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Abstract

Quantum correction is necessary when calculating dissipative quantum
dynamics based on results from classical molecular dynamics simulation in
which quantum effects are ignored. Quantum correction has been used in
many fields to make use of classical trajectories in quantum simulations, such
as calculation of infrared spectra. However, in the context of excitation energy
transfer in molecular system, the need of applications of quantum corrections
is less discussed. In this study, we examine four quantum correction methods,
including the Harmonic method and the Standard method proposed by other
groups previously, and the Fitting method and the Prony method proposed by
us. We aim to elucidate the performance of the correction by the four correc-
tion methods in order to properly apply them to simulating excitation energy
transfer dynamics. We focus on a model that describes a two-level system
linearly coupled to a harmonic bath to explore the applicability of quantum
correction methods in various parameter conditions. Our results reveal the
necessity of applying quantum correction when studying excitation energy
transfer dynamics based on results of classical molecular dynamics simula-
tion. Our calculations also conclude that the Harmonic method performs the
best among the four approaches and that the Prony method has serious draw-
backs. The Fitting method provides similar results as the Standard method,

and both methods perform well at a higher temperature or in the condition
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where relaxation is driven by coherent evolution.
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iSRS

ek ik 2B SRR LS F3 TCF f LSS LR FAE SRS
— A5 B B 7 & i A A R b rh s 2
FrAg-2) 69 o

=

F TCF
Sk F69= FiE TCF $2 4314z & TCF
%45 F 2% F42 & TCF 2 [77-79](3% R4k 6.1)

w3k
eBhwo
(2(t)) 2o coth( ) cos(wot) — sin(wgt)| ° (2.1)
o {28 9k F 49 434 B TCF 2
eq _ CoS(wol)
(x(t)z)s) = G (2.2)
W IR T2 T4 B TCF $10F ] 1% 2 3 48 3% 2] 9 302
/OO dt e (t)z)ot, = mh coth(ﬁhwo)[é(w — wp) + d(w + wp)]
o 2mwyq 2.3)
5 :
g 9 — ) = 6w+ wo)]
A IR T e fn B TCF $0% f) 148 o 3 34 30 2 JA BT
/_ e o)) - ﬁmeg[é(w ) + 0w — wp)] ¢ (2.4)
Ehr-m-Rw 2R RMERTH R FHEBEAHRIEO)MLE - T E - RARA
PRSP =7 RAAGBIE ORI 0 B o Hb > A RIARA wo 191
BT ARAABREGMRBEERTEX(Q23)#X (24) 69rbd
hew
Qhar (i) = 2

1—

o
e*ﬁhwo

(2.5)

FTHEBEEEEERFRAMBERTORIDIAEAM - B> BT U E—K
10

BERBER I G —HRB LM BIRTHEAG AR LARNETHE ST RE
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Qhar (w) =
AE [ 89 ik %

Bhw
% oA

2

1 —

BRI B A4S > Rl 249 TCF AR L a9 fkis £/ 72
e—Bhw
J& iE

FRHTERAR FEMABRFMLEN—K

(2.6)
F B ARAEBRAET  EAFRITAGABEBRTERET

o MR LA
222 1%

P& 69 3k % 0

Caa(t) >

E—H5AN BT HEHIRFME TCF 8915 E > A ERABBR THHES
R o JEIZ ST R B AT E B 0wk Ik TCF 20 1 #1714
- # J& 22 (principle of detailed balancing) - $2 4% # {5 3%

80] 4 4 % R F) 69 15 E 7 ik o ¥k — i M7 A S8 TRl F A0 H TCF
HAA B B A8 B

# Caa(w) = |2

o0

B
(standard approximation)[75,
B(XAR T F 2%
WEC A (t)dE ©

~

/Kﬁ

» power spectrum > PS)C'y4(w)
B AT TCF AR ER @B -FHRE : O(—w) = C(w)
# C(w) 7 A HBAE C(v) BRHFHA Cu(w) >
Clw) SRR Cy(w) B9 K% A GF

e B, 3
R 4% 4m 80 T 7 R 32 B 44 X T 4% 3)
R4k 6.2)

%=
C(w) =

1+ tanh(ﬂhw

CTABE
B A7~ TCF LB 89 )T 5K 45 % 3¢ (Hermitian function) > € 49 &

(2.7)

B AT FHAEIA Cs(w) 1642 S F 30 H0F ] 69 45 2 3 43
®E

3 Cp(t) A 6918
Cs(w) = ZHC (1)} - (2.8)
B 3% & TCF E il & F TCF 2% & Cu(t) ~ C.(t)
3] 0 1% B AR

(1) > ALt & AT B
PN E PR ik B ek > H o TCF &9 1% 14 52 3 3% 3 ol 74
11
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92
£
%
S
£
i)
S
2
=
-

95] 79 B 0 RAIE E X
am—u+mm2?mu@o (2.9)

A E KRR E TR B AT AR TCF > B & B H A -

223 HEex

FIRE 221 ey ikt 222 He9AR K% > BATRBRBE AN ETHES
AMASR R L [75,76,81] 12245 T8 ) FREE T2 95 — F R AR
Lo AREKMRE THAE - CRXAAR L RBARR L LB SEF 3 TCF > FA
FAAZ AR AL B S E o A3 P KA A

Z Aze™ N cos(w;t) (2.10)

BB FHEH XL Ht S FE TCF o« RIFAT A XK A LR BEATHRESA d KIED
[82,83] : % — > 7T VA K& i 1t YA /& i€ ) 75 #2 X (hierarchical equations of motion)
FHEH ) SR FET o F = B AieVlcos(wit) KAk TERNMME A ¥ A
Qi BREEL 0 HIARMBIRT 3 BA HARMIRE BB RRABEIE
LENMRMHRT > BFE—FBEINSTEEOBE > BRABL L 5 T 0%
LA ER o MmARBR LELR S LM Bk FILEAEBETRSGARTAR Y
AR RN > PTARAT G AR B A o
o B AR S FE SR MEE 0 AT — 8P A48 89 JR I L 9 AR 5 OE K 2.9 2 BF AR B A

S A 1’; o 2 11
;ia Eb 7] :% éé\ gz‘ DS ﬁiua‘:ﬁ giﬁ& %i%{ 7N E]

Q;t

e Mt cos(wit) = [eiQit“wit + eiQ"tfi“it] (2.12)

N —

> BAIA — L BB EWE (LM 6.3) > LAt 67547 2] 49460 F F TCF T 1A
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i1t A&
Cra(t) = Ca(t) +i ) Antan(=-By)ef" o (2.13)
m=1

;ﬁ:_\:P Am = AZ/QBm = —Qlilwl °

2.2.4 Prony %

Prony % ¥ VA#R, & 4 &% 69 B R, » &AM A Prony %-#7 (Prony analysis) s B AX,
BAFET S LA BEGICRIEIT A AR 15 B8 Fo o Prony RSk &k 6 £ R
1274 #A1 A Prony 2 #7 (Prony analysis) 3318 7T VA 2 5 335 4% 3% A AL & B4
AR T ERGBEE T OH S LA B S E — 4k (Prony 247 R4k 6.4)

M

Calt) > ApePnt (2.14)

m=1

M

Coro(t) = Calt) +1 > Ay, tan(ij)eBmt o (2.15)

m=1

13
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% =% B oM E R AN
%

A% £ A2 A super-Ohmic 3k 5 B A 3t H 2 B 05 M) 8 A48 B B 3 (A A% 4 2
TCF) VAPLI IR % —F P -8B 6 EAE W £ 7 ik o P8 # 2 TCF 234 FH T 42 4
BIRETE 2 69 h B T MM BB MM R > Lt 2

Cheyb.,(t) = Trp{Op(t)Opps} ° 3.1

BB ARH AR RTFEEY > HAMNERLE LA RBPHBRRTHOMLE
¥ TCF 7T A HiL & B A8 M R R & F o

Iy
[=}

.
©
!

