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中文ᄔ要

無人機的技術在近幾年有著突破性的進展，並且在諸多領域有豐富

的應用如監視、救援、運輸以及軍事方面等等。本研究的目標是建立

一個能夠在無人機上偵測、辨識事件的模型。這個研究問題困難的部

分有兩點:第一，無人機相關的錄影資料非常稀少，要能夠以少量資料
訓練出一個泛化能力高的模型十分困難。第二，由於無人機的位置通

常離地面較遠，拍攝到的人物動作占畫面的比例很小，會令模型難以

辨認人物動作。為了解決這些問題，我們提出了兩步驟的模型。首先

先以 SSD偵測出人物的位置，之後再藉由多任務學習架構，跟大型人
物動作資料庫一起訓練的模型來辨識無人機影像中人物的動作。我們

以自己提出的無人機人物動作影像資料來驗證我們的模型。這個影像

資料包含 14種類型的人物動作。實驗結果說明我們提出的方法可以增
加無人機影像的人物動作辨識率。

關鍵字 -動作辨識,卷積類神經網路,多任務學習
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Abstract

The technology of drone has advanced significantly during the last few

years, which enables drones to be deployed inmany tasks including video sur-

veillance, search and rescue, last-mile delivery and military operation. The

great potentials attract many researchers to study visual recognition techno-

logies for drone, e.g. object detection in aerial images. However, there is not

much research related to action recognition in drone videos. In this thesis, we

aim to develop a real-time action detector of drone that can recognize com-

plex human actions such as running, eating, walking, etc. Action recognition

in drone is a challenging task due to the following reasons. First, there is no

large-scale action dataset of drone, and the scarcity of training data makes

learning accurate neural networks difficult. Second, the actions happen at a

distance and are hard to be localized. To address this first issue, we propose

a multi-box multi-task network architecture for recognizing actions at a dis-

tance. The multi-box network is used to generate human location proposal,

and the action recognition network is then applied to the proposed locations

to detect actions. In terms of the data scarcity, we attach this problem by le-

veraging the existing large human action databases with multi-task learning.

To evaluate the effectiveness of our method, we create a new drone action

dataset with 138 videos and 14 different distant actions. Experimental results

show that our proposed method can increase the action recognition rate in

drone.

Keywords - Action Recognition, Convolutional Neural Networks, Multi-

iv



doi:10.6342/NTU201803559

task Learning
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Chapter 1

Introduction

Unmanned aerial vehicles (UAV) have important applications in robotics and automa-

tion control. Huge progress has been made for drone technology in recent years. Theore-

tically, drones can be used to accomplish many advanced jobs. For instance, drones can

patrol streets, scout in risky areas, deliver goods efficiently or detect terrorists’locations.

In this work, our goal is to develop an real-time action detector that enables drone to re-

cognize human actions for surveillance purpose. If there are dangerous events or illegal

activities. Drones with action recognition technologies can detect those events and then

report messages to the police immediately. Action recognition is a popular research field

in computer vision. Recently, many powerful recognition model based on convolutional

neural networks (CNN) are proposed [6, 18, 24]. The objective of action recognition is to

recognize human activities in videos and classify their actions. There are many applica-

tions which utilize action recognition methodologies. To perform this task, we collected

human action videos of drones through Bebop2 and the Internet. Then, we studied in these

videos to find effective models for this task.

However, while collecting drone action videos, we observe that recent action recog-

nition methodologies cannot be applied directly to this task for two reasons. First, re-

cent advances are based on massive human recognition datasets such as UCF101 [28] and

HMDB51 [17].These models don’t need to focus on human’s location because the size of

human is quite large in video frames. Moreover, the camera of a drone is far from human

and objects, the size of human is relatively small in drone videos. Therefore, the back-
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ground information not related to human can reduce recognition performance of models.

Second, the video data of drone are extremely scarce. If we train the data on CNNmodels,

the model will easily overfit the drone videos.

Figure 1.1: Examples from Drone dataset. Each picture represents an action category.

