R4 B FePpFaFriprasd
L

Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

et ST ackE p A PR TR E LA AR

Software-Based Self-Test for Aging Defect Detection

R 2w
Tzu-Hsiang Lin

hEFE I F RN Bl
Advisor: Jiun-Lang Huang, Ph.D.

PERRE 107 & 7 °

July, 2018

d0i:10.6342/NTU201803476

Sl P RS JEEEd
aéé@%i%

J& R A 8RB &R E &b sk 1R A
Software-Based Self-Test for Aging Defect Detection

WX AT AE (R05943090) AR L EEKRLEF 2L
R R ZARE R X 0 A RE 107 5 07-A 26 B AT 7| #
HREEBEZELTRBRURRAMK » HFLEH

(45 -LT”%U}X

522 A

A. Myj

N
AEE- K %\ %\?

Thanks to my parents, friends, and those we helped me...

doi:10.6342/NTU201803476

PR

BB RS R RIE N B0 & S0 p 2 iRIGE (software-based self-test) & &

TR A R R IR R R o Y BOA A A SRE i A
I E] 7 El

LEHRRRIENT B X0 AR S Y RF AR H M G (reliability) -

I——FW

o ahipiE 2 g~ f'{m)"@;?f @ 8] F;n,,, ferH¢e & g 2t 54 5 ,]?L_;E.Jgﬁuqﬂﬁy N

At

RIFBIEI £ B8 E RIRASN AL B TREFHSRE 07t S RFETAL

BIFFAARFS 2 PIRR S NP B RERSARSIER R R K o

B I BRI AR R 0 AR R S F s o B

T
el
mr
oo

>

$ 4 B 1A

i* leA(aging defect) & 48 3% o #1i@ * s 2EHCA] 5 T RE 1Lk

J&(aging effect) #i = il 842 [0 AP Rk F 3 B 1C s g #rad o cnps f5 a4

45 2% (path delay fault) # ## it 2 & 4% 2% (transition delay fault) » 12 1P| 3 8 % i+ s2 i 0

A HP IR G o

MeE? - BT HBP AR TREC R JSRFTRLE - FRT RN SR

doi:10.6342/NTU201803476

ABSTRACT

Since the insufficient of conventional structural test, software-based self-test
becomes the alternative solution for a non-intrusive, functional and at-speed testing. The
use of software-based self-test could compensate the shortages of conventional structural
test and enhance the hardware in-field reliability. In the thesis, we have provided a
complete test flow for software-based self-test including constraint extraction, pattern-to-
instruction converter, test program generator and fault simulator. Besides, in order to
confirm the quality of test program generated by our methodology, the results of random
program evaluation have been displayed in the last part of this thesis.

The proposed software-based self-test methodology aims to detect the possible
hardware faults during the execution of test programs or applications. The target fault
model is the hardware fault caused by aging effect. We model the fault behavior as the

path delay fault and transition delay fault models for aging fault simulation.

Keywords: Software-Based Self-Test, Aging Effect, Reliability, VLSI System Testing

i
doi:10.6342/NTU201803476

CONTENTS

PR R 6 F T d i b #
E5ot SRRSO PR I
B2 BB s ii
ABSTRACT ettt e ettt et naa e be e e i
CONTENTS et et b e b et e et e e s ne e e b e e anneenne e v
LIST OF FIGURESo Vi
LIST OF TABLES.ottt ettt e viil
Chapter 1 INtrodUCTIONceeiiiic et nae s 1
1.1 IMIOTIVALION .ottt 2
1.1.1 Challenges of manufacturing teStingccccuevvevereneieniniseseeeens 2

1.1.2 Software-based SEIf-TeSt.........cciiriiiiiiieere e 3

1.1.3 Challenge of software-based self-test...........cccoveiveviiiciieiece e 5

1.2 Review of Previous TEChNIQUEScoeieiiriiiiinieieee e 6
1.2.1 Test program generation appProaches..........ccccoceevvieiieiiievie e, 6

1.2.2 Fault injection apProaches........c.cccveiiieiieiiieeiie e 7

1.3 CONIIBULION ...t 9

1.4 Organizations Of the TheSISccccvoiiiiii e 10
Chapter 2 Aging Effect and Delay Fault TeStINGcccccovvvviiiiiii i, 11
2.1 AQING EFFECL ..vveice e 12

2.2 Delay FaUIt TESTING......coiiieiiee e 12

2.3 Software-Based Delay Fault TEStING......ccccceiieiiniinieierie e 15

\Y;

doi:10.6342/NTU201803476

2.3.1 Path activation MONITOIINGcccververieiierieeie e atare e enaas 16

2.3.2 Fault injection and detectioncccoviiiiiiiiniiiiiini 21

Chapter 3 Proposed Method for Software-Based Self-Test on Delay Defects....... 24
3.1 Proposed MethodolOgycceieeiiiieiieie e 25

3.2 Pre-PrOCESSING ...c.vivetiitiiieiiieiieiei ettt bbbt 25

3.3 TESEGENEIALION ...ttt 28
3.3.1 Static timing analySiS........ccceevveiieiiiicieeie e 29

3.3.2 Automatic test pattern generation (ATPG).....cccoceveiiiiniininieiieee 30

3.3.3 Pattern-to-inStruction CONVEITETccoviiiieieieiese e 32

3.4 Fault SIMUIALION ..o 37
Chapter 4 EXperiment RESUIT.........ccov i 39
4.1 EXPErMENT SEIUP ...eoeiieiiieieicieeieeee ettt 40

4.2 RESUIL STALISTICSeveeeiiieiieieiiree e 43
4.2.1 Transition delay fault teStingcccoviiiiiiiiiie 43

4.2.2 Path delay fault teStingcccooereiiiiiie e 44

4.2.3 Random program evaluationc.ccccevivieiiiiiii i 46

Chapter 5 COoNCIUSIONcciiiiiie s 54
REFERENCQGEottt 56

v

doi:10.6342/NTU201803476

LIST OF FIGURES

Figure 2-1 Transition delay fault modelcccocoiiiiiii e, 14
Figure 2-2 Pseudo code of path activation monitoring testbenchcccccoeeveee 16
Figure 2-3 Example of non-robust test conditions for AND gateccccccevvennne. 17
Figure 2-4 Example of robust test conditions for AND gateccccocvrvvvininiennn, 17
Figure 2-5 Problem of NON-robUST tESEcccooviiiiiiiiiicee e, 18
Figure 2-6 Example of a non-robust pathccccccoeviiicie i 20
Figure 2-7 Example of @ robust path ..., 20
Figure 2-8 Example of @ robust® path ..o, 20
Figure 2-9 Testable path COVErageccoeviiieiieiicicseece e 21
Figure 2-10 Fault behaviors in gate-level and RT-level simulationcc.cce..... 21
Figure 2-11 Pseudo code of fault injection testbench ..., 22
Figure 3-1 Arithmetic logic unit (ALU) ..oooiiieieeeecee e 26
Figure 3-2 Flowchart of teSt generationccocoeviriiiiieieiese e 28
Figure 3-3 Critical path example reported by Synopsys Primetimec.ccccoc..... 31
Figure 3-4 A test pattern generated by Synopsys TetraMAXccccccevieiivevieene, 34
Figure 3-5 Classification of pattern informationccocoveviiineiinininccee, 34
Figure 3-6 Example of test program generated by our methodologycce..... 34
Figure 3-7 Example of two vectors from the test programccceeveviiiiieiieene, 36
Figure 3-8 Instructions distribution of the test programcccccvvevieveiievivennene 37
Figure 3-9 Flowchart of fault sSimulationccoccveeiieie i 38
Vi

doi:10.6342/NTU201803476

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13

Figure 4-14

MIPS32 processor arChiteCtUreoccooiviiieieiieiee et st 40
Single-issue in-order 5-stage PIPElNecccoiiieiiiiieii e 41
Four-way handshake mechaniSmc.ccccooveveie v s 42
Equations of coverage calculationccoceiiiiiiiiiinciee, 44
Venn diagram of fault detectionccccevviievieninieseee e 46
Random program evaluation in robust 1-vector modeccccccevenen. 48
Random program evaluation in robust 2-vector modeccccevvenenn. 48
Random program evaluation in robust 3-vector modeccccevvenene. 49
Mean fault coverage of different vectors in robust mode 49
Random program evaluation in non-robust 1-vector mode 50
Random program evaluation in non-robust 2-vector mode 50
Random program evaluation in non-robust 3-vector mode 51
Mean fault coverage of different vectors in non-robust mode 51
Comparison between different successive VECIOrSccccccevevereereennnn. 52

vii

doi:10.6342/NTU201803476

LIST OF TABLES

Table 3-1 Mapping of ALU operation signal and instructioncccccoiiiniiiis, 27
Table 3-2 Constraints of ALU INPUEooiiiiiiieeeee e 27
Table 3-3 Mapping table for patterns to instructions CONVertorcccocceeviinenen, 35
Table 4-1 Transition delay fault testing by TetraMAX ... 44
Table 4-2 Transition delay fault testing by software-based self-testccceeee. 45
Table 4-3 Path delay fault testing by software-based self-testcccevvevviiennn, 47
Table 4-4 Random program fOrmatcccceoeieiiiiiiiiriee e 48
viii

doi:10.6342/NTU201803476

Chapter 1
Introduction

0i:10.6342/NTU201803476

1.1 Motivation
1.1.1 Challenges of manufacturing testing

In modern VLSI systems, the level of integration keeps increasing due to the large
advancement in IC fabrication technology. With the elevating operation frequencies and
shrinking feature sizes, the conventional structural testing is insufficient to achieve the
desired test quality. Furthermore, test escapes increase as the number of un-modeled faults
grows. Therefore, the conventional fault models such as stuck-at fault model and bridging
fault model are insufficient for maintaining the desired quality product [3].

