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中文摘要  

  隨著科技的進步，物聯網(IoT)成為莫可阻遏的趨勢，能量擷取技術也因此成

為其核心技術之一。為了使生活中的物品具有感受周遭環境的能力，吾人必須將

物品之感測器安裝於其上，以使所有的物品皆具有「感受力」。這樣的感測裝置

必須是微型、無線，以便能不著痕跡地安裝在我們的生活物品中。為了維持這些

裝置的永續作動，避免頻繁的電源更換(如電池)，自供電系統的重要性不言而喻。

除了日常生活之外，在健康照護系統、公用建設的健康監測、軍事用途......等，

也都有自供電系統的需求。 

  能量擷取系統提供自供電系統一個從外部環境擷取資源的途徑。能提供能量擷

取的環境能量，例如太陽能、溫度差、與各種機械能。其中震動能量擷取被廣為

研究，因為震動幾乎是無所不在的。作為機械能擷取的其中一部份，三種常見的

方法有: 電磁式、靜電式、壓電式能量擷取。其中又以壓電式能量擷取的能源效

率最高。因此，此論文主要探討壓電能源擷取的介面電路與壓電能量擷取裝置之

機構設計。 

  本研究針對壓電懸臂樑能量擷取系統中最常見的能量損耗與頻寬問題，提出了

兩種有效的新方式，利用機構與電路的設計，成功的降低同步開關的能量耗損以

及增加使用頻段，並探討常用的電子式開關操作在微能源輸入的損耗。並且針對

此裝置設計合適的擷取系統：透過懸臂樑陣列、電路研究與機構設計，提升系統

效能與頻寬。最後並利用自製的微型壓電懸臂樑配合機電混和開關，以確認所提

出的電路在微型能量範圍的可行性。 
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為建構一個完整的擷能系統，文中主要提出的新方式如下: 一、透過陣列的編排

與機構設計，利用磁石的磁性將陣列串聯，達到物理串連，並產生類似多維度機

構的效果。 二、利用磁簧開關組成的機械電子混合開關代替同步開關電路中常

用的智慧電子式開關(smart switch)，以減少電路損耗並能降低閥值損耗。此外，

機電混和開關也被成功的應用於輸出電能較一般懸臂樑(cm scale)低的小型懸

臂樑(mm scale)。本文中提到的兩種方法能併用，或是分開使用，針對應用情境

達到各自的成效。研究中，除了機構設計的模擬與討論，模擬與實驗結果都顯示

出此架構增加了能量擷取的效能。另一方面，為克服機械開關的喋喋(chatter)

問題，我們提出三種解決方式，並更深入探討同步開關電路中物理開關位置的設

計，以利效能的最佳化。 

 

關鍵字: 能量擷取系統、壓電懸臂樑、懸臂樑陣列、寬頻、非接觸式機械同步開

關、低耗能 
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ABSTRACT 

The future trend of Internet of Things (IoT) is bringing energy harvesting in to the 

core technique due to its requirement of self-power supplying. To realize the IoT, “the 

ability to sense the world” is the basic requirement of every “thing” in the Internet. That 

is, each and every object would have its own sensing systems. To achieve this, sensors 

are installed in the objects. With the aim to retain the user habits, the goal is to keep the 

“things” in form just as they were. To achieve, additional sensing systems are to be 

designed small and wireless- they are best to be self-powering. Imagine, if each and 

every single object in your life has a sensor and all of them requires your attention every 

few months in different times to recharge the batteries, does that seem like a bright 

future? Smart house is only one of the reason for self-powered IoT system, not 

mentioning health care, infrastructure monitoring, and military usages… etc.  

Energy harvesting provides a way to realize the self-powered system, it enables 

the device itself to obtain its own energy from their environment. For instance, solar 

energy, thermal gradient, mechanical forces, are some commonly seen methods to 

obtain energy from the environment. Among the mechanical energy harvesting 

techniques, three major methods are used commonly: electromagnetic, electrostatic, 

and piezoelectric.  

In this work, a simple model of the original electrical smart switch is proposed. By 

using the miniature device to drive the smart switch, the efficiency when low power is 

provided was examined. To construct an energy harvesting system in a more complete 

aspect, two newly proposed methods are as below: First, the hybrid-electrical-

mechanical switches were utilized to replace the commonly seen electrical smart 

switches, to reduce its energy consumption such as threshold loss. Moreover, the hybrid 
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switch system was also successfully introduced to micro-piezoelectric energy 

harvesting systems (in scale of mm), which usually has lower energy outputs comparing 

to bulk sized systems in scales of cm. Secondly, we designed a new mechanical 

structure for the cantilever array by connecting the beams using magnetic repelling 

force. In this way, the beams within the array were connected physically, forming a 

nonlinear multi-degree of freedom (MDOF) -like result. The two methods mentioned 

above can be applied separately or together, considering the application circumstance. 

Simulation and experiment was performed, proving the improve of output voltage 

peaks of the structure. On the other hand, to resolve the inherited chattering of the reed 

switch, we propose three methods and also further discuss about the effect of the closing 

time delay of the synchronized switch to optimize the output. 

 

 

 

Keywords: Energy harvesting system, piezoelectric cantilever beam, beam arrays, 

bandwidth expansion, non-contact mechanical synchronized switch, low power.  
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1 

Chapter 1. Introduction 

The energy crisis and the demand of smart objects have attracted the scholar’s attention to energy 

harvesting. Among the methods, piezoelectric materials have a relatively high energy density, 

comparing to other forms of mechanical energy harvesting materials.  However, there are some 

limitations to break still, which would be furthermore mentioned in the next sessions. In this chapter, 

motivation, bottleneck and the project aim would be pointed out, followed by the research method, 

the result contribution, and lastly the dissertation organization 

 

 

Figure 1-1The world fossil fuel production curve forecast [1] 

 

1.1 Motivation and Aims 

Internet of Things (IoT), a future concept that is now approaching to reality. In the near future, 

most objects in daily life come to be “smart”- they are connected to the internet as their brains, with 

their own sensors to “feel” the world. Looking to the future, Cisco IBSG predicts there will be 25 

billion devices connected to the internet on the upcoming 2020 [2] (Figure 1-2(c)). In the near future, 
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infrastructures like bridges, roads can be self-monitoring. At home, not only the electronics, anything 

you can name: garage, table, bed curtain… may bear wireless sensors, to make life easier (Figure 

1-2). It would bring inconvenience, however, if each of the sensing nodes not connecting to electrical 

power requires battery replacement. On the other hand, to supply all the additional sensor, the 

electrical power is a certain requirement. However, the energy crisis is also a happening event. The 

major source of electrical power – crude oil has reached its peak of discovery and also other fossil 

fuels that come with it are facing the same crisis (Figure 1-1). Renewable and clean energy sources 

are developed, and energy harvesting is among which.   

To supply the sensing nodes with clean and renewable energy, energy harvesting systems arose 

from the researches, and became a popular field of study. As the development of the ultra-low power 

electronic strives, the power requirement of the wireless sensing nodes has dropped to the scale of 

milli-watts and microwatts. The lowering of the power requirement creates the possibility to self-

power by energy harvesting the ambient environment. The strong need of the market, is predicted to 

grow from the market value of $1,276 million to $6,225 by 2024, as forecasted by Inkwood Research 

during 2017. (Figure 1-3).  

Energy harvesting, is to transform energy from another form to electricity, e.g. from solar power, 

heat gradient, or other mechanical forms. Mechanical forms such as vibration can be found 

everywhere in our daily life, any equipment with rotating motors may vibrate when the center is not 

placed ideally. Infrastructures such as bridges vibrate as vehicles passes by. Natural sources such as 

wind or human motion, are also popular field for vibrational energy harvesting. Moreover, vibrational 

sources provide a feasible power density comparing to other commonly seen source Table 1.  
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(a)         (b)        

 

(c) 

Figure 1-2 The IoT concepts 

(a) Smart home concept [3] in IoT (b) Typical wireless sensing node system driven by an energy 

harvester (c) CISCO’s projection to the number of devices connected to the IoT 

 

As mentioned in Table 2, piezoelectric energy harvesting has a relatively high energy density 

compared to electrostatic and electromagnetic means. Thus, we have chosen the piezoelectric energy 

harvesting method, as it could harvest mechanical energy such as vibration or deformation of its 

hosting device.  
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Figure 1-3 The energy harvesting market forecast 

The value of 2016 was $1276 million, and is forecasted to grow to $6225 million by 2024. Provided 

by Inkwood Research. [4] 

 

Table 1 Recreated from [5, 6] 

Energy Source 

Power 

Density 

W/cm2 

Draw Backs 

Requires 

Rectifier? 

Solar  

15000 

Outside Input range is wide due to light source. X 

100 Inside 

Vibrational  375  

Limited operating frequencies, varying 

vibrational frequencies 

O 

Temperature 40 Gradients are usually not large enough X 

RF 

Range too 

Wide 

Coupling and Rectification O 
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Table 2 Energy storage density comparison of kinetic energy harvesting [6] 

Type 

Practical Maximum 

(millijoules/cm3) 

Aggressive Maximum  

(millijoules/cm3) 

Piezoelectric 35.4 335 

Electrostatic 4 44 

Electromagnetic 24.8 400 

 

Cantilever beam, as an old topic in vibrational energy harvesting, is easy to fabricate and analyze. 

It is frequently used as a mother structure of the vibrational energy harvesting device. For example, 

by attaching a piezoelectric patch on its root, a simple vibration harvester is born. However, cantilever 

beams inherit an efficiency issue of operating frequency. As we know, mechanical structures have 

resonance frequencies, which would transform the input power to the greatest level of deformation. 

When the operating frequency is near the resonance, the device then works with its optimal efficiency. 

Therefore, expanding the working bandwidth has been long studied. Using multiple beams with close 

resonances is a commonly used technique. One of the target in this work, is to expand the working 

bandwidth using a new form of beam arrays mechanically coupled with repulsive magnetic forces.  

To harvest the generated electrical power, an interfacing circuit for energy collection is required. 

Synchronized switch harvesting (SSH) is a popular solution to increase the harvested power. The 

main idea is to switch on and off the switches on certain time to alter the current flow, so that the 

electrical characteristic is changed to a better efficiency. Other than the circuit topology, the switch 

design is also essential. Electrical smart switches were designed to determine the switching instance, 

due to the passive component used, certain amount of energy loss is inevitable.  
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Despite the well-designed functions proposed by previous works for the SSH, the complexity of 

the circuit also brings new issues due to the vast components, threshold voltage, frequency selectivity 

and inherited filters which are undesired. These tradeoffs may pay-off when supplant power is 

generated, such as in bulk sized piezoelectric harvesters (PEH). But when the generated power is 

limited, to make the best use of the power is then important. In this work, we aim to design a circuit 

with simplicity, ultimately compatible with Micro-electro-mechanical system (MEMS) devices, 

which are limited in power generation.  

In this research, we aimed on the two previously mentioned issues, by designing two new 

methods to improve them. A type of mechanical-electrical hybrid switch was designed based on reed 

switches, to reduce the energy loss of the circuitry. The operating bandwidth was improved by 

magnetic connection, which gives the structure a MDOF like output, but with evenly spread stresses. 

Comparing to electrical connections, this method can achieve a broader bandwidth without 

considering the parallel or shunt connection effects. A suitable circuit was referenced, where the 

connection between the beams are separated by inductors, and the interference during connection is 

reduced.  

 

1.2  The Energy Harvesters 

To meet different applications and working conditions, energy harvesters come in different size 

(Figure 1-4), from macro to nano, there are also vast applications. Table 3 shows some practical 

applications that goes with different scales of energy harvesting devices (in size, assuming the 

power/size ratio is positive). The applications that suits within multiple are colored with the same hue. 

From above mentioned, one can understand that, all of the devices can be included in IoT.  

The power-grid can be provided by macro scale harvesters such as wind turbines, solar panels, 
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or piezoelectric alignments under the road. The harvested energy from macro sized devices can be 

used to provide street lights, and also monitor structural health of the infrastructures. For a scale lower, 

at the bulk size, wearable devices for consumer’s industries or health monitoring like smart watches 

can be supplied. Then, to the micro scale, system on chips and some biomedical implants lies within 

the size. As for the nano-scale, some nano-sensors such as for military gas sensing can be applied.  

The methods listed in Table 1 can be further classified in to kinetic energy harvesting and 

radioactive energy harvesting. Solar, RF, and thermal forces are radioactive energy sources, while 

vibrational is kinetic. For kinetic forces such as vibrational or rotary, it can be further categorized by 

its harvesting method, such as electrostatic, electromagnetic, and piezoelectric (Table 2).  

For ambient energy harvesting, as listed in Table 1, solar energy seems to be the most promising 

method. However, the application conditions restrict solar energy harvesting system from general use. 

That is, some areas on earth do have sunshine all year long, but some don’t. The climate is an 

unpredictable source. Therefore, other harvesting sources should be also considered. In the following 

of this section, some energy harvesting techniques from different sources will be introduced.  

Table 3. Approximate scale definition of the energy harvesting systems 

 

 Size 

(in meters) 

Scale Names  Applications 

100~103 Macro/Meso Power-grid 

structure monitoring 

IoT 

10-3~100 Meso/Bulk Wearable devices / 

Health Monitoring 10-6~10-3 Micro System on chips 

Biomed-Implants ~10-9 Nano Military: Dust Project 
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Figure 1-4 Energy harvesting devices in different scale in size corresponding to power output [7] [8]  

[9, 10] 

 

1.2.1 Radioactive Harvesters 

Solar energy has been long studied and applied. It is already in use for large scale energy 

generation. It comes in a great variety of range: from the size of a wrist watch to grid-connected units 

(Figure 1-5). In different places, the maximum radiation of the sun varies, from Norway to Congo, 

from indoor to outdoors. The solar cells are usually made from semi-conductor materials, crystalline 

silicon (89%), amorphous silicon (10%), cadmium telluride (0.5%), copper indium, diselenide and 

gallium arsenide.  
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(a)          (b)          

Figure 1-5 Solar harvesters in different scales 

(a) A small scale solar harvester [11] (b) Large scale solar cell connected to the grid [12]. 

 

As shown in Figure 1-6, thermal energy harvesters utilize the thermoelectric (TE) conversion to 

convert thermal energy into electric. A harvesting cell basically consists of a thermocouple, 

semiconductor of a P-type of an N-type. The two semiconductors are connected electrically is series, 

and thermally in parallel. As there exists temperature gradient between the hot plate and the cold plate, 

free carriers flow from the hot plate to the cold, causing a potential difference between the cold plates. 

The difference of the potential can then create electric energies to be harvested.  

Places with constant thermal differences, such as machines that produces waste heat, human skin 

and the environment are sources for the devices. However, when human body sense the environment 

change, the skin will reduce the surface temperature to save the inner heat of the body. This lowers 

the efficiency of the device. Thus, as long as wearable devices are considered, one has to take account 

of human self-conditioning.  

The theory is, as we live in a life full of radio frequencies, TV stations radiates enormous amount 

of them. TV, WIFI, radio, cell phones… if we could just setup a set of antenna for current induce, the 

power can be recycled. A well-known radio frequency energy harvesting technique is the wireless 
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charging technique for mobile phones. However, for mobile phones, the radio frequencies are 

produced by the charger, not the natural ambient frequency. It was previously developed for bio-

medical uses. For instance, when an implanted cardiac defibrillator is used, the battery gradually dies 

out. Another surgery to replace the battery is a waste of resources and also a torture to the patient.  

 

 

(a)         (b) 

Figure 1-6 Thermal Energy Harvester  

(a) Working mechanism of a single cell [13] (b) an actual thermal harvester device[14] 

 

The examples to charge batteries above are both active, where a radio frequency producing 

device is used, instead of ambient environments. Figure 1-7 shows an academic experiment, where 

researchers set the harvester 6.5km away from the Tokyo TV tower [15]. The antenna, mounted on 

the device, is bulky so that the energy capture is enough. No obstacle is between the TV tower and 

the harvester, and the result, as shown in the right of Figure 1-7 (b). The blue and red curves indicate 

the power required to charge the super capacitor. The green, in micro-watts is the harvested power 

from the location.  
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(a) 

 

(b) 

Figure 1-7 A radio frequency energy harvester, acquiring energy 6.5 km from the TV tower  

(a) Experiment Setup (b) The schematic of work flow (left) and the experiment results (right) [15] 

 

From this result, we can conclude that the radio frequency energy harvesting is a “city” option 

for IoT. First of all, you have to live close to the TV tower, or anything that strongly emits radio 

frequency. Then, the antennas set on the device is bulky, at least for now. The efficiency may be 

greatly reduced indoors. It is however useful, for infrastructure health monitoring in the city, for their 

antennas can be mounted on the construction itself.    

 

1.2.2 Kinetic Energy Harvesters 

Kinetic energy harvesters harvest energy from structural changes such as movements, 
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displacements or deformations. Vibration and rotary energy harvesting a commonly seen examples. 

They can be easily found on human body and also in the environment. Bridges, buildings are 

examples that vibrates. It is the most intuitive- for instance, conventional power plants use steam from 

heat created from fuel to drive the rotors. Then, by Faraday laws, current are induced to be stored. 

Clean energy harvesting like wind and wave energy harvesting, takes the advantage of air/fluid flows 

to cause the deformation or rotation of harvesting devices. The two mentioned type can be also in 

grid-scale.  

 

 

Figure 1-8 General spring mass damper model for transducers 

 

Other than the magneto-electrical method of Faraday laws, electrostatic and piezoelectric 

materials are also popular in smaller scale energy harvesting. Vibrational harvesters, as one of the 

most commonly used structure, usually consists of a host structure, such as a spring or a cantilever 

beam, that can also be modeled in to a mass-spring-damper model (Figure 1-8). It is however 

restricted to its resonance frequency. There are several bottlenecks: First, on bulk devices, resonance 

frequencies can be a few tens to a few Hz. However, the miniaturizing of the device brings the 

resonance frequency to several hundred or kilo-hertz. The ambient frequencies of our natural world 

is below 120 Hz. That is, 120 Hz is one of the commonly seen target frequency for energy harvesters, 
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due to the 60 Hz city power doubled by the rectifier. Secondly, the resonance frequency of the 

structure, which provides the optimal efficiency, is also restricted. Thus, only a small band of specific 

frequencies are feasible for optimal power output. To overcome the small operating bandwidth, 

broadband structures would be discussed later on. 

