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摘要

針對在資源受限的裝置上運⾏的虛擬機已被廣泛地研究 然⽽ 在

設計如何將 多功能包裝進資源受限的裝置的過程 絕多數的虛擬機

都難以同時滿⾜以下兩種關鍵特性 效能與安全的獨⽴執⾏環境 ⼀

⽅⾯由於幾乎現有的虛擬機皆 直譯器 往往使得程式運⾏速度減慢

數⼗⾄數百倍 另⼀⽅⾯因為受限於裝置上的資源 常常略過驗證位

元組碼 (bytecode) 的步驟 讓虛擬機的防護脆弱且易受到攻擊

在這篇論⽂中 我們提出 CapeVM 此運⾏在物聯網裝置的虛擬

機 ⽬的就是要能同時兼顧⾼效能與獨⽴執⾏環境的特性 確保惡意

程式無法損壞虛擬機的內部狀態 且無法執⾏尚未被虛擬機驗證的程

序

CapeVM採⽤提前式編譯器 (Ahead-of-Time compilation)轉成機器碼

(native code) 來提昇效能 並引⼊⼀套優化程序來消除⼤部分的額外運

算 ⽬前⽤於物聯網裝置的提前式編譯器皆無法免除這些額外運算

⾄於安全的執⾏環境 ⼀套執⾏時期與編譯時期的檢查能確保這項特

性 因為虛擬機指令集的結構⽐機器碼更加明確 使虛擬機在轉譯位

元組碼的時候 就能夠完成⼤部分的檢查 ⽐起機器碼的⽅式省去了

昂貴的執⾏時期檢查

我們採⽤了 12 種具備不同特徵的效能基準來評估 CapeVM 包括

商⽤的 CoreMark 與實際運⾏在物聯網裝置的應⽤ 儘管使⽤虛擬機

本⾝與加⼊安全檢查的步驟會無可避免地增加額外運算 CapeVM 的

優化程序⼤幅度地減少這些額外運算 結果顯⽰其效能僅⽐缺少安

全檢查的機器碼慢 2 倍 甚⾄優於具備安全檢查的機器碼 若省去
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CapeVM 的安全檢查 額外運算會再降低⾄ 1.7 倍 因此 CapeVM 專

資源受限的物聯網裝置整合了虛擬機對於安全與獨⽴執⾏環境的需

求 並⼤幅提昇其運⾏的效能

關鍵字 無線感測網路 物聯網 Java 虛擬機 提前式編譯器 軟

體故障隔離
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Abstract

Many virtual machines have been developed targeting resource-

constrained sensor nodes. While packing an impressive set of features into

a very limited space, most fall short in two key aspects: performance, and

a safe, sandboxed execution environment. Since most existing VMs are

interpreters, a slowdown of one to two orders of magnitude is common.

Given the limited resources available, verification of the bytecode is typically

omitted, leaving them vulnerable to a wide range of possible attacks.

In this dissertation we propose CapeVM, a sensor node virtual machine

aimed at delivering both high performance and a sandboxed execution envi-

ronment that guarantees malicious code cannot corrupt the VM’s internal state

or perform actions not allowed by the VM.

CapeVM uses Ahead-of-Time compilation to native code to improve per-

formance and introduces a set of optimisations to eliminate most of the over-

head present in previous work on sensor node AOT compilers. A safe ex-

ecution environment is guaranteed by a set of run-time and translation-time

checks. The more structured nature of the VM’s instruction set, compared

to native code, allows the VM to perform most checks when the bytecode

is translated, reducing the need for expensive run-time checks compared to

native code approaches.

We evaluate CapeVM using a set of 12 benchmarks with varying charac-

teristic, including the commercial CoreMark benchmark and real-world sen-

sor node applications. While some overhead from using a VM and adding

xi
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safety checks cannot be avoided, CapeVM’s optimisations reduce this over-

head dramatically. This results in a performance 2.0x slower than unsafe na-

tive code, which is comparable to or better than existing native solutions to

provide safety. Without safety checks, the overhead drops to 1.7x. Thus,

CapeVM combines the desirable properties of existing work on both safety

and virtual machines for sensor nodes, with significantly improved perfor-

mance.

Keywords: wireless sensor networks, Internet of Things, Java, virtual ma-

chines, ahead-of-time compilation, software fault isolation
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Chapter 1

Introduction

Production of integrated circuits has advanced at a consistent and rapid pace for over

half a century, doubling the transistors density every one to two years in accordance with

Moore’s law. Only in recent years has the cadence slowed as we approach fundamental

physical limits.

While Moore’s law is most commonly associated with improvements in performance,

it also allowed us to reduce the size of computers: doing the same thing in ever smaller

packages. This trend has not been as smooth as the continuous improvements in perfor-

mance. While any improvement in performance is a direct advantage, a small reduction

in size usually is not. However, it enables revolutions at certain thresholds: moving from

room-sized computers to home computers and PCs in every home, scaling them down

further to portable/laptop computers, and eventually handhelds and smart phones. Once

established, each of these then benefitted from Moore’s law to improve their capabilities,

but the truly disruptivemoments are whenminiaturisation allowedwhole new applications

areas to emerge.

The term ’ubiquitous computing’ was coined by Mark Weiser, predicting in 1991 that

computing would move from a dedicated device on the desktop, to devices all around us,

from alarm clocks to coffee makers [100]. Around the turn of the century, we were able

to scale down useful, working devices to the size of a few millimetres [98]. This led to

the start of research into Wireless Sensor Networks (WSN): many small and inexpensive

sensor nodes, often called ’motes’, working together to perform continuous automated
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sensing tasks.

Many promisingWSN applications were proposed, ranging frommilitary applications

[5], to precision agriculture [50], habitat monitoring [62], and environmental monitoring

[101, 15]. While the applications vary greatly, the hardware platforms used to build WSN

applications are all quite similar, and usually very resource-constrained.

Sensor nodes are typically small and battery powered, and many applications require a

lifetime measured in weeks or months rather than hours, so maintaining a very low power

consumption is critical. To achieve this, the CPUs used for sensor nodes are kept very

simple. While they lack most of the advanced features found in modern desktop CPUs,

they typically do have several sleep modes, allowing them to reduce power consumption

by over 99.99% [65]. Extremely long battery life is possible by keeping the CPU in sleep

mode for most of the time, only occasionally waking up to perform its sensing task. Since

RAM requires power to maintain its state even in sleep mode, it is usually limited to only

a few KB of RAM, a full six orders of magnitude less than most modern computers.

In 2001 Pister predicted that by 2010, the size of these devices would be reduced to a

cubic centimetre, and cost to less than a dollar [72]. While the first prediction has come

true [97], the latter so far has not. Future improvements in IC technology may allow

more powerful devices at the same level of cost and power consumption, but for many

applications an increase in battery lifetime or a reduction in cost may be more valuable,

and may enable new applications not possible at the current level of technology.

Thus, much of the research into WSN is about the trade-offs involved in achieving

useful functionality in as small a space as possible, gradually exploring the design space

between capabilities, accuracy and performance on one side, and their cost in terms of

memory and power consumption on the other. New protocols were developed at every

layer in an application, optimising them for the specific constraints of sensor nodes. This

includes lightweight MAC protocols for radio communication, trading latency for energy

by turning off the radio as often as possible [104, 95], lightweight operating systems and

virtual machines, trading functionality for reduced size and complexity [54, 35, 37, 52,

13], lightweight routing and data aggregation [44, 11], lightweight data compression and
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reprogramming techniques, trading CPU cycles for a reduction in transmitted bits [63, 77],

lightweight localisation, trading accuracy for reduced complexity [68, 79, 80], etc.

What these have in common is that they all revisit classic computer science problems,

and adjust them to fit one a sensor node, making trade-offs to optimise for power consump-

tion, either directly by reducing the time the processor or radio is active, or indirectly by

reducing code size and memory consumption enough for them to run on the extremely

low power, but very resource-constrained CPUs.

1.1 Internet-of-Things

Recently, research into the Internet-of-Things (IoT) focuses on connecting many everyday

objects and building smart applications with them. In this vision, similar to Weiser’s ubiq-

uitous computing, any object could be connected to the internet, and cooperate to achieve

useful goals. For example a house with a smart air-conditioning system may use sensors

in each room, weather forecast information downloaded from the internet, past data on

how the house responds to weather changes, and the user’s current location, and combine

all this information to conserve energy while making sure the house is at a comfortable

temperature when the user gets home.

While IoT and WSN overlap and the two terms are sometimes used interchangeably,

an important difference is that in WSN research, applications typically consist of a large

number of homogeneous and resource-constrained nodes, where IoT devices come in a

wide range, with vastly different performance characteristics, cost, and power require-

ments.

On one end of this spectrum are devices like the Intel Edison and Raspberry Pi. These

are the result of another decade of miniaturisation since the beginning of WSN research,

and are basically a complete PC in a very small form factor. They are powerful enough

to run a normal operating system like Linux, but relatively expensive and power hungry.

On the other end are traditional WSN CPUs like the Atmel ATmega or Texas Instruments

MSP430: much less powerful, but also much cheaper and low power enough to poten-

tially last for months or years on a single battery. Since both classes of devices have such
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different characteristics, solutions that are appropriate for one usually do not work for the

other.

A second important difference between WSN and IoT applications is that in WSN

applications, the network is usually dedicated to a specific task and the hardware is an

integral part of the design of the application. In the broadest IoT vision, the smart devices

in the user’s environment cooperate to implement new applications, but these devices may

come frommany different vendors andmay not be specifically designed for the application

the user wants to run. Coming back to the example fromWeiser’s paper [100], it is unlikely

a user would be willing to buy a matching pair of a coffee maker and an alarm clock, just

so that they will work together to have his coffee ready in the morning. The challenge for

IoT is to allow different smart coffee makers and smart alarm clocks to be programmed in

such a way to enable this application.

Thus, many IoT applications are inherently heterogeneous, and as Gu points out [35],

even when powerful devices like the Raspberry Pi are used, it is not unusual for low power

devices to be included to form a hybrid network and take advantage of their extremely

long battery lifetime. One of the main challenges then becomes how to programme these

networks of IoT devices.

1.2 Virtual machines

The use of virtual machines has been common in desktop computing for a long time, with

Java and .Net being the most well-known examples. There are several advantages to us-

ing VMs, the most obvious one being platform independence. Java enables a vast number

of different models of Android phones to run the same applications. In a heterogeneous

environment as IoT applications are expected to be, a VM can significantly ease the de-

ployment of these applications if the same programme can be run on any node, regardless

of its hardware platform. A second advantage is that a VM can offer a safe execution

environment, preventing buggy or malicious code from disabling the device.

Since the early days of WSN research, many VMs, some based on Java and .Net,

have been developed to run on resource-constrained sensor nodes. They manage to pack
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Table 1.1: Slowdown for interpreting sensor node VMs

VM Source Platform Performance vs. native C

Darjeeling Delft University ATmega128 30x-113x slower [13]
of Technology

TakaTuka University of Freiburg Mica2 (AVR) and 230x slower [24]
JCreate (MSP)

TinyVM Yonsei University ATmega128 14x-72x slower [41]
DVM UCLA ATmega128L 108x slower [9]

555x slower [49]
SensorScheme University of Twente MSP430 4x-105x slower [27]

an impressive set of features on such a limited platform, but sacrifice performance, and

usually do not provide a safe execution environment.

1.2.1 Performance degradation

The VMs for which we have found concrete performance data are shown in Table 1.1.

The best case, the 4x slowdown seen in one of SensorScheme’s benchmarks, is a tiny

benchmark that does a single call to a random number generator, so this only tells us a

function call takes about 3 times longer than generating the random number. Apart from

this single data point, all interpreting VM are between one and two orders of magnitude

slower than native code.

In many scenarios this may not be acceptable for two reasons: for many tasks such

as periodic sensing there is a hard limit on the amount of time that can be spent on each

measurement, and an application may not be able to tolerate a slowdown of this magni-

tude. For applications that sample close to the maximum rate a node could process, any

reduction in performance directly translates to a reduction in the sampling rate.

Perhaps more importantly, one of the main reasons for using such tiny devices is their

extremely low power consumption. In many applications the CPU is expected to be in

sleep mode most of the time, so little energy is spent on the CPU compared to communi-

cation or sensors. However, if the slowdown incurred by a VMmeans the CPU has to stay

in active mode 10 to 100 times longer, this means 10 to 100 times more energy is spent

on the CPU and it may suddenly become the dominant factor and reduce battery lifetime.

To illustrate this we will look at three concrete examples below.
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Table 1.2: Energy consumption breakdown for the Mercury motion analysis application,
source: [58]

Component Energy (μJ)

Sampling accel 2,805
CPU (activity filter) 946
Radio listen (LPL, 4% duty cycle) 2,680
Time sync protocol (FTSP) 125
Sampling gyro 53,163
Log raw samples to flash 2,590
Read raw samples from flash 3,413
Transmit raw samples 19,958

Compute features 718
Log features to flash 34
Read features to flash 44
Transmit features 249

512-point FFT 12,920

Mercury

Few WSN or IoT applications report a detailed breakdown of their power consumption.

One that does is a platform for motion analysis called Mercury [58]. The data reported

in their paper is copied in Table 1.2. The greatest energy consumer is the sampling of a

gyroscope, at 53,163 μJ. Only 1,664 μJ is spent in the CPU on application code for an

activity recognition filter and feature extraction. When multiplied by 10 or 100 however,

the CPU becomes a significant, or even by far the largest energy consumer.

Table 1.2 also shows that transmitting raw data is a major energy consumer. To reduce

this, Mercury has the option of first extracting features from the raw sensor data, and trans-

mitting these instead, achieving a 1:60 compression. Mercury has five feature detection

algorithms built in: maximum peak-to-peak amplitude; mean; RMS; peak velocity; and

RMS of the jerk time series, but the authors note that the exact feature extractor may be

customised by an application.

This is the kind of code we may want to update at a later time, where using a VM

could be useful to provide safety and platform independence. However, at more than a

35x slowdown in the feature extraction algorithm, which is in the range seen for most

VMs, this would be pointless, because more energy would then be spent in the CPU than

would be saved on transmission.
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Finally, a more complex operation such as a 512 point FFT costs 12,920 mJ. For tasks

like this, even a slowdown by a much smaller factor will have a significant impact on the

total energy consumption.

Lossless compression

As a second example we consider lossless data compression. Since the radio is often one

of the major power consumers on mobile devices and one of the main tasks of sensor

nodes is collecting and transmitting data, compressing this data before it is sent is an

attractive option to conserve energy spent on transmission. However, energy must also be

spent on CPU cycles during compression. Barr and Asanović have analysed this trade-off

for five compression algorithms on the Skiff research platform, with hardware similar to

the Compaq iPAQ. The break-even point was found to be at about 1000 instructions for

each bit saved, beyond which the energy spent on compression would start to outweigh

the energy saved on transmission. In their experiments this was the case for a number

of combinations of compression algorithms and input data where compression led to an

increase in total energy consumption, compared to sending uncompressed data [10].

Most of the traditional algorithms, such as the ones considered by they Barr and

Asanović, are too complex to run on a sensor node, so specialised compression algorithms

have been developed for sensor nodes. One such algorithm is LEC [63], a simple lossless

compression algorithm that can be implemented in very little code and only needs to

maintain a few bytes of state. We will use a rough calculation to show why performance

is also a concern for the simpler compression algorithms developed for sensor nodes.

Using the power consumption data from the datasheets for the Atmel ATmega128 [65]

CPU, we estimate the energy per CPU cycle in active mode. Running at 8 MHz and 2.7V,

the ATmega consumes 7.5 mA.

7.5mA ∗ 2.7V /8MHz = 2.53nJ/cycle (1.1)

We can do a similar calculation to determine the energy per bit for the Chipcon CC2420

IEEE 802.15.4 transceiver [16]. This radio can transmit at 250 kbps, but the small frame

7
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Table 1.3: LEC compression energy savings

Energy consumption
ATmega128 per cycle 2.53 nJ/cycle
CC2420 per transmitted bit 288.2 nJ/bit

LEC compression
bits saved 2256 bits
cycles spent 97052 cycles
cycles per bit 43 cycles/bit

Energy saved 650 μJ
Energy expended 246 μJ
Ratio saved/expended 2.6x

size of the 802.15.4 protocol introduces a relatively large overhead, and Latreé et al. cal-

culate a maximum throughput of 163 kbps [51]. The CC2420 can also operate at 2.7 V,

and consumes between 8.5 and 17.4 mA depending on transmission power. Using the

higher value, so that compression will be more worthwhile, this yields

17.4mA ∗ 2.7V /163kbps = 288.2nJ/bit (1.2)

As a result, we can spend 288.2/2.53 ≈ 114 cycles per bit to reduce the size of the

transmitted data, and still conserve energy using compression.

We implemented the LEC compression algorithm and used it to compress a dataset of

256 16-bit ECG measurements [71], or 4096 bits of data. The results are shown in Table

1.3. LEC compression reduced the dataset to 1840 bits, saving 2256 bits, or 651 μJ on

transmitting the data, at the expense of 246 μJ extra energy spent in the CPU.

This shows that for this combination of hardware and sensor data, LEC compression

is effective in reducing total energy consumption. However the energy saved is only 2.6x

more than the extra energy expended on the CPU. This means that if running the compres-

sion algorithm in a VM slows it down by a factor of more than 2.6x, this would tip the

balance in favour of simply sending the raw data.

Where exactly this break-even point lies depends onmany factors. The CPUs and radio

used in this calculation are very common in typical sensor nodes. The widely used Telos

platform [73] uses the CC2420 radio, and theATmegaCPU is found inmanyArduinos, but

many parameters will affect the results. Power consumption is roughly linear in relation

8
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to clock frequency, so at the same voltage the cost per cycle will be similar, but at lower

frequencies the CPU can operate at a lower voltage which lowers the cost per cycle. The

cost per bit depends on many factors including the link quality. A bad link will increase

the cost per bit due to retransmissions, but if the node transmits at a lower power, for

example to reduce the number of neighbours and collisions, the cost per bit will be lower

than calculated.

This calculation is another example of a situation where the slowdown caused by cur-

rent sensor node VMs means compression is not worthwhile. For Mercury’s feature ex-

traction, the break-even point is around 35x slowdown, while for this case of LEC com-

pression it is at only 2.6x. The exact numbers depend on the application, but it is clear

that a slowdown of one to two orders of magnitude will affect battery lifetime in many

applications.

Amulet

A final example to motivate both the benefit of using a VM and the need for good perfor-

mance is the smart watch platform Amulet [40]. Amulet aims to provide a week-long or

month-long battery life time. To do so it uses a typical low-power resource-constrained

CPU, the MSP430.

Amulet supports multiple concurrent applications. Currently these are written in

Amulet C, and are compiled together into a single firmware image that is loaded onto a

watch. However, the authors envision a future with multiple vendors of Amulet devices,

who will no doubt use different hardware platforms, and many developers submitting

applications to a sort of app store. In such a scenario the platform independence a VM

can provide is a valuable property.

One of themain design goals of Amulet is long battery life, and although the authors do

not provide a breakdown of energy consumption per component likeMercury, they do note

that Energy consumption is significantly impacted by the fraction of time the application

microcontroller (MSP430) is active . This suggests a large performance overhead would

significantly reduce battery lifetime.

9
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Table 1.4: Sleep and active time for Amulet applications, source: [40]

Application %Sleep %OS %App

Clock 98.1 0.9 1.0
EMA 98.2 1.0 0.8
Heart rate 91.1 0.9 8.0
Pedometer 93.8 2.2 4.0
Pedometer+HR 87.5 1.9 10.6
Pedometer+HR+Clock 85.4 2.8 11.8

The paper provides an overview of the percentage of time spent in sleep mode, in the

OS, or in application code for a few different applications. This is reproduced in Table 1.4.

The percentage of time the CPU is executing application code varies between 0.8% and

11.8%. Combined with the one to two orders of magnitude slowdown seen in Table 1.1,

there are many cases where the slowdown of a VM would mean the CPU has to be active

for more than 100% of the time, indicating it does not have enough time to complete all

its tasks in time.

For the most expensive configuration that spends 11.8% executing application code,

this happens at a slowdown of roughly 8.5x. The lighter applications can tolerate more

overhead, but the highest slowdowns seen in Table 1.1 are a problem for even the lightest

application.

Ahead-of-Time compilation

Thus, a better performing VM is needed, preferably one that performs as close to native

performance as possible. Translating bytecode to native code is a common technique to

improve performance in desktop VMs. Translation can occur at three moments: offline,

ahead-of-time (AOT), or just-in-time (JIT).

JIT compilers translate only the necessary parts of bytecode at run time, just before

they are executed. They are common on desktops and on more powerful mobile devices,

but are impractical on sensor node platforms, some of which can only execute code from

flash memory. This means a JIT compiler would have to write to flash memory at run

time, which is expensive and would cause unacceptable delays. There are nodes that can

execute code from RAM, but the small amount of RAM present on sensor nodes means
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a JIT compiler would either have to allocate a large part of this scarce resource to the

compiled code cache, or frequently recompile the same methods if they get flushed when

the cache overflows [24].

Translating to native code offline, before it is sent to the node, has the advantage that

more resources are available for the compilation process. We do not have a Java compiler

that compiles to our sensor node’s native code to test the resulting performance, but we

would expect it would come close to compiled C code in many cases. However, doing

so, even if only for small, performance critical sections of code, sacrifices the two of the

key advantages of using a VM: The host now needs knowledge of the target platform, and

needs to prepare a different binary for each type of CPU used in the network, and for the

node it will be more difficult to provide a safe execution environment when it receives

binary code.

Therefore, this dissertation will focus on the middle option: translating the bytecode to

native code on the node itself, at load time. Wewill build on previous work by Joshua Ellul

[24] on AOT translation on sensor nodes. This approach reduces performance overhead

to a slowdown of 3x to 20x, significantly faster than the interpreting VMs, but not fast

enough for LEC compression to be worthwhile in our example. Unfortunately, it also

results in an increase in the size of the stored programmes of up to 5.5x, which limits the

size of the programmes that can be loaded on a node.

1.2.2 Safety

Low-cost low-power sensor node CPUs have a very simple architecture. They typically

do not have a memory management unit (MMU) or privileged execution modes to isolate

processes. Instead, the entire address range is accessible from any part of the code running

on the device.

