 

called pick and place task. 

The technique for grasping objects such as industrial products should be developed 

and teach robot manipulators on the assembly lines. First, machine tools manufacture 

various industrial products respectively. When those things are produced, the way to put 

on the conveyor is to grab them with proper command to robot arms. Actually, element 

gripping happens among different working processes. In [3] and [4], this is the common 
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method to pick component from one place to the target position. This can easily be done 

by repeating mechanical commands. To accomplish more complicated tasks, element 

information is essential for robots. Sensors play an important role in the scheme of 

targets on the assembly [5]. Sensory data from vision sensors usually contain the 

position and orientation of objects on the conveyor. [6] and [7] provide a technique to 

tell robot where and when to grab elements under designation. 

 

 

Fig. 1.5 Arm fetch an object 

 

Fig. 1.6 Robot assembly 
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1.2.2 Assembly 

Assembly operations include: fixing, press-fitting, inserting, disassembling, etc. 

This category of robotic applications seems to have decreased over the last few years, 

even while other robotic applications have increased. The reason why the applications 

are diversified is because of the introduction of different technologies such as force 

torque sensors and tactile sensors that gives more sensations to the robot. 

However, the assembly is still a common application in industrial automation 

system. Actually, the transmission part would be a fixed conveyor to deliver the element. 

At this stage, the task for robot manipulators is simple to move from one place to pick 

and to target point to place periodically. Besides, without any device to check the 

position and orientation, there are some challenges happening during the task. 

1.3 Challenges 

There is a significant bottleneck in the development of industrial automation. The 

challenge is robot vision system. Due to the recognition performance in the factory, the 

robot has difficulty finding and picking the elements on the conveyor precisely.  

When the target starts to change its movement on the production line, the challenge 

turns out to be more complicated without any feedback control system. Undoubtedly, a 

visual system helps to track the moving target and transmits new data to the robot arm. 

As a result, a new grasping technique under visual control system is definitely required. 

1.3.1 Object recognition 

An object recognition system finds objects in the real world from an image of the 

world, using object models. This task is surprisingly difficult if we want to implement 

better effort in the robot. Humans perform object recognition effortlessly and 

instantaneously. However, the algorithmic has huge time-consumption in clustering the 
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region and recognizing the target. But by means of object recognition system, the 

manipulator has an eye to understand the surrounding where a lot of unknown factor 

exists. Therefore, this system plays an important role in pick and place task. 

1.3.2 Robot vision system 

Visual camera is a common piece of equipment in the robotic picking tasks. The 

robot vision system is considered as assistant to finish work. The 2D data is derived 

from webcam and transformed into poses for robot arms [8]. Some image processing 

algorithms have high impact on object recognition, increasing the success rate of 

grabbing [9]. Moreover, Kinect sensors are famous for its depth information, which 

assist robot end-effectors in grasping. [10] and [11] show the advantages of depth data 

to enhance entire process of conveyor tracking. Compared with a laser scanner, a tilting 

laser range finder, the 3D geometry sensors in [12] would be more straightforward to 

describe element situation from elements to robot arms. As a result, cameras are one of 

the key points under pick and place tasks. 

However, there are a lot of unexpected conditions to consider in the assembly lines 

and these problems need to be solved. In this condition, the unexpected part is moving 

conveyor. Sensor integration brings about a comprehensive conception on robot 

grasping. Equipped more sensors can not only deal with complex environment but also 

decreases the error rate of a task [13]. There are two ways to describe the relationship 

between arms and cameras. One is camera to hand and the other is eye-in-hand. Camera 

to hand is common to send background information to control center. Eye-in-hand 

usually transmits object state to computer to revise the position and orientation of 

targets immediately if problems happen in the environment. Moreover, the movement of 

robot manipulators is not always stable. To strengthen the function in perception system, 

the condition should be recorded so that all motion will remain more fluent next time. 
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Besides, with the help of communication between robot and PC, the development 

of robot can be implemented by programming. With additional and various sensors such 

as vision, force, light, and current, the robot arm can not only fully reach to the target 

point but also integrate with sensor data in a flexible way. However, in the developer 

part, it takes tediously long time to integrate different system signal to deal with 

numerous changes happening to the assembly lines. Probably the work is only for 

customized design. To match more robots in the market, if the program is not suitable 

for more device or more sensors, the process for robot manipulator may change a lot to 

even to rewrite the whole control system. Therefore, visual feedback control is a relative 

convenient system to cope with the problems suddenly happening with the help of 

content from vision sensors. A famous technique, intuitive teaching by touching, is often 

used as visual feedback system to complete robot grasping. A block diagram is shown in 

Fig. 1.7. 

 

 

Fig. 1.7 Intuitive teaching by touching block diagram 
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1.4 Thesis Structure 

In this thesis, we introduce the idea of tracking strategy to grasping moving objects 

on the assembly lines. In Chapter 2, we briefly introduce the scenario of experiment in 

the thesis, including the problems to solve, the functionalities to build and the 

procedures to implement. There are two kinds of situation in the industrial elements. In 

Chapter 3, there are three main architectures to illustrate the process implemented in this 

research. The second one and third one is about tracking method. After pointing out the 

thesis structure, we start to introduce each method in the following chapters. In Chapter 

4, the manipulator will be illustrated in solid part and programming. Because the robot 

is the center of this technique, the fundamental functionalities will be shown in this 

chapter. In Chapter 5, we will focus on how the robot knows to grasp the object by 

recognition system. The main technique, tracking strategy, will be introduced in Chapter 

6. The process to complete the pick and place task is written in details. In Chapter 7, the 

experimental results will be shown and discuss them in comparison with theoretically 

prediction. Last of all, we conclude whole thesis with future works in Chapter 8. 
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Chapter 2 Scenario 

2.1 Experimental Setup 

The main goal in this research topic is to pick up a moving object from the 

conveyor to the platform. The associated factors to complete the task will be fully 

illustrated in the following subsections. 

2.1.1 Scene 

The scene of our experiment is illustrated in Fig. 2.1. Objects to be picked up are 

transmitted by a conveyor. The object is moving among whole process. The manipulator 

is a 7-DoFs robot arm which is designed and assembled in our lab. There is a 3 finger 

gripper in the tip point to grasp objects on the moving conveyor. The visual sensors are 

able to sense any difference happening in the environment. In this research, the system 

is sensor-integrated with two vision sensors including Microsoft Kinect and webcam 

camera. 

 

 

Fig. 2.1 An industrial task outlining the pickup of moving objects 
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2.1.2 Faced problems 

For a proper robot assembly, some fundamental functions should be constructed 

including manipulator control, object recognition and fetching and dynamic factor. The 

whole process to list will be introduced in Chapter 4. When the manipulator functions, 

there are some problems robot must handle. In factories, most of the problems are the 

instant position and orientation of object. In object recognition system, the lighting 

condition may also affect the color or intensity feature of the object. When this basic 

factor hasn’t been solved, the robot is unable to hold an object, let alone grasp moving 

one. 

2.2 Procedures 

The whole procedures can be separated into two parts: static and dynamic. 

 

In static part, the industrial elements are put on the conveyor and being transmitted 

to a certain region where the light sensor is mounted. The light sensor in Fig. 2.2 will be 

trigger and stop the conveyor so that the part will stop and wait for subsequent 

 

Fig. 2.2 The light sensor of the conveyor 
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operations. At the meantime, the light sensor will send a signal to the computer and start 

the object recognition algorithm to identify the type as well as the pose of the element. 

After the success of the object recognition, the manipulator will go along a pre-taught 

trajectory to the ready pose and then pick up the object using a pre-taught grasp. The 

manipulator will then start the operations for the object such as assembling, polishing, 

painting, etc. After the current task accomplished, the manipulator will send a signal to 

the conveyor and transmit the next part for the next operation. The cycle then repeats 

itself. 

When the conveyor starts to move, there are several dynamic factors on the 

conveyor. The vision sensors are used as monitors to sense any variation in the 

experiment. In this thesis, two ways to describe the relationship between arms and 

cameras will be illustrated. The first way is eye to hand, shown in Fig. 2.3. Robot eye 

stands at a relative position to the robot hand. This means that the camera is set near by 

the robot manipulator and its distance remains solid. When the conveyor start to 

transmit the objects, the camera will check the instant position and recognize the object 

at the same time. After receiving new data from vision, the end-effector will run to the 

target to pick up the object. The other one is eye in hand, shown in Fig. 2.4. Literally, on 

the tooltip of manipulator, there is an eye on it. This eye helps to track the object 

immediately. However, the view may include partial body of object. To calculate the 

area of object in the camera frame, it is important to segment the 640 x 480 view. Only a 

small region is interested in the procedure. The robot manipulator will track the object 

three times and grasp it before it falls down to the ground. Therefore, the dynamic 

factors can be solved by two tracking skill. The vision sensor used in eye to hand is 

Microsoft Kinect, and the other one in eye in hand is webcam camera. 
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2.3 Preconditions 

In industrial scenarios, the environment is rather controllable compared with 

household scenarios. As a result, with some assumptions properly made, we can greatly 

increase the efficiency of the system. Furthermore, we can setup the environment to 

meet the precondition of some algorithms, in our case the object recognition algorithms, 

 

Fig. 2.3 Eye to hand system (Microsoft Kinect sensor) 

 

Fig. 2.4 Eye in hand system (webcam camera) 
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so that those powerful algorithms can be adapted to meet our requirement of the system 

such as high reliability, ow time consumption, and so on. 

2.3.1 Structured environment 

In industrial scenario, the environment is controllable. We can build fences around 

the robot which prohibits humans from going inside. The environment can be fixed once 

the system has been deployed. As a result, if the robot can work in a well -controlled 

and structured environment, which should not be a big problem setting up such 

environment in industrial scenarios, the robot will not have to take online motion 

planning and obstacle avoidance into account. The robot can simply follow a 

pre-programmed and time-optimal trajectory to go to the target pose and perform its 

tasks swiftly and safely. 

