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中文摘要 

文章分成三個部分，第一部分簡單介紹一下 Köthe Conjecture，並簡述其與

Jacobson radical的關係。 

第二部分參考 Krempa的文章，給出一些等價敘述。 

最後的部分有三個 topics，第一個我們指出:在我們的 ring滿足特殊的條件下，

Koethe Conjecture成立。 

第二個，我們介紹 E.R. Puczylowski與 Agata Smoktunowicz的結果:當 R是一個

nil ring時，佈於其上的多項式環 R[x]是所謂的 Brown-McCoy radical ring，

即，R[x]無法同態映滿一個非零的 ring with identity。 

最後，我們介紹 Agata Smoktunowicz的一個例子:存在一個 nil ring R，佈於其

上的多項式環 R[x]不是 nil ring。 

 

而在本文章中，ring(環)一詞總是代表結合環，但不一定有乘法單位元素。 
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Abstract 

There are three parts of this paper. 

The first part we give an introduction of Köthe Conjecture, and list some 

properties of Jacobson radical. 

The second part we go through some results of Krempa, to see some equivalent 

statements of our conjecture. 

Finally, we will see some related topics of Köthe Conjecture. 

 

In this paper, the word “ring” always means an associative ring, but may not have 

an identity.  
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(一) Introduction 

(1.1) Köthe Conjecture 

Köthe Conjecture是在環論中相當著名的猜想之一，至今仍未解決，它在 1930

年被奧地利數學家 Gottfried Köthe提出，其有很多等價敘述，我們採用的是以

下的敘述: 

 

Köthe Conjecture [方便起見，以下稱之為 K .C]: 

In any ring, the sum of two nil left ideal is nil. 

 

初看之下，這個問題似乎是簡單的，而且若我們將敘述做一些自然地加強，則

這些結果均會成立，而且證明是相當容易的，底下指出兩個: 

 

1. In any ring, the sum of two nil two-sided ideal is nil. 

 

證明: 

[Claim]: Let R be a ring, and I be a two sided ideal of R , then R is nil  

if and only if both R I⁄  and I are nil. 

“only if” part is obvious, it suffices to show the remaining part. 

Suppose that both R I⁄  and I are nil, then given any x ∈ R, there is  

a positive integer n such that xn ∈ I. 

Since I is also nil , there is a positive integer m such that (xn)m = xnm 

= 0, that is, x is a nilpotent element in R. That is, R is nil. 

Now return to our goal, given nil two sided ideal I1 , I2, we have, by  

Isomorphism Theorem, that  

I1 + I2
I1

≅
I2

I1 ∩ I2
…(∗) 

The right hand side of (∗) is nil by the claim above, and hence 
I1 + I2
I1

 

is nil, again by the claim, I1 + I2 is nil. 

∎ 

 

2. In any ring, the sum of two nilpotent left ideal is nilpotent, and hence, is nil. 

 

證明: 

Let A and B be two nilpotent left ideals of a ring R, then there are positive 
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integers m and n such that 

Am = Bn = 0 

Now consider  

(A + B)m+n−1…(∗) 

Expand each term of(∗), each term is of the form X1X2…Xn+m−1, where  

Xi ∈ {A, B}, for all i = 1, 2, … , n + m − 1. 

在每個展開項中，至少有 m個 A或 n個 B(否則長度不足 n+m-1) 

Since A and B are left ideal, X1X2…Xn+m−1 ⊆ A
m, or AmR, or Bn, or BnR,  

each of them are zero. So we get that (A + B)m+n−1 = 0. 

∎ 

 

而(K.C.)似乎只是將吸收律去掉一邊，從這個觀點看來，問題似乎並不困難，然

而，我們將在第二與第三部份看到，他的等價敘述”剛好卡在中間”，而從這個

角度可以看出，這個問題其實遠非容易。 

 

(1.2) Jacobson radical 

由於第二部分的等價敘述會用到 Jacobson radical來刻劃，我們在此簡述一下

Jacobson radical的基本性質，但略去證明，底下參考[1]第一章的內容: 

 

Definition: Let R be a ring, the Jacobson radical of R, written as J(R), is defined by 

J(R):=∩Ann(M)  

, where the intersection runs over all irreducible left R-module M. If R has no 

irreducible left R-module, then we put J(R)=R. 

(Note: Ann(M):={a∈R: am=0, for all m∈M.}) 

 

Definition: Let R be a ring, a left(right) ideal λ of R is said to be modular if there is 

an a∈R such that x-xa∈λ(x-ax∈λ) for all x∈R. 

 

底下我們介紹一些可能會用到的性質: 

首先，Jacobson radical無分左右，即: 

Proposition1.2.1: J(R):=∩Ann(M)  

, where the intersection runs over all irreducible right R-module M. 

 

再來，Jacobson radical可以用 maximal ideal來刻劃，而且無分左右，即: 

Proposition1.2.2: 

1.  J(R)= ∩λ, where the intersection runs over all maximal left ideals of R 

which are modular. 

2. J(R)= ∩ρ, where the intersection runs over all maximal right ideals of R 
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which are modular. 

有時候用元素來刻劃 Jacobson radical是有益的，以下是一個定義: 

Definition:  

1. An element a∈R is said to be left-quasi-regular (l.q.r) if there is an b∈R such 

that a+b+ba=0. 

2. An element a∈R is said to be right-quasi-regular (r.q.r) if there is an b∈R such 

that a+b+ab=0. 

3. An element a∈R is said to be quasi-regular (q.r.) if it is both left and right 

quasi-regular. 

4. A left ideal of R is left-quasi-regular if each of its element is. 

5. A right ideal of R is right-quasi-regular if each of its element is. 

 

而 Jacobson radical有以下的性質，此性質亦無分左右: 

Proposition1.2.3: 

1. J(R) is a left-quasi-regular left ideal of R and contains all the left-quasi-regular 

left ideals of R. 

2. J(R) is a left-quasi-regular right ideal of R and contains all the right-quasi-

regular right ideals of R. 

 

底下做一個簡單的觀察: 

If a∈R is nilpotent, then 𝑎𝑚 = 0, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚 ∈ ℕ. Put b = −a + 𝑎2 − 𝑎3 +

⋯+ (−1)𝑚−1𝑎𝑚−1. Then by a simple calculation, we have a+b+ab=0=a+b+ba. 

 

從這與 Proposition1.2.3我們可以得到一個推論: 

Corollary1.2.1: 

If I is a nil left(right) ideal of R, then I⊆J(R). 

 

最後我們列舉兩個性質: 

Proposition1.2.4: 

If A is an ideal of R, then J(A)=J(R)∩A. 

 

Proposition1.2.5: 

J(Mn(R)) = Mn(J(R)). 

 

(1.3) Köthe Conjecture and Jacobson radical. 

 

我們可以從兩個面向來看 Köthe Conjecture，第一個由(1.1)的討論可以看出，

由於兩個 nilpotent left ideal加起來還是 nilpotent，(K.C.)可以視為邏輯上的推
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廣。 

 

第二個可以從 Jacobson radical的性質看出，由 Corollary1.2.1，我們知道若 I是

一個 nil left ideal, 則 I⊆J(R)。 

現在假設有兩個 nil left ideal A，B，則由 Corollary1.2.1，我們知道 A⊆J(R)與

B⊆J(R)，所以 A+B⊆J(R)，這表明 Jacobson radical對 nil left ideal似乎有某種

程度上的”封閉性”，從這個面向來看，討論 A+B本身的”封閉性”也是相當自然

的。 
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(二)Main Theorem 

這部份主要參考[2]，證明一些關於 Köthe Conjecture的等價敘述。 

 

(2.1) 

首先我們先岔開主題，觀察一個自然的問題: 

(K.C.)中我們問:對任意一個 ring R中的兩個 nil left ideal的和是否為 nil，注意

到這個問題我們並沒有對 R作限制，一個自然的想法是這個問題應該不分左

右，即以下敘述應當等價: 

In any ring, the sum of two nil left ideals is nil. 