At the same time, sensor node code can be quite complex. While programming in

a high-level language can reduce the risk of programming errors, the limited resources

on a sensor device often still force us to use more low-level approaches to fit as much

functionality and data on a device as possible. For example by storing data in simple
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byte arrays instead of using more expensive objects, or a few cases where we have had

to explicitly set a variable to null to allow an object to be garbage collected earlier than

it otherwise would have been. In such an environment, mistakes are easily made, and

with full access to the entire address space can have catastrophic consequences. A second

threat comes from malicious code. As IoT applications become more widespread, so do

the attacks against them, and the unprotected execution environment of sensor node CPUs

makes them an attractive target.

To guard against both buggy code and malicious attacks, the application should be

executed in a sandboxed manner and isolated from the VM itself. Specifically, we want

to guarantee that untrusted code cannot:

1. Write to memory outside the range assigned by the VM.

2. Perform actions it does not have permission for.

3. Retain control of the CPU indefinitely.

Note that these guarantees do not assure the correctness of the application itself: buggy

code may still corrupt its own state. More fine-grained checks can be useful to protect the

state of the application and can speed up the development process by detecting bugs earlier.

Safe TinyOS [19] adds run-time checks to detect illegal writes, and can do so efficiently

by analysing the source code before it is compiled. However, this depends on the host and

does not protect against malicious code being sent to the device.

Our approach depends only on the correctness of the VM, and guarantees it can always

regain control of the node and terminate any misbehaving application before it executes

an illegal write or performs an action it is not permitted to.

Amulet

The Amulet [40] smart watch platform is also a good motivating example for the need

for a safe execution environment. Since it aims to run multiple concurrent applications

possibly developed by different developers, it is important to isolate these applications

from each other and from the OS.

12
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Amulet does this by using a restricted dialect of C, Amulet C, which has several limi-

tations that make it easier to guarantee safety. For example, there is no access to arbitrary

memory locations through pointers, no goto statements, no dynamic memory allocation,

and no recursion. The Amulet compiler then adds runtime checks where static safety

checks are not sufficient.

The authors do not provide any data on the overhead caused by the restrictions in

Amulet C and the added run time checks, but it is significant enough to motivate them to

investigate the use of memory protection units found on some recent CPUs to reduce this

overhead [39]. However, these MPUs are only available on a limited number of CPUs.

To use a VM in a project such as Amulet, it must be able to provide the same level of

isolation, and do so at an acceptable cost.

1.3 Scope

Internet-of-Things devices come in a wide range with varying capabilities. The larger IoT

platforms are powerful enough to run standard operating systems, tools and languages,

and VMs are well established as a good way to programme devices powerful enough to

run advanced JIT compilers. This dissertation focuses specifically on small sensor nodes

for which no such standards exist. These platforms have the following characteristics:

• Separate data and programme memory: Memory is split into RAM for data, and

flash memory for code. While some device can execute code from both RAM and

flash [88], others cannot [65].

• Very limited memory: Since volatile memory consumes energy even when the CPU

is in sleepmode, it is typically restricted to 10KBof RAMor less. More non-volatile

flash memory is available to hold programmes, but at 16 to 256 KB this is still very

limited.

• Low complexity CPUs: While usually rich in IO to drive actuators and read from

sensors, the rest of the CPUs used in these devices is very simple in design to save

cost and power consumption. Instructions usually take a fixed number of cycles,
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Figure 1.1: High-level overview of the compilation process

since memory is on chip access times are constant and fast, and there are no com-

plicating factors like deep pipelines, caches, or branch predictors.

• Very limited energy budget: Typical usage scenarios demand a long battery lifetime,

since frequent replacement or recharging would be too impractical or costly. All

aspects of WSN software design are therefore focused towards minimizing energy

consumption.

The focus on sensor nodes raises the question of how platform independent CapeVM

is, since IoT applications may mix both classes, and the ability to use a single binary to

programmemultiple classes of devices is one of themain advantages of using a VM.While

the optimisations proposed in this dissertation are specifically developed to work on a

resource-constrained sensor device, the bytecode is very close to standard JVM bytecode,

so a more powerful device would have no problem running it just as efficiently as it runs

normal Java code.

AOT compiler Figure 1.1 shows the high level process from source code to native code

running on the node. The host PCwill compile source code to bytecode, which is uploaded

to the target node. Instead of interpreting this bytecode, our VM will translate it at load

time and store the resulting native code in flash, which is then executed.

We will see that in order to achieve good performance, an optimising source-to-

bytecode compiler is necessary to generate high quality bytecode. However, the focus

in this dissertation is on the AOT compiler running on the sensor node, and on what
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performance it can deliver, given good quality bytecode.

Although we will make some changes to the way the bytecode is produced, building

a full optimising source-to-bytecode compiler is outside the scope of this dissertation. To

determine what level of performance is possible, somemanual optimisations are applied to

the source code to produce better quality bytecode, most of which an optimising compiler

could be expected to do automatically.

Source language Note that in Figure 1.1 we use ’source code’ and ’bytecode’ instead

of Java or JVM bytecode, since the use of Java was only motivated by the availability of

existing work to build upon, most notably the Darjeeling VM [13], not because we believe

Java to be a particularly good choice. The techniques described in this dissertation are not

specific to Java, but can be applied to any language that compiles to a stack based bytecode.

We will see that in fact Java, in its current form, is not well suited for sensor node

applications, and we will end this dissertation with a number of suggestions on how to

remedy some of the issues we encountered.
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1.4 Research questions and contributions

There are clear advantages to using virtual machines, especially in heterogeneous and

dynamic IoT scenarios, but these come at a cost. On a sensor node, this cost is especially

significant since they are already very resource-constrained and cannot do many of the

optimisations used in VMs on larger devices.

The main research question of this dissertation is whether virtual machines are a suit-

able means to programme resource-constrained sensor nodes from three perspectives:

a. Performance: How close can an Ahead-of-Time compiling sensor node VM come

to native C performance, and what are the trade-offs?

b. Safety: Can a VM be an efficient way to provide a safe, sandboxed execution envi-

ronment on a sensor node?

c. Language: Is Java a suitable language for a sensor node VM, and how may it be

improved?

This dissertation makes the following contributions:

1. We identify the major sources of overhead when using the Ahead-of-Time compi-

lation technique described by Ellul and Martinez [25, 24].

2. Using the results of this analysis, we propose a set of eleven optimisations to address

each source of overhead. These include improvements to Ellul’s AOT approach,

modifications to the VM’s bytecode, and a lightweight alternative to standard Java

method invocation.

3. We show that in addition to these improvements to the AOT compiler, better opti-

misation in the Java to bytecode compiler is critical to achieving good performance.

4. We describe a number of checks that are sufficient for the VM to provide a safe,

sandboxed execution environment, and show most checks can be done at load time,

reducing the overhead of run-time checks.
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5. We evaluate our optimisations using a set of benchmarks with varying character-

istics, including the commonly used CoreMark benchmark [89] and a number of

real-world sensor node applications. We show these optimisations:

• Reduce the size of the generated code by 40%, allowing larger programmes to

be loaded, and quickly compensating for the increase in VM size due to these

optimisations,

• Allow constant data to be placed in flash memory, enabling applications with

constant tables that otherwise could not be implemented,

• Eliminate 91% of the performance overhead caused by the VM’s stack-based

architecture, and 82% of performance overhead overall.

6. Using the same benchmarks we evaluate the cost of our safety checks, and show

this cost to be comparable to, or lower than the two existing native code approaches

to provide a safe execution environment on a sensor node, while providing platform

independence at the same time.

7. Finally, we identify a number of aspects of the Java language and virtual machine

that ultimately make it a bad match for sensor nodes, and propose ways to address

these issues in future sensor node VMs.

1.5 Dissertation outline

Chapter 2 introduces necessary background knowledge on wireless sensor networks, Java

and the Java virtual machine, and AOT compilation.

Chapter 3 discusses the state of the art in improving performance for sensor node VMs

and providing a safe execution environment.

Chapter 4 describes the global design of CapeVM.

Chapter 5 first analyses the sources of overhead for the current state of the art in sensor

node AOT compilers, and then presents a set of optimisations to address each of these
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sources. Where there were multiple options to implement an optimisation, we describe

alternatives and motivate our choice.

Chapter 6 presents a set of checks that allow CapeVM to provide the sandbox safety

guarantees described in Section 1.2.2, and shows how the more structured design of the

VM’s bytecode, compared to native code, allows for most of these checks to be done at

load time.

Chapter 7 evaluates the effect of the optimisations presented in Section 5 and the cost

of the safety checks presented in Section 6.

Chapter 8 describes a number of issues we encountered while doing this work, which

show standard Java is not the best choice for a sensor node VM, and suggests ways to

improve these in future sensor node VMs.

Chapter 9 concludes this work.
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1.7 Naming

In literature various names are used for our target devices. The wordmotewas common in

early research on wireless sensor networks, as was sensor node, or simply device, although

the latter is also used for larger, more powerful devices. In this dissertation we will use

the terms sensor node or just node interchangeably to refer solely to the type of severely

resource-constrained devices used in both WSN and IoT applications.

When reprogramming these nodes, a new programme must be sent to them by a more

powerful device. This role is referred to in literature by various names, including server,

gateway,master, controller, or host, depending on the exact design of the network and the

way it is reconfigured. For the work in this dissertation these differences are not relevant,

and we will use host to refer to the source of the code that is uploaded to the sensor node,

which is assumed to be a more powerful device with desktop-class processing capabilities.

Since our VM is an Ahead-of-Time compiler, the Java source code is transformed into

native code in two steps. We will use compile time to refer to the compilation of Java code

to bytecode on the host, and translation time to refer to the translation of this bytecode

into native code on the device.

Finally, we follow Dalvik in naming our virtual machine after a coastal town. In this

case the beautiful city of Cape Town, where parts of CapeVM were developed over the

course of two trips.
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Figure 1.2: Cape Town workplace
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Chapter 2

Background

This chapter will introduce some necessary background knowledge on the target hardware

platform, Java and the Java Virtual Machine, and JIT and AOT compilation.

2.1 Wireless Sensor Networks and the Internet of Things

Both Wireless Sensor Networks and Internet of Things are relatively new research areas.

Both deal with networks of connected devices that have to cooperate to achieve some goal.

There is a large overlap between the two, but there are also key differences.

Wireless sensor networks is commonly understood to refer to networks of very

resource-constrained devices. They are usually homogeneous, dedicated to a specific

application, and in many cases battery powered. On the other hand, Internet of Things

applications may contain the same class of resource-constrained devices but mix in more

powerful ones as well. They may have a combination of battery- and mains powered

devices, and the devices used may be a combination of devices dedicated to a particular

task and smart devices that happen to be in the user’s environment. One of the main

challenges of IoT research is to develop ways to use the capabilities that are present in

the smart devices around us to build new and useful applications.

It is this combination of heterogeneous devices, and the need to reprogramme them

to run new tasks that were not part of the original programming, that makes the platform

independence and safe execution environment offered by a VM an attractive option.
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While there is a wide range of IoT devices, they can be roughly divided in two cate-

gories. We will describe the capabilities and limitations of each of them below.

2.1.1 High-end IoT devices

Another decade of miniaturisation since the start of WSN research has allowed us to scale

down devices capable of running a normal OS stack, to the size of a few centimetres.

Some of the most popular examples include the Raspberry Pi range, with the Raspberry

Pi Zero measuring only 65x30 mm, and the Intel Edison at 35.5x25 mm.

These devices have capabilities similar to that of desktop PCs only a few generations

ago. They can run a normal operating system like Linux and all the standard protocols and

tools that come with it. Compared to the traditional resource-constrained sensor nodes,

they can perform much more complex tasks, but the smallest devices in this class are still

significantly larger than sensor nodes, more expensive, and most importantly, consume

significantly more power.

Tung et al. [92] report measurements on the Intel Edison, one of the most low-power

devices in its class, showing an active power consumption of up to 130 mA and sleep

power consumption of 1.8 mA, at 3.7 V. Additionally, the wake-up response time was

measured around 380 ms, while the resource-constrained CPUs described below can wake

up in only a few cycles or milliseconds, depending on their configuration.

Since devices in this class are capable of running normal, well established VMs, we

do not consider them in this dissertation, but instead focus on the second class of devices:

sensor nodes.

2.1.2 Resource-constrained sensor nodes

The second class of devices, wireless sensor nodes, are distinctly less powerful. They are

designed to be deployed at low cost and potentially in large numbers, and to be capable of

running for weeks or months on a single battery charge. As a typical example, the MICAz

node [21] uses only 30mA when active and 16μA in sleep mode. More recently, the

Arduino family of devices, based on similar hardware, has led to a very active community
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Table 2.1: Main characteristics of the ATmega128 and MSP430F1611 CPUs

ATmega128 [65, 64] MSP430F1611 [88, 87]

Number of registers 32 12
Register size 8-bit 16-bit
RAM 4 KB 10 KB
Flash 128 KB 48 KB
Frequency up to 16 MHz up to 8 MHz
Simple instruction cost 1 cycle 1 cycle
Memory access cost 2 cycles 2 to 6 cycles
Branch cost (taken/non-taken) 2 / 1 cycles 2 cycles
Active power consumptiona 7.5 mA 4.3 mA
Deep sleep power consumption 0.3 μA 0.2 μA
Can execute code from Flash Flash and RAM
a at 8MHz and 2.7V

of both research and hobby projects.

While an enormous number of different hardware platforms have been developed, the

components they use come from a limited set. Two of the most popular families of CPUs

used in these platforms are the Atmel AVR and Texas Instruments MSP430. Both families

of CPUs come in a large number of variations with different amounts of memory, IO ports,

and physical packages, but the underlying architecture is similar for all. Table 2.1 lists the

main characteristics for two popular members for both families, the ATmega128 and the

MSP430F1611. Below we will describe the most important properties for this class of

devices that are relevant to the work in this dissertation.

Memory Memory is split into persistent flash memory for code, and volatile RAM for

data. The MSP430 CPUs have a von Neumann architecture and can execute code from

both, while the ATmega’s Harvard architecture can only execute code from flash memory.

Flash memory is typically in the range of 16 KB to 256 KB, while RAM, which consumes

energy even in sleep mode, is restricted to up to 10 KB. There are no caches, and since

both memories are on chip, access times are constant and take only a few cycles.

Simple architecture These CPUs achieve their extremely low cost and power consump-

tion by restricting themselves to a very simple design. Each instruction takes a fixed num-

ber of cycles, varying only for taken or non-taken branches. Since most instructions only

take one or two cycles, there is no pipelining or need for branch prediction. There are also
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no protection rings, no memory management unit, and no floating point support.

Operating system The severe resource restrictions on these devices mean that a normal

layered architecture with an OS, networking stack, and applications running on top of that

is not possible. The closest thing to a widely accepted OS for sensor nodes is TinyOS

[54] which provides several basic services for IO, communication and task management.

Contrary to a normal OS, TinyOS does not ’load’ an application, but is statically linked

with the application’s code to form a single binary which is then programmed into the

node’s flash memory. Thus, sensor node applications are often a single binary, running

directly on the CPU.

Several systems exist that allow over the air reprogramming of sensor nodes [75]. In

some cases these allow the entire application code to be replaced, including the reprogram-

ming protocol itself [77]. In other cases the reprogramming systemmay be permanent and

include other basic services, more closely resembling an operating system. But even in

these cases the restricted amount of flash memory means that such a system cannot afford

to spend large amounts of memory on library functions that may never be used by the

application, so the services provided by such an ’operating system’ are quite restricted,

leaving much of the low level work to the application.

A number of sensor node virtual machines have been developed that allow the appli-

cation to be updated remotely. These obviously provide a higher level of abstraction from

the underlying hardware. However, it is important to note here that these virtual machines

are not an extra layer, between a lightweight OS and the application, but often replace the

OS entirely, so the VM runs directly on the CPU. This kind of cross layer optimisation,

or complete merging of layers is typical of many sensor networks.

2.2 The Java virtual machine

Next, wewill briefly introduce the Java virtual machine, and describe some details relevant

to this work.

The first public release of Java was in 1995. It consists of two separate but closely
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related parts: the Java programming language, and the Java virtual machine (JVM): an

abstract machine specification, running programmes written in JVM bytecode. Since the

release of Java, several other languages have been developed that compile to JVM byte-

code and can run on the same virtual machine.

Java was quickly adopted by web browsers to run interactive applets. Two key prop-

erties contributed to this success:

• Implementations of the JVM were built for many hardware platforms, so the same

applet could be run in any browser, regardless of the hardware it was running on.

• It allowed users to safely run applets from untrusted sources since the virtual ma-

chine runs them in a ’sandboxed’ environment with access to only those system

resources explicitly allowed by the user.

For stand alone desktop applications Java also became popular because it is an easy

to learn, object oriented, garbage-collected language that allows for a higher level of pro-

gramming than C or C++, all of which boost developer productivity.

2.2.1 JVM bytecode

Compared to other widespread desktop virtual machines such as Lua, Python and .Net,

Java’s bytecode is very simple. The JVM is a stack-based machine, as opposed to a

register-based machine: almost all operations take their operands from an operand stack,

and push their results back onto it. For example, Listing 2.1 shows how the statement

a=b+c; may be translated into JVM bytecode. First, b and c are loaded onto the stack,

the IADD instruction then pops these operands from the operand stack and pushes the sum

back onto it, and finally ISTORE stores the result into a.

1 //JVM instruction // JVM stack
2
3 ILOAD_1 b
4 ILOAD_2 b , c
5 IADD b+c
6 ISTORE_0

Listing 2.1: JVM bytecode for a=b+c;
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By far the largest number of instructions, 99 out of 206, are for loading or storing data

to and from the operand stack. These come in different flavours for different data types:

ILOAD loads an int, while BLOAD loads a byte onto the stack. 53 instructions are simple

arithmetic or bitwise operations, such as IADD in the example, also in different variations

for different data types. There are 39 instructions for branches and method invocations,

and 15 for various other tasks such as creating new objects and throwing exceptions.

Each JVM bytecode is encoded as a single byte. Some are followed by one or more

operands, for example the method to call, or the type of object to create, but most are not.

This very simple instruction set makes it a good match for a resource-constrained sensor

node.

2.2.2 Memory

The JVM stores information in three different places:

• The stack frame: each method’s stack frame contains a section for its operand stack

and its local variables.

• Global variables: static variables that are allocated globally when a class is loaded

(we ignore ThreadLocal variables since CapeVM does not support threads).

• The heap: objects and arrays are stored on the heap, and automatically garbage-

collected when no longer used.

The JVM is a 32-bit machine. All the places where data may be stored, objects on

the heap, operand stacks, local variables, and a class’ static variables, are blocks of 32-bit

wide slots. 64-bit long and double types occupy two slots, while the shorter byte,

and short types are sign-extended and stored as a 32-bit value.

Figure 2.1 shows a graphical representation of this. An important difference with

languages such as C, Pascal or C# is that in JVM the only value types are the various

integer types, and references. There are no compound types like a C struct or Pascal

record. Object live in heap, and only there, and the operand stack, and local, static or

instance variables only contain references to objects.
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Figure 2.1: High-level overview of JVM memory design, and some example data struc-
tures

2.2.3 Sandbox

A sandbox is a security mechanism for isolating a process from the environment in which

it runs. They can be used to run code from untrusted sources, without risk of harm to the

host machine or other applications running on it.

In the JVM’s case, programmes are written to run on the abstract JVMmachine model.

Besides providing platform independence, this also means JVM programmes have no

knowledge of the hardware platform they are running on. All communication with the

outside world happens through the Java standard library classes implemented by the JVM

in native code, which gives the virtual machine firm control over the resources an appli-

cation may access.

In addition, the JVM will verify the bytecode at load time to make sure it is well

formed and adheres to the JVM standard [56]. It performs many checks, for example that

branches are within the bounds of themethod and branch to the beginning of an instruction,

that execution cannot fall off the end of a method, that no instruction can access a local

variable at an index greater than or equal to the actual number of local variables, that the

exact operand stack depth and the type of values on the stack is known at any point and
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does not over- or underflow, etc.

2.2.4 WAT, AOT, and JIT compilation

While the popularity of Java rose quickly after its introduction, it also very quickly got a

reputation for being slow. As Tyma put it in 1998 The plain truth is: Java is slow. Java

isn’t just slow, it’s really slow, surprisingly slow. It is ’you get to watch the buttons being

drawn on your toolbar’ slow. [93].

The main reason is all early implementations of the JVM were interpreters. An inter-

preter executes a programme by retrieving instructions from memory one at a time, and

then executing them. An outline of what a typical interpreter’s main loop looks like is

shown in Listing 2.2. For each instruction, the VM needs to (i) retrieve the bytecode at

the current programme counter, (ii) increment the programme counter, (iii) jump to the

correct case label, (iv) execute the instruction, and (v) loop for the next iteration.

1 while (true) {
2 opcode = bytecode[pc];
3 pc++;
4 switch (opcode) {
5 case ILOAD_0: ...
6 case ILOAD_1: ...
7 ...
8 }

Listing 2.2: Outline of a typical interpreter loop

Since most instructions are very simple, for example simply adding two operands, the

relative overhead from these steps is very high. Interpreters spend most of their time on

the interpreter loop, and only a fraction of the time on actually executing instructions.

Thus, a common approach to improve JVM performance is to translate the bytecode to

the native machine code of the target platform before executing it. Three main approaches

exists, which differ in the point at which the bytecode is translated to native code.

Compile time Borrowing the term from Proebsting et al., Way-Ahead-of-Time (WAT)

compilers translate to native code during or directly after compiling the Java sources [74].

Some systems first translate to C [23], which is then compiled using normal optimising C

compilers.
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Regardless of which approach is chosen, the result is a native binary for the target

platform, rather than JVM bytecode. The advantage of this approach is that ample time

and resources are available at compilation time, so highly optimised code can be produced.

However, the downside is that the resulting code is no longer platform independent or

guaranteed to be properly sandboxed.

Load time A second group of compilers translate bytecode to native code at load time.

In these cases the entire application is translated to native code, before it is run. Therefore,

they are usually called Ahead-of-Time (AOT) compilers. An example of this approach

are early versions of Android’s ART runtime, which translate an app completely, at the

moment it is downloaded onto a device (although it since has mixed in JIT techniques as

well, discussed below).

This combines the advantage of WAT, being able to spend considerable resources on

optimisation, with platform independence and a guaranteed sandbox, since the translation

is now fully under control of the device running the application, rather than the device that

compiled it. A downside is that the initial translation adds to the time it takes to load or

install an application.