Our idea to solve the above problems is to design a two-step model, and these steps

include human detection and multitask networks. The first step is the detection step. This

step is to localize human in video frames. Training procedure used in action recognition

problems takes the whole frame as input. The detection step in our method can help trai-

ning model focus on human bodies and decrease interference from background noise. We

construct an architecture based on Single-Shot Multibox Detector (SSD) [22] as our de-

tection step algorithm. SSD is state-of-the-art model in image detection. It takes both

region proposal and object recognition as a regression problem. The model gives possible

object locations and confidence scores in the same time. The second step is a network ar-

chitecture depending on multitask learning (MTL). The reason we utilize this framework

is that the size of drone data is extremely limited. There are only few drone datasets in

computer vision research [1]. In addition, the datasets we found are not suitable for our

task. Although we collect many drone data by ourselves, the data size is still not enough

for training an action recognition model well. To solve this, we need more related data

2
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to support the model. Nonetheless, we cannot directly combine these datasets with drone

data because the features of these datasets are somewhat different. In these action re-

cognition datasets, the cameras’position is static and the human actions are close to the

cameras; while the cameras of drones are moving and the level of drone’s cameras are

usually higher than human. An effective way to train different domain datasets is to apply

a multitask network. This network allows different domain datasets to be trained together.

The dataset from different tasks uses its own loss function, while all tasks share the same

network parameters. With this mechanism, the task with massive data can increase the

performance of the task with extremely few data.

To evaluate our model, we create a drone dataset for our experiments. This dataset

includes 14 human actions. These categories include some common events like walking,

running, smoking and eating. The duration of each action is 100 second on average. We

compare several models on this dataset to show that our proposed method is effective.

In this work, we have the following contributions. First, we propose a new learning fra-

mework for action recognition model that increases recognition accuracy of drone videos.

This framework includes a detection mechanism based on SSD. Moreover, we deploy a

multitask network to increase generalization and avoid overfitting on our drone dataset.

Second, we present a new dataset for this research problem. This dataset contains 14 acti-

ons. Experimental results show that our proposed method can improve the recognition

accuracy on this dataset.

The structure of this thesis is organized as follows. Chapter 2 introduces the research

and techniques related to our work. Chapter 3 formally describes background knowledge,

the problem and the proposed method. Chapter 4 shows experimental results of our met-

hod and gives some observations and discussions. Chapter 5 summarizes our work and

future plans.

3
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Chapter 2

Related Work

In this chapter, we introduce some works related to our research. There are 3 sections

describing main stream research in this field. First, we recap some history and important

techniques about deep convolutional neural networks for image recognition. Then, we

simply show evaluations of video recognitionmethods with deep neural networks. Finally,

we review recent advances about transfer learning in video recognition.

2.1 Convolutional Neural Networks for Image Recogni-

tion

The theory of convolutional neural networks was developed before 20th century and

a few networks have been proposed recently. The first convolutional network is LeNet,

containing a 5-layer convolutional neural network to solve handwritten digits recognition

problems [19]. Recently, AlexNet having an 8-layer structure outperformed traditional

image classification methods in ImageNet competition [16]. Furthermore, there are some

applications and works based on AlexNet [42]. To construct a deeper network, VGG uses

a 16-19 weighted layer convolutional network to reach a higher performance in image re-

cognition tasks [27]. GoogLeNet with 22 layers uses a module called inception combining

three different convolutional structures [33]. Then, some works investigate and improve

GoogLeNet [12, 32, 34]. However, these models compared to newer convolutional net-

4
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works are relatively shallow.

When a neural network is going deeper, there will be a gradient vanishing problem.

This is because in each iteration of backpropagation, gradient components will be smaller

due to the multiplication from the weights of the latter layer. If there are too many layers,

gradient components are gradually close to zero; thus, it is more difficult to train the deeper

networks. In order to train a deeper network model, ResNet proposed a skip connection

to avoid this problem during training [10]. A skip connection simply adds inputs from

the previous layer to outputs of the latter layer. These connections allow the networks to

remain gradient components during the backpropagation and easily to be trained. ResNet

with 152-layer structure is not only deeper but also more accurate than previous models.

ResNet is investigated and improved in some works [41].

Recently, DenseNet is proposed and it has an architecture of densely connected convo-

lutional layers [11]. A densely connected convolutional layer means that every convolu-

tional layer is connected to each other; thus, a L-layer network has L(L+1)/2 connections.

Unlike ResNet using adding connections to pass features forward, DenseNet uses conca-

tenation to combine features and passes them forward. These connections make DenseNet

reach higher classification accuracy with fewer parameters and a deeper architecture. The

deepest DenseNet is 250 layers. So far, the work based on DenseNet is few because Den-

seNet is relatively new. The related research includes Tiramisu [13] and DSOD [25].