2.3.2 Objects description 

We assume that objects or components that may occur in the scenario are all rigid 

bodies. They would not deform or break on account of external forces. Following this 

assumption, model-based object recognition algorithms can be applied. The states of the 

object can be described by its type and the 6-DoFs rigid transform in the 3D Cartesian 

space. The internal states such as the deformation can be neglected under the rigid body 

assumption. Furthermore, the feasible grasp for picking up the object stably can be 

described easily. Other factors such as the exerted force of the gripper, the damage of 

the object and the deformation of the object are not taken into consideration. Only the 

grasp point is required for describing the proper grasp, which is simply the 6-DoFs pose 

of the end-effector in the object’s coordinate. 
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Chapter 3 System Architecture 

 

3.1 Generalized Robot Fetching Architecture 

The generalized system architecture and the required su0modules for a robot 

fetching system are shown in Fig. 3.1. The environment is sensed by 3D sensors that 

describe the robot’s workspace with the color, the geometry, or both. The sensed 

environment information is then transmitted to the object recognition module which 

recognizes the target objects in the workspace. The output result is the pose and the type 

of the target objects in the workspace. Since the type of the objects in the scene is 

known, their models can be retrieved from the database for grasp planning. The resulted 

grasp contains the pose of the end-effector and the configuration of the end-effector. The 

former one should go through a motion planner which generates a collision=free 

trajectory for robot arm execution, while the latter one will be sent to the end-effector, 

which could be a gripper, for actually holding the object. 

 

 

Fig. 3.1 Generalized robot fetching architecture 
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This architecture, though dealing with general situation, suffers from high 

computational complexity in the online grasp planning and motion planning. In an 

industrial scenario, the efficiency, which is closely related to the cost and the yield rate, 

is one of the major concerns. We not only require the robot to correctly complete the 

tasks but also need the tasks to be done quickly. As a result, in this research, we based 

on the assumptions made in the subsection 2.3 and substitute the online grasp planner 

and the motion planner modules with the operation database and trajectory interpolator 

respectively. 

3.2 Specialized Robot Fetching Architecture 

The main objective in this research is to build up a sensor-integrated system that 

can grab moving objects with pose modification in the assembly lines. The system 

architecture is shown in Fig. 3.2. 

 

Why it is called specialized? This means the model functions in specific situation. 

In this thesis, the main contribution will focus on the tracking strategy. Therefore, this 

 

Fig. 3.2 Flow chart of specialized robot fetching system architecture. 
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specialized method is for tracking objects. Poses of robot end-effector are decided by 

3D sensor data. The poses will be separated into two conditions. First, we have to 

collect static poses for each element from visual recognized results. This can be 

determined by Kinect sensor in the generalized robot fetching architecture. According to 

the assumption explained in subsection 2.3.1, the workspace will not change when the 

robot is performing its tasks. As a result, all we have to do is define some trajectory 

via-points, along which the robot will not hit itself or collide with the fixed environment. 

Since the environment is fixed, this trajectory always applies and can be stored in a 

database for later use. Since the environment is fixed, we can guarantee that this 

trajectory will never collide with the environment afterward. Therefore, the object type 

and pose will be sent to trajectory planning to calculate the static grasping pose and 

command the robot. 

The task would become tough after objects are moving on the conveyor. In the 

same way, the environment is sensed by 3D sensors that describe the condition 

happening on the conveyor. There are two way to receive information from sensors: eye 

to hand and eye in hand. In this research, the sensor used in eye to hand is Microsoft 

Kinect sensor and the other one is webcam camera on the robot tooltip. Actually the 

moving pose derived from visual is a certain point in the camera coordinate. This will 

be transferred to the point under Cartesian Space coordinate. After tracking block 

finishing the computation, the instant state of the object, including its pose and 

orientation, will be transmitted to the trajectory planning. The robot manipulator then 

reaches to designated position to get ready to catch the object. In general, information 

from perception system will update the state of objects to the control center after the 

end-effector poses have been decided. Therefore, robot arm is able to grasp moving 

objects successfully.  
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The method in eye in hand is under the same architecture. The difference is that the 

end-effector will follow the position in the webcam view to change its position. This 

behavior seems to be what tracking it is.  

The detail of our system is described in the Chapter 6. 

3.3 Modified Robot Fetching Architecture 

 

Actually, the main goal in this thesis is to grasp an object before it falls down to the 

ground. It seems that holding the target is success action in the result. However, to 

check the condition precisely, the grasping pose has a little difference from the desired 

command. If there is an offset or deviation angle, the task hasn’t been completed yet. To 

check out whether the task is successful or not, the webcam is used to record image 

while the gripper is holding the object. The conceptual structure is shown in Fig. 3.3. To 

find out any variation of grasping pose, webcam will first store lots of correct pose 

 

Fig. 3.3 System structure for modified robot fetching. 
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picture in a database. After gathering the poses as a standard level, the mission starts to 

grasp moving target. In this step, the grasping pose will be compared with desired 

command. The error model will be told in subsection 6.3.3 in details 
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Chapter 4 Manipulator 

In this thesis, all algorithms are well-functioned only if the robot manipulator 

performs good behavior. How robot move and grasp should be designed at the 

beginning. Therefore, the main body will be fully introduced in its hardware structure 

and software functionalities. 

 

4.1 Mechanism 

 

 The 7-DoFs of robot manipulator is shown in Fig. 4.1 in our lab [14]. The 

hardware has been built up by an alumnus of our lab three years ago. In this part, we 

will put emphasize on the detail pieces of robot, kinematics, control architecture and the 

software functionalities. The readers are encouraged to read the in-depth discussion on 

the hardware in the reference thesis [14]. The specifications of the robot manipulator are 

listed in Table 4-1. The payload is 5 kg without end-effector. However, the weight of 3 

finger gripper is 2.3 kg. Thus, the actual payload is at most 2.7 kg, which need to be 

noticed. The weight of experimental elements is at the range of 225 to 350 g. 

 

Fig. 4.1 iCeiRA arm one in iCeiRA lab 
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4.1.1 D-H parameters 

To begin with, the model of robot manipulator to describe its hardware in a 

standard way is illustrated by the D-H parameter method. Jacques Denavit and Richard 

Hartenberg introduced this convention in 1955 in order to standardize the coordinate 

frames for spatial linkages [15]. To be precise, 4 parameters are needed to describe the 

relationship between adjacent links and joints. They are 𝜃, 𝑑, 𝑎 and 𝛼. In Fig. 4.2, the 

procedure for attaching coordinate on the link and identifying these 4 parameters are 

described as follows: 

Link frame attachment procedure: 

1. Identify the joint axes and imagine (or draw) infinite lines along them. For 

step 2 through 5 below, consider two of these neighboring lines (at axes 𝑖 

and 𝑖 + 1). 

2. Identify the common perpendicular between them, or point of intersection. At 

the point of intersection, or at the point where the common perpendicular 

meets the 𝑖𝑡ℎ axis, assign the link-frame origin. 

3. Assign the �̂�𝑖−1 axis pointing along the 𝑖𝑡ℎ joint axis. 

Payload  

~5 kg continuous and 15 kg instant 

(end-effector excluded) 

Maximum speed ~50cm/sec (tool tip in Cartesian space) 

DoF 7 revolute joints 

Weight ~18kg 

Working envelope ~900mm 

End-effector 3 finger gripper 

Table 4-1 spec of the iCeiRA arm one 
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4. Assign the �̂�𝑖−1 axis pointing along the common perpendicular, or, if the 

axes intersect, assign �̂�𝑖−1 to be normal to the plane containing the two axes. 

5. Assign the �̂�𝑖−1 axis to complete a right-hand coordinate system. 

6. Assign frame {0} anywhere in the supporting base as long as the �̂�0 axis lies 

along the axis of motion of the first joint. The last coordinate (frame {0}) can 

be place anywhere in the end-effector as long as the �̂�𝑛 axis is normal to the 

�̂�𝑛−1 axis. 

7. Try to assign the link frame so as to cause as many linkage parameters as 

possible to become zero. 

 

D-H parameters in terms of the link frames: 

 𝑑𝑖：the distance from �̂�𝑖−1 to �̂�𝑖 measured along �̂�𝑖−1 

 𝜃𝑖：the angle from �̂�𝑖−1 to �̂�𝑖 measured along �̂�𝑖−1 

 𝑎𝑖：the distance from �̂�𝑖−1 to �̂�𝑖 measured along �̂�𝑖 

 

Fig. 4.2 The definition of four parameters 
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 𝛼𝑖：the angle from �̂�𝑖−1 to �̂�𝑖 measured along �̂�𝑖 

After following the rule of D-H parameters, it is common to assign the link frames 

to identify the model of iCeiRA arm one. Each frame, coordinate definition and the D-H 

parameters are shown in Fig. 4.3. When all frames are defined in a proper solution, 

there is a D-H table to figure out the relationship between each revolute joint and the 

joint limit for the movement. The statistic is listed in Table 4-2. 

 

After we receive the table, the DH transformation matrix from one coordinate from 

to the next is well implemented. Using a series of D-H Matrix multiplications, the final 

result is a transformation matrix from desired frame to initial one. 

𝑀𝐷𝐻 = 𝑅𝑧,𝜃𝑖
𝑇𝑧,𝑑𝑖

𝑇𝑥,𝑎𝑖
𝑅𝑥,𝛼𝑖

 

= [

𝑐𝜃𝑖
−𝑐𝛼𝑖

𝑠𝜃𝑖

𝑠𝜃𝑖
𝑐𝛼𝑖

𝑐𝜃𝑖

𝑠𝛼𝑖
𝑠𝜃𝑖

𝑎𝑖𝑐𝜃𝑖

−𝑠𝛼𝑖
𝑐𝜃𝑖

𝑎𝑖𝑠𝜃𝑖

0 𝑠𝛼𝑖

0 0

𝑐𝛼𝑖
𝑑𝑖

0 1

] 

(4-1) 

 

Fig. 4.3 Link frames assignment of iCeiRA arm one 
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4.1.2 Transmission and actuator 

The hardware structure of the one of the joints is shown in Fig. 4.4. To build up a 

whole manipulator, the key component including motors, drivers and gear box is 

indispensable. Those devices are shown in Fig. 4.5. The Maxon DC motor is chosen due 

to its excellence in the smaller size and high torque output. The dedicated motor driver 

is capable of current control, which indicates that we can directly control the torque of 

each motor. The gear box has two parts: one is gear set and another one is harmonic 

driver. The output torque from the motor is transmitted through a gear set, harmonic 

drive and then the joint. The advantages of harmonic drive are that they have compact 

size, high reduction ratio, and no backlash so that the size and weight can be reduced 

significantly. The detailed specifications on the reduction ratio and the motor are listed 

in Table 4-3. By means of those devices, the iCeiRA arm one now start to build up its 

control system. 