Magneto-electrical method is based on Faraday’s law, as mentioned. The concept is to use a 

moving magnet, where its flux is linked with a coil, or vice versa. During the movement, changing 

voltage potential is inducted by the varying magnetic flux m through the coil. Other than vibration, 

any motion that causes varying flux can induce energy output. It is therefore suitable for wearables 

since human motion are in low frequency and is not consistent nor periodic, for example the device 

shown in Figure 1-9(b). With low frequencies and non-consistent movements, the harvested power 

can be lower than consistent conditions. The proposed wrist band is able to charge a capacitor with 

470 μF 25 V up to more than 0.81 V during at most 132 ms from any single excitations. 

 

 

Figure 1-9 Magneto-electrical energy harvester 

 wearable device with random movements[16] (Non-spring mass system) 

 

 For the IoT wireless sensing nodes, the most appealing advantage of electrostatic energy 
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harvesters is that its fabrication process is compatible to the MEMS process. It would indicate that it 

can be made in MEMS size, and also with batch process- ready for massive production. On vibration, 

the varying capacitance of moving capacitors changes the electric field. The electric potential change 

then induces charges, and thus the energy can be harvested.in electrostatic energy harvesting. To 

create the variable capacitance, external voltage bias or pre-charged materials such as electrets are 

used. As the device vibrates, the relative distance between the two poles changes, inducing the current 

flow. The vibration can alter the capacitance value by three configurations (Figure 1-10): (a) by 

changing the gap between the electrodes (b) by changing the overlapping area (c) by changing the 

overlapping electric field. According to [17], the authors pointed out that, considering the MEMS 

process, configurations (a) and (b) requires wire leading or bonding on the moving parts, which would 

lead to the increase of the fragility and thus lowering the feasibility. Therefore, configuration (c), 

which had both polarities on the same side shows the most promising opportunity with MEMS energy 

generators. [18, 19]  

 

(a)       (b)      (c) 

Figure 1-10 Three configurations of the electrostatic energy harvesting  

(a) gap changing (b) overlapping area change (c) counter electrode change  

 

The piezoelectric beam is a widely used conventional vibration energy harvester, as shown in 

Figure 1-11 (a). It consists of a cantilever beam, with a proof mass to adjust and lower the resonance 
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frequency. A piezoelectric material patch is bonded to its root, as it is the location with most strain. 

Figure 1-11 (a) also shows that when the beam is bending upwards, the beam body has compressive 

force above its neutral axis. Below the neutral axis, the tense force is present. Therefore, it is also the 

deformation direction of the piezoelectric patch. With the understanding of the deformation direction 

of the patch, the poling of electrodes may define the working mode of the piezoelectric patch, d31, 

and d33. The subscript 31 and 33 describes the two axis directions of stress and electrical field that 

occurs during the deformation, as shown in Figure 1-12(a) and (b). The devices in this work uses 

mode D31, for its full utilization of the electric field, and also the fabrication simplicity.   

 

 

(a)        (b) 

Figure 1-11 A piezoelectric cantilever based energy harvester 

(a) Schematic (b) MCK model 

 

 

(a)        (b) 

Figure 1-12 Working modes of the piezoelectric beam 

(a) The electric field perpendicular to the strain direction in mode d31 (b) The electric field parallel 

to the strain in mode d33[20] 
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1.2.3 Modeling of Cantilever-Based Energy Harvester  

As a vibrational energy harvesting device, the piezoelectric cantilever beam can be also model 

into a mass-spring-damper model (MCK) model as shown in Figure 1-11 (b). The model can be then 

described with eq. (1.2.1) and (1.2.2) [21]. In the equations, 𝑢=𝑢1-𝑢0, representing the beam 

displacement, F represents the piezoelectric force due to the elasticity and converse piezoelectric 

action of the piezo patch,   for the equivalent damping factor, KE the short circuited stiffness, and 

M is the equivalent mass. I stands for the output current, V the piezoelectric output voltage of the 

piezoelectric element, C0 the clamped capacitance and 𝛼 the force factor of the piezoelectric patch 

(electrical-mechanical turns ratio).  

Eq. (1.2.3) depicts the energy distribution between different forms. It is an integrated form of 

(1.2.1)  within the period of working frequencyτ, from the starting time t0. The converted energy 

will be stored into the piezoelectric element in C0 and also delivered to the circuit through the circuit, 

which is expressed as eq. (1.2.4). As for eq. (1.2.4), it describes the energy relation by multiplying 

the voltage to eq. (1.2.2).  

 

 ( ) EMu t F V K u u       (1.2.1) 

 
0I u C V    (1.2.2) 
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The MCK model can be also expressed as equivalent circuits so that one can apply interface 

circuitry simulations considering the mechanical characteristics [22]. An equivalent model of a 
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MDOF degree energy harvesting system can be found in Figure 1-21(d). According to [23] and [22], 

the corresponding parameters between the mechanical and electrical domains is found in Table 4. 

Therefore, a single beam with its first resonance frequency considered can be modeled as a 

simple MCK circuit as shown in Figure 1-13. 

 

Table 4 Corresponding parameters between the mechanical and electrical modeling for MCK based 

PEHs 

Mechanical Parameters 

( 
0u  = system displacement) 

Equivalent Electrical Parameters 

Relative displacement yn=un-un-1 

1 2,.., ., ny  y y  

Charge 
1 2,, nq  q ,q   

Relative velocity 
1 2,...,, ny  y y  Current 

1 2,, ni  i ,i  

Mass 1 2,, nm  m ,m  Inductors 1 2,, nL  L ,L  

Damper , 1nC n   1 2,, nC  C ,C  Resistor 1 2,, nR  R ,R  

Spring Stiffness (Reciprocal) 

1 2

,.
1 1

, .,
1

.
E E En

 
K K K

 

Capacitor 
1 2,, nC  C ,C  

Inertia force on mass  

1 20 0 0,, nu u um  m ,m  

Ideal Voltage Source 1 2,, nv  v ,v  

Electromechanical turns ratio    Turns ratio of ideal transformer  N 
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Figure 1-13 Equivalent circuit model of a single beam considering only the first resonance 

 

1.3 Harvesting with a Broader Bandwidth 

 As mentioned afore, the cantilever structure is hindered by its small working bandwidth near 

its reonance frequency. Figure 1-14 shows the bandwidth of a piezoelectric cantielver beam output 

respond to frequency. Qm, or the quality factor, is a reference to define the bandwidth. The higher the 

quality factor, the higher power output is presented in the resonance, and so is the curve sharper. It 

would also refer to a small working bandwidth. Meaning that half a hertz away would bring the output 

back to a very low level. As a tradeoff, increasing the bandwidth, would also lower the peak energy 

output of the beam. 

To apply in different circumstances and to a wider range of operating frequency, it has been long 

that researchers strived to broaden the operating bandwidth for PEH devices. Stoppers, beam arrays, 

up conversion, bi-stable structures, and MDOF structures are some of the popular methods. However, 

one should be reminded that the decrease of the quality factor also lowers the output voltage, to keep 

the total amount of energy equal. Thus, a target of the broadband design is to increase, or at least not 

decrease the overall power output.  



doi:10.6342/NTU201800279

 

 

 

19 

 

Figure 1-14 A typical voltage output respond to chirping frequency. 

 

Nonlinear mechanical behaviors are studied to improve the working bandwidth of the 

oscillating harvesters. Tunable, MDOF, stoppers and bistable techniques are the few popular 

methods due to the ease of implementation and good performances.  

 

1.3.1 Beam arrays 

An intuitive method to create broader bandwidth is to combine multiple beams, each having a 

different resonant frequency. [24, 25] It is however an issue designing the circuit to handle the 

energy harvested provided by various beams.  

 

 

(a)            (b) 

Figure 1-15 Cantilever array to create broad band [25] 

(a) schematic diagram (b) numerical results showing ten beams in series connection 
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1.3.2 Stoppers 

 

(a)            (b) 

Figure 1-16 Model for stopper in forms of cantilever adopted from [26]  

(Redrawn) (a) MCK model (b) the stiffness k and damping c responding to the distance between the 

masses dn 

 

Stoppers also enhance bandwidths [27] in forms of rigid or beams. For instance the mechanical 

switch which also acted as stoppers in [41] was not rigid, and [28] has a rigid case. In [41], two beams 

with higher frequencies are used, which can be modeled by the MCK model as shown in Figure 1-16. 

On the point of contact, the two MCK systems merge, and the k and c values sum up as if it is a step 

increase.  

The research done in [26, 29] showed a promising results using stoppers with cantilever beams. 

With a stopper on one or both sides, as shown in Figure 1-17 (a), the tip displacement of the beam 

is limited to the distance of the stoppers. Figure 1-17 (b) shows the result when stopper is applied to 

cantilever beam when the frequency is scanned upwards. As it is mention in the work, additional 

stiffness occurs to the system when the beam is exerted to the stoppers. [30] uses a cantilever beam 

with higher resonance frequency as the top stopper, and rigid case as the lower stopper. The beam 
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with higher resonance frequency is also equipped with piezoelectric elements, so that the up 

converted energy can also be harvested. By the term up conversion, means that the structure uses a 

low or non-resonant device to strike a structure with high resonance frequency, and therefore creates 

energy output with higher frequency with low frequency driven systems, as shown in Figure 1-17 

(c). 

 

 

(a)          (b) 

 

(c) 

Figure 1-17 Results comparisons of different stopper distances on both sides 

(a) stopper on both side structure, with one side rigid and the other as an up conversion beam [30] 

(b) [26] (c) up converted result of [30] 
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1.3.3 Bistable Structures 

Bistable can be implemented by tip magnets [31] [32], bucked structures [33, 34], and other 

magnetically designed structures[35]. It provides two energy wells, where the beams are stable and 

is linear like within the trap of the well. According to [36], it provides three different working states 

depending on the input amplitude. In the first state, where the amplitude input is low, the beam would 

oscillate within one of the energy well. As the amplitude of the oscillation is increased, the second 

state is reached. The beam oscillates in a chaotic track, between the two energy wells. When the 

amplitude is increased, overcoming the wells, a periodic characteristic occurs again. Figure 1-18 

shows some schematics of the magnetic driven bi-stable setups.  

As another form of realizing bi-stable structure, Figure 1-34 (a) and [34] are non-linear device 

called Buckled-Spring-Mass system, adopted with stoppers, targeting at the combination of both 

advantages from the two nonlinear characteristics. The resulting outputs are shown in Figure 1-19. 

 

 

(a) 
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(b)         (c)         

 

(d) 

Figure 1-18 Bistable energy harvesting concepts 

(a) Energy well [36] (b) Tip magnet [31] configuration (c) Other magnetic setup [35] (d) Results of 

under increasing accelerations from 0.1 m/s2 to 10 m/s2 , a-h [35]  
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(a) 

 

(b) 

Figure 1-19 Output result of buckled-spring-mass systems  

(a) with a stopper [33]  (b) With out stoppers. Theoretical voltage output corresponding chirping 

frequencies under different acceleration levels with foraward and backward sweep: a. b. 0.075m/s2 ; 

c. d.0.5m/s2 ; e. f. 3m/s2 [34] 
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1.3.4. MDOF structures  

 

(a)                       (b)       

    

(c) 

Figure 1-20 Stacked MDOF Modeling  

(a) The dimensionless harvested power and the harvested power density versus the number of 

DOF of the PVEH (b) General MDOF model used in the work (c)Analytical results comparing to 

experimental results for 2DOF structures, the left shows the output power for the first beam, and the 

right shows the output for the second [37]  

 

Multi-degree of freedom is another method to improve bandwidth[38, 39]. [23], in 2012 

proposed a model with a mother structure for the first degree of freedom, with the 2nd and 3rd degree 

of freedom installed on the mother structure shown in Figure 1-21. In 2015, [37] proposed an 

analytical proof from 1DOF to 5DOF, with the stacking structure where nth structure mounted on the 

n-1th body structure (2nd on the 1st , 3rd on the second), shown in Figure 1-20 . In this work, a 2 DOF 
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experiment is performed to prove the theoretical assumptions. Analytical results showed that the 

increase of the degree of freedom will also increase the power density of the device. [40-43] showed 

2DOF structures and results.  

     

(a)         (b) 

 

(c) 

 

(d)         (e)         

Figure 1-21. Mother-Sibling Model of MDOF PEH redrawn from[23] 

(a) 2DOF degree model, piezoelectric harvester on the 1st structure (b) 2DOF degree model, 

piezoelectric harvester on the 2nd structure (c) Generalized MDOF for PEH, with piezoelectric 

element bonded on host structure (d) Equivalent Circuit model of the MDOF degree energy 

harvesting system (e) Dimensionless optimal power output of 3DOF model from [23]  
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 For 2DOF modeling using the structure [23] has proposed. Eq. (1.3.1) represents the major 

beam, or beam 1. Coefficients with subscript numbers identify the beam number. Unidentified 

coefficients y is the displacement difference of the two masses, y= u2-u1. Cn, where the integral n >0, 

is the damping coefficient of the beam. The MDOF equation and be further expanded, and simulated 

by circuitry representations as shown in Figure 1-21(d) .  
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  (1.3.2) 

 

2DOF devices are most easily fabricated. One of the realized 2DOF structure was proposed by 

[43, 44]. As shown in Figure 1-22, a cut-off structure was designed to reduce the overall length of the 

device. The 2DOF structure is originally as the upper right. It can be transformed to the lower right 

structure. Then beam of m2 is folded in, which is still identical to that of the first. It is then designed 

with a similar aspect ratio, but with a full width for the root.  

An stainless steel based MEMS 2DOF design referencing [44] was fabricated [45]. Simulation 

was also conducted to understand the stress distributed on the resonance. It was worth noticing that 

the stress is severe on the edges of the root. This shortens the device lifespan, due to the fatigue 

fracture which would cause on the most stressed locations.    
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(a)         (b)    

Figure 1-22 2DOF Structure design and results [44] 

(a) redrawing of the proposed 2DOF structure, (b) two different experimental results with different 

proof mass ratios.  

 

 

(a)            (b) 

Figure 1-23 Stress simulation of a 2DOF beam [45] 

(a) on first resonance (b) on second resonance  
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Another structure of 2DOF is fabricated in MEMS, the structure was designed using spiral springs 

and two masses [46], shown in Figure 1-24. In the results, we can see that the two resonances are far 

apart, and the working bandwidth was divided into two bands.  

 

 

(a)          (b)      

Figure 1-24 Spiral MEMS 2DOF device [46]. 

(a) Fabricated device (b) Experimental results 

 

From the researches, one should notice that most 2DOF devices have a host structure, which is 

used to mount the sub structures. As shown in Figure 1-23, the root of the hosting beam structure 

endures a high level of stress. From practical consideration, the device should be fragile at the location.  

 

1.3.5 Up Conversion 

As the size of the device gets smaller to suit in the small sensors, the operating frequency also 

gets higher. However, natural vibrating frequencies fall below 120 Hz. To resolve, up conversion was 

designed to lower the operating frequency. Figure 1-25 (a) shows an typical up-converting design 
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using electromagnetic energy harvesting [47]. In electromagnetic energy harvesting, the magnetic 

mass induces the current flow. Figure 1-25 (b) shows that the system is driven in the lower frequency 

(like the environment), and the mass would trigger a higher output frequency, which is the device 

resonance.    

 

 

(a)           (b) 

Figure 1-25 Up conversion design using electromagnetic energy harvesting [31] 

(a) Structure design (b) Trigger signal and up-converted signal 

 

 [48] shows a piezoelectric up converter by placing ridges on the lower resonant. When the 

lower resonant moves, the ridges were then brushed over by the probe attached to the higher resonant. 

Magnetic methods are also applied [49]. The magnets aligned in front of the beam tip create additional 

tip displacements over the base displacement.   

 

1.3.6 Active Resonance tuning  

By using additional piezoelectric actuators, [50, 51] one is able to alter the moment of inertia or 

the structural stiffness to reach the goal of tuning. Moving the location [52] or changing the mass of 

the proof mass can also tune the resonance frequency. However, the methods neither requires 

additional power sources, or human tuning. 
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(a)            (b) 

Figure 1-26 Tuning by preloading on axial direction  

(a) cantilever [53] (b) fixed beam [54] 

 

  

(a)            (b) 

 

 

(c) 

Figure 1-27. Magnetic resonance tuner  

(a) Experiment setup (b) Lump Model of the device (c) Experiment Results. [55] 
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Tuning the stiffness KE of the structure can also save spaces, it also keeps the calculation and 

structure simpler. Giving the structure an axial preload can reach this goal [53, 54, 56, 57]. [56, 57] 

uses magnets to provide axial forces, while the other two use clamping techniques. An alternative 

stiffness tuning was realized by using magnetic forces to tune the simple cantilever beam [55] [58] 

from the vertical direction. To tune the stiffness, or the spring coefficient in the lump model, one or 

two magnets can be placed below and/or above the beam, with also a magnet on the tip of the beam. 

The distance of the magnets was tuned, resulting in the change of the repulsive or attractive force 

applied to the tip of the beam.  

The force Fmag(d) between cylindrical magnets can be represented as the equation below: 
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  (1.3.3) 

To obtain the spring coefficient kmag in Figure 1-27 (b), Hooke’s Law is used with eq. (1.3.3). By 

differentiating the force equation on the magnet distance d, eq. (1.3.4) can be derived.  
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  (1.3.4) 

And therefore, the new system damping coefficient of a single beam K’E would become: 

 'E mag EK K K    (1.3.5) 

 

1.4 The Interfacing Circuits 

To obtain the energy transduced, an interfacing circuit is required. The design of the interfacing 

circuit determines the performance of the energy harvesting system. Most energy generated in 

mechanical energy harvesting such as vibration comes in alternative current (AC). To retain the 

energy in storage devices such as batteries or capacitances, rectification to direct current (DC) is 
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required. The basic method is to use a diode based full bridge recitfier, and a capacitance in parallel 

to the load. It is named as standard energy harvesting (SEH) in this dissertation.  

However, adding a electrical load would increase the damping of the piezoelectric element. 

Lesieutre et al, [59] had discusses the damp increase in the system due to the electrical load. Moreover, 

due to the large intrinsic capacitance of the piezoelectric element, the impedance matching circuit is 

important to reach the optimal generated power. Therefore, different types of circuits were designed 

to balance the drawbacks. [60, 61] showed that with adaptive control and an circuit consisting of an 

AC-DC rectifore and a DC-DC step down converter, the increased harvested power percentage is 

around 325%. However, it is not yet feasible for micro-scale self-powered harvesting system – the 

power consumption of the controllers to drive and calculate the duty cycle may cost more than what’s 

havested.  