2.2 Convolutional Neural Networks for Action Recogni-

tion

With the impressive performance of CNN, many studies applied CNN to action re-

cognition problem. Before CNN-based model was developed widely, dense trajectories

(DT) [37] and improved dense trajectory (iDT) [38] were the best features to recognize

human actions in massive videos. [14] first studied and proposed CNN model for action

recognition problem. Two-stream networks [26] use two independent CNN with different

features that are frames colors and optical flows. 3D ConvNets [35] use three-dimensional

5
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convolutional kernels to learn spatiotemporal features of action videos. Factorized spatio-

temporal convolutional networks [31] take video as 3D signals, factorizing these signals

to learn spatio-temporal features. TDD [39] combines hand-crafted features like DT and

deep-learned features from CNN to learn video representations. Dynamic Image [2] uses

rank-pooling and CNN to summarize video sequences from RGB frames. [45] detects key

volume to remove irrelevant features of videos. LTC [36] extends CNN structure to learn

long-term temporal features from videos.

Some works proposed RNN-based (Recurrent Neural Network) models or hybrid mo-

dels. [29] uses LSTM to learn representations from video sequences. [23] extracts CNN

features from raw frames and optical flows, aggregating these features by LSTM. [5] con-

structs a hybrid model containing unsupervised layers and supervised layers and utilizing

iDT features. RNN-FV [20] learns fisher vectors (FV) from videos by applying LSTM.

Most recent models based on two-stream networks can reach impressive results in

action recognition tasks. Two-stream networks contain a spatial network and temporal

network, utilizing both spatial and temporal features of action videos. Spatial features are

RGB of each pixel in videos, and temporal features are stacked optical flows of multiple

frames in videos. The structure of both networks is AlexNet. Based on Two-stream net-

work and VGG networks, [9] investigated fusion method and fusion layers between both

networks. In addition, this research extends 2D kernels in temporal networks to 3D filters

to handle input video frames in a serial time. TSN [40] provides a consensus function to

learn information from long-range temporal features in videos and avoid overfitting due to

the limited data size. The research tested different network structures, finding that partial

BN-Inception with dropout reaches the best performance for TSN. In addition, the rese-

arch applied not only RGB frames and optical flows but also RGB difference and warped

optical flows. The result shows that RGB frames, optical flows and warped optical flows

are the best combination. ST-ResNet [7] redesigned Two-stream networks with ResNet.

The network contains an appearance stream and motion stream originated from spatial

networks and temporal networks. A motion stream uses skip connections of ResNet to

connect a appearance stream. ST-ResNet is further improved by another research [8].

6
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Recently, some advances proposed new aggregation methods to increase the model

performance considerably. Time Linear Encoding (TLE) [6] concatenates a TLE layer

after spatial net and temporal net. A TLE layer aggregates and encodes CNN features

extracted from multiple video segments. Then, prediction scores are fused to predict the

action. FV-VAE [24] proposed a new deep generative model to generate and aggregate

fisher vectors and variational auto-encoding (VAE). Deep local features (DOVF) [18] ex-

tracted from trained CNN layers can be aggregated to get higher performance.

2.3 Transfer Learning for Video Recognition

Some advances aim to transfer knowledge from different domain sources to improve

video recognition accuracy with transfer learning methodology. [3] uses domain adapta-

tion to transfer knowledge on tennis video annotation problems. [44] provided a discri-

minative cross domain dictionary to transfer information from HMDB51 [17] dataset to

UCF101 [28] dataset domain. [4] utilized multitask learning including virtual world data

and real world data with TSN to increase overall video recognition performance. Trans-

ferring knowledge of image data is another method to enhance video recognition accracy.

Sharing CNNweights between large scale image data and limited video data is an efficient

way to augment video recognition task with scarce training dataset [30]. [21] proposed an

attention-based CNN model to transfer web images to action recognition task.

7
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Chapter 3

Proposed Method

In this chapter, we propose the method to solve action recognition of drones. We first

explain the notations and definition of the problem in the thesis. After that, we present the

training framework including 2 crucial steps in this method.