Joint i 𝜃𝑖(rad) 𝑑𝑖 𝑎𝑖 𝛼𝑖 𝜃𝑢 𝜃𝑙 

1 𝜃1 + 0 𝑑𝑏𝑠  −90° 180° −180° 

2 𝜃2 + 0   90° 120° −90° 

3 𝜃3 + 0 𝑑𝑠𝑒 𝛼 −90° 180° −180° 

4 𝜃4 + 0  −𝛼 90° 180° −45° 

5 𝜃5 + 0 𝑑𝑠𝑤  −90° 180° −180° 

6 𝜃6 + 0   90° 100° −100° 

7 𝜃7 + 0 𝑑𝑤𝑡  0° 360° −360° 

𝜃𝑢: joint angle upper bound 

𝜃𝑙: joint angle lower bound 

Table 4-2 D-H table of iCeiRA arm one 
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Fig. 4.4 Joint structure of robot arm 

 

Fig. 4.5 The figure of motor, driver and gear box 

Joint i Gear set Harmonic drive unit 
Total gear 

rotation 
Maxon motor 

Motor 

nominal 

torque 

(mNm) 

1 3:1 SHD-25-160 (161:1) 483:1 RE50 200w 354 

2 3:1 SHD-25-160 (161:1) 483:1 RE50 200w 354 

3 
4:1 

SHD-20-100 (101:1) 404:1 RE50 200w 170 

4 
4:1 

SHD-20-100 (101:1) 404:1 RE50 200w 170 

5 
4:1 

SHD-17-100 (101:1) 404:1 RE50 200w 85 

6 
4:1 

SHD-17-100 (101:1) 404:1 RE50 200w 85 

7 
4:1 

SHD-17-100 (51:1) 504:1 RE50 200w 28.8 

Table 4-3 Transmissions and actuators 
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4.1.3 Gripper 

The iCeiRA arm one is equipped with a Robotiq 3-finger gripper [16], which is 

shown in Fig. 4.6. This is the end-effector for object fetching system in industrial 

assembling application. This type of gripper owns two type of grasping: encompassing 

grip and fingertip grip. In our research, the fingertip grip is selected for grasping. 

 

 

 

Fig. 4.6 Robotiq 3-finger gripper 

 

Fig. 4.7 Different type of grip 



doi:10.6342/NTU201703382
 28 

 

 

 The specification of the Robotiq 3-finger gripper is listed in Table 4-4. The 

dimension and the workspace of the gripper are shown in Fig. 4.8. The gripper is able to 

open no more than 155mm width. There are rubbers stick on the inner contact surface of 

each finger to increase the friction between the finger and the grasped objects. The 

friction coefficient of the rubber is 0.4. 

We choose this 3 finger gripper because of its adaptiveness. The special linkage 

design of the mechanism makes it compliant to the shape of its holding object. 

Furthermore, the motor will halt once the resistant force is beyond a given value, which 

 

Fig. 4.8 Dimension and workspace of gripper 

DoF 4 

Weight 2.3 kg 

Payload for encompassing grip (Fig. 4.7 left)：10 kg 10 kg 

Payload for fingertip grip (Fig. 4.7 right)：2.5 kg 2.5 kg 

Force 15~60N 

Object diameter 20~155mm 

Table 4-4 spec of gripper 
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is good for grasping objects of unknown shape without damaging it. Once the motor is 

halted due to the external resistant force, it will not continuously exert force, which may 

result in over-heating of the motor. On the other hand, the current position will still be 

maintained by the linkage mechanism. 

There are 4 operating modes: basic, pinch, wide and scissor mode as depicted in 

Fig. 4.9. The basic mode is commonly used mode and is suitable for most of the cases. 

It is especially, suitable for cylindrical or stick sharp objects. The wide mode is designed 

for holding large or round object. The pinch mode and scissor mode are used for picking 

up small objects precisely. The scissor mode is even more precise than the pinch mode 

at the expense of payload and adaptiveness. These 4 operation modes are sufficient to 

cover most of the use cases. If the user requires a more dexterous manipulation, it can 

also control each finger individually. In this thesis, the basic mode and pinch mode are 

the main operation to finish grasping action. 

 

 

Fig. 4.9 Four operation modes of the gripper 
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4.2 Control Architecture 

 

The control architecture of iCeiRA arm is shown in Fig. 4.10. A PC running in 

RTOS is the control center of the whole system. It communicates with the hardware 

components such as the motor driver and the motor encoder through a DAQ card 

installed on the PCI bus. The RTOS is required since we would like to do the motor 

position control on the PC running at 1 kHz.  

The DAQ card is installed in the PCI bus of the PC, which endows the PC with the 

capability of sending an analog voltage signal to control the motor driver and reading 

the encoder count from the motor. On our platform, one PISO-DA8U [17] for 8 channel 

analog output, and two PISO-Encoder600 [18], each for 6 channel encoder count, are 

chosen. 

When received the analog voltage signal from the DAQ card, the motor driver will 

output a corresponding current to drive the motor. This implies that the current control 

loop is done internally by the motor driver. For example, when the driver receives 10V 

signal, it will output the positive maximum current, which can be set using a variable 

 

Fig. 4.10 Control architecture in robot control system 
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resistor on the driver. The unit of the drive current is in Ampere. On the other hand, 

when the motor receives -10V signal, it will output the negative maximum current; and 

when it receives 0V, it will output zero current. In our case, Maxon ESCON 70/10 is 

chosen, which support maximum output power of 700W and maximum output current 

of 10A. 

The motor is driven by the current from the motor drive and output a torque to 

actuate the robot arm. The output torque equals to the product of the input current and 

the torque constant of the motor. The rotating angle will be count by the encoder 

equipped on the motor and then feedback to the PC through the DAD card. This closes 

the loop so that the accurate position or velocity control can be done on the PC. 

4.3 Software Architecture 

 

 The software architecture of the robot manipulator is illustrated in Fig. 4.11. This 

 

Fig. 4.11 Software architecture 
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architecture is divided into three layers: application layer, basic utilities and hardware 

layer. In this section, the motivation why to build this architecture will be described. 

The functionalities in each layer will also be explained. 

4.3.1 Motivation 

The motivation for proposing this software architecture and rebuild the whole 

software for the robot is that we require a clearly defined and modularized architecture 

for future development and maintenance. The first version of the robot’s software was 

built by an alumnus of our lab 3 years ago, who is also the designer of the iCeiRA arm 

one mechanism. We acknowledge and appreciate his effort in building the mechanism 

and also the basic software utilities of the robot arm such as motor control, trajectory 

planning, intuitively teaching by touching, and so on. However, the software part hasn’t 

been developed yet. To made the maintenance of programming, there layers is created to 

illustrated the functionalities of robot manipulators and extend the capabilities of 

iCeiRA arm one. 

4.3.2 Hardware Structure 

The hardware layer is the abstraction of the hardware components. The abstraction 

of the robot such as the D-H modes, controller parameters, dynamic parameters, etc, is 

encapsulated in the Robot Parameter module. The abstraction of the PC are divided into 

two modules, one is the RTOS, which provides a precise real time timer, and the other is 

the communication interface, which can be DAQ card, RS 232, CAN-BUS, EtherCAT 

[23 24], etc. this layer strongly depends on the hardware. For different robots, the 

functionalities of this layer can support might change drastically. As a result, we would 

not try to standardize this layer and unify the interface of each module. Instead, the 

programmer should try to identify the hardware dependent parts and classify them in 
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this layer so that other modules would depend less on the platform which makes porting 

this program onto other platform easier. 

4.3.3 Basic Utility 

This layer provides the basic utilities for building up robotic applications. For 

example, the robot kinematics and dynamics are the most fundamental utilities that 

almost all the robotic applications will require. The logger module is for recording 

various states of the robot arm such as joint position, joint velocity, joint torque, tool tip 

Cartesian space position, Jacobian, etc. The logger module will dump the recoded states 

into the hard disk for latter analysis. Some other modules such as the Joints, Sensors, 

and Grippers also belong to this layer. The programmer will not have to handle the 

low-level communication interface signal to control the motor or retrieve the sensor data. 

On the contrary, they can use the abstract Joints and Sensors modules to complete their 

task more conveniently. This layer is partially dependent on the platform mostly 

because of the Joints, Sensors, and Gripper module. These modules usually have strong 

dependency on the communication interface. For example, the joints might be 

connected in series and communicate with EtherCAT and sometimes the sensor signal is 

retrieved from a DAQ card installed on the PC’s PCI bus. 

4.3.4 Application Layer 

The purpose of the two aforementioned layers is to provide most of the necessary 

utilities and a proper abstraction for high-level robotic applications. With these two 

layers, developers can build their own application in the top layer – the application layer. 

This layer is independent of the hardware. It is more like a collection of the fancy 

functionalities. Most of the programmers can develop their own algorithms in this layer 

and don’t have to get their hands dirty. Handy, basic and powerful utilities are provided 
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in the second layer such as the kinematics, dynamics, joint control, and so on. Other 

programmers can harvest the hard work which have been done in the hardware layer 

and the basic utility layer, and do their research and develop new algorithms in this 

layer. 