One of the most etseemed method is the synchronized switch harvesting (SSH). As mentioned 

previously, energy harvesting was counter usage of damping control. Originated from synchronized 

switch damping (SSD) [62], a vibration control method, the switching techniques are originally 

categorized in to two types according to the circuit topology. The first type has their switches placed 

before the rectifier: The synchronized switch harvesting on inductance (SSHI) [63] is introduced in 

2005. Considering the relative placement of piezoelectric material, two different types of SSHI by 

the arrangement of the switch-inductor set are defined: When the inductor-switch set is placed in 

parallel to the piezoelectric element, it is defined as the parallel SSHI, (P-SSHI). Similarly, in series 

arrangement, the circuit is named as series SSHI (S-SSHI) [64]. Another configuration to improve is 

the hybrid SSHI, proposed in 2011[65]. Active energy harvesting and improved SSHI [66] (2012) 

aimed to improve efficiency by integrating the switches into the rectifier. The second group has the 

switches positioned after the bridge rectifier, such as SECE (Synchronous Electric Charge Extraction, 
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proposed in 2005 [67]) and SSDCI (Synchronized Switching and Discharging to a storage Capacitor 

through an Inductor)[68](2009). 

 

 

Figure 1-28 Different SSH circuits, adopted from [21] 
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According to [21], SSHI, SSDCI and active energy harvesting provides direct energy transfer to 

the load. Which would hinder the energy harvesting due to the back coupling. That indicates, with 

direct energy transfer, one has to consider the impedance matching for optimal load. 

To decouple the impedance, SECE and DSSH (Double Synchronized Switch Harvesting) can 

be used. DSSH places the switches on both sides of the rectifier [69], while decoupling is realized by 

using the inductor as a de-coupler. When the decoupling occurs, the optimal power is ideally 

irrelevant to the loading impedance.  

 

 

Figure 1-29 Normalized harvested powers under constant vibration magnitude. [21]  

 

The above mentioned circuit topologies are shown in Figure 1-28. Later, An advanced version 

of DSSH, ESSH (Enhanced Synchronized Switch Harvesting) was then proposed during 2010 [70]. 

The normalized harvested power for comparison is shown in Figure 1-29, where we can visualize the 
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load decoupling.  

Regarding the decoupling effect, SECE and DSSH have successfully decoupled the load with 

constant power output. SSDCI has good decoupling characteristics with low impedances. Series SSHI 

has a relatively low optimal load comparing to the other SSHIs. In Figure 1-29, the SSH circuits have 

their non-ideal circumstances excluded. Therefore, taking account of the switch loss and the damping 

loss, the actual gain compared to the SEH should be considered lower.  

 

1.4.1 Theoretical Modeling of the Interfacing Circuits 

 1.4.1.1Standard Rectifier 

As the most basic topology, SEH subjects to energy feed backs. Therefore, SEH is not able to 

provide the maximum power. Figure 1-30 (a) shows the typical AC waveforms of SEH. One can 

observe that there is a phase difference between the rectifier loaded output piezoelectric voltage V, 

and the piezo current I Figure 1-30 (b)). Consequently, the product of V and I, or the output power is 

feedback to the piezoelectric element due to the negative power harvested (colored zone). 

The maximal power output of SEH during constant force can be expressed with the equation as 

follows [71]: 
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where RL is the optimal load of SEH.  



doi:10.6342/NTU201800279

 

 

 

37 

 

02
LR

C




   (1.3.8) 

Equation (6) can be used to express the relationship with respect to the displacement. 

 

(a) 

 

(b) 

Figure 1-30 SEH circuit and the power feedback 

(a) Standard Energy Harvesting Circuit (SEH), (b) Energy feedback due to the current-voltage 

phase difference (below). It is the product of the voltage and current. The piezoelectric voltage (V) 

is represented by the red curve. The blue curve indicates the piezoelectric current (I). 
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1.4.1.2 Synchronized Switching Methods 

To reduce the energy feedback, SSHI launches an LC resonance which utilizes an additional 

inductor to resonate with the clamped capacitor of the piezoelectric element. The half-cycled LC 

resonance launched on the extremes of the tip displacement causes a quick inversion of the voltage. 

On the maximum voltage of inversion, which is also the current zero point, the switch is turned off 

so that the voltage would not fall back. Through this method, the voltage and the current are forced 

to be in-phase to avoid the unwanted power feedback, and the voltage output was leveraged to a 

higher level.  

 

      

(a)       (b)      (c) 

Figure 1-31 SSHI topologies with tagged voltage and current flow  

(a) Load Free Parallel SSHI (LF-P-SSHI), (b) Parallel SSHI (P-SSHI), (c) Series SSHI (S-SSHI) 
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Figure 1-32. Reduced power feed-back using SSH techniques (P-SSHI). 

The red curve V denotes the piezoelectric voltage, and the blue curve I denote the current flowing 

out of the piezoelectric element, the current and voltage to be in-phase. 

 

Figure 1-31 shows the fundamental implements of the SSH techniques with voltage and current 

labels. This method is used to observe the waveform change without any load or rectifier, which also 

has the least power loss in consequence of the simple circuit. The current of which can be best 

observed since it is lightly loaded in impedance. In this work, it is defined as the load free parallel 

SSHI (LF-P-SSHI), which can be found in Figure 1-31 (a. It is named because of its similarity to 

parallel SSHI (P-SSHI), shown in Figure 1-31 (b), which is named by the location of the inductance-

switch set. 

On launching the switch of P-SSHI, the switching instance continues for half of the LC 

resonance period ts, which is designed to be much smaller than the source frequency (eq. (1.3.9)). 

Nevertheless, one has to take account of the inner resistances of the components which lead to the 

non-perfect inversion. The loss ratio is usually denoted as γ. By this ratio, the inversed voltage can 
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be obtained by the product of voltage before inversion and the coefficient. The ratio is determined 

with equation (1.3.10), where Qi is the quality factor of the resonance.  

 0st LC   (1.3.9) 
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   (1.3.10) 

As for P-SSHI, the switch conducts and the current flow through the inductor to the regulator. 

The experimental value of γ is obtained with VDC for S-SSHI. VDC denotes the rectified voltage 

across the load and capacitor of the rectifier.  

The optimal power output of P-SSHI, eq. (1.3.11), and S-SSHI, eq. (1.3.12), during constant 

force can be also found in [71]: 
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As mentioned in the introduction, we wish to design a structure with simplicity so that the 

complexity of the circuit can be avoided for limited amount of energy input. Thus, the P-SSHI and 

S-SSHI are used in this work.  

 

1.4.2 Autonomous Switches for Self-Powered Systems 

1.4.2.1 Electrical Switches 

To achieve self-powering systems using synchronized switches, the switches should not be 

powered by external power. By electrical and mechanical methods, the self- powered autonomous 
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SSH was carried out. With the name self-powered, it means that the energy required to monitor and 

control the switching instance is supplied by the energy harvester itself. The first electronic smart 

switch was proposed during 2007 [72]. The smart switch is able to adapt to broader physical 

excitations [72-74]. In some cases, the switches are also frequency dependent, depending on how the 

smart switch circuit is designed. Some advanced methods are also proposed to improve, either 

efficiencies or bandwidths, by precision controls using integrated circuit chip designs[75] (Figure 

1-33 (a)) or micro controllers such as peripheral interface controllers [76]. As a precisely designed 

IC, the control power of the controlling chip in [75] was merely 12 W, lowering the optimal 

conversion efficiency. That also leads to another problem, the switches are power driven, requiring 

some energy consumptions which may even lower the harvested power when the supplied energy is 

not enough.  

Several self-powered configurations for low power applications were proposed, so that the 

device can be used in wireless applications [72-74]. As shown in Figure 1-33 (b) The proposed setup 

consists of a signal buffer, composed of a pair of resistance and capacitance. The buffer is used to 

create a short delay of the signal. Using a transistor, the comparison of the buffered signal and the 

original signal can be performed. In this way, the approximation of the voltage peak is found with a 

short delay due to the PN junctions of the transistor. It can be simply modeled into Figure 1-33 (c). 

To lower the consumption, another design was proposed with reduced components [77]. The methods 

mentioned above were able to adapt to the single piezoelectric patched cantilever beams. Later, to 

achieve a precise switching instance, another approach (Figure 1-33 (d)) was proposed [78] by 

dividing the single patch in to three. Simplified model can be found in Figure 1-33 (e) The divided 

patches, provided an accurate signal and energy for the current sensor, the operational comparator 

and the harvesting comparator. However, dividing the patches into three also means that the energy 
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from the other two patches cannot be harvested. It is feasible in bulk sized systems, where there are 

plenty of space for piezoelectric elements. Nonetheless, in miniaturized systems, that is not practical. 

 

 

(a) 

 

(b)         (c) 
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(d)         (e) 

Figure 1-33  Electrical autonomous switches 

(a) Implementation of autonomous switch, increasing the bandwidth of energy harvesting by 

designed IC [75] (b) the original self-powered smart switch [73] (c) simplified model of the 

smart switch (d velocity controlled method to detect switching time [78]) (e) simplified block 

diagram for velocity sensing switch [78] 

 

Regarding the smart switch, using the semiconductor components as the electrical switches, it 

was not “off” for real. The off state of the smart switch can be seen as a high impedance load, which 

in result, caused high losses in S-SSHIs when low power is supplied. The energy loss of the smart 

switch will be further discussed in Chapter 2 

 

1.4.2.2 Mechanical Switches 

As mentioned, the electrical methods consume some power to drive the switches. On micro or 

MEMS devices, the output power may not be abundant or even too little to drive the smart switches, 

not to mention dividing the piezoelectric patch. As a resolving method, mechanical switches proposed 

in [28, 33, 79] do not require energy to trigger, but hinders from physical situations. In other words, 

mechanical switches consist of electric contact pads that requires to be physically triggered-when the 

beam reaches certain level of deflection, the switch component on the stopper is impacted and 
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switched on. That would indicate the problem: if the base driving displacement is too small, the 

switching location is not reached, thus cannot be switched on. Moreover, the physical impacts on the 

cantilever beam itself also shortens the lifespan of the device, causing a faster fatigue and may also 

create large noises. Examples of mechanical switching methods are shown in  Figure 1-34, showing 

impacting switches in Figure 1-34 (b-c) and sliding electrodes as switches are shown in Figure 1-34 

(a). On one hand, stoppers create the broadband effect, which would be mentioned in the following 

section 2.3, on the other hand, the rectifying can be performed by the contact.  

 

  

(a)         (b) 

  

 (c)          (d)      

Figure 1-34 Mechanical switch designs  

(a) with sliding electrode [41][33] (b) integrated stopper with switch [28] (c) a stopper-switch based 

threshold free rectifier [80] (d) the switch control flow of [80] to realize the rectification 
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Another method was proposed by H. Liu [81] with a parasitic oscillating structure on the tip of 

the beam to side step the mechanical impact. In this method, the main structure would not be damaged 

during the conducting instances. As far as the main structure is concerned, if the switching element 

fails, the harvesting can still be working, thence stability can be maintained. 

 

1.4.3 Multiple Beam Circuitry 

To connect multiple beams for best output, [82, 83] investigates about the circuitry connection 

and models of the beam arrays using SSH techniques. Conclusions show that the P-SSHI connection 

has a moderate power output but the widest bandwidth, whilst the S-SSHI holds the highest output at 

the cost of the bandwidth. SEH has the performance in between.  

 

(a)       (b)        (c) 

Figure 1-35 Circuit connection for cantilever arrays [83]  

(a) beam connected in series, SEH (b) beam connected in series, P-SSHI (c) beam connected in 

series, S-SSHI 

Another circuit proposed later in 2015 showed a promising connection circuit by using 

Optimized synchronous electric charge extraction (OSECE) to connect two beams[84]. The two 

OSECEs then charge the shared capacitance. Experimental results showed that the summation of the 

two beam outputs is almost linear and almost lossless.  
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(a)            (b) 

Figure 1-36 Connecting two beams using OSECE [84] 

(a) circuitry arrangement (b) experimental results 

 

1.5 Dissertation Organization 

In this work, the following chapters are organized as follows:  

Chapter 1 introduces the motivation and aim of this dissertation. A general introduction of all 

the techniques and backgrounds are presented. The models and techniques from the literature reviews 

which would be used in this work are also introduced in this chapter. The equivalent mechanical 

model and circuitry models of a piezoelectric cantilever beam are introduced. The SEH, P-SSHI, and 

S-SSHI are further discussed. Switching techniques for peak detection is also introduced. The 

mechanical means of bandwidth expansion models are also reviewed 

Chapter 2 presents a simple model which is able to represent and calculate the power loss of the 

original smart switch for SSHI when it is driven in non-ideal power. A micro-PEH was used in this 

chapter as an ultra-low power source to drive the smart switch in both P-SSHI and S-SSHI.  

Chapter 3 introduces the new hybrid electro-mechanical switching structure that has only the 

threshold voltage of a single diode. The switch structure consists of a pair of reed switch and its 

debouncing circuit. Different debouncing circuit were proposed and compared.  
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Chapter 4. uncovers a new bandwidth extension technique by connecting the beams within a 

beam array using magnetic force. By proper tuning, the usable bandwidths of the beams were 

extended, and the output power was also improved.  

Chapter 5 Concludes the work, with summary of this work and the major impacts of this 

dissertation. Some basic concepts for future work are proposed for further improvement.     
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Chapter 2. Electric Circuit Losses: Modeling of a Smart 

Switch Driven in Low Voltage 

Attributing to the circuit topology and the inherited threshold, the smart switch for self-powered 

harvesting requires certain amount of energy to trigger. As the MEMS systems provide limited power 

source, the smart switch does not work ideally. In this chapter, the causes which lead to the losses are 

investigated and discussed. For instance, when the voltage is not enough, the diode does not work in 

the optimal resistance, and the impedance is greatly increased. Looking on the other side, the voltage 

required to drive the SSH, for example, S-SSHI is greatly increased by the voltage division due to the 

impedance of the load and that of the smart switch. Thus, a simple model for the smart switch under 

limited power supplying is proposed. Experiments are conducted to prove the model, pointing out the 

existing problem in the commonly used switching method.  

 

2.1 Power Provided with Micro PEH Device 

The micro PEH power supplying device used in this section is fabricated with the process 

proposed in [10]. The structure of the generator and the fabricated beams can be found in Figure 2-1 

(a, b). 

To investigate with different power supplying situations, two different types of Micro PEHs are 

used: 1. A typical uni-morph d31 device, which consists of a substrate (stainless-steel), with a PZT 

layer (1st PZT layer), and an electrode (top electrode). 2. A bimorph configuration beam consisting 

of two PZT layers sandwiching the stainless steel substrate, with the coverage of the top and bottom 

electrodes. Among the two, bimorph devices have the advantage of the variability of power sourcing, 

shunt, or series connections can be poled depending on the demand of higher current or higher voltage 
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source.  

 

 

(a)            (b) 

Figure 2-1 Schematic diagrams of the piezoelectric MEMS generator. [10]  

The starred content exists in the bimorph structure only (a) beam structure (b) fabricated beam. 

 

As far as the bimorph structure is considered, the top and bottom electrode consists of titanium 

(20 nm) and platinum (200 nm); the thickness of the stainless steel is 50 m; and each of the single 

PZT layer is 10 m thick. For the uni-morph device, the substrate used was a 30 m stainless steel, 

and the PZT layer was 15m thick. The length and width of the beam is 8000m and 6000m, 

respectively, for both of the bimorph and uni-morph devices. A tungsten proof mass was attached to 

the end of the beam to lower the resonant frequency of the bimorph  structure, which is targeted 

around 120 Hz. The size of the tungsten proof mass is 4000 m  6000m  1000m for the bimorph 

device, and 400 m  6000m  450m for the uni-morph. 
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(a)      (b) 

Figure 2-2 Schematic diagram of bimorph poling and connection 

(a) parallel connection (b) series connection  

 

Using the lump parameters, we can model the performance of the devices. The lump parameters 

listed in Table 5 were obtained using an impedance analyzer. The C0 and k2QM varies in the two d31 

devices due to the fabrication discrepancies. These parameters will be utilized in the following 

sections.  

 

Table 5. Lump parameters derived through a network analyzer for the d31 and bimorph devices used 

in this section 

Beam Bimorph 

Parallel 

Bimorph 

Series 

d31 #1 d31 #2 

C0(nF) 13.9 3.4 4.78 4.5 

f0(Hz) 88.97 95.02 124.3 125.7 

f1(Hz) 88.06 96.10 125 128.8 

k2 (%) 2.02 2.2 1.1 0.418 

QM 35.62 35.19 7.92 41 

k2QM 0.72 0.68 0.87 0.172 
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(a)          (b) 

Figure 2-3 Power and voltage outputs of Micro PEH excited with varying acceleration levels 

(a) a typical uni-morph device (b) a typical bimorph device (in parallel),  

 

The standard AC mode is used as a standard to compare the power enhancement ability of the 

SSHI technique, and the power losses of the rectifying circuits. In the following Figure 2-3 (a,b), the 

power outputs of the two types of micro PEH are shown. Under a 1 g excitation level, the uni-morph 

device was able to supply 134 W with a voltage output of 10 Vpp, whereas the bimorph device gave 

143W, with 12.8 Vpp. 

 
 

2.2 The Circuit Loss 

2.2.1 The Rectifying Loss 

Diodes are essential components for rectifying the piezoelectric voltage to DC output in order 

to store the harvested energy and to supply electronic devices. A typical diode component 1N4148 is 

used in this work to observe its power response, with a fixed given voltage of 21 V. The inverse 

current loss, which is merely a few nano-amps, will be ignored in this work. From the experiment, 

we have noticed that, even with enough voltage, the current that is limited will determine the threshold 
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voltage of the diode. Experimental results showed that, while the threshold point of the diode is not 

reached, the power that is consumed increases in a more quadratic trend. Subsequently, when the 

threshold point is passed, the curve becomes more linear due to the resistance that is greatly reduced 

over threshold. It is also known that the current output of the device is quadratic relative to the 

acceleration of the device, that is, exceeding certain acceleration will smooth the power loss ratio. In 

another term, it would mean that the power loss due to the diode loss is critical when the current input 

is limited by the size and the external acceleration driving the PEH. 

 

A full bridge IC DB105 was used to evaluate the power loss of the standard harvesting circuit, where 

the maximum voltage drop is around 1.1 V according to the manufacturer’s datasheet. Experimental 

results show that, under low voltage inputs, most of the energy is consumed by the diodes, yielding 

an almost null harvested power. As we elevate the acceleration to 0.5 g, where the power input comes 

to 60 W, the voltage input comes to 3 Volts RMS to the optimal load of 150k. Meanwhile, the 

overall power output is around 30 W, with the voltage input equal to 2.12 VRMS. It could be estimated 

that the voltage drop is around 0.88 Volts, with the loss of around 50%. As the power input comes to 

100 W, the input voltage reaches 3.87 Volts, whereas the harvested power is 52W, with 2.79 Volts. 

From a voltage difference of 1.07 Volts, the real Ron of the diode stands (or in other words the 

threshold is reached). From this point, we can observe the loss power ratio begins to slow its slope as 

the threshold is reached. Thereby, if the current can be raised in certain way, the inherited 

characteristic of the PEH will provide enough voltage to drive the rectifying bridge in a less power 

consuming way. 
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(a)         (b) 

  

(c)         (d) 

Figure 2-4 Diode Analysis using Keithley 2420 source meter  

(a) diode loss with scales of micro-amps, (b) diode loss with scales of milli-amps (c) Ron of a diode 

in respond to current (notice Ron in log scale) (d) power output curve fitting of one MPEH. 