3.1 Preliminaries

We list all notations and the problem definition in the thesis. In transfer learning fra-

mework, we have a source domain DS and a target domain DT . DS is a set of source

data features in dS-dimensional space and their corresponding labels. That is, DS =

{XS,YS} = {(xS,1, yS,1), . . . , (xS,nS
, yS,nS

)}, where xS ∈ Rds and yS ∈ {1, . . . , CS}.

The number of source domain data is nS , and a source domain label yS has CS different

classes. Similarly,DT is defined in the same way.

We use multitask learning, which is a subset of transfer learning, to enhance the perfor-

mance of a hypothesis H on scarce data. In definition, the feature spaces of both domains

are the same, while the distributions are different. XS = XT (This implies dS = dT ) but

PS ̸= PT . The label spaces YS,YT are also different due to CS ̸= CT and the definition

of categories. The problem aims to find a hypothesis H that can predict YT by training on

a large-scale source domain DS and a limited target domainDT . Note that nS ≫ nT .

8
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Table 3.1: Notation Table
Notation Meaning
DS = {XS,YS} Source domain
DT = {XT ,YT } Target domain
X Feature space
Y Label space
P Distribution of data
d Dimension of feature space
C the number of classes in label space
H : X → Y A hypothesis
n the total number of data
L Loss function

3.2 Training Framework

The training framework we proposed is shown in Figure 3.1. There are two important

steps in the framework. The first is the detection step. This step is for videos recorded by

drones. In this step, an object detector SSD [22] locates human inside video frames. After

the localization of human objects, an image containing the human will be cropped in the

frames and background informationwill be removed. Then, the cropped images will be the

input of the next step which is the MTL step. TheMTL step is to share representations and

transfer knowledge betweenmassive dataset and limited dataset. This step can improve the

model performance on the target task. In our problem, the target task is action recognition

of drones, and we take large-scale datasets as source tasks. The transfer learning method

of this step can be finetuning or multitask learning.

3.2.1 Detection Step

We illustrate how the detection step works. The Figure. 3.3 simply shows the input

image and the output cropped image of the detection step. In our task, the original image

size is (1280, 720). Our detector based on SSD [22] detects the position of the human

inside the image. Before detecting images, the detector divides input images into multi-

ple boxes. Then, the detector gives three outputs, bounding boxes, objects classification

and confidence scores for each box. The detector outputs bounding boxes and their corre-

sponding classification only if the confidence scores are greater than 0.5. Then, all objects

9
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Figure 3.1: An illustration of our proposed method.

except human objects are removed. The center of bounding box that belongs to human

objects will be remained. If there are multiple human positions, we randomly pick one of

them. We take this point as a center of (340, 256) rectangle, and using this rectangle to

crop the image of human. Finally, this cropped image will be the inputs of the MTL step.

If the detector cannot detect human objects in some specific frames, these frames will be

augmented with data augmentation techniques and then sent to the MTL step.

Figure 3.2: In standard action recognition problem, images are processed with data aug-
mentation directly.

10
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Figure 3.3: Detection step we proposed.

3.2.2 MTL Step

In the MTL step, the target task with limited data can learn knowledge from the source

task with a large number of data. Some transfer learning techniques can be applied. For

instance, finetuning is an efficient way to transfer knowledge. Here, we propose a mul-

titask learning model for the MTL step. Multitask learning is an effective framework to

augment limited size training data. The main idea of multitask learning is to share weights

and representations between different domains and tasks. In our framework, we use diffe-

rent datasets to share the same CNN model. The input of the CNN model is mixed video

frames, and there are multiple softmax outputs for each dataset. The loss scores will be

computed according to the domain of input video frame. Figure 3.4 shows our framework.

The total loss function of this framework is defined as follows.

L =
n∑

i=1

∑
M={S,T }

δMwM lM(yM,i,HM(xM,i)) (3.1)

In equation 3.1, the input {(xM,1, yM,1), . . . , (xM,n, yM,n)} is sampled and randomly

permuted from both domainsDS andDT . M stands for data domains. δM is an indicator

function to indicate the domain of the input video frame. WM is the weight of each domain.

lM represents loss function for each domain, and we take categorical cross entropy as loss

scores. We define lM by equation 3.2.

11
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Figure 3.4: Multitask learning framework.

lM(yM,i,H(xM,i)) = −
CM∑
j=1

yM,i,j log(HM(xM,i)) (3.2)

where j is the dimension of yM,i in label space YM .