We further divide this layer into two different groups – the active skill and the 

passive skill. The former one refers to services that operate only when they are called, 

while the latter one will operate periodically behind the scenes. One of the examples for 

the active skill is the Cartesian Space Control, which is the control of the end-effector 

from its current pose to a give target pose. The robot will have to run the service only 

when it gets the order to go to some target pose. On the other hand, the Safety, which 

should detect the collision between the robot and the environment, belongs to the 

passive skill since the robot will have to check the whether the collision occur 

periodically. 

4.3.5 Timer 

In this architecture, three threads are created to perform different tasks. The active 

skills and the devices such as the Joints, Sensors, and Grippers, are updated in the first 

thread. This thread is a real time thread which will update at 1 kHz. Among all the 

thread, the first thread is most time-critical. It involves the update of the motor feedback 

command, sensor data, and current performed task. The second thread updates the 

passive skills and the robot states. This is also a real time thread in order to retrieve the 

latest robot state and the immediate reaction to safety issues and internal errors. The 

third thread is for the logger. This thread need not be a real time thread since it performs 

lots of data read/write on the hard disk. The task is neither time nor safety critical. 

Therefore, a relatively resource consuming real time thread is not required for this 

operation. 



doi:10.6342/NTU201703382
 35 

4.4 Manipulator Functionalities 

After describing the software architecture and hardware device, it is time to 

develop the basic functionalities of robot manipulators. In this section, the two 

techniques are essential for iCeiRA arm one to implement assembling task for industrial 

application. 

4.4.1 Intuitive teaching by touching 

It is the user’s responsibility to tell the manipulator where to go. Usually, we 

concern only about the pose of the end-effector in Cartesian space since it is the 

end-effector that interacts with the environment. In industrial application, the operator 

will record a series of end-effector poses and the manipulator simply replays these poses 

when performing its tasks. Therefore, it is the operator’s responsibility to record the 

series of poses precisely so that the manipulator can finish its task successfully. 

Traditionally, the operator will command the robot to go to a target pose using the 

teaching pendant or direct key in a pose. The operator will fine tune the pose until the 

robot reach the desired target pose and then record the current pose. This process is 

actually tedious, time-consuming and counter-intuitive. Therefore, here we introduce 

the teaching by touching [19][20] so that the operator can guide the robot direct and 

teach the robot intuitively and quickly. The teaching by touching enables the operator to 

move and guide the manipulator directly by hand. Therefore, the operator can guide the 

robot to the desired pose and fine tune the pose intuitively. 

Generally, it is impossible and not allowed to guide the robot. That is to say, it is 

difficult to move the robot to another pose by hand. The major reason is that the motor 

will try to maintain the current pose so that it will exert torque to resist external forces. 

Some minor reasons include the high reduction gear, friction in the transmission, 
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mechanism weight, etc. to solve the major problem, the manipulator will have to sense 

the direction of the external force and comply with the external force instead of resisting 

it. In our case, we did not rely on an additional sensor such as the force torque sensor. 

Alternatively, we compute the direction of the external force by the following formula: 

𝛿𝑥 = 𝐽(𝑞)𝛿𝑞 (4-2) 

, where 𝛿𝑥 is the slight variation of the tooltip’s pose in Cartesian space, which can be 

defined as 

𝛿𝑥 =

[
 
 
 
 
 
𝛿𝑥
𝛿𝑦
𝛿𝑧
𝛿𝛼
𝛿𝛽
𝛿𝛾]

 
 
 
 
 

 (4-3) 

, where 𝛿𝛼, 𝛿𝛽, 𝛿𝛾 are the rotation angle relative to reference coordinate of x, y, z axis. 

The 𝛿𝑞 is the slight variation of the hoint angle measured from the encoder error, and 

the 𝐽(𝑞) is the Jacobian matrix calculated from current joint angle 𝑞. As a result, 𝛿𝑥 

can be regarded as the direction of the external force. As for the minor problems, gravity 

compensation and the friction compensation must be included to resist the mechanical 

weight and the friction respectively. The gravity compensation is calculated from the 

mass center to maintain static equilibrium. The friction compensation is a constant to 

resist the static friction of each joint. 

Besides the basic intuitive teaching by touching functionality, we further decouple 

the guided motion into translation and rotation. In the translation mode, the orientation 

of the tooltip is fixed while the position can be guided freely by the operator. On the 

other hand, in the rotation mode, the position of the tooltip is fixed while the orientation 

can be guided freely. 

In the translation mode, once the encoder error is above a threshold, the robot will 
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move along the direction of the external force. However, if we simply let the robot 

moves along that direction, the orientation will change inevitably. As a result, we solve 

the inverse kinematics for the new pose while setting the orientation to the current one. 

This equivalently makes the manipulator moves along the guided pose with the 

orientation fixed. The same idea applies to the orientation mode in which the position of 

the tooltip is fixed while the orientation can be guided by the operator freely. 

4.4.2 Online trajectory generation 

The generation of command variables for industrial manipulator has two functions: 

specification of the geometric path (path planning) and specification of the progression 

of position, velocity, acceleration, and jerk in dependence of time (trajectory planning). 

The literature provides many of approaches and algorithms in both fields. 

The goal of trajectory planning is generating smooth motion in multidimensional 

space refer to a set of planned waypoints or path points by using some given parameter, 

i.e. the time interval of a motion, boundary conditions of motions, the maximum 

velocity limit, acceleration limit or even jerk limit. The smooth motion is a function of 

time that is continuous and has a continuous first derivative. Sometimes a continuous 

second derivative is also desirable. Jerky motion tends to cause vibration in the 

manipulator and cause increased wear on the mechanism. There are many methods 

about trajectory generation have been used in many systems, such as the cubic spline 

line, B-spline [21], tension spline [22], the linear function with parabolic blends and 

NURBS [23]. The above methods generate trajectory that consist by numbers of 

segments which are functions of time and smooth connect each segments by matching 

the boundary conditions. Then the trajectory can be generated at run time, that is, the 

trajectory points can be computed at each servo loop or sampling time in control system. 

These methods are useful in the case when the waypoints of trajectory are pre-known or 
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predictable so that we can compute it offline. However, in the case when the waypoints 

are unknown and unpredictable, the frequently change of the next waypoint will let us 

need to re-calculate a new computing equation of next trajectory segment to remain 

smooth motion in real-time. There is other type of trajectory generator has essentially 

online calculation. An online trajectory generator is a real-time trajectory planning 

algorithm for computing the interpolation of synchronized and time-optimal smooth 

motion in multi-DoFs with arbitrary input values. The next trajectory set point is 

computed according to current state of motion every control cycle, typically every 

millisecond. This enables system to react instantaneously to unforeseen and un- 

predictable event, usually sensor trigged event, at any time instant and in any state of 

motion. 

The interface of an OTG has basic form shown in Fig. 4.12 and the OTG have the 

following specifications: 

 The input values for the trajectory generator are completely arbitrary. Expect the 

motion state �⃗�𝑖−1, �⃗�𝑖−1, �⃗�𝑖−1 of the last control cycle, all values may change 

between the control cycles. This means that This means that the target position 

�⃗�𝑖
𝑡𝑟𝑔𝑡

, (the target velocity �⃗�𝑖
𝑡𝑟𝑔𝑡

), the max. velocity �⃗�𝑖
𝑚𝑎𝑥, the max. acceleration 

�⃗�𝑖
𝑚𝑎𝑥, and the max. jerk 𝑗𝑖

𝑚𝑎𝑥 are not constant nor continuous. 

 The trajectory is calculated on-line (in real time during every control cycle), 

because the input values may change unpredictably. Only the next sample point, 

the �⃗�𝑖, �⃗�𝑖, and �⃗�𝑖 is calculated within one control cycle 𝑖. 

 Synchronization: the OTG consider an N-dimensional space, where N is the 

number of DoFs. The input and output are N×1 vectors in the space. For the 

manipulator, it is in joint space or Cartesian space. Synchronization is important 

requirement, that is, all N DoFs have to reach their target position simultaneously 
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at zero velocity and zero acceleration. Furthermore, for the straight line motion of 

manipulator’s end-effector, the phase-synchronization is required so that all N 

DoFs will not only reach their target at same time but also change the state of 

motion simultaneously. For example, all N DoFs change their motion state from 

acceleration to constant velocity at same time. 

 The generated trajectory for the DoF with the largest execution time is time- 

optimal. The constraints for other DoFs are adapted for synchronization. 

 An OTG do not consider path planning. The desired target position �⃗�𝑖
𝑡𝑟𝑔𝑡

 is 

user-given. 

 

In recent times works on OTG have been published, e.g. [24][25]. A new control 

scheme that uses an OTG algorithm as an interface between sensor process and 

 

Fig. 4.12 The input and output of an OTG algorithm 
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low-level robot motion control has been proposed. Based on the OTG framework, we 

can simply deal with the unforeseen sensor events for the sensor guided robotic 

applications such as visual servo control [26] and human-robot collision avoidance [27] 

of robot arms. It consists of three layers: 

1) A sensor processing algorithm used to compute a desired pose or other motion 

states for the robot. 

2) The desired motion states are used by the OTG algorithm to instantaneously 

compute a motion trajectory that connects to the current state of motion. 

3) The output signals of the OTG algorithm are the motion command of a trajectory- 

following motion controller. 

Due to the intermediate layer, a number of advantages are achieved: 

 Jerk-limited and continuous motions are guaranteed independently of image 

processing signals. Acceleration and velocity constraints due to limited dynamic 

robot capabilities can be directly considered. Physical and/or artificial workspace 

limits can be explicitly applied. 

 In cases of sensor failures or inappropriate image processing results, deterministic 

and safe reactions and continuous robot motions are guaranteed. 

 The image processing does not necessarily have to be real-time capable. 

 High performance due to low latencies, because motion trajectories are computed 

within one low-level control cycle (typically one millisecond or less). 