0.6 1

©
S
s

Spectral density

©
[N}

0.0

0 2 4 6 8 10
Angular frequency (w¢)

B 3.1: v = 2/7 T &9 super-Ohmic X% E > J(w) = 7%6“”/“6
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BAAWERTEET > AT For#% TCF > IR T & &M 4k T 49L& TCF
S BEZFERFAENMBRTEAHARIBERERS ) - KA FER
WY RFHTHREFRRIAEMERTAALGBERE > TR R R
AR AR A9 R o AR AR 7, 0 F BT LU L3 R AT AR

J(w) = Z crd(w —wy) (3.2)

k

Edop RIBE W GMBRTEALGBERE  HREAEE - ARTME > &AM
R REZBI A RHE R RAT &

J(w) =J(w) = J(—w) ° (3.3)

HRRX 32V 8 o ERAHR R ETFHOHEE > O) L TUNHEF L E R KGR
F 48241 & (collective coordinate) 49 TCF[75] » BivA 4 24 & 49 TCF 498 F15.E
893l A L 2R TCF 492 F150E o &A1 — 2R3 7 Ohmic £ super-Ohmic %,
£ F B W BZAP AL P $R A super-Ohmic 3% %5 & > Ohmic 49 F B4 Bl e 4k o
super-Ohmic 2% % & 69 & &2

J(w) = ’yw—ge’“/% (34)
SRR TCF 2638 5 & 49 Bl 4% X2
Clw) = 71 + cotM@)w(w) : (3.5)
790 M S MR TCF o 38 58 2 69 B2
Calw) = meoth(2) 7 (w) (3.6)

"EAB I P ZALE TR ARBR T RARABAEMBRTFHALGBEOBAE > AdLA B
TCF #F5¥ Rl 69 1545 7. 35 #8352 K3 P 89 Cw) #84 RZE % [69, 84] -
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AR IR A5 IR 77 ik 2 R A
Cye(w) = Q(w)Ca(w) (3.7)

AEBF IR A9 15 B 77 7R S0 A B8 25 B i 3R & 3 TCF A5 E A3 3 2 A » W /e A
XAt F RAVBRR S T30 ) S8 E £ 6945 R MRF 3 & 32 TCF

Cyu(t) = /000 dw e_i“’tJ(w)Bihw cos(wt) ° (3.8)

# Cut) B IER Cpo(t) At 2483 Cy(w)

3.2 BE A RE

BhREME Y =2/7T LTI Bhw, %05 12 £ REBEMGH Lk
TCF(RLE 3.2) ketsmB EHMFE - AR E > EEFE LW JIHMARAAIEFE L
BB R AR EKARRE I SR LARR K SZAELIKAELREL RS ; HH
B AR BB RAKAE RS B S AR SRR A > M A REAR S0 A SRS E o F
BERAS > ERERAGHAR IR BAEZRZGRE) > MAESHET > HIKAE L
H AR )6 A A% o 1R A% R A A AE B) 3 A RS RO 4K 1 3 A A5 B 4K AE B GO AR %
AR o WIRBHR AL TH > HEER TGO RIBEL > L2 COw) NORE
IR TULHBEB RS L HE [84,85]c mARR L ERTUAEHEIE
& % 3 (response function) E R B EFL > mALCHEBT > BEHRAFMEELASQ
Ko BRABEITSEBHRBETIRTARSOMEL D SHOREE -

3.3 Prony %

T R EN AR A AT EAIR A Prony E R 2 —ARIRIFHEEF FE o &
7 Prony 5-#7 49 R ZIR 4] > /£ Prony 5 AT 898 H A F RM RAEAL BB R E > &
B A KBS HOR B A IR o A2 & R TR A A BORHOP A9 AR > BT B A
HERERZBZAIE > BHARACREE 223G FPRBINEERAZEZTES S
Fo1E5 [82] PR G L SRS TATHRAAFITA AT S E °
17
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(@) (b)

IFT of TCF
TCF
N

T T T T
0 1 2 3 4 5
frequency [wc] time[1/wc]

B 3.2: b R RS T a9 2k TCF 49 (a) A3 (b) BF3k - A BB ERE v =2/7
T =8 E Shw. =0.5,1,2 0

LT HA A L B Bliw. = 0.5~y = 2/ THEREHR AW > 1A AAE
Prony # R 2 — 18 32 48 49 7 ik o B — 4L 9 A7 69 K B 499 49 B A R A58
B 332 ik Kk A 200 £HE 40945 R > B 3ALREE K E 203 RS R o
Fl AR AR ek ha R KOG NMBTR M A H 3 F 30 > REMLA X215 » FRAEHRAE
;oo fE4E R RFH A E 3.3(b) AnlE 3.4(b) AT ARG A A > A2 R 4EE 3.4(b) F T
A& B h R ERMRABRARSE > TR EL 2 BRKRESIE o 38 Prony 5
M6 RE & — B A GBS T ik o A2 R AR TR A 45 R BAG AR AL SR 48 > 4% 4F Prony
ERAE—ASE T TSRS K o AMRWTAH - AT 5 ST RAGGIFAE > 2
A K 215 73 4 69 69 R SR G ARAR > BT VAT 3 &0k 3 3] Prony ik > BAAFAEA £
SBART AN FRE BB RERIEIFETMATTAY o BARME XA X T
MNZERAH > RRMBEGET FNRLERGRESLER PR LT > TEIFZ
AWM AR L ABAALENIE - RS T—HFHSFLF @A > Prony &
Fodit AR AR B B FI ARG MR > Lk R T RF IR B AR B BB A R A B A 0 B IEAR
H ) R4 ERE o

34 #Hteik

3.5 AAESE fhw, =05,1,2 >y =2/m T RAotk & RE L HIRH AR O
B S b e R X ASBREILETE 3.6 © B 3.5(0) BA fhw.=1TF =
BRAOLE LT ET IR LIRS Z AR 6L EE > ZILEIFH 085 L6927
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G IR kR SR 5% > A2 IR Ak b 6d R 4 (| 3.5(d)) 4R E > —F ok
HHERNRELEF T A ZREN—BEE c mAAERLE (LE 3.6)> =%
HBEELERBELER) REEFT K B 3.5() BE fhw. =2 THERE IR =
BB AIEARE 2 Z AR S 4T > LM 03 5 LR E-F > —7R
ERZIRIEN 5% 2 e E AR (B 3.5(0) BIbE AT 0 —HRENBEF AL
TR 68% c mAMERLE (LB 3.6) —AENISELERE (BRELEL) HEIF
TR AAFEEAMAEAN  HARER > RMARWRSEALE A tan(z) HBAFTHK
$h AR LA BSR4 R (X 2.13F 49 B,,) KA tan iE
By o B B K SE LA R B R k0 RO R £ o AR > ApeBnt 4 A Bt

gt Am an(28m)oBmt 4 Aw (P08 )oBint g4 8 3 % I F /N AB LA K o

B—FBRETURER FEROE fhw. = 1~y = 2/m 8§ 7 & F
Bhwe =2~y =2/m 8§ Ao - AR LGHFHEF  HALR—BE—1REH
T oo d mANVA At cos(wnt) 89 F B XETH S B 924 TR EFAOM
ek T o 42 RAEAT TCF B M R 26 L a9 (A AR e KR > AR BME—F o b
HE S LB MRA > FRA] Ay 28 KAE o 758 3.7 F 6948 28R4 69 5 5 W 4%
(constrained curve fitting) o KA AIe iz L4k RAJABRMKEALRE 3.8