12
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Chapter 4

Experiment

In this chapter, we perform the experiments and show our results. First of all, we

introduce all datasets used in experiments. And we describe all details and settings of

experiments. Next, we present experimental results and some discussions. Finally, we

use visualization methods to show the effectiveness of our training framework.

4.1 Datasets

There are two kind of datasets we used in experiments. The first is large scale human

action datasets including UCF101 [28] and HMDB51 [17]. These datasets are widely

used in action recognition research. The second is Drone dataset collected by ourselves.

Details of these datasets are introduced below.

4.1.1 Large Scale Human Action Datasets

We choose two challenging datasets HMDB51 [17] and UCF101 [28] to evaluate our

model. HMDB51 contains 51 action categories including facial expressions and body

movements. This dataset has total 6869 videos. According to the evaluation rules, the

dataset has 3 different splits for training models and testing models. Each split contains

3.5k training videos and 1.5k testing videos. On the other hand, UCF101 contains total

101 action categories such as facial expressions, body movements, sports and playing

instruments. There are total 13320 videos in the dataset. This dataset also has 3 different

13
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splits for training models and testing models. Each split has 9.5k training videos and 3.7k

testing videos.

Figure 4.1: HMDB51 dataset.

Figure 4.2: UCF101 dataset.

14
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4.1.2 Drone Dataset

In this subsection, we describe the collection and organization of Drone dataset. We

use Drone dataset collected by ourselves. This dataset contains 14 different common acti-

ons. There are three main groups including human to human action like hand-shaking,

human to object like eating, and independent actions like jumping. All videos include

human actions from aerial view. The sources of these videos are from drone Bebop2 and

Dronestagram, which is a website for users to share their drone videos.

In the next step, we cut these videos into short clips. Some videos from Dronestagram

have shot transitions. We remove all these transitions. And if a video is longer than 30

second, we divide it into clips. About 15 second for each clip. Then, we manually label

these clips according to the defined actions. We use an annotation tool to help labeling

process. Finally, we split these data into 3 groups including train data and test data.

There total 138 video clips. These clips are divided into a training split and a testing

split. The training split has 26 clips and the testing split has 112 clips. Detailed statistics

is showed in Figure. 4.3.

All action categories are classified into 3 groups that are human to human actions,

human to object actions and human independent actions. First, human to human actions

represent interactive activities between humans. Second, human to object actions mean

that humans have interactions with objects. Third, human independent actions stand for

activities only a human involve in. Details are listed in Table 4.1.

Table 4.1: Action categories of drone dataset
Human to human Human to object Human independent action
base ball bike eat
basket ball climbing stairs jumping
shaking hands rafting run
tennis riding motors walking

skiing
surfing
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Figure 4.3: Duration of each action in Drone dataset.

Figure 4.4: Examples recorded by Bebop2.
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Figure 4.5: Examples from Dronestagram.

4.2 Experiment Settings

4.2.1 Environment

We deploy a deep learning toolkit Keras to build our model, choosing tensorflow bac-

kend with GPU accelerating. We perform experiments on a machine containing an Intel

i7-7820 CPU, 64 GB RAM and 2 GTX 1080 Ti GPUs. All video data are preprocessed

by OpenCV libraries in Python, and the operating system is Ubuntu 16.04.

4.2.2 Training Details

In the detection step, we use a VGG [27] model to detect human locations. This mo-

del is trained on two popular object detection datasets PASCAL VOC2007 and COCO.

Although there are many categories in these datasets, we choose human objects for our

task. In the MTL step, we use an initial weights pretrained with ImageNet data. The input

shape of CNN is (224, 224, 3), which represents height, width and color channels of image

frames. We randomly sample 1 frames for each training videos in a epoch. To increase

data size and avoid overfitting, we use some data augmentation techniques such as random

horizontal flipping, random cropping and scale jittering [40]. In addition, we normalize
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input values by decreasing 128 and dividing 128, rescaling the color range to [−1, 1]. In

the training procedure for evaluating CNN models, the optimizer applies SGD with initial

learning rate 0.001 and Netserov momentum 0.9. After 50 epochs, the learning rate decre-

ases to 0.0001. After 120 epochs, the learning rate reduces to 0.00001. Total 150 epochs

for training. For finetuning and MTL, we use fewer training epochs and smaller learning

rate. The total epoch is 50, and the learning rate is fixed to 0.0001.