Scan testing is the most commonly used design-for-testability (DFT) technique to
address the fault coverage and test cost concerns. The problem is lacking self-test ability
in the field. Hardware-based structural self-test techniques, such as logic built-in self-test
(BIST), provide the feasible solution. Built-in self-test eliminates the need of high-speed
testers and can more accurately apply and analyze at-speed test signals on chips. However,
BIST still have some disadvantages, such as nontrivial area, performance, and design time
overhead. Moreover, structural BIST’s non-functional, high switching random patterns
consume much more power than normal system operation. Finally, to apply at-speed tests
to detect timing-related faults, existing structural BIST must resolve various complex
timing issues related to multiple clock domains, multiple frequencies, and test clock

skews that are unique in test mode.

doi:10.6342/NTU201803476

In order to carry out the at-speed, non-intrusive and functional testing, the new

testing method called software-based self-test (SBST) came out.

1.1.2 Software-based self-test

The use of software-based self-test (SBST) might improve the reliability of

electronic systems and overcome the shortcomings of the non-functional structural testing

[4]. Safety-critical applications are usually equipped with a processor or a controller,

requiring detecting possible faults in normal at-speed operational phase. The SBST

technique consists in having the processor core execute the test program, activate the

possible faults in the processor data paths by the instruction sequences, and eventually

comparing the actual results of the computation against the expected ones, usually stored

as a signature; any mismatch identifies a malfunctioning [5].

SBST can be adopted in end-of-manufacturing test and in-field test. With the

external testers, the outputs of device are fully observed during the manufacturing test so

that the fault controllability and observability can be increased. However, the increasing

gap of the operation frequencies between external testers and the high-performance

processors will increase test costs and lead to the escaped faults which might be detected

only in the at-speed testing [6]. Thus, the importance of the at-speed testing may not be

overemphasized.

doi:10.6342/NTU201803476

Most of the SoC designs are built with embedded processor cores and intellectual

property (IP) blocks which provide complex functionalities. Due to the large number of

arithmetic and logic functional modules embedded in the processor cores, the testability

of the processors becomes a crucial issue [7]. The in-field SBST can be based on the

instruction set of the processor, any extra hardware such as DFT structures are

unnecessary. It avoids the issues of area and performance overhead in the design.

The in-field SBST might provide at-speed testing with the limitation that data

memory is observable; this may cause some faults to become functionally untestable [8]

and reduce the fault coverage significantly. Generating the effective test program and

avoiding over-testing the functionally untestable data paths in the processor cores might

help retain the reliability and the fault coverage.

To sum up, SBST has the following advantages. First, it minimizes the addition of

dedicated test circuitry. Second, it can also apply and analyze at-speed test signals on chip

more accurately than external testers. Third, compared with the hardware-based self-test

in nonfunctional BIST mode, SBST is executed in the design’s normal operational mode.

This can eliminate the excessive power consumption of structural BIST and avoid over-

testing caused by the application of non-functional patterns during structural testing.

doi:10.6342/NTU201803476

1.1.3 Challenge of software-based self-test

Although SBST conquers the disadvantages of BIST and facilitates at-speed,
nonintrusive, functional testing, it still has some difficulties. The method for generating
high quality test programs is the hardest part in SBST. Nowadays, fully automation
approaches are not mature and still supported by the commercial EDA tools [9].
Especially in industry, manual development of test program is still adopted. However, the
negative aspect of these approaches is that the effectiveness of manually developed test
programs is highly influenced by the skills of the test engineers. The more complex the
processors become, the harder it is to reach high fault coverage. Especially on those
modules that are in charge of implementing multi-issue execution of instructions.
Nowadays, the development of test programs for a complex processor usually follow the
divide and conquer approach: the processor is segmented in several sub-modules, and a
test program specialized on each of them is developed. By and large, the high quality test

program generation is the most challenging part in SBST.

doi:10.6342/NTU201803476

1.2 Review of Previous Technigques
1.2.1 Test program generation approaches

In general, the development of SBST test program consists of four steps. The first
step is a creation and optimization of test pattern delivery templates. The second step is a
functional constraint extraction. The third step is a test generation process for each
module of the processor under test. The last step is basically a process of joining the test
pattern with the test pattern delivery templates.

For the last decade, there has been an extensive research on SBST of embedded
processors. The major focus of these research was on the method of the test program
generation, since the quality of the SBST primarily depends on the test program. There
are two main methods for test program generation, ATPG-aided test generation
[9,10,11,12] and simulation-based [13,14,15,16] test generation. As to the ATPG-aided
test generation, we might divide the processor into several module under tests (MUTS)
and ease the tasks of ATPG for deriving the test patterns. However, without the ATPG
constraint, some of the generated patterns are typically functionally infeasible. As a result,
manually constraints collection is needed. Take todays complexity of the gate-level
processor implementation under consideration, it is not feasible to have manual
operations at gate-level obviously. Although some automatic constraint extraction

methods have been proposed nowadays [17], the efficiency of these methods are still

doi:10.6342/NTU201803476

worth discussing. Unlike ATPG-aided test generation, the simulation-based test
generation usually combined with the genetic algorithms or evolutionary cores [15]. The
classic method of simulation-based test generation is applying the random test program
to the processor and modifying the test program according to the response of the
simulation results. That is to say, we do not have to consider the problem of constraint
extraction when utilizing the simulation-based test generation methodology. However,
the fragment program library design and the acceleration and optimization of simulation

are the hardest issues to be solved.

1.2.2 Fault injection approaches

The fault injection approaches might be divided into four main categories, hardware-
implemented fault injection (HFI), emulation-based fault injection (EFI), software-
implemented fault injection (SWIFI) and simulation-based fault injection (SFI). These
fault injection and simulation techniques are widely used for evaluating the reliability of
the system and the quality of fault tolerance approaches in the presence of possible faults.

HFI techniques [18,19] are injecting the faults to the circuit with the external
hardware sources. Because of the additional hardware, HFI is the fastest but the most
expensive approach. Besides, the extra hardware might also cause the damage to the

injected system. Stuck-at fault is the fault models that usually adopted in HFI.

doi:10.6342/NTU201803476

EFI [20,21] is the alternative technique of HFI with lower cost. It uses the field

programmable gate arrays (FPGAS) to achieve performance similar to HFIl. However, it

requires the synthesizable model of the system. Furthermore, the EFI approach is

typically limited to the stuck-at fault model or needs circuit modification for soft errors.

SWIFI [22,23] is based on the alteration of software states. The main advantage is

that the simulation might run in near real time, lower costs and development effort.

Typical SWIFI techniques intrude the software at machine code and assembly levels.

Although it is easy to emulate the hardware when injecting faults at low level, it is hard

to map the simulation results to the source code programs.

SFI [24,25] is a non-intrusive approach. Both of the behavior of hardware and

software architectures could be modeled. Therefore, SFI can provide the flexibility of the

target fault model and increase the controllability and observability. However, it is

difficult to model the behavior of modern SoC design. Since many complex components

such as processor cores, IPs and memory elements are applied to perform numerous

functionalities and their complex interconnections. The efforts of implementing the

simulator and low simulation performance are the main shortages of SFI approaches.

doi:10.6342/NTU201803476

1.3 Contribution

Many software-based self-test approaches have been proposed recently. However,
most of them target the stuck-at faults. With the operation frequencies keep increasing,
the importance of aging defects might not be ignored. That is the main reason why we
target the aging defects in the thesis. As to the fault simulation part, we choose to do the
simulation at gate-level. Since our target faults are path delay faults (PDF) and transition
delay faults (TDF), the complete information of gates and wires is needed. Besides, in
order to handle the successive fault activation, the target wires might be under monitoring
during the simulation which could only be realized at gate-level. Beside, in order to ensure
the quality of the test program generated by our methodology, we have done the program
evaluation part by doing random program evaluation.

The main contributions of this thesis are as follows:
® Generate the high quality test program in assembly language.
® Realize the fault simulator that could handle multiple fault activation.

® FEvaluate the performance of the test program generated by our methodology.

doi:10.6342/NTU201803476

1.4 Organizations of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, in order to best
understand the proposed methodology, we provided some introduction of the basic
knowledge of delay fault testing. In Chapter 3, we might describe our proposed
methodology in detail. In Chapter 4, we might show some experiment results including
fault coverage and test program evaluation. Finally, the conclusion of this thesis will be

made in Chapter 5.