 

 

Figure 2-5 Rectify loss experiment of IC DB155 
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2.2.2 The Smart Switch Loss 

The concept of the self-powered switching technique is shown in Figure 1-33 (b). The exact 

circuit can be found in Figure 2-8 (a). The switch is composed of two parts, the peak detector and the 

switching component. The peak detector consists of a comparator, which is used to compare the 

output voltage of the energy harvester with its envelope. From Figure 2-8 (b), one can read that, as 

the signal falls to a level lower than the envelope, the comparator gains the information and sends a 

signal to the switching component to turn on the single-direction switch. [85, 86] had proposed 

solutions to execute this concept. Several researches had also showed their effort on optimizing this 

circuit [87]. Both of the proposed solutions utilize transistors as the comparator, which in 

consequence, rose up the voltage requirement of the self-powered switch. In this work, we have used 

the solution of self-powered SSHI (SP-SSHI) proposed in [72] to analyze the energy flow.  

According to the literature, a single switching process can be divided into 4 phases: the charging, 

the transition state of inversion, the inversion, and the rebounding of oscillation, as depicted in the 

following Figure 2-6 (b-e). Figure 2-6 (a) gives an overall view of the switching waveform. 

In the first charging stage, the two capacitances of both directions are charged, one through the 

diode, another on the opposite switch, by the PN junction of the transistor. Using a transistor enables 

the capacitor on the opposite switch to follow the input voltage, but is also one of the passageways of 

the switch loss. Afterwards, as the voltage of the forward capacitance is charged to the level of the 

input voltage, the input voltage starts to drop.  

On the transition state of inversion, the transistor will be switched on when the VBE overcomes 

its threshold which enables the discharging of the capacitor to charge the FET effective capacitance. 

This turns on the switch, which triggers the LC resonance of the inductance and the C0 of the PEH. 

In consequence, the voltage starts inverting as the massive current passes through the inductance via 
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the FET switch. On this instance, the massive current flow will pull the current of the opposite switch 

to its diode-restricted direction. As a result, the capacitor starts its first own voltage inversion. The 

charging of the opposite capacitor will cause a small leakage through the FET switch for a short 

instance until the voltage reversion, which may cause another minor passageway to the power loss. 

It is small enough to be ignored for now.  

When the switch is totally on, or when the real inversion starts, the FET of the opposite is totally 

off due to the reversion of the voltage. Then as the LC oscillation comes to the negative current, it 

does not stop abruptly.  

A rebounding occurs in consequence. In this time, it also gives an overshoot peaking to the 

waveform, which also makes the inversion non-ideal, as shown in Figure 2-7 (b, c). During this stage 

most of the negative current is blocked by the forwarding diode, the remaining energy damped by the 

circuit through three routes: 1. Charging of the opposite capacitance 2. Discharging of the forward 

capacitance by the leakage through the PN junction of the forward switch 3. A minor leakage of the 

FET switches due to the instant rise of the capacitance and current.  

The charging of the opposite capacitance during this stage elevates its inverted voltage to match 

the envelope of the new inverted waveform, giving the initial voltage for the next opposite process 

where both capacitances are charged. On the other hand, as the discharging is complete, the current 

continues so as to start charging the capacitance to the other direction, which will be a first step in the 

opposite process. The value of the base resistors should be carefully chosen, or else the LC resonance 

will continue until it is totally damped. This phenomenon is caused by two reasons: 1. a mismatching 

of the damping resistance pair, causing the resonance continuation 2. an inappropriate selection of 

the resistance connecting to the base, causing the quantity of leakage current via the stopping switch. 

When the time constant of the pair is mismatching, worse cases of the oscillation can occur, bringing 
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up more losses. The resonance current will be charged back into the capacitance of the piezoelectric 

device, as mentioned in [66].  

 

 

(a) 

 

(b) 

 

 

(c) 
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(d) 

 

(e) 

 

Figure 2-6 Diagrams showing different states of a SSH switching 

The circuit current flow on right, and waveform response on left  

(a) Overall look of the current and voltage response during an inversion (b) Capacitance charging 

state (c) FET capacitance charging state (d) Inversion state (e) Rebounding state, where the 

discharging of the left switch’s capacitor, and the charging of the right switch’s capacitor happens 
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(a)          (b) 

 

(c) 

Figure 2-7 Inversion investigations 

(a) proper switch voltage/current output (b) Current passing through the leaking / damping passage 

ways (c) The underdamping charging C0 of the PMEH 

 

3.2.2.1 Voltage requirement analysis of a conventional self-

powered switch 

With the knowledge of its working mechanism, one can then proceed to the modeling of the self-

powered switch. To drive the abovementioned switch, certain level of voltage is required. But in 

micro-power harvesting, the voltage amplitude is usually limited by the size of the device and the 
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applied acceleration, hence in this section we investigate the voltage requirement of the switch 

through a single direction switch (Figure 2-8(a)) which in pairs, composes the bi-directional switch. 

Figure 2-8(b) shows an simulated result zoomed in to the on-switching instance.  Assuming the 

switch operating on the P-SSHI, we eliminate the cross voltage across the inductance, analyzing 

through the following steps. To turn on the switch, the voltage across the capacitance of the buffer 

should satisfy: 

 
Buf EC GSV V V    (2.2.1) 

 

On the other hand, the voltage across the capacitance should also satisfy: 

 
Buf comp EBV V V    (2.2.2) 

Knowing that, 

 
,maxBuf PZT DV V V    (2.2.3) 

We can conclude that  

 
,maxPZT Buf D Comp EB DV V V V V V        (2.2.4) 

 

Where 𝑉𝐶𝑜𝑚𝑝  can be assumed to be identical to 𝑉+𝑃𝑧𝑡  at the instance, or in other words, 

𝑉+𝑃𝑧𝑡,𝑚𝑎𝑥 cos 𝜃 , where θ  is the phase lag between the switching instance and the peak value of 

𝑉+𝑃𝑧𝑡(which is not in-phase with the displacement). Therefore, we can estimate the phase lag and the 

minimum required cross voltage of the switch to activate SSHI by the following equations:  

 
,max (1 cos )PZT EB DV V V     (2.2.5) 

 
,maxPZT EC GS DV V V V      (2.2.6) 
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(a)                   (b)        

Figure 2-8 The voltage distribution on the smart switch 

 (a) single directional switch composition with voltage labels (b) simulation waveform of on-

switching instance 

 

Then we are able to estimate the required voltage input to drive self-powered parallel and series SSHIs. 

When the voltage does not exceed the required level, it is only restricted in working on the first stage. 

Hence the equivalent circuit for a half- cycle can be simplified with the following figure. The diodes 

are omitted for simplification. The cross voltage of the switch can be calculated, omitting the loading 

effect for now: 

 

P Switch

switch
S Switch

switch S Load

V V

Z
V V

Z R











 

  (2.2.7) 

Where it can be obtained that, assuming the RC pairs are identical,   

1

2
switch

sRC
Z Ls

sC


    (2.2.8) 

 

3.2.2.2 Loss analysis on charging-state 

From afore mentioned analysis, two states are found to dominate the losses, that is, the charging 

state, and the rebounding state where the switch components are charged. A simple way to analyze 
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the loss is to calculate the harvested voltage over the load in series SSH. We can then use the eq 

(2.2.9) derived from the simple model shown in Figure 2-9 (a, b): 

S Load
S Load

switch S Load

R
V V

Z R









  (2.2.9) 

Plotting the equation in to a bode plot(Figure 2-10(a, b)), we can find that it is a band pass 

equation, with a high passing frequency band. Therefore, it can be assumed that most of the energy 

is blocked by the switch in series under our operating frequency of 120 Hz. The following plot Figure 

2-10 (a) shows that on 120 Hz (ω=754 rad/s), the gain magnitude is around -15 dB, when the voltage 

is not enough to turn on. So we can also estimate that the voltage to turn on the series SSHI is:  

,max 0.822s PZT EC GS DV (V V V )          (2.2.10) 

With all the current going through the same passage way, the consumption of voltage also 

indicates that the power consumption ratio of the switch is dominant under low voltage operation in 

the working range of 120 Hz. Only 17.8% of the energy can be harvested on the load.  

It is then possible to calculate the power loss of the parallel SSHI with the same fashion. With the 

same voltage input, the current is inversely proportional to the impedance of the components. Using 

the information already calculated above, we can assume that 82.2% of the current passes through 

the Rload, and the loss is around 17.8% using the circuit when the switch is not turned on. 

 

 

 (a)      (b) 

Figure 2-9 Circuit modeling of charging state during SSHI switch  

(a) in parallel (b) in series  
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(a) 

   

(b) 

Figure 2-10 Bode plot simulation of the model on Matlab  

using R=56 k, L=125 mH, C=220 pF, Rload=600 k. (a) left: transfer fucntion over RLoad ; right: 

close look over RLoad (b) left: transfer fucntion over Switch; right: close look over Switch  

 

2.3 The Loss Experiment 

In this section, the smart switch was used in P-SSHI and S-SSHI under different power supplying 

conditions: voltage lower than threshold, voltage in between fully driven and the base threshold, and 

voltage more than enough.  

 

2.3.1 Driven with voltage too low 

Several self-powered switch loss experiments were conducted under different circumstances: 

provided limited power and enough power. Both experiments were conducted by different designs of 
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the PMEH mentioned above. Firstly, the experiment with non-ideal power input was performed using 

d31#2 showed in Table 5. The amplitude of the input voltage was 2.75 V peak. In this circumstance, 

where the sum of 𝑉𝐸𝐶 + 𝑉𝐺𝑆 + 𝑉𝐷  is considered to be around 0.5+1.9+0.6=3 V, the switch is driven 

mostly in the first state. Experimental result (Figure 2-11) shows that, since the threshold of the FET 

shifts due to the current source, there is a slight lump on the parallel SSHI curve, on the location of 

which the optimal load exists. As for the series SSHI, most of the power is lost until the optimal load 

of the standard circuit is reached. Calculating the percentage of the efficiency, it is quite close to the 

range of our estimation. Comparison of which can be found in Table 6 

 

Figure 2-11 Experimental results of power outputs with voltage inputs less than requirements  

(2.75 V peak), d31#2, parameters showed in Table 5   

 

Table 6. Experimental results with voltage inputs less than requirements in comparison to estimated 

cases, Voc = 2.75 peak 

Circuit Power Output (W) Efficiency (%) Estimated (%) 

Standard  1.46 100% 100% 

Parallel 1.20 82% 82.2% 

Series 0.20 13.7% 17.8% 
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2.3.2 Driven with voltage in between 

 To understand the transient response of the voltage for both SSHIs, the device was then 

accelerated to the output of 4.5 V peak Figure 2-12 (a). Observing the optimal load can give us a 

glimpse that both the series and parallel SSHI are working, but it is also obvious that the S-SSHI was 

performing undesirably with low efficiency. On the other hand, although the P-SSHI was still not 

working as ideal as it could be, it started its enhancing effect. It could be attributed to the inherited 

band-passing effect of the switch, which was connected series, having the current flowing through all 

the time to charge the easy to loss capacitance. 

 

 

(a)          (b)    

Figure 2-12 Power output results of transient voltage driven cases using d31#2 , from Table 5 

 (a) Series and parallel SSHI in comparison with standard circuit with 4.5 V peak input  

(b) Activation voltage test for parallel SSHI, where the piezo is connected in series (Input voltages 

in legend are volts peak to peak).  

 

For further investigations, the voltage was gradually driven higher for the parallel SSHI, to 

observe the transient response of the rising voltage input. Results can be found in Figure 2-12 (b). 
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The MPEH was driven from 2.75 V peak to 4 V peak, which is 1 volt higher than the required voltage 

of 3 V. From the trend we can see the lump on the optimal resistance of the parallel SSHI starts to 

emerge, and is consequently dominant. It is noticeable that, parallel SSHI, which consumes less 

energy, has its enhancing effect starting on 3.65 V peak despite that on 3.5V, where the SSHI 

dominates the curve. The result can be owed to the power loss of the switch.   

 

2.3.3 Driven with enough voltage  

With input voltages high enough, e.g. voltage inputs greater than 6 Volts peak in our case, the 

SSHI could work more theoretically. It is also noticed that the optimal load is higher than the 

theoretical results. This phenomenon can also be attributed to the equivalent impedance of the switch 

on the off-state, which takes place most of the time. For instance, calculating the equivalent 

impedance using the parameters above used for Matlab simulation, we have Z𝑠𝑤𝑖𝑡𝑐ℎ // R𝑙𝑜𝑎𝑑 = 586kΩ , 

with Rload =600kΩ. To increase the equivalent load to Rload =600kΩ, Rload has to be increased to 620kΩ, 

so that the matching impedance may take place again. Experiment results of the following experiment 

is shown in Figure 2-13(a-e).  

Bimorph Connections in SSHI and Standard Cases 

Shown in Figure 2-13(a), the parallel poled and connected device had a k2QM of 0.72. With 

availability to give more than 90 W under 0.75 g, the harvested power with standard DC was 

approximately 44.9W due to the rectifying loss. Using the parallel SSHI DC with enough driving 

energy, the output came to 91.4 W, which was 2.03 fold in comparison to the standard technique. 

The experimental result can be found in Figure 2-13 (a). The power output was a little higher than 

the expected theoretical power gain. A series poled device shown in Figure 2-13 (b) with k2QM of 

0.68 had a gain of 1.44. The standard output was 9.72 W, and the SSHI output of 13.98 W. Results 
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shown in Figure 2-13(b). 

 

(a)         (b)        

  

(c)         (d)        

 

 

(e) 

Figure 2-13 Experimental results of parallel SSHI with power sources enough to drive SSHI.  

(a) Bimorph in Parallel (b) Bimorph in Series (c) d31#1 (d) d31#2 (e) theoretical gain value  

Beam parameters can be found in Table 5. 
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Connections with d31 in SSHI and Standard cases 

 The experiment was also conducted with two d31 devices with similar fabrication processes. The 

devices showed different k2QM values and power outputs due to the fabrication process and the device 

characteristic design. Figure 2-13 (c) and (d) shows the experimental and theoretical comparisons of 

the two d31 devices. In standard cases, both experiments met the theoretical optimal output of 10.3 

and 8.89 W, with the input voltage of 12Vpp 8.9Vpp. When it comes to the P-SSHI, the overall 

optimal load shifted upwards for around 500kΩ. And the power was enhanced by 1.29 times and 3.33 

times each. 

To observe the efficiency, the output results are compared to theoretical curves with respond to 

the k2QM in Figure 2-13(e). Theoretical curves are developed from the equations of [73].  

 

2.4 Discussion 

Considering the basic component loss, the rectifying loss is restricted to its threshold voltage. 

We have used a bulk IC DB155 to have a greater scale of energy loss understanding. For other silicon 

controlled devices, such as transistors, when the PN junction is not fully conducting, similar responses 

cause a higher level of impedance.  

The derivation with diode loss for SEH and SSHI are proposed in [73]. However, the authors 

considered the voltage output higher than the threshold voltage of the diodes. The proposed equations 

for SSHI considers only considers the circumstance of triggered switches, where the cross voltage 

over the diode is had met the stable value of the threshold voltage.  

The smart switch design used in this work had a 3 V threshold in P-SSHI. Below which, the 

SSH techniques cannot be fully conducting and thus the harvested power is even lower than that of 

the SEH. In the case of S-SSHI, the threshold voltage was 3/0.822 times higher due to the impedance 
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voltage divide, approximately 3.63 V. However, when driven in 4.5 V, the power harvested from the 

S-SSHI was still limited. That is, the transient state of the S-SSHI, where the time delay should be 

taken in to account.  

In the transient state, where the threshold is met, the efficiency grows with the input voltage, 

even if the provided voltage is greater than that of the threshold. It can be attributed to the switch 

delay loss, due to the voltage difference required to trigger the transistor (Figure 2-8 (b)). For the 

switching time delay loss, it will be profoundly introduced in the next section. From Figure 3-20, we 

notice that the face difference of 0.6 Rad will reduce the gain to 0.7 times. Referring to [88], a more 

precise calculation can be done for both SSH techniques within the transient zone considering the 

switching time delay.  

Taking the overall response into account, from low power to abundant, we can refer to the 

modified switch analysis in [66], considering the topology, has the voltage detecting threshold similar 

to that of the P-SSHI due to the detecting envelope design located parallel to the EH. Nevertheless, 

the switch itself is located in series to the harvesting capacitance, and therefore would have the 

response similar to that of the S-SSHI. The harvested power of the SEH the modified SSHI comes to 

crossing point on 5.84 V for open circuit piezoelectric voltage. With VOC below the threshold voltage 

was also not considered. Figure 2-14 shows the how the theoretical harvested power of SEH and P-

SSHI changes in [66] and the experimental results in this work. The theoretical harvested power on 

the crossing point was 23.75 W, with theoretical switch response omitted below the driving voltage. 

Nevertheless, comparing the experimental results in this work to the theoretical result of [90], the 

trend of the curves for the harvested power are similar. With components and transduced power 

different, the voltage on the crossing point in this experiment was around 3.5 V, and the corresponding 

harvested power of 2.5 W. 
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 (a)         (b)       

 

Figure 2-14 Comparison between the harvested power of self-powered SSHI and SEH 

 (a) Theoretical results from [66] (b) Experimental result in this work  
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Chapter 3. Hybrid Switch on SSH Methods 

Regarding the circuit loss discussed previously, mechanical switches are used to avoid the 

excessive loss. To increase the stability and robustness, we choose to sidestep the physical impact of 

the main structure. In this chapter, reed switches are introduced to serve as the mechanical 

displacement detector and switch itself. Reed switches are easy to purchase and install. It is a mature 

device, where all sizes are available - from the size of bulk to MEMS (micro electronic engineering 

system). Reed switches are controlled by a magnetic field. Using this characteristic, it is used for non-

contact displacement detection in this work. One should however note that, all mechanical switches 

suffer from the inherit problem of chattering. The chattering is caused from the bouncing of the 

mechanical switch blades, which does not settle until several micro seconds depending on the switch 

dimension.  

