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Abstract

There are three parts of this paper.

The first part we give an introduction of Kéthe Conjecture, and list some
properties of Jacobson radical.

The second part we go through some results of Krempa, to see some equivalent
statements of our conjecture.

Finally, we will see some related topics of Kéthe Conjecture.

In this paper, the word “ring” always means an associative ring, but may not have

an identity.
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(- )Introduction

(1.1) Kothe Conjecture

Kothe Conjecture ¥_a %™ 4% ¥ a2 - » 2 5 A f2id> v 51930
£ AR 15 7 Gottfried Kothe 4% 41 » H 5 {2 5 % W 4caf » AP g+ i

T gt

Kothe Conjecture [* 4= 2 » 11T f2 % K.CJ:

In any ring, the sum of two nil left ideal is nil.

PR T o e BRI EGE S A A - B R sk B
FhBREES 2 o DEPAPEF LS AT pNA B

1. In any ring, the sum of two nil two-sided ideal is nil.

B

[Claim]: Let R be a ring,and I be a two sided ideal of R ,then R is nil
if and only if both R/ and I are nil.

“only if” part is obvious, it suffices to show the remaining part.

Suppose that both R/I and [ are nil, then given any x € R, there is

a positive integer n such that x" € L.
Since I is also nil ,there is a positive integer m such that (x")™ = x"™
= 0, that is,x is a nilpotent element in R.That is,R is nil.
Now return to our goal, given nil two sided ideal [; ,I,, we have, by
[somorphism Theorem, that
L+, L
L, Lnl™

()

I +1,

The right hand side of (*) is nil by the claim above,and hence
1

is nil,again by the claim,I; + [, is nil.

2. Inany ring, the sum of two nilpotent left ideal is nilpotent, and hence, is nil.

ECAL

Let A and B be two nilpotent left ideals of a ring R, then there are positive

1
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integers m and n such that
A" =B"=0

Now consider

(A + B)m+n=1 (%)
Expand each term of(x),each term is of the form X;X, ..X,;m_1, Where
X; € {A,B},for all i=1,2,..,n+m— 1.
LA BEEIEY > T  mBASLnBBERELARZ £ntm-1)
Since A and B are leftideal, X;X; ...X, 1m—1 € A™, or A™R,or B",or B"R,
each of them are zero.So we get that (A + B)™*"~1 =,

.

(KC)IIZ_J | TEL ‘1(]__4 j’$ _§ ’ /{K@]ﬁﬁg‘bﬁ ; s FFB%fJ‘/\—J'ji'Z ﬂﬁ'ﬁ‘. , 'qu_(
B P\’?i Pl B hE R AR EF AP B oA e R
’3.)";?'1‘1—?]51 ’E,I?Faﬁﬂ'?j?t

By = 3R

(1.2) Jacobson radical

d 2% 2 38A ehE W 4ciE ¢ * 3| Jacobson radical k%l F] o A fpt - T
Jacobsonradical sk A2 F o ewi A P 0 KT £ [1]% - R PP F

Definition: Let R be a ring, the Jacobson radical of R, written as J(R), is defined by
J(R):=NAnn(M)

, where the intersection runs over all irreducible left R-module M. If R has no

irreducible left R-module, then we put J(R)=R.

(Note: Ann(M):={a€R: am=0, for all meM.})

Definition: Let R be a ring, a left(right) ideal A of R is said to be modular if there is
an a€R such that x-xa€A(x-ax€A) for all x€R.

BTG - T g B enlh
B L > Jacobsonradical & 4 =+ »
Proposition1.2.1: J(R):=NAnn(M)

, where the intersection runs over all irreducible right R-module M.

£ % > Jacobsonradical ¥ ' * maximalideal X %|3] > A ¥ &4 =+ 5 T
Proposition1.2.2:
1. J(R)= NA, where the intersection runs over all maximal left ideals of R
which are modular.

2. J(R)= np, where the intersection runs over all maximal right ideals of R

2
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which are modular.

7 PFig * % k%3] Jacobsonradical 3 & o T - B A

Definition:

1. Anelement a€R is said to be left-quasi-regular (l.q.r) if there is an b€R such
that a+b+ba=0.

2. An element a€R is said to be right-quasi-regular (r.q.r) if there is an b€R such
that a+b+ab=0.

3. An element a€R is said to be quasi-regular (q.r.) if it is both left and right
quasi-regular.

4. Aleftideal of R is left-quasi-regular if each of its element is.

5. Arightideal of R is right-quasi-regular if each of its element is.

@ Jacobson radical 3 /4 e F o LB E S L 4

Proposition1.2.3:

1. J(R) is a left-quasi-regular left ideal of R and contains all the left-quasi-regular
left ideals of R.

2. J(R) is a left-quasi-regular right ideal of R and contains all the right-quasi-
regular right ideals of R.

AT - Y H 2
If a€R is nilpotent, then a™ = 0, for some m € N. Put b= —-a+a? — a3+
-+« + (=1)™"1@™~1 Then by a simple calculation, we have a+b+ab=0=a+b+Dba.

J&3& ¥ Proposition1.2.3 2 i v 12 {8 1) - B iaih:
Corollary1.2.1:
If I is a nil left(right) ideal of R, then IS](R).

e E A B A B
Proposition1.2.4:
If Ais an ideal of R, then J(A)=](R)NA.

Proposition1.2.5:
J(My(R)) = M, (J(R)).

(1.3) Kothe Conjecture and Jacobson radical.

2 A g ow kg Kothe Conjecture @ % — B d (L) dnwdwme g 0 o
p

d 3t % i3 nilpotent left ideal 4r 4= % :# &_nilpotent » (K.C)¥ 1248 5 B4E } dt
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B oo

% = B ¥ 12 j¥_Jacobson radical mb{’;‘rﬁ 41 > d Corollary1.2.1 » 2% i 4eig 55 [ A
— B nil leftideal, P] IS]J(R) -

BBk 5 @ B nilleftideal A B> Bld Corollaryl.2.1 » 3% i &g ACJ(R)&2
BSJ(R) » #714 A+BC]J(R) » iz % P Jacobson radical #t nil left ideal i 5 % &
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(= )Main Theorem
TR A& £ [2] 0 P - & B Kothe Conjecture ch% i it o

(2.1)

BANPASE L BLE- B RO

(KCH*® i it iz &, — B ringR ¥ 1% B nil leftideal 58 F 5 nil » jL
FlIEBRAA P LR HRICU o - Bp AR L BRARE A
T Y I LT

In any ring, the sum of two nil left ideals is nil.

In any ring, the sum of two nil right ideals is nil.
APAFEPEFREDTR > P v ArHL LR

BAMEHE D
LemmaZ2.1.1
Let R be aring, then R has no nonzero nil left ideal if and only if R has no nonzero

nil right ideal.