10
d0i:10.6342/NTU201803476

Chapter 2
Aging Effect and Delay Fault
Testing

11

2.1 Aging Effect

Circuit aging effect refers to the deterioration of circuit performance over time. The
length of time can be a few years to a few months under worst-case conditions. Circuits
have always aged. The aging effect was not significant in the past. However, the
simultaneous use of extremely small channel lengths, rapidly increasing operation
frequencies and extending of IC lifetime, the circuit aging effect could no longer be
ignored. All portions of the SoC, whether analog, digital or memory, will be affected.
These negative impacts could include slower speeds, irregular-timing characteristics and
increased power consumption. In extreme cases, circuit aging might even cause
functional failures to occur over time. If we could provide the test for aging defect

detection, we could also provide more reliable systems.

2.2 Delay Fault Testing

Delay fault models play a crucial role in the testing field. In order to ensure that the
processor meets its performance specifications requires the application of delay test.
These test should be applied at-speed and contain two-vector applied to the combinational
portion of the circuit under test, to activate and propagate the fault effects to registers or
other observation points. Different from the structural BIST, which needs to solve various

complex timing issues such as multiple clock domains, multiple frequencies, and test

12

doi:10.6342/NTU201803476

clock skews, using instruction sequence for processor delay fault testing is a more natural

application of at-speed tests.

However, it is a difficult problem of detecting timing defects. Not only the test

generation, but also the test application phase complicate the testing process. Delay

defects are activated and observed by propagating the signal transitions through the circuit.

The quality of the test patterns have a significantly impact on the testability of the target

faults. Sequential circuits are especially hard to test since not all delay faults in the

microprocessor could be tested in the functional mode by any instruction sequence. This

is simply because no instruction sequence could produce the desired test sequence that

could sensitize the path and capture the fault effect into the destination output of flip-flop

at-speed. A fault is said to be functionally testable; otherwise, it is functionally untestable.

These functionally untestable might cause the reduction of the fault coverage.

Manufacturing defects or process variations might affect distribution regions of a

chip. The path delay fault model is better used for detecting small delay defect (SDD);

nevertheless, it is a challenging problem that only a small part of paths in modern designs

could be tested. Selecting critical paths requires accurate timing information and the noise

factors might have great influence on the signal delay. It is acceptable to target a small

subset of paths for test but the decision of target paths is still a hard problem.

Since the objective of this thesis is aging defects detection, we choose transition

13

doi:10.6342/NTU201803476

delay fault (TDF) and path delay fault (PDF) as our fault models.

TDF model assumes that the large delay defect concentrated at one logic node, such

that any signal transition passing through this node might be delayed past the clock period.

There are two types of TDFs at each input and output of a gate, slow-to-rise (STR) fault

and slow-to-fall (STF) fault (Figure 2-1). STR fault illustrates the fault that the slow-to-

rise transition happened too late and the output flip-flop might capture the wrong value.

On the contrary, STF fault illustrates the fault that the slow-to-fall transition happened

too late. The advantage of adopting transition delay fault model is that the implementation

of ATPG is much easier since there is no attention to paths. TDF may detect delay defects

such as shorts, opens and coupling defects that missed by stuck-at fault test. However,

TDF might miss distributed and small delay defects. As to the fault size, the number of

transition delay fault is linear to the circuit size.

SLOW-TO-RISE SLOW-TO-FALL

b= 1

| |
R —

|
|
|
e
i

0 2 SA0

Figure 2-1

120

| |
[

1 =2 SAl

|
|
|
|
1
1

Transition delay fault model

14

doi:10.6342/NTU201803476

A path is a sequence of connected gates from a circuit primary input to a primary
output. And the PDF model assumes that a delay defect in a circuit causes the cumulative
delay of a combinational path to exceed the specified clock period of the circuit. Unlike
the transition delay tests that target the large delay defects, the path delay tests are more
likely to detect small delay defects. Compare these two fault models, the PDF model is
much more complex than the TDF model with lower fault coverage. Besides, the number
or path delay fault is exponential to the circuit size. The large number of paths in modern
designs is a major problem for path delay testing. It’s really hard to test the whole paths.
In practice, only a subset of paths will be tested. For most design, many path delay faults
affect the circuit performance but cannot be tested easily. Moreover, there are a lot of
structurally testable paths through scan-based testing might be functionally untestable
paths. It cannot generate the desired test patterns to sensitize these functionally untestable
paths and capture faults effects into the destination primary output of flip-flop in the

functional test.

2.3 Software-Based Delay Fault Testing

There are three main tasks in software-based delay fault testing, that is path

activation monitoring, fault injection and fault detection.

15

doi:10.6342/NTU201803476

2.3.1 Path activation monitoring

The objective of path activation monitoring is to monitor whether the target path
meets the pre-defined activation conditions. In this thesis, we provide three types of
activation conditions: non-robust, robust and robust*. During the fault simulation, we
would keep monitoring whether the target path be activated or not. If the target paths are
activated, the correspondent fault injection testbench would be generated; otherwise, the
target paths would be classified into the category of unactivated faults and no more fault
simulation would be applied in the later processes. With the monitoring process, we could
remove the unactivated faults from the fault list in advance. Without simulating the faults
that would not be detected by the fault simulation, we could save the time and accelerate
the whole simulation. Figure 2-2 is the pseudo code of path activation monitoring
testbench. Then, after the program execution, we would compare the results in data

memory with the golden one as the fault detection.

always @ ($target path output triggered) begin
if (path successfully activated) begin
generate the fault injection testbench
end

end

Figure 2-2 Pseudo code of path activation monitoring testbench

16

doi:10.6342/NTU201803476

£}_|—
T
T
o
I}I

The second vector on the off-input should be non-controlling value.

o Ar F
’
-

Figure 2-3 Example of non-robust test conditions for AND gate

- B B
-
B =

Off-path: X 2 NC Off-path: NC - NC

Figure 2-4 Example of robust test conditions for AND gate

Figure 2-3 and 2-4 are the examples of non-robust and robust test conditions for
AND gate and the details of these three types of path activation monitoring would be

discussed as follows.

17
d0i:10.6342/NTU201803476

Non-robust and robust test are two typical conditions of delay fault testing. Non-
robust test guarantees to detect the delay fault only if no other path delay is increased.
According to Figure 2-3, we could observe that if all of the on-path signals have the
transitions, it could be defined as non-robust conditions. However, in the case of the off-
path signals have the transitions before the on-path signals, the conditions might be more
complex such as Figure 2-5. Though all of the on-path signals still have the transitions
and could be defined as non-robust conditions, the output transition is actually caused by
the off-path signals rather than the on-path signals and could not be defined as robust
conditions such as the banned conditions in Figure 2-4. Compare these two types of delay
path conditions, the robust conditions are stricter than the non-robust conditions. Unlike
the non-robust test, the robust test guarantees to detect the delay fault independent of all

other delays in the circuit.

CLK

WIRE_|
WIRE 2
WIRE 3 WIRELL l_
WIRE_4 |
e WIRE 2
‘ L
x | ‘
WIRE 3 |

WIRE 4 |

Figure 2-5 Problem of non-robust test

In addition to the robust method, another monitoring method called robust* is

adopted for path activation monitoring. The condition of robust* monitoring is stricter

18

doi:10.6342/NTU201803476

than the robust monitoring, but looser than the non-robust monitoring. The condition of

robust* monitoring is that the transitions of the gate outputs might later than the

transitions of the gate inputs. The reason why we define this condition is because the

transitions of the gate outputs might later than the transitions of the gate inputs in the time

simulation. Since the robust monitoring needs to check whether the whole off-path signals

meet the conditions of robust, it needs much effort for monitoring the whole off-path

signals and takes much time comparing to the robust* monitoring. With the robust*

monitoring, we could only focus on the on-path signals and solve the problem of non-

robust monitoring as Figure 2-5 shows.

To sum up, Figure 2-6, Figure 2-7 and Figure 2-8 illustrate the three types of path

activation monitoring. Each of them represents the different conditions of the path

activation. If the whole on-path wires have transitions, the target path might satisfy the

non-robust condition. If the whole on-path wires have transitions and the whole off-path

wires are non-controlling, the target path might satisfy the robust condition. Non-robust

monitoring is the looser conditions with higher fault injection rate. On the contrary, robust

monitoring is the stricter condition with lower fault injection rate.

19

doi:10.6342/NTU201803476

WIRE_1

Figure 2-6 Example of a non-robust path

WIRE_1

X=>1

Figure 2-7 Example of a robust path

Figure 2-8 Example of a robust* path

20

doi:10.6342/NTU201803476

irredundant

2.3.2 Fault injection and detection

Figure 2-9 Testable path coverage

The cause of path delay fault is that the target transition occurs later than the
specified clock period and the target register might catches the wrong value. As shown in

Figure 2-10, we could observe the fault behaviors in gate-level and RT-level simulation.