In order to demonstrate the effectiveness of the detection step and the MTL step, we

perform experiments under different configurations. In the first experiment, we show

that MTL is effective. We compare 2 training configurations. The first is training the

model with scarce data directly, and the other is training on large-scale data and scarce

data under MTL framework. We also compare MTL with other transfer learning method

like finetuning. In the second experiment, we aim to show the combination of the detection

step and the MTL step can improve model performance for drone dataset. We compare

3 configurations. First, we directly train the model with drone data. Next, we train the

model with drone data, and the model contains the detection step. Third, we combine the

detection step and the MTL step to train the model with drone data and large-scale data

together. The illustrations of these configurations are shown in Figure 4.6, Figure 4.7,

Figure 4.8 and Figure 4.9.

Figure 4.6: Directly training on scarce data.
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Figure 4.7: Training on both datasets in the same time in order to show the effectiveness
of MTL.

Figure 4.8: Training on drone dataset with the detection step in order to show the effecti-
veness of this step.
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Figure 4.9: Complete form.

4.2.3 Testing Details

We follow the testing procedure of previous work [26]. For each testing video, we

uniformly sample 25 frames and the corresponding features including RGB frames and

stacking optical flows. Then we crop these frames and their flipping at 4 corners and the

center with a (224, 224) square. The model predicts an action for each square; thus, a

video has 250 predicted action probabilities. We average these probabilities across all fra-

mes; then, the maximum probability among the actions represents the action of the video.

Therefore, we can compare predicted results and ground truth to evaluate an accuracy of

the model. The overall accuracy is video wise. That is, the number of correctly classified

videos over the number of all testing videos.

In every experiment, we use the same condition for fairness. We only test the perfor-

mance of CNN model. This condition is illustrated in Figure 4.10.

4.3 Results

First, we want to choose a baseline CNN for our task. Our candidate models contain

DenseNet [11], Inception V3 [34] and ResNet [10]. We use UCF101 split 1 and HMDB51

split 1 to evaluate these models, and we compare the performance on different features
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Figure 4.10: For fairness, we use the same setting to test our model.

Figure 4.11: An illustration to show how accuracy is evaluated.
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such as rgb, optical flow and Two-stream model. Results are shown in Table 4.2 and

Table 4.3.

Table 4.2: Evaluation of CNN models on UCF101
CNN model RGB(%) Optical flow(%) Two stream(%)
DenseNet-121 79.62 75.68 86.10
DenseNet-169 82.66 76.16 87.95
DenseNet-201 83.32 76.45 88.08
Inception-V3 82.87 75.52 87.87
ResNet-50 78.83 78.59 86.34

Table 4.3: Evaluation of CNN models on HMDB51
CNN model RGB(%) Optical flow(%) Two stream(%)
DenseNet-121 40.20 37.32 44.44
DenseNet-169 41.31 41.83 46.27
DenseNet-201 41.44 41.70 46.54
Inception-V3 43.14 42.29 49.61
ResNet-50 40.13 44.05 47.51

As can be seen, Inception V3 has relatively good performance on human action recog-

nition datasets. The performance of Two-stream is 87.87% for UCF101 and 49.61% for

HMDB51. Furthermore, the total training time of Inception V3 is about 12 hours while

the other networks take about 24 hours. Therefore, we choose Inception V3 for our task

due to the training efficiency and accuracy.

In the next evaluation, we demonstrate that multitask learning framework is effective.

We take UCF101 split 1 as source data, and HMDB51 split 1 as target data. Under MTL

framework, recognition performance on HMDB51 can be improved. The improvement is

better than finetuning and training directly on UCF101. We use Inception V3, and we set

loss weights wS = 0.375 and wT = 1.0 according to the relative portion of both datasets.

The comparison result is shown in Table 4.4.

In addition, we demonstrate that MTL is effective for Two-stream networks [26]. A

two-stream network contains 2 major parts including a spatial network and a temporal

network. A spatial network takes RGB frames as input, while a temporal network takes

optical flows as input. The outputs of both networks are fused to predict the action. We
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Table 4.4: Evaluation of MTL on HMDB51 dataset
CNN model HMDB51(%)
Inception-V3 43.14
finetuning 46.21
MTL 49.54

use MTL to improve the accuracy of a temporal network and Two-stream networks. Both

networks are based on Inception V3 and UCF101 is used to increase the performance of

HMDB51. The result is shown in Table 4.5.