Run time Finally, the last group, Just-In-Time (JIT) compilers, incrementally translate

the bytecode to native code while the application is running. While an obvious downside

is that this may initially slow down the application while it is translating bytecode at run

time, a JIT compiler can take advantage of the observed run-time characteristics to make

better optimisation decisions, or do more aggressive optimisations that may have to be

rolled back if some preconditions no longer hold, for example inlining a virtual method

as long as only a single implementation is loaded [45].
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Chapter 3

State of the art

This chapter presents the state of the art in Internet of Things and sensor networks relevant

to the work in this dissertation. It starts with existing work on programmingWSN and IoT

networks, and the virtual machines developed for them. Next, it discusses proposed ways

to improve sensor node VM performance, and ways to guarantee safety on sensor devices.

3.1 Programming WSN and IoT devices

The challenge of programming IoT devices can be split into two questions:

• How can we build applications at a higher level, coordinating the behaviour of many

devices without having to specify the behaviour from each device’s individual per-

spective?

• How can we best reprogramme individual nodes safely and efficiently to support

these applications?

This dissertation is concerned with the second question, and argues that a virtual ma-

chine can be an attractive option in many scenarios. But we will first discuss the higher

level question of how to programme WSN/IoT applications and use one of these systems

as a motivating example.

Initially, many WSN applications were built directly on top of the hardware or on

some minimal operating system such as TinyOS [54]. This results in applications being
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programmed from the individual node’s perspective, rather than allowing the developer

to express globally what he wants from the sensor network. This makes it hard to reason

about the global behaviour, especially as the number of devices and tasks increases.

Therefore, systems have been developed that make it easier for the developer to con-

trol the potentially large number of heterogeneous nodes. Some of these are centralised,

where the initiative of the application is with a central host, and devices are loaded with a

runtime that allows the host to control them. Other systems are more distributed, where the

application is split into components that are deployed onto nodes and from there operate

autonomously, only to receive further guidance from the host where necessary.

In the first category fall systems like sMap [22], which provides an attractive and flex-

ible RESTful interface to a sensor network through which we can discover what sensors

are available at a certain node and get or set several configuration properties. Although

the authors succeeded in dramatically reducing the footprint, it is still relatively resource

intensive. It is also limited in the number of properties it exposes, but the idea could eas-

ily be expanded. Similarly TinyDB [61] also makes an entire network of sensor nodes

available through a central interface, in this case a SQL-like query language.

ADAE [15], developed at the IT University of Copenhagen, configures the network

according to a policy describing the desired data quality, including fall-back options which

the system may use when the ideal situation cannot be achieved. ADAE then dynamically

reconfigures the network in response to changing conditions such as node failures, unex-

pected power drops, or interesting events detected by the network. However, the language

used to describe the policy and constraints is hard to use and it is likely a skilled engineer is

needed to translate the user’s requirements into the constraint optimisation problemADAE

uses as input.

While in the previous systems applications run on a centralised host and simply control

the nodes in the network, in Agilla [28] programmes are more distributed and consist of

software agents that can move around in the network autonomously. While this allows

some behaviours to be expressed in a natural way, the paradigm is very different from

conventional languages, and the assembly-like instruction set based on the Maté VM [52]
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discussed below makes it hard to use.

Cornell’sMagnetOS [57], proposes a novel programmingmodel which allows the user

to write the application as a single Java application, not explicitly related to individual

nodes. The system then automatically partitions the applications into pieces, by default

along object boundaries, and places these pieces on nodes in the network in such a way as

to minimise energy consumption. However, it requires nodes significantly more powerful

than what we expect to find in a typical WSN.

LooCI [43] is a component infrastructure middleware for WSNs with standard support

for run-time reconfiguration. The LooCI component model supports dynamic binding and

interoperability between different hardware platforms, in their case a typical sensor node

based on the ATmega1284P CPU, and the slightly more powerful Sun SPOT, and differ-

ent languages, with implementations in C and Java. LooCI defines a list of requirements

for WSN middleware, which includes supporting run-time reconfiguration to respond to

changing environmental conditions, supporting heterogeneous sets of hardware, good per-

formance, and minimal memory consumption. LooCI currently uses C to programme the

smallest devices and Java for the more powerful Sun SPOT. A fast sensor node virtual

machine would be a useful addition to allow more flexible and platform independent re-

programming of the smallest devices as well.

3.2 WuKong

A final example that we will look at in more detail at is WuKong [78, 55].

Applications in WuKong are written in the form of a flow based programme, an exam-

ple of which is shown in Figure 3.1. Components are called WuObjects, and are instances

of WuClasses. Each WuClass defines a number of input and output properties. For exam-

ple, the Temperature Sensor WuClass has a single ’output’ property, while the Or_Gate

class has two input properties, and one output.

When deploying an application, the host, calledmaster in WuKong, will first discover

the available resources in the network and then try to find a node to deploy each component

to.
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Figure 3.1: Example WuKong flow based programme, source: [55]

A node creates WuObjects to represent its hardware components at start-up, so the

master can discover the sensors and actuators available in the network. When deploying

the application, the master may use a hardware WuObject by connecting its properties.

For software components, like the Threshold or And_Gate in the example, the master

may create new instances on a node.

An WuClass is defined by:

• A list of properties.

• A setup() function, called once when an object is created.

• An update() function, called (i) periodically, for example to sample a sensor, or

(ii) when one of the input properties changes value, to compute a new output value

or drive an actuator.

The setup() and update() functions can be written in either C or Java. A node

may have native C implementations built in for a number of commonly used classes from

the WuKong standard library, which it will advertise during the discovery phase. If the

master cannot find a native implementation of a required class, it may use a Java version

instead, which is slower, but more flexible since it can be deployed as part of the applica-

tion. To support this, the WuKong middleware contains a version of the Darjeeling JVM

[13].

The WuKong middleware takes care of propagating property changes along the links

drawn in the FBP. For example, if in Figure 3.1 the output of the Or_Gate changes, the new
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output value is automatically propagated to the Heater’s on/off property, and the Heater’s

update() function is called. An application in WuKong is defined by a number of com-

pact tables, describing the components and links between them, and optionally a number

of Java WuClasses.

In WuKong’s vision, the master dynamically manages the network. A node may be

used in multiple applications, and its tasks may change while the application is running if

the master decides to reconfigure the network, for example in response to failure [84] or

because network conditions change.

3.3 Sensor node virtual machines

Many VMs have been proposed that are small enough to fit on a resource-constrained

sensor node. They can be divided into two categories: generic VMs and application-

specific VMs, or ASVMs [53] that provide specialised instructions for a specific problem

domain.

As an example, designed specifically for wireless sensor networks, Maté [52] was one

of the first to prove sensor nodes can run a virtual machine. It provides single instructions

for tasks that are common on a sensor node, so programmes can be very short.

SwissQM [67] is a more traditional and more powerful VM, based on a subset of the

Java VM, but extended with sensor network specific instructions to access sensors and do

data aggregation. In both systems however, the application has to be programmed in very

low level, assembly-like language, limiting their target audience.

VM* [47] sits halfway between the generic and ASVM approach. It is a Java VM that

can be extended with new features according to application requirements. Unfortunately,

it is closed source.

Several generic VMs for high level languages like Python, LISP, and Java have also

been developed, which fit on severely resource-constrained nodes. Almost all rewrite the

original bytecode to their own format and employ various techniques to reduce code size.

Some functionality is sacrificed in order to fit on the sensor nodes, for instance reflection

or floating point data types are typically not supported.
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The Python-on-a-chip project [2] developed a Python bytecode interpreter small

enough to fit on sensor nodes. Requiring 55 KB of flash memory and a recommended 8

KB of RAM, it fits on many, but not all of the current sensor boards. MicroPython [31]

requires slightly more hardware at 256 KB flash memory and 16 KB RAM, but has its

own hardware platform and supports Python 3.

LISP is one of the first high-level languages, developed at a time when room-sized

computers had only slightly more capabilities than current sensor nodes. SensorScheme

[27] implements a fully functioning LISP interpreter in under 41 KB, and is one of the few

sensor node VMs to provide a safe execution environment.

CILIX [46] is a small VM for the .Net Common Intermediate Language implemented

on the MSP430. MoteRunner [14] runs on similar devices. Instead of implementing an

existing VM it targets all strictly typed programming languages and supports both Java

and C#.

The smallest official Java standard is the Connected Device Limited Configuration

[69], but since it targets devices with at least a 16 or 32-bit CPU and 160-512 KB of flash

memory available, it is still too large for most sensor nodes. As a result, a number of

Java VMs have been developed for sensor nodes, all offering some subset of the standard

Java functionality, occupying different points in the trade-off between the features they

provide, and the resources they require.

Darjeeling [13] from Delft University of Technology runs a modified Java bytecode

with only minor restrictions, and supports multiple platforms. Similarly, TakaTuka [8]

also runs on both AVR and MSP based sensor nodes, and includes its own debugger. A

unique property is TakaTuka’s ability to reduce garbage collection cost by static code

analysis. Whenever the compiler can determine an object can be safely discarded at a

certain point, it annotates the bytecode to tell the VM to do so, thus freeing up memory

earlier and reducing the number of times the garbage collector has to run.

Sun’s Squawk VM [81] is significantly larger than Darjeeling and TakaTuka, requiring

at least 160 KB of programme memory, but offers full CLDC compliance. The Java Card

VM [70] runs onmore typical sensor node hardware and achieves this by switching to a 16-
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Figure 3.2: Darjeeling infusion process, source: [13]

bit architecture, dropping support for various features, and modifying the instruction set.

At the smallest end of the spectrum is NanoVM [38], which takes a minimalist approach,

trading support for a large number of java opcodes for simplicity and code size. The whole

VM fits in the 8K flash of an ATmega8 CPU, leaving 512bytes of EEPROM and 75% of

the CPU’s 1K RAM to the application.

3.4 Darjeeling

Since our VM is based on Darjeeling, we will examine it in more detail in this section.

Split VM architecture Like most other sensor node JVMs, it uses a split VM architec-

ture [83]. The virtual machine running on the node does not use standard JVM class files,

but these class files are first transformed by an offline tool into a format more suitable for

a sensor node. In Darjeeling’s case this tool is called the infuser, which takes several Java

classes and statically links them into a single infusion.

The infuser changes the bytecode in several ways, replacing named references by a

numbering scheme, so that the constant strings with class and method names can be re-

moved from the constant pool, and statically linking the Java classes into a flattened list of

entities. Infusions are typically libraries, such as a subset of the java.lang base library,

networking protocols, or the application. An infusion can reference code in another infu-

sion using header files, created during the infusion process, that allow the infuser to find

the numbered identifiers of classes and methods in referenced infusions. This is shown in

Figure 3.2.
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16-bit architecture Besides statically linking classes, the infuser also makes several

changes to the bytecode format. References on sensor nodes are usually 16-bit, and 8-

bit and 16-bit integer variables are commonly used in sensor node code to save memory.

Storing all data in 32-bit slots as the JVM does would lead to significant overhead, as

shown in Figure 3.3. Therefore, Darjeeling’s stack and variable slots are 16-bit wide,

using two slots for 32-bit ints, similar to how the normal JVM uses two 32-bit slots for

64-bit longs. Darjeeling’s bytecode also introduces 16-bit versions of many opcodes, for

example SADD adds two 16-bit shorts, while IADD adds two 32-bit ints. The infuser

analyses the type of expressions, and replaces the 32-bit instructions found in normal JVM

bytecode with the 16-bit variants where possible.

Double-ended stack A second important modification is that Darjeeling splits the

operand stack into separate reference and integer stacks. Each stack frame still allocates

the same amount of space for its operand stack, but Darjeeling places references on one

side and integers on the other, as shown in Figure 3.4. At the expense of having to keep

track of two operand stack pointers, this reduces the complexity of the garbage collector

significantly. When the garbage collector runs, it needs to find the root set of all live

objects, which includes objects with references on the stack but not stored elsewhere.

Since the type of the values on the operand stack changes continuously, it is hard to

determine which values are references and which are integers in a single stack. Using

Darjeeling’s split stack design, the garbage collector can simply place all values on the

reference stack in the root set. For the same reason, Darjeeling also groups the slots

allocated for local, static and instance variables into an integer and reference group.
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Figure 3.4: Darjeeling split operand stack, source: [13]

The necessary modifications to the bytecode are taken care of by the infuser. Generic

stack instructions such as pop are replaced by specialised versions for the integer and

reference stack: ipop and apop.

Limitations Darjeeling implements a significant subset of Java, but like all sensor node

JVMs it needs to make some sacrifices to scale down to sensor node size. Specifically,

it does not support the 64-bit long data type or floating point variables. It does not

support reflection, since the infusion process drops the necessary type information

from its class files to significantly reduce their size. Darjeeling also does not support

the synchronized modifier on static methods, but it can be easily simulated using

synchronized blocks, which are supported.

3.5 Performance

While many different VMs have been published, only a few papers describing sensor node

VMs contain detailed performance measurements, shown earlier in Table 1.1. Darjeel-

ing [13] reports between 30x and 113x slowdown for 3 benchmarks in 16-bit and 32-bit

variations, compared to the native C equivalent. Ellul [24] reports measurements on the

TakaTuka VM [8] where the VM is 230x slower than native code, and consumes 150x as

much energy. TinyVM [41] is between 14x and 72x slower than C, for a set of 9 bench-

marks. DVM [9] has different versions of the same benchmark, where the fully interpreted

version is 108x slower than the fully native version, while Kumar reports a slowdown of

555x for the same VM [49]. Finally, SensorScheme [27] is up to 105x slower. Since

performance depends on many factors, it is hard to compare these numbers directly. But

the general picture is clear: current interpreters are one to two orders of magnitude slower

than native code.
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Translating bytecode to native code to improve performance has been a common prac-

tice for many years. A wide body of work exists exploring various approaches, either

offline, ahead-of-time or just-in-time. One common offline method is to first translate

the Java code to C as an intermediate language, and take advantage of the high quality

C compilers available [23, 66]. Courbot et al. describe a different approach, where code

size is reduced by partly running the application before it is loaded onto the node, allow-

ing them to eliminate code that is only needed during initialisation [20]. Although the

initialised objects are translated to C structures that are compiled and linked into a single

image, the bytecode is still interpreted. In general we can produce higher quality code

when compiling offline, but doing so sacrifices the key advantages of using a VM.

Hsieh et al. describe an early ahead-of-time compiling desktop Java VM [42], fo-

cussing on translating the JVM’s stack-based architecture to a register based one. In the

Japaleño VM, Alpern et al. take an approach that holds somewhere between AOT and

JIT compilation [1]. The VM compiles all code to native code before execution, but can

choose from two different compilers to do so. A fast baseline compiler simply mimics the

Java stack, but either before or during run time, a slower optimising compiler may be used

to speed up critical methods.

Since JIT compilers work at run time, much effort has gone into making the compila-

tion process as light weight as possible. Krall [48] reduced the compilation time in early

JIT compilers using a more lightweight register allocation algorithm. While the goals are

similar to ours, this approach requires three passes over the code and significantly more

complex data structures than a sensor node could handle. More recently these efforts have

included JIT compilers targeted specifically at embedded devices. Swift [105] is a light-

weight JVM that improves performance by translating a register-based bytecode to native

code. But while the Android devices targeted by Swift may be considered embedded de-

vices, they are still quite powerful and the transformations Swift does are too complex for

the sensor node class of devices. HotPathVM [29] has lower requirements, but at 150 KB

for both code and data, this is still an order of magnitude above our target devices.

Given our extreme size constraints - ideally we only want to use in the order of 100
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Table 3.1: Example of Ellul’s AOT translation of c=a+b;, source: [24]

Bytecode Stack before Stack after Native pseudo assembly code

ILOAD_0 ... ... LOAD r1, a
... ..., value1 PUSH r1

ILOAD_1 ..., value1 ..., value1 LOAD r1, b
..., value1 ..., value1, value2 PUSH r1

IADD ..., value1, value2 ..., value1 POP r1
..., value1 ... POP r2
... ... ADD r1, r2
... ..., result PUSH r1

ISTORE_2 ..., result ... POP r1
... ... STORE c, r1

bytes of RAM to allow our approach to be useful on a broad range of devices, and leave

ample space for concurrent tasks running on the device - almost all AOT and JIT tech-

niques found in literature require toomuch resources. Indeed, some authors suggest sensor

nodes are too restricted to make AOT or JIT compilation feasible [7, 103].

3.6 AOT compilation for sensor nodes

On the desktop, VM performance has been studied extensively, but for sensor node VMs

this aspect has been mostly ignored. To the best of our knowledge AOT compilation on a

sensor node has only been done by Ellul and Martinez [25, 24], and this work builds on

theirs.

Their approach is both simple and effective. To translate the JVM bytecode, each

bytecode instruction is replaced by a fixed sequence of native instructions that implements

it. This can be done in a single pass, as the bytecode is being received by the node, writing

blocks of native code to flash memory instead of JVM bytecode. Like Darjeeling, they use

a split stack architecture, with the CPU’s native stack doubling as integer operand stack,

while reference operands are still stored in the stack frame.

Table 3.1 shows how a simple statement is translated to native code. The blocks each

JVM bytecode instruction translates to are fixed. This simple translation to native code

removes the interpreter loop, which is by far the biggest source of overhead in interpreting

VMs, but it is clear from the native pseudo code in Table 3.1 that this approach results in
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Table 3.2: Ellul’s peephole optimisations

Before After
Instructions Cycles Length Instructions Cycles Length

PUSH R13 6 2 0 0
POP R13

PUSH R13 6 2 MOV R13, R14 1 1
POP R14

MOV #0, R15 2 2 CLR R15 2 1

MOV R6,R5 5 3 MOV R6,0x0000(R4) 4 2
MOV R5,0x0000(R4)

MSP430 assembly, source: [24]

many unnecessary push and pop instructions. Since the JVM is a stack-based VM, each

instruction first obtains its operands by popping them from the stack and pushes any result

back onto it. As a result, over half the instructions are push or pop instructions.

3.6.1 Peephole optimisation

To reduce this overhead, Ellul proposes a simple peephole optimiser [24] which does 4

optimisation. For each an example is shown in Table 3.2. The first two are the most

important for improving performance: if a push is immediately followed by a pop to the

same register, both are removed since they have no net effect. If the source and destination

registers differ, the two instructions are replaced by a move. Note that the assembly code

shown here is for the MSP430 CPU used in Ellul’s work.

3.6.2 Resulting performance

Ellul’s approach improves performance considerably compared to interpreters, but using

the standard CoreMark benchmark [89], it generates code that is still up to 9.1x slower

than optimised native C.

It is important to further improve this for a number of reasons. First, even if an applica-

tion is asleep for a large percentage of the time, it may at times want to measure something

at high resolution, similar to how ADAE [15] responds to what it calls ’interesting events’

by taking extra measurements as long as its energy budget permits. Any slowdown in the
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VM will affect the maximum rate at which such samples can be taken. Similarly, Table

1.4 shows that for the Amulet smart watch platform, a 9.1x slowdown in the application

code means the CPU is not fast enough to finish the some of the application’s tasks in

time. At best this would result in slower response time or sampling rates, at worst in could

result in incorrect behaviour.

Second, reduced performance means the CPU has to stay active for a longer time,

resulting in increased CPU power consumption and reduced battery life. Looking at the

calculations for lossless compression in Section 1.2.1, the ratio of the energy saved on

radio transmission vs energy spent on compressionwas about 2.6:1. This result depends on

many factors, for instance less than ideal network conditions may cause retransmissions,

increasing the cost per bit sent and making compression more worthwhile. However in

this particular case the slowdown incurred even after Ellul’s optimisation would make

compression a net loss. Any slowdown will push some situations past the break-even

point, or reduces the benefits of compression in others.

There are scenarios that may not be able to tolerate the one to two orders of magnitude

slowdown seen in interpreters, but where the slowdown of Ellul’s AOT approach may be

acceptable. However, there is a third reason to improve on it: it results in code which is

on average 3.3 times larger than the native equivalent. This reduces the amount of code

we can load onto a node, and given that flash memory is already restricted, this is a major

sacrifice to make when adopting AOT compilation on sensor nodes.

3.7 Safety

With some exceptions [27], most current sensor node VMs do not discuss safety, but in-

stead focus on the functionality provided and how this can be implemented on a tiny sensor

node. This is unfortunate, because the ability to provide a safety execution environment

is both desirable, and easier to implement using a VM than it is using native code.

Several non-VM systems exists to provide safety for sensor nodes. They fall into two

distinct categories, as shown in Figure 3.5. If we trust the host, it can verify the code and

add run-time safety checks where needed, before the code is sent to the node. However,
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Figure 3.5: Three approaches to provide a safe execution environment

to allow the node to receive code from untrusted sources, for example to support mobile

agents as in Agilla [28], it needs to guarantee safety independent of a host to guard against

bugs and malicious attacks. The latter is obviously the stronger guarantee, but it also

comes at a higher price.

3.7.1 Source code approaches

In the first category are systems that guarantee safety at the source code level. Virgil [90]

is a language that is inherently safe and specifically designed for sensor nodes. The appli-

cation is explicitly split into an initialisation and run-time phase, where objects are only

allocated during the initialisation phase. The initialisation phase happens during compila-

tion (to C code), which means all object and their locations are know at this point, allowing

Virgil to ensure safety and optimise the code at compile time.

Safe TinyOS [19] works on annotated nesC TinyOS code. It uses the Deputy [18]

source-to-source compiler to analyse the C source code and insert the necessary run-time

checks were necessary. Because this happens on the host, before sending the code to the

node, it can use the host’s resources to do more complex analysis of the source code and

eliminate checks where the it can determine a memory access to be safe at compile time,
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resulting in a much lower overhead

Similarly, applications for the Amulet [40] smart watch platform are written in a re-

stricted version of C that removes many of C’s riskier features. Run-time checks are then

added for operations where static analysis cannot guarantee them to be safe. On-going

research in the Amulet project is on using hardware memory protection units found in

some CPUs to reduce the cost of these restrictions and safety checks [39], but at the time

of writing no results had been published.

All three approaches eventually result in standard C, which is then compiled and sent

to the node. Therefore, these approaches may protect against accidental programming

errors, but not against malicious code sent to a node.

3.7.2 Native code approaches

For desktop applications, Wahbe et al. described software fault isolation [96] to isolate a

piece of untrusted code, without the overhead of using processes and the CPU’s memory

protection. A typical example is a plugin that frequently needs to interact with an appli-

cation. It should be isolated from the application so bugs in the plugin cannot bring down

the whole application, but running it as a separate process would incur a high overhead.