Gate-level faulty
CLK ' | | | ' CLK ' | ' |
| |
|

RT-level RT-level faulty
CLK ' | [] ' CLK ' | | |
- ;
t

| 1 |
| | |
— | T

Figure 2-10 Fault behaviors in gate-level and RT-level simulation

21
d0i:10.6342/N'TU201803476

always @ ($target path output triggered) begin
if (path successfully activated) begin
$deposit ($target register, ~$target register)
end

end

Figure 2-11 Pseudo code of fault injection testbench

Figure 2-11 is the pseudo code of fault injection testbench. While the target path is

successfully activated, the value of the target register might be bit-flipped just as the

behavior of path delay fault.

The observability solution for the fault detection is comparing the results in the data

memory with the golden ones after the program execution. The fault is defined as the

detected fault (DT) if the fault effect could be propagated to the data memory and the

computational results are different from the golden ones. Otherwise, the fault is an

undetected fault (UD) if the fault effect is masked during the simulation and the results in

the data memory are same as the golden ones. However, since the limitation of the

observability, only check the execution results in the data memory might reduce the fault

coverage significantly. Some faults are verified to be undetected faults because they do

not have any influence on the computational results in the data memory but they actually

exist in the circuit. The reason why these faults could not be observed is that there are no

instructions could store the results such as overflow flag and stall signal to the data

22

doi:10.6342/NTU201803476

memory directly. As a result, the development of creating instructions for storing the
computational results that could not be observed directly in the data memory would be

the future work. With these observation instructions, we could greatly increase the fault

coverage.

23
d0i:10.6342/NTU201803476

Chapter 3

Proposed Methodology for
Software-Based Self-Test on
Delay Defects

24

3.1 Proposed Methodology

The objective of the proposed methodology is early aging defect identification by
software-based self-test approach for processors. The proposed methodology could be
separated into three main steps, pre-processing, test generation and fault simulation. The

detail of each step might be explained respectively in the following sections.

3.2 Pre-Processing

The main goal of pre-processing is to do the constraint extraction. Since there are
some states that cannot be reached through any instruction sequence. If we could figure
out the constraint of the processor previously, we might avoid the unreachable states and
generate the patterns that could be converted into instructions. Nowadays, fully
automation of constraint extraction is still not mature. Although some automatic
methodology of constraint extraction has been proposed recently, they cannot meet the
sufficient accuracy. As a result, manually constraint extraction is still adopted especially
in industry. In this thesis, we do the constraint extraction manually. However, with the
complexity of processors keep increasing, the importance of the automation of constraint
extraction cannot be overemphasized.

The development of the test program for a complex processor usually follows the

divide and conquer approach. That is to say, the processor is segmented in several sub-

25

doi:10.6342/NTU201803476

modules, and a test program specialized on each of them is developed. The target module

that we would like to test is the arithmetic logic unit (ALU). Therefore, figure out the

input and output of the ALU is the previous step before constraint extraction.

ALUOp |

ReadData 1

n1v

ReadData 2 AL UStall

Shamt

Figure 3-1 Arithmetic logic unit (ALU)

Figure 3-1 is the ALU module that we are going to test. The ALUOp wire is a 5 bits

wire that control the ALU operation. Table 3-1 shows the relation between the ALU

operation signal and the instruction. The ReadDatal wire and ReadData2 wire are 32 bits

wires which are the operands of the ALU. The Shamt wire is a 5 bits wire that be used for

shift operations. The result wire is a 32 bits wire which is the ALU computation result.

The EXC_Ov is the overflow flag and the ALUStall is the stall signal for long ALU

operation such as divide.

26

doi:10.6342/NTU201803476

The method for deriving the constraints is reading the RTL code and comments of

our processor test. By reading the source code, | could realize the function of each inputs

and how they work. Then, I would apply some random programs and dump out the input

signals per cycle. The constraints could be confirmed by analyzing the simulation results.

Table 3-1 Mapping of ALU operation signal and instruction

ALU Op Inst. ALU Op Inst. ALU Op Inst. ALU Op Inst.
0 ADDU 8 MADDU 16 MULT 24 SLTU
] ADD 9 MFHI 17 MULTU 25 SRA
2 AND 10 MFLO 18 NOR 26 SRAV
3 CLE 11 MTHI 19 OR 27 SRL
4 EIvZ 12 MTLO 20 SLL 28 SRLV
5 DIV 13 MSUB 21 29 SUB
6 DIVU 14 MSUBU 22 SLLV 30 SUBU
i MADD Ii; MUL 23 SLT Sl XOR

Table 3-2 Constraints of ALU input

ALU input constraint

clock no constraint

reset ZEero

EX Stall Zero

EX Flush Zero

A[31:0] no constraint

B [31:0] no constraint

Shamt [4:0] only has value with “SLL”, “SRA”, “SRL"; otherwise zero

Operation [4:0] some values are unavailable, show in the following pages
27

doi:10.6342/NTU201803476

The reset, EX_Stall and EX_Flush wires should be zero during the processor
execution. There are no constraint of the 32 bits operands. The Shamt wire only has value
while executing the SLL, SRA ad SRL instruction; otherwise it might be zero. The
Operation wire has three constraint values, 5, 6 and 21. According to Table 3-1, 5 and 6
could be mapped to the instruction DIV and DIVU. Since DIV and DIVU instructions
might execute 32 cycles, we could not control them with two successive patterns.
Therefore, other methods should be adopted for testing the divider module. And 21 is the

reserved value for MIPS32 release 2 instruction.

3.3 Test Generation

Gate-Level Design Static Timing Analysis Critical Paths List

Patterns = Instructions Test Patterns

ATPG Fault Coverage

Figure 3-2 Flowchart of test generation

Figure 3-2 shows the proposed methodology flow for test generation. The test

generation processes path delay fault and transition delay fault quite similar. The only

28

doi:10.6342/NTU201803476

difference is the process of critical paths extraction by static timing analysis. The reason
why the path delay fault testing needs the process of static timing analysis and the detail

of each steps in the methodology flow will be explained in the following section

3.3.1 Static timing analysis

Static timing analysis (STA) is a fast and reasonable measurement for computing the
circuit timing without simulating the entire circuit by input patterns. Unlike the number
of transition delay fault which is linear to the circuit size, the number of path delay fault
is exponential to the circuit size. It is impracticable to test the whole path delay faults in
the circuit. As a result, we tend to do the static timing analysis to figure out the critical
paths. The critical path is defined as the serially combinational gates of a path with
maximum delay which may have higher probability having the timing violation. The
process of critical paths extraction might greatly reduce the fault list size. We consider
the slack of setup time violation to find out critical paths in the circuit. If the required
signal arrives too late, it may cause the setup time violation. The transition of input signals,
different operating environment and manufacturing variations contribute to the delay of
signal arrival time, as well as the aging defect. The slack is defined as the difference
between the required time and the arrival time. A positive slack implies that the arrival

time is earlier than the required time. That is to say, the path with positive slack might not

29

doi:10.6342/NTU201803476

affect the overall delay of the circuit. Conversely, the negative slack implies that a path is

too slow, and the path must be sped up if the whole circuit is to work at the desired speed.

3.3.2 Automatic test pattern generation (ATPG)

As stated above, there are two major method for test program generation, ATPG-
aided test generation and simulation-based test generation. ATPG-aided test generation is
the deterministic, stable and efficient method with acceptable fault coverage. It stands on
the view point of circuit analysis and generates the high quality test patterns. Nevertheless,
the difficulties is the constraint extraction and the mapping between test patterns and

instructions.

30

doi:10.6342/NTU201803476

$path {

Il from: B[26]

I to: Result[0]

$name "10_1";

$cycle 0;

$slack -0.455934 ;

$transition {
"U3905/B" v ; /I (MUX2X1)
"U3907/B" ™ ; I/ (MUX2X1)
"U3911/B" v ; I/ (MUX2X1)
"U3920/A" v ; I/ (MUX2X1)
"U2635/A" ™ ; I (INVX1)
"U2880/A" v ; I/ (AOI122X1)
"U2167/A" ~; Il (BUFX2)
"U1679/A" ~; Il (AND2X1)
"U1677/A" ™ ; I (INVX1)
"U155/A" v ; Il (OR2X1)
"U154/B" v ; I/ (OR2X1)
"U2881/B" v ; /I (OAI21X1)
"U1595/B" " ; I/ (AND2X1)
"U1596/A" ~; I (INVX1)

Figure 3-3 Critical path example reported by Synopsys Primetime

In the steps for setting desired ATPG options, we might set the constraints that we

extracted previously. With the constraints, we could assure that the test patterns might be

converted to the instructions successfully. There are two types of constraint option in

TetraMAX, add_atpg_constraints and add_atpg primitives. Add_atpg_constraints

command defines on nets that must be satisfied during pattern generation. In this

31

doi:10.6342/NTU201803476

command, we should specify a name to identify the constraint, the constraint value (0, 1,

Z), and the place in the design to apply the constraint. Add_atpg_primitives command

creates a primitive that is added to the design and has its inputs connected to specified

nets. When you constrain the output of the added primitive, it forces the pattern generation

algorithm to conform to specified logical conditions at the connection points. In this

command, we should specify a name for the added primitive, its logical function, and its

input connections.