Table 4.5: Evaluation of Two-stream on HMDB51 dataset under MTL framework
CNN model HMDB51(%) MTL(%)
Spatial Network 43.14 49.54
Temporal Network 42.29 44.71
Two-stream 49.61 56.14

We observe that a two-stream model can be improved under MTL framework. Before

we usedMTL, the accuracy of HMDB51 is 49.61%. With the benefits of MTL, the overall

accuracy increase to 56.14%.

We evaluate our model on Drone dataset. There are four settings for this experiment.

First, we directly train Inception V3 on Drone dataset. Next, we show that detecting acti-

ons can improve recognition performance on Inception V3. Third, we combine MTL and

Inception V3 to show the effectiveness of MTL and compare the result with the previ-

ous setting. Finally, we combine detection and MTL to increase the generalization of our

model. The result is shown in Table 4.6.

Table 4.6: Evaluation of the detection step and the MTL step on Drone dataset
CNN model Drone dataset(%)
Inception-V3 36.61
Detection+Inception-V3 41.96
Inception-V3+MTL 42.86
All 44.64
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4.4 Discussion

In this section, we discuss the relation between the MTL performance and the weig-

hts w of each loss function. In the MTL step, the weight of each loss function must be

set before training. We determine how the weight portions between multiple loss functi-

ons can affect recognition performance. To verify this, we use UCF101 data to improve

HMDB51 task in the MTL step. We set WT = 1.0 and change the parameter WS from

0.125 to 0.875. The HMDB51 performance is shown in Figure 4.12.

Figure 4.12: HMDB51 performance versus weights of loss functions.

Before we investigate this factor, we assume that the weights should be used to balance

the data size from different sources. For example, the training data size of UCF101 is about

9.5k and HMDB51 is about 3.5k. We set weights of each loss function according to the

reciprocal of their data size. That is, 1
9.5k

: 1
3.5k

≃ 0.37 : 1.0. So we set WS = 0.375

and WT = 1.0. Although in Figure 4.12, the peak value 50.59% appears at WS = 0.25.

This value is close to the value 49.54% at WS = 0.375. In sum, the weight of each loss

function can be set depending on the reciprocal of data sizes from different sources.

Another issue is that the detector could fail to detect human in some cases. For exam-

ple, in Figure 4.13, the angle of the camera is at the top of the human. In this situation, the
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detector is unlikely to detect human because the shapes of human are tiny circles instead

of a human body shapes. A possible way to improve is to use more similar cases in the

training.

Figure 4.13: Failed cases for detectors.

In addition, optical flows of drone videos are extremely difficult for training a temporal

network. The purpose of temporal networks is to detect humanmotion in videos; however,

optical flows of drone videos mainly detect the moving background instead of human

motion because the drone camera itself is dynamic. Figure 4.14 simply illustrates this

problem. There is a human running in the center but optical flows mainly contain useless

background information. Moving camera detects moving directions of the background

from the side of camera, and information of human objects becomes weak. Thus, it is

challenging to train a temporal network with this issue.
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Figure 4.14: An example of optical flows from drone videos.
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Chapter 5

Conclusion

In conclusion, we present a new learning framework that can improve the recognition

accuracy on action recognition problem for drones. This learning framework is two-stage

including the detection step and the MTL step. The detection step helps a CNN model

focus on human objects, and the MTL step enhances the accuracy on limited drone data.

Furthermore, we propose a new human action dataset of drones. The dataset has 14 dif-

ferent action categories. This dataset is challenging due to small human objects and data

scarcity.

In future work, we plan to apply two new human action datasets recently proposed

in our problem. The first dataset called Kinetics [15] is proposed by Google Deepmind.

This dataset contains 400 action categories. The second dataset is SLAC [43] presented

by Facebook Research and MIT jointly. We prefer to use the pretrained models since

training on these datasets is time-consuming. We will study these datasets for our task

after pretrained models are released. In addition, we want to extend our drone dataset

from 14 actions to 20 actions including some anomalous human actions. The final goal

is to detect anomalous behaviors in real time with drone technologies. However, some

action samples such as shooting and stealing are difficult to collect. In order to solve this

issue, we will use virtual world data instead of real world data to perform the detection

task. Then, we transfer the model to drones in real world to detect human actions.
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