In this chapter, the design concept of applying reed switches on SSH will be firstly introduced, 

along with the mechanical chattering problem and its resolving de-bounce method. Then the 

switching delay and the theoretical energy loss will be reviewed and discussed. Experiments are then 

conducted to inspect the loss due to the chattering, and the efficiency improvement of the resolving 

method. The switch delay loss experiment is also performed. Finally, the discussion inspects how 

different de-bouncing methods can be applied. 

 

3.1 Design Concepts  

3.1.1 Reed switch introduction  

The point of using reed switch is to reduce main structure impacts with simple adoption. The 

reed switches applied in this work can be easily purchased. Among the various types, the reed switch 
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we use is a commonly seen glass sealed capsule. It is composed of two ferromagnetic blades, sealed 

within a vacuumed/inert gas-filled capsule, as shown in Figure 3-1 (a). When magnetic field 

approaches the pull-in (PI) zone, the blades attract each other and touch until the field leaves the drop-

out (DO) zone.  

 

 

(a) 

 

(b) 

Figure 3-1 The glass sealed reed switch 

 (a) Structure (b) operating a with magnet. 

 

Using a permanent magnet, PI is usually measured in distance, millimeters or inch. It could be 

also measured in field strength milli-Tesla or Gauss. When using coils, PIs are measured by, currents 

through the coil, volts across the coil, or ampere turns (AT). The drop-out could be measured in 

similar means as the PI measurement. The DO zone is a bit larger than the PI zone in attribute to the 

magnetic hysteresis. The hysteresis is usually expressed by DO/PI in percentage. Due to the 
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difference of the reed switch design and fabrication, the hysteresis varies. The three parameters are 

to be used to decide the distance between the wavering tip and the reed switch itself.  

Figure 3-1 (b) is a schematic diagram showing how the magnet interacts with the switch: As the 

single pole magnetic field enters the PI zone, the two conducting blades, differentiated in to two 

different leads, are induced with different poles, which would draw them together. The magnet then 

leaves the DO zone, to release the contacting blades. On typical usages, the main lobe which is in the 

middle is used for the switch control. There are also side lobes, smaller than the main lobe which are 

side effects created by the extension of the leads. On the brink of these side lobes beside the main 

lobe, as shown on the left of Figure 3-1 (b), it is overlapped considering the movement of the tip 

magnet. The bulky magnet would create a chaotic switching response if the magnet enters both PI 

zones, and the response is unpredictable. To avoid multiple triggering, the side lobe is used to operate 

the switch. 

 

3.1.2 Reed switch replacement on SSH techniques 

 With the knowledge of how to operate the switch, we are able to utilize the reed switch on SSH 

techniques taking advantage of the characteristics mentioned above. The concept is as simple as such: 

Magnets are placed on the tip of the beams to serve as the proof mass and also the switch control. 

When the beam wavers to its extreme on vibration, the magnet enters the PI zone, pulling the blades 

together. Off as it leaves, the switch is then opened when the tip leaves.  

A DC response experiment was used to test the chattering response and also the feasibility of 

the displacement trigger. A reed switch was placed above the cantilever beam, with a magnet at its 

tip. Figure 3-2 (a), indicates that, when the magnetic field enters the PI zone, the switch turns on, 

causing VO = VH. As the magnet leaves the DO zone, the output is grounded to zero. By adjusting the 
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distance d between the reed switch and the tip, the on switching duty can be tuned. 

 

(a) 

  

(b) 

 

(c) 

Figure 3-2 Reed chattering experiment  

 (a) experiment setup (b) DCR response, redrawn from 89] (c) The screenshot of the oscilloscope 

waveform for the chattering. The vertical axis is in 1V/div and the time scale is 50μs/div. 
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To investigate the chattering, it can be represented with the dynamic contact resistance (DCR). 

The DCR response during a call-close period can be represented as shown in Figure 3-2 (b). The plot 

shows that, after the activation call, the blades closes for the first time, with a bounce back reopening, 

then closes for the second, bounces open again, and the dynamic resistance oscillates until steady 

settle. This bouncing back is caused by physical contact blade bounce, which typically persists around 

100 s, and 500 s for steady settle down. Zooming into the on-switching edge (Figure 3-2 (c)), one 

can observe that the chatter causes two reopening signals. 

 

(a) 

 

(b)  

Figure 3-3 Applying reed switch on LF-P-SSHI 

(a) switch replacement (b) working concept  

 

To drive the SSHI, the switching should happen on both extremes. Therefore, two reed switches 
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were placed, one up and the other below the tip of the cantilever beam. From the DC experiment, we 

noticed that the hysteresis delay prolongs the on-switching duty, lasting for multiple LC resonating 

periods. However, in SSH techniques, the inversion is caused by a single direction pulsed current, or 

in other words half the LC resonance. Thus, a diode was required to prevent the current back flow, 

one for each flow direction. Figure 3-3shows how reed switch is applied in LF-P-SSHI. Each diode-

switch pair is a unidirectional switch, and by placing two pairs with opposing polarities, a 

bidirectional switch is formed as shown in Figure 3-3 (a). Figure 3-3 (b) shows how the tip triggers 

the reed switch, with the conducting current flow of different directions on the opposite sides.  

 

 

Figure 3-4 Conventional snubbers used in microprocessor controls 

 

3.1.3 Resolving the chatter: snubbers (de-bouncers) 

As mentioned, almost all mechanical switches subject from chattering. To control micro 

possessing units, push buttons are often used. It is a widely-known method to limit the chatter (de-

bounce / snub) by adding a RC buffer, so that the voltage can be held with little ripple, as shown in 

Figure 3-4. That, gives the first version of the reed de-bouncer: the resistor-capacitance snubber (RC 

snubber). However, in microprocessor applications, the energy supply is usually well enough and is 
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needless to consider. Hence, resistors are used, regardless of its power consumption. Theoretically, 

an ideal inductor does not cause energy losses. Thus, to reduce the energy loss, the inductor was 

introduced to replace the resistor to become the LC snubber. Then, a third design was revealed, the 

silicon controlled rectifier (SCR) de-bouncer. In this section, the three types of snubbers are 

introduced. 

 

3.1.3.1 Reed de-bounced on Resistor (RDR)  

Using resistor-capacitance to de-bounce, or snub, Figure 3-5 shows the first adopted de-

bouncing technique similar to that of Figure 3-4. Figure 3-5 shows a unidirectional switch, as 

mentioned in the last section. The snubbing method would be denoted as RDR (reed de-bounced on 

resistor) in the rest of the text. The snubbing mechanism is identical to that of the conventional 

snubber. The RC circuit forms a low-pass filter which would prevent high frequency signals from 

passing, for instance, the chattering. When the switch is on, the capacitor of the RC is charged, and 

would hold the voltage with a small ripple even if the switch bounces on and off for several times. 

Hereby, we can say the signal is snubbed (or filtered). This capacitance would keep the MOSFET on, 

until the capacitance is discharged or the diodes stop the current flowing from the other direction.  

The RC circuit forms a first order filter, with its cut-off frequency obtained by the equation 

1 / 2f RC . For our application, the RC filter is designed to filter away the chattering frequency, 

and its cut-off frequency should be higher than the resonance of the SSH LC resonance, which is

01/ 2f LC . The chattering frequency can be observed with experiments. Usually, the 

chattering frequency is two or more orders higher than the targeting LC resonance. One should note 

that the capacitance should be small enough to filter the chatter frequency, but also high enough to 

store energy for driving the MOSFET. A semi-empirical method to estimate the on-power of the 
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MOSFET can be used by referencing the component datasheet. The leakage current for the MOSFET 

in the operating voltage can be obtained from the datasheet and the appropriate range of the 

capacitance value can be derived accordingly. For a reference, in our experiment, the capacitance is 

in the range of 0.68~68 nF.  

 

 

Figure 3-5 Unidirectional reed switch de-bounced on resistor (RDR)  

 

3.1.3.2 Reed de-bounced on Resistor (RDI)  

 To have a sharper filter, and also less energy consumption, the LC snubber was used. The LC 

snubber would be denoted as RDI (Figure 3-6), for the following of the text. Ideally, the inductors 

are non-power consuming. Thus, by choosing appropriate inductors, the power consumption should 

be less, providing a sharp filter of second order.  

 

 

Figure 3-6 Unidirectional reed de-bounced on inductor (RDI)  

 

3.1.3.3 SCR de-bouncer  

For further improvement, the SCR configuration was proposed (Figure 3-8). SCRs are semi-
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conductor devices formed of a stack of four-layered-PN junctions, usually use to handle massive 

energy. The SCR composing structure is shown in Figure 3-7.  

 

 

Figure 3-7 Schematic diagram of SCR 

 

To on-trigger the SCR, the gate current IGT is used. However, the gate current can only launch 

the conduction. The off-switching of the device is determined by some other instances:  

(1) Reverse the voltage over the anode and cathode VAK, 

(2) Lower, cut off, or reverse the passing current IAK. 

(3) Provide a large amount of reversing gate current IGT (Gate turn off). This is usually not 

considered due to the great amount of current. 

 

This characteristic is appealing, for it meets just what SSH techniques require: to stop the switch 

on current reverse. That would mean, the diode can be omitted in the electrical switch since the SCR 

is a diode itself. However, most SCRs are used in power electronics, which also hints that it may not 

be suitable for low power applications. Most SCRs have high leakage currents, which may even be 

at the scale of the max current of piezoelectric energy harvesting. Thence, the SCR applied should be 

chosen with care. High sensitivity and low power dissipation is required. In this work, P130AA of 
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STMicroelectronics is used for its low IGT, which is merely 0.1 A. With such low trigger level, the 

component is suitable for piezoelectric outputs, which has high voltage output but limited current.  

 

 

Figure 3-8 Unidirectional SCR de-bouncer 

 

It is also noteworthy that, for SCRs so sensitive as P0130AA, the reverse gate voltage VRG is 

also quite low (8 volts). The PN junction may break down if the gate-cathode voltage exceeds this 

value, resulting in false conduction. Therefore, the operating voltage should be considered, or a 

protecting component should be applied to avoid this incident.   

 

3.2 Energy Loss Due to Switching Phase Difference 

In this section, the energy loss due to the switching delay is investigated. It was already discussed 

in [88] that, the switching instance is usually non-ideal in practical applications. We will take the 

originally proposed smart switch from [73] as the first example. Figure 3-9 (a) shows how the phase 

difference occurs with smart switches. As mentioned, the buffer voltage (Vbuf) created by the resistor 

and capacitor was used for detecting the peak. Creating a second signal, Vbuf, has a short time lag after 

the piezoelectric voltage V. Right after the extreme, the fall of V crosses with the rising Vbuf. Ideally, 

this is the switching point, which has only a short phase lag. Yet, to compare the two signals, a 

transistor was used. Attributing to the PN junction characteristics, the threshold voltage has to be 
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overcome to switch the transistor. The voltage threshold causes another time delay after the crossing 

point. In all, time  was delayed, and the phase lag occurs.  

 

(a) 

 

(b) 

Figure 3-9 The cause of switching time difference 

For (a) smart switch (b) reed switch 

 

 For reed switch applications, the ideal switching position should be on the extremes of the 

displacement, otherwise phase differences or no switching would occur. Nevertheless, it is impossible 

to ensure that all displacements are perfectly switching on the extremes during actual usages. Thereby, 
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a margin zone of the relationship between the tip and the switch location may be defined for better 

tracking. Figure 3-9 (b) shows how the difference is caused. The dotted line indicates the brink of the 

PI zone: below this line, no switch is triggered. The distance between the tip at settle and the PI zone 

is defined as d. To ensure that the magnet enters the PI zone, the maxima tip displacement u can be 

drawn closer to the reed switch so that u>d. In consequence, the switching time would be earlier than 

the tip extreme, and a phase lead was caused.  

Severe phase leads and lags cause the deduction of energy harvested. An adequate zone can be 

designed to control the energy loss, and the good zone can be defined. When the tip overshoots the 

good zone, it would be considered as an inadequate drive due to the undesired energy loss. 

 For the reed switch application, the relationship between the leading phase and the tip 

displacement can be represented as below:  

 cosMd u    (3.2.1) 

Referencing [88], we are able to derive the power harvested from the P-SSHI and S-SSHI 

considering the phase lead and lags with equations (3.2.2)-(3.2.6). The time difference  is 

expressed in radial domain . In the following equations, R stands for the resonance frequency of 

the beam. And 𝑢𝑀 is the maxima deflection amplitude of the beam.  
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 From the above equations, one can observe that for P-SSHI, the phase leading and lag power 

output can be expressed with (3.2.3) and (3.2.4). On the other hand, S-SSHI, as shown in equation 

(3.2.6), the phase difference, lead or lag, share the same equation. That is to say, the time difference 

is symmetric in S-SSHI.  

 

 

Figure 3-10 Flow chart of experiment concept 

 

3.3 Experiment and Results 

To realize the concept, the experiment was designed as shown in Figure 3-10. After the setup of 
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the clamper device and the equipment, the DC reed test was done to assure the reed switch. It is also 

used to define the size of the PI zone. Then, the LF-P-SSHI circuit was conducted to assure that the 

reed switch is feasible for SSHIs. As it is a successful method, the de-bouncing mechanism is 

designed, followed by the power efficiency experiment. Lastly, the phase difference experiment was 

conducted.  

CT-2 probes have limited sensitivity of 1 mV/mA. As mentioned, LF-P-SSHI has a higher 

level of current flow because it does not have any current restricting loads. Thus, it is used for 

observation, so that the current is high enough. 

3.3.1 Experiment Setup 

 Figure 3-11 (a) shows the clamping device that holds the beam and the reed switch. The 

clamping system is designed with tunable x-y rails, two clamping bases on one side and one clamper 

on the other. On one side the cantilever beam is clamped, and the other side is for the reed switches.  

The cantilever beam was composed of two piezoelectric patches bonded on both sides of the 

spring steel substrate. The PZT-KA2 piezoelectric patches were manufactured by Eleceram 

Technology Co., Ltd. The dimensions and lump parameters are listed in Table 7. Two beams were 

used in this experiment, beam 1 and beam 2. The beams share the same dimension, with different 

batch of KA-2 patches. To provide a higher voltage, the patches were connected in series. The patches 

are then connected to the circuit board with different circuits. The reed switches are clamped on the 

other side of the beam, below and above, driven by the magnetic proof masses attached on the tip of 

the beam. d1and d2 are the distances of maximum beam deflection to the brink of reed PI zone, which 

is around 20 mm (lateral distance also determined by the PI size).   
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(a) 

 

(b) 

Figure 3-11 Experimental setup  

(a) Schematic of the device clampers with the circuit (b) The equipment setup 

 

The overall experiment system is shown in Figure 3-11 (b). Firstly, the output signals of the 

circuit are connected to the oscillator to observe the outcomes and the harvested power. The 

displacements were measured by two laser displacement meters. One tracked the base and the other 

the tip. The tip displacement can be then obtained by the difference of the tip and base displacement. 

To monitor the current flow and the chattering interference, Tektronix CT-2 probes were used.  

The LF-P-SSHI was firstly tested for one can better observe the de-chattering characteristics from 
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its full current flow. Then, the energy harvested from rectified SSHIs were compared. To set a 

reference, the externally powered SSHI was used and assumed as zero-loss. The externally powered 

SSHI has its driving signal provided by the second output port of the function generator, which also 

drives the shaker to provide the mechanical input of the energy harvester. The designed 

bidirectional switches were then compared: LF-P-SSHI was used to observe the current flow; P-

SSHI and S-SSHI are used to investigate the efficiencies. Components used in the experiments are 

listed in Table 8. 

 

Table 7. Beam Parameters  

 Description Units 

Beam Dimension Spring Steel  

l (length) 75 mm 

w (width) 15 mm 

b (thickness) 0.5 mm 

Proof Mass (l*w*b) 20*10*5 mm (per piece) 

Proof Mass (mass) 12e-3 kg 

Piezoelectric Patch 

Dimension 

PZT-KA2 

(Eleceram Technology Co., Ltd. ) 

l (length) 6 mm 

w (width) 15 mm 

b (thickness) 0.13 mm 
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Table 7. Beam Parameters (cont’d) 

 Description Units 

Lump Parameters  (Beam 1 + Proof 

mass) 

 

f0 10.19 Hz 

f1 10.21 Hz 

C0 0.9e-9 F 

M 25e-3 kg 

C 2.6e-2 N s/m 

KD 255.553  

KE 254.5e  

QM 37.6  

k2
 



0.0103 

5.6e-6 

 

N/V 

 

 

 

 

 

 

 

 

 



doi:10.6342/NTU201800279

 

 

 

87 

Table 7. Beam Parameters (cont’d 2) 

 Description Units 

Lump Parameters  (Beam 2 + Proof 

mass) 

 

f0 10.496 Hz 

f1 10.512 Hz 

C0 0.86e-9 F 

M 26e-3 Kg 

C 6.183e-2 N s/m 

KD 328.75 N/m 

KE 327.75 N/m 

QM 

k2 



66.42 

0.0342 

4.361e-6 

 

 

N/V 
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Table 8. Component list used in the reed switch based SSH experiment 

Component Part No., Manufacturer  Component Value 

Inductor RL181S-104J-RC, Bourns  100 mH 

Snubber Capacitance N/A 68nF 

Resistance N/A 10~100k  

NMOS: 2N7002, Diode Incorporated See Datasheet 

PMOS: NDS0610, Fairchild See Datasheet 

SCR P0130aa, STMicroelectronics See Datasheet 

Diode BAT 54W, Infineon See Datasheet 

Reed Switch RI-27A, Coto technology See Datasheet 

 

 

3.3.2 Chatter Loss and the de-bouncers  

3.3.2.1 Chatter Loss 

The first experiment proved the LF-P-SSHI successful Figure 3-12 (a)), even with the chatter 

openings that caused the flaws on the current pulse Figure 3-12 (b). One can observe that there are 

two cuts in the current flow. The chattering caused the current flow to have sharp edges on the closing, 

and it is trivial that the interference would lower the current flow and reduce the harvested energy.  

To understand the loss due to the chatter, power harvesting experiments are done. Resistors and 

capacitances are loaded with the rectifiers. Using both S-SSHI and P-SSHI, we investigated the 

chatter loss by adopting the reed switch without any snubbers. 
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(a) 

 

(b) 

Figure 3-12 Reed switch applied on LF-P-SSHI without de-bouncing 

(a) AC waveform (b) Close-up look of the LC resonance current flow on switching instance g, 

beam 1 

 

We first look into the harvested energy of the externally powered P-SSHI and the reed switch 

only P-SSHI. Figure 3-13 shows the energy output performance of reed switch application without 

snubbing on both P-SSHI and S-SSHI. In the plot legend, classic stands for the SEH, P-Reed is the 

P-SSHI using reed switch, P-External is the externally controlled P-SSHI, S-Reed is the series SSHI 

using reed switch. Driven on 0.07 g, The output power of the reed only P-SSHI is 41.09W, whilst 
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the externally power output is 42.26 W. The loss percentage of P-Reed is only 2.8%. For P-SSHI, 

One can find that the reed switch output is 42.77 W, comparing to 46.59 W of the externally 

powered. With loss percentage of 8.2%, higher than that of the P-SSHI. Both experiments show that 

the energy is enhanced from the SEH technique.  