3.3.3 Pattern-to-instruction converter

After we derive the test patterns, the next step is to generate the test program. The

test program format could be separated into three main sections, operands preparation,

two-vector and result store. In the rest of this section, an example of converting patterns

to instructions might be showed and illustrated in detail. Figure 3-4 is a pattern that

generated by Synopsys TetraMAX. First, we need to figure out the value of each input of

ALU according to their position. Then, we might get the value that should be applied on

the ALU inputs. In this step, we might also check whether the pattern is legal that meets

the constraints we set. Figure 3-5 is the result after doing the test pattern classification.

We could observe that the pattern meets the constraints and could be converted into

instructions. Table 3-3 is the mapping table that records the relation between ALU inputs

32

doi:10.6342/NTU201803476

and instructions. The mapping table is derived manually by reading the RTL description

of the processor and doing some simulation. However, with the SoC design becoming

more and more complex, the automation of generating the mapping table between test

patterns and instructions should be developed in the future. According to the mapping

table, we might convert the patterns into two-vector instructions. Although it seems that

we finish the conversion patterns and instructions. There are still some tricky details about

operand preparation and register usage that would be discussed as follows.

33

doi:10.6342/NTU201803476

{ pattern 1 fast_sequential }

{ vector }

vector("_default WFT "):=[0001110111000110111001001
101110101010100010101101101101001110001010

10110000000];

{ capture }

vector("_default WFT ") :=[0001010010011101010010100
01010010110100011110111011011000000011111011

1000000007,

Figure 3-4

A test pattern generated by Synopsys TetraMAX

clock - clock -

reset 0 reset 0

EX Stall 0 EX Stall 0

A EE3726EA A A4EAS14B
B A2B6D38A B 47BB603E
Operation 16 Operation 1C
Shamt 0 Shamt 0

EX Flush BAR 0 EX Flush BAR 0

Figure 3-5

Classification of pattern information

lui $t0, 60983
addi $t0, 9962
lui $t1, 41655
addi $tl, 54154
lui $t3, 42218
addi $t3, 20811
lui $t4, 18363
addi $t4, 24638

Figure 3-6

sllv $t2, $t1, $t0
srlv $t5, $t4, $t3

sw $t2, 8($zero)
sw $t5, 12($zero)

Example of test program generated by our methodology

34

doi:10.6342/NTU201803476

Table 3-3

Mapping table for patterns to instructions convertor

ADDU Ry, Rg.Ry
ADD Rp,RgR;
AND Rp,.Re.Ry
CLO R,.R
CLZ Rp.Rg
MADD RgR;
MADDU RgRy
MFHI R,
MFLO Ry,
MTHI Ry
MTLO R
MSUB Rg.R;
MSUBU Rg.R;
MUL Rp,Rg.Ry
MULT Rg.Ry
MULTU RgR;
NOR Rp,R¢.Ry
OR Rp.RoR;
SLL Rp.Rgshifts
SLLV Rp,R¢R;
SLT Rp.Re.Ry
SLTU Rp,Rq.Ry
SRA Rp,Rg shift5
SRAV R,,,RgR;
SRL Rp,Rg shift5
SRLV Rp.ReR;
SUB Rp,Re.Ry
SUBU Ry,RgR;
XOR R RoR:

01
02
03
04
07
08
09
10
11
12
B3
14
15
16
7
18
19
20
22
23
24
25
26
27
28
29
30
31l

Sl © ISl O© =N © =N O ISl O N © Bl O© el O

0
shift5
0
0
0
shift5
0
shift5
0

0
0
0

Since we need to execute the test pattern during two successive cycle, the operands

should be prepared in advance. As shown in Figure 3-6, we could observe that the

operands have been prepared before the two-vector part. Each operand needs the

combination of two instructions LUl and ADDI to reach the target value. The reason why

35

doi:10.6342/NTU201803476

we need two instruction to reach the target value is because one instruction might load 16

immediate value at most. However, the operands are 32 bits values. As a result, we should

utilize two instructions to load the 32 bits operands. LUI is the instruction that could load

upper 16 bits value to the target register. ADDI is the instruction that could add lower 16

bits value to the target register. There is a small detail we need to take care, the LUI

instruction might load the upper 16 bits immediate value with the lower 16 bits value set

to zero. Therefore, LUI instruction must place before the ADDI instruction, or the wrong

value would be loaded to the register. On the other hand, in order to ensure that the two

instructions might be executed during two successive cycles. We should choose different

registers for storing operands. That is to say, we should avoid reusing the registers which

are used in the first vector. Since the processor contains full data forwarding unit, the two

instructions might not be executed during the two successive cycles if we do not avoid

the problem of data dependency. As shown in Figure 3-7, we might observed that the

registers that used in the second vector might not be used in the first vector.

sllv $t2, $t1, $t0 - vector 1
srlv $t5, $t4, $t3 > vector 2

Figure 3-7 Example of two vectors from the test program

36

doi:10.6342/NTU201803476

17% STORE

66% OPERAND PREPARATION

/

17% TWO-VECTOR

50

Figure 3-8 Instructions distribution of the test program

Figure 3-8 is the pie chart that suggests the instructions distribution of the test
program. According to the pie chart, we could observe that 66% of the instructions in the
test program do the work for operands preparation. The number of instructions for
operands preparation is four times as much as the number of instructions for two-vector
or result store. In my opinion, if we could create the instruction that could load 32 bits

value to the register at a time, we could greatly shrink the size of the test program.

3.4 Fault Simulation

After we generate the test program, the next step would be the fault simulation for
confirming the effect of the test program that we generated. In the process of fault
simulation, the simulation-based fault injection method would be adopted. Figure 3-9 is

the flowchart of fault simulation.

37
doi:10.6342/NTU201803476

Fault Injection
Testbenches

Fault List Testbench generation

Test Program Gate-level Simulation Gate-level Design

Fault Coverage

Figure 3-9 Flowchart of fault simulation

38

d0i:10.6342/N'TU201803476

Chapter 4
Experiment Result

39

0i:10.6342/NTU201803476

4.1 Experiment Setup

The target processor in our experiments is a MIPS32 processor. Figure 4-1 is the
MIPS32 processor architecture from [31]. This processor is an opensource design and
could be downloaded from Github. This design was created by Grant Ayers and funded
by the eXtensible Utah Multicore (XUM) project at the University of Utah from 2010-
2012,

It is a standalone MISP32 processor, all required MIPS32 instructions are
implemented, including hardware multiplication and division. This is a bare-metal
processor, without memory management unit (MMU) and floating point unit (FPU). The
hardware divider is small, multi-cycle and runs asynchronously from the pipeline

allowing some masking of latency.

— (o _i.
x| o [
| w
] |
[wno | : I
Shilt Ty
L 4 . — v—b‘ﬂ
'y Register File > -l..a N
— b 1 r
! i A — 1
§ T o =1 oh 1 [+
i ’ AU > —
— N i]
L L | TTHBE L
N S 1 - - b— 2
L =at] -+ Ei 1
g e
s > J—r‘u‘
=z
0
MIPS32 Processer A —|

Figure 4-1 MIPS32 processor architecture

40

doi:10.6342/NTU201803476

Fetch Decode Execute Memory WriteBack

Figure 4-2 Single-issue in-order 5-stage pipeline

This MIPS32 processor architecture is the single-issue in-order 5-stage pipeline

including Instruction fetch, Instruction decode, Execute, Memory and Write back stages.

Figure 4-2 illustrates the pipeline stages of the architecture.

Besides, the memory interface is separated from the processor. The original design

of the memory utilizes four-way handshake to exchange the data. Figure 4-3 explains the

mechanism of the four-way handshake. This interface is simple and robust but the

performance of the system is limited. The minimum CPI is increased from 1 to between

3 and 4. It is not practical in SoC designs nowadays. In addition, this handshake

mechanism causes the pipeline stages to be stalled. The stalled pipeline stage would lead

to the untestable faults. In order to prevent over-testing the functionally untestable faults,

we modify the design to make CPI be close to 1. However, accessing the data memory

still needs two cycles to exchange the data.

The experiments run on a Intel(R) Xeon(R) CPU E3-1230 v3 @ 3.30 GHz with 32

GB RAM.

41
d0i:10.6342/NTU201803476

ik J L

R/'W

Ack

Figure 4-3 Four-way handshake mechanism

The EDA tools we used in the methodology flow are described as follows:

ma SYnopsys Design Complier

 Synthesize the RTL Verilog designto get the gate-level circuit. There are

totally 1,885 flip-flops in the synthesized design.

mm SYNOPSYS Primetime

« Static timing analysis tool for figuring out the vulnerable paths with
lower slack. The critical paths list could be used not only for generating

the fault list but also for test pattern generation by TetraMAX.

ma SYNOpPSYs TetraMAX

» ATPG tool for generating the test patterns which would be used to be

converted to assembly test program.

s Cadence NC-Verilog

* Run timed gate-level simulation.

42
doi:10.6342/NTU201803476

4.2 Result Statistics

In this section, we would display some experimental results and evaluate the quality

of the test program generated by our methodology.