Two basic methods are described to isolate such code from the main application: code

can be compiled to a predefined format with the appropriate checks already in place, after

which the system loading the code only verifies the compiled native code adheres to this

standard, or the native code can be rewritten at load time, inserting checks at all potentially

unsafe writes. Applied to sensor nodes these correspond to options 2a and 2b in Figure

3.5 respectively.

Since there are no processes or CPU memory protection on a sensor node, Wahbe’s

approach provides an attractive alternative. Two systems exist that provide safety for

sensor nodes using each of these approaches.

t-kernel [35] does more than providing safety. It raises the level of system abstrac-

tion for the developer by providing three features typically missing on sensor nodes: pre-

emptive scheduling, virtual memory, and memory protection. It does this by extensive
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rewriting of the binary code at load time. While t-kernel is heavily optimised, the price

for this is that programmes still run 50-200% slower, and code size increases by 500-750%.

The other approach is taken by Harbor [49], which consists of two components. On the

desktop, a binary rewriter sandboxes an application by inserting run-time checks before

it is sent to the node. The SOS operating system [37] is extended with a binary verifier

to verify incoming binaries have the necessary checks in place. Safety only depends on

the correctness of this verifier. The increase in code size is more modest than for t-kernel

at a 30-65% increase, but performance is 380-1230% slower. The authors also note more

complex analysis of the binary code could reduce the number of necessary checks, but at

the cost of significantly increasing the complexity of the verifier.

Finally, Weerasinghe and Coulson [99] proposed a system for module isolation similar

to Harbor in the sense that code is compiled to a restricted, safe form of native code which

is then verified by the node. Memory is allocated in fixed sized, aligned blocks, where

a block size of 256 is suggested to simplify the verifier since the split between block ad-

dress and offset falls nicely along byte boundaries. The authors aim to minimise run-time

overhead and identify t-kernel’s code size overhead as a major drawback of this approach.

Unfortunately their implementation was not yet finished when their paper was published

and no further publications on this approach could be found.
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Chapter 4

CapeVM

This chapter we introduce the global design of CapeVM, which is a modified version of

Darjeeling [13]. It runs directly on the hardware, without any OS layer in between, and

has complete control over the device. CapeVM modifies Darjeeling in three ways:

• AOT compilation: Darjeeling is originally an interpreter. To improve performance,

this interpreter is replaced with an Ahead-of-Time compiler: instead of interpreting

the bytecode, CapeVM translates it to native code at load time, before the application

is started. While JIT compilation is possible on some devices [24], it depends on

the ability to execute code from RAM, which many embedded CPUs, including the

ATmega, cannot do.

• Bytecode format: To support the AOT compilation process and further improve per-

formance, CapeVM modifies Darjeeling’s bytecode format, and adds several new

bytecode instructions.

• Safety: CapeVM adds a number of translation-time and run-time safety checks to

provide a safe, sandboxed execution environment.

CapeVM’s source code is available on GitHub [76].
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4.1 Goals

Working on resource-constrained devices means we have to make some compromises.

Our main goal is to build an AOT compiling VM that generates safe code, performs well,

reduces the code size overhead seen in previous work, and fits as many IoT scenarios as

possible. This includes scenarios like Amulet, wheremultiple applicationsmay be running

on a single device. When new code is being loaded, the impact on other applications

should be as small as possible.

WuKong, discussed in Section 3.2 is another good motivating example. Parts of

WuKong applications may be written in Java. A node may be part of more than one

application, and the WuKong master may dynamically decide to move an WuObject from

one node to another. This means new Java code may have to be loaded onto a device,

while parts of the same or another application are already running.

To support scenarios like this, the translation process should be very light weight.

Specifically, it should use as little memory as possible, since this is a scarce resource and

any memory used by the AOT compiler cannot be used for other concurrently running

tasks. This means we cannot do any analysis on the bytecode that would require us to

hold large data structures in memory.

Our goal is to limit memory use to around 100 bytes, which rules out most traditional

AOT and JIT compiler techniques. It may be possible to achieve even better performance

through more complex optimisations, but, as we will see, much can be achieved even with

very limited resources.

The two metrics we compromise on are load time and code size. Compiling to native

code takes longer than simply storing bytecode and starting the interpreter, but we feel this

load-time delay will be acceptable in many cases, and will be quickly compensated for by

improved run-time performance. Native code is already larger than JVM bytecode, and

our safe, AOT compiled code is on average 82% larger than its optimised C equivalent.

This is the price we pay for increased performance and safety, but the optimisations we

propose do significantly reduce this code size overhead compared to previous work, thus

reducing an important drawback of previous AOT techniques.
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We summarise our goals and constraints below:

• Improve performance to within half of native optimised code.

• Provide the option to run applications in a safe, sandboxed environment.

• Keep memory consumption to around 100 bytes to allow concurrent tasks to keep

running and maintain their state as new code is loaded onto the device.

• Limit code size overhead so the approach is feasible on mid-range sensor node de-

vices: at least 64 KB of programme memory for 8-bit Atmel CPUs.

The traditional argument to justify the performance overhead of sensor node VMs is

that applications can tolerate a certain slowdown since the CPU will be in sleep mode

most of the time, and that energy spent on the radio outweighs the energy spent on the

CPU. Whether this is true depends both on the magnitude of the slowdown, and on the

application.

The one to two orders of magnitude slowdown seen in interpreting VMs will be a

problem for many applications, as illustrated by the three examples in Chapter 1. El-

lul’s work [24] on AOT compilation significantly reduced this performance overhead to

a level that will be acceptable for many more applications. However, the remaining per-

formance overhead of up to 9x is still a problem for the more demanding configurations

of the Amulet smart watch, may make LEC compression a net loss, and Ellul’s approach

introduces a 3x code size overhead, which means less code can be loaded onto a device.

The optimisations presented in this dissertation reduce the slowdown to 1.7x, and the

size of generated code by 40%. This further expands the range of scenarios for which a

VM is a viable option.

Additional optimisations may improve performance even more, but on resource-

constrained devices where CPU cycles, energy, RAM, and flash memory are all restricted,

there is always a trade-off. At a slowdown of 1.7x, the traditional argument that this is

acceptable because the CPU will still be in sleep mode for most of the time and other

factors are more important in energy consumption, will hold for many more applications

compared to a 9x or 100x slowdown. Adding more complex optimisations may rule out
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Figure 4.1: Java source to native code compilation

the use of a VM in scenarios that cannot afford the increase in VM size or the additional

state that needs to be kept in RAM to do these optimisations, while the improvement in

performance is unlikely to enable many extra applications and has only limited impact

on the total energy consumption. Thus, we believe CapeVM to be at a sensible point in

this trade-off and Section 7.4.1 will show how selectively including optimisations gives

it some flexibility to adjust to specific devices and scenarios.

4.2 Compilation process

The complete process from Java source to native code on the node is shown in Figure

4.1. Like all sensor node JVMs, CapeVM uses a modified JVM bytecode. Java source

code is first compiled to normal Java classes. We then use ProGuard [36] to optimise the

bytecode, but these optimisations, while useful, are limited to very basic steps such as

dead code removal, overlapping local variable slots where possible, etc.

The optimised Java classes are then transformed into CapeVM’s own bytecode format,

called an infusion, by a modified version of Darjeeling’s infuser tool. For details of this

transformation we refer to the Darjeeling paper [13] and the extensions to Darjeeling’s

bytecode described in Chapter 5. Here it is sufficient to note that no knowledge of the

target platform is used in this transformation, so the result is still platform independent.

This infusion is then sent to the node, where the AOT compiler translates it to native code

at load time.

When the node receives a large programme, it should not have to keep multiple mes-

sages in memory since this will consume too much memory. CapeVM’s AOT compiler
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Table 4.1: Translation of do{A>>>=1;} while(A>B);

Bytecode AOT compiler native code cycles

0: BRTARGET(0) « record current address »
1: SLOAD_0 emit_LDD(R1,Y+0) LDD R1,Y+0 4

emit_PUSH(R1) PUSH R1 4
2: SCONST_1 emit_LDI(R1,1) LDI R1,1 2

emit_PUSH(R1) MOV R2,R1 1
3: SUSHR emit_POP(R2)

emit_POP(R1) POP R1 4
emit_RJMP(+2) RJMP +2 2
emit_LSR(R1) LSR R1 2
emit_DEC(R2) DEC R2 2
emit_BRPL(-2) BRPL -2 3
emit_PUSH(R1)

4: SSTORE_0 emit_POP(R1)
emit_STD(Y+0,R1) STD Y+0,R1 4

5: SLOAD_0 emit_LDD(R1,Y+0) LDD R1,Y+0 4
emit_PUSH(R1) PUSH R1 4

6: SLOAD_1 emit_LDD(R1,Y+2) LDD R1,Y+2 4
emit_PUSH(R1)

7: IF_SCMPGT(BT:0) emit_POP(R1)
emit_POP(R2) POP R2 4
emit_CP(R1,R2) CP R1,R2 2
emit_branchtag(GT,0) BRGT 0: 2 (taken),

or 1 (not taken)

allows the bytecode to be translated to native code in a single pass, one instruction at a

time. Only some small, fixed-size data structures are kept in memory during the process.

A second pass over the generated code then fills in addresses left blank by branch in-

structions, since the target addresses of forward branches are not known until the target

instruction is generated.

Each message, which can be as small as a single bytecode instruction, can be freed

immediately after processing. Since messages do need to be processed in the correct or-

der, the actual transmission protocol may still decide to keep more messages in memory

to reduce the need for retransmissions in the case of out of order delivery. But the trans-

lation process does not require it to do so, and a protocol that values memory usage over

retransmissions cost can simply discard out of order messages and request retransmissions

when necessary.

4.3 Translating bytecode to native code

The baseline AOT compiler used in CapeVM is an implementation of Ellul’s approach, as

described in his thesis [24], adapted for the Atmel ATmega128 CPU, while Ellul’s work
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Table 4.2: CapeVM’s peephole optimisations

Before Cycles Bytes After Cycles Bytes
Instructions Instructions

PUSH Rx 4 4 0 0
POP Rx

PUSH Rx 4 4 MOV Ry, Rx 1 2
POP Ry

ST X+, Rx 4 4 0 0
LD -X, Rx

ST X+, Rx 4 4 MOV Ry, Rx 1 2
LD -X, Ry

MOV Ry, Rx 2 4 MOVW Ry, Rx 1 2
MOV Ry+1, Rx+1

The X register is used as the reference stack pointer.

uses the Texas Instruments MSP430.

In this unoptimised version of the translator, each bytecode instruction theVM receives

is simply replaced with a fixed, equivalent sequence of native instructions. The native

stack is used to mimic the VM’s operand stack. An example of this is shown in Table 4.1.

The first column shows a fragment of bytecode which does a shift right of 16-bit vari-

able A, and repeats this while A is greater than B. While this may not be a very useful

operation, it is the smallest example that will allow us to illustrate our code generation

optimisations in the following chapter. The second column shows the code the AOT com-

piler will execute for each bytecode instruction. Together, the first and second column

match the case labels and body of a big switch statement in the compiler. The third col-

umn shows the resulting native code, which is currently almost a 1-on-1 mapping, with

the exception of the branch instruction and some optimisations by a simple peephole op-

timiser, both described below.

The example has been slightly simplified for readability. Since the ATmega is an 8-

bit CPU, in the real code many instructions are duplicated for the high and low bytes.

The cycle count is based on the actual number of generated instructions, and for a single

iteration.
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4.3.1 Peephole optimisation

Since the baseline should be as close as possible to Ellul’s implementation, a similar set

of peephole optimisations was implemented. However, differences between the ATmega

and MSP430 instruction sets means they are not completely identical. The complete set

of peephole optimisations in CapeVM is shown in Table 4.2.

A push directly followed by a pop are both either eliminated or replaced by a mov.

A push or pop may be either a real push or pop instruction for the integer stack, or

implemented using a st X+ or ld -X instruction for the reference stack. Both cases

are optimised in the same way. We also similarly optimise blocks of pushes followed by

blocks of pops, which are very common on the 8-bit ATmega.

When blocks of push and pop instructions target different registers, this results in mul-

tiple mov instructions. Two mov instructions with consecutive registers can be further

optimised using the movw instruction to copy a register pair to another register pair in a

single cycle.

4.3.2 Branches

Forward branches pose a problem for this direct translation approach since the target ad-

dress is not yet known. A second problem is that on the ATmega, a branch may take 1 to

3 words, depending on the distance to the target, so it is also not known how much space

should be reserved for a branch.

To solve this, the infuser modifies the bytecode by inserting a new instruction,

BRTARGET, in front of any instruction that is the target of a branch. The branch in-

structions themselves are modified to target the id of a BRTARGET, which are implicitly

numbered, instead of a bytecode offset. When the VM encounters a BRTARGET during

translation, no code is emitted, but the address where the next instruction will be emitted is

recorded in a separate part of flash memory. Branch instruction initially emit a temporary

3-word ’branch tag’, containing the branch target id and the branch condition. After code

generation is finished and all target addresses are known, the VM scans the generated

code a second time, and replaces each branch tag with the real branch instruction.
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There is still the matter of the different sizes a branch may take. The VM could simply

addNOP instructions to smaller branches to keep the size of each branch at 3words, but this

causes both a code size penalty and a performance penalty on small, non-taken branches.

Instead, the VM does another scan of the code, before replacing the branch tags, to update

the branch target addresses by compensating for cases where a smaller branch will be used.

This second scan adds about 500 bytes to the VM, but improves performance, especially

on benchmarks where branches are common.

This is an example of something we often see: an optimisation may take a few hundred

bytes to implement, but its usefulness may depend on the characteristics of the code being

run. In this work we usually decided to implement these optimisations, since in many

cases, including this one, they also result in smaller generated code.

4.3.3 Safety checks

CapeVM provides a safe execution environment by adding a number of safety checks,

described in Chapter 6. An advantage of using a VM to provide safety is that bytecode is

more structured than native code. This simplifies the necessary checks, and allows us to

perform most of them at translation time.

For each bytecode instruction, a set of checks is defined to ensure the generated code

cannot violate the safety guarantees by writing or branching to an illegal address, under-

or overflowing the stack, etc. Like the translation process, these checks are performed one

instruction at a time, and only require minimal state to be maintained as a method is being

translated, specifically two bytes to keep track of the operand stack depth.

Most of these checks are performed at translation time, and the VMwill reject the code

if any of them fail. For the remaining cases, run-time checks are inserted in the generated

code that allow the VM to terminate any faulty application at run time.

4.3.4 Bytecode modification

Wemade several modifications to the infuser and introduced new bytecode instructions to

support our AOT compiler and improve performance. These changes will be introduced
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in more detail in the following chapters, but for completeness we also list them here:

• The BRTARGET opcode marks targets of branch instructions. All branch instruc-

tions are modified to target a BRTARGET id instead of a bytecode offset.

• The MARKLOOP opcode marks inner loops and the variables they use.

• PUTFIELD_A_FIXED and GETFIELD_A_FIXED are used to access an object’s

reference fields when the offset is known at compile time. The offset is always

known at compile time for integer fields.

• The SIMUL opcode does 16x16-bit to 32-bit multiplication.

• New _CONST versions of the (variable) bit shift opcodes support shifting by a con-

stant number of bits.

• The INVOKELIGHT opcode supports an optimised ’lightweight’ way of calling

methods.

• The GETCONSTARRAY opcodes support reading from arrays of constant data stored

in the constant pool.

• Array access opcodes use 16-bit instead of 32-bit indexes.

4.3.5 Separation of integers and references

An important feature of Darjeeling, which we have maintained in CapeVM, is its separa-

tion of integers and references. When the garbage collector runs, it needs to mark the root

set: the set of all live, directly reachable objects. This set is then iteratively expanded to

include all indirectly reachable objects. For example in Figure 2.1, only the two objects

on the left of the heap are in the root set, two others are also reachable but not in the root

set, while the fifth is not reachable and will be freed by the garbage collector.

To mark the root set, the garbage collector needs to determine which local variables,

static variables, object fields, and values on the operand stack are references. To do this

efficiently, references and integers are separated throughout the VM: the operand stack,
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Figure 4.2: Infusion, object and stack frame layout

instance variables on the heap, class static variables, and local variables in a method’s

stack frame are all split in a block for integers and one for references, as shown in Figure

4.2.

In CapeVM’s AOT compiler we use the native stack for the VM’s integer operand

stack, so the integer operand stack is no longer in the method’s stack frame, but the ref-

erence stack is. This uses less memory than having the integer stack in the stack frame,

since we need to reserve space for the maximum stack depth in the frame, which is often

much lower for the reference stack than for the integer stack. We use the ATmega’s X

register as an extra stack pointer for the reference stack.

4.4 Limitations

Since CapeVM is based on Darjeeling, we share its limitations, most notably a lack of

floating point support and reflection. In addition, we do not support threads or exceptions

because after compilation to native code, we lose the interpreter loop as a convenient

place to switch between threads or unwind the stack to jump to an exception handler.

Threads and exceptions have been implemented in Ellul’s AOT compiler [24], proving it is

possible to add support for both, but we feel the added complexity in an environment where

code space is at a premium makes other, more lightweight models for concurrency and

error handling more appropriate. Dropping support for threads also allows us to allocate

the VM’s stack frames on the native stack, which considerably improves performance

compared to Darjeeling’s approach of allocating stack frames as a linked list on the heap.
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We will discuss the cost of using our VM more in more detail in Chapter 7, and alter-

natives to some traditional JVM features in Chapter 8.

4.5 Target platforms

CapeVM was implemented for the ATmega128 CPU [65]. The ATmega family of CPUs

is widely used in low power embedded systems and sensor nodes. However, our approach

does not depend on any ATmega specific properties and we expect similar results for many

other CPUs in this class. The main requirements are the ability to reprogramme its own

programme memory, and the availability of a sufficient number of registers.

The ATmega128 has 32 8-bit registers. We expect the Cortex-M0 [4], with 13 32-

bit general purpose registers, or the MSP430 [88], with 12 16-bit registers, and used by

Ellul and Martinez [25], to both be good matches as well. Section 7.9 will examine the

expected impact of the number of registers and of using a 16-bit or 32-bit architecture on

the resulting performance.
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Chapter 5

Performance and code size

optimisations

Having introduced our baseline AOT compiler, in this chapter we propose several opti-

misations to improve its performance and reduce the size of the generated code. We will

first analyse the difference sources of overhead, and discuss how to reduce each of them.

5.1 Sources of overhead

The performance and code size of the baseline approach still suffers from a large overhead

compared to optimised native C. To improve on this, it is important to identify the causes

of this overhead. The main sources of overhead we found are:

• Lack of optimisations in the Java compiler

• AOT translation overhead

– Push/pop overhead

– Load/store overhead

– JVM instruction set limitations

• Method call overhead
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We will briefly discuss each source below, before introducing optimisations to reduce

the overhead.

5.1.1 Lack of optimisation in javac

A first source of overhead comes from the fact that the standard javac compiler does al-

most no optimisations. Since the JVM is an abstract machine, there is no clear performance

model to optimise for. Run-time performance depends greatly on the target platform and

the VM implementation running the bytecode, which are unknown when compiling Java

source code to JVM bytecode. The javac compiler simply compiles the code ’as is’. For

example, the loop

while (a < b*c) { a*=2; }

will evaluate ’b*c’ on each iteration, while it is clear that the result will be the same every

time.

In most environments this is not a problem because the bytecode is often compiled to

native code before execution, and using knowledge of the target platform and the run-time

behaviour, a desktop JIT compiler canmakemuch better decisions thanjavac. However,

since our AOT compiler simply replaces each instructionwith a native equivalent, this lack

of optimisation leads to significant overhead in our VM.

We do use the ProGuard optimiser [36], but this only does very basic optimisations

such as method inlining and dead code removal, and does not cover cases like the example

above.

5.1.2 AOT translation overhead

Assuming we have high quality JVM bytecode, a second source of overhead comes from

the way the bytecode is translated to native code. We distinguish three main types of

translation overhead, where the first two are a direct result of the JVM’s stack-based ar-

chitecture.
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Type 1: Pushing and popping values

The compilation process initially results in a large number of push and pop instructions. In

our simple example in Table 4.1, the peephole optimiser was able to eliminate some, but

two push/pop pairs remain. For more complex expressions this type of overhead is higher,

since more values will be on the stack at the same time. This means more corresponding

push and pop instructions will not be consecutive, and the baseline peephole optimiser

cannot eliminate these cases.

Type 2: Loading and storing values

The second type is also due to the JVM’s stack-based architecture. Each operation con-

sumes its operands from the stack, but in many cases the same value is needed again soon

after. Because the value is no longer on the stack, this results in another load frommemory.

In Table 4.1, it is clear that the LDD instruction at label 5 is unnecessary since the value

is already in R1.

Type 3: JVM instruction set limitations

A third source of overhead due to the baseline AOT compilation process comes from

optimisations that are done in native code, but are not possible in JVM bytecode, at least

not in our resource-constrained environment.

The JVM instruction set is very simple, which makes it easy to implement, but this

also means some things cannot be expressed as efficiently in bytecode as in native code.

Given enough processing power, compilers can do the complex transformations necessary

to make the compiled JVM code run almost as fast as native C, but a sensor node does not

have such resources and must simply execute the instructions as they are.

The code in Table 4.1 does a shift right by one bit. In the JVM instruction set there is no

way to express a single bit shift directly. Instead the constant 1 is loaded onto the stack,

followed by the generic bit shift instruction. Compare this to addition, where the JVM

bytecode does have a special INC instruction to add a constant value to a local variable.

A second example is arrays of constant data. Since the JVM has no concept of constant
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data, any such data is implemented as a normal array, which has two disadvantages: it will

use up precious RAM, and it will be initialised using normal JVM instructions, taking up

much more code space than the constant data itself.

5.1.3 Method call overhead

The final source of overhead comes from method calls. In the JVM, each method has a

stack frame (or ’activation frame’) which the language specification describes as

containing the target reference (if any) and the argument values (if any),

as well as enough space for the local variables and stack for the method to

be invoked and any other bookkeeping information that may be required by

the implementation (stack pointer, programme counter, reference to previous

activation frame, and the like) [33]

CapeVM’s stack frame layout was shown in Figure 4.2. Initialising this complete

structure is significantly more work than a native C function call has to do, which may not

need a stack frame at all if all the work can be done in registers. Below we list the steps

CapeVM goes through to invoke a Java method:

1. Flush the stack cache so parameters are in memory and clear value tags (see sections 5.3.2

and 5.3.3).