 

Figure 3-13 Energy loss due to switch chattering driven on 0.07 g, beam 1 

 

3.3.2.2 Filtering De-bouncers 

 Theoretically, avoiding the chattering may enable us to keep a stable current flow and achieve a 

better efficiency. Firstly the RC filter snubber was applied and tested as the first proposed methods. 

LF-P-SSHI was used to observe the current flow, as shown in Figure 3-14. Observing Figure 3-14 

(a), we find a current reset on the beginning of the current flow, which is caused by the chattering. 

Despite the cut, the current flow was much smoother than that of the non-snubbed SSHI, shown in 

Figure 3-12 (b). The peak current flow is also increased using RDR. Using RDI, the spikes are 

attenuated, while the current peak is slightly increased. One can also find that the reset was avoided 

with a small descend.  
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(a) 

 

(b) 

Figure 3-14 Current flow of filter snubbed LF-P-SSHI on switching 

(a) RDR (b) RDI g, beam 1 

 

  However, when the load is added, the resistor on the snubber may share the energy that the 

piezoelectric element produces. Accordingly, the RDI was proposed as a replacement of RDR. The 

experiment for the harvesting efficiency is performed for the purpose of proving this thought. Both 

P-SSHI and S-SSHI were used in this experiment, which is shown as Figure 3-15 (a) and (b).  

 In spite of the successful snubbing, the RDR showed a lower power output comparing to the 

non-snubbed experiment. Results also show that the RDI had almost perfect performance, and the 

output curve overlaps with that of the externally powered one on P-SSHI. For S-SSHI, the 
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performance of the RDR is also poor. Taking account of the RDI, the optimal harvested energy is 

44.52 W. The externally powered S-SSHI, the best output is 46.59 W. The loss of the RDI in SSHI 

is 4.44%, which is better than the non-snubbed version. However, the harvested energy quickly falls 

after the optimal load, and the output waveform also shows an unstable status, as shown in Figure 

3-16. 

 

(a)            (b) 

Figure 3-15 Power output experiments for filtered de-bouncers 

(a) P-SSHI (b) S-SSHI, driven at 0.07g, beam 1 

Plot Legend format: Prefix-Method (e.g. S-Reed) 

Prefix: P (parallel) ; S (series) 

Method: SEH (Classic); reed switch without snubber (Reed); Reed de-bounced on resistor (RDR); 

Reed de-bounced on inductor (RDI); Externally powered switch (External)  
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Figure 3-16 Piezo voltage output when high impedance is loaded at the RDI S-SSHI  

on 3Mg, beam 1 

 

3.3.2.3 SCR De-bouncer 

 SCR was then designed as another solution to prevent the unstable status in high impedance 

loads. Looking in to Figure 3-17, despite the lowered current peak, the SCR de-bouncer also showed 

a small ebb on the switch bounce, it is not as obvious as the fall on RDI in Figure 3-14 (b). One can 

also observe that the current kept at positive slope.  

 

 

Figure 3-17 Current flow of SCR snubbed LF-P-SSHI on switching, 0.03g beam 1 
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  Experiment results in Figure 3-18 showed that the SCR overcame the high impedance loading 

problem of RDI on S-SSHI. Under 0.03g, the SCR output almost overlapped with the externally 

powered output. The experiment was done 3 times for the error bar.  

 

 

Figure 3-18 Output of SCR de-bounced comparing to other circuits 

SEH, S-RDI, S-EXT on 0.03g, beam 2 

 

 

Figure 3-19 SCR malfunctioning waveform with overdriven voltage.  

0.06 g, beam 2 



doi:10.6342/NTU201800279

 

 

 

95 

 

 Nonetheless, SCRs are current controlled components. Moreover, the SCR P0130AA we chose 

for this work was designed for low power, and therefore cannot withstand high inverse voltages. 

Thence, when the beam is driven with higher voltage output, the SCR breaks down and the SCR fails 

to stop the inversing current. Figure 3-19 shows that the LC resonance cannot be halted as what we 

desired when driven in higher voltage inputs.   

 

3.3.3 Loss due to switch delay 

An experiment using externally powered switch was conducted to investigate the effect of 

switching phase difference. The theoretical curve equation can be derived from [88]. From which, 

the gain 
𝑝𝑎𝑟𝑎

  and 
𝑠𝑒𝑟𝑖𝑒𝑠

 for the affected output can be further expressed as the equations: 
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Figure 3-20 shows the theoretical and experimental relationship between the phase difference 

and the normalized gain of the P-SSHI and S-SSHI. The plot is plotted from gain equations (3.3.1) 

and (3.3.2). From (3.3.1), one can understand that the lead and lag does not have a symmetric effect 

when applying P-SSHI. For S-SSHI, how the phase difference affect is symmetric. However, for the 

sake of reed switches, only phase lead is required to be considered.   

Results shows that for P-SSHI, experimental results match that of the theoretical simulation. On 
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the other hand, S-SSHI has a greater loss, which may also be attributed to the component loss, which 

showed to be higher in S-SSHIs as mentioned.  

 

Figure 3-20 Phase difference relations to P-SSHI and S-SSHI gains.  

Externally powered switches used.  

 

3.3.4 Working Mechanisms of De-bouncers 

3.3.4.1 Snubbed Switches Working Mechanism 

 RC and LC de-bouncers are filters, and the configuration is similar, and so as their working 

mechanism of de-bouncing. LF-P-SSHI was used to observe the current flow, so that we can 

understand how the mechanism works. The current flowing through the gate and the terminals DS 

were tracked using Tektronix CT-2 probes, so as to understand the working mechanism of the 

configurations. Figure 3-21(a) shows the experiment results indicating that the MOSFET, will draw 

a small portion of the current initially (C3 of Figure 3-21 (a)), from the RDI capacitor to start the 

overall conduction, where IDS is conducted (Figure 3-21 (b)). The total component loss can be thus 

calculated.  
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(a) 

 

(b) 

Figure 3-21 Voltage and current tracking of LF-P-SSHI using RDI 

(a) C1 the voltage, C2 the total current, C3 the current into the gate of the MOSFET (b) C1 the 

voltage, C2 the total current, C3 the current through terminals DS of the MOSFET 

 

3.3.4.2 SCR Working Mechanism 

To investigate the SCR working mechanism, the current flowing into the SCR terminals G (IG) 

and A (IAK) were tracked. The two routes composed the total current, while the current flowing into 

the terminal G was fluctuating due to the chattering. The current was compensated by the route AK, 
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which in summation created a smooth current which we aimed for. This implies that the component 

loss for the SCR is mostly caused by the inner resistances of the SCR.  

 

 

Figure 3-22 Voltage and current tracking of LF-P-SSHI using SCR 

C1 is the voltage, C2 the current into the anode of the SCR, C3 the current into the gate terminal of 

the SCR, Ma the summation of C2 and C3, which sums up to be the overall passing current.  

 

3.3.5 Low voltage driven S-SSHI 

RDI was used for a low voltage test. Result is shown in the following Figure 3-23. Results 

showed that the S-SSHI was still working, while P-SSHI did not show a clear enhancement.  
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Figure 3-23 A low voltage driven experiment using RDI  

using piezoelectric voltage output was 2.5 Vp-p 

3.4 Discussion  

3.4.1 Chatter Loss on P-SSHI and S-SSHI 

From the experiment results of Figure 3-13, the power loss from the reed-diode configuration in 

P-SSHI is around 1.17 W, and its corresponding loss percentage is 2.8%, comparing to the power 

harvested from externally powered switching technique, which is 42.26 W. The loss percentage can 

be briefly attributed to the chatter since both configurations have identical diodes to stop the reversing 

LC resonance.  For S-SSHI on the other hand, the loss is 3.82 W, in the total of 46.59 W. 

Corresponding loss percentage is 8.2%, higher than that of the P-SSHI. 

From the circuit configuration of P-SSHI and S-SSHI, we are able to understand that, when the 

switch is off, the current still flows through the rest of the circuit, identical to that of a SEH. However, 

for S-SSHI, when the circuit is off, the load is not connected, and all the energy is saved in the inductor. 
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When the switch launches, the circuit flow of P-SSHI is less than S-SSHI, and therefore, the loss due 

to the DCR of S-SSHI is much higher than P-SSHI.   

 

3.4.2 Comparisons of the proposed switching methods 

Experimentally, the three well performing designs are the reed-diode, SCR and RDI. Each of 

the designs has its own merit: With very limited voltage (i.e. lower than 2~3 volts) and low harvested 

power, the reed-diode configuration provides the best efficiencies due to its simplest components. 

When energy harvested is not enough, SCRs and RDIs do not perform ideally due to the 

characteristics of the electrically triggered switches. However, when enough power is supplied, both 

SCR and RDI work with efficiency that may reach 99% or more in P-SSHI and also performing with 

little loss in S-SSHI. When ultra low voltage is supplied, the SCR outperformed RDI in moderate 

power conditions because the MOSFET is voltage controlled. Moreover, when S-SSHI is operated in 

high voltage, the SCR meets its revers breakdown and the mechanism is not favorable. On the other 

side, with high impedance loaded, the RDI is not able to collect enough energy to launch and the 

switching becomes unstable:  

One can observe from Figure 3-18, we find that the SCR showed better stability when higher 

impedances are loaded, whilst the RDI show a drop in output right after the optimal impedance. 

However, it was also discovered in Figure 3-19 that when operated in high voltage input and low 

impedances on series SSHI, SCRs showed unwanted conductions due to the break down. One can 

attribute the malfunctioning to the VRG of the SCR, that is, the maximum reverse voltage then can be 

applied across gate and cathode terminals without risk of destructing the PN junction GK. For 

P0130AA, VRG is merely 8 V minimum, with the reversed gate current of 10 A. In spite of the 

increased VRG in the low operating current of piezoelectric energy harvesting circumstances, SCRs 
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are still not feasible with high voltage applications.  

Table 9 was created to give an idea of which configuration to choose under different operating 

situations. 

 

Table 9. Performance of proposed methods under varying operating circumstances 

Operating 

Situations 

Reed-Diode SCR-P0130AA RDI-2N7002T1 

Limited  

Voltage / Current 
   

Moderate 

Conditions 
   

High Voltage    

High Current* 

 

   

*Piezoelectric components do not provide high current flow continuously. High current flow is 

usually caused by the LC resonance on switching, usually on series SSHI with low impedance or 

SSHI without loads.  

 

 One should note that, when applying the hybrid-switch harvesting system to random force 

vibrations, where the displacement may not reach the PI zone, the switch cannot be turned on. In this 

situation, the S-SSHI is not activated and thereby no power can be harvested due to the energy block 

of the switch. Thus, P-SSHI can be applied despite the lower harvested power. As the switches are 

not working, SEH is still connected in P-SSHI, and the harvesting is still on. When the tip 

displacement is large enough for trigger, P-SSHI will be launched, which will provide a better 
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harvesting efficiency.  

 

3.4.3 Designing the hybrid switched SSH system 

The following text would give a discription design procedures for one who wishes to design a 

synchronized switching system using reed swtiches.  

Before designing, one should consider the working circumstance: is it a steady condition? Or a 

flucuatating condition? With constant force and displacement, both P-SSHI and S-SSHI can be 

applied. However, when the system is operating under fluctuated condition and the deflection varies, 

P-SSHI is recommended. Although S-SSHI is able to provide a better power enhancement, P-SSHI 

is stable - even when the switch is not working, SEH is still on the line. When the system is well 

designed, one can even decide the triggering voltage of the P-SSHI. As the voltage does not reach the 

desired level, the SEH would continuously work.  

For ultra low voltage applications such as open voltages of around 2~3 Vpp, it was observed that 

while the supplied voltage is lower than the fully switching threshold, the MOSFETs or SCRs used 

in filter snubbers cannot work in its linear state. This would result in a more severe component loss, 

and lower the inversion factor . In this occasion, SEH may provide a better efficiency comparing to 

the switching technique. Therefore, by targeting the input force, designing the beam and the distance 

between the reed switch and the tip, one can determine a targeting voltage for the switch to be triggerd. 

Another choice would be to apply the reed-diode pair method, to avoid excessive component losses. 

To design the overall system, the operating frequency is firstly targeted according to the applying 

environment. With the operating frequency, the resonance of the device can be used to determine the 

beam dimension, and the proofmass used. To apply the reed switches, the cantilever beam substrate 

should be able to withstand deformations at least exceeding the distance between the PI and the DO 
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zone of the reed switch. Then, according to the substrate scale, a brief estimation of the beam 

dimention can be determined. Thereafter, the reed switches and magnet pairs can be decided. For 

instance, micro-sized or bulk sized, glass sealed or overmolded. For micro-sized cantilever beams 

such as [10, 90-93], SMD packages are avalable. However, the operating power range should be 

considered, so that the break down voltage and current of the components should not be met. The 

determination of the operating magnet can be done by referencing the closing force in newtons (N) 

for the reed switch, usually provided in the datasheet. Some datasheet provides operating ranges in 

units of Tesla (T). Also it is worth noting that some magnets are designed for reed swtiching as a pair. 

When the beam substrate and the magnet, serving meanwhile as a proofmass, is chosen, the main 

beam dimension and thus the acutal operating frequency can then be precisely desgined, considering 

the operating force and the responding tip deflection. With the knowledge of the tip deflection, we 

are able to determine favorable switching ranges, including the optimal switching distance and also 

the available phase difference margin. 

Afterwards, the switching distance are to be determined by the magnet-reed switch pair, 

depending on the shape and size of the PI zone, which is dominated by together the sensitivity of the 

reed swtich and the magnetic field strength. For switches with overlapping PI zones, overlapping 

areas should be averted so as to prevent from false signals. Another important point of consideration 

is the hysterisis time, or the distance between the PI and DO zone. To be conservative, the on 

switching period should not reach or exceed 50% of the duty cycle so that the switches would not 

conduct simultaneously. This means that the DO zone should not cover all the range of the tip 

displacement when operating in small displacements, or short circuit would be caused. Considering 

the time lead effect, we can calculate the theoretical optimal power output,with constant driving force, 

and further derive corresponding the deflection by referencing [71]. Considering the acceptable loss, 
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the phase lead can be determined. By converting the phase to the distance d, the equations below 

can be obtained to design the reed location: 
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Lastly, the operating conditions as mentioned in the Table 9 can then help to decide which hybrid 

switch method can be used.   

 

3.4.4 Comparison to the original smart switch considering the phase difference 

The reed switch provides a leading phase difference, considered as the negative switch delay in 

[88]. On the other hand, the smart switch results in a phase lag caused by the threshold voltage of the 

comparator. The phase lead of the reed switch can be determined by the location of the pull in zone. 

As represented as eq. (3.2.1). The electrical phase lag can be calculated using eq. (2.2.5), which 

yields: 

 
 

1 cos( )EB D

PZT

V V

V



    (3.4.3) 

To at least achieve identical harvested power comparing to the smart switch, the simplified 

equations in eq. (3.3.1)-(3.3.2) can be used to obtain the electrical loss due to the switching delay of 

the smart switch . According to eq. (3.3.2), the harvested power of the reed switch is identical to that 

of the smart switch when the phase differences are identical. Therefore, we can obtain for symmetrical 

results. 
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 

1 EB D

PZT M

V V d

V u


    (3.4.4) 

By this equation, one can obtain the targeted distance between the PI zone and the tip of the base 

with reference to a smart switch. Where d is the targeted PI zone distance.  

For P-SSHI, the harvested power of the reed switch can be found identical to that of the SEH 

with different quantity of phase lag: 

 

2

2
1 cos (1 cos )

cos
4

Lag Lag
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  


       (3.4.5) 

Where, taking eq. (3.4.3) in to account, one can obtain Lag, the lagging phase difference caused 

by the comparator threshold. And therefore d, the distance between the zero displacement of the tip 

and the PI zone can be determined using the equation from eq. (3.2.1) after the calculation of Lead:  

 
1 cos (1 cos )

2

Lag Lag

Md u
         (3.4.6) 

By then we can determine also the location of the PI zone for P-SSHI, referencing to the optimal 

harvested power of the smart switch, neglecting the PN junction losses. 

  



doi:10.6342/NTU201800279

 

 

 

106 

Chapter 4. Magnetically Connected Array 

This section introduces the magnetically connected array as a solution to increase the working 

bandwidth of the piezoelectric energy harvesting systems. Different from the conventional electrical 

connecting or the physically binding methods, mechanical force of magnetic repulsive force is used. 

By this mean, the three beams are mechanically connected, with no physical contacts with each other. 

The proposed method also creates a new type of MDOF structure. Comparing to the commonly seen 

MDOF structures where a major structure carries several small structures, the proposed method 

provides the possibility of multiple systems with similar sized cantilever beams. This structure is also 

similar to stoppers, which is also used for bandwidth expansion.  

In this chapter, the design concept is firstly described. Then, the theoretical model and simulation 

of the interfered results between the beams are proposed. Experiment results are then presented.   

 

4.1 Design concepts 

The initial intension was to provide a non-contact stopper by using magnets to expand the 

bandwidth. However, magnets do not create nonlinear step changes as conventional stoppers, the 

major beam interferes with the other beams. When the side beams are on resonance, the displacement 

of the side beams would also strike the middle beam. In consequence, the resonance of each beam 

would affect the other and cause a new peak output.  

To investigate, simulation on only the interaction between two beams are firstly performed. The 

two-beam configuration is shown in Figure 4-1(a). Then, another side beam was added into the 

simulation, physical configuration shown in Figure 4-1(b). By designing the distance between the 

multiple beams and also the resonance of the beams. The beam in the middle would give outputs with 
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three peaks, in consequence of the other two vibrating beams. Moreover, if the peaks are close 

together, the bandwidth should be expanded.  

 

 

(a) 

 

(b) 

Figure 4-1 Design concept of the magnetically connected beams 

(a) two beams, (b) three beams 

 

4.2 Theoretical Assumption and Simulation 

For further experiments and simulation parameter references, simple cantilever beams patched 

with piezoelectric materials were made. The beam substrate is based on spring-steel, with two 

different aspect ratios. The tips are loaded with magnetic proof-masses on both sides. The lump 

parameters are experimentally measured and listed in Table 11. The magnet used and its parameters 

are listed in Table 12.  
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Table 10. Geometric parameters of the applied beams. 