In any ring, the sum of two nil right ideals is nil. 

 

我們先證明這個簡單的事實，再回過頭看我們的主要定理 

 

首先幾個簡單的引理: 

Lemma2.1.1 

Let R be a ring, then R has no nonzero nil left ideal if and only if R has no nonzero 

nil right ideal. 

 

證明: Suppose that R has a nil left ideal λ, pick x≠0 in λ, and consider the right 

ideal xR+ℤx, xR+ℤx≠{0} since x∈ xR+ℤx 

Let mx+xr∈ xR+ℤx ,the element mx+rx∈λ, so ∃n∈ℕ such that (mx + rx)𝑛 = 0, 

then (mx + xr)𝑛+1 = 𝑥(mx + rx)𝑛(𝑚 + 𝑟) = 0. This implies that xR+ℤx is a 

nonzero nil right ideal of R. 

The other part is similar. 

∎ 

Lemma2.1.2 

Let R be a ring, the following statements are equivalent: 

(1) Every nil left ideal of R is contained in a nil two-sided ideal of R. 

(2) Sum of two nil left ideal of R is nil. 

證明: 

(1)⟹(2) is trivial. 

(2)⟹(1) Consider 

𝐼 =∑λ 

,where the sum is taken all over the nil left ideal of R. 

By assumption, I is a nil left ideal, we claim that I is a two-sided ideal of R. 

Let r∈R ,then Ir is a nil left ideal of R and hence Ir⊆I, for all r∈R, i.e. I is a two-
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sided nil ideal of R, and λ⊆I, for all nil left ideal λ of R. 

∎ 

 

Lemma2.1.3 

Let R be a ring, λ be a nil left (resp. right) ideal of R, and I be a nil two-sided left 

ideal of R, then λ+I is a nil left (resp. right) ideal of R. 

證明: 

Consider the ring R =
R

I
, and let x + r ∈ λ + I , x ∈ λ , r ∈ I. 

Then x + r = x in R, since λ is nil, so ∃n ∈ ℕ such that x + r
n
= x

n
= xn 

= 0 in R. i. e. (x + r)n ∈ I , but since I is nil, so ∃m ∈ ℕ such that  

[(x + r)n]m = 0 , i. e. x + r is a nilpotent. i. e. λ + I is nil. 

∎ 

 

Proposition2.1.1 

The following statements are equivalent: 

(1) In any ring, every nil left ideal is contained in a nil two sided ideal. 

(2) If R is a ring without nonzero nil two-sided ideal, then R has no nil left ideal. 

 

證明: 

(1)⟹(2) is trivial. 

(2)⟹(1) 

Let R be a ring, and let λ be a nil left ideal of R, consider  

I = ∑J 

,where the sum is taken all over the nil two-sided ideal of R. 

Then λ+I is also a nil left ideal of R by Lemma2.1.3, hence  

λ =
λ + I

I
 is a nil left ideal of the ring R =

R

I
.  

Note that R has no nonzero nil two − sided ideal and hence λ 

= 0 by assumption. 

i.e. λ+I⊆I, so λ⊆I. 

∎ 

 

注意到上述論證均為左右對稱，故結合上述結果，我們有 
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Proposition2.1.2: 

The following statements are equivalent: 

(1) In any ring, the sum of two nil left ideals is nil. 

(2) In any ring, the sum of two nil right ideals is nil. 

證明: 

If (1) is true, then by Lemma2.1.2, in any ring, every nil left ideal is contained in a 

nil two sided ideal. So by Proposition2.1.1, if R is a ring without nonzero nil two-

sided ideal, then R has no nil left ideal, so by Lemma2.1.1, if R is a ring without 

nonzero nil two-sided ideal, then R has no nil right ideal, then by 

Proposition2.1.1, in any ring, every nil right ideal is contained in a nil two sided 

ideal. Hence by Lemma 2.1.2, in any ring, the sum of two nil right ideals is nil. 

∎ 

這便表明了(K.C)的敘述是左右對稱的。 

 

(2.2) 

接下來我們進入主要的內容，我們將證明下面的敘述彼此等價，即: 

Theorem2.2.1: 

The following statements are equivalent: 

(1) If R is a nil ring, then the polynomial ring R[x] is a radical ring. (i.e. 

J(R[x])=R[x]). 

(2) If a ring R contains a one-sided nil ideal A, then A is contained in a two-sided 

nil ideal of R. 

(3) If R is a nil ring, then 𝑅2 = 𝑀2(𝑅) is also a nil ring. 

 

我們先證明一個 Lemma，實際上即為 Theorem2.2.1的(1)⟺(3) 

 

Lemma2.2.1 

Let R be a ring, then the polynomial ring R[x] is radical if and only if the matrix 

ring 𝑅𝑛 is nil, for all n∈ℕ. 

 

這個證明需要用到 Amitsur的結果，這個結論的證明並非容易，但離我們的目

標稍遠，我們在此敘述，證明放在 Appendix中 

 

Lemma2.2.2: 

Let N=J(R[x])∩R ,then J(R[x])≠0 implies N≠0. 

 

Lemma2.2.3: 

J(R[x])=N[x] ,where N=J(R[x])∩R. 
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Lemma2.2.4: 

N is a nil ideal in R. 

 

Proposition2.2.1 

If R[x] is Jacobson radical, then R is nil. 

 

Proof of Lemma2.2.1: 

“Only if” 

Suppose that R[x] is radical, then by Proposition1.2.5, J(R[x]n)=J(R[x])n=R[x]n, 

for all n∈ℕ. 

But we have that R[x]n=Rn[x], so we have that Rn[x] is radical, by 

Proposition2.2.1, Rn is nil, for all n∈ℕ. 

“If” 

Suppose that Rn is nil, for all n∈ℕ, our goal is to show that all elements in xR[x] 

is right quasi regular. 

If this is true, then xR[x]⊆J(R[x]), and for any a∈R, ax∈J(R[x]), by Lemma2.2.3, 

ax∈N[x], hence a∈N=J(R[x]) ∩R, i.e. a∈J(R[x]), for all a∈R. 

Hence R[x]=R+xR[x] ⊆J(R[x])⟹J(R[x])=R[x]. 

The main idea as follows: 

Let p(x)=a1x + a2x
2 +⋯+ amx

m, it may be difficult to find q(x) ∈R[x] directly, 

but if we allow q(x) ∈R[[x]], then the coefficient of q(x) can be defined 

inductively, say q(x)= b1x + b2x
2 +⋯+ bnx

n +⋯ our goal is to show that for k 

is sufficient large, bl = 0, for all l≥k. And hence q(x)∈R[x] 

 

Suppose that there is q(x) ∈R[[x]] such that q(x)=p(x)+p(x)q(x) 

Let q(x)= b1x + b2x
2 +⋯+ bnx

n +⋯ ,then  

p(x)q(x)=a1b1x
2 + (a1b2 + a2b1)x

3 +⋯+ (amb1 +⋯a1bm)x
m +⋯+ 

(ambn−m−1 +⋯a1bn−1)x
n +⋯ 

⟹ (b1 − a1)x + ⋯+ (bm − am)x
m + (bm+1)x

m+1 +⋯ = p(x)q(x)… (1) 

 

Compare each coefficient of (1), we can define bn inductively as follows: 

b1 = a1 

b2 = a2 + a1b1… 

bn =

{
 
 

 
 an +∑an−jbj

n−1

j=1

, if n ≤ m

∑am−j+1bn−m+j−1

m

j=1

 , if n > m

…(2) 
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It is easy to check that q(x)=p(x)+p(x)q(x). 