2. Save the integer and reference stack pointers (SP and X).

3. Call the VM’s callMethod function, which will:

(a) allocate memory for the callee’s frame

(b) initialise the callee’s frame

(c) pass parameters: pop them off the caller’s stack and copy them into the callee’s locals

(d) activate the callee’s frame: set the VM’s active frame pointer to the callee

(e) lookup the address of the AOT compiled code

(f) do the actual CALL, which will return any return value in registers R22 and higher
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Table 5.1: List of optimisations per overhead source

Source of overhead Optimisation

Section 5.2 Lack of optimisations in javac •Manual optimisation of Java source code
Section 5.3 AOT translation overhead

Push/pop overhead • Improved peephole optimiser
• Stack caching

Load/store overhead • Popped value caching
•Mark loops

JVM instruction set limitations • Constant bit shift optimisation
• GET/PUTFIELD_A_FIXED instructions
• SIMUL instruction
• 16-bit array indexes
• Support for constant arrays

Section 5.4 Method call overhead • Lightweight methods

(g) reactivate the old frame: set the VM’s active frame pointer back to the caller

(h) return to the caller with the return value (if any) in register R22 and higher

4. Restore stack pointer and X register.

5. Push the return value onto the stack (using stack caching this will be free).

Even after considerable effort optimising this process, this requires roughly 540 cycles

for the simplest case: a call to a static method without any parameters or return value. For

a virtual method the cost is higher because we need to look up the right implementation.

While we may be able to save some more cycles with an even more rigorous refactoring,

it is clear that the number of steps involved will always take considerably more time than

a native function call.

5.1.4 Optimisations

Having identified these sources of overhead, we will use the next three sections to describe

the set of optimisations we use to address them. Table 5.1 lists each optimisation, and the

source of overhead it aims to reduce. The following sections will discuss each optimisation

in detail.
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5.2 Manually optimising the Java source code

As shown in Figure 4.1, our current implementation uses three steps to translate Java

source code to CapeVM bytecode: the standard Java compiler, the ProGuard optimiser,

and the modified Darjeeling infuser. None of these do any complex optimisations.

In a future version, these three steps should be merged into an ’optimising infuser’

which uses all the normal, well-known optimisation techniques to produce better quality

bytecode, but at the moment we do not have the resources to build such an optimising

infuser.

Since our goal is to determine what level of performance is possible on a sensor node,

the Java source was manually optimised to get better quality JVM bytecode from javac.

While these changes are not an automatic optimisation we developed, we find it important

to mention them explicitly and analyse their impact, since many developers may expect

these optimisations to happen automatically and without this step it would be impossible

to reproduce our results.

The most common optimisations that were done are:

• Store the result of expressions calculated in a loop in a temporary variable, if it is

known the result will be the same for each iteration.

• Since array and object field access is relatively expensive and not cached by the

mark loop optimisation discussed in Section 5.3.4, prefer to minimise array and

object access by using a temporary local variable, if the value may be used again

soon.

• Manually inline #defines and functions that were inlined by avr-gcc in the C

version of the benchmark.

• Use 16-bit variables for array indexes where possible.

• Use bit shifts for multiplication and division by a power of two.

We will examine the effect of some other optimisations on the CoreMark benchmark

in Section 7.2.
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Temporary variables The first two optimisations generate extra store instructions,

which means they may not always be beneficial if the value is never used again. However,

a value often only needs to be reused only once for it to be faster to store it in a local

variable than to calculate it twice or do two array accesses. If we use the mark loops

optimisation discussed in Section 5.3.4, in many cases the variable may be stored in

registers, making accessing them either very cheap, or completely free.

Manual inlining ProGuard automatically inlines methods that are only called from a

single location, or small methods called from multiple locations. In these cases it simply

replaces the INVOKE instruction with the callee’s body, prepended with STORE instruc-

tions to pop the parameters off the stack and initialise the callee’s local variables.

Manual inlining often results in better code because it may not be necessary to store

the parameters in local variables if they are only used once. We therefore manually inline

all small methods that were either a #define in the C version of our benchmarks, or a

function that was inlined by avr-gcc. Again, it is easy to imagine that an optimising

infuser should be able to come to the same result automatically.

Platform independence Assuming an optimising infuser does raise the question how

platform independent the resulting code is. If the infuser has more specific knowledge

about the target platform, it can produce better code for that platform, but, while it should

still run anywhere, this may not be as efficient on other platforms.

The optimisations described here are based on very conservative assumptions, and are

not specific to the ATmega CPU. Therefore, they should work well for most programmes,

independent of the hardware they are running on.

Example Listing 5.1 shows an example of these manual optimisations, applied to the

bubble sort benchmark. To have a fair comparison, we applied exactly the same optimi-

sations to the C versions of our benchmarks, but here this had little or no effect on the

performance.
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1 // ORIGINAL
2 public static void bsort(int[] numbers)
3 {
4 short NUMBERS=(short)numbers.length;
5 for (short i=0; i<NUMBERS; i++)
6 {
7 for (short j=0; j<NUMBERS-i-1; j++)
8 {
9 if (numbers[j]>numbers[j+1])
10 {
11 int temp = numbers[j];
12 numbers[j] = numbers[j+1];
13 numbers[j+1] = temp;
14 }
15 }
16 }
17 }

// MANUALLY OPTIMISED
public static void bsort(int[] numbers)
{

short NUMBERS=(short)numbers.length;
for (short i=0; i<NUMBERS; i++)
{

short x=(short)(NUMBERS-i-1);
short j_plus_1 = 1;
for (short j=0; j<x; j++)
{

int val_at_j = numbers[j];
int val_at_j_plus_1 = numbers[j_plus_1];
if (val_at_j>val_at_j_plus_1)
{

numbers[j] = val_at_j_plus_1;
numbers[j_plus_1] = val_at_j;

}
j_plus_1++;

}
}

}

Listing 5.1: Optimisation of the bubble sort benchmark

5.3 AOT translation overhead

Now that we have good quality bytecode to work with, we can start addressing the over-

head incurred during the AOT compilation process.

5.3.1 Improving the peephole optimiser

The first optimisation is a small but effective extension to the simple peephole optimiser.

Instead of optimising only consecutive push/pop pairs, any pair of push/pop instructions

can be optimised if the following holds for the instructions in between:

1 PUSH Rs
2 ..
3 .. instructions in between: - contain the same number of push and pop instr.
4 .. - contain no branches
5 .. - do not use register Rd
6 ..
7 POP Rd

In this case the pair can be eliminated if Rs == Rd, otherwise it is replaced by a

’mov Rd, Rs’. Two push/pop pairs remained in our earlier example Table 4.1. For

the pair in instructions 5 and 7, the value is popped into register R2. Since instruction 6

does not use register R2, we can safely replace this pair with a direct move. In contrast,

the pair in instructions 1 and 3 cannot be optimised since the value is popped into register

R1, which is also used by instruction 2. The result is shown in Table 5.2
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Table 5.2: Improved peephole optimiser

Bytecode AOT compiler native code cycles

0: BRTARGET(0) « record current address »
1: SLOAD_0 emit_LDD(R1,Y+0) LDD R1,Y+0 4

emit_PUSH(R1) PUSH R1 4
2: SCONST_1 emit_LDI(R1,1) LDI R1,1 2

emit_PUSH(R1) MOV R2,R1 1
3: SUSHR emit_POP(R2)

emit_POP(R1) POP R1 4
emit_RJMP(+2) RJMP +2 2
emit_LSR(R1) LSR R1 2
emit_DEC(R2) DEC R2 2
emit_BRPL(-2) BRPL -2 3
emit_PUSH(R1)

4: SSTORE_0 emit_POP(R1)
emit_STD(Y+0,R1) STD Y+0,R1 4

5: SLOAD_0 emit_LDD(R1,Y+0) LDD R1,Y+0 4
emit_PUSH(R1) MOV R2, R1 1

6: SLOAD_1 emit_LDD(R1,Y+2) LDD R1,Y+2 4
emit_PUSH(R1)

7: IF_SCMPGT(BT:0) emit_POP(R1)
emit_POP(R2)
emit_CP(R1,R2) CP R1,R2 2
emit_branchtag(GT,0) BRGT 0: 2 (taken),

or 1 (not taken)

5.3.2 Stack caching

The improved peephole optimiser can remove part of the type 1 overhead, but still many

cases remain where it cannot eliminate the push/pop instructions. We use a form of stack

caching [26] to eliminate most of the remaining push/pop overhead.

Stack caching is not a new technique. It was originally proposed for Forth interpreters

in 1995. But the trade-offs involved are very different depending on the scenario it is used

in, and it turns out to be exceptionally well suited for a sensor node AOT compiler:

First, the VM in the original paper is an interpreter, which means the stack cache has

to be very lightweight, otherwise the overhead from managing it at run time will outweigh

the time saved by reducing memory accesses. Since the AOT compiler only needs to keep

track of the cache state at translation time, it can afford to spend more time managing the

cache. Second, the simplicity of the approach means it requires very little memory: only

11 bytes of RAM and less than 1 KB of code more than the peephole optimiser.

The basic idea of stack caching is to keep the top elements of the stack in registers

instead of main memory. A cache state was added to the VM to keep track of which

registers are holding stack elements. For example, if the top two elements are kept in

registers, an ADD instruction does not need to access main memory, but can simply add
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Table 5.3: Stack caching

cache state
Bytecode AOT compiler native code cycles R1 R2 R3 R4

0: BRTARGET(0) « record current address »
1: SLOAD_0 operand_1 = sc_getfreereg() *

emit_LDD(operand_1,Y+0) LDD R1,Y+0 4 *
sc_push(operand_1) Int1

2: SCONST_1 operand_1 = sc_getfreereg() Int1 *
emit_LDI(operand_1,1) LDI R2,1 2 Int1 *
sc_push(operand_1) Int2 Int1

3: SUSHR operand_1 = sc_pop() Int1 *
operand_2 = sc_pop() * *
emit_JMP(+2) JMP +2 2 * *
emit_LSR(operand_2) LSR R1 2 * *
emit_DEC(operand_1) DEC R2 1 * *
emit_BRPL(-2) BRPL -2 1 * *
sc_push(operand_2) Int1 *

4: SSTORE_0 operand_1 = sc_pop() *
emit_STD(Y+0,operand_1) STD Y+0,R1 4 *

5: SLOAD_0 operand_1 = sc_getfreereg() *
emit_LDD(operand_1,Y+0) LDD R1,Y+0 4 *
sc_push(operand_1) Int1

6: SLOAD_1 operand_1 = sc_getfreereg() Int1 *
emit_LDD(operand_1,Y+2) LDD R2,Y+2 4 Int1 *
sc_push(operand_1) Int2 Int1

7: IF_SCMPGT(BT:0) operand_1 = sc_pop() Int1 *
operand_2 = sc_pop() * *
emit_CP(operand_1, operand_2); CP R2,R1 2 * *
emit_branchtag(GT, 0); BRGT 0: 2 * *

these registers, and update the cache state. Values are only spilled to memory when no

more free registers are available.

In the baseline AOT approach, each bytecode instruction maps to a fixed sequence of

native instructions that always use the same registers. Using stack caching, the registers

are controlled by a stack cache manager that provides three functions:

• sc_getfreereg: Instructions such as load instructions need a free register to

load the value into, which will later be pushed onto the stack. If all registers are in

use, sc_getfreereg spills the register that’s lowest on the stack to memory by

emitting a PUSH, and then returns that register. Thus, the top of the stack is kept in

registers, while lower elements may be spilled to memory.

• sc_pop: Pops the top element off the stack and tells the code generator in which

register it can be found. If stack elements have previously been spilled tomainmem-

ory and no elements are left in registers, sc_pop will emit a real POP instruction

to get the value back from memory.

• sc_push: Updates the cache state so the passed register is now at the top of the
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stack. This should be a register that was previously returned by sc_getfreereg,

or sc_pop.

Using stack caching, code generation is split between the code generator, which emits

the instructions that do the actual work, and the cache manager which manages the regis-

ters and may emit code to spill stack elements to memory, or to retrieve them again. But

as long as enough registers are available, it will only manipulate the cache state.

In Table 5.3 the same example is translated, this time using stack caching. The

emit_PUSH and emit_POP instructions have been replaced by calls to the cache

manager, and instructions that load something onto the stack start by asking the cache

manager for a free register. The state of the stack cache is shown in the four columns

added to the right. Currently it only tracks whether a register is on the stack or not. ’Int1’

marks the top element, followed by ’Int2’, etc. This example does not use the reference

stack, but it is cached in the same way as the integer stack. A ’*’ marks a register that is

marked as being used by the current instruction, but not currently on the stack. The next

two optimisations will extend the cache state further.

The example only shows four registers, but the ATmega128 has 32 8-bit registers.

Since CapeVM uses a 16-bit stack, they are managed as pairs. 10 registers are reserved,

for example as a scratch register or to store a pointer to local variables, leaving 11 pairs

available for stack caching.

Branches Branch targets may be reached from multiple locations. We know the cache

state if it was reached from the previous instruction, but not if it was reached through a

branch. To ensure the cache state is the same for both paths, the whole stack is flushed to

memory whenever we encounter either a branch or a BRTARGET instruction.

This may seem bad for performance, but fortunately the stack is empty at almost all

branches in the code generated by javac. A common exception is the ternary ? : oper-

ator, which may cause a conditional branch with elements on the stack, but in most cases

flushing at branches and branch targets does not result in any extra overhead.
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Table 5.4: Popped value caching

cache state
Bytecode AOT compiler native code cycles R1 R2 R3 R4

0: BRTARGET(0) « record current address »
1: SLOAD_0 operand_1 = sc_getfreereg() *

emit_LDD(operand_1,Y+0) LDD R1,Y+0 4 *
sc_push(operand_1) Int1LS0

2: SCONST_1 operand_1 = sc_getfreereg() Int1LS0 *
emit_LDI(operand_1,1) LDI R2,1 2 Int1LS0 *
sc_push(operand_1) Int2LS0 Int1CS1

3: SUSHR operand_1 = sc_pop_destructive() Int1LS0 *
operand_2 = sc_pop_destructive() * *
emit_JMP(+2) JMP +2 2 * *
emit_LSR(operand_2) LSR R1 2 * *
emit_DEC(operand_1) DEC R2 1 * *
emit_BRPL(-2) BRPL -2 1 * *
sc_push(operand_2) Int1 *

4: SSTORE_0 operand_1 = sc_pop_tostore() *LS0
emit_STD(Y+0,operand_1) STD Y+0,R2 4 *LS0

5: SLOAD_0 « skip codegen, update cache state » Int1LS0
6: SLOAD_1 operand_1 = sc_getfreereg() Int1LS0 *

emit_LDD(operand_1,Y+2) LDD R1,Y+2 4 Int1LS0 *
sc_push(operand_1) Int2LS0 Int1LS1

7: IF_SCMPGT 0: operand_1 = sc_pop_nondestructive() Int1LS0 *LS1
operand_2 = sc_pop_nondestructive() *LS0 *LS1
emit_CP(operand_1, operand_2); CP R2,R1 2 *LS0 *LS1
emit_branchtag(GT, 0); BRGT 0: 2 *LS0 *LS1

5.3.3 Popped value caching

Stack caching can eliminate most of the push/pop overhead, even when the stack depth

increases. We now turn our attention to reducing the overhead resulting from load and

store instructions.

A value tag is added to each register’s cache state to keep track of what value is cur-

rently held in the register, even after it is popped from the stack. Some bytecode instruc-

tions have a value tag associated with them to indicate which value or variable they load,

store, or modify. Each tag consist of a tuple (type, data type, number). For example,

the instructions ILOAD_0 and ISTORE_0, which load and store the local integer vari-

able with id 0, both have tag LI0, short for (local, int, 0). SCONST_1 has tag CS1, or

(constant, short, 1), etc. These tags are encoded as a 16-bit value.

The cache manager is extended with a sc_can_skip function. This function will

examine the type of each instruction, its value tag, and the cache state. If it finds that the

instruction loads a value that is already present in a register, it updates the cache state to

put that register on the stack, and returns true to tell the main loop to skip code generation

for this instruction.
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Table 5.4 shows popped value caching applied to our example. At first, the stack

is empty. When sc_push is called, it detects the current instruction’s value tag, and

marks the fact that R1 now contains LS0. In SUSHR, the sc_pop has been changed to

sc_pop_destructive. This tells the cache manager that the value in the register will

be destroyed, so the value tag has to be cleared again since R1 will no longer contain LS0.

The SSTORE_0 instruction now calls sc_pop_tostore instead of sc_pop, to inform

the cache manager it will store this value in the variable identified by SSTORE_0’s value

tag. This means the register once again contains LS0. If any other register was marked

as containing LS0, the cache manager would clear that tag, since it is no longer accurate

after the variable is updated.

In bytecode instruction 5, we need to load LS0 again, but now the cache state shows

that LS0 is already in R1. This means it does not need to be loaded from memory, but the

cache manager can just update the cache state so that R1 is pushed onto the stack. At run

time this SLOAD_0 will have no cost at all.

There are a few more details to get right. If a value is loaded that’s already on the

stack, a move is emitted to copy it. When sc_getfreereg is called, it will try to return

a register without a value tag. If none are available, the least recently used register is

returned. This is done to maximise the chance we can reuse a value later, since recently

used values are more likely to be used again.

Branches Aswe do not know the state of the registers if an instruction is reached through

a branch, we have to clear all value tags when we pass a BRTARGET instruction, meaning

that any new loads will have to come from memory. At branches we can keep the value

tags, because if the branch is not taken, the state of the registers in the next instruction is

known.

5.3.4 Mark loops

Popped value caching reduces the type 2 overhead significantly, but the fact that we have

to clear the value tags at branch targets means that a significant part of this overhead
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Table 5.5: Mark loops

cache state
Bytecode AOT compiler native code cycles R1 R2 R3 R4

0: MARKLOOP(0,1) « emit markloop prologue: » LDD R1,Y+0 4 LS0PIN
« LS0 and LS1 are live » LDD R2,Y+2 4 LS0PIN LS1PIN

1: BRTARGET(0) « record current address » LS0PIN LS1PIN
2: SLOAD_0 « skip codegen, update cache state » Int1LS0PIN LS1PIN
3: SCONST_1 operand_1 = sc_getfreereg() Int1LS0PIN LS1PIN *

emit_LDI(operand_1,1) LDI R3,1 2 Int1LS0PIN LS1PIN *
sc_push(operand_1) Int2LS0PIN LS1PIN Int1CS1

4: SUSHR operand_1 = sc_pop_destructive() Int1LS0PIN LS1PIN *
operand_2 = sc_pop_destructive() MOV R4,R1 1 LS0PIN LS1PIN * *
emit_JMP(+2) JMP +2 2 LS0PIN LS1PIN * *
emit_LSR(operand_2) LSR R4 2 LS0PIN LS1PIN * *
emit_DEC(operand_1) DEC R3 1 LS0PIN LS1PIN * *
emit_BRPL(-2) BRPL -2 1 LS0PIN LS1PIN * *
sc_push(operand_2) LS0PIN LS1PIN * Int1

5: SSTORE_0 « emit MOV, update cache state » MOV R1,R4 1 LS0PIN LS1PIN
6: SLOAD_0 « skip codegen, update cache state » Int1LS0PIN LS1PIN
7: SLOAD_1 « skip codegen, update cache state » Int2LS0PIN Int1LS1PIN
8: IF_SCMPGT(BT:0) operand_1 = sc_pop_nondestructive() Int1LS0PIN LS1PIN

operand_2 = sc_pop_nondestructive() LS0PIN LS1PIN
emit_CP(operand_1, operand_2); CP R2,R1 2 LS0PIN LS1PIN
emit_branchtag(GT, 0); BRGT 1: 2 LS0PIN LS1PIN

9: MARKLOOP(end) « emit markloop epilogue: LS0 is live » STD Y+0,R1 4 LS0 LS1

still remains. This is particularly true for loops, since each iteration often uses the same

variables, but the branch to start the next iteration clears those values from the stack cache.

This is addressed by the next optimisation.

Again, the infuser is modified to add a new instruction to the bytecode: MARKLOOP.

This instruction is used tomark the beginning and end of each innermost loop. MARKLOOP

has a larger payload thanmost bytecode instructions: it contains a list of local variables that

will appear in the loop and the number of times each variable appears, sorted in descending

order.

When the VM encounters the MARKLOOP instruction, it may decide to reserve a num-

ber of registers and pin the most frequently used local variables to them. If it does, code

is generated to prefetch these variables from memory and store them in registers. While

in the loop, loading or storing these pinned variables does not require memory access,

but only a manipulation of the cache state and possibly a simple move between registers.

However, these registers will no longer be available for normal stack caching. Since 4

register pairs need to be reserved for code generation, at most 7 of the 11 available pairs

can be used by mark loops.

Because the only way to enter and leave the loop is through the MARKLOOP instruc-
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tions, the values can remain pinned for the whole duration of the block, regardless of the

branches made inside. This lets us eliminate more load instructions, and replace store

instructions by a much cheaper move to the pinned register. INC instructions, which in-

crement a local variable, operate directly on the pinned register, saving both a load and a

store. All these cases are handled in sc_can_skip, bypassing the normal code genera-

tion. A small change to sc_pop_destructive is also necessary. If the register that is

about to be popped is pinned, it cannot be used directly since this would corrupt the value

of the pinned local variable. Instead, first a move to a free, non-pinned register, is emitted.

In Table 5.5 the first instruction is now MARKLOOP, which tells the compiler local

short variables 0 and 1 will be used. The compiler decides to pin them both to registers 1

and 2. The MARKLOOP instruction also tells the VM whether or not the variables are live,

which they are at this point, so the two necessary loads are generated. This is reflected

in the cache state. No elements are on the stack yet, but register 1 is pinned to LS0, and

register 2 to LS1.

Next, LS0 is loaded. Since it is pinned to register 1, no code is generated, but the cache

state is updated to reflect LS0 is now on top of the stack. After loading the constant 1,

SUSHR pops both operands destructively. We cannot simply return register 1 since that

would corrupt the value of variable LS0, so the second sc_pop_destructive emits a

move to a free register and returns that register instead. Since LS0 is pinned, normal code

generation for SSTORE_0 can also be skipped, but sc_can_skip does need to emit a

move back to the pinned register.