4.2.1 Transition delay fault testing

Table 4-1 and Table 4-2 are the results of transition delay fault testing by TetraMAX
and software-based self-test respectively. Figure 4-4 are the equations of coverage
calculation. In Table 4-1, we could observe that the ATPG-untestable faults account for
around 40% of the total faults. The main reasons that cause the ATPG-untestable faults
could be conclude into two points. The first reason is the lack of design-for-testability
(DFT). Without the DFT insertion, the observability of the circuit would be decreased and
cause the poor performance of the fault coverage. The second reason is the addition of
ATPG constraints. Since we need to ensure that the test patterns could be converted into
instructions, some unreachable states or illegal conditions should be confined previously.
Compare Table 4-1 and Table 4-2, the fault coverage of the transition delay fault testing
by software-based self-test is a bit higher than the fault coverage of the testing by
TetraMAX. This result implies that we convert the test patterns into the instructions

completely. Besides, some faults are detected by software-based self-test accidently.

43

doi:10.6342/NTU201803476

Table 4-1 Transition delay fault testing by TetraMAX

| TetaMax | SBST

Detected 8513 8525

ATPG-untestable 6558 6558

Not-detected 1447 1435
Fault coverage 51.54% 51.62%
Test coverage 85.58% 85.60%

Fault _ Detected faults « 100%
ault coverage = ——— Faults 0

et B Detected faults % 100%
eSt COVETase = Total faults — ATPG untestable faults ’

Figure 4-4 Equations of coverage calculation

4.2.2 Path delay fault testing

Except for the transition delay fault which represents the large delay defect, the path
delay fault which represents the small delay defect is also a hot issue when it comes to
delay fault testing.

Table 4-2 are the experimental results by different monitoring conditions
respectively. As mentioned before, the fault size of the path delay fault is exponential to

the circuit size. It is impractical to test the whole path delay faults in the circuit. Actually,

44
d0i:10.6342/NTU201803476

we only test the subset of the whole path delay faults in the circuit. Since the critical paths

with lower slack might have higher probability to get the path delay fault, we choose the

top thousand critical paths for the path delay fault testing in our experiment. The second

row is the fault coverage by the constrained ATPG and non-constrained ATPG. The fault

coverage by the constrained ATPG is around 40% less than the non-constrained ones.

That is to say, whether the constraints be applied or not might have great influence on the

fault coverage. The third row is the number of activated paths according to the three

different methods. As we mentioned in subsection 3.4.1, the non-robust monitoring is the

method with loosen condition and could activate more paths than the other methods. On

the contrary, the robust monitoring with stricter condition could active less paths than the

other methods.

Table 4-2 Path delay fault testing by software-based self-test

T T T

Total faults

1002

ATPG fault coverage 22.48% (constrained)

Activated paths 357 245

Detected faults 307 235

Fault coverage 30.64% 23.65%

Test coverage 41.21% 31.81%

Activated / Detected 85.99% 96.73%
45

61.35% (non-constrained)

275
266
26 557
35.70%
97.44%

doi:10.6342/NTU201803476

Figure 4-5 Venn diagram of fault detection

Figure 4-5 is the Venn diagram of the fault detection. The faults that could be
detected by the non-robust monitoring might be detected by the robust, robust* and
constrained ATPG methods. The faults that could be detected by the robust* monitoring
might be detected by the robust and constrained ATPG methods. To sum up, the faults
that could be detected by the monitoring with strict condition might also be detected by

the monitoring with loose condition.

4.2.3 Random program evaluation

The major objective of the random program evaluation to evaluate the quality of test
program generated by our methodology. The processes are generating random test
programs, doing fault simulation by our simulator and finally comparing the results. The
random program is not totally random. Table 4-3 illustrates the format of the random
program. First, we need to randomly generate the operands that would be used by the

46
d0i:10.6342/N'TU201803476

instructions in the second step. Second, we would randomly choose the instructions
according to the MIPS32 instruction set reference. In this step, we would generate three
different programs with successive one vector, two vectors and three vectors. The
difference of these three types of program would be discussed afterwards. Third, we

should store the result to the data memory for checking the fault effect.

Table 4-3 Random program format

lui $t0, 13579
addi $t0, 13579
lui $t1, 24680
addi $t1, 24680

1. operand preparation

2. random instruction

| veetor sub $t2, $t1, $t0
- 2 vectors
- 3 vectors

3. store result sw $t2, 0($zero)

The test programs would be simulated by our simulator with non-robust and robust

mode separately. The fault coverage would be recorded per hundred instructions. Finally,

we would draw the line graph for observing and analyzing the results.

47
d0i:10.6342/NTU201803476

25
24
20

15

10

Fault coverage (%)

=g=T1
[2.
——-T3
——Ta
—=T5
—a—MEAN

25

24

20

15

10

Fault coverage (%)

ge=T1.
=—g=T2
——T3
——=T4
—=—=T5

Random Program Fault Coverage

603

100
0.699
0.699
3.792
2,699
1.735
1.925

200 300
2495 6.886
3.495 6.387
4391 5.19
3.695 6.986
2495 6.188
3314 6.327

Figure 4-6

400
7.685
8.882
6.487
7.784
7.585
7.685

500
9.481
10.98
7.186
10.18
8.982
9.361

600
9.681
10.98
8.383
10.18
8982
9.641

700
9.681
10.98
9.281
10.18
8.982

9.82

800 900
11.28 11.88
10.98 10.98
9.381 | 13.27
10.18 10.18
9.381 10.08
10.24 11.28

1000
12.08
11.88
1357
10.98
10.38
11.78

1100
12.77
13.07
13.57
11.28
11.28

12.4

1200
12.77
13.37
13.77
11.98
11.48
12.67

Program length (inst.)

1300
12.77
13.37
13.87
11.98
11.58
12.71

1400
13.67
13.37
14.77
12.57
12.08
13.29

1500
14.07
13.77
14.77
13.47
12.08
13.63

1600
14.07
13.77
14.77
13.47
12,67
13.75

1700
14.07
14.37
15.27
13.47
12.67
13.97

1800
14.07
14.37
1557
13.97
12,67
14.13

Random program evaluation in robust 1-vector mode

Random Program Fault Coverage

603

1900
14.07
14.37
15:57
13.97
12.67
14.13

2000
14.07
14.37
15.57
13.97
12,67
14.13

100
3.4
0.998
0
0.138
0.317

200 300
6277 6.677
0.998 2.998

0 |3.992
0.295 | 1.597
1197 | 1.597

—s—MEAN 0091 1753 3.372

Figure 4-7

400
6.677
4.691
4.591
1.896
2,695

411

500
7.176
4.99
4.591
2295
2.794
4.369

600
1.275
5.389
5.988
4.192
4391
5.447

700
7.974
5.489
7.086
4.691

5.09
6.066

800 900
8.373 8972

1000
10.77

5.689 5.689 7.086
7.186 7.984 7.984
6.786 8.882 9.381

8283 9.98
7.263 8301

10.48
9.14

1100
14.97
7.385
8.084
10.68
11.28
10.48

1200
14.97
8.383
8.084
11.08
11.28
10.76

Program length (inst.)

1300
14.97
8.483
8.583
11.98
12.67
11.34

1400
15.47
8.483
9.78

12.18
13.27
11.84

1500
15.47
8.483
11.68
12.18
13.67
12.29

1600
15.66
8.982
11.78
12.28
13.67
12.47

1700
15.66
9.082
14.57
12.87
14.27
13.29

1800
15.66
9.182
15.47
14,57
15.87
14.15

Random program evaluation in robust 2-vector mode

48

doi:10.6342/NTU201803476

1900
15.66
10.08
15.67
14.77
15.87
14.41

2000
15.76
10.08
15.67
14.87
15.87
14.45

25

24

20

15

10

Fault coverage (%)

==ge=T1
==T2
——T3

T4
—=—=T5

Random Program Fault Coverage
603

100
0
0.097
0.297
0.027
1.397

—s—MEAN 0.364

25
24
20
~— 15
=X
S
S
2 10
—
]
2
S 5
=
3
(5]
5

200
0.299
0.197
0.597
0.065
179%
0591

300
1.996
0.197
0.896
0.498
1.796
1.077

Figure 4-8

400
2.096
0.219
1.098
0.599
3.792
1.561

500
2.096
03
1.098
0.798
4.391
1.737

600 700 @ 800 | 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
2794 2794 2.894 4691 5.289 6.287 6.287 6.487 6.487 7.884 8.483 8.583 8.683 8982 9.78
0.798 0.798 3.393 3.393 5.09 6.287 6.687 6.687 6.687 9.681 11.18 11.18 11.88 11.88 11.88
1.297 1.297 1.896 2.794 3.194 3.194 4.291 5.888 6.687 9.581 9.88 10.18 10.98 10.98 10.98
1896 1.896 3.792 3.792 5.489 6.587 6.886 6.986 7.086 10.98 11.68 12.57 12,57 12.57 12.67
5.09 5.289 5988 6.487 7.285 7.285 7.285 7.784 7.784 8.084 8.184 8.184 0481 9481 9.78
2375 2415 3.593 4232 5269 5928 6.287 6.766 6.946 9.242 9.88 10.14 10.72 10.78 11.02

Program length (inst.)