 

Our next goal is to find a m×m matrix (cij) such that for all k≥m, we have  

bk+i =∑cijbk−m+j

m

j=1

, for i = 1, 2, … ,m. 

We define cij inductively, suppose that there is (cij) such that  

bk+i =∑cijbk−m+j

m

j=1

, for i = 1, 2, … ,m, for all k ≥ m. 

Then bk+1 =∑c1jbk−m+j

m

j=1

, from (2),we may choose c1j = am−j+1, 

for j = 1, 2, …m. 

Next, bk+2 =∑c2jbk−m+j

m

j=1

= c21bk+1−m + c22bk+2−m +⋯+ c2mbk. 

On the other hand, bk+2 =∑am−j+1bk+2−m+j−1

m

j=1

 

= ambk+2−m + am−1bk+3−m +⋯+ a1bk+1 

Since bk+1 =∑c1jbk−m+j

m

j=1

, so  

bk+2 = ambk+2−m + am−1bk+3−m +⋯+ a1∑c1jbk−m+j

m

j=1

 

= ambk+2−m + am−1bk+3−m +⋯+ a1∑c1jbk−m+j

m

j=1

 

= a1c11bk−m+1 + (am + a1c12)bk+2−m +⋯+ (a2 + a1c1m)bk. 

Put c21 = a1c11, c22 = am + a1c12, … , c2m = a2 + a1c1m,  

bk+3 =∑am−j+1bk+2−m+j

m

j=1

= ambk+3−m + am−1bk+4−m +⋯+ a1bk+2 

= ambk+3−m + am−1bk+4−m +⋯+ a2∑c1jbk−m+j

m

j=1

+ a1∑c2jbk−m+j

m

j=1
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= (a2c11 + a1c21)bk+1−m + (a2c12 + a1c22)bk+2−m 

+(am + a2c13 + a1c23)bk+3−m +⋯+ (a3 + a2c1m + a1c2m)bk 

Put c31 = a2c11 + a1c12, c32 = a2c12 + a1c22, c33 = am + a2c13 + a1c23, …  

c3m = a3 + a2c1m + a1c2m. 

More generally, suppose we have defined cij, for 1≤i<l≤m, j=1, 2, …, m. 

Define clj =

{
 
 

 
 

∑al−icij

l−1

i=1

, if 1 ≤ j < l.

am+l−j +∑al−icij

l−1

i=1

, if l ≤ j ≤ m.

… (3) 

Then by the argument above,we have  

bk+i =∑cijbk−m+j

m

j=1

, for i = 1, 2, … ,m, for all k ≥ m.… (4) 

 

Next, consider the matrix D=(dij) ∈ Rm+1 defined by dij = cij ,1 ≤ i , j ≤ m 

di(m+1) = bi, i = 1, 2, … ,m. And d(m+1)i = 0, i = 1, 2, … ,m + 1. 

We claim that for any k ∈ ℕ, (Dk)
i(m+1)

= b(k−1)m+i, for i = 1, 2, … ,m,  

and (Dk)
(m+1)(m+1)

= 0. 

For k = 1, the statement holds obviously, assume that  

(Dk)
i(m+1)

= b(k−1)m+i, for i = 1, 2, … ,m, (D
k)
(m+1)(m+1)

= 0 , 

for some k ∈ ℕ, then  

Dk+1 = DDk, so (Dk+1)
i(m+1)

= ∑ dil

m+1

l=1

(Dk)
l(m+1)

= ∑ cilb(k−1)m+l

m+1

l=1

 

= ∑cilb(k−1)m+l

m

l=1

, hence (Dk+1)
i(m+1)

=∑cilbkm−m+l

m

l=1

, by (4), (Dk+1)
i(m+1)

 

= bkm+i, i = 1, 2, … ,m. And (D
k+1)

(m+1)(m+1)
= ∑ c(m+1)lb(k−1)m+l

m+1

l=1

= 0. 

Hence (Dk)
i(m+1)

= b(k−1)m+i, for i = 1, 2, … ,m, (D
k)
(m+1)(m+1)

=

0 , for all k ∈ ℕ. 

By our assumption, Rm+1 is nil, so there is k ∈ ℕ such that D
k = 0 
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⟹Dl = 0, for all l ≥ k.  

This implies that b(l−1)m+1 = b(l−1)m+2 = ⋯ = b(l−1)m+m = 0, for all l ≥ k,  

hence bp = 0, for all p ≥ (l − 1)m + 1. i. e. q(x) ∈ R[x]. 

p(x) − q(x) + p(x)q(x) = 0. 

So q(x)+(-p(x))+(-p(x))q(x)=0 

So − p(x) is quasi regular, for all p(x) ∈ xR[x], 

So p(x) is quasi regular, for all p(x) ∈ xR[x], 

So xR[x] ⊆ J(R[x]). Hence J(R[x]) ⊆ R[x] = R + xR[x] ⊆ J(R[x]), 

i. e. J(R[x]) = R[x]. 

∎ 

 

Now we are ready to prove our main theorem. 

 

Proof of Theorem2.2.1: 

(1)⟹(2) 

Let A be an nil left ideal of R, then A is itself a nil ring, so by our assumption, 

J(A[x])=A[x], i.e. every element in A[x] is left quasi regular, and clearly A[x] is a 

nil left ideal of R[x], so A[x]⊆J(R[x]), hence J(R[x])≠0, so by Lemma2.2.2 

N=J(R[x])∩R≠0, by Lemma 2.2.3, J(R[x])=N[x], Lemma 2.2.4 tell us that N is nil 

two-sided ideal. 

Now A[x]⊆J(R[x])=N[x], hence A⊆N, note that this argument is also true for right 

ideals, hence (2) holds. 

 

 

(2)⟹(3) 

Let R be a nil ring, and let A’={(
a b
0 0

) : a, b ∈ R} = R2 (
1 0
0 0

), 

A’’={(
0 0
a b

) : a, b ∈ R} = R2 (
1 0
0 0

), C’={(
0 b
0 0

) : b ∈ R}, C’’={(
0 0
0 b

) : b ∈ R}, it 

is not hard to check that C’ is an ideal of A’, and C’’ is an ideal of A’’. Furthermore, 

A’/C’ and A’’/C’’ are both isomorphic to R, and hence is nil. But C′2 =

0, and C′′is clearly nil. So C’ and C’’ are nil ideal of A’ and A’’, respectively, this 

implies that A’ and A’’ are nil left ideals of R2. By our assumption, A’ and A’’ are 

contained in a nil two-sided ideal of R2, say A’⊆B’, A’’ ⊆B’’, where B’ and B’’ are 

nil two-sided ideal of R2. 

R2 = A
′ + A′′ ⊆ B′ + B′′ ⊆ R2, hence R2 = B

′ + B′′, which is nil. 

 

(3)⟹(1) 
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By Lemma2.2.1, we only need to show that Rn is nil, for all n ∈ ℕ. 

Since R2n+1 ≅ (R2n)2, for all n = 0, 1, 2, … 

So by induction, R2n  is nil, for all n ≥ 0, but for arbitrarily  

n ∈ ℕ, pick m ∈ ℕ so that 2m > n,  

then Rn is isomorphic to (written as block form) (
Rn 0
0 0

)
2m×2m

⊆ R2m , 

and R2m  is nil, hence Rn is nil, for all n ∈ ℕ, and (1) follows from  

Lemma2.2.1. 

∎ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



doi:10.6342/NTU201800361

13 
 

 

 

(三) Related topics. 

 

(3.1) Some special class of rings. 