 Main Beam Side Beams 

Length (mm) 77 46 

Width (mm) 15 15 

Thickness (mm) 0.3  0.3  

Mass w/ proof mass (mg) 3.7 23.6 (Upper)  

23 (lower) 

 

Table 11. Parameters of the beams applied in experiment and simulation. 

 Middle Beam Side Beams Units 

f0 18.64 13.02 Hz 

f1 18.69 13.05 Hz 

C0 4.5e-8 9e-9 F 

M 4.10e-3 2.36e-2 kg 

  6.74e-3 2.62e-2 N s/m 

KD 187.15 217.75 N/m 

KE 186.15 216.75 N/m 

QM 71.55 34.13  

 4.81e-5 2.771e-5 N/V 
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  Table 12. Parameters of Magnets used in the experiment and simulation. 

 Magnet Factors Units 

Br 0.83  T 

Am 25 mm2 

L 6 mm 

R 5 mm 

 1.256e-6 H m-1  

 

4.2.1 Interaction between 2 Beams 

 To set up the simulation, the beams are firstly modeled in to MCK models. Then the repulsive 

connecting forces, as show in Figure 4-1, has to be modeled. Referencing [55], the repulsive force 

between the two MCK systems can be represented as an additional non-linear spring with coefficient 

k12 for inserted between the systems 1 and 2, as shown in Figure 4-2 (a). The schematic of the beam 

movement behavior is as Figure 4-2 (b). The magnetic force can be derived from (1.3.3), whilst the 

spring formula k12 can be obtained from (1.3.4). The diagram shows the MCK model for magnetic 

force interaction between beam 1 and beam 2 in corresponding to the tip displacements x1, x2 and the 

distance D12, which represents the vertical distance between the two cantilever beams. The distance 

d12, which decides the force, is the summation of x1, x2, and D12. 

The interaction between the systems is first plotted into a block diagram in Figure 4-3 (a). This 

block diagram is then implemented in Power Sim
©

(PSIM), component plot as shown in Figure 4-3 

(b). To make the simulation easier, the interacting force F12 is considered instead of the spring 

coefficient. Afterwards, Matlab©  was used to do the sweep simulation of frequency and varying D12 

is executed to observe the responding tip voltage output.  
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(a)            (b) 

Figure 4-2 Magnetic interaction between two beams 

(a) Modeling by two MCK systems connected with a spring (b) Schematic diagram 

 

Unlike the simple step change for the spring constant in stoppers, when two magnets draw near, 

e.g. on the resonance of one beam, the force in between increases rapidly with the change of d12. The 

variation trend of the coefficient k12 was firstly investigated, to compare with that of the simple step 

change. Figure 4-4 shows the simulation results of the k12 when constant force is given, and the 

vibrating frequency is set at the resonance of beam 1, and off the resonance of beam 2. Where the 

two beams are set 1 cm apart. One can observe the force curve which has a rapid gradient that we can 

nearly assume as a pulse force as the beams draw near, e.g. on the maximum tip displacement. 

Therefore, the other beam which is not resonating would be forced to deform due to these pulsing 

forces. 
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(a) 

 

(b) 

Figure 4-3 Implementation of the MCK model for simulation  

(a) block diagram (b) PSIM model  
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Figure 4-4 Simulation of the magnetic spring coefficient between beam 1 and 2, k12  

corresponding to the changing distances between the magnets d12. Displacement on the lower refers 

to u1, on resonance of beam 1 

 

The 3D plot outcome shows the shift of the resonating frequency of beam 1 (lower frequency) 

gets higher as the distance between the beams comes close. Observing the excited peak influenced 

by beam 2, when the distance between the two beams decreases, both the voltage intensity and the 

peaking frequency increases. It can be more clearly observed in Figure 4-5 (b), where we can see 

that the original curve is lower than that of the influenced one, and the only peaking voltage is on the 

resonance unchanged.  

Beam 2, with a higher resonating frequency, its response is plotted in Figure 4-5 (c) and (d). 

The natural frequency lies between the excited peak and the newly induced resonance. Dimensions 

and parameters of the beam are given in Table 10 and Table 11.  

 



doi:10.6342/NTU201800279

 

 

 

113 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4-5 Simulation results of the 2 beam interaction 

(a) beam 2, frequency shift on voltage intensity (b) beam 1, 3D plot of the voltage output 

responding to the frequency-D12 sweep. The natural frequency response of the beam represented by 

grey colored regions. (c) beam 2, frequency shift on voltage intensity (d) beam 2, 3D plot of the 

voltage output responding to the frequency-D12 sweep. The natural frequency response of the beam 

represented by grey colored regions.  

 

4.2.2 Interaction between 3 Beams 

With three beams, symmetric alignment and asymmetric alignment can be discussed. When 

aligned in symmetric configuration, we mean that the side beams below and above are identical in all 

dimensions including its shape, size, and also the distance between the middle beam. Ideally, the 

response is expected to be similar to that of the two beams, but with a doubled k coefficient. Two 
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voltage peaking frequencies are expected. If three voltage peaking frequencies are desired, 

asymmetric design can be considered: the side beams should be set in different distances to the main 

beam. To reduce complexity, identical beam parameters are used for the two side beams.  

 

 

(a)        (b) 

 

(c) 

Figure 4-6 Interactions between three beams 

(a) MCK model (b) schematic (c) block diagram 
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Similarly, the three-beam configuration is as shown in Figure 4-6 (b). The MCK models of the 

three beams is plotted in Figure 4-6 (a). Figure 4-6 (c) shows the block diagram for setting up the 

PSIM – Matlab simulation. By tuning the distances D12 and D13, we aim to create two additional 

peaks beside the resonance frequency of the middle beam, close enough to merge the three together.  

Figure 4-7 shows the Power SIM simulation configurations.  

  

Figure 4-7 PSIM Simulation diagram for 3 beams 
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4.2.2.1 The Symmetric Alignment 

 To create the symmetric alignment, the two side beams are set with identical parameters. Then, 

we set D12 and D13 in Figure 4-7 to be identical so that the system is symmetric. The middle beam is 

designed to have a different resonance frequency, which is lower than that of the two. It was predicted 

that, the optimal effect would appear when only two targeting resonance frequency f0 and 2f0 exist. 

By the simulation, we can visualize the optimal distance between the beams and how the resonance 

frequency is influenced by the magnetic force.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

   

Figure 4-8 Simulation results for the symmetric 3-Beam alignment  

(a) 3D plot of the middle beam (b) Frequency-Distance plot of middle beam (c) 3D plot of the side 

beams (d) Voltage-Frequency plot on D12=0.072m separate and combined 
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From the 3D plot Figure 4-8 (a), one can observe that there is an additional voltage peak similar 

to that of the two-beam alignment. However, it is noteworthy that there exists an optimal distance 

which the influence is the highest. To compare, we look to the 3D plot showing the output of the side 

beams (Figure 4-8 (c)), there is a small valley on its resonance, where we could clearly inference it 

from the damping when interacting with the middle beam - that the energy is transferred to the middle 

beam. Another difference can be observed in Figure 4-8 (b), one can observe that the resonance 

frequency of the middle beam does not shift with the distance as much as the 2-beam alignment. A 

cross section of the 3D plot on the highest voltage of the middle beam, where the distance between 

the beams is 0.072m, is plotted on Figure 4-8 (d). From this plot, the depression of the middle beam 

output after installing the stopper can be observed. Two peaks for each beam were created, one up 

leveraged by the new natural frequency of the upper beam, and the other frequency slightly raised 

from the middle beam. On the other hand, the side beam is slightly enhanced, and also stricken by 

the resonance frequency of the middle beam. The middle beam, with is designed with higher 

displacement, and thus it also pushes the two side beams to a higher displacement level comparing to 

their own resonance.  

 

Dirac Response 

The Dirac response was also simulated, by providing a pulse force into the system, the ring down 

of the middle beam was observed, with or without the top/bottom beams. Results in Figure 4-9 

showed that the ring amplitude was increased, and the ring time was prolonged.  By integrating the 

power with time within the first 10 seconds, the single beam has an output of 1.0907 nJ. While 

installed in the structure, the output is 1.43 nJ, which is a 1.31 fold enhance. 
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Figure 4-9 Simulation result of the Dirac response 

 

4.2.2.2 The Asymmetric Alignment 

When three beams are set with different resonance frequency or distance, it is possible for us to 

design an output curve with three peaks. Thereby, the variables can be the resonance frequency and 

also the distance. To slightly tune the resonance in experiment, one can alter the resonance frequency 

by simply adding additional proof masses on the tip of the beam. Another method is to relocate the 

proof masses.  

Firstly, to keep the simulation simple, the distances of D12 and D13 are kept identical, whereas 

the proof mass is adjusted to tune the resonance frequency. As an example simulation and to distribute 

the resonance frequency, the M value of each beam are: 21, 15, and 4 g, based on the spring steel 

beam structure of the middle beam, which is 75x15x0.5 mm in length, width and thickness. The 

simulation results are shown in Figure 4-10. On the left, the connected beam output are shown, whilst 

on right the  Figure 4-10 (a) shows the 3D plot showing the resonance shift and amplitude change 

corresponding to the different inter-beam distances. From Figure 4-10 (b) one can have a bird view 

of the frequency shift. 
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For a clear vision of the effect in the middle beam, it is cross-sectioned in D12=0.02 m, and 

shown in Figure 4-10 (c). The “unconnected sum” curve indicates the voltage summation of the 

beams when they are not magnetically connected. M-Connected Sum, on the other hand, is the sum 

of the voltage output from the magnetically connected beams. The first resonance has a strong 

influence on all three beams, while the second, dominated by beam 2, is observed weaker. From 

which, one can observe that the middle beam (Beam 1, loaded with 21 g proof mass) is subjected to 

both side beams (Beam 2, proof mass 15 g, and Beam 3, loaded with 4 g), but the influenced output 

was relatively low compared to resonance 1. The third resonance was dominated by the beam 3. 

Observing the output, beam 2 and beam 3, which are smaller in mass, is unable to provide a higher 

influence comparing to beam 1. 

Operating with beam 1 with a small mass and beam 2 and 3 with a higher could solve the problem. 

However, beam 1 would own a higher frequency comparing to the other 2, and much higher when 

sandwiched between the two beams. The operating frequencies would be too far to be considered.  

 

(a) 
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 (b) 

 

(c) 

Figure 4-10 Simulation results for asymmetrically aligned 3 beam array 

(a) 3D plot of frequency – distance –voltage where m1=21, m2=15, m3=4, g=0.1g, and identical 

beam lengths (b) Bird view showing the frequency shift (c) cross section of D12=D13=0.02m  

 

To avoid the problem mentioned, and to create an evenly distributed output, another 

configuration was designed. The beams have their proof mass kept identical. As shown in Figure 4-11, 
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the proof mass of beam 1 was moved to the middle of the beam, keeping identical beam length. In 

this way, beam 2 and 3 has enlarged force exerted to beam 1, which is considered shortened. On the 

other hand, beam 1 has its force reduced. Simulation results are shown in Figure 4-12. Figure 4-12 

(a) shows the 3D plot of the three beams, connected and operated alone. From the right of Figure 4-12 

(b), one can observe that the resonance frequency of beam 1 shifted, and became higher than beam 2 

when they are operated separately. This enables beam 2 to dominate the first resonance, and beam 1 

the second. From the cross section plot shown in Figure 4-12 (c), one can observe that the amplitude 

of each resonance is more evenly distributed. 

 

Figure 4-11 A new configuration for 3-beam alignments 

 

 

(a)
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(b) 

 

(c) 

Figure 4-12 Simulation results for the modified beam 1 

(a) 3D plot of frequency – distance –voltage where m1=21, m2=15, m3=4, g=0.1g, m1 placed 25 mm 

from the tip and displacement =D12=D13 (b) Bird view showing the frequency shift (c) cross section 

of D12=D13=0.0262m 
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To shift the location of different peaks, in our example, we could also fix D13, for example on 

D13=0.035m, and move only D12. In this way, one can define the operating bandwidth, as shown in 

Figure 4-13. The first and third resonance is relatively stable comparing to the shifting second 

resonance.   

 

 

Figure 4-13 Bird view of frequency – distance –voltage for one fixed distance 

where m1=21, m2=15, m3=4, g=0.1g showing the frequency shift when D13 is fixed, m1 placed 25 

mm from the tip.  

    

To bring the resonance closer, with m1 =14 g, m2=10 g, m3=4g , the cross section on D12 

=D13=35 mm is shown as Figure 4-14. The overall output is increased, while the bandwidth is also 

increased. 
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Figure 4-14 Cross section of D12=D13=0.035 m;  

m1=14, m2=10, m3=4, m1 placed 35 mm from tip. Driven on 0.1g. 

  

4.3 Experiment  

Figure 4-15 Experiment setup for magnetic connected beam array 

4.3.1 Experiment Setup 

Spring steels were used as the substrate of the beams. The bonded piezoelectric patches on beam 

were PZT-KA-2 patches from Eleceram Technology Co., Ltd. The experiment setup is depicted in 

Figure 4-15, arrow pointing to the data flow direction. A shaker was used to provide vibration to the 

overall system, which consisted of three beam clampers, installed on threaded rods, in vertical, to 
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provide Y directional rails. An X rail was also designed so that it can be easily tuned according to the 

beam length. A Data Acquisition Card from National Instrument (NI-DAQ) was used as an interface 

to instantly provide driving signals and record responding outputs in to the laptop. Beam outputs were 

directed to the DAQ card, and in the same time an oscillator for human observation. The driving 

signals from the DAQ card were to be amplified through a power amplifier so that there would be 

enough driving power for the shaker. To manipulate the NI-DAQ card, an NI-LabVIEW program is 

designed, to perform in-situ driving, monitoring, recording, and quick analyzing.  

 

4.3.2 Experiment results for symmetric alignment of 3 beams 

With beam 2 and 3 identical, the mass of 23.62g each, larger than that 3.7 g of beam. As shown 

in Figure 4-16 (a), the middle beam has its resonance raised to 26.8 Hz, and it is influenced by the 

two beams on the lower frequency, which is 13.5 Hz. With this configuration, beam 2 and 3 holds a 

lower resonance, which strikes the middle beam. Beam 2 and 3 are heavy loaded and therefore the 

displacements are less affected by the light-weighted beam 1, Figure 4-16 (c). On the other hand, 

the displacement of beam 1 is also restricted by the heavier beam 2 and 3, resulting in the reduction 

of voltage output (Figure 4-16 (b)). Results in this experiment showed that, the two peaks were 13.3 

Hz apart, and the bandwidth was not integrated to wide-band, the ringing was prolonged as the 

simulation results in Figure 4-9. When the system is applied with Dirac drive, the ringing amplitude 

was greatly enhanced by the additional beams due to the frequency harmonic match of the devices. 

This characteristic is ideal for up conversion and also non-periodic applications.  
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(a)         (b) 

 

(c) 

Figure 4-16 . Experimental results symmetric 3 beam alignment  

(a) single middle beam with middle beam within the configuration of stopper beams (b) Voltage output 

responses with respect to a frequency scan (c) the transient response to pulse force inputs, (top) middle beam 

output 
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Table 13. Beam Parameters for asymmetric 3-beam experiment 

 Description Units 

Beam Dimension Spring-Steel  

l (length) 75 mm 

w (width) 15 mm 

b (thickness) 0.5 mm 

Proof Mass 1 (l*w*b) 20*10*5 mm3 (per piece) 

Proof Mass 1 7e-3 kg 

Proof Mass 2  

(*b) 

10*7 mm 

Proof Mass 2 

(mass) 

3e-3 kg 

Proof Mass 3 

(*b) 

5*2 mm 

Proof Mass 3  

(mass) 

3e-4 kg 
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Table 13. Beam Parameters for asymmetric 3-beam experiment (cont’d 1) 

 Description Units 

Piezoelectric Patch 

Dimension 

PZT-KA2 

(Eleceram Technology Co., Ltd. ) 

l (length) 6 Mm 

w (width) 15 Mm 

b (thickness) 0.13 Mm 

Lump Parameters  (Beam 1’ + Proof mass 

7.3 g) 

 

f0 11.54 Hz 

f1 11.58 Hz 

C0 9.65e-9 F 

M 10.1e-3 Kg 

  2.52e-2 N s/m 

KD 145  

KE 144 N/m 

QM 

k2 



29.12 

0.0069 

1.27e-6 

N/m 

 

N/V 
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Table 13. Beam Parameters for asymmetric 3-beam experiment (cont’d 2) 

 Description Units 

Lump Parameters  (Beam 2’ + Proof mass 

7.3g) 

 

f0 12.09 Hz 

f1 12.13 Hz 

C0 8.23e-9 F 

M 10.5e-3 Kg 

   1.79e-2 N s/m 

KD 151.87 N/m 

KE 150.88 N/m 

QM 

k2 

 

44.68 

0.0066 

3.71e-5 

 

 

N/V 
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Table 13. Beam Parameters for asymmetric 3-beam experiment (cont’d 3) 

 Description Units 

Lump Parameters  (Beam 3’ + Proof mass 

7.3g) 

 

f0 11.94 Hz 

f1 12.10 Hz 

C0 10.72e-9 F 

M 10.8e-3 Kg 

  2.23e-2 N s/m 

KD 46.67 N/m 

KE 45.67 N/m 

QM 

k2

 

36.72 

0.0214 

4.82e-5 

 

 

 

4.3.3 Experiment results for asymmetric alignment 

For the asymmetric alignment, three identical beams made of spring-steel is made. The beams 

are also designed with the identical aspect ratio. In the experiment, different proof masses are loaded. 

As a standard, identical proof masses using 7.3g are used for defining the lump parameters for each 

beam. The beam parameters obtained from the experiment are listed below in Table 13. All 

experiments done in this section are driven under 0.04g.     

 



doi:10.6342/NTU201800279

 

 

 

131 

4.3.3.1 Original Configuration 

The first experiment was performed with identical beam lengths and distances in between 

D12=D13=10 mm, and the different proof masses of 10.3, 14.3, and 8.27 g were loaded for beam 1, 2 

and 3. The results are shown in Figure 4-17 (a-d). When separate beams are tested, the natural 

resonance of each beam is 9.7, 8.4, and 10.5 Hz each, for Beam 1, 2 and 3. As shown in Figure 4-17(a-

c), when connected, the new resonance becomes 9.4, 13.2 and 18.2 Hz, in ascending order (not in 

beam order). Beam 1, subjected to both beam 2 and 3, has three peaking outputs. Observing beam 2 

and beam 3, one can indicate that the first resonance is attributed to beam 2, and the second to beam 

3. Observing the output of beam 2 and 3, we can also discover the coupling of beam 3 is much higher 

than that of the beam 2.  