The next two loads are straightforward and no code needs to be emitted for them. In

the branch instruction the registers are popped non-destructively, so the pinned registers

can be used directly.

Finally, the loop ends with another MARKLOOP, telling the compiler only local 0 is

live at this point. This means LS0 in register 1 needs to be stored back to memory, but

LS1 can be skipped since it is no longer needed.
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5.3.5 Instruction set modifications

Next, we introduce five optimisations that target the type 3 overhead: cases where limita-

tions in the JVM instruction set means some operations cannot be expressed as efficiently

as in native code. This type of overhead is the most difficult to address because many

of the transformations a desktop VM can do to avoid it take more resources than we can

afford on a tiny device. Also, this type of overhead covers many different cases, and

optimisations that help in a specific case may not be general enough to justify spending

additional resources on it.

Still, there are a few things we can do by modifying the instruction set, that come at

little cost to the VM and can make a significant difference.

Darjeeling’s original instruction set is already quite different from the normal JVM

instruction set. The most important change is the introduction of 16-bit operations. The

JVM is internally a 32-bit machine, meaning short, byte, and char are internally

stored as 32-bit integers. On a sensor device where memory is the most scarce resource,

we often want to use shorter data types. To support this, Darjeeling internally stores values

in 16-bit slots, and introduces 16-bit versions of all integer operations. For example, to

multiply two shorts and store the result in a short, the 32-bit IMUL instruction is replaced

by the 16-bit SMUL instruction. These transformations are all done by the infuser (see

Figure 4.1).

However, the changes made by Darjeeling are primarily aimed at reducing memory

consumption, not at improving performance. The infuser was extended to make several

other changes. The BRTARGET and MARKLOOP instructions have already been discussed,

and the INVOKELIGHT instruction is the topic of the next section. In addition to these,

the following five other modifications were made to Darjeeling’s instruction set:

Constant bit shifts

Most benchmarks described in Section 7 do bit shifts by a constant number of bits. These

appear not only in computation intensive benchmarks, but also as optimised multiplica-

tions or divisions by a power of 2, which are common in many programmes.
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Table 5.6: Constant bit shift optimisation

cache state
Bytecode AOT compiler native code cycles R1 R2 R3 R4

0: MARKLOOP(0,1) « emit markloop prologue: » LDD R1,Y+0 4 LS0PIN
« LS0 and LS1 are live » LDD R2,Y+2 4 LS0PIN LS1PIN

1: BRTARGET(0) « record current address » LS0PIN LS1PIN
2: SLOAD_0 « skip codegen, just update cache state » Int1LS0PIN LS1PIN
3: SUSHR_CONST(1) operand_1 = sc_pop_destructive() MOV R3,R1 1 LS0PIN LS1PIN *

emit_LSR(operand_1) LSR R3 2 LS0PIN LS1PIN *
sc_push(operand_1) LS0PIN LS1PIN Int1

4: SSTORE_0 « emit MOV, update cache state » MOV R1,R3 1 LS0PIN LS1PIN
5: SLOAD_0 « skip codegen, just update cache state » Int1LS0PIN LS1PIN
6: SLOAD_1 « skip codegen, just update cache state » Int2LS0PIN Int1LS1PIN
7: IF_SCMPGT(BT:0) operand_1 = sc_pop_nondestructive() Int1LS0PIN LS1PIN

operand_2 = sc_pop_nondestructive() LS0PIN LS1PIN
emit_CP(operand_1, operand_2); CP R2,R1 2 LS0PIN LS1PIN
emit_branchtag(GT, 0); BRGT 1: 2 LS0PIN LS1PIN

8: MARKLOOP(end) « emit markloop epilogue: LS0 is live » STD Y+0,R1 4 LS0 LS1

In JVM bytecode the shift operators take two operands from the stack: the value to

shift, and the number of bits to shift by. While this is generic, it is not efficient for constant

shifts: the constant first needs to be pushed onto the stack, and the bit shift is implemented

as a simple loop which shifts one bit at a time. If the number of bits to shift by is known

at compile time, much more efficient code can be generated.

Note that this is different from other arithmetic operations with a constant operand.

For operations such as addition, the translation process results in loading the constant and

performing the addition, which is similar to what avr-gcc generates in most cases. An

addition takes just as long when both operands are variables, as it does when one is a

constant.

The mismatch is in the fact that while the JVM instruction set is more general, with

both operands being variable for both bit shifts and other arithmetic operations, the native

instruction set can only shift by a single bit. This means that to shift by a number of bits

that is unknown until run time, a loop must be generated to shift one bit at a time, which is

much slower than the code that can be generated for a shift by a constant number of bits.

These cases are optimised by adding _CONST versions of the bit shift instructions

ISHL, ISHR, IUSHR, SSHL, SSHR, and SUSHR. The infuser does a simple scan of the

bytecode to find constant loads that are immediately followed by a bit shift. For these cases

the constant load is removed, and the bit shift instruction, for example ISHL, is replaced

by ISHL_CONST, which has a one byte constant operand in the bytecode containing the

75



doi:10.6342/NTU201800775

number of bits to shift by. On the VM side, implementing these six _CONST versions of

the bit shift opcodes adds 444 bytes to the VM, but it improves performance, sometimes

very significantly, for all but three of the benchmarks.

Surprisingly, after this was implemented, one benchmark performed better than native

C. We found that avr-gcc does not optimise constant shifts in all cases. Since the goal

is to examine how close a sensor node VM can come to native performance, it would be

unfair to include an optimisation that is not found in the native compiler, but could easily

be added. We implemented a version that is close to what avr-gcc does, but never better.

The VM only considers cases that are optimised by avr-gcc. For these, first whole byte

moves are emitted if the number of bits to shift by is 8 or more, followed by single bit

shifts for the remainder.

The result when applied to our example is shown in Table 5.6, where the SCONST_1

and SUSHR instructions have been replaced by a single SUSHR_CONST instruction. The

total cost is now 20 cycles, but 12 of these are spent before and after the loop, while each

iteration now only takes 8 cycles, a significant improvement from the 48 cycles spent in

the original version in Table 4.1.

GET/PUTFIELD_A_FIXED reference field access

The GETFIELD_* and PUTFIELD_* instructions are used to access fields in objects.

Because references and integer slots are split, the offset from the object pointer is known at

compile time only for integer fields, but not for reference fields. As shown in Figure 5.1,

integer fields will be at the same offset, regardless of whether an object is of the compile-

time type, or a subclass. References fields may shift in subclasses, so GETFIELD_A

and PUTFIELD_A must examine the object’s type at run time and calculate the offset

accordingly, adding significant overhead.

This overhead can be avoided if we can be sure of the offset at compile time, which is

the case if the compile-time type is marked final. In this case the infuser will replace

the GETFIELD_A or PUTFIELD_A opcode with a _FIXED version so the VM knows it

is safe to determine the offset at translation time. Conveniently, one of the optimisations
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object

Base class object layout Sub class object layout

integer field 2

integer field 1

reference field 1

integer field 1

integer field 2

integer field 3

reference field 1

reference field 2

pointer to

Figure 5.1: Base class and sub class layout

ProGuard does, is to mark any class that is not subclassed as final, so most of this is

automatic.

Alternative solutions An alternative is to let go of the split for references and integers

for object fields and mix them, so the offsets for reference fields are also known at compile

time. To allow the garbage collector to find the reference fields we could either extend the

class descriptors with a bit map indicating the type of each slot, or let the garbage collector

scan all classes in the inheritance line of an object.

We chose our solution because it is easier to implement and adds only a few bytes to

the VM size, while the garbage collector is already one of the most complex components

of the VM. Also, we found that almost all classes in our benchmarks could be marked

final. Either solution would work, and the alternative could be considered as a more

general solution.

Evaluation The impact of this optimisation is significant, but we decided not to include

it in the evaluation since the overhead is the result of implementation choices in Darjeel-

ing, which was optimised for size rather than performance. This means the overhead is a

result of a Darjeeling specific choice, rather than a direct result of the AOT techniques or

the JVM’s design. Therefore, all results reported in this paper are with this optimisation

already enabled.

Since the split architecture has many advantages in terms of complexity and VM size,

we still feel it is important to mention this as an example of the kind of trade-offs faced

when optimising for performance.
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SIMUL 16-bit to 32-bit multiplication

While Darjeeling already introduced 16-bit arithmetic operations, it does not cover the

case of multiplying two 16-bit shorts, and storing the result in a 32-bit integer. In this case

the infuser emits S2I instructions to convert the operands to two 32-bit integers, and then

uses the normal IMUL instruction for full 32-bit multiplication. On an 8-bit device, this is

significantly more expensive than 16x16 to 32-bit multiplication.

For this case a new opcode, SIMUL, is added, which the infuser will use if it can

determine the operands of a multiplication are 16-bit, but the result is used as a 32-bit

integer.

More instructions could be added, for example, SIADD for 16-bit to 32-bit addition,

BSMUL for 8-bit to 16-bit multiplication, etc. But there is a trade-off between the added

complexity of an optimisation and the performance improvement it yields, and for these

cases this is much smaller than for SIMUL.

16-bit array indexes

The normal JVM array access instructions (IASTORE, IALOAD, etc.) use a 32-bit index.

On a sensor node with only a few KB of memory, such large indexes are never needed, so

the array access instructions were modified to use a 16-bit index.

This complements one of the manual optimisations discussed in Section 5.2. Using

short values as index variables makes operations on the index variable cheaper, while

changing the operand of the array access instructions reduces the amount of work the

array access instruction needs to do and the number of registers it requires.

In CapeVM’s bytecode, the array access instructions are named GETARRAY and

PUTARRAY to be in line with GET/PUTFIELD and GET/PUTSTATIC.

Support for constant arrays

Finally, while Java allows us to declare variables as final, this is only a language level

feature, and the VM has no concept of constant data. This is not surprising, since most

physical CPUs do not make the distinction either, but on a sensor node code and data
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memory are split. The amount of flash memory is usually several times larger than the

available RAM, so constant data should be kept in flash instead of wasting precious RAM

on data that never changes.

This is especially important for arrays of constant data, which are common in sensor

node applications. For example, the FFT benchmark contains an array of precalculated

sine wave values. When implemented as a final Java array, the compiler emits a static

class initialiser that creates a normal Java array object, and then uses the array access

instructions to initialise each element individually, as shown in Listing 5.2. The final

keyword only affects the reference to the Sinewave array, but not the array itself.

1 private final static byte Sinewave[] = new byte[] {
2 0, 3, 6, 9, 12, 15, 18, 21,
3 ...
4 -24, -21, -18, -15, -12, -9, -6, -3,
5 };

1 sspush(256); newarray; // create the array
2 adup; sconst_0; sconst_0; putarray_b; // set index 0
3 adup; sconst_1; sconst_3; putarray_b; // set index 1
4 adup; sconst_2; bspush(6); putarray_b; // set index 2
5 ...
6 adup; bspush(255); bspush(-3); putarray_b; // set index 255

Listing 5.2: Array of constant data from the 8-bit FFT benchmark, and the resulting byte-
code without the constant array optimisation

There are two problems with this: (i) the array will occupy scarce RAM; and (ii)

initialising array elements using bytecode instructions requires 4 instructions per element,

resulting in 1663 bytes of bytecode to initialise a 256 byte array, which expands even

further after AOT compilation.

To solve this, four new GETCONSTARRAY instructions are introduced to read from

constant arrays of ints, shorts, chars or bytes. The normal GETARRAY instructions take

two operands from the stack: the reference to the array, and the index of the element to

load. The GETCONSTARRAY instructions only read the index from the stack, and have

the id of an array in the constant pool encoded as a single byte operand in the bytecode

instruction.

The infuser is modified to place constant arrays in the constant pool. Since the cur-

rent infuser works on the javac output, it requires each constant array to be placed in

79



doi:10.6342/NTU201800775

a wrapper class with the @ConstArray annotation, which simplifies processing them

considerably. When the infuser loads a class and finds the @ConstArray annotation, it

parses the <clinit> class initialiser to extract the data for the constant array. The class

initialiser is then removed, and the data for the constant array is added to the constant pool.

When the infuser processes a method’s bytecode, it analyses the operand stack. If a

GETSTATIC_A instruction loads a reference to an array in a @ConstArray class onto

the stack, the entry used for stack analysis is marked. This allows the infuser to the find the

corresponding GETARRAY instruction that consumes this reference from the stack. The

infuser then replaces it with a GETCONSTARRAY instruction, which carries the constant

pool id of the array as a bytecode operand, and removes the original GETSTATIC_A.

This means the array no longer takes up any RAM, and only uses the amount of flash

required to hold the data and a four byte header. Another advantage of this approach

is that the reference no longer needs to be loaded onto the stack. This eliminates the

GETSTATIC_A instruction, reduces the stack depth, and slightly simplifies the address

calculation to find the correct offset since constant arrays do not have the small header

used for normal arrays. This compensates for the fact that reading from flash is slightly

more expensive at 3 cycles per byte, compared to 2 cycles for reading from RAM.

Alternative solutions A disadvantage of the chosen approach is that the constant arrays

cannot be used for anything except directly reading from them. Since no array object is

created, we cannot assign a reference to it to a variable, for example to decide at run time

whether to read from one array or another.

This would be possible if we keep the GETSTATIC_A instruction, but use it to load a

special reference to the constant array onto the stack instead. However, this would remove

the advantages of not having to load the reference and result in a more complex design.

Since all examples found in the benchmarks directly read from the constant arrays,

we choose the simpler option, and note that such a run time decision could also be imple-

mented using an if statement or a small helper function, albeit at a higher cost.
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5.4 Method calls

Finally, we will look at the overhead caused by method calls. In native code, the smallest

possible function call only has 8 cycles of overhead for a CALL and a RET instruction.

More complicated functions may spend up to 76 cycles saving and restoring call-saved

registers. As seen in Section 5.1.3, in Java a considerable amount of state needs to be

initialised. For the simplest method call this takes about 540 cycles, and this increases

further for large methods with many parameters.

Methods in a programme typically form a spectrum from large methods at the base of

the call tree that take a long time to complete and are only called a few times, to small

(near-)leaf methods that are fast and frequently called. Figure 5.2 shows this spectrum for

the CoreMark benchmark.

For the slow methods at the base, the overhead of the method call is insignificant

compared to the total execution time. However, as we get closer to the leaf methods, the

number of calls increases, as does the impact on the overall performance.

At the very end of this spectrum are tiny helper functions that may be inlined, but

this is only possible for very small methods, or methods called from a single place. In

CoreMark’s case, ee_isdigit was small enough to inline. When larger methods are

inlined, the trade-off is an increase in code size. There is a problem in the middle of the

spectrum: methods that are too large to inline, but called often enough for the method call

overhead to have a significant impact on the overall performance.

5.4.1 Lightweight methods

For these cases we introduce a new type of method call: lightweight methods. These

methods differ from normal methods in two ways:

• No stack frame is created for lightweight methods, but space reserved in the caller’s

frame is used.

• Parameters are passed on the stack, rather than in local variables.
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Figure 5.2: Number of CoreMark method calls vs. duration (logarithmic scales)

Lightweight methods give us a third choice, in between a normal method call and

method inlining. When calling a lightweight method, the method’s AOT compiled code

is called directly. This bypasses the VM completely, reusing the caller’s stack frame, and

leaving the parameters on the (caller’s) stack. In effect, the lightweight methods behave

similar to inlined code, but do not incur the code size overhead of duplicating large inlined

methods. Because the method will be called from multiple locations which may have

different cache states, the stack cache must be flushed to memory before a call. This

results in slightly more overhead than for inlined code, but much less than for a normal

method call.

As an example, consider the simple isOdd method in Listing 5.3:

1 // JAVA
2
3 public static boolean
4 isOdd (short a)
5 {
6 return (a & (short)1)==1;
7 }

1 // NORMAL METHOD
2 // (Stack)
3 SLOAD_0 (Int)
4 SCONST_1 (Int,Int)
5 SAND (Int)
6 SRETURN ()

1 // LIGHTWEIGHT METHOD
2 // (Stack)
3 SCONST_1 (Int,Int)
4 SAND (Int)
5 SRETURN ()

Listing 5.3: Simple, stack-only lightweight method example

The normal implementation has a single local variable. It expects the parameter to be

stored in the local variable and the stack to be empty when we enter the method. In con-

trast, the lightweight method does not have any local variables and expects the parameter

to be on the stack at the start of the method.

We added a new instruction, INVOKELIGHT, to call lightweight methods. Listing

5.4 shows how INVOKELIGHT and INVOKESTATIC are translated to native code. Both
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first flush the stack cache to memory. After that, the lightweight invocation can directly

call the implementation of isOdd, while the normal version first saves the stack pointers,

and then enters an expensive call to the callMethod function in the VM, which will set

up a stack frame for isOdd, and then call the actual method.

1 // NORMAL INVOCATION
2 // INVOKESTATIC isOdd:
3 push r25 // Flush the cache
4 push r24
5 call &preinvoke // Save X and SP
6 ldi r22, 253 // Set parameters
7 ldi r23, 2 // for callMethod
8 ldi r24, 21
9 ldi r20, 64
10 ldi r21, 42
11 ldi r18, 13
12 ldi r19, 0
13 ldi r25, 2
14 call &callMethod // Call to VM
15 call &postinvoke // Restore X and SP

// LIGHTWEIGHT INVOCATION
// INVOKELIGHT isOdd:

push r25 // Flush the cache
push r24
call &isOdd

Listing 5.4: Comparison of lightweight and normal method invocation

Local variables

The lightweight implementation of the isOdd example only needs to process the values

that are on the stack, but this is only possible for the smallest methods. If a lightweight

method has local variables, space is reserved for them in the caller’s stack frame, equal to

the maximum number of slots needed by all the lightweight methods it may call.

CapeVM uses the ATmega’s Y register to point to the start of a method’s local vari-

ables. To call a lightweight method with local variables, the caller shifts Y up to the

region reserved for lightweight method variables before doing the CALL. The lightweight

method can then access its locals as if it were a normal method. After the lightweight

method returns, the caller lowers Y, so it points to the caller’s own variables again.

Nested calls

A final extension is to allow for nested calls. While frequently called leaf methods ben-

efit the most from lightweight methods, there are many cases where it is useful for one

lightweight methods to call another. A good example from the CoreMark benchmark is

the 32-bit crcu32 function, which is implemented as two calls to crcu16. For the best
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performance, both methods should be lightweight.

So far we have not discussed how to handle the return address in a lightweight method.

The AOT compiler uses the native stack to store VM’s integer stack value, which means

the operands to a lightweight method will be on the native stack. But after a native CALL

instruction, the return address is also put on the native stack, covering the method param-

eters.

For leafmethods, the lightweightmethodwill first pop the return address into two fixed

registers, and avoid using these register for stack caching. When the method returns, the

return address is pushed back onto the stack just before the RET instruction.

For lightweight methods that will call another lightweight method, the return value is

also popped from the stack, but instead of leaving it in the fixed register, where it would be

overwritten by the nested call, it is saved in the first local variable slot andY is incremented

to skip this slot. Since each lightweight method has its own block of locals, lightweight

calls can be nested as deeply as needed.

This difference in method prologue and epilogue is the only difference in the way

the VM generates code for a lightweight method, all bytecode instructions can then be

translated the same way as for a normal method.

Stack frame layout

A normal method that invokes a possible string of lightweight methods, needs to save

space for this in its stack frame. How much space it needs to reserve can be determined

by the infuser at compile time, and this information is added to the method header used to

create the stack frame.

An example is shown in Figure 5.3, which shows the stack frame for a normal method

f, which calls lightweight method g_lw, which in turn calls another lightweight method

h_lw.

The stack frame for f contains space for its own locals, and for the locals of the

lightweight method it calls: g_lw. In turn, g_lw’s locals contain space for h_lw’s lo-

cals, as well as a slot to store the return address back to f. Since h_lw does not call any
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Stack frame layout for method f,

dj_frame* parent

int16_t* saved_intStack

ref_t* saved_refStack

dj_global_id method

dj_frame* parent

int16_t* saved_intStack

ref_t* saved_refStack

dj_global_id method

own local variables

Y when executing f

Y when executing h_lw

Y when executing g_lw

h_lw’s local variables

g_lw’s local variables

return address to from g_lw to f
Y when calling g_lw

which calls lightweight method g_lw

local variables

reference stack

reference stack

optional extra space for lw methods

Stack frame layout for methods
without lightweight method calls

Figure 5.3: Stack frame layout for a normal method f, which calls lightweight method
g_lw, which in turn calls lightweight method h_lw

other methods, it just keeps its return address in registers.

When a method calls a lightweight method with local variables, it will move the Y

register to point to the lightweight method’s locals. From Figure 5.3 it is clear it only

needs to increment Y by the size of its own locals. For f, this will place the Y register at

the beginning of g_lw’s locals. Since g_lw may call h_lw, g_lw’s prologue will first

store the return address in the first local slot, moving Y forward in the process so that Y

points to the first free slot.

Mark loops

Lightweight methods may use any register and do not save call-saved registers like normal

methods. When a lightweight method is called inside a MARKLOOP block, it may corrupt

some of the variables pinned to registers. In this case the caller saves those variables

back to memory before calling the lightweight method and loads them again after the call

returns. Since lightweight methods always come before their invocation in the infusion,

the VM already knows which registers it will use, and will only save and restore pinned

variables if there is a conflict. Because registers for MARKLOOP are allocated low to high,

and for normal stack caching from high to low, in many cases the two may not collide.

85



doi:10.6342/NTU201800775

Example call

An example of the most complex case for a lightweight call is shown in Listing 5.5, which

shows how method f from Figure 5.3 would call g_lw, assuming f is in a MARKLOOP

block at the time which pinned a variable to registers R14:R15, and these registers are also

used by g_lw.

In the translation of the INVOKELIGHT instruction, first the stack cache is flushed to

memory, then the value of the local variable at offset 22 is saved because it was pinned to

R14:R15. Next, the Y register is incremented to skip the caller’s own local variables and

point to the start of the space reserved for lightweight method locals.

In the implementation of g_lw, the return address is popped off the stack into

R18:R19. Since g_lw may call another lightweight method which will do the same, the

return address is stored in the first local slot, incrementing Y in the process. After g_lw’s

body, the return address is pushed back onto the stack before the final ret instruction.