我們一開始即指出，(K.C)在最一般的情形下仍未解決，一個自然的問題

是:(K.C)是否會在某些特殊的環上成立，倘若這個 class足夠大，或者說條件是

自然的，那麼這些跡象或許可以表明此猜想為正確的可能性 

在這個小節，我們考慮三個特殊的 class，這三個情形均在某種程度上描述了”

有限性”條件。 

 

前兩個是較為明顯的結論，這兩個描述了類似有限維的條件，參考[1]的證明: 

1. Artinian rings. 

Theorem3.1.1: Köthe Conjecture holds for any left(right) artinian rings. 

 

利用下面這個定理即可立刻推出 Theorem3.1.1的證明: 

 

Theorem3.1.2: Let R be a left(right) artinian ring, then J(R) is nilpotent. 

Proof: 

Assume that R is right artinian. 

Put J=J(R), consider the descending chain of ideals: J⊇J2 ⊇ J3 ⊇ ⋯ 

Since R is right artinian, so there is an integer n such that Jn = Jn+1 = ⋯ 

Our goal is to show that Jn = 0, assume that Jn ≠ 0, consider W={x∈J:xJn = 0}, 

then W is an ideal of R. 

If W⊇Jn, then 0 = WJn ⊇ JnJn = J2n = Jn, which is a contradiction. So W⊉Jn. 

Consider R = R W⁄ , then by our assumption, Jn =
Jn

W⁄ ≠

0, since R is also right artinian, so there is a minimal right ideal ρ ⊆ Jn.  

Claim: ρ is irreducible, if not, then ρR = 0, so ρ Jn = 0, that is, ρJn ⊆ W,  

i. e. ρJnJn = 0, but by J2n = Jn, we have . ρJn = 0, hence  ρ ⊆ W, a  

contradiction! 

So ρ is irreducible, hence ρJ(R) = 0, but note that Jn ⊆ J(R)  

(Jn is a quasi regular ideal of R). 

So we have ρ Jn , which is impossible! Hence Jn = 0 

, the similar argument holds for R is left artinian. 

∎ 

Now we prove Theorem3.1.1 

Proof of Theorem3.1.1: 
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Let R be a left(right) artinian ring. 

By Corollary1.2.1, any nil left(right) ideal of R is contained in J(R), by 

Theorem3.1.2, J(R) is nilpotent, so any nil left(right) ideal of R is nilpotent, hence 

by (1.1) 2, sum of any two nil ideals of R is nil. 

∎ 

2. Noetherian rings. 

 

Theorem3.1.3: Köthe Conjecture holds for any left(right) noetherian rings. 

 

這個證明可由下面的定理推出 

 

Theorem3.1.4: If R is a left(right) noetherian ring, then any nil one-sided ideal is 

nilpotent. 

 

這裡我們先證明一個 Lemma: 

Lemma3.1.1: If R is a ring without nonzero nilpotent ideal, then R has no nonzero 

nilpotent one-sided ideal. 

Proof: Suppose ρ is a nonzero nilpotent right ideal of R, if Rρ=0, then ρ is itself a 

two-sided ideal which is nilpotent. 

If Rρ≠0, then Rρ is a nonzero two-sided ideal of R, and (Rρ)n =

(Rρ)(Rρ)… (Rρ) ⊆ R(ρR)(ρR)… = 0, if n is large enough since ρ is  

nilpotent. 

A similar argument shows that R cannot have a nonzero nilpotent left ideal. 

∎ 

Proof of Theorem3.1.4: 

Claim: If R is a left(right) Noetherian ring without any nilpotent ideal, then R has 

no nil one-sided ideal. 

Assume that R is right Noetherian and A is a nonzero nil one-sided ideal of R. 

Pick an 0≠a∈A so that Ra≠0( This can be done, for if Ra=0, for all a∈A, in 

particular, AA=0, then A is a nilpotent one-sided ideal,so by Lemma3.1.1, R has a 

nilpotent two-sided ideal, which contradicts with our assumption.) and consider 

U=Ra, U is a left ideal of R. 

Claim: U is nil. 

If A is a left ideal, then U⊆A and hence A is nil, if A is a left ideal, let ra∈U, then 

ar∈U, hence there is n∈ℕ such that (ar)n = 0, hence, (ra)n+1 = r(ar)na = 0. 

So U is nil. 

Now for u∈U, let r(u)={x∈R:ux=0}, then {r(u)}u∈U−{0}is a collection of right 

ideals of R. Since R is right Noetherian, there is u0 ∈ U − {0} such that 



doi:10.6342/NTU201800361

15 
 

r(u0) is maximal. 

Now for x∈R, xu∈U and r(xu)⊇r(u), so if x∈R with xu0 ≠ 0, then r(xu0) =

r(u0) by maximality of r(u0). 

Now for y∈R with yu0 ≠ 0, since yu0∈U and U is nil, so there is k≥2 such that 

(yu0)
k = 0, but (yu0)

k−1 ≠ 0 

Since (yu0)
k−1 ∈ U, and (yu0)

k−1 = au0, for some a ∈ R, so r((yu0)
k−1) =

r(u0). And since (yu0)
k = 0, yu0 ∈ r((yu0)

k−1) = r(u0), hence u0yu0 = 0. 

For yu0 = 0, it is obvious that u0yu0 = 0. So we get u0yu0 = 0, for all y ∈ R. 

Finally, for xu0, yu0 ∈ U, (xu0)(yu0) = 0,  

so U is a nonzero nilpotent left ideal of R, by Lemma3.1.1, this cannot happen! 

So the claim holds. 

For the general case, assume that R is a right Noetherian ring, then R has a 

maximal nilpotent ideal N, if ρ is a nil one-sided ideal of R such that ρ⊈N, then  

ρ =
ρ + N

N
 is a nonzero nil one − sided ideal of R =

R

N
, 

but R is a right noetherian ring which has no nonzero nilpotent ideal.  

So by Lemma 3.1.1, this cannot happen, hence ρ ⊆ N. 

That is, ρ is nilpotent. 

∎ 

Proof of Theorem3.1.3: 

This result follows from Theorem3.1.4 and (1.1) 2. 

∎ 

3. Polynomial identity rings.(PI-rings) 

 

這個情形相對特殊一些，但一方面來說，這還是滿足某種條件下的有限性，在

這小節最後我們指出一個特殊例子來說明這個 class夠大(至少，包含矩陣環)。 

We follow the proof given in [4] 

 

我們先介紹一些定義: 

Definition3.1.1: A ring R is said to be satisfies a polynomial identity if there is 

n∈ℕ, and a nonzero f(x1, … , xn) ∈ ℤ〈x1, … , xn〉(Free ℤ − algebra) such that 

f(r1, … , rn) = 0, for all ri ∈ R. 

Here, we say that f is a polynomial identity of R, the degree of f is defined as 

natural way, f is monic if at least one of the highest degree term has coefficient 1. 

 

我們由上面的定義看出，R滿足一個有限條件的等式，但以下我們給一個例子: 

Example3.1.1: 

R=ℤ2[x],這個環顯然滿足 f=2x1 ∈ ℤ〈x1〉，但這個作用顯然是無趣的。 
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由上面的例子，為了規避上述情形的發生，我們對 PI-ring有一個更加嚴格的定

義。 

Definition3.1.2: A polynomial identity ring(PI-ring) is a ring satisfies some monic 

polynomial identity. 

 

Remark:在上述定義中，我們並沒有假設其常數項為 0，實際上，若常數項不為

0，例如 f(x1, … , xn) ∈ ℤ〈x1, … , xn〉，其常數項不為 0，如果這個環 R沒有乘法單

位元，那麼f(0, … ,0)這個元素是沒有定義的，而即便有乘法單位元素，由於 

f(0, … ,0) = m = 0 in R，代表這個環滿足 mx=0, for all x∈R，於是我們顯然可

以把f(x1, … , xn)用 f(x1, … , xn) − m取代，而這個多項式常數項為 0。 

因此，以下如果我們沒有特地指出，均設f(x1, … , xn)的常數項為 0。 

 

下面這個定理指出，如果環滿足一個 polynomial identity，那麼我們可以針對這

個多項式作調整使其整齊一點，首先我們有以下的定義: 

 

Definition3.1.3: A multilinear polynomial of degree n is a nonzero element 

f∈ ℤ〈x1, … , xn〉 taking the form: 

∑ aσxσ(1)…xσ(n)
σ∈Sn

 

with each aσ ∈  ℤ. 