To compare the beams, the tip displacement is used instead of the voltage output since each 

beam has a different voltage / tip displacement ratio. Figure 4-17 (d) shows the displacement 

summation of the 3 beams when they are operated separately in the red line. The blue curve with box 

indicates the summation of the tip displacements from the magnet connected (M-Connection, as noted 

in the figure) beams. Results show that the displacement is enhanced, whilst the operating band not 

merged together. It is also noteworthy that the total displacement between the second and third peak 

is kept above 0.5mm.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-17 Experiment results of identical distances between beams. D12=D13=10mm. 

Voltage output is correspondent to the scanning frequency. (a) Beam 1 loaded with10g, connected 

using magnetic forces and operated separately. (b) Beam 2 loaded with 14.3g, connected using 

magnetic forces and operated separately. (c) Beam 3 loaded with 8.27 g connected using magnetic 

forces and operated separately. (d) Sum of the voltage output of Beam 1-3, connected together or 

operated separately. Driven on 0.04g. 

  



doi:10.6342/NTU201800279

 

 

 

133 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-18 Experiment results of identical distances between beams. D12=D13=15mm. 

 Voltage output is correspondent to the scanning frequency. (a) Beam 1 loaded with 21g, 2 cm away 

from the tip, connected using magnetic forces and operated separately. Two small magnets of 0.3 g 

are used as the force receptor (b) Beam 2 loaded with 3.3g on tip, connected using magnetic forces 

and operated separately. (c) Beam 3 loaded with 8.27 g on tip, connected using magnetic forces and 

operated separately. (d) Sum of the voltage output of Beam 1-3, connected together or operated 

separately. Driven on 0.04g. 
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4.3.3.2 Modified configuration with proof masses shifted to the 

middle 

The second configuration (shown in Figure 4-11) was used to increase the coupling of the beams 

and to draw the resonating frequencies closer: beam 1 was loaded with a proof mass of 14 g, 2 cm 

away from the tip of the beam, and the tip was loaded with a pair of small magnets with the mass of 

only 0.3 g each. The magnets on tip serve as the force receptor, which can enhance the force exerted 

to the beam by using the lever principle. Placing the major proof mass in the middle of the beam can 

be assumed as a shorter beam. Thus, to keep the resonance frequency low, the proof mass was set 

much greater than the other two. To suit the resonance frequency of beam 1, the proof masses of beam 

2 and 3 are set smaller so that the resonance is raised. Beam 2 is loaded with 3.3 g, while beam 3 with 

6 g. D12 and D13 is set to be 1.5 cm. Results show that beam 2 and beam 3 also was affected by beam 

1, and the voltage in between the peak was elevated. The first two peaks were drawn closer. Within 

the bandwidth, the total displacement level did not drop below 0.4 mm. The comparison of beam 1 

before connection and after connection can be found in Figure 4-18 (a). As for beam 2 and 3, they 

can be found in Figure 4-18 (b) and (c), respectively. The voltage of the 3 beams were summed and 

then compared, before and after the magnetic connection. The voltage was also elevated, with 

however the three operating bandwidth also apart.   

The third experiment shortens Beam 2 and 3 are then also shorten, in the way identical to the 

previous experiment. The proof masses are shifted to 25 mm away from the tip, 21.3 and 14.3 g are 

loaded for beam 2 and 3 each. The quality factor of beam 2 and beam 3 are lowered when they are 

operated separately. As consequence, the voltage output was also decreased. During this experiment, 

beam 1 is loaded with a relatively small mass, which is different from the experiment afore. Results 

are shown in Figure 4-19. Figure 4-19 (a) shows that beam 1, which is suppressed by the two heavier 

beams, provided a relatively low energy output when it is connected with the other beams. Beam 2. 
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Figure 4-19 (b) shows that the output voltage of beam 2 is greatly enhanced. The voltage output 

between peak 1 and 2 was kept above 0.8 V between the two peaks of 13.1Hz and 16.4 Hz. Beam 3 

has its displacement enhanced, as shown in Figure 4-19 (c). To compare the improvement, the 

displacement of all three beams are then summed. Figure 4-19 (d) shows the summation results, one 

can observe that the overall displacement is enhanced, in spite of the band width separation. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-19 Experiment results of identical distances between beams. D12=11mm, D13=17mm.  

Voltage output is correspondent to the scanning frequency. (a) Beam 1 loaded with 6g, on tip, 

connected using magnetic forces and operated separately. (b) Beam 2 loaded with 21.3g, 25mm 

from tip, connected using magnetic forces and operated separately. (c) Beam 3 loaded with 14.3 g, 

25mm from tip, connected using magnetic forces and operated separately. (d) Sum of the voltage 

output of Beam 1-3, connected together or operated separately. Driven on 0.04g. 
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Results showed that, despite the quality factor of beam 2 and 3 are raised again, the voltage output 

was greatly enhanced. Observing Figure 4-19 (d), with similar 1st and 2nd peak voltages of Figure 

4-18 (d), the valley displacement in between peak 1 and 2 was increased from 0.6 mm to 2.2 mm.  

 

Pulling Close the Resonance 

The subsequent experiment is performed with D12=13 and D13=9 mm. Beam 1 is loaded with 

14g, 21mm away from the tip. Two receptors are also used in this configuration. Similar to that of 

the experiment 2, beam 2 and 3 are loaded with less weight: 10.3 g and 6 g, each. Results shown in 

Figure 4-20. Figure 4-20 (a) shows that, in this setup, beam 1 is not enhanced in voltage, but it is able 

to provide all three peaking voltages outputs similar to its original output. Beam 2 has its voltage 

output enhanced by the striking of the other beams in the first peak frequency, as shown in Figure 

4-20 (b). The output between the first two peaks (10.7Hz, 13.9Hz) is kept above 0.7 volts. As for 

beam 3, shown in Figure 4-20 (c), the peak output was reduced, but the overal range is also increased. 

The output between the second and third peak (13.9Hz, 26.5Hz) was also kept above 0.6 V. Figure 

4-20 (d) shows the sum of the beam tip displacements, connected and separated. As one can observe, 

not only the displacement is enhanced in Figure 4-20 (d), between the peaks of 10.7 and 26.5 Hz, the 

total displacment was kept above 1.24mm, which is the lowest point.   

To draw the first two peaks near, a 7g proof mass was added to beam 1, increasing the new 

proofmass of beam 1 to 21g. The pair of 0.3 g receptor is also used. Figure 4-21(a) shows the affected 

result of beam one with the blue boxed curve. Comparing to the unconnected beam, The voltage level 

is kept, but two other peaks are also created. The output level of beam 2 is elevated, the second peak 

in the plot, is partially merged with the first, as shown in Figure 4-21 (b). As shown in Figure 4-21 
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(c), three voltage peaks can also be found in the output of beam 3. Similar to the previous result of 

Figure 4-20 (d), the displacement level of a single peak is kept, while additional resonance is created.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 Figure 4-20 Experiment results of identical distances between beams. D12=11mm, D13=17mm.  

Voltage output is correspondent to the scanning frequency. (a) Beam 1 loaded with 6g, on tip, 

connected using magnetic forces and operated separately. (b) Beam 2 loaded with 21.3g, 25mm 

from tip, connected using magnetic forces and operated separately. (c) Beam 3 loaded with 14.3 g, 

25mm from tip, connected using magnetic forces and operated separately. (d) Sum of the voltage 

output of Beam 1-3, connected together or operated separately. Driven on 0.04g. 
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The first and second peaks are drawn near as expected, creating a bandwidth similar to the sum 

of the beam displacement when driven separately. The displacement of the second peak was also 

higher than the beams operated separately, not to mention the additional third peak voltage. Between 

the three peaks, the total displacement of the interfered beams was kept above 1.54 mm.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-21  Experiment results of identical distances between beams. D12=13mm, D13=9mm.  

Voltage output is correspondent to the scanning frequency. (a) Beam 1 loaded with 21g, 21 mm 

from tip, connected using magnetic forces and operated separately. (b) Beam 2 loaded with 10.3g, 

ontip, connected using magnetic forces and operated separately. (c) Beam 3 loaded with 8.27 g, on 

tip, connected using magnetic forces and operated separately. (d) Sum of the voltage output of 

Beam 1-3, connected together or operated separately. Driven on 0.04g. 
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Evenly Distributing the Resonance 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-22 Experiment results of identical distances between beams. D12=131mm, D13=9mm.  

Voltage output is correspondent to the scanning frequency. (a) Beam 1 loaded with 21g, 21 mm 

from tip, connected using magnetic forces and operated separately. (b) Beam 2 loaded with 3.3g, on 

tip, connected using magnetic forces and operated separately. (c) Beam 3 loaded with 8.27 g, on tip, 

connected using magnetic forces and operated separately. (d) Sum of the voltage output of Beam 1-

3, connected together or operated separately. Driven on 0.04g. 
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The last experiment was done to evenly disperse the peak voltages. Beam 1 and 3 are kept 

identical to the experiment of Figure 4-21, while the proof mass of beam to is reduced to 3.3g. This 

brings the first resoance peak to the middle, from 10.35 Hz to 17 Hz. Figure 4-22 shows the results 

of the last experiment. Beam 1, indicated in Figure 4-22 (a), is affected by beam 3, forming the first 

peak. The second peak was lower, due to the small proof mass of the second beam. And third, the 

resonance of its own. One can also observe that, comparing to its original output when not connected, 

the new output creates also new peaks for beam 1. Beam 2, whith its new resonance frequency at 

16.8Hz, is also affected by the other beams. Between the peaks of 17Hz and 23.5Hz, the voltage level 

was also kept above 0.51 V. Beam 3, shown in Figure 4-22 (c), has also non-falling output between 

11.4 Hz and 17Hz, the voltage is kept above 0.61V. As for the displacement, Figure 4-22 (d) shows 

that the overal displacement is kept above 1.56 mm, between the peak freqencies 11.4 and 23.5. 

Comparing to the beams operated separatly, the total displacement is not only increased, the lowest 

displacement between the peaks are also elevated.   

 

5.4 Discussion 

For the 3-beam configurations, experiment showed similar trend to the simulation. However, the 

ideal output of connecting all bandwidths was not realized, accusing to the selection of the magnets. 

The mass of the magnets cannot be easily selected with identical magnetic flux. The only way to tune 

the resonance frequency and not altering the force is to shift the location of the magnets. Adding 

magnets of different size can alter the proof mass but the magnetic force of different piece is not 

constant. Therefore, it is difficult for one to control the mass and the magnetic force to be identical to 

the optimized solution of the simulation. 
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 Experimentally, the output voltage enhanced in some beams are much higher than what we 

obtained in the simulation. During simulation, when the distances between the beams are placed too 

close, severe electric signal oscillation occurs, and the output is out of scale. However, in practical 

experiments, the mechanical structure hinders the device from over swinging, with however increased 

output levels. The overall power was able to be increased in most configurations, which is similar to 

the results of the simulation.  

 Experiment for different mass distributions on the three beams was performed. A massive beam 

1 would cause the effects of beam 2 and 3 to be small on beam 1. Beam 2 and 3 will be efficiently 

induced by the beam 1. But the influenced peaking frequencies from beam 2 and 3 on beam 1 will 

also be limited. Vice versa, if beam 2 and 3 are too massive comparing to beam 1, the displacement 

of beam 1 affecting beam 2 and 3 was limited. As the new solution shown in Figure 4-11, the proof 

mass was moved to the middle of the beam 1, while the tip, is mounted with a force receptor. This 

would enable beam 1 to receive an enlarged force, keeping the displacement. On the other hand, 

despite the force applied to the beam 2 and 3 are reduced, the displacement of beam 1 was enlarged 

mechanically by the beam. 

 When it comes to the bandwidth, it is difficult to assign to the output because the output shape 

does not have a standard. However, observing each beam with connection, additional voltage peaks 

with considerable levels are created. One should also note that, the up-levered valley outputs between 

the 3 peaks, enables a better chance of usable power.  
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Chapter 5. Conclusion and Future work  

5.1 Hybrid Switches 

 A mechanical-electrical hybrid self-powered SSH technique was proposed using reed switch. 

The proposed switch serves also as a displacement detector to enable the switch driving in the SSH 

technique. Among the various proposed methods, three are considered the most feasible for practical 

use.  

 Compared to the electric self-powered switching techniques which create additional impedances 

and also power losses, the triggering of the switch is mechanical. However, there are still some factors 

that induce losses: the chattering. The energy cost of the chattering is determined by the 

characteristics of the switch and also the arrangement of the SSH technique. P-SSHI showed lower 

loss of 1.17W out of the optimal power harvested from externally powered 42.26 W. For S-SSHI, 

the loss is 3.82 W loss out of 46.59 W. Even with a higher loss, the power output of the S-SSHI is 

still higher than that of the P-SSHI.  

 The hybrid switch is also hindered from its mechanical characteristics, displacements too high 

or too low causes energy losses. One most important defect is that, when the system is connected in 

S-SSHI and the displacement is not reaching the PI zone, zero energy can be harvested. In case of 

random displacements, P-SSHI can be considered. When the displacement is over-driven, the 

switching time difference should be considered. Of a switching difference of 0.6 rad, more than 30% 

of energy loss can be caused in both S-SSHI and P-SSHIs.   

  

5.2 Magnetically Connected Arrays 

The M-MDOF creates different peak outputs in a singular beam. Despite the optimal operating 



doi:10.6342/NTU201800279

 

 

 

143 

frequency is still depending on the beams, the output in between is also up-levered. By which, it also 

sidesteps the highly stressed structure in the MDOF designs where a mother system carries multiple 

child systems. Comparing to the mother-child system, the multiple beams can also provide resonance 

frequencies closer to each other. 

As a beam array, the circuitry for interface circuits should be highly concerned for the best 

efficiency. In previous works, researchers find that different connections will affect the output 

characteristics of multiple beam connection. Thus, another connecting circuit was referenced to 

connect the multiple beams together without interference between the beams.  

Experiment results also showed that the overall output power was increased using the 

magnetically connected beam array using the asymmetric configuration.  

For practical applications, the symmetric three-beam design has also shown the experiment 

result of prolonged ringing. It indicates a promising characteristic for up-converting methods and also 

random excitations in longer time gaps (lower than 1 Hz), which can also be further more discussed. 

 

5.3 Summary (Impact) 

In this work, two new techniques were proposed. The techniques are simple, easy to perform, 

but efficient. First, the non-contact SSH switch based on reed switch was proposed. This new switch 

configuration can be driven in ultra-low power conditions, such as 1~2 W. Under the low power 

supplied condition, the switch with LC and SCR debouncers showed high efficiency of more than 

99% comparing to the active driven S-SSHI. Secondly, a new broadband technique inheriting the 

merits of MDOF and beam array is proposed. The technique greatly enhanced the output voltage of 

the beam array, and is also able to create broader output ranges in a single beam. The technique was 

also found to enhance beam ringing, which is an optimistic choice for up conversion or pulse driven 
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applications. Moreover, comparing to MDOF designs, the stress is relieved for that the device does 

not have mother-child structure, while all three beams are connected together via magnetic force. 

 

5.4 Future Work 

5.4.1 The hybrid switches on miniaturized systems 

As our ultimate goal is to apply the system in to Micro-PEH systems. The SCR hybrid switch 

method presented in section 4.1.3.3 was then applied on a micro-energy harvesting system for a 

preliminary experiment for the future work.  

The micro-piezoelectric harvester is a stainless steel based device, fabricated by aerosol 

deposition to create a film of 10 m [94]. The device is fabricated with the process proposed in [10], 

with a relatively low power output of approximately 10.56 W unrectified. The low output enabled 

us to inspect and assure the method’s feasibility to be applied in limited energy resources. P-SSHI 

was used in this experiment, with 59170 sub-miniaturized over-molded reed switches up and below 

the beam. Small magnets were bonded on the tungsten proof mass below the beam, and also on the 

top of the beam. The P0130AA SCR was used to snub the chattering. Results show that the SSHI 

correctly works even with a low voltage output of the piezoelectric device, which is 5.2 Vp-p. With 

the piezoelectric output of 5.2 V peak to peak, the P-SSHI was able to lever the voltage to 22 Vp-p.  
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Figure 5-1 Experiment setup of the Micro PEH with reed switch SSH  

 

The power experiment result showed that the output power from the reed switch based P-SSHI 

was 8.53 W, in comparison to the power output of 6.63 W of the SEH. The driving conditions are 

under the resonance frequency of 91.4Hz, on acceleration of 1.302g. The beam displacement 

amplitude was 1.6 mm peak. With the optimal load of the device 300 kΩ, and the AC power output 

(unharvested) of 10.56 W. This experiment showed the feasibility of our proposed technique under 

ultra low energy conditions.  

   It is proved successful when the hybrid switch is applied in P-SSHI. However, detailed studies 

for system packaging and circuitry losses are yet to be investigated. 
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(a)          (b) 

 

(c) 

Figure 5-2 Experiment results of SCR P-SSHI using micro piezoelectric energy harvester  

(a)SEH waveform (b) P-SSHI waveform (c) comparison of harvested power 

 

5.4.2 Magnetically connected beam arrays 

Despite the experiment showed some difference to the simulation, the trend is similar. 

Discussions for different mass ratios or beams with different quality factors may also improve the 

performance of the setup. In the future, the design can also be miniaturized for micro-PEHs. On bulk 

or miniaturized systems, the prolonged ring time of the beams can be also furthermore studied, for 

the sake of random frequency excitations and also up-conversion applications. 

To combine the output power for the beam array, the circuit referencing [95] was proposed, the 

power of simulation Figure 4-14 was applied with the OSECE circuit to sum up the harvested energy. 
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The OSECE circuit was operated separately and also combined as the Figure 5-3(a) shown below. 

Results are shown in Figure 5-3(b). Results showed that the current-based summing circuit suffers 

from some losses, and that the peaking frequencies does not appear on the OSECE harvested power. 

SEH was used as a comparison standard. Observing the results SEH, the multiple beam effects were 

kept, while on OSECE, the optimal power only shows on the tuned resonance, but not the other peak 

voltages. There are several possibilities that may lead to this result and can be further discussed: 

Firstly, the SSH techniques, which is based on extracting the natural resonance frequency may not be 

sufficient for passively driven system like what was proposed in this work.   

 Despite the good summing effect of the OSECE circuit, the harvested circuit output was limited. 

Another possibility can be referred to the simplified model of the system may not be precise enough 

to resemble the non-linearity. Further experiments for circuitry can be performed to understand.  

 

(a) 
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(b) 

 

(c) 

Figure 5-3 Circuit simulation for summing up the harvested power  

(a) circuit diagram of the magnetically connected beams, using the circuit proposed by [95] (b) SEH 

harvested power (c) OSECE harvested power  
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