HZRAMAE LRH TR R IBRONBEFTAARLERHREHN
B E R A BT A WA BE G D, A B2 KA Call) B
S A tan(E)e Bt B X F A Cy(t) s 2 2@ e BAETF 0 Y, AnePrt Bk
A C(t) RAARE Y, A tan(Z2)ePnt f o B i C5(t) o i 338 72 2 KA
TREATEHERCy(t) B FTERC LS TRAFREMBEK - AT HBR
THRERARANEMNE FTEREBRAMEETH KK TRELE > ATHBRERZRAB
THERAAF LT TR WAL TATRCEREBLT TERTHREGE
137 M A > BAVE A B FE C(1) o o LE%RA > £ ARH P
BT ZRBATRRSEEENE TEIHR > AWAAT T HAR LK T I
HFATHREFGRR - KA L =1~y =2/1 AH > /F2E 39 A=FT*
#A4 o FHRLE(RLE 3.9) R AnR4] 69 A 693R £ F 7 o2 A AR 69 15% - {2
AEIHLE (FLE 3.9B)) A mRH REHERMNMES > T3k £ AL K R4 69
FE>X— - mAEAAFRLE (LB 3.9C)) > Kin R4 6 E A JA F IR 6 4%(E
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TVAE] 250 R EAEMAA# 80 - 2 A AAE ELH T A 250 mEEELY ] -
RURAFRELZTEZALABREGFATANE RETHERRALAMETER
b 1% EAT IR 6 B AR AR T A TR A9 3 A

AR —3 a2 > 40 H 3.10(a)(b) 321 3.11(a) M4 ML BT IAA K Z B oA
MABYE ~ ZIRB SR MBS R > BUF A K L — ¥ k44 C. Meier 52 D. J.
Tannor 3% i} #9 A % %38 % & [82] 42 TCF 45 g mk >, exp(—Q;) cos(w;) #94% 48 >

G 4L ERARE AN A HEEE o

\\

i

3.5 b A IE R

RATAE S B AAF Phw. = 0.5,1,2 v =2/1 T Wt SAES Bk o 5 A H &
FARAELHEARAGS ARGERTFTAREAARBYNAARBOAER
AR B BAHE  HmEBRKRZERBGASERGERRESE - KMKE
3.10(a)(b) ~ 3.11(a) #9H4A ML R T ARIR » AR S H AR S G MUAZ RIS E
R e EERTESLE ) ZHEBRLGARRLAAL_EABRSABERE - A THNF

BT FEHRE > RAMFINT Prony 547 > Prony o A7 5T AR R4 638 £ £
BT R > AR BIRTRB AL E 0 ATARMIA T H 2 BIRA B0k o

M REER 6 FHEFR () R AL HBY > BLR A THABRZIESRGE
R oo MFEEE (har) SARREASE (std) F AR T EHENER > HHQAREET S
e TCF AR B 6 A #f R WS i ¥ ¥R 3 AR E BB R
AR RS OB R A Tk (std 2fit) RUE AR R B L — 5 — K R o mAHE

1 TCF f2 B 332 3t & 5 72 B 348 A tan(ﬁg“ L) M43t Ak E 3 (tan-fit) 44 % K 3 &
Hf (tan 2fit) 49 75 i R AL A4 98 340 AR F 47 69 &5 R o £ 700 Prony 3 B 72 BF 334
A tan(224) b R RAFARE 4 o

mARRER 7@ > At SR T > FHRERMERF MR T > @ HEE
HEEAR SRR ER B LR I 0 2R R 45 BER IR it 489 KRR 4T > Prony
B RALIRIT o AR T @ 0 R T B S EIM S R R IR AR M R R
BB > Rk ERBE RIAT -

FAEER B =05 F&FERAAE LK - LAFREHR > ALK
FHARRAL AR B A REMA T o B EELE EENETR  BZRISELL
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Kb AR RAE o A4k 541 Prony EAR RAFIBE ST HTHARIRAL o 12— H 49
ZIEBEAERRAE —ABIER 5 G 635 R HAR e d Bk 0 T BARAT AR AR RS IR
B3Rk ALE SR AR R > Ml Ah Prony e B S A RME AT —F R EF @Y
o MAREAMS EAEBS B AR IRE R R ARAMES c AAARRLE
G ERAREME S MRES EXRL_ARESAREG EXGARAMEL -
Prony ik 2 IR #t & kAT AR g Rk AARy KGR -
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o 41
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o
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Angular frequency (w.)
33: # fhw. =05~y =2/ TH 499 A HE 42 > k8 &k & 200 49 Prony ki
ATIEIEREER o () HEREHRBESITAORME R KGAMEIEA - (b) THRNEAZ
Fa o (c) VA Prony ik ¥f & $ K I 56 PTAF 09 b R RA9N\MBR & B 18 h 69 R 3 © (d)
NBIRE BB ERZI A o (e) thixF3 ~ FF ~ Pron R 2h 3 o Z B SR
ZHFRA&6.1 -
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(a) (b)

|
10+ 51 —— 8PA
4<
54
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04 4 2
14
_5<
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real part of TCF
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T
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204
S i —10+
04 =
s bS]
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© c —20
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£ B
2 -401 g-30
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|
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€
2 64
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w
o 41
3
o
o
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-10.0 =75 -50 -25 00 25 50 7.5 10.0
Angular frequency (w.)
34: # fhw. =05~y =2/ TH 499 A HF 42 > i@k & 203 4 Prony ki
AT EMER (@) HERFT RS FORBR KGAMEIEA - (b)) BHRANAMEERZ
Fa o (c) VA Prony ik ¥f & $ K I 56 PTAF 09 b R RA9N\MBR & B 18 h 69 R 3 © (d)
NBABE LB E B EIRZ A o (e) b &3t ~ 5 ~ Pron iR 89 5) 3% - Z LA
SHFRAK62 -
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Real part of TCF
|
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© (d)
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|
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Time (2r/w,)

Time (2m/w,)

350y =2/mn LT AR =ZFANHER SIS IE © (a) ~ (b) 2 5% fhw, =05 TF >
HERTHRBESNSARLE A B> EHEGEFARBEESERERGETRAE
o) (d) 2R E Phw, =1 T > HELFTHRESOERMLLEA > 8> EREH
B S HE S RIS R BITRAE © ()~ () A& Phwe =2 T > T I
S BIAMAL T > B ERENERRKRBSGEREN N EIFAEIR - SFHREAN
SHFRAK 63

24

doi:10.6342/NTU201800569



10

—— B=0.5, excat
—— B=1, excat
81 B =2, excat
------ B=0.5, 2fit
ol I B=1,2fit
Lg ------ B =2, 2fit
v —.— B=0.5, 3fit
8 41 —— g=1,3fit
g —— B=2,3fit
2<
0 ="

-100 -75 -50 -25 00 25 50 75 100
time [1/w(]

3.6: SRR LRI E 3.5 ZAFBE T R 2B IRA| 9B S B9 45 R o

(a) (b)