 

所謂的比較整齊即下面的性質: 

 

Proposition3.1.1: If R satisfies an identity f of degree d then R also satisfies a 

multilinear identity g of degree d. Furthermore, each coefficient in g is also a 

coefficient in f; and if f is monic, so too is g. 

 

Proof: Each term of f can be partitioned into those in which x1 occurs and the 

others. Say 

f(x1, … , xn) = f1(x1, … , xn) + f2(x2, … , xn) 

Set x1 = 0,we get f2, and so, f1 are identities of R.  

Since f is monic, one of f1, f2 are monic. So we pick the monic one. 

Continue this process, we can assume that each xi occurs in every term of the 

expansion of f. And this new identity has degree at most deg(f). 

 

If f is not multilinear, then the term of highest degree cannot be multilinear, so at 

least one xi, say x1, appears in this term twice. 

Consider the polynomial: 
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g(x1, … , xn+1) = f(x1 + xn+1, … , xn) − f(x1, … , xn) − f(xn+1, … , xn) 

A simple calculation shows that each term of g all come from those terms w in f 

which have degree at least 2 in x1; they are the terms obtained by replacing 

some, but not all, of the x1′s w by xn+1. They retain the same coefficient as w; 

and if f is monic, then g is monic. 

Continue this process, we may reduce f to be multilinear. 

∎ 

Next we note a trivial fact: 

Lemma3.1.2: Let g(x1, … , xm) be a monic multilinear identity whose monic term 

is x1…xm. Then  

g= g1(x1, … , xm−1)xm + g2(x1, … , xm), 

where g1 is monic multilinear and g2 is multilinear with no term  

ending in xm. 

 

Now we can prove: 

Theorem3.1.5: 

A nonzero nil PI ring has a nonzero nilpotent ideal. 

Proof: 

Called a PI ring R has minimal degree m if m is the least possible degree of a 

monic polynomial identity of R. As above, we can assume that this identity is 

monic. 

Our proof based on induction on the minimal degree m of R. 

First, by Lemma3.1.1, it is sufficient to show that R has a nonzero one-sided 

nilpotent ideal. 

Let R be a nonzero nil PI ring with minimal degree m, then m>1. 

If m=2, then this identity must of the form x1x2 − nx2x1, for some n ∈ ℤ. 

Choose an nonzero b∈R such that b2 = 0 

Then bRb=nb2R=0. So if B=ℤb+bR, then B2 = 0. 

Next, suppose the result holds for all smaller degree, choose an nonzero b∈R 

such that b2 = 0. 

If bR=0, then B=bℤ is a nilpotent right ideal of R. 

If bR≠0 and R satisfies g(x1, … , xm), write  

g= g1(x1, … , xm−1)xm + g2(x1, … , xm) 

as in Lemma3.1.2. 

Note that for all r1, … , rm−1 ∈ R, g2(br1, … , brm−1, b) = 0 

So g1(br1, … , brm−1)b = 0. 

Let W={r∈bR:rbR=0}. Then W⊴bR; and g1 is monic,multilinear of  

degree less than m satisfied by bR/W. 



doi:10.6342/NTU201800361

18 
 

If W=bR, then bR is a nilpotent right ideal of R, otherwise, bR/W contains a 

nonzero nilpotent right ideal. 

So there is a right ideal I of bR, I⊇W, I≠W, with I2 ⊆ W. 

Now IbR is a nonzero right ideal of bR(Since I≠W). And 

(IbR)2 ⊆ I2bR ⊆ WbR = 0. 

∎ 

Corollary3.1.1: If R is a nonzero PI ring has a nonzero nil right ideal, then R has a 

nilpotent ideal. 

Proof: It is sufficient to show that R has a nilpotent one-sided ideal. 

Let ρ be a nonzero nil right ideal of R, then ∃0≠I⊴ρ which is nilpotent. 

If IR=0, then I is itself a right ideal of R which is nilpotent. 

If IR≠0, then there is x in I such that xR≠0, let W={r∈ xR:rxR=0}, then W is an 

ideal of xR. 

If W=xR, then xRxR=0, and hence R has a nonzero nilpotent right ideal. 

Otherwise, xR/W contains a nonzero nilpotent right ideal, so there is a right ideal 

J of xR, I⊇W, I≠W, with I2 ⊆ W. 

Now IxR is a nonzero right ideal of R(Since I≠W). And 

(IxR)2 ⊆ I2xR ⊆ WbR = 0. 

∎ 

Corollary3.1.2: If R is a PI ring, then every nil one-sided ideal is contained in a nil 

two-sided ideal 

Proof: 

Let R be a PI ring and N be its nilradical, then R/N has no nonzero nilpotent ideal, 

so R/N has no nonzero one-sided ideal by Corollary3.1.1. 

Now, if ρ is a nil one-sided ideal of R, then ρ is a nil one-sided ideal of R/N, so 

ρ=0, hence ρ⊆N. 

∎ 

By Corollary3.1.2 and (1.1)1. Köthe Conjecture holds for any PI rings. 

 

Application: 

(3.1)剩下的部分，我們證明:PI ring這個 class包含了我們常見的一些環，並舉

出一個小應用 

一個顯然的事實是 PI ring包含了所有的交換環(滿足x1x2 − x2x1) 

實際上，我們要證明: 

 

Theorem3.1.6: Let R be a commutative ring, then Mn(R) is PI, for all n∈ℕ. 

Proof: 

It is sufficient to show that R is a commutative ring with identity, if this is true, let 
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R1 be the usual extension of R, then Mn(R) is a subring of Mn(R
1), and hence, 

is PI. 

So let us assume that R has an identity, and let eij ∈ Mn(R) defined by  

(eij)mk
= {

1, if m = i and k = j
0, otherwise

, 1 ≤ i, j ≤ n. 

Note that every element of Mn(R) can be written as a linear combination of eij′s 

over R. 

Moreover, take f(x1…xn2+1) ∈  ℤ〈x1, … , xn2+1〉  

f(x1, … , xn2+1) = ∑ (sgnσ)xσ(1)…xσ(n2+1)
σ∈Sn2+1

. 

Then f(r1, … , rn2+1) = 0, for all r1, … , rn2+1 ∈ {eij: 1 ≤ i, j ≤ n}. 

Since f is multilinear and very element of Mn(R) can be written as  

a linear combination of eij
′ s over R, so Mn(R) satisfies the identity f. 

Hence Mn(R) is PI, for all n∈ℕ. 

∎ 

 

從 Theorem3.1.6有一個簡單的推論:可以拿它來計算Mn(R)的 nilradical. 

 

Let R be a ring, denote the nilradical of R by  

N(R):= ∑ I

I⊴R,I is nil.

 

Theorem3.1.7: 

Let R be a commutative ring with identity, then N(Mn(R))=Mn(N(R)) 

Proof: 

Since R has identity, so N(Mn(R)) = Mn(I), for some I ⊴

R, so we must have I ⊆ N(R). So N(Mn(R)) ⊆ Mn(N(R)) 

Conversely, since N(R) is nil, Mn(R) is PI. 

Consider the right ideals eiiMn(N(R)), i = 1, 2, …n. A simple calculation shows 

that each eiiMn(N(R)) is a nil right ideal of Mn(R). Since Mn(R) is PI, so  

Mn(N(R)) = e11Mn(N(R)) + ⋯+ ennMn(N(R)) is nil, hence 

Mn(N(R)) ⊆  N(Mn(R)). 