 The architecture is of a very simple nature and can be integrated in many existing 

robot motion control systems. 
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Chapter 5 Object Recognition 

In this chapter, the object recognition system will be introduced 

5.1 Point Cloud Library 

 

The Point Cloud Library (PCL) is a standalone, large scale, open project for 2D/3D 

image and point cloud processing [28]. For a 2D image, the frame shown on the screen 

is a kind of sampled image by pixels. All information in the environment is projected on 

the image 2D plane. Similarly, a Point Cloud, as shown in Fig. 5.1, is the sample of the 

environment with points. Each point contains (x, y, z) 3D information in Cartesian space 

and sometimes even the (r, g, b) color information. The PCL turns out to be a large 

collaborative effort in robotics, especially being used as visual servo feedback control in 

the surroundings. Besides, the PCL is also programmed by Robot Operating System 

(ROS) [29]. 

 

Fig. 5.1 Point Cloud illustration 
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5.2 Database Generation 

The global recognition pipeline can be classified as a model-based object 

recognition algorithm. As a result, we need the CAD model of the object, which is 

easily obtainable since the objects are manufactured according to the CAD model. Even 

though the models are easily to gain, some processing is required to construct the 

recognition database. The most important one is the partial views rendering. Imagine 

that the object is presented in the environment and grabbed by the 2.5D sensor such as 

Microsoft Kinect or ASUS Xtion, only the partial view can be retained. Because the 

back side cannot be seen by the camera, the camera is unable to generate the Point 

Cloud. As a result, if we want to match the grabbed partial view against the database, 

we must construct the database containing partial views around the object. That is to say, 

we should first generate partial views from the complete 360 degree model and store 

them in the data base [30][31]. The procedure is as follows: 

1. Convert the CAD model to a mesh model 

2. Load the mesh model into the OpenGL renderer [32][33] 

3. Equally sample and transform the viewpoint around the model 

4. Retrieve the depth map of the partial view from the depth buffer 

5. Back-project the depth value of each pixel in the depth map into the 3D 

Cartesian space 

6. Return the Point Cloud of the partial view 

In the first step, the CAD model is converted into the mesh ply model. The first 

reason for doing so is that we only need the surface info of the model for rendering. The 

second reason is that OpenGL can only read in mesh models. In the third step, the 

position of the viewpoint is sampled using the spherical coordinate with radius equal to 
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one meter constant and for every 20 degree. OpenGL will automatically render the 

model and generate the depth map, which already takes the occlusion into account. Each 

pixel in the depth map can be back-projected using the assumed camera model and get 

its position (x, y, z) in the 3D space in step five. 

5.3 Kinect Calibration 

The vision sensor with PCL algorithm is Microsoft Kinect sensor. Besides, cameras 

play an important role in collision avoidance in order to find out the obstacle in the 

environment. There are lots of sensors to use for object recognition. Therefore, Kinect 

made by Microsoft [34] is the better choice in our research to implement a safety 

working space in the production line. 3D information can be derived from Kinect, 

especially depth data. With the help of 30 frames per second rate, varieties surrounding 

the robot can be easily detected. Furthermore, Kinect is equipped with two 

micro-motors which can alter the orientation of scene immediately. Human can set up 

this kind of sensor to obtain the precise visual angle for safety region. The bigger region 

a Kinect can provide, the safer and prompter avoidance arm will react to. 

 

Although the advantages of Kinect, frame data should be revised because of 

non-homogeneous space in depth. In Fig. 5.2, object information in the work space will 

 

Fig. 5.2 The camera distortion on the projection plane 
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project to image plane by Kinect. Therefore, object position Ox and Oy will be altered 

to Px and Py inaccurately while depth information will remain the same. 

To modify position x and y to reference frame, the chess picture is used to calibrate 

the intrinsic matrix M𝐼  and the extrinsic matrix M𝐸 , which represent the 

transformation between the camera frame and robot coordinate. 

𝑀𝐼 = [
𝑆𝑥 0 𝐶𝑥

0 𝑆𝑦 𝐶𝑦

0 0 1

] (5-1) 

where 𝑆𝑥 and 𝑆𝑦 the proportion of meter per pixel, 𝐶𝑥 and 𝐶𝑦 represent the center 

of image plane. Therefore, from Eq. (5-1) 

Px =
𝑂𝑥 ∗ 𝑆𝑥

𝑂𝑧
+ Cx  

Py =
𝑂𝑦 ∗ 𝑆𝑦

𝑂𝑧
+ Cy (5-2) 

PZ = 𝑂𝑧  

Later, the relation from Kinect to robot base is 

PR = M𝐸 ∗ PP (5-3) 

where PP is the object projection position in image plane and PR is the position under 

reference coordinates. After completing the calibration, the accurate data information 

can be applied to robot manipulator. 

The checkerboard camera calibration [35] and the Point Cloud Library (PCL) [36] 

are used in order to obtain the intrinsic matrix M𝐼 and the extrinsic matrix M𝐸 in real 

world for calibration. PCL, which originally developed by Radu B. Rusu et al, is an 

open source library for 3D Point Cloud processing. By using PCL, it is easy to translate 

the coordinate from Kinect to robot base. Then the extrinsic matrix M𝐸  can be 
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calculated automatically by PCL shown as Fig. 5.3. 

 

5.4 Object type and pose recognition 

After using the PCL algorithm for object recognition system to build up the 

database, the target should be defined and described for pick and place task. Besides, 

the grasping pose for each target also be decided by robot control system. When the 

database is fully constructed, the command to grasp will be done by intuitive teaching 

by touching method. 

There are three type of element in this research, and are shown in Fig. 5.4. Every 

type owns individual CAD model, which can be successfully recognized by PCL 

algorithm. These types should be stable poses because the Kinect only captures the 

instant pose to transfer data to the control center. It is possible to teach the robot with 

only a few and finite number of grasps so that the robot is capable of dealing with object 

with arbitrary stable poses. In this thesis, we use the intuitive teaching by touching 

 

Fig. 5.3 The PCL translates the Kinect coordinate to reference coordinate 



doi:10.6342/NTU201703382
 46 

functionality provided by the manipulator. However, we cannot simple store the taught 

grasp in the database. The taught grasp must be bind to the object coordinate so that it 

can be adapted according to the recognition result. If the pose changes dramatically in a 

period of time, the manipulator is unable to grasp it due to different recognized results. 

Thus, each stable pose owns only one grasping pose in the robot object fetching system. 

 

The procedure of pick and place can separate into two parts: pick and place. The pick 

part contains three sub-steps: pre-pick, pick and post-pick. Similarly, the place part also 

includes pre-place, place and post-place. The previous part is like a middle point 

between initial pose to target pose, and so does the posterior one. All six steps are 

completed by intuitive teaching and touching. The whole pick and place procedures are 

as follows: 

1. Pre-pick: This pose is generally a short distance away from the target object in 

case that the finger or the tooltip might collide on the object and change to pose 

of the object accidentally. 

2. Pick: The gripper follow the command to the target directly above, and the 

finger will close to hold the recognized object 

3. Post-pick: the arm will retreat backward to the point where a short distance 

away from the pick point. 

4. Initial point: A transition state from pick step to place part. 

 

Fig. 5.4 Three types of objects in the pick and place task 
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5. Pre-place: This pose will follow different type of object to go to the platform a 

short distance above. This can prevent arm from run down the platform and 

keep safe before reaching to targets. 

6. Place: When the actual pose is the same as the middle point of platform, the 

end-effector will smoothly open and place the target. 

7. Post-place: After finish placing action, the manipulator will go to a transition 

point preventing from singular point or collision. And finally it will go back to 

the initial point to wait for next command. 
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Chapter 6 Object Tracking Strategy 

To catch the moving objects from the assembly lines, it is useful to cooperate with 

sensory information to deal with this problem. In this thesis, the tracking architecture is 

a sensor-integrated system to find out where the object is instantly. A Microsoft Kinect 

sensor is placed beside the conveyor for object recognition system and tracking system. 

Another one is webcam camera, which is positioned at the end-effector. The position of 

two sensors relative to the robot manipulator is shown in Fig. 6.1. In later subsection, 

the tracking strategy will be introduced in details with the challenges and technique for 

modified movement. 

 

6.1 Problem Statement 

Actually, picking up a static object is common and easy because all data will 

remain the same after recognition finished. When the movement of object starts to 

 

Fig. 6.1 The position of two sensors in experiment 
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change, especially a straight motion on the conveyor, the main goal is to identify the 

object position in every sampling time and track the object over subsequent frames. The 

desired output is the updated and transferred information from visual sensors to the 

manipulator. However, there are frames in which the object is not present or is only 

partially visible. Therefore, the aim is to come up with a robust algorithm to detect and 

track the object on the conveyor under these constraints. 

6.2 Tracking Algorithm 

 

In Fig. 6.2, the brief architecture of tracking is the feedback loop of object position 

and orientation. Picking operation has been implemented in the previous section. When 

the static pose of element is received from Kinect recognition, the conveyor will start to 

move. The visual sensor, which plays an important role in tracking, will collect the 

position and orientation of object from camera coordinate to robot Cartesian space 

coordinate. The data will update the command to grasp and robot arm actuator will 

 

Fig. 6.2 The tracking diagram 
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follow new one to reach the target. Before the end-effector hold the object, the feedback 

control system will continuously collect instant information to the PC control center to 

make sure the success. 

Now the scenario tends to be more difficult with some dynamic changes. When an 

object starts to move on the conveyor, the information of it should be updated to the 

robot to implement tracing skill. There are some challenges of tracking technique under 

visual control system. First, we need to track the objects by using the image processing 

in real time frame by frame. We then take the previous ten frames as its average 

reference. Secondly, we need to define the position of the gripper contrast to the moving 

target. We thought of one strategy about how the position of the objects can be obtained. 

The Kinect that also perform recognition can provide us information about not only the 

target’s color, but also their depth data. Then, we generate a method to get 3D 

coordinate with the collected information and calibrate the scale to y axis and z axis 

with the consideration of depth frame that being x axis under Kinect view. Lastly, robot 

reaction will follow the renew data to finish grabbing movement. There are three 

subsections in our tracking strategy. After we obtain previous ten frames as the 

reference to compare with the current frame, we generate a promising perspective to 

improve the position of objects by calibrating the scale of y axis and z axis. After we get 

the position of the tracker and the target, then new motion is derived, and the tracker in 

the end would follow the target according to the calculated trajectory. 