# P : Suppose that R has a nil left ideal A, pick x#0 in A, and consider the right
ideal xR+7Zx, xR+Zx#{0} since x€ xR+Zx

Let mx+xre€ xR+Zx ,the element mx+rx€A, so Ine€N such that (mx + rx)" = 0,
then (mx + xr)"*! = x(mx + rx)"*(m + r) = 0. This implies that xR+Zx is a
nonzero nil right ideal of R.

The other part is similar.

LemmaZ2.1.2

Let R be a ring, the following statements are equivalent:

(1) Every nil left ideal of R is contained in a nil two-sided ideal of R.
(2) Sum of two nil left ideal of R is nil.

AL

(1)=(2) is trivial.

(2)=(1) Consider

1=

,where the sum is taken all over the nil left ideal of R.
By assumption, | is a nil left ideal, we claim that I is a two-sided ideal of R.
Let reR ,then Ir is a nil left ideal of R and hence Ir€], for all r€R, i.e. I is a two-

5
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sided nil ideal of R, and AZ], for all nil left ideal A of R.

LemmaZ2.1.3
Let R be aring, A be a nil left (resp. right) ideal of R, and I be a nil two-sided left
ideal of R, then A+ is a nil left (resp. right) ideal of R.
ECAA
R

Consider the ring ﬁzT,and let x+reix+1 ,xeA ,rel

Then X+r =X in R since A is nil,so 3n € N such that X+tr =x"=x1
=0 in R.i.e. (x+r)" €l ,but since I is nil,so 3m € N such that
[x+1)"]™ =0 ,i.e.x+r is a nilpotent.i.e.A+1 is nil.

Proposition2.1.1
The following statements are equivalent:
(1) In any ring, every nil left ideal is contained in a nil two sided ideal.

(2) If R is a ring without nonzero nil two-sided ideal, then R has no nil left ideal.

ECALLE
(1)=(2) is trivial.
)=

Let R be aring, and let A be a nil left ideal of R, consider

1=Z]

,where the sum is taken all over the nil two-sided ideal of R.
Then A+1is also a nil left ideal of R by LemmaZ2.1.3, hence

- A+
A=

— R
is a nil left ideal of the ring R = T

Note that R has no nonzero nil two — sided ideal and hence A
= 0 by assumption.
i.e. A+IC], so ACL.

AZLI P EHRFES S v mEBE LIRS AP
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Proposition2.1.2:

The following statements are equivalent:

(1) In any ring, the sum of two nil left ideals is nil.

(2) In any ring, the sum of two nil right ideals is nil.

ECA A

If (1) is true, then by LemmaZ2.1.2, in any ring, every nil left ideal is contained in a
nil two sided ideal. So by Proposition2.1.1, if R is a ring without nonzero nil two-
sided ideal, then R has no nil left ideal, so by LemmaZ2.1.1, if R is a ring without
nonzero nil two-sided ideal, then R has no nil right ideal, then by
Proposition2.1.1, in any ring, every nil right ideal is contained in a nil two sided

ideal. Hence by Lemma 2.1.2, in any ring, the sum of two nil right ideals is nil.
Tl 2P0 (KOst 8 = + e o

(2.2)

BTRAPENL RSP F o APRED T G oA R Y W

Theorem2.2.1:

The following statements are equivalent:

(1) If Ris a nil ring, then the polynomial ring R[x] is a radical ring. (i.e.
JR[x])=R[x]).

(2)If aring R contains a one-sided nil ideal A, then A is contained in a two-sided
nil ideal of R.

(3)IfRis anil ring, then R, = M,(R) is also a nil ring.

ALz - B Lemma > F %+ T i Theorem2.2.1 #1(1)=(3)

LemmaZ2.2.1
Let R be a ring, then the polynomial ring R[x] is radical if and only if the matrix

ring R, isnil, for all neN.

BBEP TR P Amitsur s % 0 BB RBAEP T F L o LA P ap

A ig o 2P Ayt Aot o P % & Appendix ¢

Lemma2.2.2:
Let N=]J(R[x])NR ,then J(R[x])#0 implies N+0.

LemmaZ2.2.3:
J(R[x])=N]x] ,where N=](R[x])NR.
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Lemma?2.2.4:

N is a nil ideal in R.

Proposition2.2.1
If R[x] is Jacobson radical, then R is nil.

Proof of Lemmaz2.2.1:

“Only if”

Suppose that R[x] is radical, then by Proposition1.2.5, J(R[x],)=J(R[x])n=R[X]n,
for all neN.

But we have that R[x],=R,[x], so we have that R,[x] is radical, by
Proposition2.2.1, R,, is nil, for all neN.

“p

Suppose that R, isnil, for all n€N, our goal is to show that all elements in xR[x]
is right quasi regular.

If this is true, then xR[x]S](R[x]), and for any a€R, ax€](R[x]), by LemmaZ2.2.3,
ax€N[x], hence aeN=](R[x]) NR, i.e. a€]J(R[x]), for all a€R.

Hence R[x]=R+xR[x] S](R[x])=](R[x])=R][x].

The main idea as follows:

Let p(x)=a;x + a,x? + --- + a,x™, it may be difficult to find q(x) ER[x] directly,
but if we allow q(x) €R[[x]], then the coefficient of q(x) can be defined
inductively, say q(x)= b;x + byx? + -+ 4+ b,x" + -+ our goal is to show that for k
is sufficient large, b; = 0, for all I>k. And hence q(x)€R[x]

Suppose that there is q(x) €R[[x]] such that q(x)=p(x)+p(x)q(x)

Let q(x)= byx+byx? + -+ b,x" + -+ ,then

p(x)q(x)=a;b;x? + (a;b, + a,b;)x3 + -+ (ayb; + --a;b )x™ + -+ +
(@mbn-—m-1 + -a;by_1)x" + -

= (b; —a)x+ -+ (by, — ap)x™ + (b )X + - = p(x)q(x) ... (1)

Compare each coefficient of (1), we can define b, inductively as follows:

bl == al
b2 == az + a1b1 e
( n-1
an + Ean_]-bj,if n<m
— j=1
by=1 . ()
am—j+1bn—m+j—1 ,if n>m
\j=1
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It is easy to check that q(x)=p(x)+p(x)q(x).