So N(Mn(R))=Mn(N(R)). 

∎ 
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(3.2) A Theorem of E.R Puczylowski and Agata Smoktunowicz ([5]). 

 

在 Theorem2.2.1中，我們指出 Köthe Conjecture等價於下面的敘述: 

If R is a nil ring, then R[x] is Jacobson radical. 

 

作為這個的推論，我們有: 

Proposition3.2.1: Assume K.C. holds, then R[x] cannot be homomorphically 

mapped onto a nonzero ring with identity. 

Proof: 

Since R[x] is Jacobson radical, so is every homomorphic image of R[x], i.e. J(S)=S, 

where S is a homomorphic image of R[x]. 

But if a nonzero ring S has identity, then J(S)≠S since S has a maximal left ideal 

ρ, and M=S/ρ is an irreducible S-module such that 1∉Ann(M). 

∎ 

也就是說，Proposition3.2.1為 K.C.的必要條件，而本節我們將證明這個是正確

的，即我們要證明: 

 

Theorem3.2.1(E.R. Puczylowski and Agata Smoktunowicz):  

If R is a nil ring, then R[x] cannot be homomorphically mapped onto a nonzero 

ring with identity. 

 

底下我們先給幾個定義: 

Definition3.2.1: 

1. Let R be a ring, and let f(x)=amx
m +⋯+ anx

n∈R[x], m≤n, am ≠

0 , and an ≠ 0, call an the leading coefficient of f(x) and put minf(x)=m, 

degf(x)=n, l(f(x))=n-m+1. So minf(x)+l(f(x))=degf(x)+1. 

2. We call a ring homomorphism f:R[x]⟶P of R[x] onto a simple ring P proper if 

f(xI[x])=P, for every nonzero ideal I of R. 

 

Lemma3.2.1: 

Let f:R[x] ⟶P be a proper homomorphism of R[x] onto a simple ring P with 

identity, and let w(x) ∈xR[x] be such that f(w(x))=1. 

Then for every non-zero ideal I of R there exists t(x) ∈xI[x] with f(t(x))=1, 

mint(x)≥degw(x) and l(t(x))≤deg(w(x)). 

Proof: 

Given a polynomial p(x)= amx
m +⋯+ anx

n ∈ xI[x] such that am ≠
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0, and f(p(x)) = 1, then consider the polynomial  

q(x) ≔ w(x)amx
m +⋯+ anx

n. 

Clearly q(x) ∈ xI[x], and f(q(x)) = f(w(x))f(amx
m) + ⋯+ f(anx

n) 

= 1 × f(amx
m) + ⋯+ f(anx

n) = f(amx
m +⋯+ anx

n) = 1. 

Next we look at minq(x) and l(q(x)), first, since minw(x)≥1, we have 

minq(x)≥minp(x)+1. 

If degw(x)amx
m≤n, then l(q(x)) ≤l(p(x))-1. 

If degw(x)amx
m > n, then l(q(x)) ≤[degw(x)+m]-(m+1)+1=degw(x). 

So we have l(q(x)) ≤max{degw(x), l(p(x))-1}. 

So if we have l(q(x))> degw(x), then replace p(x) by q(x) and continue this way, 

we can find a t(x)∈ xI[x] with the properties that f(t(x))=1, mint(x)≥degw(x) 

and l(t(x))≤deg(w(x)). 

∎ 

Proposition3.2.1: 

Suppose that f:R[x] ⟶P is a proper homomorphism of R[x] onto a simple ring P 

with identity 1, and w(x)= a1x + ⋯+ anx
n is a polynomial of minimal length in 

xR[x] such that f(w(x))=1. Then ai ∈ Z(R), for all i = 1, 2, …n, here Z(R) =

{x ∈ R: ax = xa, for all a ∈ R}. 

Proof: 

Suppose not, then there is k of maximal number such that ak ∉ Z(R), i. e. 

rak − akr ≠ 0, for some r ∈ R, say c = rak − akr.  

Let I = ℤc + Rc + cR + RcR ⊲ R(i. e. I is the ideal generated by c). 

Since f is proper and P is simple,we have f(xI[x]) = P, and for m ≥ 1,  

f(xIm[x]) ⊇ [f(xI[x])]m = P, so f(xIm[x]) = P. 

 

By Lemma3.2.1, for each m, there exists tm(x) ∈ xI
m[x] such that f(tm(x)) 

= 1,min tm(x) ≥ degw(x)  and l(tm(x)) ≤ degw(x). 

We may choose tm(x) with these properties with minimal length lm. 

By our choice of w(x), l(w(x)) ≤ lm, for all m ≥ 1. 

For any m ≥ 2, the leading coefficient a of tm(x) ∈ I
m. Hence there are  

c1, … cl ∈ I
m−1 and j1, … , jl ∈ I such that a = c1j1 +⋯+ cljl, since j1, … , jl 

∈ I. 

, there are mk ∈ ℤ, nk, pk, qk, sk ∈ R such that jk = mkc + nkc + cpk + qkcsk. 

k = 1, 2… , l.  

So a = c1(m1c + n1c + cp1 + q1cs1) + ⋯+ cl(mlc + nlc + cpl + qlcsl), put  

ik = ckmk + cknk + ckqk ∈ I
m−1 and rk = 2 + pk + sk ∈ R

1, then a 

= i1cr1 +⋯+ ilcrl, here R
1 denote the usual extension with an identity  

of R. 
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Next, put g(x)=rw(x)-w(x)r, the leading coefficient of g(x) is c, degg(x)≤degw(x) 

and l(g(x)) ≤l(w(x)). 

deg tm(x) ≥ min tm(x) ≥ degw(x) . Now 

tm(x) = tm(x) − [i1g(x)r1 +⋯+ ilg(x)rl]x
deg tm(x)−degg(x) ∈ Im−1[x]. 

f (tm(x)) = f(tm(x)) − f(i1g(x))f(r1x
deg tm(x)−degg(x)) − ⋯ 

−f(ilg(x))f(rlx
deg tm(x)−degg(x)) = 1 − 0 = 1.  

Now we compute l (tm(x)) , since l(tm(x)) ≥ l(w(x)) ≥ l(g(x)) ≥ 

l ((i1g(x)r1 +⋯+ ilg(x)rl)x
deg tm(x)−degg(x)), 

and the leading coefficient of tm(x) and  

(i1g(x)r1 +⋯+ ilg(x)rl)x
deg tm(x)−degg(x) are equal, so l (tm(x)) < l(tm(x))  

andmin tm(x) ≥ degw(x) (sincemin g(x) ≥ w(x)). 

So by our choice of tm−1(x), lm > l (tm(x)) ≥ lm−1, so lm > lm−1, for all m 

≥ 2,which is impossible since lm ≤ degw(x) for all m. 

∎ 

The next lemma is the key of our proof of Theorem3.2.1: 

 

Lemma3.2.2: 

(1) If f:R[x]→P is a ring homomorphism of R[x] onto a simple ring P with identity, 

then (R∩kerf)[x]⊆kerf, and either A:=R/(R∩kerf)≅P or the ring 

homomorphism g:A[x]→P induced by f is proper. 

(2) If f:R[x]→P is a ring homomorphism of R[x] onto a simple ring P with identity, 

then R/(R∩kerf) has an non-nilpotent element. 

 

Proof: 

(1) Note that if I is an ideal of R such that f(I)=0, then f(I[x])=0, if not, then 

f(I[x])=P, but 0=f(I)f(R[x])=f((IR)[x])=f(I[x])f(R[x])=P, which is a 

contradiction. In particular, (R∩kerf)[x]⊆kerf. 

Now, put A=R/ R∩kerf and define g:A[x]→P by g(a0 +⋯+ anx
n) 

= f(a0 +⋯+ anx
n). Since (R∩kerf)[x]⊆kerf, g is well-defined, g is clearly a 

ring homomorphism form A[x] onto P. 