3.0 < 1.0
|
2.51 B iild 0.54
: aess 1st
2.0 veer 2nd 0.0~.
é 1_5<‘._ ._ — constra?ned 2fit 0.5k
5 = constrained 1st .
s s ) W s
t 1.0 - - ===+ constrained 2nd S -1.01
© e, P =
Q 0
g 0.5 -1.54
0.01 —2.01 7 —— constrained 2fit
—0.54 —2.5 constrained 1st
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0 1 2 3 4 5 00 05 10 15 20 25 3.0 35 4.0
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-1.0 T : : : : : :
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3.7: R IR A T 98 6 RIR B 69 B & o 28 fhow. =1~y =2/ £ =R
BEET (HFLTHRELENEARLAES - (b) EEGERARBFSERE
HE)EIRE R o fhw, =2~y =2/ £ ZIREFEET 0 (o) HEBLFHKE A4 87
AU S (d) EHENERARBREEREN N EFER - SRS HFAR K 64
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— 5ex
T e 5 2fit
64 --=- .5 3fit
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g 51 e 1 2fit
9 44 —— 12cfit
& -+ 1 3fit
3 31— 2ex
; ......
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B 3.8 Bhwe = 0.5,1,2 S48 8 A T A R 4] S 4t FR5) 3 &7 /4 98 % 3% b 49 b g o 1k

#E 3.6 LT fhw.=1,2 T&ARF —3B# 4 (B #4K5% 2cfit) o
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L~y = 2/m F » (a) $8 F5 46247 7 Ao R 40 S R 41 BE 289 45 T o (b) Hodic 4
8 B 3R SR Ao R > Ao R B SR AF B 09 R 3R o (c) PLE IEFE A T) R 3E L R Ao R
F o~ A RBBEAEFEE o BTRSBFH ALK 65
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(a) (b)

8 8
== exact == exact
74 — 74 —
—— Qhar — Qhar
—— Qstd —— Qstd
61 — tan 2fit 61 — tan 2fit
— tan 3fit — tan 3fit
59 51
w w
o o
= =
54 54
= =
o L
3 34
2 29
14 14
0 T T T T T T T T T 0 T T ? T Y T T T T
-8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8
angular frequency [wc] angular frequency [w]
(c) (d)
6 == exact 6 - === exact
— —
5 Qhar 5 —— Qhar
—— Qstd —— Qstd
4 —_— Zf!t 44 —_— Zf!t
— 3fit — 3fit
3 3
5 S
24 24
1 1
0 0
-14 -1
-2 r r r r r r r -2 r r r r r r r
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0 0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0
time [1/w.] time [1/w,]
(e) ®
1.0 1.0
0.54 0.5 1
0.0 0.0 y : =
—0.5 —0.5
—1.01 -1.01
S 5
= F
-1.51 -1.51
-2.01 == exact -2.01 == exact
— —
—-2.51 —— Qhar —-2.51 —— Qhar
— Qstd — Qstd
-3.01 —— tan 2fit —3.01 —— tan 2fit
—— tan 3fit —— tan 3fit
-3.5 T T T T T T T -35 T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0
time [1/wc] time [1/wc]

3.10: vhd BAE 15 B 7 ik 47 5 69 2 R 3h o 2B fhw, = 0.5~y = 2/1 T#
TCF > (a) BF3E 38 ~ (0) BFBUE 3 ~ () AR o 2B MM fhw. = 1~y = 2/1 T#
TCF > (b) B3 6 > (d) B BB 3~ () A
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(a)

8
== exact
74 —
—— Qhar
—— Qstd
61 — tan 2fit
— tan 3fit
5
w
o
=
5 4
—
w
34
24
14
0 u T u T ¥ T T T T
-8 -6 -4 -2 0 2 4 6 8
angular frequency [wc]
6 - == exact
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5 —— Qhar
—— Qstd
al — 2fit
— 3fit
34
w
O
24
14
oA
-1
-2 T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0
time [1/w.]
(©)
1.0
0.5 1
0.0 a0
—0.5 1
~1.0
w
o
=
~1.5
—2.01 == exact
—
—2.51 —— Qhar
—— Qstd
—3.01 —— tan 2fit
— tan 3fit
-3.5 T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0

time [1/wc]

3.11: Vs A5 I 75 ik A7 2] 69 SR A8 B B BOL K o 2B Shwe = 2>y =
2/m T 9 TCF > (a) B 3K 3 ~ (b) B HUE 3 ~ () JAMK
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%W ¥ HE AR By ) B AR

FEPEMEBBAT —F P & FETH 9B TCF 3t H vl THE 4 %698

7] &

[e]

s
[

4.1 EE AR

# i R HEE B R 4% (dimer system) ¥ 49 E % F & &, (single exciton basis) ¥
VAFF 3] — B TR & % 5 AP EA 2 T VA 4% 9% I (rotating wave approximation) -
% RS E R E miT R

AT
Hs - : (4.1)
J —-A
EME AN LR EALRDEE T - ERNARRG AR J o AT HEpHE > KM
BREZE S THA L AEBIKNEL2H  EUARESHT2ELZE ST
FAVEE AR BB RE TR /) FB A o

4.2 Redfield ¥ %

AL E T8 % 7 & &AM g kA Redfield 2235 [24, 29, 30, 86, 87] © % % &%
AR AT VA B R R LA o B R S A 09 SR E AR 60 e

Hgp =) > 05®0F- (4.2)

n «
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AR 4E Redfield 28 34 55 B 46 & 69 05 M IR b & 4 7

d@y:—%mgaau+nam (43)
Ro(t) % dr Z Z Z Z {C’aa [ e —ilst/hg s/ a(t)]}

—icpe (—ﬂr)[fﬂu[e_”th/hELﬂengT/h,U(tﬂ]_k} (44

R43F a9 % —TA R A T8~ 5 AL AHIE - £+ > Wik £ (rank-4 tensor)R
m Redfield 7k = ©

BABRESTHABERERMARYENGEL T 4 RATEASTRAEE
1 0
Hgsp = ® ) w0 (4.5)
1 k

AEFFI FBATELIER 0, 0 BB FFIHRZHE FIRTo9L E 694t
(X 1L18)» i P agc, b 318 P89 X328 - RN HBRRXFFNHELTA
MFBL o RA BAM IR RAT > A HBE AT

Co(t) = (OZ(H)OL) " = 0> #Hiba#a (4.6)

4 VA L& > Redfield k2 7T A1 %

Ro(t) = %/000 dT{C’T(—T) [az, (e iHsT/h_eifler/h a(t)]]

ol et ] )

4.3 %R

43.1 FARHARM ST THAEREHG ) FOF

B A2 R EBAGBEBET (v = 02/r) Wi > FHB LB E (J/w, =
05,1,2) HE H BMBE - 64> TUEE ERLEERBEHRENERETL - %
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Jr R AR R B JEBE 6948 T 98 & (coherence frequency) o A R4 (c) /) B b H a4k
RA&ME TR FE $ B ZRE S Z38 3k ZHA KT RS EH T RE ZHM
98 F A &AE > 128 B A Sb BRI T AR T & AT AR HIR AR AR AT AR N R 69 15 E
KRR EREA o AR HEGIE R BB JBE 42 (d) TURES > ARR > L3b A
AR KB GG 0 B T 38R VLR 6915 E R AR R AL iR 0 ) B4 A AL T LB
RIR ~ ZIRB ARSI RARE LAR R K o M PTA 945 IR 69 T R IEFE 49 1
Y A BB R ERE AR E S > mIE R I R ITRAE MR A o AT
GRAZHBABER (h— 0) 6940 > RERFEG>FHEREBREAFEL - L
TR 42 () DB P AR R R RRAR T EA > 12 42(b)(c) /B F RMKAE T B AR
FH o2 42a) P HEESFANGETEMFE o IR ER =R XA 420b) 4
WP R > {2 A 42(d) P wE AR EMEEE +V6 $9EE R FNE B
7~ T BP AL SRR B AR B R HOR AR BT AR B S 69 B ) il AR o