Our next goal is to find a mxm matrix (c;;) such that for all k=m, we have
m

byyi = Z Cijbk—m+j,for i=1,2,..,m.
j=1

We define c;; inductively, suppose that there is (c;;) such that

m
byyi = Z Cijbk—m+j,for i=1,2,..,m,for all k=m.
i=1
m
Then by, = chjbk_m+j,from (2),we may choose ¢;j = am—j4+1,
=1
for j=1,2,..m.
m
Next, by, = Z C2ibk-m+j = C21Pk41-m + C22bk42-m + -+ + Combie-
j=1

m
On the other hand, by,, = Zam_]-+1bk+2_m+j_1
j=1
= ambyiz-m + Am—1br43-m + -+ a;bgyq
m
Since by, = Z C1jbk—m4+j, SO
j=1
m
btz = ambr2-m + am-1bxiz—m + -+ a4 Z C1jbk-m+j
j=1
m
= ambriz-m + Am-1bk4z-m + -+ a1 Z C1jbk—m+j
j=1
= a;Cy1bg_m+1 + (@m +a1¢12)bgioom + -+ (@2 +a;¢1 )by
Put C21 == alcll, C22 - am + alclz, ""sz - a2 + alClm,
m

bz = Z Am—j+1Pkr2-m+j = @mbk+3-m + Am-1Pxss—m + -+ a1biys
j=1

m m
= Ambrsz-m + Am-1Prys—m + -+ a2 Z C1jbr-m+j + a1 Z C2jbr_m+j
j=1 j=1
9
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= (az¢11 +a1C21)bpg1-m + (@2¢12 +a1€52)byyzom

+(@m + 3613 +a1€23)byyzom + -+ (@3 + a30m + a1Cm)by

Put c3; = a,cq1 +a;1Cqy,C35 = 515 +a1Cyp,C33 = @y + A3Cq3 + 21Cy3, o
C3m = @z + a3C1 + 21Co-

More generally, suppose we have defined c;;, for 1<i<l<m, j=1, 2, .., m.

( 1-1
Zal_icij,if 1<j<l

Define ¢j; = =1 -1 ..(3)

am+1_]- + Z al_ici]- ,lf | < ] < m.
\
Then by the argument above,we have

m

byyi = Z Cijbk—m+j,for i=1,2,..,m,for all k=m....(4)

=1

Next, consider the matrix D=(dij) € Ryy41 defined by djj=¢; ,1<i,j<m
di(m+1) = bi,i = 1, 2, ...,m.And d(m+1)i = 0,1 = 1, 2, ., m+ 1.

We claim that for any k € N, (Dk) = bk-pm+ifor i=1,2,...,m,

i(m+1)

and (D)

(m+1)(m+1) =

For k = 1,the statement holds obviously, assume that
k _ - k _
(D )i(m+1) = bk-1ym+ifor i=1,2,...,m, (D )(m+1)(m+1) =0,

for some k € N, then

m+1 m+1

k+1 _ k k — k —
Di*! = DD¥,s0 (D'*1), o= z dit (D), 01y = Z Citbge-1ym+1
1=1 I=1

m m

— k _ k

= Z Cilb(k—l)m+lrhence (D +1)i(m+1) = Z Citbkm-m+1,by (4), (D +1)i(m+1)
1=1 1=1

m+1

= bkm+i;i = 1; 2; e, ML And (Dk+1)(m+1)(m+1) = 2 C(m+1)1b(k—1)m+l = 0-
1=1

Hence (Dk) = bk-1ym+ifor i=1,2,...,m, (Dk)

i(m+1) (m+1)(m+1) -

0 ,for all ke N.

By our assumption, R,,; is nil,so there is k € N such that DX = 0

10
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= D' =0, for all | > k.

This implies that bg_1)m+1 = ba-1)m+2 = ** = ba—pym+m = 0,for all 1 = k,
hence b, = 0,for all p > (I1—1)m + 1.i.e.q(x) € R[x].

p(x) —q(x) + p(x)q(x) = 0.

So q(x)+(-p(x))+(-p(x))q(x)=0

So — p(x) is quasi regular, for all p(x) € xR[x],

So p(x) is quasi regular, for all p(x) € xR[x],

So xR[x] € J(R[x]).Hence J(R[x]) € R[x] = R + xR[x] € J(R[x]),

i.e.J(R[x]) = R[x].

Now we are ready to prove our main theorem.

Proof of Theorem?2.2.1:

=)

Let A be an nil left ideal of R, then A is itself a nil ring, so by our assumption,
J(A[x])=A[X], i.e. every element in A[x] is left quasi regular, and clearly A[x] is a
nil left ideal of R[x], so A[x]S]J(R[x]), hence J(R[x])#0, so by LemmaZ2.2.2
N=]J(R[x])NR#£0, by Lemma 2.2.3, J(R[x])=N[x], Lemma 2.2.4 tell us that N is nil
two-sided ideal.

Now A[x]S]J(R[x])=N][x], hence ACN, note that this argument is also true for right
ideals, hence (2) holds.

(2)=03)
a b

Let R be a nil ring, and let A’={(0 0) :a,b € R} =R, ((1) 8),

A”={((a) g) :abeR} =R, ((1) g) C’={(8 g) .b € R}, C”={(8 g) .b € R}, it

is not hard to check that C’ is an ideal of A’, and C” is an ideal of A”. Furthermore,
A’/C and A”/C” are both isomorphic to R, and hence is nil. But C'? =

0,and C"is clearly nil. So C’and C” are nil ideal of A’ and A”, respectively, this
implies that A’ and A” are nil left ideals of R,. By our assumption, A’ and A” are
contained in a nil two-sided ideal of R,, say A’'CB’, A” €B”, where B’ and B” are
nil two-sided ideal of R,.

R, =A"+ A" € B'+ B” € R,,hence R, =B’ + B",which is nil.

(3)=1)

11

doi:10.6342/NTU201800361



By Lemmaz2.2.1, we only need to show that R, is nil, for all n € N.
Since R,n+1 = (Ryn),, for all n=0,1,2, ...

So by induction, R,n is nil, for all n > 0,but for arbitrarily

n € N,pick m € N so that 2™ > n,

R, 0

then R, is isomorphic to (written as block form)(o 0)
2Mxom

g Rzm,

and R,m is nil hence R, is nil, for all n € N,and (1) follows from

LemmaZ2.2.1.

12
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(=) Related topics.

(3.1) Some special class of rings.

- BT d o (KC) fde— BehiFA)T A fR4- > — B A R ehR AL
L(KOAT ¢ i PRI * 2 Hpich class K39+ 0 & F i it L
BoAReh s PRASZE R R FT AP R S D AR i

BB E o NP R BHkAClass ) 2 BT BAR Y i

FOUEE o

WA ARG PR SRR 0 A B g Ui o 2 [1] g
1. Artinian rings.

Theorem3.1.1: Kothe Conjecture holds for any left(right) artinian rings.

FI#* TR EILwE 2 %480 Theorem3.1.1 77 PP :

i

Theorem3.1.2: Let R be a left(right) artinian ring, then J(R) is nilpotent.

Proof:

Assume that R is right artinian.

Put J=](R), consider the descending chain of ideals: ]2]J? 2 J3 2 --

Since R is right artinian, so there is an integer n such that J" = J2*1 = ...

Our goal is to show that J" = 0, assume that J" # 0, consider W={x€]:xJ" = 0},
then W is an ideal of R.