After g_lw returns, the reverse process is used to return to the caller: the Y register

is restored to point to the caller’s locals, and the local variable at offset 22 is loaded back

into the pinned registers R14:R15.

1 // LIGHTWEIGHT INVOCATION
2 INVOKELIGHT g_lw
3 push r25 // Flush the cache
4 push r24
5 std Y+22, r14 // Save pinned value
6 std Y+23, r15
7 adiw Y, 26 // Move Y to g_lw's
8 call &g_lw // locals
9
10
11
12
13
14
15
16
17
18
19
20
21 sbiw Y, 26 // Restore Y
22 ldd r14, Y+22 // Reload pinned value
23 ldd r15, Y+23

// IMPLEMENTATION OF g_lw

pop r18 // Pop the return address
pop r19
st Y+, r18 // Save in 1st local slot,
st Y+, r19 // and increment Y

.. // g_lw's body

ld r19, -Y // Load return address,
ld r18, -Y // and decrement Y
push r19 // Push return address
push r18 // onto the stack
ret

Listing 5.5: Full lightweight method call
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5.4.2 Creating lightweight methods

CapeVM currently supports two ways to create lightweight methods:

• Handwritten bytecode

• Converted Java methods

Handwritten bytecode

For the first option, a method is declared native in the Java source code, so the code

calling it will compile as usual. The infuser is provided with a handwritten implementation

in bytecode, which it will simply add to the infusion, and then process in the same way it

processes a normal method, with one additional step:

For lightweight methods, the parameters will be on the stack at the start of the method,

but the infuser expects to start with an empty stack. To allow the infuser to process them

like other methods, a dummy LW_PARAMETER instruction is added for each parameter.

This instruction is skipped when writing the binary infusion, but it tricks the infuser into

thinking the parameters are being put on the stack.

Converted Java methods

This handwritten approach is useful for the smallest methods, and allows us to create

bytecode that only uses the stack, which produces the most efficient code. But for more

complex methods it quickly becomes very cumbersome to write the bytecode by hand.

As a second, slightly slower, but more convenient option, normal Java methods can be

converted to lightweight methods by adding a @Lightweight annotation to it.

The infuser will scan all the methods in an infusion for this annotation. When it finds

a method marked @Lightweight, the transformation to turn a normal method into a

lightweight one is simple: for each parameter, a dummy LW_PARAMETER instruction is

added to the start of the method, followed by a STORE instruction to pop the parameter

off the stack and store it in the right local variable. After this, the method can be called as

a lightweight method.

87



doi:10.6342/NTU201800775

Listing 5.6 shows the difference for the isOdd method. We can see this approach

adds some overhead in the form of a SSTORE_0 and a SLOAD_0 instruction. However,

using popped value caching, only the SSTORE_0 will have a run-time cost. Another

disadvantage of the converted method is that it uses a local variable, which will slightly

increase memory usage, but in return this approach gives us a very easy way to create

lightweight methods.

1 // JAVA
2 @Lightweight
3 public static boolean
4 isOdd (short a)
5 {
6 return (a & (short)1)==1;
7 }

// HANDWRITTEN
// (Stack)
LW_PARAMETER (Int)
SCONST_1 (Int,Int)
SAND (Int)
SRETURN ()

// CONVERTED JAVA
// (Stack)
LW_PARAMETER (Int)
SSTORE_0 ()
SLOAD_0 (Int)
SCONST_1 (Int,Int)
SAND (Int)
SRETURN ()

Listing 5.6: Comparison of hand written lightweight method and converted Java method

Replacing INVOKEs

The infuser does a few more transformations to the bytecode. Every method is scanned

for INVOKESTATIC instructions that invoke a lightweight method. These are simply

replaced by an INVOKELIGHT instruction, and the number of extra slots for the reference

stack and local variables of the current method is increased if necessary. Finally, methods

are sorted so a lightweight method will be defined before it is invoked, to ensure the VM

can always generate the CALL directly.

5.4.3 Overhead comparison

We now compare the overhead for the various ways we can call a method in Table 5.7.

Manually inlining code yields the best performance, but at the cost of increasing code

size if larger methods are inlined. ProGuard inlining is slightly more expensive because

it always saves parameters in local variables.

Both lightweight methods options cause some overhead, although this is very little

compared to a full method call. First, we need to flush the stack cache to memory to

make sure the parameters are on the real stack. This takes two push and eventually two
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Table 5.7: Approximate cycles of overhead caused by different ways of invoking a method

Manual ProGuard Stack-only Converted Java Normal
inlining inlining lightweight lightweight method call

flush the stack cache 8 per word 8 per word 8 per word
INVOKE 8 to 68 8 to 68 ~80
create stack frame ~450
method pro-/epilogue 8 or 16 8 or 16 10 to 71
store and load parameters 4 or 8 per word 4 or 8 per word 4 or 8 per word

total 4 or 8 per word 16 to 84 + 16 to 84 + ~540 to ~601 +
8 per word 12 or 16 per word 12 or 16 per word

corresponding pop instructions per word, costing 8 cycles per word. In addition, we need

to clear the value tags from the stack cache, which means we may not be able to skip as

many LOAD instructions after the lightweight call, but the effect of this is hard to quantify.

Next the cost of translating the INVOKE instruction varies depending on the situation.

In the simplest case it is simply a CALL to the lightweight method, which together with

the corresponding RET costs 8 cycles. The worst case is 68 cycles when the lightweight

method has local variables, uses all registers, and the caller used the maximum of 7 pairs

to pin variables in a MARKLOOP block.

After calling the method, the method prologue for lightweight methods is very simple.

It saves the return address and restores it in the epilogue, which takes 8 cycles if left in a

register, or 16 if it needs to be stored in a local variable slot.

For small handwritten lightweight methods this is the only cost, but for larger ones

created by converting a Java method, we add STORE instructions to copy the parameters

from the stack into local variables, as shown in Listing 5.6. This is similar to the only

overhead incurred by ProGuard’s method inlining, and costs 4 cycles per word for the

STORE, and possibly 4 more if the corresponding LOAD cannot be eliminated by popped

value caching.

The total overhead for a lightweight method call scales nicely with the method’s com-

plexity. For the smallest methods, the minimum is only 16 cycles, plus 8 cycles per word

for the parameters. For the most complex cases this may go up to 100 to 150 cycles. But

these methods must be more complex and will have a longer run time, which limits the

relative overhead.
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The number of cycles in Table 5.7 is just a broad indication of the overhead. Some

factors, such as the cost of clearing the value tags is hard to predict, and inlining may

allow optimisations that are not possible with a method call. In practice the actual cost in

a number of specific cases we examined varies, but is in the range we predicted.

For a normal method call the cost is much higher, and less dependent on the complexity

of the method that is called. The overhead from setting up the stack frame, and the more

expensive translation of the INVOKE instruction (see Listing 5.3) are fixed, meaning a

call will cost at least around 540 cycles, increasing to over 700 cycles for more complex

methods taking many parameters.

5.4.4 Limitations and trade-offs

There are a few limitations to the use of lightweight methods:

No recursion Since the infuser needs to be able to determine howmuch space to reserve

in the caller’s stack frame for a lightweight method’s reference stack and local variables,

recursion is not supported, although lightweight calls can be nested. While this is clearly

a limitation, recursive code is not common on sensor nodes because of the limited amount

of memory available.

No garbage collection Lightweight methods reuse the caller’s stack frame. This is a

problem for the garbage collector, which works by inspecting each stack frame and find-

ing the references on the stack and in local variables. If the garbage collector would be

triggered while a lightweight method is being executed, it would not know where to find

the lightweight method’s references, since the stack frame only has information for the

method that owns it. Thus, lightweight methods cannot perform any action that may trig-

ger the garbage collector.

While it may be possible to relax this constraint with some effort, in most cases this

is only a minor restriction. Lightweight methods are most useful for fast and frequently

called methods, and operations that may trigger the garbage collector are usually expen-

sive, so there is less to be gained from using a lightweight method in these situations.
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Static only Lightweight virtual methods are not supported, but this is something that

could be considered in future work. However, in all our benchmarks, virtual methods

were only used in a single case that could easily be transformed into code using static

methods (see Section 7.2.2).

Stack frame memory usage Finally, we should remember that a method calling a

lightweight method always reserves space for it in its locals. This space is reserved,

regardless of whether the lightweight method is currently executing or not, and the more

nested lightweight calls are made, the more space needs to be reserved.

As an example, consider a method f1 which may call a lightweight method with a

large number of local variables, big_lw, but is currently calling normal method f2,

which may also call big_lw. In this case space for big_lw will be reserved twice,

both in f1’s and in f2’s frame. Thus, some restraint should be used when making larger

methods at the top of the call tree lightweight.
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Chapter 6

Safety

The second goal of this dissertation is to develop a VM that offers a ’safe’ execution

environment, and to compare the cost of doing so using a VM to existing native code

approaches.

A safe execution environment is one that guarantees an application cannot harm the

system it is running on or other applications running on the same system. Specifically, an

application cannot:

1. Execute code it does not have permission for,

2. Write to memory outside the areas assigned to it, or

3. Retain control of the CPU indefinitely.

Given the first two, the last guarantee is easy to implement: the VM can use interrupts

or set a timer to trap back to the VM and regain control when needed. As long as the

other guarantees hold, the application will not be able to disable these without the VM’s

permission.

To guard against programming errors as well as malicious attacks, we focus on the

second type of approaches shown in Figure 3.5. CapeVM does not rely on a trusted host

to guarantee safety, but can do so independent of the code it receives.

As discussed in Chapter 3, most generic sensor nodes VMs do not consider safety, with

the exception of SensorScheme [27], but a number of native code systems have been de-
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Table 6.1: List of safety checks

Translation-time checks
T-1 For each method header, the number of own local variable slots <= the number of total variable

slots, the number of (int/ref) arguments <= the number of (int/ref) variables, static methods are
not abstract.

T-2 The last instruction of each method is a RETURN or GOTO.
T-3 Branch instructions branch to an index < the number of BRTARGETs announced in the method

header.
T-4 At the end of each method, the number of BRTARGET instructions encountered is equal to the

number announced in the method header.
T-5 The target for an INVOKELIGHT call is already translated, so the target address is known.
T-6 The target method header for an INVOKESTATIC/INVOKESPECIAL exists.
T-7 a After popping a method’s return value, the stack is empty.
T-8 a At each INVOKELIGHT instruction, the max stack of the caller >= the current stack depth - the

number of arguments to the callee + the max stack of the callee.
T-9 a Before each instruction, the stack depth >= the number of elements to be consumed by the in-

struction.
T-10 a After each instruction, the stack depth <= the max stack depth announced in the header.
T-11 a The stack is empty at branches and branch targets.
T-12 For each INVOKELIGHT, the total number of variable slots - the number of own variable slots

for the caller >= the total number of variable slots for the callee.
T-13 The index of each local variable < the number of own variable slots for the current method.
T-14 The target infusion of each static variable access exists.
T-15 The index of each static variable < the number of static variable slots for the target infusion.

Run-time checks
R-1 The target implementation for an INVOKEVIRTUAL/INVOKEINTERFACE is found.
R-2 Whenever a new stack frame is allocated, the frame address - max integer stack space - some

safety margin > the end of the heap.
R-3 The target implementation for an INVOKEVIRTUAL/INVOKEINTERFACE matches the stack

effects used to verify the caller’s stack at translation time.
R-4 The target address of an array element or object field is within the heap.
R-5 The headers of heap chunks form a consistent chain of chunks, ending at the byte indicated by a

pointer to the first free heap byte.
a for both the integer and reference stack

veloped. This is unfortunate because using a VM has some distinct advantages compared

to native code systems that guarantee safety.

Both the machine model and the instruction set of the virtual machine are more struc-

tured than a real CPU. This restricts what a bytecode instruction can do, which in turn

allows the VM to verify safety for many instructions at translation time.

As an example, memory on the physical CPU is a flat address space, and the ATmega’s

store instructions can write to any address in memory, which means any write could po-

tentially corrupt memory. In the VM, memory for local variables, static variables, and

for objects and arrays are separated, and the VM has separate instructions to target each

of them as an offset within their respective regions. Similarly, native code can branch to
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any address within flash memory, while the VM’s branches target the id of a branch target

within the current method.

In CapeVM, the programme eventually also runs as native code on the physical CPU,

but the VM is in complete control of how this code is generated and the context in which it

runs. As shown in the next sections, this make it easy to determine at translation time that

stores to local and static variables will write to space reserved for a local or static variable,

and that branches will branch to a legal instruction within the method.

Table 6.1 contains the list of checks done by CapeVM to guarantee safety. To show

these are sufficient to satisfy the high level guarantees listed before, we first express them

as concrete constraints specific to CapeVM:

• Control flow safety: after starting the application, the VM is always executing either

– a translated bytecode instruction in the current method from the start, or

– code in the VM itself, as a result of either a call to a VM function from a

translated bytecode instruction, or returning from a method.

• Memory safety: any write to memory done by the application is to a legal location:

either

– memory reserved for the operand stack, or

– a valid local or static variable slot, or

– the area of the heap assigned to the application.

The control flow guarantees make sure code cannot jump to a point half-way a gen-

erated instruction to skip run-time checks, or to anywhere in the VM except through the

proper entry points defined by the VM. As in normal Java, the bytecode instructions in

CapeVM can only modify state within the virtual machine. There are no special instruc-

tions to access sensors and actuators as in, for example, Maté. Thus, access to external

resources is assumed to happen through calls to natively implemented library functions,

which returns control to VM and allows it to check whether the application has permission

to do so.
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Clearly, the VMwill be in a legal state when a programme starts: the VM will jump to

the beginning of the first instruction and no writes will have occurred yet. We will show

the checks in Table 6.1 are sufficient to ensure the two safety constraints, by examining

how each bytecode instruction can affect control flow and write to memory, and list the

checks necessary to ensure the VM is still in a legal state after executing each instruction.

Both guarantees depend on each other: memory safety is assumedwhen discussing control

flow safety and vice versa.

Each method in CapeVM has a small method header defining properties such as the

maximum stack size, number of local variables, return type, etc. The VM uses this header

to create the stack frame, and to determine the effects of a call to a method on the caller’s

operand stack. Therefore, many of the checks are to ensure the implementation of the

method follows the contract established in the method header. When the node receives

new code, it first receives the headers for all methods, followed by their implementations,

so the contracts for all methods are known when the bytecode is translated.

The first check is a basic sanity check on the data in the method headers (T-1). Since

each parameter becomes a local variable, the number of local variable slots must be at

least as high as the number of parameters, and the total number of slots must be at least as

high as the method’s own local variable slots, while the rest may be used for lightweight

methods. Finally, a method cannot be marked static and abstract at the same time.

6.1 Control flow safety

We show control flow safety is guaranteed by our checks by considering all bytecode

instructions, and showing they either flow into the start of a legal next instruction, or return

control back to the VM. Regarding their effect on control flow, the bytecode instructions

can be grouped into four categories, shown in Table 6.2.

The state is correct at the start of the programme, since the VMwill start it by jumping

to the beginning of the first instruction in the main method. We will show the state will

be correct after each following instruction by looking at these four categories.
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Table 6.2: Instructions affecting control flow

Type Effect on control flow

Branches Jump to a location within the method
INVOKE Call a method, either through the VM or directly
RETURN Return to the address at the top of the stack
Others Fall through to the next bytecode instruction

6.1.1 Simple instructions

Starting with the last category: most instructions such asmath operations, loads and stores,

are translated to a sequence of native instructions that will be executed top to bottom. In

some cases this may call to a VM or libc function to perform some complex operation,

but these calls return to the current instruction once the operation is complete.

For this category, the generated code will naturally flow into the start of the next gen-

erated instruction. This is means the control flow constraint would be broken if there is no

next instruction, which produces the second translation-time check, T-2: the last instruc-

tion in a method must be a RETURN or GOTO to prevent control from flowing out of the

method body.

6.1.2 Branch instructions

In CapeVM bytecode, branches do not target an offset as in normal JVM bytecode, but

the id of a branch target. These targets are marked with BRTARGET instructions, which

do not emit any code, but cause the AOT compiler to collect the address in a temporary

table during translation. Once the whole method is translated, this temporary table is used

to patch the correct target address into the branch instructions.

Each method announces the number of branch targets that will be used in the method

header. Non-taken branches flow into the next instruction because T-2 guarantees they are

not the last instruction in a method. To ensure a taken branch will branch to the start of a

correct instruction within the method, two checks are needed: the target id of each branch

must be lower than number of branch targets announced in the method header (T-3), and at

the end of the method the number of BRTARGET instructions encountered must be equal

to the number announced in the header (T-4). The first guarantees each branch refers to
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an entry within the temporary table, while the second guarantees all entries in the table are

filled with a valid address.

6.1.3 Method invocation instructions

There are three kinds of method invocations.

For lightweight method calls, the implementation of the target method is required to

come before any method invoking it, to ensure the address of the target is known at trans-

lation time and the VM can directly generate a CALL to the method. Ensuring this calls to

a correct address is therefore trivial: for INVOKELIGHT instructions, the implementation

of the target method must already have been translated (T-5).

For static calls (INVOKESTATIC andINVOKESPECIAL) the target method is known

at translation time, but it may not have been translated yet if the implementation follows

later in the infusion. For these instructions, a CALL to the VM’s callMethod function

is generated, passing the id of the target method as a parameter. At run time this id will be

used as an index in the method table to find its implementation. Because the VM receives

all the method headers before translating their implementations, it can check at translation

time that the method id is known (T-6). Since the VM will not start an application before

all methods are translated, this guarantees that callMethod will find the target at run

time.

Finally, for INVOKEVIRTUAL and INVOKEINTERFACE, the target is not known at

translation time, since this depends on the object the method is invoked on. Darjeeling

does not use dispatch tables to call virtual methods. Instead, each infusion contains a

flattened list of methods that are scanned to find the right implementation for the current

object. Therefore a run-time check is needed to verify the method can be found (R-1), but

since this is necessary to make the call, this check does not add any extra overhead.

Again, once the call returns, check T-2 ensures control will flow into a valid next

instruction.
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6.1.4 Return instructions

Finally, return instructions pop the return value from the stack, and then emit a native

RET instruction to exit the method and return control, either directly to the AOT compiled

code of the caller for lightweight method calls, or to the VM’s callMethod function for

normal methods.

The RET instruction takes the return address from the native stack, which is also used

to store the VM’s integer operand stack. This means the integer operand stack needs to

be empty at return instructions (T-7) to ensure the correct address will be at the top of the

native stack. Memory safety then guarantees the application could not have corrupted it.

Without this check, malicious code could leave an integer on the stack and use the return

instruction to jump to an arbitrary location.

A second way the return address could be corrupted is if the native stack overflows

into the VM’s heap. In CapeVM the heap is a fixed sized block that sits above other global

variables, and below the native stack that grows down towards it. If the native stack grows

into the area reserved for the heap, a return address may be corrupted by an otherwise valid

heap write.

To prevent this, a run-time check is added to non-lightweight invokes, that checks the

stack frame for the called method, plus its maximum integer stack size, does not grow

into the heap (R-2). Lightweight calls do not add to the stack, since space for their local

variables, stack, and return address was already allocated in the caller’s frame.

While running, a method may make calls to the VM or libc functions, causing the

native stack to grow further. Since the maximum stack growth for such calls is fixed, a

certain safety margin is added between the stack and heap. A similar gap of 128 bytes

between the stack and kernel heap is reserved by t-kernel [34], although it is not clear

from the paper whether this is for the same reason.
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Figure 6.1: Global memory layout and the areas accessible to the application
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Table 6.3: Instructions writing to memory

Type Writes to

Any instruction pushing to the operand stack The reference or integer stack
STORE A local variable in the current method’s stack frame
PUTSTATIC A static variable in an infusion
NEW The heap
PUTARRAY An array on the heap
PUTFIELD An object on the heap

6.2 Memory safety

Figure 6.1 shows the global layout of the VM’s memory. At the bottom are the internal

state of the VM, stored in a number of global variables, and a block with infusion de-

scriptors which includes space for the static variables of each class in the infusion. This

is followed by the application heap, which contains Java objects and arrays.

The native stack grows down in memory towards the heap. This contains a mix of

native stack frames for internal VM functions, the application’s VM stack frames, and

the integer operand stacks which grow down directly on top of the native stack. The

application’s stack frames, shown in Figure 4.2 consist of internal bookkeeping fields,

space for local variables, and the reference operand stack.

Thus, the VM’s private data and the application data are mixed in the node’s memory.

The application is only allowed to write to the areas indicated with bars to the right in

Figure 6.1. Any write outside of these designated areas may corrupt the VM’s internal

state, and needs to be prevented by safety checks.

Having ensured control flow safety, we can rely on the fact that the VM will always

execute complete bytecode instructions, and the application cannot skip past inserted run-

time checks. Similar to control flow safety, we demonstrate memory safety by grouping

instructions with respect to their memory writes, as shown in Table 6.3, and defining the

checks necessary for each category.
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6.2.1 The operand stack

The VM will reserve space for the operand stacks based on the maximum stack depth in

the method headers, so it needs to make sure the actual stack depth neither underflows, or

exceeds the maximum announced in the header. Everything in this section applies equally

to the integer and reference stack.

The VM creates a stack frame based on the method header, so at translation time it is

known exactly how much space will be available at run time. Lightweight methods do

not create their own stack frame, but depend on the caller’s stack frame. Whenever an

INVOKELIGHT instruction is translated, the VM needs to verify the stack frame of the

current method has reserved enough free space for the lightweight method’s stack (T-8).

The effect of each instruction on the operand stack is known at translation time, so the

stack depth can be verified in a single top to bottom pass. While translating a method, the

VM maintains two counters indicating how many values are on the integer and reference

stacks, and updates these counters for each instruction’s stack effects. For normal methods

both counters are initialised to 0, since they start with empty stacks. Lightweight methods

start with their parameters on the stack, so for these the counters are initialised according

to the number of arguments announced in the method header.

For each translated instruction, the VM checks there are enough values on the stack to

consume its operands (T-9), and that the maximum stack depth announced in the header

is not exceeded after pushing its results (T-10).

Branches The BRTARGET instruction poses a problem for this single pass approach

since it can be reached from multiple locations, so the stack depth when entering this

instruction is unknown.

The simplest solution is to require the stack to be empty at all branches. As mentioned

in Section 5.3.2, this is already the case for most code generated by javac.