432 BAKARBOTHHTFHBOBRERES) LB E

B 43 REBAGHPEBET (v=2/7) bk TFHABEBRAE (J/w. = 0.5,1,2)
BN ZFOHE - B> TURAISKHETHRZEREELERES - R AR
Bk A3(a) b OEAEMR BB B ) S AR o £ 43(a) PARR A EFER B h iR A8 T
£ mBASESE TEA TR o £ 43(0b)c) PAZR FRE A EITEH TULAERAR
T RA2 AR A EFEAE o 42 BR800 & B AR & T 7078 R 8 KALAT H B4R T R 091645
BIZR AR B F o & F kAR A R th E B 6948 F A % (coherence frequency)  £¢
AR HE A SR B AR B R R 4.3(d) TRA S > A RAl > LA KRG RS
M 7 3 R LU S IR B AR R R > RIBF AR AL T LU IR =R ~ =R B S
EE S B R AZ R K o MmPTA MR kR BRI RS T A SR W -4
BRIEHER B E M > mE A FHERTRARME 6 o B A F L RAZ S BAER
(h— 0) 8930k > MABM TR S HA R ERERER T

433 fFFRAF T RRBEHS ) 2OV E
B 4.4 R AP EGALHRE Ao, = J/w, = 0.5 T BB E BT £ %E o
R 6 Ve b SR A B A9 A R B R 6 AL B 0 W AE T 60 0 AR R R e
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Y
AN

BECHE BRIKBOEL TR CEFAREIEMNG ST o — il mEhEE 2
AT > AR R > BARMBAGER T MHR T AR LTHERE
BAGMBENBREK 5B TREEIRRLRYT > ERAHAZEZTHRAGREA
FTREREMNZTFEHRELH B LA > HAEMKERGKEREFFE o mEs
FARAEERRBERFHLEAEC PAREEGRSHEFIRTORER
BAZIF AR RTE OB OE B MR ERBENTRERELTUAAE R BERZHE
AT REERGMEEY > ASHBRHFRAA T RBEEELERGERTE - mBESENA
BT & TAF 5 AR G441 Tk o

434 AR5 TRME TR THABEEE

45 ARG THAEMR 2 (Ajw. =2) TS THABERAE (J) Hist#
RERREN ) ZRBEOVE - AR AR K TR LI > & -FHHEZEK
IABBERVE(RERFI RS T LRI ER) > RFEEMARETHERY
M EERK o FRERF L E EHENMRTIRE > 5 EREGM TR FLHE
BIEEMRE - MEBEEEREARTRET KOGEG TLR EERBRERE 2%
A TEARAE TR E > RBEKXKETER TR BHEEGHETEMRTE -

o~

435 FA&ES>TREMEZTHRE S THMBERE

4.6 R EBA 2 THAEREZ (Ajw. = 0) 89 R T LI 5 T M #8658 Z (J)
HEBERABRDHNERBENVE - BARARLS THL TREAA AZE > HER
TRAEEARBLS T LA > E-FHIFIR2F S TR RERE - S147
F R0 R MR HES 7 R A EHEAE R o P OLAE RARH # o ERE A9 A T K
MEE D THBCRECX (LRARTEREENLAL S  MTHREEF) FE
FRBOFEHEATEORMERERE > 2R EEAR D BT E -

4.3.6 &4
BTy kAR EHEG9AR THE % > B2 A % /& Redfield 23 48 T8 & A 3 48
FrRERLAMAE Hy 8> BEBALM-LRZEGHAM I C) &5 - F
BREBRGBOHEATEA AL RAB L GERAA T 2Rl E > EFHELE
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(a) (b)

7 O ex 71 O ex
| o |
61 —— har ¢ 61 —— har
o std % e std
51— 2fit & 51— 2fit )
w w
S 3fit '\ Ol 3fit N
o o
£3 / \\ 34
; f \ TN\ K
14 \ 1A \
(J
oé ¢ e = o@mﬁﬁgﬁ J L""-’
-8 2 4 6 8 - - -4 -2 0 2 4
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1+ O ex

m— cl

1 == har
e std
1 =—2fit
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5

0 — 3fit Z

: ‘ %
21

1 Jgin \:'k‘

0

angular frequency [w]
B 4.1: AT — % 6909 ZAEE B 7 H 09 R RIRBE B 4548 b o (a)(b)(c) 45 A&
B fhw,=05,1,2 FT> F >~ &~ SMEEFFFHNNGIERBAAMBIE - i
645 B 4 &% R R H, T/ A Redfield 5234 b 6944 o 4% 4 4 69 B 42 09 18 S 74
Ko KA BN S KA HE VI VB VIT 2V 218 ¢

IFT of TCF

R o AR REFRARE FLER T LB R AR EHRRE - M ERRES
EBOERE > A b ERE o B RAA S ERE AR > B A RN LR AT R
Tk #) 2B B AR B F HOH R0 6 BT o BR AR ) 69 RAR T R A 69 Kok
AR E BAKEBERESHERE - £3AT B E MR ZAES B AH &
B EAEBR KRG BB EREGT > MER SR TR AL E > AT
EAVR D 6B A HE A — AR o
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(a) (b)
1.0 T 1.0 T
O ex O ex
|
0.8714 0.8 = har |
- - — std
S S — 2fit
‘_f%o.ef ;gLO-G“ —_— 3fit
g g AVaAYY
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Time (2m/w,) Time (2r/w)
(c) (d)
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O ex ﬁ
054 = d q
0.8 —— har E)&
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i) N — 2fit ’. e
% 0.6 ) m— 3fit 9
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42: BB AGABEB/ LTRSS FHBSBEYEL - @)J/w, = 05~
(b) ] Jwe =1~ ()] Jwe = 2 » HALLHAAR AJw, =05 fhwe =11~ =0.2/r
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gh-

-
v
v

F& Redfield 772 X & 4L AE ' #& B 69 05 1) B A8 B 2 3R 2L 7 BB AE 244 E 49
VAERERB IV ERN NP BRY > SERESELZARBTMRETEL  LRBT
AHGB AL T & Gk T RAE B8R Rk T IRAEF o 3R HAM R A /£ Redfield
ZRXOERTA > FBEEE )RR > RO 848 J A
AURBTREZMENEGHNERBAGY N FEREREZ - METHENBRL
R h R A L R UIME > RS R BHEIRIAE LA R ERE > L RS R
AR E 2R BARERE o B AT A RBE B EARIT 22 E 5 T T L EHAT
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# N ¥ M

6.1 fEFKRTHETFIHERT

6.1.1 FHBKFIIME BAAMHSH

HOETRAG PN A TR BRTIMNEAMM B - — BRI/ — T8
BT L E R R B A

2 2..2
P mw; T
H=-—

2m+ 2

. (6.1)

Ebaosp m-Ro pRRBHFRTHEE  HE-HE RARARE - K
I o (t)r 2420 3% % oA o HEZ A 46 5 AR 22 B (Do > wo) £ A 9 VA RIR & g fir
E AR

00 e —BH
:cos(wot)/ dxo/ dp z? 5 (6.2)
_ cos(wot)
= mi?