If W2J", then 0 = WJ" 2 J"J® = J28 = J", which is a contradiction. So W2J™.

— J— n
Consider R = R/W,then by our assumption, " —] /W +

0,since R is also right artinian,so there is a minimal right ideal p < J".
Claim: p is irreducible, if not,then Eﬁ =0,s0 p ]_rl = 0, that is,p]" S W,
i.e.p]?J" = 0,but by J?" =]" we have .p]" = 0,hence p S W,a
contradiction!

So p is irreducible, hence El(ﬁ) = 0,but note that J0 C ](ﬁ)

(]_“ is a quasi regular ideal of ﬁ).

So we have p J* ,which is impossible! Hence J® = 0

,the similar argument holds for R is left artinian.

Now we prove Theorem3.1.1
Proof of Theorem3.1.1:

13
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Let R be a left(right) artinian ring.

By Corollary1.2.1, any nil left(right) ideal of R is contained in J(R), by
Theorem3.1.2, J(R) is nilpotent, so any nil left(right) ideal of R is nilpotent, hence
by (1.1) 2, sum of any two nil ideals of R is nil.

2. Noetherian rings.

Theorem3.1.3: Kothe Conjecture holds for any left(right) noetherian rings.
TRHEFPTI T G T I

Theorem3.1.4: If R is a left(right) noetherian ring, then any nil one-sided ideal is

nilpotent.

T AP ALEP - B Lemma:

Lemma3.1.1: If R is a ring without nonzero nilpotent ideal, then R has no nonzero
nilpotent one-sided ideal.

Proof: Suppose p is a nonzero nilpotent right ideal of R, if Rp=0, then p is itself a
two-sided ideal which is nilpotent.

If Rp#0, then Rp is a nonzero two-sided ideal of R, and (Rp)" =

(Rp)(Rp) ...(Rp) € R(pR)(pR) ... = 0,if n is large enough since p is
nilpotent.

A similar argument shows that R cannot have a nonzero nilpotent left ideal.

Proof of Theorem3.1.4:

Claim: If R is a left(right) Noetherian ring without any nilpotent ideal, then R has
no nil one-sided ideal.

Assume that R is right Noetherian and A is a nonzero nil one-sided ideal of R.
Pick an 0#a€A so that Ra#0( This can be done, for if Ra=0, for all a€A, in
particular, AA=0, then A is a nilpotent one-sided ideal,so by Lemma3.1.1, R has a
nilpotent two-sided ideal, which contradicts with our assumption.) and consider
U=Ra, U is a left ideal of R.

Claim: U is nil

If A is aleftideal, then USA and hence A is nil, if A is a left ideal, let ra€U, then
ar€U, hence there is n€N such that (ar)" = 0, hence, (ra)**! = r(ar)"a = 0.

So U is nil.

Now for u€Uy, let r(u)={x€R:ux=0}, then {r(u)},cy_(o}is a collection of right
ideals of R. Since R is right Noetherian, there is uy € U — {0} such that
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r(uy) is maximal.

Now for x€R, xu€U and r(xu)2r(u), so if x€ER with xu, # 0,then r(xuy) =

r(uy) by maximality of r(ug).

Now for yeER with yu, # 0, since yug€U and U is nil, so there is k=2 such that

(yup)X = 0,but (yup)** #0

Since (yup)** € U,and (yuo)*~! = auy, for some a € R,so r((yuy)*?) =
r(up).And since (yuy)* = 0,yuqy € r((yup)**) = r(u,), hence ugyu, = 0.

For yu, = 0,it is obvious that uyyu, = 0.So we get uyyu, = 0,for all y € R.
Finally, for xug,yu, € U, (xug)(yug) = 0,

so U is a nonzero nilpotent left ideal of R,by Lemma3.1.1,this cannot happen!
So the claim holds.

For the general case, assume that R is a right Noetherian ring, then R has a

maximal nilpotent ideal N, if p is a nil one-sided ideal of R such that p&N, then

p+N

p:

is a nonzero nil one — sided ideal of R :N'

but R is a right noetherian ring which has no nonzero nilpotent ideal.
So by Lemma 3.1.1,this cannot happen, hence p € N.
That is,p is nilpotent.

|
Proof of Theorem3.1.3:
This result follows from Theorem3.1.4 and (1.1) 2.
|
3. Polynomial identity rings.(PI-rings)
i f@;'riwwﬁ%%— B fe - G ks B R R AR R T g U
T E B AP D - BEIREF REP B classfg L (20 0 ¢ FAELIR) -

We follow the proof given in [4]

EAN AR IR 4 %

Definition3.1.1: A ring R is said to be satisfies a polynomial identity if there is
neN, and a nonzero f(xy, ...,X,) € Z(Xq, ..., Xp)(Free Z — algebra) such that
f(ry, ...,ry) = 0,for all r; €R.

Here, we say that f is a polynomial identity of R, the degree of f is defined as

natural way, f is monic if at least one of the highest degree term has coefficient 1.

Aipd P O RBE- B UELHEN > BT AP B
Example3.1.1:
R=7,[x],:& B B &8 2R % R_f=2x; € Z(x,) » LT B (T ¥ Bg7R H m A& o
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d b bl o 50 R A i 4 > A H Plring § - B { A BB e
E-
Definition3.1.2: A polynomial identity ring(PI-ring) is a ring satisfies some monic

polynomial identity.

Remark: e b it 2 & ¢ » AP R E 4 898 5 TR BFREIA G
0 b4e f(Xy, .0, Xp) EZ(Xq, oo, Xp) > B ¥ BIAF 5 00 4wk izBHE R L2 H
[l ’7Kﬁ“f(0 SR AR ARG T A& AT REEEAZ > AT
f(0,...,0) =m =0 in R> & % iz B %% &_mx=0, for all X€ER » »* §_ A P ARV
3 f(xy, .. xn)’* f(xq, ...,Xn) —mB o AR ST EIEL 0

FIpt o T ek AP G Fre dg 0 39 (X, e, Xp) 5P BRSO e

T om0 Aok R 'i— # polynomial identity » 7% /& 2% i3 ¥ 12 4-4¢ 1%
B % 78 5% IE‘F%f}'{;ﬁ fg/g&——__\!;, E3 .»\‘.f)aa—ﬁ )T E‘f’f{%

Definition3.1.3: A multilinear polynomial of degree n is a nonzero element
fe Z(x4,...,Xy) taking the form:

Z ao-Xo-(l) ---Xc(n)

0€Sy
with each a; € Z.

Proposition3.1.1: If R satisfies an identity f of degree d then R also satisfies a
multilinear identity g of degree d. Furthermore, each coefficient in g is also a

coefficient in f; and if f is monic, so too is g.