6.2.1 Image segmentation 

Because we want to display the tracking in real time, the algorithm of image 

segmentation must be simple and effective. After trying a lot of algorithms about 

tracking moving objects, we want to find one that can process the fastest in the time 

manner. Some algorithms take too long or lagging too much in updating frames, and 
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that may go against at initial goal in this research. If we think of a suitable algorithm, it 

is natural to continue on our next step in testing them, checking whether they match for 

us. In detecting objects: First, different intensity between previous and current frame is 

used to generate the contour of the object. However, the contour of elements is 

fragmented because the small size relative to the big conveyor is too small for detection, 

which may lead to some errors about finding the center of contour. In addition, the 

working area is limited by the vision of Kinect; we cannot speed up the conveyor to get 

the intensive difference data such that the threshold of finding the moving objects can’t 

be high enough. Sometimes, the noise of Gaussian white noise would affect the contour. 

Hence, we could not use this way to find the objects. We  choose  the  other  way  

to  generate  the  contour  by recording  the  first  ten  frames  as  the  

average  reference. The reason why we pick ten frames is that the Gaussian noise 

should be diminished as much as possible by get the average of the reference frames. 

This work can be shown by minimize the standard deviation with sampling. Then, we 

can get the difference between the reference and current frame, finding the contour. This 

segmentation result comes out to be very well. Both the end-effector and the shifting 

element are tracked. 

6.2.2 Position localization 

After the contours of objects are derived from the camera, we want to get the 

instant position of the tracker (gripper) and the target (element) separately. First, the 

contour is the difference between reference and current frame from the color frame. 

Afterward, we get the coordinate of the objects in depth frame. The desired data include 

situation along y axis and z axis from Kinect color frame and x axis in the depth frame. 

Because of the different x-y planes that the tracker and target belong to, we can separate 

the objects by a threshold about the data along z axis in color frame in Kinect view. If 
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the coordinate along z axis object is higher than threshold, then it is defined as the robot 

hand; otherwise, it’s the industrial component. The concept of multi-objects tracking is 

indicated. 

6.2.3 Position calibration 

From Kinect view, we can get the information about depth along z axis. However, 

true position is altered due to quantization level among pixels. The scale from color 

frame to depth map should be measured before tracking. The length between each pixel 

is proportional to the vertical distance between the targets and Kinect. This relationship 

is also the same as the content mentioned in Object Recognition. 

Once the tracking strategy is actuated, the static pose recognition will stop. The 

data include the position of the end-effector and object on the conveyor. The element 

will move straight forward through the conveyor. Thus, only the pose of elements will 

be updated and orientation maintain present. Then, the control center will convey new 

command to the manipulator for grasping tasks. 

6.3 Modified Grasping 

It is worth notice that the end-effector may obey the next message derived from 

tracking strategy. However, this has little help in grabbing articles. To make sure the 

completeness of whole grasping movement, the gripper should take aim-off into 

consideration while it carry out object tracking. Therefore, the main point turns out to be 

accurate grasping pose through tracking process. When some problems occur on the 

conveyor, the arm may not know without extra indication. 

Thanks to the technique of eye-in-hand, the additional information will be added 

under visual feedback system. A webcam camera is allocated for modified grasping. 

When the robot receives instruction from control center to start tracking, the difference 
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among frames will be recorded through the process. First of all, check the direction of 

gripper. Next, webcam records the frame while the gripper has been grabbing. Last, 

revision including grasping pose and orientation will be saved and will update the next 

pose and orientation if the system recognizes the same object again. 

6.3.1 Moving calibration 

Every time the hand of robot arm start to execute moving task, the trajectory 

follow the commands derived from trajectory planning and eye-in-hand vision. Under 

the view of webcam, the edge of conveyor will emerge on the upper side of image. 

Because the moving path is linear on the conveyor, following the slope of the edge of 

conveyor is the way to correct the motion of robot. 

To search a graph in an image, there is lots of image processing to select. One 

simple method is Hough transform which is well known as object detection. Under the 

background, the object is just a set of colorful point in camera view. Those point set will 

be mapped to a certain point or a high dimension plane. This can gain a parametric 

equation to represent all possible condition to describe the characteristic of pattern. 

Furthermore, search the extreme value to find out the position of the pattern. Last, 

collect all similar points together to illustrate the feature which is part of element. 

 

 

Fig. 6.3 Line description in polar coordinate. 
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To find out the line edge of conveyor, line equation can be shown in polar 

coordinate in Fig. 6.3. The advantage of polar parametric form is no singular condition 

under sinusoidal function domain. 

𝑟 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 (6-1) 

Actually this condition simply contains a set of all possible solution of r, where the 

maximum count happens to. However, it takes lots of time in calculation. To decrease 

time consumption, the generalized of Hough transform helps to develop a structure to 

compute the candidate reference points. The implementation for general case can be 

written as: 

𝑥𝑡 = (𝑥0 cos 𝜃 − 𝑦0𝑠𝑖𝑛𝜃)𝑠 (6-2) 

𝑦𝑡 = (𝑥0 sin 𝜃 − 𝑦0𝑐𝑜𝑠𝜃)𝑠 (6-3) 

where 𝑥0, 𝑦0is initial point, 𝜃 is rotation angle and 𝑠 is uniform scaling value. To 

imply the reference point, the equation turns out to be: 

𝑥𝑐 = 𝑥 − (𝑥0 cos 𝜃 − 𝑦0𝑠𝑖𝑛𝜃)𝑠 (6-4) 

𝑦𝑐 = 𝑦 − (𝑥0 sin 𝜃 − 𝑦0𝑐𝑜𝑠𝜃)𝑠 (6-5) 

The generalized method didn’t mean to create a common way to find any kind of 

shape but to record all edges into a table corresponding to a reference point. After the 

slope of edge is gained, the orientation of gripper will gradually change through moving 

process. 

6.3.2 Pose modification 

To check out whether the task is successful or not, the webcam records image 

while the gripper is holding the object. The conceptual structure is shown in Fig. 6.4. To 

find out any variation of grasping pose, webcam will first store lots of correct pose 

picture info offline database. After gathering the poses as a standard level, the mission 

starts to grasp moving target. In this step, the grasping pose may update its position and 



doi:10.6342/NTU201703382
 55 

orientation based on calibration in previous subsection and modified pose. 

 

First, an aim-off happens because there is relative motion between moving target 

and end-effector. Thus, an aim-off is defined as: 

∆𝑃 = 𝑉𝑐∆𝑡 (6-6) 

where ∆𝑃 is aim-off of gripper to the moving target, 𝑉𝑐 is the velocity of conveyor 

and ∆𝑡 is sampling time, nearly 0.5 sec. Then, the next state of position can be 

calculated as: 

𝑃𝑡+1 = 𝑅𝑐𝑅𝑡𝑃𝑡 + ∆𝑃 (6-7) 

where 𝑅𝑐 is the rotation matrix of calibration, 𝑅𝑡 and 𝑃𝑡 is previous state of rotation 

matrix and pose. The actual command to robot will be a 4 × 4 transformation matrix. 

The general expression is 

𝑇𝑡+1 = [
𝑅𝑡+1 𝑃𝑡+1

0 0 0 1
] = [

𝑅𝑐𝑅𝑡 𝑃𝑡

0 0 0 1
] + [

𝐼3×3 ∆𝑃
0 0 0 1

] (6-8) 

In addition, the revision will be recorded into offline database for the same type 

and pose next time. To clarify the state of position, the offline part collects the average 

value from time zero to time t. The equation shows as following: 

 

Fig. 6.4 System Structure for modified grasping. 
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𝑃𝑛 =
1

𝑡
(∑ 𝑅𝑐_𝑎𝑣𝑔𝑅𝑥𝑃𝑥

𝑡

𝑥=1

) (6-9) 

where 𝑅𝑐_𝑎𝑣𝑔 means the average value of calibration rotation matrix, which first is 

regarded as identity matrix. After combing new grasping pose with the updated grasping 

modification, robot manipulator will work better in the next task. 

6.3.3 SVM database 

To deal with the error in grasping moving objects, there is an offline database to 

record the difference between theoretical value and actual one. At first, the recording 

error will be introduced in the error model. After analyzing the following error and 

calibration error, the compensation for the grasping pose will sent to the training model. 

When the offline database is well developed, the modified value will add to the 

commands for robot end-effector to finish the task successfully. 

 Error definition 

The errors contain following error, calibration error and friction error. Usually the 

friction error happens in the rotation, including the conveyor, actuators in transmission 

mechanism. The effect of friction in conveyor moving can be diminished by lubricating 

the motors and bearing box. In manipulator mechanism, the movement should be 

successfully and smoothly completed by commands, which friction is small enough to 

ignore. But this problem also can be reduced by lubrication. Thus, the friction will not 

be mentioned in this subsection. 

 

 

Fig. 6.5 A block diagram of a negative feedback control system 
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The following error is a kind of feedback signal to deal with robot control system. 

A block diagram is shown in Fig. 6.5. A simple feedback control is actuated by the error 

count. Besides, the signal always turns out to be a digital value to compare with the 

designated command. Motion control can be solved by the controller, which has already 

installed the software to adjust the parameter or monitor the state of motors. It is 

common in position control and velocity control to use following error to update the 

movement of robot. In the research, the motor driver is Maxon motor control, order 

number 145391, and the control part is ITRI intelligence motion control platform (ITRI 

IMP card). They are shown in Fig. 6.6 and Fig. 6.7.  

Actually, there is a parameter for each joint driver to restrict the range of following 

 

Fig. 6.6 Maxon motor control 

 

Fig. 6.7 Intelligent motion control platform 
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error. To enhance the precise accuracy in the feedback signal, the IMP card receives the 

edge of each PWM signal from the encoders. For an orthogonal encoder, the quadrature 

pulses will produce 4 edges, including the positive edge and negative edge of channel A 

and B. When the count in the encoder is 2000 per revolution, the number will be 8000 

in the controller. Therefore, this kind of amplification enables to raise the resolution in 

calculation to sense the following condition. Commands from controller are sent to the 

encoders and motors. The feedback signal will transmit the state to the control center at 

next sampling time. To figure out the unexpected rising following error in the feedback 

control system, there are four cases to discuss. 