EF B = 5 A HAE 9948 K (thermodynamic beta) > 7 Z = [ daodpy e R
AR 4~ Bt % ¥ (classical configuration integral) o AP 7T VA — 3 ¥ &34 B B 48 M) &
WHAEE E 3 ) AR
> w e Q0
/_Oo dt e (x(t)z)s = ﬁm—wg[é(w + wp) + d(w — wp)] (6.3)

AP RMEfEH s #ES L 7 (O} = f(w) = [C_dte“ f(t)
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612 EFHKRTZMEBAMS

BEFAZTFAGETY HAZTAGFH TAREM AR T AMEM LA
5~ RALA G 45 72 B P IR AR A AR, o

FB 72 M) A& Ak

b — T TR T EARAAA

~2 22
- D MW§T
H=omt ™2 (64)

AP e mp oA EAFRGTHA  RMNBEZ S HEEERELN ()2

3 An Wigner #% 3% o o5 B 4B [& 428 Wigner #% 3% 2 % Wigner 4% & R T2

Wigner -7 & $ %4 [77]
tanh(£%0)

W(va) = 7r—h2

(6.5)

2 2,,2,..2 how
eXp{—p + miwix tanh(ﬂ2 0)} 3

mh(,do
£ A 5 4% X B 1% (Heisenberg picture) > B MIE LISk T THR S A4 o
FA B ()7 BAT R R AN > AR A BR Ao T REL; REF LA
E%‘F&ﬁ éﬁﬁ'{ \}ﬂ elwot ﬁi e~ lwot % T’fi ﬁ-?}@ T p %}R 4o b — *"]‘;}%{ I’( ) {i\
VAACIEARAFIF 6091 B H A 1 8h & H A5 Ao ¢

h
S5 — ~ —zwot t iwot
z(t)z HQmwo( +a'e™")z
B h mwy U ot mwo , . b ot 6.6
= \/Qmw()( o (% + mwop)e + 4/ % (& mwop)e @ (6.6)

sin t
= 27 cos(wot) + pi (wo) °

mwo

¥ & B p 4T Wigner #4577 17 78]

@) =x
»" =p- o7
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7 A 4 ] 89 J Ak 89 Wigner $53% > 7T 4% B Moyal AR > HAEZLH A
B> R Wigner #4 4 [88]
AW AW 10 AW
(48)" = (4)" exo |- 52| (8)" (68
Kot = = = = —— =
\T P TT TT T 9
~0p Ox Ox dp — Op; Ox;  Ow; Op, '
#
~o\ W 2
) =u
(&) . (6.10)
AW ih
(58)" = pz — 2
w1 X, 6.669 5% —IA =
<x2>qm cos(wot)
:cos(wot)/ dx/ dp *W (z,p) (6.11)
B By
T coth( ) cos(wot)
i 5 IR &
(), SH:,,(LWO Sinwo) / d / dp (pr — Z)W (z,p)
(6.12)
= — — sin(wot) °
B — 42 THKRTIMLEGMEIBA
Bhwg _
€q — o
(z(t)z)oh, ST [coth( 5 ) cos(wot) — i sin(wot)] (6.13)
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& Hilbert 7= 4] & BB

FTARZITER I EAL G T VAL 8 % B 4B 48 F A 4E A R AT & o
[79]
(T()T) g = Tr{z(t)zp*} (6.14)

FF p 2 Boltzmann P-4 F 69 & B4R > Tr{ . } RARKLH - KIEH 2(0)2 A
R/ B RIS G 20T AR A

h R
i(t).’i’ — : (A —iwpt +aT lwot)(d—l—aT)
7”’%“’0 (6.15)
— _(eiwot&TdT+€zwot TA +e Zwot&dT—{—@ zwotdd) o
2muwyg

F Boltzmann -4 F 49 57 & 4B [% /£ YA number state % A EBF 2 4 4 5% > R A 4
a'a 2 aa' #9784k A 42 Boltzmann P45 T &) F B IER A LI R A K o &R —Jo Al ik
87 T ik A

h ~ Pt a i .
<§j(t);i'>qm = m [ezwot <CLTCL> +e iwot <aCLT>]
A . ,
— 5 [ezwgt <n> 4 e—zwot <n 4 1>]
mwo
A ‘ 1 A B (6.16)
— elwot + e—zwot
2muwy ePhwo — 1 ehhwo — 1
h ePhwo
= {coth( ) cos(wot) — sin(wot)} >
2mwy

Jib (n) = (exp(Bhw) — 1)1 R HF# T2 FHE @I LI -

6.13 HKk T THERT

A LIRS RFIMEARNMSRA T TR EREALETHEE > AT
ARE| MM BB M% - BA > RBEATEM T HEBA RE L RBIE A
HAI, o

™

/_00 dt e {x(t)x) = 510(w —wp) + 6(w + wp)] (6.17)

pmwg
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wh o Bheo

)o(w — wp) + 0(w + wo)]
(6.18)

Do [0(w — wp) — d(w + wp)]

Th B RABER w) LHEZTFEERTF Qnar(wo) %

Q) = L8 (619

HiH R

FH{(@()2)e} = Qnar(wo) F H{(z(t)2)5 } - (6.20)
6.2 REMLIEXIEE
6.2.1 TCF #5485 1%
HAMEETRANFZ IS A TR A% T HE KL TCF

(6.21)
=Tr A(t)Ap °

it g A A 2 Hermitian #4580 At = A> AREMBLESAU R 2 254 UUT =1
bR U(—t)=U"'(t) > Al

(6.22)
= (A(H)A)" =C"(1)
Z R & C(t) & Hermitian F 3 > F B 3RS 8E 30 5 7] 48 55 v F ik 4 15
Cy(w) = taj_l{cr(t)}
(6.23)

Ca(w) = F HCi(t)} >
Hd C(t) 2 CW) EHR > Ci(t) 2 C(t) BB - BB ITZ O(w) £ w
BABER > MO ERBBARZ C(w) £ wBAsFIE  mERTHRASZ
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TCFARTH > amFRETTCF FH L LMY -

6.2.2 TCF &% 282 % 20 69 B 14

C,(t) 2 Ci(t) 571 & TCF oW B b 8 F 36 8L 36 o C.(w) #2 C(w) A4 TCF

SHEF A SRR A A R B E 4018 R S A B S

O(t) = O, (t) +iCi(t)

Clw) = Ci(w) + Ca(w)

Cs(w) = / dt e“'C,.(t)
Cou(w) = 2/ dt e“'Cy(t)

1 - —iwt
C.(t) = Py dw e Cy(w)

cmw-i/ dw el (w) -

- 21
w8 W OE 30 3 F i I by R 3069 B 5 4k (Maclaurin) B #52

1 2 17
tanh(z) = x — §x3 + 1—5x5 — ﬁf +...
1 2 17
tan(z) = o + -2 + —2° + —

7 o
37T Tat T

A AR b w B R M

/ dw e ™W"Cy(w) = 27m'”@0r(t)

36 v 4 80 TR, B2 AP T OAE A7

Co(w) = tanh(%iw)Cs(w)

46

(6.24)
(6.25)

(6.26)
(6.27)
(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)
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FIlOE #5598 M M AR R0 L

/_ Zdw e @0, (W) = /_ Z duw e~ tanh(%hw)os(w) (6.34)
LHS = i27C;(t) (6.35)
RHS = / Z dw e_i‘”t[%w ;(ihw)?’ +...]Cy(w) (6.36)
= w[%z% - %(%)2’3;—; +...]C(t) (6.37)
— 27 tan(%i%)@(t) (6.38)
Ci(t) = tan(%%)CT(t) (6.39)