Random program evaluation in robust 3-vector mode

Random Program Fault Coverage
603

100

200

300

400

500

/_‘/~

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

—e—1vector 1925 3314 6.327 7.685 9.361 9.641| 9.82 10.24 11.28 11.78 124 1267 12.71 13.29 13.63 13.75 13.97 1413 14.13 1413
—e=—2vectors 091 1753 3.372 4.11 4.369 5447 6.066 7.263 8301 9.14 10.48 10.76 11.34 11.84 12.29 12.47 13.29 14.15 14.41 14.45
—e—3 vectors 0.364 0591 1.077 1.561 1.737 2.375|2.415 3.593 4.232 5.269 5.928 6.287 6.766 6.946 9.242 9.88 10.14 10.72 10.78 | 11.02

Figure 4-9

Program length (inst.)

Mean fault coverage of different vectors in robust mode

Figure 4-6, Figure 4-7 and Figure 4-8 are the results of random program fault

coverage. Figure 4-9 is the mean fault coverage of the random program with different

vectors. The marking line in these figures is the fault coverage of the test program

49
doi:10.6342/NTU201803476

generated by our methodology. According to the marking line, the fault coverage of our
test program could reach 24% with 603 instructions. However, the fault coverage of the
random programs could locate in between 10% to 15% with around three times larger

than the program size of our test program.

Random Program Fault Coverage
603
35

30

25

20

15

10

Fault coverage (%)

100 200 300 400 500 H 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

——T1 489 8583|8982 15.67 |15.67 16.97 16.97 16.97 16.97 16.97 16.97 16.97 16.97 16.97 16.97|19.96 19.96 19.96 19.96 19.96
=12 1996 10.08 11.18 11.18 16.47 16.47 16.47 16.47 17.96 17.96 17.96 1876 18.86 18.86 19.06 19.06 19.06 19.06 19.06 19.16
—=T3 6.188 8084 10.48 14.07 14.07 14.07 1597 1597 18.76 18.76 18.76 18.76 18.76 18.76 18.76 18.76 18.76 18.76 18.76 18.76
T4 6.487 9.481 10.28 15.87 16.27 16.27 16.27 17.76 17.76 17.76 17.76 17.76 17.76 17.76 17.76 17.76 18.46 18.46 18.46 18.46
=s=T5 9.281 11.07 14.07 15.97 16.47 16.47 16.57 16.67 16.67 16.67 16.97 17.17 17.27 17.76 17.96 17.96 17.96 18.06 18.06 18.06
=e=MEAN 5768 9.46 11 1455 1579 16.05 16.45 16.77 17.62 17.62 17.68 17.88 17.92 1802 18.1 187 18.84 1886 18.86 18.88

Program length (inst.)

Figure 4-10 Random program evaluation in non-robust 1-vector mode

Random Program Fault Coverage
603
35

31
30

25

20

15

10

Fault coverage (%)

100 200 300 400 500 600 700 800 @900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

s T 5.788 | 11.28 12.08 15.17 15.47 1547 1597 16.87 17.37 18.06 18.16 18.36 18.36 18.76 18.76 18.76 18.76 18.86 18.86 18.86
==T2 6.986 10.58 | 11.58 12.67 12.67 12.67 13.17 16.17 |16.17 16.17 16.67 17.07 17.27 17.37 17.37 17.37 17.47 17.56 18.16 18.16
—-=T3 8.782 8.882 14.17 15.67 15.87 1597 16.07 16.07 17.07 17.07 17.56 17.56 18.06 | 18.26 18.46 18.46 19.16 19.16 19.46 19.46
T4 5.988 5988 10.28 10.38 10.58 10.68 10.68 11.88 15.67 15.67 16.07 16.07 16.07 | 16.07 16.07 16.07 16.17 16.47 16.97 16.97
—=T5 6.786 7.884 8.283 8.283 8.283 1168 14.87 14.87 15.67 16.57 16.57 16.57 16.57 16.57 17.76 17.76 17.76 18.46 18.46 18.46
—s—MEAN 6.866 8922 11.28 12.44 12.57 13.29 14.15 15.17 16.39 16.71 17.01 17.13 17.27 17.41 17.68 17.68 17.86 18.1 18.38 18.38

Program length (inst.)
Figure 4-11 Random program evaluation in non-robust 2-vector mode

50
doi:10.6342/NTU201803476

Random Program Fault Coverage
603
35

31
30

25

20

——
15

W — et /

Fault coverage (%)

100 200 300 400 500 600 700 800 @900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

s T 5.088 6.088 6.786 7.285 7.285 8283 8.283 11.48 11.48 1148 11.68 12.08 12.18 1218 15.87 16.17 16.17 16.17 16.37 16.37
==T2 5.988 7485 7.685 7.685 978 9.88 998 9.98 998 11.28 12.08 1567 16.07 16.07 16.17 16.17 16.17 16.57 16.57 16.57
—-=T3 8.084 8.283 8.583 8.782 9.082 9.082 9.182 10.18 10.18 10.18 10.28 10.38 10.38 | 10.38 15.37 15.47 15.57 15.77 15.77 15.77
T4 3.992 3.992 3.992 8.383 | 9.98 10.98|10.98 11.68 11.68 | 12.67 12.77 12.77 | 12.77|13.07 15.17 | 16.07 16.07 | 16.07 16.07 | 16.07
—=T5 9.182 9281 10.18 11.58 11.68 1168 11.68 11.68 14.77 1577 15.77 15.77 15.87|15.87 15.87 15.87 15.87 15.97 15.97 16.27
—s—MEAN 6.647 7.026 7.445 8.743 9.561 9.98 10.02 11 | 11.62 12.28 12.51 13.33 13.45 13.51 15.69 15.95 15.97 16.11 16.15 16.21

Program length (inst.)

Figure 4-12 Random program evaluation in non-robust 3-vector mode

Random Program Fault Coverage
603
35

31
30

25

20

. =

Fault coverage (%)

100 200 | 300 400 | 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
—e—]1vector 5.768 946 11 1455 15.79 16.05 16.45 16.77 17.62 17.62 17.68 17.88 17.92 18.02 18.1 187 18.84 18.86 18.86 18.88
—s—2 vectors 6.866 8922 11.28 12.44 | 12.57 13.29 14.15 15.17 16.39 16.71 17.01 17.13 17.27 17.41 17.68 17.68 17.86| 18.1 18.38 18.38
=e=3 vectors 6.647 7.026 7.445 8.743 9.561 9.98 |10.02 11 11.62 12.28 12.51 13.33 13.45 13.51 15.69 15.95 15.97 16.11 16.15 16.21

Program length (inst.)

Figure 4-13 Mean fault coverage of different vectors in non-robust mode

Figure 4-10, Figure 4-11 and Figure 4-12 are the results of random program fault
coverage. Figure 4-13 is the mean fault coverage of the random program with different

vectors. The marking line in these figures is the fault coverage of the test program

51
d0i:10.6342/NTU201803476

generated by our methodology. According to the marking line, the fault coverage of our
test program could reach 31% with 603 instructions. However, the fault coverage of the
random programs could locate in between 15% to 20% with around three times larger
than the program size of our test program.

Based on the results of fault coverage of random programs, we could say that our
test program is more efficient and effective. The fault coverage of our test program could
be two to eight times higher than the fault coverage of random programs in the same
instruction length. Besides, the fault coverage threshold of the random test program is
around half of our test program.

Compare the results of fault coverage in robust and non-robust mode, they have the
similar tendency. The random program with less successive vectors might reach the fault
coverage threshold earlier than the program with more successive vectors. The reason of

this phenomenon would be discussed afterwards.

e ——

e I

I ——————————————. _
e

] _

A

—— _ e

operand preparation vector | store

Figure 4-14 Comparison between different successive vectors

52
doi:10.6342/NTU201803476

Figure 4-14 illustrates the distribution of the random test program with different

successive vectors. The yellow row represents the process of operand preparation. The

orange row represents the process of test vector execution. The blue row represents the

process of result store. As we seen, in the same program length, the program with less

successive vectors might execute the test vector and result store more times. That is to

say, it might do the path activation and fault effect capture more times. As a result, is

could reach the fault coverage threshold earlier than the program with more successive

vectors. However, although the program with less successive vectors could reach the fault

coverage threshold earlier, it might have the similar threshold than the other programs.

To sum up, the number of successive vectors could only affect the time to reach the fault

coverage threshold, it could not have any influence on the threshold.

53

doi:10.6342/NTU201803476

Chapter 5
Conclusion

54

0i:10.6342/NTU201803476

In this thesis, a software-based self-test methodology targeting the aging defects is

proposed. The methodology includes ATPG-aid test generation, pattern-to-instruction

converter, testbench generator and fault simulator. The test patterns would be generated

by the ATPG tool, then the pattern-to-instruction converter would convert the patterns

into instructions and synthesize the test program. The testbench generator might generate

the testbench for doing fault simulation. It provides three types of path activation

monitoring: non-robust, robust and robust*. Finally, in order to evaluate the quality of our

test program, we adopt the method of random program evaluation. In this process, we

compare the results of fault coverage of the random program with multiple successive

vectors in robust and non-robust mode.