If g(xA[x]) = 0, then A ≅ P. 

If g(xA[x]) = P, then for every nonzero ideal I of A, g(I) ≠ 0 since A 

= R ∩ kerf, I ≠ 0 means that I ⊈ kerf and hence g(I) ≠ 0. 
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Now, if g(xI[x]) = 0, then P = g(I[x]) = g(I), so 0 = g(xI[x]) ⊇ g(I)g(xA[x]) 

= P. This is impossible, so g(xI[x]) = P, i. e. , g is proper. 

(2) If A:=R/(R∩kerf)≅P, then the result holds obviously, suppose not, then the 

ring homomorphism g:A[x]→P induced by f is proper. 

So by Proposition3.2.1, there is a polynomial t(x)∈Z(A)[x] such that 

f(t(x))=1, so at least one coefficient of t(x) is not a nilpotent element.(If not, 

note that Z(A)[x] is a commutative ring, so sum of two nilpotent elements is 

again a nilpotent elements.) 

So A contatins a non-nilpotent element. 

∎ 

Proof of Theorem3.2.1: 

If R is a nil ring, so every element in R is nilpotent, by Lemma3.2.2 (2), R[x] 

cannot be homomorphically mapped onto a nonzero simple ring with 

identity. 

This implies that R[x] cannot be homomorphically mapped onto a nonzero 

ring with identity. If not, suppose f:R[x]⟶P is a ring homomorphism from 

R[x] onto P, where P is a nonzero ring with identity, then P has a maximal 

ideal I, denote g:P⟶P/I the canonical projection of P onto P/I, then g∘f is a 

ring homomorphism from R[x] onto a simple ring with identity, which is a 

contradiction. 

∎ 

這就證明了我們所要的結果。 

更進一步的，M.Chebotar, W.-F. Ke, P.-H. Lee 與 E.R. Puczylowski四人將此結果

推廣，證明了下述定理[7]: 

Theorem: If R is a nil ring, then the polynomial ring R[𝑥1, … 𝑥𝑛] cannot be 

homomorphically mapped onto a nonzero simple ring with identity. 

但在此我們不談這個定理。 
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(3.3) An example of Agata Smoktunowicz ([6]). 

 

在 Theorem2.2.1中，我們指出 Köthe Conjecture等價於下面的敘述: 

If R is a nil ring, then R[x] is Jacobson radical. 

 

那麼，一個可行的做法是考慮下列的問題: 

If R is a nil ring, then R[x] is also a nil ring. 

若這個問題是正確的，那麼 Köthe Conjecture自然成立。 

但在 2000年，Agata Smoktunowicz構造了一個反例，即存在一個 nil ring R，

佈於其上的多項式環 R[x]不是 nil，這代表試圖以這個方向證明是不可行的，但

很可惜的是，這個反例的構造超出我的理解，因此我僅在此列出這個反例，而

不做證明，但我仍試圖給一個直覺上的觀察，希望能說明這個可能會出現問題

(這當然，不是一個詳細的證明)。 

 

Let K be a countably infinite field, and let K{x，y，z} denote the polynomial ring 

of three noncommutative indeterminate, take A be the subring of K{x, y, z} with 

zero constant term. 

Since K is countable, so is A, write A={𝑓𝑖: 𝑖 = 1, 2, … }. 

Consider the ideal I generated by {𝑓𝑖
10𝑚𝑖+1: 𝑖 ∈ ℕ}, where 𝑚𝑖 satisfying: 

(i) 𝑚1 > 10
8, 𝑎𝑛𝑑 𝑚𝑖+1 > 𝑚𝑖 × 2

𝑖+101 𝑓𝑜𝑟 𝑖 ≥ 1,  

(ii) 𝑒𝑎𝑐ℎ 𝑚𝑖 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑚𝑖+1,  

(iii) 𝑚𝑖 > 3
2deg(𝑓𝑖)(deg(𝑓𝑖))

2402, 𝑓𝑜𝑟 𝑖 ≥ 1. 

𝑃𝑢𝑡 𝐴 = A/I 

 

Theorem3.3.1: 

The polynomial ring 𝐴[𝑋, 𝑌] with two commutative indeterminate is not nil. 

 

Corollary3.3.1: 

There exists a nil ring N such that the polynomial ring N[x] is not nil. 

 

Proof: If N[x] is nil for all nil ring N, then N[x，y]=N[x][y] is nil, for all nil ring N, 

but we have an nil ring 𝐴 such that 𝐴[𝑋，𝑌] is not nil, so there is a nil ring N 

such that N[x] is not nil. 

∎ 

這裡可以給一個直覺上的說明，首先，𝐴的交換性相當差，當我們取一個

f∈𝐴[𝑋, 𝑌]，並計算他的次方時，可以想像他的項數會越來越多，而由我們 I的
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構造，每個項的係數 0掉的速度越來越慢(指數部份成長相當快速)，可以直覺

想像，f次方的成長追不上這些𝑚𝑖的成長，那 f可能就不會是 nilpotent。 

總結:Köthe Conjecture 可以從很多面向來看這個問題，首先當然是把 nilpotent 

ideal 對 nil ideal做推廣，第二個我們可以從 radical來看，在環論中，我們可

以把 radical裡面的元素想像成不好的元素，像是 nilpotent這種自己自乘某個

次方後會等於 0的元素通常不是我們喜歡的，就如同考慮可測函數一樣，一般

來說一個環內當然有可能有一些不好的點(例如可測函數有些點會取值正無窮或

負無窮)，關鍵在於這些點是否會影響到環的結構，所謂影響結構，一個觀點就

是這些點多到可以形成 ideal，從而就可以做 quotient，例如我們看矩陣環

𝑀𝑛(ℝ)，這矩陣內當然有一些 nilpotent的元素(例如嚴格上三角或嚴格下三角

矩陣等等)，但這個矩陣的 nilradical是 0，直覺上看來就相當於說明這些

nilpotent元素數量不多，不至於影響環的結構。而 Köthe Conjecture可以這樣

看:單邊 ideal所影響的是 left或 right module的結構，我們想問的是:如果這些

nilpotent多到能影響 module的結構，那是否他就能影響到整個環的結構? 

這個問題看來單純，但從 Theorem2.2.1中我們可以發覺，定理中第三個敘述是

自然的，第二個則是可以從 Köthe Conjecture中直接得到，但第一個敘述相當

不自然，一般來說，會問:”R是 nil，則 R[x]是 nil.”這樣的問題顯然比較自然，

但(3.3)卻指出這是錯的，(3.2)與(3.3)說明了 Köthe Conjecture剛好"卡在中

間”，可見這個問題並不是如他的外表看來那麼容易解決，乃至於自 1930年開

始至今均懸而未決。 
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Appendix: 

 

Here we shall prove Lemma 2.2.2, Lemma 2.2.3, and Lemma 2.2.4. The proof of 

these lemma due to Amitsur([3]). 

 

We first prove some elementary properties of Jacobson radical. 

 

Lemma1: 

Let R and S be rings and φ:R→S be a ring homomorphism from R onto S, then 

φ(J(R))⊆J(S). 

Proof: 

Since φ is onto, φ(J(R)) is an two-sided ideal of S, it is clear that every element in 

φ(J(R)) is quasi regular, hence φ(J(R))⊆J(S). 

∎ 

This implies an easy corollary: 

Corollary1: 

Let N be an ideal of a ring R such that N⊆J(R), then J(R/N) =J(R)/N={a+N: 

a∈J(R)} 

Proof: 

Consider the canonical projection φ:R→R/N, then by Lemma1,  

φ(J(R))=J(R)/N⊆ J(R/N). 