Proof: Each term of f can be partitioned into those in which x; occurs and the
others. Say

f(xq, oo, Xp) = f1(Xq, ey Xp) + (X5, oo, Xp)
Set x; = 0,we get f,,and so,f; are identities of R.
Since f is monic, one of f;,f, are monic. So we pick the monic one.
Continue this process, we can assume that each x; occurs in every term of the
expansion of f. And this new identity has degree at most deg(f).

If f is not multilinear, then the term of highest degree cannot be multilinear, so at
least one x;, say x;, appears in this term twice.

Consider the polynomial:

16

doi:10.6342/NTU201800361



g(Xq, ooy Xpp1) = f(X1 + Xpy1) o Xn) — f(Xq, oo, Xp) — F(Xpgq) -0 Xp)
A simple calculation shows that each term of g all come from those terms w in f
which have degree at least 2 in x;; they are the terms obtained by replacing
some, but not all, of the x;'s w by x,.,. They retain the same coefficient as w;
and if f is monic, then g is monic.

Continue this process, we may reduce f to be multilinear.

Next we note a trivial fact:
Lemma3.1.2: Let g(Xy,...,X,) be a monic multilinear identity whose monic term
is X; ..Xy. Then
g= 81(Xy, o, Xm—1)Xm + 82Xy, ) Xm),
where g; is monic multilinear and g, is multilinear with no term

ending in x,,.

Now we can prove:
Theorem3.1.5:
A nonzero nil PI ring has a nonzero nilpotent ideal.
Proof:
Called a PI ring R has minimal degree m if m is the least possible degree of a
monic polynomial identity of R. As above, we can assume that this identity is
monic.
Our proof based on induction on the minimal degree m of R.
First, by Lemma3.1.1, it is sufficient to show that R has a nonzero one-sided
nilpotent ideal.
Let R be a nonzero nil PI ring with minimal degree m, then m>1.
If m=2, then this identity must of the form x;x, — nx,x,,for some n € Z.
Choose an nonzero beR such that b? = 0
Then bRb=nb?R=0. So if B=Zb+bR, then B? = 0.
Next, suppose the result holds for all smaller degree, choose an nonzero beR
such that b? = 0.
[f bR=0, then B=DbZ is a nilpotent right ideal of R.
If bR+0 and R satisfies g(xy, ..., Xy, ), write
g= 81(Xy, o, Xm—1)Xm + 82(Xy, ) Xp)
asin Lemma3.1.2.
Note that for all ry,...,r,—; € R,g,(bry,...,brp,_4,b) =0
So g,(bry,...,br,_;)b =0.
Let W={rebR:rbR=0}. Then W=bR; and g; is monic, multilinear of
degree less than m satisfied by bR/W.
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If W=DbR, then bR is a nilpotent right ideal of R, otherwise, bR/W contains a
nonzero nilpotent right ideal.
So there is a right ideal I of bR, I2W, [#W, with 12 € W.
Now IbR is a nonzero right ideal of bR(Since [#W). And

(IbR)? € I?bR € WbR = 0.

]

Corollary3.1.1: If R is a nonzero PI ring has a nonzero nil right ideal, then R has a
nilpotent ideal.
Proof: It is sufficient to show that R has a nilpotent one-sided ideal.
Let p be a nonzero nil right ideal of R, then 30+#[=p which is nilpotent.
If IR=0, then I is itself a right ideal of R which is nilpotent.
If IR#0, then there is x in [ such that xR#0, let W={re xR:rxR=0}, then W is an
ideal of xR.
[f W=xR, then xRxR=0, and hence R has a nonzero nilpotent right ideal.
Otherwise, xR/W contains a nonzero nilpotent right ideal, so there is a right ideal
] of xR, I2W, I#W, with 12 € W.
Now IxR is a nonzero right ideal of R(Since [#W). And

(IxR)? € I2xR € WbR = 0.

]

Corollary3.1.2: If R is a PI ring, then every nil one-sided ideal is contained in a nil
two-sided ideal
Proof:
Let R be a PI ring and N be its nilradical, then R/N has no nonzero nilpotent ideal,
so R/N has no nonzero one-sided ideal by Corollary3.1.1.
Now, if p is a nil one-sided ideal of R, then p is a nil one-sided ideal of R/N, so

p=0, hence pSN.
By Corollary3.1.2 and (1.1)1. Kéthe Conjecture holds for any PI rings.

Application:

BGDFIT 3L > APEEP Plring iz ® class & 77 AP F Lea- B3k > 7
M- o)

- BEARSOEF A Plring & 7 7 977 (B EXXy — X2Xq)

TR APREN:

Theorem3.1.6: Let R be a commutative ring, then M, (R) is P], for all neN.
Proof:

[t is sufficient to show that R is a commutative ring with identity, if this is true, let

18

doi:10.6342/NTU201800361



R! be the usual extension of R, then M, (R) is a subring of M, (R!), and hence,
is PL.
So let us assume that R has an identity, and let e;; € M,(R) defined by
_(Lif m=1iand k=j ..

(eij)mk - { 0, otherwise Isijsn
Note that every element of M,(R) can be written as a linear combination of ej;'s
over R.
Moreover, take f(x; ...Xp241) € Z(Xq, -, Xp241)
f(Xq, o) Xp24q) = 2 (sgN0)X5(1) - Xg(n241)-

OESp244

Then f(ry,...,rp244) = 0,for all ry, ..., 12, € {eij: 1<i,j< n}.

Since f is multilinear and very element of M,(R) can be written as
a linear combination of e{]-s over R,so M,(R) satisfies the identity f.

Hence M, (R) isP], for all neN.

j%_Theorem3.1.6 3 — B f§ ¥ cnfah:# 2 £ v %3+ ¥ M, (R) ¢ nilradical.

Let R be a ring, denote the nilradical of R by
N(R): = Z I

ISR, is nil.

Theorem3.1.7:

Let R be a commutative ring with identity, then N(M,,(R))=M,(N(R))
Proof:

Since R has identity, so N(M,(R)) = M, (I), for some [ =2

R,so we must have I € N(R).So N(M,(R)) € M,(N(R))

Conversely, since N(R) is nil, M,(R) is PL

Consider the right ideals e;;M,(N(R)),i = 1, 2, ...n. A simple calculation shows
that each e;M,(N(R)) is anil right ideal of M,,(R). Since M,(R) is PI, so
M,(N(R)) = e;; M (N(R)) + -+ + e;uMy(N(R)) is nil, hence

M,(N(R)) € N(M,(R)).

So N(Mj(R))=M,(N(R)).
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(3.2) A Theorem of E.R Puczylowski and Agata Smoktunowicz ([5]).

# Theorem?2.2.1 ¢ » 2\ i :f;q 41 Kothe Conjecture % B30T GoehgTiE

If R is a nil ring, then R[x] is Jacobson radical.