6.3 IR AR EAEE

# X 2908 > 4% 32 TCF # 4 5% >., e % cos(wit) » B &4k 3% % 3T WA
RIER I e ARy ETFHEWE R LEEIER LA LRGN
H oo P8R TF B o BT A RA T 47

tan 7% Ze COS CL)Z

Bh d

_ —Qmt+iwmt Qumt—iwmt
= tan(— dt)z E +e ]

) ﬁh | ) | (6.40)
= Z : [tan (= (=, + iwyy, ) )~ FmiTiont

2
Bh
t N
+an(2

A

( Qm—i-iwm))e_ﬂmt_iwmt] 5

PRI BT AR 4% > Je —QO +iw; #ARR By, 0 5 Ay = A2 0

6.4 Prony 547

6.4.1 Prony 54-#7Z B %)
AR Prony 54789 B 89 % % T # R AIEIF 20 % B8 45 HOR BOR AR X R K
B AR o BAMFRMTAE AR M BIR RGZES FHEENK > Mo H A6 E
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10 %3 tanh( 22 D)(R, X 2.11) © 4o BB A6 M3 Cualt) - AR HA 24089 38
RS ApePnt fdg A Cut) ) EF Ay = 4 Fo By = Q + iy, ARABLE
U > G > U~ Wy D FV RS m AR E G BH MR AR BEAE
T BT At BB AE AR WARAGARE S S H S E WK
1948 69543 B 3 > A 3k KA 5] A Prony 247 o

642 ME%

— 1B g M {8 AT 3 5) 69 Fo B b A% 49 &R B 0 R — 18 M RYiE i@ 5] [89,
90] o 3& M 5 #ATHII b 495 m EHIV P % n ATEHE o > % m BRIITH
Y a1 (P > m=1,2,..., M) > Bl REINTEE {buns > LT 895 0
BTG b, = XM ol o

o A —RH (1) R M 5 HF Y Fo

M
Ft)y =" Anelrts (6.41)
m=1

> emf™M(t) =0 (6.42)

# A -

o ML F M FE XM GH LG L1 B AR LB X FEX

M M
[[@-B.)=> cnam (6.43)
m=1 m=0

EORES (@

o B HIE f() WAFTRIATH R f,> sb# I f, H— M k8 E 3]
ik —E DT X y
> dmfoim =0 (6.44)
m=0
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H 6y dp R

M M

[[@ =2 = dpa™ - (6.45)
= m=0

m=1

o Bt f, WUEEAE > AR d,, o
o 2 %38 X FAE X KA Pt o

o & P N f LK A, o

643 R3E
P aE BOR B A F L T AR X

BAAKERTE M =2 B4 o Bk f(t) = AePrt + AyePo! JRPBIA S o
AKX S — (Bi+Bo)f' +BiBof =0 89 o ddh =5 7 #2 K o91A BT A %
AXFRX (v — By)(w— By) = 0 6948 By~ By ko o o BA R ZH M A > &
B f(t) TAkA f(t) =Yy AmePt > 2o MBS F 742 X

M

> emf™M(t) =0 (6.46)

m=0

B e At AR e TTHARSE B Z R X T X

M M
Z ™ = H (x —Bp) =0 (6.47)
m=0 m=1

AR By, & e

PR 75 A2 X B 38 B M4 X

B ARERIEE O AL~ 200~ ..~ (N — )AL f() T4 » &A1 UE 5] 2
WERME T fo = f(RAL)  Fdn =0~ N—18N < Mo AT b3 5L
SHFRRMEE —EHFRR > MEES>FEXTES WAL HBAMGR - £
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M =268 FF > f, Gk & =Pk ik1E R 1%

fn+2 . (eBlAt + eBQAt) fn—i—l + eBlAteBgAt fn (648)

= dy frni2 + di fro41 + dofn =0 (6.49)

AR M > f, G ih A M TR 8 B A

M
> dfoim =0> (6.50)
m=0
S N P
M M
H (z — eBmit) = Z dpx™ > (6.51)
m=1 m=0

BP dy 2 (x — eBmAl) 3348 S8 Xe9h# o REk—RMEBEMEZ dy =1-

6.44 VIIEMEEAE

R kA T A Z A (over-determined problem)

fM fM—l v fD dM
= : . : Sl (6.52)
fol fN72 foMfl dl
A RAFREAAE d,, ©
KBRS AT X
Rfde T HBEEGH d, TEEIFRSEATRELX
dya™ 4 dy_ 2™ dir g =00 (6.53)

13 HAR A ePmAt o
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FAm
BT eBnD BRI T AR MR A,

fo (eBlAt)O o (eBMAt)O Al
= : : Pl e (6.54)

Fno (eBlAt)N—l (eBMAt)N—l Ay

6.5 Redfield ¥ 1%
651 HETHKIBRXINBER-BEELS FTEX
LR TH X > B35 H & — RS 2o 538 B4
’hﬁy\y) = H|¥) > (6.55)
1 875 = .
B THRIRXGAEEELE (U] 42
0
ih(5 [0)) (U] = (H]¥)) {¥] > (6.56)

# B T4 7 42 X £ 4 Fl AR Hermitian 1% 4¢ £ 3% 5 £ |U) 7743

, 0
—ih|¥) (5, (¥) (0] = [¥) ((¥] H) » (6.57)
# X 6.5608, % X, 6.57 > i 51 NE E 4 (density matrix) £ & & & p = |U) (V] > &

T3 21 4 -5 4R % A X,

Lo
ihoep = [H, p] (6.58)
e AR XA — R A
7: t
(1) = p(0) — + / dr[H, p(r)] - (6.59)
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652 EFFIHRXZIES

HAFEFHMELYLERAN AMTEREHB Y2 ERLET
(Liouville super operator).Z %

Lp(t) =[H,p] « (6.60)

]ﬁj‘ﬁl\ B g a%EFi_‘E‘_éI é&_fﬁ /%éﬂ:xfﬁi’\—]—%ﬁ]

plt) = —=ZLp(t) - (6.61)
AT 4 H AT AT
sp(s) = p(0) — %fﬁ(s) ’ (6.62)
FoF p(s) = [ p(t)etodt » RIR 22 Bl R o 0 ) 26 b 49 5 4B I e 4 B0 72 ) o
s BERYFE 4B A MR A
- 1
pls) =~ n %gp(()) (6.63)

BAE—F IN—HETERLHEGRPAF P 82 25 eflHL

pi(t) = Zp(t) (6.64)
p2(t) = (L= P)p(t) = 2p(t) (6.65)
p(t) = pi(t) + pa(t) » (6.66)

pr(t) > polt) PRI REBEBEIEEIE P D BRPNER - P D %R

PP =P (6.67)

2.9=29 (6.68)

PDQ=9P =0 o (6.69)
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iz —/HEH F ALK 6.62LE
$p1(s) = p1(0) = =2 2L (pls) + pls)) (6.70)

$p1(s) = pa(0) = —5 22 (p(s) + ls)) (6.71)
2L 6. TIRN 6.705% po(s) EHITTIF

1 1 1 1 1
0 — = —— 0 —_— _— —_— —Q$~ 4
) 0) = —p P L) P L O g P g 0L
(6.72)
35 0L B R A0 AR A8 9 po(0) 3 T YR AE S HF B EE b 69 5y (s) o 48 641 B
T 47
1

p1<8):—%e@$€ ggth(O)_ﬁggpl( ) h2

/ dr A (Dplt—7)s  (6.73)

kb A = PLe 27T DL A ## A (dissipation kernel) o 3 w9 3% 3H4F 69 A 44 14
M R AR ] R G B A%

(6.74)
Pp2(0) =0

R 6.73:& — I b Ak
. ] 1
pr(s) = 2% py(0) — %ngpl( ) — = / dr 2 (T)p1(t — ) ° (6.75)

Kk RARBE B A ZRIA > RIER M/ g(t)e= /M il ot — 7) o 133]

pr(s) = —H[Hao(t)] — /Ooo drTrp{[Hsp, [Hsp(=7),0(t) @ pigll} = (6.76)

Hsp =Y > 8,®B, (6.77)
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[Sn, Ba] = 0 (6.78)
pi(s) = _E[Hs,c(t)} — )\_2 /OOO drTrp{[Hsg, [Hsg(—T),0(t) ® pF]]} ° (6.79)

!