Conversely, note that J(R/N)=I/N, for some ideal I of R that containing 

N.(Correspondence theorem) 

Let a∈I, then there is b∈I such that a+b+ab∈N⊆J(R), so there is c∈R such that  

a+b+ab+c+ac+bc+abc=0=a+(b+c+bc)+a(b+c+bc), hence a is right quasi 

regular, so I⊆J(R), hence J(R/N) =J(R)/N 

∎ 

Lemma2: Let R be a ring and a∈R. If aR⊆J(R), then a∈J(R). 

Proof: 

 If a∉J(R), then by the definition of Jacobson radical, there is an irreducible left 

R-module M such that aM≠0, but M is irreducible implies that M=RM, so aRM 

≠0, i.e. there is an r∈R such that arM≠0, i.e. ar∉J(R), which is a contradiction. 

∎ 

Now we can prove 

Lemma 2.2.2: 

Let N=J(R[x])∩R ,then J(R[x])≠0 implies N≠0. 
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Proof: 

Let J=J(R[x]). Suppose that the lemma is not true, then there is a ring R with J≠0, 

but N=0. 

Our main ideal as follows: 

Let f(x) be a nonzero polynomial of minimum degree such that f(x)∈J. 

Then consider φ:R[x]→R[x] defined by φ(f(x))=f(x+1) (Note that R may not 

have identity, but f(x+1) is well-defined as usual way.) 

So by our corollary1, f(x+1) ∈J, hence f(x+1)-f(x) ∈J, but the degree of f(x+1)-

f(x) is smaller than f(x), hence f(x+1)-f(x)=0, i.e. f(x+1)=f(x), in the special case 

that R is a field, then f(x)≡a≠0, which is a contradiction, our goal is to show that 

this is also true for any ring. 

 

Step1: 

For a prime integer p, let Rp = {a ∈ R: pa = 0}. It is clear that Rp is an ideal of 

R, and hence Rp[x] is an ideal of R[x].  

We now show that we can assume that f(x)∈Rp[x]. 

Let f(x)=anx
n +⋯+ a0 with n ≥ 1(i. e. an ≠ 0), then f(x+1)-f(x)=nanx

n−1 +

⋯ = 0, so nan=0, let m be the minimal integer such that man=0 (Note that 

m≥2) and let p be a prime integer dividing m. Then we have 

m

p
an ≠ 0, and clearly 

m

p
an ∈ Rp, now, replace f(x) by 

m

p
f(x) ∈ J, and  

p [
m

p
f(x)]  is a polynomial in J with degree less than n, so p [

m

p
f(x)] = 0 

, and hence 
m

p
f(x) ∈ Rp[x]. 

Step2:  

We claim that if f(x) ∈Rp[x] satisfies that f(x+1)=f(x), then f must of the form 

f(x)=h(xp − x), for some h(x) ∈ Rp[x]. 

First, note that Rp can be viewed as an algebra over Zp. 

Next, consider the ring  

Rp
1 = Rp × Zp, with addition defined componentwise, and  

(a,m)(b, n) ≔ (ab + na + mb,mn) 

Since Rp is an algebra over Zp, the operation of Rp
1 is well − defined,  

Rp can be viewed as a subring of Rp
1, and Rp

1 is an algebra over Zp  

with identity. 

Now, we use induction on the degree of f(x), note that f(x)∈ Rp[x] ⊆ Rp
1[x]. 

If deg(f(x))<p, since f(x+1)=f(x), so f(m)=a, for some a∈ Rp ⊆ Rp
1,m=0, 1,…, p-
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1, so by division algorithm and factor theorem, we have f(x)≡a∈ Rp. 

Next, if degree f(x)≥p, then by division algorithm in Rp
1, we have  

f(x)=(xp − x)h(x)+k(x), where deg(k(x))<p, so by our assumption, 

f(x+1)=f(x), this implies that 

(xp − x)[h(x+1)-f(x)]=k(x)-k(x+1)…(1) 

compare the degree of both side, note that the degree of right hand side of (1) is 

less than p, and if h(x+1)-h(x) is not zero, then the degree of left hand side of (1) 

must ≥p, so h(x+1)=h(x), and k(x)=k(x+1), where deg(h(x))<deg(f(x)), and 

deg(k(x))<p, so k(x)≡a∈Rp
1, and k(x)∈Rp

1[xp − x], so  

f(x)= (xp − x)h(x)+a∈Rp
1[xp − x], and hence f(x)∈Rp[x](The final conclusion 

holds by view every coefficient when we use division algorithm). 

 

Step3: 

Claim: If h(xp − x)∈J(Rp[x]), then h(x
p − x)∈J(Rp[x

p − x]). 

By Lemma2, it is sufficient to show that h(xp − x)Rp[x
p − x] ⊆ J(Rp[x

p − x]). 

Let g(x)∈ h(xp − x)Rp[x
p − x], then g(x) ∈J(Rp[x]), so it is quasi regular, say 

g(x)+k(x)+g(x)k(x)=g(x)+k(x)+k(x)g(x)=0, since the quasi inverse of g(x+1) 

is k(x+1) and g(x)=g(x+1), so k(x) is also the quasi inverse of g(x+1), then by 

the uniqueness of quasi inverse, we have k(x)=k(x+1), then by Step2, we have 

k(x) ∈Rp[x
p − x], hence h(xp − x)Rp[x

p − x] is a quasi-regular right ideal of 

Rp[x
p − x]. So h(xp − x)∈J(Rp[x

p − x]) by Lemma2. 

 

Step4: 

Now return to our goal, let f(x) be a nonzero polynomial of minimum degree such 

that f(x)∈J. By step1, we may assume f(x) ∈J∩Rp[x]=J(Rp[x])(Proposition1.2.4) 

Next, since f(x)=f(x+1), so by Step2 and Step3, f(x)=g(xp − x)∈ J(Rp[x
p − x]). 

Consider the map φ: Rp[x
p − x] → Rp[x] defined by φ[g(x

p − x)]=g(x), this is, 

clearly, a ring homomorphism. So by Lemma1, φ(J(Rp[x
p − x]))⊆J(Rp[x]), hence 

g(x)∈J(Rp[x]). But g has degree less than f(Since f is nonconstant by our 

assumption.), this leads to a contradiction. Hence N≠0. 

∎ 

 

Lemma2.2.3 J(R[x])=N[x]. 

Proof: 

Since N⊆J=J(R[x]), so N[x]R[x]⊆NR[x]⊆J. That is f(x)R[x] ⊆J, for all f(x)∈N[x], so 

by Lemma2, N[x] ⊆J. 

Next, consider the canonical projection from R[x] to R[x]/N[x], since N[x] ⊆J. By 

Corollary1, we have J(R[x]/N[x])=J(R[x])/N[x]. 
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Put R = R/N, then R[x]/N[x]≅R[x], J(R[x])∩R ≅ (J/N[x]) ∩ {(R + N[x])/N[x]} 

=[J∩(R+N[x])]/N[x])=[J∩R+N[x]]/N[x](Dedekind modular law.) 

=[N+N[x]]/N[x]=0, so 

J(R[x])∩R=0, by Lemma2.2.2, J(R[x]) = 0. 

That is, J/N[x]=0, so J⊆N[x], hence J=N[x]. 

∎ 

Lemma2.2.4: 

N is a nil ideal of R. 

Proof: 

It is clear that N is an ideal of R. 

Now let r∈N, we have r2x ∈J, so there is a q(x)∈R[x] such that  

q(x)+ r2x + q(x)r2x = 0. 

So q(x)=−r2x − q(x)r2x = −r2x + (r2x)3 +⋯+ (−1)n+1(r2x)n+1 +

(−1)n+1(r2x)n+1q(x). 

Choose n>deg(q(x)), and compare the coefficient of xn, we have r2n = 0 

, hence N is nil. 

∎ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