FLiEBeadasm > APy
Proposition3.2.1: Assume K.C. holds, then R[x] cannot be homomorphically
mapped onto a nonzero ring with identity.
Proof:
Since R[x] is Jacobson radical, so is every homomorphic image of R[x], i.e. J(S)=S,
where S is a homomorphic image of R[x].
But if a nonzero ring S has identity, then J(S)#S since S has a maximal left ideal
p, and M=S/p is an irreducible S-module such that 1¢Ann(M).

|
% ﬁ‘u{i » Proposition3.2.1 3 KC.ee & 1512 » @ A &N PP B I Fr

o IR ZER

Theorem3.2.1(E.R. Puczylowski and Agata Smoktunowicz):
If R is a nil ring, then R[x] cannot be homomorphically mapped onto a nonzero

ring with identity.

TSR A

Definition3.2.1:

1. LetRbearing, and let f(x)=a,x™ + -+ + a,x"€R[x], m<n, a,, #
0 ,and a, # 0, call a, theleading coefficient of f(x) and put minf(x)=m,
degf(x)=n, 1(f(x))=n-m+1. So minf(x)+1(f(x))=degf(x)+1.

2. We call a ring homomorphism f:R[x]—P of R[x] onto a simple ring P proper if

f(xI[x])=P, for every nonzero ideal I of R.

Lemma3.2.1:

Let f:R[x] —P be a proper homomorphism of R[x] onto a simple ring P with
identity, and let w(x) €xR[x] be such that f(w(x))=1.

Then for every non-zero ideal I of R there exists t(x) exI[x] with f(t(x))=1,
mint(x)>degw(x) and 1(t(x))<deg(w(x)).

Proof:

Given a polynomial p(x)= ap,x™ + -+ a,x" € xI[x] such that a,, #
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0,and f(p(x)) = 1,then consider the polynomial
qg(x) = wx)ax™ + -+ a,x™
Clearly q(x) € xI[x],and f(q(x)) = f(w(x))f(amxm) + - + f(ayx™)
=1 X f(a,x™) + -+ f(a,x™) = f(a,x™ + -+ a,x") = 1.
Next we look at minq(x) and 1(q(x)), first, since minw(x)>1, we have
ming(x)=minp(x)+1.
If degw(x)a,x™<n, then 1(q(x)) <I(p(x))-1.
If degw(x)a,,x™ > n, then 1(q(x)) <[degw(x)+m]-(m+1)+1=degw(x).
So we have 1(q(x)) <max{degw(x), I(p(x))-1}.
So if we have 1(q(x))> degw(x), then replace p(x) by q(x) and continue this way,
we can find a t(x)€ xI[x] with the properties that f(t(x))=1, mint(x)>degw(x)
and 1(t(x))<deg(w(x)).

Proposition3.2.1:

Suppose that f:R[x] —P is a proper homomorphism of R[x] onto a simple ring P
with identity 1, and w(x)= a;x + ---+ a,x" is a polynomial of minimal length in
xR[x] such that f(w(x))=1. Then a; € Z(R),for all i =1,2,...n,here Z(R) =
{x € Rrax = xa,for all a € R}.

Proof:

Suppose not, then there is k of maximal number such that a, & Z(R),i.e.

rag — air # 0,for some r € R,say c = ray — ayr.

Let I = Zc+ Rc+ cR+ RcR < R(i.e.l is the ideal generated by c).

Since f is proper and P is simple,we have f(xI[x]) = P,and for m > 1,
fxI™[x]) 2 [fI[xD]™ = P,so f(xI™[x]) = P.

By Lemma3.2.1,for each m,there exists t,(x) € xI™[x] such that f(tm(x))
= 1, mint,(x) = degw(x) and l(tm(x)) < degw(x).

We may choose t,,(x) with these properties with minimal length 1.

By our choice of W(X),I(W(X)) <1, for all m > 1.

For any m > 2,the leading coefficient a of t,(x) € ™. Hence there are
Cy,...cp €M1 and ji,...,j; €I such that a = ¢;j; + -+ + ¢jj, since jq, ..., ji
€l

,there are my € Z, ny, px, Qr Sk € R such that j, = mygc + ngc + cpx + qCSk-
k=1,2..,1

So a=c¢;(m;c+ nyc+cp; +qy¢s1) + -+ ¢g(myc + njc + cp; + q;csy), put

i = cemy + cgny + cqx € ™! and r = 2 + py + sk € R, then a

=1i,cr; + -+ + ijcr;, here R! denote the usual extension with an identity
of R.
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Next, put g(x)=rw(x)-w(x)r, the leading coefficient of g(x) is c, degg(x)<degw(x)

and 1(g(x)) <l(w(x)).
degt,(X) = minty,(x) > degw(x).Now
En(0) = tn () = [1,800T, + - + ig(Or ]xeE m(O-deget) g (m-1[y],

f (fm(x)) = f(tm(®)) — f(i;8(x) )f(r x4e8tmI~degg) ...
—f(ijg(x) )f(r;xde8tmI-degg()) = 1 — 0 = 1.

Now we compute I(Em(x)),since (tn®) = 1(Wwx) =1(gx) =

1((128COT; + -+ + i)g(Ir)xdestmCI-degg )

and the leading coefficient of t,,(x) and

(i,8(x)r; + -+ + i1g(x)r)x4e8tm)-dege® are equal, so l(fm(x)) <(tm(®)
and min t,;, (x) = deg w(x) (since min g(x) > w(x)).

So by our choice of t,,_;(x),1, > I(Em(x)) >1,450 1, >1,4 for all m

> 2,which is impossible since I, < degw(x) for all m.
The next lemma is the key of our proof of Theorem3.2.1:

Lemma3.2.2:

(D) If f:R[x]—=P is a ring homomorphism of R[x] onto a simple ring P with identity,
then (Rnkerf)[x]Skerf, and either A:=R/(Rnkerf)=P or the ring
homomorphism g:A[x]—P induced by fis proper.

(2) If f:R[x]—=P is a ring homomorphism of R[x] onto a simple ring P with identity,
then R/(RnNkerf) has an non-nilpotent element.

Proof:

(1) Note that if I is an ideal of R such that f(I)=0, then f(I[x])=0, if not, then
f(1[x])=P, but 0=f(Df(R[x])=f((IR) [x]) =f(I[x])f(R[x])=P, which is a
contradiction. In particular, (Rnkerf)[x]Skerf.

Now, put A=R/ Rnkerf and define g:A[x]=P by g(ay + - + a,x")

= f(ag + - + a,x™).Since (Rnkerf)[x]<Skerf, g is well-defined, g is clearly a
ring homomorphism form A[x] onto P.

If g(xA[x]) = 0,then A =P.

If g(xA[x]) = P,then for every nonzero ideal I of A,g(I) # 0 since A
= RnNKkerf,] # 0 means that I £ kerf and hence g(I) # 0.
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Now, if g(xI[x]) = 0,then P = g(I[x]) = g(I),so 0 = g(xI[x]) 2 g(Dg(xA[x])
= P.This is impossible,so g(xI[x]) = P,i.e.,g is proper.