5(t) = — [H, o)
+ 2_2 ry > > > {Tffﬁ (=) [Sn, e~ HT/h G, e HT/h, a(t)]]
0 nom o a B

— T (1) [sn, [emiHeT/hg CiHsT/h a(t)]} } - (6.80)
+

TTEIHFRAAL

5(t) = —+ [H., o(1)]

2 t |
" % K2 ; {2 (=7) [ S [em 1S e Herl o (1)

T (=) [Su [em S e e o (1)]] e (6.81)
+

T2 B 5T KA A T RAP T 1A P A 1) AR 2 B i) 4 PR kA 000 4 B o) 2 3 ] ¢

?

3t) =~ [Hiy o (1)
+ 2—2 h dr Z Z Z Z {F,‘fﬂ(—r) |:Sn7 (et HeT/hg, /b a(t)]}
‘ nomoa B

— i) [8,, [ T o 1)) e (682)
+

AR AT PR B AR 2 B BRI AR BT o 4B @ R )8 6948 M 3
RET() = 00 £ 8
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A BT =C) BEHSFHORBHRZMBIRTOMLE N — R ABK
DL =C(t) B4 S, & |n) (n| &A1 AL —F b 47

?

5(t) = —

[Hsv U(t)}

+>\_2 ood Z{C’ (_ )[S [_iHST/hS iHsT/h (t)]}
= ; T r(—T)|On, € m€ , O

n

—iC(=) [ S [ o(1)])] b (683)
+

6.6 wAREEESILER

* 6.1: B 3.3(a) ¥ #IAMBIR 69 53 > FF—FAA Aje il cos(wit + @) °

? 1 2 3 4 5 6 7 8

A; | 142 139 201 -403 1.17 -492 253 0311
Q;] 609 396 123 208 0447 182 1.31 0.460
w; | 3.15 737 252 571 0437 871 9.28 9.78
¢, | 0775 4.67 571 6.00 276 4.64 4.05 0.298

* 6.2: B 3.4(a) FHIANMBIR 69 3 > FF—FAA Aje % cos(wit + @) °

i 1 2 3 4 5 6 7 8

A; | 59.1 141 305 131 10.1 -3.74 0.899 0.293
Q; 1406 225 395 0671 259 232 1.04 0.537
w; | 1.96 259 6.10 0.568 637 876 934 9.80
o, | 1.36 487 432 189 125 474 428 0.255

% 6.3: B 3.5()c)e) F =~ ZHEBEANLER > H—IAR Ae N cos(wit + @) e

(a) 2fit-1 (a) 2fit-2  (a) 3fit-1 (a) 3fit-2  (a) 3fit-3
A, | 591 14.1 30.5 131 10.1
Qi | 4.06 2.25 3.95 0.671 2.59
w; | 1.96 2.59 6.10 0.568 6.37
(c) 2fit-1 (c) 2fit-2 (c) 3fit-1 (c) 3fit-2 (c) 3fit-3
A, | 59.1 14.1 30.5 131 10.1
Qi | 4.06 2.25 3.95 0.671 2.59
w; | 1.96 2.59 6.10 0.568 6.37
(e) 2fit-1 (e) 2fit-2 () 3fit-1 (e) 3fit-2 (e) 3fit-3
A, | 99.6 983 0923 0228  0.228
Qi | 291 2.96 1.24 0.602  0.602
w; | 0501  1.7le4  3.13 1.74 1.00
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& 6.4: B 3.7(a)(fliw. = 1,7 = 2/m)(c)(Blw, = 2,7 = 2/7) P H ~ LRH X =A$
SFTAR 58 AR Ae Yl cos(wit + &) ©

(a) cstr 2fit-2

(a) 2fit-1 (a) 2fit-2  (a) cstr 2fit-1
A; 253 -251 0.888
Qi1 292 297 0.582
w; 0.446 6.27e-5 1.78

(c) 2fit-1 (c) 2fit-2  (c) cstr 2fit-1  (c) cstr 2fit-2
A; 99.6 -98.3 0.927 0.444
Qi1 291 2.96 0.582
w; 0.501 1.71e-4 1.78

& 6.5 B 39a) FAH - BRH X _AELSMELE HF—AL Aie Y cos(wit +

i) °

(a) 2fit-1

(a) 2fit-2  (a) cstr 2fit-1

(a) cstr 2fit-2

19181 19177
3.34 3.84
0.0933 0.0165

1.71
0.811
2.22

6.7 R %RFISUMA T A8 284269 LIk

6.1 ~ 6.2 FAb o A% AF T LI R B B L)
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(a)

1.0

0.8 1

o
o
L

Site 1 population
o
B

o
[N)
N

0.0

ex
cl

har
std
2fit
2fit

ARARE

(©)

1.0

15 20

Time (2m/w,)

5 10 30

o o
o o]
> *

Site 1 population
o
B

0.2 1

0.0

6.1: £ F FMHEAMTIERRBREGYEZ = (hw, = 0.5 (b)fhw. =
(©)fhw, =2 28 HHRE A/w. =05~ J/w.=1>~7y=05/7°

5 10 15 20

Time (2m/w,)

25 30
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(b)

IFT of TCF

Site 1 population

1.0

0.8 1

ex
cl
har

AR

30

0.0 T T T v y
0 5 10 15 20 25
Time (2r/w)
2.00
1.754
1.504 - 0.5 2fit
----- 0.5 3fit
=-=- lex
1.257 . 1
==« lhar ...
1.00 4 ==+ 1std .
—= 12fit
| === 13fit
0751 __ ;o
— 2l
0.50 1 — 2 har
| = 2std
0.25 4 — 22fit
: p— 23fit .
0.00 paaaEEEEE_
-3

angular frequency [wc]
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(a)

1.0

0.8 1

o
o
!

Site 1 population
o
B

o
[N)
N

ARARE

ex
cl

har
std
2fit
2fit

0.0

(©)

1.0

10

15
Time (2m/w,)

20

30

o o
o o]
> *

Site 1 population
o
B

0.2 1

0.0

10

15
Time (2m/w,)

20

25

30

(b)

(d)

1.0

o o o
Ey (o] o«

Site 1 population

o
[N}
N

0.0

10 15 20 25 30
Time (2rm/w,)

----- 0.5 2fit
124 0.5 3fit
' —=- lex
. ==-1lcl
IL—) 1.04 === 1har
'46 === 1lstd
2 0.8 -- 12fit
[ === 13fit
0.6 41— 2ex
— 2cl
0.4 4= 2har
1= 2std
fp = 2 2fit
0.2 — 2 3fit
0.0 B
-3 -2

angular frequency [wc]

6.2: AF FHMHTHERARBRENHEZL= - (a)Fw. = 0.5~ (b)Shw. = 1>
(c)bhw, =2 > 28 HHRE A/w. =05~ J/w.=0.75~~v=0.5/7 o
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