The future work includes: functionally path classification and automatically

constraint extraction. The process of functionally path classification is to remove the

nonfunctional paths previously. It could not only avoid over-testing nonfunctional paths

but also increase the fault coverage. As to the automatically constraint extraction, since

the processors become more and more complex, manually constraint extraction would

become more difficult and insufficient. The importance of automatically constraint

extraction would not be overemphasized.

55

doi:10.6342/NTU201803476

REFERENCE

[1] T. H. Li. (2017). A Flexible Hybrid Fault Simulator for Software-Based Self-Test
(Unpublished master’s thesis). National Taiwan University, Taipei, Taiwan.

[2] L. T. Wang, Charles E. Stroud, Nur A. Touba, System-on-Chip Test Architectures:
Nanometer Design for Testability. United States: Morgan Kaufmann, 2008, ch.11.

[3] P. C. Maxwell, V. Johansen and I. Chiang, "Functional and Scan Tests: The
Effectiveness of I/sub DDQ/ How Many Fault Coverages Do We
Need?," Proceedings International Test Conference 1992, Baltimore, MD, 1992, pp.
168-177.

[4] D. Gizopouloset al., "Systematic Software-Based Self-Test for Pipelined
Processors,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 11, pp. 1441-1453, Nov. 2008.

[5] A. Kirstic, W. C. Lai, K. T. Cheng, L. Chen and S. Dey, "Embedded Software-Based
Self-Test for Programmable Core-Based Designs,” in IEEE Design & Test of
Computers, vol. 19, no. 4, pp. 18-27, Jul/Aug 2002.

[6] L. Chen, S. Dey, P. Sanchez, K. Sekar and Y. Chen, "Embedded Hardware and
Software Self-Testing Methodologies for Processor Cores," Proceedings 37th
Design Automation Conference, 2000, pp. 625-630.

[7] A. Paschalis, D. Gizopoulos, N. Kranitis, M. Psarakis and Y. Zorian, "Deterministic
Software-Based Self-Testing of Embedded Processor Cores," Proceedings Design,
Automation and Test in Europe. Conference and Exhibition 2001, Munich, 2001, pp.
92-96.

[8] S. Almukhaizim, P. Petrov and A. Orailoglu, "Faults in Processor Control
Subsystems: Testing Correctness and Performance Faults in the Data Prefetching

Unit," Proceedings 10th Asian Test Symposium, Kyoto, 2001, pp. 319-324.
56

doi:10.6342/NTU201803476

[9] W.C. Lai, A. Krstic and K. T. Cheng, "Test Program Synthesis for Path Delay Faults
in Microprocessor Cores,” Proceedings International Test Conference 2000 (IEEE
Cat. No.OOCH37159), Atlantic City, NJ, 2000, pp. 1080-10809.

[10] V. Singh, M. Inoue, K. K. Saluja and H. Fujiwara, "Software-Based Delay Fault
Testing of Processor Cores," 2003 Test Symposium, 2003, pp. 68-71.

[11] C. H. P. Wen, L. C. Wang, K. T. Cheng, K. Yang, W. T. Liu and J. J. Chen, "On a
Software-Based Self-Test Methodology and Its Application,” 23rd IEEE VLSI Test
Symposium (VTS'05), 2005, pp. 107-113.

[12] S. Gurumurthy, R. Vemu, J. A. Abraham and D. G. Saab, "Automatic Generation of
Instructions to Robustly Test Delay Defects in Processors,” 12th IEEE European
Test Symposium (ETS'07), Freiburg, 2007, pp. 173-178.

[13] P. Bernardi, M. Grosso, E. Sanchez and M. Sonza Reorda, "On the Automatic
Generation of Test Programs for Path-Delay Faults in Microprocessor Cores," 12th
IEEE European Test Symposium (ETS'07), Freiburg, 2007, pp. 179-184.

[14] K. Christou, M. K. Michael, P. Bernardi, M. Grosso, E. Sanchez and M. S. Reorda,
"A Novel SBST Generation Technique for Path-Delay Faults in Microprocessors
Exploiting Gate- and RT-Level Descriptions,” 26th IEEE VLSI Test Symposium (vts
2008), San Diego, CA, 2008, pp. 389-394.

[15] F. Corno, E. Sanchez, M. S. Reorda and G. Squillero, "Automatic Test Program
Generation: A Case Study," in IEEE Design & Test of Computers, vol. 21, no. 2, pp.
102-109, Mar-Apr 2004.

[16] D. Sabena, M. S. Reorda and L. Sterpone, "On the Automatic Generation of
Optimized Software-Based Self-Test Programs for VLIW Processors,” in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 4, pp. 813-

823, April 2014.

57

doi:10.6342/NTU201803476

[17] Y. Zhang, H. Li and X. Li, "Automatic Test Program Generation Using Executing-
Trace-Based Constraint Extraction for Embedded Processors,"” in IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 7, pp. 1220-1233, July
2013.

[18] J. Arlat et al., "Fault Injection for Dependability Validation: A Methodology and
Some Applications,” in IEEE Transactions on Software Engineering, vol. 16, no. 2,
pp. 166-182, Feb 1990.

[19] U. Gunneflo, J. Karlsson and J. Torin, "Evaluation of Error Detection Schemes
Using Fault Injection by Heavy-ion Radiation,” 1989 The Nineteenth International
Symposium on Fault-Tolerant Computing. Digest of Papers, Chicago, IL, USA,
1989, pp. 340-347.

[20] P. Kenterlis, N. Kranitis, A. Paschalis, D. Gizopoulos and M. Psarakis, "A Low-Cost
SEU Fault Emulation Platform for SRAM-Based FPGAs," 12th IEEE International
On-Line Testing Symposium (IOLTS'06), Lake Como, 2006, pp. 7-13.

[21] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda and M. Violante,
"Exploiting Circuit Emulation for Fast Hardness Evaluation," in IEEE Transactions
on Nuclear Science, vol. 48, no. 6, pp. 2210-2216, Dec 2001.

[22] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczpk and R. K. lyer, "NFTAPE: A
Framework for Assessing Dependability in Distributed Systems with Lightweight
Fault Injectors,” Proceedings IEEE International Computer Performance and
Dependability Symposium. IPDS 2000, Chicago, IL, 2000, pp. 91-100.

[23] R. R. Some, W. S. Kim, G. Khanoyan, L. Callum, A. Agrawal and J. J. Beahan, "A
Software-Implemented Fault Injection Methodology for Design and Validation of
System Fault Tolerance,” 2001 International Conference on Dependable Systems

and Networks, Goteborg, Sweden, 2001, pp. 501-506.

58

doi:10.6342/NTU201803476

[24] D. Ferraretto and G. Pravadelli, "Efficient Fault Injection in QEMU," 2015 16th
Latin-American Test Symposium (LATS), Puerto Vallarta, 2015, pp. 1-6.

[25] K. K. Goswami, "DEPEND: A Simulation-Based Environment for System Level
Dependability Analysis," in IEEE Transactions on Computers, vol. 46, no. 1, pp. 60-
74, Jan 1997.

[26] P. Bernardi, M. Grosso, E. Sanchez and M. S. Reorda, "A Deterministic
Methodology for Identifying Functionally Untestable Path-Delay Faults in
Microprocessor Cores,"” 2008 Ninth International Workshop on Microprocessor Test
and Verification, Austin, TX, 2008, pp. 103-108.

[27] D. Gizopouloset al., "Systematic Software-Based Self-Test for Pipelined
Processors,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 11, pp. 1441-1453, Nov. 2008.

[28] A. Riefert, L. Ciganda, M. Sauer, P. Bernardi, M. S. Reorda and B. Becker, "An
Effective Approach to Automatic Functional Processor Test Generation for Small-
Delay Faults,” 2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Dresden, 2014, pp. 1-6.

[29] A. U. R. Shaheen, F. A. Hussin, N. H. Hamid and N. B. Z. Ali, "Automatic
Generation of Test Instructions for Path Delay Faults Based-On Stuck-At Fault in
Processor Cores Using Assignment Decision Diagram,” 2014 5th International
Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, 2014, pp.
1-5.

[30] N. Hage, R. Gulve, M. Fujita and V. Singh, "On Testing of Superscalar Processors
in Functional Mode for Delay Faults,” 2017 30th International Conference on VLSI
Design and 2017 16th International Conference on Embedded Systems (VLSID),

Hyderabad, 2017, pp. 397-402.

59

doi:10.6342/NTU201803476

[31] G. Ayers, A 32-bit MIPS processor which aims for conformance to the MIPS32
Release 1 ISA. (Old University of Utah XUM archieve), 2014, from

https://github.com/grantae/mips32r1_xum

60

doi:10.6342/NTU201803476

	Thesis_封面
	FINAL_前置
	FINAL_本文