(2) If A:=R/(Rnkerf)=P, then the result holds obviously, suppose not, then the
ring homomorphism g:A[x]—P induced by f is proper.
So by Proposition3.2.1, there is a polynomial t(x)€Z(A)[x] such that
f(t(x))=1, so at least one coefficient of t(x) is not a nilpotent element.(If not,
note that Z(A)[x] is a commutative ring, so sum of two nilpotent elements is
again a nilpotent elements.)
So A contatins a non-nilpotent element.

Proof of Theorem3.2.1:

If R is a nil ring, so every element in R is nilpotent, by Lemma3.2.2 (2), R[x]
cannot be homomorphically mapped onto a nonzero simple ring with
identity.

This implies that R[x] cannot be homomorphically mapped onto a nonzero
ring with identity. If not, suppose f:R[x]—P is a ring homomorphism from
R[x] onto P, where P is a nonzero ring with identity, then P has a maximal
ideal I, denote g:P—P/I the canonical projection of P onto P/I, then gofis a
ring homomorphism from R[x] onto a simple ring with identity, which is a

contradiction.

fgik;fg_ﬂ@ EEEARARL = = ek R

{ i~ 4 7> M.Chebotar, W.-F. Ke, P.-H. Lee ¥ E.R. Puczylowski = A #-t % %
A e T R 7);

Theorem: If R is a nil ring, then the polynomial ring R[xy, ... x,,] cannot be
homomorphically mapped onto a nonzero simple ring with identity.

LAYV Al I
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(3.3) Anexample of Agata Smoktunowicz ([6]).

& Theorem2.2.1 ¥ » 2 {5 1} K6the Conjecture 3 i >+ & it

If R is a nil ring, then R[x] is Jacobson radical.

PRR s - B 7 RGE £ R T 5 ek AL
If R is a nil ring, then R[x] is also a nil ring.
# o R 38 E_0 Fren o 7R Kothe Conjecture p 28 = = o

7 2000 # - Agata Smoktunowicz #i¢ 7 — ® ¥ ] » %33 fe— B nilringR >
W3 H ey R RX]F Enil R ARRNERE S @ AT F0 0
(X F’—m{’ TR E m’fﬁlg;i&”"*\mmﬁep s T A ;lj e R B0 @
PR o EADRERE - BEF IR Z O FFAEP SR N NI

(Ls'é R 7 —4\— [)F3 g_‘,mmgp_ﬂ’;) °

Let K be a countably infinite field, and let K{x > y > z} denote the polynomial ring
of three noncommutative indeterminate, take A be the subring of K{x, y, z} with
zero constant term.

Since K is countable, so is A, write A={f;:i = 1,2, ... }.

Consider the ideal I generated by {f;'°"+1:i € N}, where m; satisfying:

(i) my>108and m;,, > m; x 217101 for i >1,

(ii) each m; divides m;,4,

(i) m; > 329¢80) (deg(f;))?40%, for i > 1.

Put A=A/l

Theorem3.3.1:

The polynomial ring A[X,Y] with two commutative indeterminate is not nil.

Corollary3.3.1:
There exists a nil ring N such that the polynomial ring N[x] is not nil.

Proof: If N[x] is nil for all nil ring N, then N[x > y]=N[x][y] is nil, for all nil ring N,
but we have an nil ring A such that A[X - Y] is not nil, so there is a nil ring N
such that N[x] is not nil.

AT - BER L R F A AR L AR B
fEA[X,Y] > B3 B chx 3 pho Ui g A3 k485 > @ d A [
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f#i% » A MBI G 0 i R AR R AR (Fp BN R R ARy iE) 0T U E

B fx> 2 B3 Fipmenda £ > 7R+ ;;fj}m ¢ “_nilpotent -

3 % :Kothe Conjecture ¥ 2 j8j% % & v %k 5 iz B 4L - 7 4§ %X L3 nilpotent
ideal ¥t nilideal #ALAR » % = B2 ¥ v j radical k5 » wFkmd > NPT
v 3 radical G hAE 8 A Fena £ o L nilpotent iBfEp ¢ p R E B
SRR RSN E R E Y LR TR S ARUET S
K- BIRNF ARG TG - LB (blhoT RSl BB EPED &S
fRE) Mol B3 ¢ R EIROSHE ) BERHE - - BRE 1*“
Fizut gk 3 3]¥ 0w A5 ideal » jE€05 £ F 1Y L quotient » wHtr'*\ [ g BTk
M,(R) > iz4E" ) § 725 — & nilpotent 7 & (Gldofcte b = & M Bt ™ = &
e % %) feig e dinilradical £.00 2 £ F ;Ujfu)fﬁ’é AR Y
nilpotent ~ 2 #&& % 7 > 7 I R L% shizfp o m Kothe Conjecture ¥ 14 itk
75 f ideal “7R 0 left & right module s 4 > 24 i 8 1 i 8 de & gt
nilpotent # ¥|it # 5 module his 4 » 78 AT i ;J-*uﬁ‘é PRI B R 12
w4 RE S i Theorem2.2.1 ¥ AP w g4 » I8 Y % = B hcif
B e % - (P E_F 11 j€_Kothe Conjecture ® B 35| » & % - Bicitip

A p R -k € R A nil 0 B R[x]E_nil." &4 R BEAE AR v B p 2R

e (3.3)4r4p d1iz A48 e (3.2)#(3.3)7F 7 Kothe Conjecture k|4#"+ &

B2 7 gl R AET 3 Ao hth &5 RPRAF S fEA 0 2 1 F 1930 £ @

oI LR Ak o

,E
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Appendix:

Here we shall prove Lemma 2.2.2, Lemma 2.2.3, and Lemma 2.2.4. The proof of

these lemma due to Amitsur([3]).

We first prove some elementary properties of Jacobson radical.

Lemmal:

Let R and S be rings and @:R—S be a ring homomorphism from R onto S, then
eJR)EI(®).

Proof:

Since @ is onto, @(J(R)) is an two-sided ideal of §, it is clear that every element in
@(J(R)) is quasi regular, hence @ (J(R))E](S).

This implies an easy corollary:

Corollary1:

Let N be an ideal of a ring R such that NEJ(R), then J(R/N) =]J(R)/N={a+N:
a€J(R)}

Proof:

Consider the canonical projection ¢:R—R/N, then by Lemmal,
e(JR)=J(R)/NE J(R/N).