Case 1: If there is a reverse orientation or contrary sign, the wiring may be open in 

somewhere. This usually happens in an old or frequent-used device. It is evident that the 

connector and adaptor should be replaced in the circuit. 

Case 2: If the following error is large and the circuit remains regular, the PID 

parameters may not be suitable in the robot system. Actually, the PID parameters should 

be separated with proper value. They are helpful to control velocity or current of servo 

motor. It is essential to implement fine tuning in PID control to perform stable 

convergence of following error in robot manipulator control.  

Case 3: If the motor moves counterclockwise when a clockwise rotating command 

is given, the phase of analog output in the encoder connects in the opposite side. 

Actually the connection is inverse polarity, it is common to change the sign of polar 

parameter in the controller or just exchange connection. 

Case 4: If there is a high speed movement for manipulator, the high velocity or 

accelerated command usually causes huge following error. Due to the endurance of 

hardware structure, the excessive friction between gear box and mechanism lead to 

exhaustive motor rotation and component displacement. The possible method is to 
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transmit relative low velocity or acceleration to the robot or make the mechanism 

solider enough to support this condition. 

The following error can be monitored by controller in the feedback control system. 

Therefore, the error model will mainly be the calibration deviation. 

 Calibration deviation 

The calibration deviation is a kind of mechanical position error experienced in 

setting a positioning device to align with a desired reference frame. The calibration error 

in a measurement indicates how well the measuring instrument has been made, and is 

usually quoted by the manufacturer. It is usually quoted as a percentage of the reading 

or a percentage of full scale deflection. The error is the difference between the desired 

reference frame and the set reference frame. Error contributors may include mechanical 

tolerances, gravity deflection, backlash, electrical noise, and control system errors. In 

this case, it is a kind of artificial error in camera calibration. 

 

 

Fig. 6.8 The artificial calibration illustration 
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The relationship among robots and sensors and other supporting device are helpful 

for manipulator to complete pick and place task. The relative coordinate has already 

been derived from matrix operation in previous section. However, there are still some 

errors in the moving process after first calibration. In the previous subsection 

mentioning calibration, it is mainly about the reprojection error. The reprojection error 

is a geometric error corresponding to the image distance between a projected point and a 

measured one. It is used to quantify how closely an estimate of a 3D point recreates the 

point's true projection. This has been done with intrinsic matrix and extrinsic matrix. 

However, the relationship between Kinect and robot manipulator is artificial calibration. 

This absolutely faces errors. 

 In Fig. 6.8, this is PCL view from Kinect sensor. There is a coordinate with three 

colors corresponding to three coordinate: red is x-axis, green is y-axis and blue is z-axis. 

This symbol helps to understand the Kinect coordinate distribution. By using keyboard 

control, the coordinate will match with the left front corner of robot base. This can only 

be done by naked eye. The resolution of Kinect is low and the view with long distance 

is fragmented. Therefore, it is possible to carry out huge error. 

 The calibration deviation can be separated into two parts: translation and rotation. 

The translation error is 

𝑇𝑡 = 𝑇𝑒 = 𝑇𝑥 + 𝑇𝑦 + 𝑇𝑧 (6-10) 

In the rotation part, the end-effector pose owns three rotation matrices by an angle 

𝜃 about the x-axis, y-axis and z-axis. For column vectors, each of these basic vector 

rotations appears counterclockwise when the axis about which they occurs points 

toward the observer, the coordinate system is right-handed, and the angle θ is positive. 

Along each axis, the product of rotation matrix can be written as 
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𝑅𝑟𝑜𝑡 = 𝑅𝑟𝑜𝑙𝑙𝑅𝑝𝑖𝑡𝑐ℎ𝑅𝑦𝑎𝑤  

𝑅𝑟𝑜𝑙𝑙 = [
1 0 0
0 𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
0 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

]  

𝑅𝑝𝑖𝑡𝑐ℎ = [
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽

0 1 0
−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽

] (6-11) 

𝑅𝑦𝑎𝑤 = [
𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛾 0
𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 0
0 0 1

]  

Therefore, the total rotation error is 

𝑇𝑟 = 𝑅𝑒
∆𝜃 𝑇𝑖 = 𝑅𝑦𝑎𝑤𝑅𝑝𝑖𝑡𝑐ℎ𝑅𝑟𝑜𝑙𝑙𝑇𝑖 ≅ 𝑅𝑦𝑎𝑤𝑇𝑖 (6-12) 

In the experiment, the magnitude of difference in roll and pitch is negligible. The error 

can be simplified into yaw angle. Therefore, the calibration deviation can be taken into 

consideration.  

 Support vector machine 

Support Vector Machines (SVM) is one of famous classification algorithms [37]. It 

can be traced back from Vapnik, who put forward a statistics learning theory as a new 

machining learning method. SVM has great superiority on numerous cases, such as 

small samples, non-linear model and high dimension analysis. It is well performed in 

words recognition, handwriting recognition, three dimension object recognition, human 

face recognition and patterns classification. To develop high learning ability in the SVM 

model, the decision for limited training set will be trained and receives less error for 

individual testing set. 

The concept of SVM is a hyperplane as separation for different sets. Actually, the 

problems are often high dimension data, which cannot easily describe in the figure. For 

example, in two dimension plane, we hope to separate the black and white points as 

much as possible in Fig. 6.9. We hope the borderline to be clear and the bigger margin 
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for precise recognition. Otherwise, it is possible to produce error in calculation when the 

accuracy is not credible enough. In this case, different sign symbols different region to 

create a classifier. 

 

 This plane is called separating hyperplane. The plane with the biggest margin is 

called optimal separating hyperplane. To find out the optimal one, we have to find out 

the support hyperplane. When we want to make sure the quantity of points near the 

margin, there are some restrictions to find out match condition. 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
‖𝑤‖2 − ∑ 𝛼𝑖[𝑦𝑖(𝑤

𝑇𝑥𝑖 − 𝑏) − 1]
𝑁

𝑖=1
 (6-13) 

 The polar value will reveal when 

𝑦𝑖(𝑤
𝑇𝑥𝑖 − 𝑏) − 1 = 0, 𝛼𝑖 ≥ 0 (6-14) 

𝑦𝑖(𝑤
𝑇𝑥𝑖 − 𝑏) − 1 > 0, 𝛼𝑖 = 0 (6-15) 

 These points are just located in the support hyperplane. Therefore, they are called 

support vector and their 𝛼𝑖 will remain positive. Next, we recognize the type of point 

to corresponding set. 

 Primarily, the SVM method is a kind of binary classifier. But multiple 

 

Fig. 6.9 Two dimension example in SVM analysis 
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classifications are in fact common in most cases. We need to use some strategy to deal 

with multiple sets. 

1. One-against-rest: If there are totally k classes, then we create k SVM 

classifiers. The 𝑚𝑡ℎ SVM can separate the 𝑚𝑡ℎ elements from others. That 

is to say, each classifier only recognizes one class of elements. 

2. One-against-one: To any two of all points, we create a specialized SVM for 

them. If there are k points to separate, we need k(k+1)/2 SVM classifier. The 

fundamental function can only separate two classes in a group. If there are 

more than one category, it is still unable to classify extra class. 

Therefore, we use SVM algorithm to recognize the picture is straight or tilt. Next, 

we start to describe the training model. 

 Training model 

First, I start to define the straight pose and tilt one. In this research, there are three 

types of industrial elements with different shape, size and stable pose. The numbers of 

picture for each element is 240. The SVM can only separate two categories. However, 

there are three conditions to describe the problems: correct pose, skewed pose with 

clockwise or counterclockwise type. To analyze one type of element, we should provide 

three SVM model to classify the poses. When those pictures are taken, we will do HOG 

on each image. The histogram of oriented gradients (HOG) is a feature descriptor used 

in computer vision and image processing for the purpose of object detection. This 

technique counts occurrences of gradient orientation in localized portions of an image . 

We use this method to calculate the edge orientation histograms of features and shape 

contexts. The input frames will be resized to 208 x 416 to do HOG. 

Next, all HOG files will be given a label whether it is positive data or negative data. 

All the steps are ready for SVM method. The training machine is Lib-SVM. So, the 
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input files should be translated into Lib-SVM type. Separating the action into positive 

pose and negative one is setting up the training model. In a model, only one pose will be 

assigned positive flag while others are all negative. The data will be shown in the 

following figures. 

 

 

Fig. 6.10 The correct pose of the element. 
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Fig. 6.11 The skewed pose of the element. 
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Chapter 7 Experimental Results and Discussion 

There are two steps to carry out in the complicated scenario. The environment is 

built in Fig. 9. There are one robot manipulator, a conveyor, two platforms, two vision 

sensors and three objects. 

 

7.1 Object Recognition and Fetching 

The object recognition and fetching system is the main technique because the 

object information in tracking has been predefined in object recognition. Besides, 

without a high recognition rate, the operation database will not be able to find out a 

correct grasping pose to finish pick and place task. Therefore, we start to describe the 

process of object recognition results. Every object should be placed in the working area 

shown in Fig. 7.2. Only when the object comes inside the working area do the Kinect 

 

Fig. 7.1 Experimental Scenario 
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start to do object recognition and transmit to the control center. 

 

 

Fig. 7.2 The working area of object recognition system 

 

Fig. 7.3 The ROI of each object 

 

Fig. 7.4 Object recognition results 
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In Fig. 7.3, each element owns its region of interest to be segmented in Kinect view. 

The results of object recognition in PCL are shown in Fig. 7.4. The blue dots are CAD 

model points while the green ones are the cluster points. The more green dots replace 

the blue ones, the higher success rate a recognition system owns.  

 

The results of object fetching are shown in Fig. 7.5. the taught grasps are 

successfully implemented in the experiment. It can be seen from the figure that we only 

need to reach the robot one grasp for each group of stable poses and the operation 

database is able to select a correct grasp and transform the grasp based on the object 

recognition result. The robot manipulator can then follow the given command to pick up 

the object successfully. 