Conversely, note that J(R/N)=I/N, for some ideal I of R that containing
N.(Correspondence theorem)

Let a€], then there is b€l such that a+b+abeNC]J(R), so there is c€ER such that
a+b+ab+c+ac+bc+abc=0=a+(b+c+bc)+a(b+c+bc), hence a is right quasi
regular, so ISJ(R), hence J(R/N) =J(R)/N

LemmaZ2: Let R be aring and a€R. If aRS](R), then a€]J(R).
Proof:

If a¢]J(R), then by the definition of Jacobson radical, there is an irreducible left
R-module M such that aM+0, but M is irreducible implies that M=RM, so aRM
#0, i.e. there is an re€R such that arM=0, i.e. ar&J(R), which is a contradiction.

Now we can prove
Lemma 2.2.2:
Let N=]J(R[x])NR ,then J(R[x])#0 implies N+0.
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Proof:

Let J=]J(R[x]). Suppose that the lemma is not true, then there is a ring R with J#0,
but N=0.

Our main ideal as follows:

Let f(x) be a nonzero polynomial of minimum degree such that f(x)€].

Then consider @:R[x]—=R[x] defined by ¢@(f(x))=f(x+1) (Note that R may not
have identity, but f(x+1) is well-defined as usual way.)

So by our corollaryl, f(x+1) €], hence f(x+1)-f(x) €], but the degree of f(x+1)-
f(x) is smaller than f(x), hence f(x+1)-f(x)=0, i.e. f(x+1)=f(x), in the special case
that R is a field, then f(x)=a#0, which is a contradiction, our goal is to show that

this is also true for any ring.

Step1:

For a prime integer p, let R, = {a € R:pa = 0}. Itis clear that R, isanideal of
R, and hence Ry[x] is an ideal of R[x].

We now show that we can assume that f(x)€R[x].

Let f(x)=a,x™ + --- + a, with n > 1(i.e.a, # 0), then f(x+1)-f(x)=na,x*"1 +
- = 0,s0 na,=0, let m be the minimal integer such that ma,=0 (Note that

m=>2) and let p be a prime integer dividing m. Then we have

m m m
;an # 0,and clearly ;an € Ry, now, replace f(x) by Ef(X) € J,and

m m
p[;f(x)] is a polynomial in ] with degree less than n,so p[gf(x)] =0

m
,and hence Ef(X) € Rp[x].

Step2:

We claim that if f(x) €R,[x] satisfies that f(x+1)=f(x), then f must of the form
f(x)=h(xP —x), for some h(x) € Rp[x].

First, note that R, can be viewed as an algebra over Zp.

Next, consider the ring

Rp1 = Rp X Zp,with addition defined componentwise, and

(a,m)(b,n) := (ab + na + mb, mn)

Since R, is an algebra over Zp,the operation of Rp1 is well — defined,
R, can be viewed as a subring of Rpl,and Rp1 is an algebra over Z,
with identity.

Now, we use induction on the degree of f(x), note that f(x)€ R,[x] S Rpl[x].

If deg(f(x))<p, since f(x+1)=£(x), so f(m)=a, for some a€ R, < Rpl,sz, 1,..p-
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1, so by division algorithm and factor theorem, we have f(x)=a€ R,
Next, if degree f(x)=>p, then by division algorithm in Rpl, we have
f(x)=(xP — x)h(x)+k(x), where deg(k(x))<p, so by our assumption,
f(x+1)=f(x), this implies that

xP — x)[h(x+1)-f(x)]=k(x)-k(x+1)...(1)
compare the degree of both side, note that the degree of right hand side of (1) is
less than p, and if h(x+1)-h(x) is not zero, then the degree of left hand side of (1)
must >p, so h(x+1)=h(x), and k(x)=k(x+1), where deg(h(x))<deg(f(x)), and
deg(k(x))<p, so k(x)EaERpl, and k(X)ERpl[Xp —x], so
f(x)= (xP — x)h(x)+aERpl[xp —x],and hence f(x)€R,[x](The final conclusion

holds by view every coefficient when we use division algorithm).

Step3:

Claim: If h(xP — x)€J(Rp[x]), then h(xP — x)€J(R,, [xP — x]).

By Lemma2, it is sufficient to show that h(xP — x)R,[xP — x] € J(R,,[xP — x]).
Let g(x)€ h(xP — x)R,[xP — x], then g(x) €]J(R,[x]), so it is quasi regular, say
g(x)+k(x)+g(x)k(x)=g(x)+k(x)+k(x)g(x)=0, since the quasi inverse of g(x+1)
is k(x+1) and g(x)=g(x+1), so k(x) is also the quasi inverse of g(x+1), then by
the uniqueness of quasi inverse, we have k(x)=k(x+1), then by Step2, we have
k(x) €ERp[xP —x], hence h(xP? — x)R,[xP — x] is a quasi-regular right ideal of

R, [xP —x]. So h(xP — x)€J(R,[xP —x]) by Lemma2.

Step4:

Now return to our goal, let f(x) be a nonzero polynomial of minimum degree such
that f(x)€J. By step1, we may assume f(x) €JNR,[x]=](Rp[x])(Proposition1.2.4)
Next, since f(x)=f(x+1), so by Step2 and Step3, f(x)=g(xP — x)€ J(R,[xP — x]).
Consider the map ¢: Rj[xP —x] - R,[x] defined by @[g(xP — x)]=g(x), this is,
clearly, a ring homomorphism. So by Lemmal, ¢ (J(R,[xP — x]))SJ(Rp[x]), hence
g(x)€J(Rp[x]). But g has degree less than f(Since f is nonconstant by our

assumption.), this leads to a contradiction. Hence N+0.

LemmaZ2.2.3 J(R[x])=N[x].

Proof:

Since NEJ=](R[x]), so N[x]R[x]ENR[x]E]. That is f(x)R[x] EJ, for all f(x)EN[x], so
by Lemma2, N[x] C€J.

Next, consider the canonical projection from R[x] to R[x]/N[x], since N[x] €]. By
Corollary1, we have J(R[x]/N[x])=](R[x])/N[x].
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Put R = R/N, then R[x]/N[x]=R[x], J(R[x])NR = (J/N[x]) N {(R + N[x])/N[x]}
=[Jn(R+N[x])]/N[x])=[JNnR+N[x]]/N[x] (Dedekind modular law.)
=[N+N][x]]/N[x]=0, so

J(R[X])NR=0, by Lemma2.2.2, J(R[x]) = 0.

That s, ]/N[x]=0, so JEN][x], hence J]=N|[x].

]
Lemma2.2.4:
N is a nil ideal of R.
Proof:
[t is clear that N is an ideal of R.
Now let réN, we have r?x €], so there is a q(x)ER[x] such that
q(x)+ r2x+ qx)r?x = 0.
So q(x)=—r2%x — q(x)r?x = —r2x + (r?x)3® + - + (=) (r2x)"*1 +
(_1)n+1(r2X)n+1q(x)_
Choose n>deg(q(x)), and compare the coefficient of x®, we have r?" = 0
, hence N is nil.
]
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