7.2 Object Tracking 

The main goal in tracking is to grasp moving object on the conveyor before the 

target falls down. We first simulate the process in the MATLAB, shown in Fig. 7.6. 

 

Fig. 7.5 Object fetching results 
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The basic concept in tracking is to follow the object and grasp later. Before the 

object reach to the terminal edge, the manipulator track the target with updated data 

from visual sensors. There is a threshold value in the y-axis. If the value of y-axis is 

higher than threshold value, the arm will move in high-speed to hold the object with a 

predicted compensation. This predicted compensation is associated with some 

parameters, including the velocity of robot arm (𝑣𝑎𝑟𝑚) and conveyor (𝑣𝑐𝑛𝑣𝑟), and the 

ratio of two velocities (𝑣𝑎𝑟𝑚/𝑣𝑐𝑛𝑣𝑟). Actually, if 𝑣𝑐𝑛𝑣𝑟 is too fast, the manipulator is 

unable to track the target in any magnitude of velocity. Later, two methods will be 

shown in the following figures. The first part is eye to hand.  

Vision sensors have huge effect on the performance of conveyor tracking. The first 

part is object recognition in Kinect sensing. The process of eye to hand is shown in Fig. 

7.7. When the type and pose of object is obtained, Kinect change the view to tracking 

strategy. Rather than static object detection by recognition algorithm, the moving 

element puts much more unexpected factors during grasping process.  

 

Fig. 7.6 Simulation of tracking an object 
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 The arm will go to the pre-pick point first. When Kinect sends the position and 

orientation of object, the robot will start to predict final position of target and reach to 

the object directly above. Then, the end-effector goes down to grasp it in taught pose. 

Finally, the object is placed on the designated platform. This process is common in 

parallel robot tracking. 

The second skill is tracking moving target by webcam camera on the conveyor 

shown in Fig. 7.8. When a static element finishes recognition and the result is correct, 

the conveyor starts to send the object. By means of webcam, the instant pose and 

orientation of component will be captured to let the gripper know where the target is 

right now. 

 

Fig. 7.7 The process of eye to hand tracking 
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 In this method, there is no pre-pick pose for robot manipulator. The first sight of 

object is still derived from object recognition system because robot should know the 

object type and the corresponding grasping pose. Next, the arm will move overhead 

relative to the target. There will be several times of tracking, which are decided by the 

object of y-axis value. This figure presents three times on tracking and run to the target 

to hold. Although it may takes time to update those desired information, the end-effector 

 

Fig. 7.8 The process of eye in hand tracking. 



doi:10.6342/NTU201703382
 72 

follow commands from the control center and catch the target before it falls down. 

 The velocity ratio of arm to conveyor should be larger than 1.4. Because the 

distance on the conveyor is only 1 meter and only half distance is able to show tracking 

action, the velocity of conveyor may not pass objects too fast. 

7.3 Modified Grasping 

7.3.1 Object pose modification 

The other technique is grasping modification as shown in Fig. 7.9. First, the offline 

database is obligated to gather the correct pose of grabbing. Before capturing the target, 

a picture will be photoed to check out the edge of conveyor is altered or not during 

tracking process. If the orientation changes, it adjusts the gripper to rotate exact 

direction. 

 

 

Fig. 7.9 The conveyor edge detection. Correct grasping in top row and incorrect 

grasping in bottom row. 
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Later, end-effector is seizing the object. Correct poses will be recorded to the 

database. When the task begins, those incorrect photos will also get to expand the 

feasibility of eye-in-hand system. 

After two experiments are implemented, it is obvious that the complex part in this 

research is useful. Moreover, time consumption in the recognition and tracking is not 

bad. Based on the visual feedback system, the image data have been defined as 

necessary modification, which assists robot manipulator to analyze the current state of 

object. 

7.3.2 Classifier results 

 In previous subsection 6.3.3, there is an algorithm SVM model for training object 

poses. After create the data set, we start to train the Lib-SVM model. There will be at 

least three models for each type. At first, a single-class Lib-SVM is used for one of the 

elements. 1 symbols positive and -1 symbols negative. The probability results are listed 

in Table 7-1. It is obvious that the models are suitable for each type because they are 

based on static poses in each group. However, they provide so many models to do only 

two categories in single-class. 

 

For better speed and performance in running, we use Lib-SVM multi-class to set 

up database containing three poses: correct, clockwise skewed and counterclockwise 

skewed. -1 symbols negative, and 1~3 match with pose 1~3, which means there are 

three poses in the model. Besides, to enhance the model with high accuracy, two 

Probability  Type 1 Type 2 Type 3 

Correct 94.6% 95% 95.83% 

Skewed 99.17% 98% 99.17% 

Table 7-1 Single-class Lib-SVM recognition result 
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evaluations are in need for testing. One is intra-class, and another is inter-class. And the 

method I used is leave-one-out cross-validation [39][40]. 

Leave-one-out cross-validation: Cross-validation is a model validation technique 

for assessing how the results of a statistical analysis will generalize to an 

independent data set. It is mainly used in settings where the goal is prediction, and 

one wants to estimate how accurately a predictive model will perform in practice. 

In a prediction problem, a model is usually given a dataset of known data on which 

training is run (training dataset), and a dataset of unknown data (or first seen data) 

against which the model is tested (testing dataset). The goal of cross validation is 

to define a dataset to "test" the model in the training phase (the validation dataset), 

in order to limit problems like overfitting, give an insight on how the model will 

generalize to an independent dataset (an unknown dataset), etc. Leave one out 

means the unknown dataset is also part of original dataset. It will be regarded as 

unknown data while put into training set in other cases. This dataset is not truly 

testing set. For n groups of data, choose one group from all for a test and others are 

trained to be a model. Then, test the model by that one group to calculate the 

success rate. It will be done n times, and finally average all models’ rate as the 

result of these data. 

Intra-class: There are n poses for each object. One of the poses tests the model 

trained by others. Use leave-one-out cross-validation and record the rate of each 

type. 

Inter-class: Take one of the elements for testing, and others do the training. The 

method is also leave-one-out cross-validation. 

To judge the performance of the models, it is important to calculate accuracy and 

precision. In this research model, accuracy is used as a statistical measure of how well a 
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binary classification test correctly identifies or excludes a condition. Because of 

multi-class in binary classification, we classify three poses into positive data and other 

poses into negative data. Among the test, count four values to understand the actions of 

model. 

True positive (TP): Positive data are correctly recognized 

True negative (TN): Negative data are correctly recognized 

False positive (FP): Negative data are regarded as positive data 

False negative (FN, Deletion error): Positive data are regarded as negative data 

There are three errors possibly existed during the test. 

Insertion error: The same as false positive 

Deletion error: The same as false negative 

Substitution error: Error exists from value classified into TP but not assigned to true 

value because positive values contain three poses in multi-class 

In the statistics, calculate the rate showing below to figure out how well the models 

behave. In pattern recognition, information retrieval and binary classification, precision 

is the fraction of relevant instances among the retrieved instances, while recall is the 

fraction of relevant instances that have been retrieved over total relevant instances in the 

image. Both precision and recall are therefore based on an understanding and measure 

of relevance. Here are the equations. 

Precision (True Positive Rate or Sensitivity) =
𝑇𝑝

𝑇𝑝+𝐹𝑝
 

Recall (Positive predictive value) =
𝑇𝑃

𝑇𝑝+𝐹𝑛
 

True negative rate (Specificity) =
𝑇𝑛

𝑇𝑛+𝐹𝑝
 

Substitution error rate =
𝑁𝑠

𝑇𝑝
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Accuracy =
𝑻𝒑+𝑻𝒏

𝑻𝒑+𝑻𝒏+𝑭𝒑+𝑭𝒏
 

The intra-class results are listed in Table 7-2, and the inter-class is in Table 7-3. 

 

 

 

Type 0 1 2 

TP 207 209 203 

TN 29 26 29 

FP 3 4 1 

FN 3 1 7 

Substitution error (NS) 0 0 3 

Total 242 240 240 

Precision 98.57% 98.12% 99.51% 

Recall 98.57% 99.52% 96.67% 

True negative rate 90.63% 86.67% 96.67% 

Substitution error rate 0% 0% 1.48% 

Accuracy 97.52% 97.92% 96.67% 

Table 7-2 Intra-class statistics 

Type 0 1 2 

TP 208 210 209 

TN 26 26 30 

FP 6 4 0 

FN 2 0 1 

Substitution error (NS) 2 0 1 

Total 242 240 240 

Precision 97.19% 98.13% 100% 

Recall 99.05% 100% 99.52% 

True negative rate 81.25% 86.67% 100% 

Substitution error rate 1% 0% 0.5% 

Accuracy 96.7% 98.33% 99.58% 

Table 7-3 Inter-class statistics 
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Chapter 8 Conclusions, Contributions and Future 

Works 

This thesis presents a strategy to provide dynamic information to robot arm under 

sophisticated environment. The contribution of this research can be summarized as 

follows: 

1. Propose a specialized architecture for a sensor-integrated object tracking 

system including eye to hand and eye in hand system 

2. Propose a modified architecture to check the variation in grasping pose 

including translation and orientation 

By means of object fetching system, the robot manipulator is able to identify and 

pick up the recognized object on the conveyor. With the help of vision sensors, the 

dynamic factor in the moving object can be captured and transmitted to the robot 

manipulator for grasping. It seems that the results are well demonstrated. However, in 

grasping modification, it may face some restriction under the size and type of elements. 

To revise the pose and orientation, some component of object should go inside the 

webcam view so that the new pose will be sent. Besides, the integration of vision 

sensors faces the consumption on programming, which spends much time updating 

image data from Kinect tracking and webcam fetching. In view of this, the structure can 

be developed by more precise resolution but low time consuming vision sensors. 

Moreover, further improvement in grasping issue is also integrated with various sensors 

in the environment. This may be a functional application in packaging in the production 

line. 
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