Alternatively, the expected stack state at each branch target could be included in the

method header, which would allow the VM to check the state matches this expected state

at each branch and branch target. However, this is more complex and in practice the
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overhead for requiring an empty operand stack at branches is minimal: in our entire Java

codebase only a few small modifications were necessary, which a future combined opti-

mising infuser could do automatically.

Therefore, the VM only verifies the stack is empty at branches and branch targets

(T-11).

Invoke instructions Most bytecode instructions have a fixed effect on the stack, for

example IADD will always consume two 32-bit ints and push another. We encode this in

a simple table. Method calls require some more attention.

The INVOKESTATIC, INVOKESPECIAL, and INVOKELIGHT instructions all con-

tain the id of the method that will be invoked. For these, the number of arguments and

return type in the target method’s header are used to determine the instruction’s stack ef-

fects.

For INVOKEVIRTUAL and INVOKEINTERFACE the actual method that will be

called depends on the object on the stack at run time. For these, the expected stack effect

is determined based on the first implementation that matches the call. For valid code all

implementations should have the same signature, and thus the same effect on the stack,

but malicious code could send an implementation in a subclass that has different stack

effects. Therefore, a run-time check (R-3) is added that verifies the method called at run

time has the same stack effects as the one used to verify the stack at translation time.

Return instructions Note that RETURN instructions do not need any special care. The

stack depth in the method is verified using the instruction found in the bytecode. It is

possible for a method to break the contract established in the method header, for example

by using RETURN instead of IRETURN in a method that should return an int. However,

this is still safe as long as the stack is empty after the return instruction, as checked by T-7.

Because the return value is passed back to the calling method in registers, the result of

using an incorrect return instruction is that either the return value is discarded, or whatever

happens to be in the registers is used as a return value. This may corrupt the application’s

own state, but not the VM’s.
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6.2.2 STORE

Local variables are accessed as an offset from the Y register, which is under control of

the VM and points to the start of the local variables, as shown in Figure 6.1. Similar to

the operand stack, the method header contains the number of variable slots that will be

allocated in a normal method’s stack frame. For lightweight methods, the VM checks

INVOKELIGHT instructions to verify the caller has reserved enough local variable slots

for the target method (T-12), so the number of slots specified in a lightweight method’s

header is also guaranteed to be available at run time.

Local variables are written to using the STORE instructions. Each STORE instruction

contains the index of the local variable slot to write to, so the VM only needs to check at

translation time that the index of the local is within the range announced in the method

header to guarantee it writes to a valid location (T-13).

6.2.3 PUTSTATIC

Static variables are allocated globally before the application is started, based on number

of static variables in the infusion header. The PUTSTATIC instruction contains the id of

an infusion, and the index of the target static variable slot. At translation time, the VM

checks the referenced infusion exists (T-14), and the index is within the legal range (T-15)

for that infusion.

6.2.4 NEW, PUTFIELD and PUTARRAY

The final type ofmemory access is to the heap. The variousNEW instructions used to create

arrays and objects are fully implemented by a call to the VM, which only allocates new

objects at a valid heap location and will terminate the application if it runs out of memory.

Writes to object fields and array elements happen using the PUTFIELD and PUTARRAY

instructions.

These instructions both work on an object reference, so a null reference bug could

easily cause the VM towrite to the lowest addresses. In the ATmega, the lowest 32 bytes of
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the address space aremapped to the CPU’s general purpose registers, so this can cause very

hard to diagnose bugs. Similarly, using a high out-of-bounds index into an array, malicious

code could gain access to the native stack and, for instance, corrupt return addresses.

In some cases it may be possible to verify these operations at translation time, but

this is hard without extensive analysis that would be too expensive for a sensor node.

Therefore a run-time check is added when translating these instructions, which checks the

target address is within the heap just before the actual write to memory (R-4).

1 heapcheck:
2 lds r0, heap_lo_bound
3 cp ZL, r0
4 lds r0, heap_lo_bound + 1
5 cpc ZH, r0
6 brlo illegal_access_handler:
7 lds r0, heap_hi_bound
8 cp r0, ZL
9 lds r0, heap_hi_bound + 1
10 cpc r0, ZH
11 brlo illegal_access_handler:
12 ret

Listing 6.1: Heap bounds check

The VM stores the bounds of the heap in two variables: heap_lo_bound and

heap_hi_bound, as shown in Figure 6.1. Each heap access instruction calcu-

lates the address to write to in the ATmega’s Z register. Just before the write to the

heap, the VM inserts a CALL to the heapcheck function shown in Listing 6.1.

This function checks the address in Z is within these bounds. If not, it jumps to the

illegal_access_handler, allowing the VM to terminate the application. This

adds 22 cycles overhead for each array or object write, and 4 bytes code size overhead

for the CALL instruction.

The actual write to the heap is often done by an offset from Z using the ATmega’s

STD, or ’store indirect with displacement’ instruction, that allows writes to a fixed offset

of at most 63 bytes from Z. For example, to write to object fields whose offset within the

object is known at translation time, the VM simply loads the object’s address into Z and

uses STD to write to the correct offset.

This means the write could target an address at most 63 bytes above the end of the

heap. One way to prevent this is to avoid the STD instruction, and instead use the ADIW
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instruction to first add the offset to Z and then use the normal ST instruction to store

without displacement. However, this would add an overhead of 2 bytes and 2 cycles.

Instead we reuse the same small safety margin mentioned in Section 6.1.4 for check R-2.

Reusing the same margin for both cases is safe because the VM can never write to a heap

object and execute a function in the VM or libc at the same time.

Alternatives We considered several alternative implementations for heapcheck.

Since the CALL and RET instructions are expensive, 7 cycles can be saved by inlining the

check instead of calling it. However, this increases the code size overhead from 4 bytes

to over 30 bytes, which we consider too high.

If the top and bottom boundaries of the heap are aligned at 256 bytes, this eliminates

the need to check the lower byte of the Z register. This saves 6 of the 22 cycles, but wastes

RAM since some bytes below and above the heap would have to remain unused. Since

RAM is such a scarce resource and the performance gain is limited, we decided against

this.

Finally, 8 cycles can be saved by keeping the bounds in registers instead of memory,

which removes the need for the LDS instructions. However this reduces the performance

of the stack cache since these registers would not be available for stack caching. Which

of these affects performance more depends on the code being executed. We evaluate the

difference in Section 7.8.1. Since having the bounds in registers is more complex to im-

plement, thus increasing VM size, we choose to keep the bounds in memory.

Heap corruption Since the garbage collector compacts the heap when it frees anymem-

ory, the heap is always split into an in-use part and a free part. A pointer in the VM points

to the first free byte. This pointer is moved forward when memory is allocated, and moved

backward when the garbage collector compacts the heap.

The in-use part of the heap is made up of chunks, which have a small header indicating

their size. The heap access check only verifies a write is to an address within the heap, but

not that the address is a correct address within the target object. Code may still corrupt

parts of the heap, including these heap headers.
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Table 6.4: Comparison of CapeVM’s safety guarantees to source code approaches

CapeVM and Source code approaches
native code approaches

Safety checks added/verified at The node The host
Protects The VM The VM and the application
Protects against malicious code Yes No
Detects certain programming errors No, but could be added Yes

at a cost

This does not break the safety guarantees since the heap headers are not used until

control is returned to the VM. The headers are only used by the garbage collector, so

before the garbage collector starts, the VM checks the integrity of the heap headers (R-5),

which must form a consistent chain of chunks, ending at the first free byte.

6.3 Comparison to other systems

This section compares CapeVM’s approach to other systems providing safety. Section

4.10 of the Java Virtual Machine Specification [56] specifies a number of checks an im-

plementation must do to comply with the standard. CapeVM’s checks are different in

two ways: First, they are defined at a lower level, specific to our VM’s implementation.

Second, since CapeVM’s goal is only to ensure the application cannot corrupt the VM, its

checks are less restrictive than the JVM specification.

For example, CapeVM allows out of bounds array indexes. While incorrect, these do

not violate the safety guarantees as long as the write stays within the heap. Out of bounds

array access indicates a bug in the programme, and failing early instead of corrupting the

application’s state usually makes it much easier to find the bug. CapeVM’s checks ensure

malicious code cannot corrupt the VM, but they do not prevent such programming errors

from corrupting the application’s own state, unless they also violate the safety constraints.

Section 3.7.1 introduced a number of systems such as Safe TinyOS [19] that work

on the source code level. While seemingly similar, they are actually the reverse in the

sense that their more fine-grained checks do prevent certain programming errors from

corrupting the application’s state, but since the node assumes the necessary checks to be
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in place, they cannot guard against malicious code sent to the device. Because in these

systems the safety checks are added by the host, more complex analysis can be done on

the source code to prove certain operations to be safe at compile time, which reduces the

number of necessary safety checks and thus the run-time overhead.

The checks in the JVM’s specification both protect the VM against malicious code

and the application from certain programming errors. Desktop JVMs, like the host in

Safe TinyOS, have ample resources to do the analysis necessary to reduce the overhead

of fine-grained checks. On a sensor node we argue the two goals require two separate

solutions.

While CapeVM’s checks could be extended to provide the same level of safety as

Safe TinyOS, to do so would require extending the existing checks to include the size of

the object or array that is being accessed, which would make them considerably more

expensive. Since CapeVM adds the safety checks on the node, it lacks the resources

necessary to do the analysis that allows Safe TinyOS to eliminate many checks. Instead,

CapeVM must conservatively check each access.

If the goal is to protect the application from programming errors that could corrupt

its own state, this implies control over the code, and an approach similar to that of Safe

TinyOS will be more efficient. Safe TinyOS works on native nesC code, but a similar sys-

tem could be developed for Java where the checks inserted by the host are implemented

as new bytecode instructions to mark array or object accesses than need run-time check-

ing, while the normal instructions can be used for accesses that were proven to be safe at

compile time and do not need a run-time check.

The difference between both approaches is summarised in Table 6.4. For some ap-

plications both may be useful. For example, in a system like the Amulet smart watch,

CapeVM’s safety checks are useful to isolate an untrusted application from the VM. At

the same time, more fine-grained checks may be added to detect buggy applications. Since

these checks are for the application’s benefit only, the node does not need to be able to

verify them and adding these checks on the host, similar to Safe TinyOS, will lead to less

overhead compared to extending the checks added by the node.
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6.3.1 SensorScheme

Next, we will compare the approach taken by CapeVM to three existing systems that

provide safety on the node. First, SensorScheme is the only sensor node VM to explicitly

mention safety, although it does not describe many the details.

SensorScheme is a LISP dialect, so both code and data are stored as lists. In Sen-

sorScheme memory is organised as a collection of fixed-sized cells that make up these

lists. Since the cells are managed by the VM this inherently gives it a level of safety, and

run-time checks are added to check the data types and length for each operation. Since

it is an interpreter, it has a large run-time overhead, which makes the added overhead of

these checks insignificant.

6.3.2 t-kernel

In addition to safety, t-kernel [34, 35] also provides a form of virtual memory which makes

it hard to compare to CapeVM directly. The authors name OS control and memory in-

tegrity as the two primitives the system needs to provide in order to protect the kernel

from the application.

OS control and control flow safety OS control is defined as the ability of the OS to

regain control of the CPU. The authors note that

Traditionally, the CPU control is guaranteed by privilege support and clock

interrupts. However, manymicrocontrollers used by sensor nodes do not have

privilege support. The application can disable interrupts and occupy the CPU

for an arbitrarily long time.

To implement its virtual memory features and safety guarantees, t-kernel extensively

rewrites, or naturalizes, the application’s binary code at run time, on demand, one 256-

byte page at a time. As a result, addresses in the original binary do not match the physical

addresses in the naturalized pages. This is solved by replacing all branching instructions,

including calls, gotos, etc., with calls back to the kernel, which then looks up the corre-

sponding physical address.
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This causes a slowdown of up to 30x. To reduce this overhead, these calls back to the

kernel are replaced with a direct jump after the first transition occurs for forward branches.

Backward branches are replaced with code that first increment an 8-bit counter, and calls

back to the kernel when this reaches zero. This guarantees the kernel gets back control at

least once for every 256 backward branches, without depending on a timer, but at the cost

of a slight overhead. Control flow safety is not explicitly discussed, but is guaranteed by

the same mechanism. Since each branch targets a virtual address, which is translated to a

physical address by the kernel, the kernel can ensure the physical address is correct.

Compared to t-kernel, it is easier for CapeVM to guarantee it can regain control of

the CPU. Since the VM offers no functions for the application to turn of interrupts or

modify timers, it can simply use an interrupt to ensure it regains control of the CPU when

necessary.

Memory safety Memory in t-kernel is split into three regions: (i) physical addresses

that map to IO ports, special registers, etc., (ii) the stack, and (iii) the heap. Most ac-

cesses, to local variables, parameters, register saves and restores, etc. are to the stack.

The naturalization process ensures stack access is safe, although the paper does not go

into details. Stack access is optimised, but there is some overhead for certain types of

access. In the worst case, indirect addressing with displacement, this takes 5 instead of

2 cycles. In CapeVM, local variable access incurs no extra overhead from safety checks,

since it can determine at translation time whether or not it targets a valid local variable

slot.

t-kernel’s virtual memory provides the application with a 60 KB heap. This is divided

in 16 byte pages, some of which are kept in buffers in RAM. Each buffered page has a

header indicating its virtual memory starting address. When the application accesses the

heap, t-kernel searches the pages in RAM, starting with the one used for the most recent

access. If the required page is not in RAM, it is swapped in from flash. Besides providing

virtual memory, this also guarantees safety since a heap write always writes to a buffered

page, and the entire virtual heap is assigned to the application.

Access to the heap is both considerably slower than stack access, and highly variable.
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The paper lists a benchmark which does repeated heap accesses without swapping. This

takes 16 cycles, compared to 2 for a normal memory access. The paper does not mention

whether the benchmarks targets different pages, but the low overheadwould suggest it may

target the same address for every write, which means the first page the kernel examines

is the correct one. If the required page is not found in RAM, it is swapped in from flash,

which takes over 180,000 cycles.

The best case access of 16 cycles is comparable to CapeVM’s 22 cycle overhead for

heap access, but will rise if multiple pages need to be searched by the kernel, or if pages

need to be swapped in from flash. Unfortunately the paper does not mention how many

pages are buffered in RAM, but it is clear applications with more data - the ones that would

benefit from having a larger virtual memory - will incur a higher overhead, either from

having to scan more buffered pages, or from having to do more swapping.

In conclusion, t-kernel’s performance overhead should be slightly higher than

CapeVM’s in most cases. In addition, the extensive rewriting of the binary code adds a

large code size overhead, reported at a 6-8.5x increase.

6.3.3 Harbor

Harbor guarantees safety by adding checks on the host. A verifier on the node then verifies

all checks are in place before executing the programme. While checks are added by the

host with its ample resources, Harbor is still bound by the limited resources on the node

since the node needs to be able to verify correctness.

Control flow safety In a Harbor application, run-time checks are added to protect writes.

To guarantee applications cannot jump past these run-time checks, Harbor disallows com-

puted branches so the verifier can check the target address of each branch.

Function returns could also be used to jump to an arbitrary location if the return address

can be corrupted. To prevent this, Harbor uses function entry and exit stubs that store

the return address in a ’safe stack’ in a reserved section of memory not accessible to the

application. This adds an overhead of 76 cycles per function call.
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Memory safety Memory safety inHarbor differs significantly fromCapeVM. The entire

address space is split into fixed sized blocks, each of which can be assigned to a module.

A memory map keeps track of the ownership of each block.

Harbor supports multiple modules, and both the block size and the maximum number

of modules are parameters that can be changed. The overhead for storing the memory map

is 256 bytes for an 8-byte block size and maximum of 8 modules, which are the defaults

used in the paper. Using only 2 modules, which is sufficient to isolate the OS from the

application, this is reduced to 128 bytes. Increasing the block size will also reduce the size

of the memory map, but at the cost of greater fragmentation.

All memory writes are preceded by a call to the write_access_check function,

which checks the current module has permission to write to the target address. This im-

poses a run-time overhead of 65 cycles per write.

CapeVM only needs a run-time check for writes to the heap, while Harbor checks

all writes, including local variables. This, combined with Harbor’s more expensive

write_access_check function, suggests its overhead will be significantly larger

than CapeVM’s.

Verifier Although Harbor’s safety checks are added on the host, the correctness of the

system only depends on the verifier running on the node. This verifier is a relatively small

and simple component.

This is a significant advantage of Harbor’s approach. Malicious attacks often exploit

bugs in the system they are trying to corrupt. Compared to more complex systems like t-

kernel and CapeVM, the simplicity and small size of Harbor’s verifier reduces the chance

of exploitable bugs, but this comes at the cost of an increased run-time overhead.
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Chapter 7

Evaluation

This dissertation presents a number of techniques to improve the performance of sensor

node virtual machines and make them safe, while staying within the constraints set out in

Section 4.1. This chapter evaluates to what extent CapeVM meets these goals by measur-

ing its performance and code size overhead for a number of different benchmarks.

First, Section 7.1 describes our experimental setup, the benchmarks used, and how the

source code for these benchmarks was obtained.

Next, Section 7.2 uses the largest benchmark to examine the effect of the lack of opti-

misations done by the standard javac compiler, and the manual optimisations performed

on the Java source.

Sections 7.3, 7.4 and 7.5 evaluate the result of the optimisations to the AOT translation

process on performance and code size.

Sections 7.6 and 7.7 focus on two specific optimisations: adding support for constant

arrays and lightweight method calls.

The cost of adding safety checks is examined in Section 7.8, which also compares

CapeVM’s overhead to existing native code systems that provide safety.

Platform independence is one of the main reasons to use a VM. While CapeVM was

only implemented for the ATmega128, Section 7.9 presents measurements that give an

indication of the expected performance on other common sensor node platforms.

Finally, in Section 7.10 we discuss the limitations and cost of using a VM, and describe

some known hard cases which CapeVM currently does not handle as well.
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7.1 Benchmarks and experimental setup

This section describes the experimental setup, the benchmarks used, how the source code

for each benchmark was obtained, and any relevant details in their implementation.

A set of twelve different benchmarks, shown in Table 7.1, is used to measure the ef-

fect of the optimisations and the overhead of safety checks. Table 7.2 shows some key

characteristics of these benchmarks: their code size, stack depth, and mix of executed in-

structions. This mix of benchmarks was chosen for several reasons. Some benchmarks,

bubble sort, binary search, MD5, FFT, and Outlier detection were chosen because they

are used in various related work, allowing a comparison of CapeVM to these results.

A number of benchmarks are small benchmarks that process arrays of data. While the

actual processing done may not be typical for sensor networks (although the MoteTrack

application does do a bubble sort), the small size of these benchmarks make them useful

to highlights specific behaviours that would be lost in the averages of a larger benchmark.

The CoreMark benchmark is an industry standard benchmark to measure CPU per-

formance. It is a larger benchmark, mixing several kinds of processing: besides array

processing in the form of matrix operations, it also contains linked list processing and a

state machine. Since CoreMark mixes different kinds of processing, it is a good example

of the expected average behaviour. The many different methods enables us to evaluate

the effect of method calls and show CapeVM can efficiently handle larger, more complex

applications.

Finally, Outlier detection, LEC, MoteTrack and heat detection are all code that was

specifically developed for sensor nodes, and FFT is a typical signal processing operation,

which is a common and potentially expensive task for sensor nodes.

Sensor nodes spend their time and energy on three main tasks: accessing sensor and

actuators, communication, and data processing. The first two require interaction with the

hardware, so they must be implemented in native code in the VM’s standard library. Since

native code is not influenced by the performance of the VM, the benchmarks used in this

evaluation focus on data processing.
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Table 7.1: Benchmarks used in the evaluation

Benchmark Source and input data Size Typical sensor Used as a
node code benchmark in

Bubble sort Darjeeling sources [12] single method no [13, 24]
Input: 256 16-bit numbers sorted in reverse
order, as in the original source.

Heap sort Standard heap sort taken from [3]. two methods no
Input: 256 16-bit numbers sorted in reverse
order.

Binary search TakaTuka sources [6] single method no [24]
Input: worst case (not found) search in 100
16-bit values, as in [24].

XXTEA Wheeler and Needham [102] single method no
Input: 32 32-bit numbers. Contents do not
affect performance.

MD5 Darjeeling sources [12] single method no [13, 24]
Input: the string ’message digest’ as in the
original source.

RC5 LibTomCrypt [86] single method no
Input: first test case in libtomcrypt sources
(64 bit).

FFT Fixed point FFT using the widespread
fix_fft.c [94].

single method yes [49]

Input: 64 8-bit or 16-bit numbers. Contents
do not affect performance.

Outlier detection Our implementation of the algorithm de-
scribed in [49].

single method yes [49]

Input: 20 16-bit values increasing from 0
to 19, with outliers of 1000 and -1000 at
index 2 and 11.

LEC Our implementation of the compression al-
gorithm described in [63].

three methods yes

Input: 256 16-bit ECG measurements
downloaded from PhysioNet [71].

CoreMark 1.0 EEMBC [89] full application no
Input: defined in CoreMark source.

MoteTrack Lorincz [60, 59] full application yes
Input: defined in MoteTrack source.

Heat detection Adapted from code used in our group to
track objects using an 8x8 pixel heat sen-
sor.

full application yes

Input: 101 frames of 8x8 16-bit values for
calibration, 25 frames for detection.

115



doi:10.6342/NTU201800775

Table 7.2: Benchmark characteristics, using optimised source code

B.sort H.sort Bin.Search XXTEA MD5 RC5 FFT Outlier LEC CoreMark MoteTrack HeatCalib HeatDetect average

CODE SIZE (BYTES)
Bytecode 74 134 83 379 2983 453 441 287 334 2788 2552 310 2661
Native C 118 298 146 1442 9458 910 1292 380 560 6128 3906 1944 5294
AOT original 418 1012 412 3792 29502 4090 2576 1402 1628 13982 12784 2454 17248
AOT optimised 258 596 310 2236 14654 2018 1324 800 1056 8990 8478 1610 10346

EXECUTED BYTECODE INSTRUCTIONS (% of total executed bytecode instructions before optimisation)
Load/Store 79.8 71.7 58.1 44.9 43.3 41.1 61.1 69.0 59.5 54.1 70.3 51.8 48.0 57.9
Constant load 0.2 8.1 11.0 12.5 19.1 17.6 6.4 0.6 7.9 10.0 5.4 10.1 16.6 9.7
Processing 8.0 7.8 14.8 32.4 28.9 36.6 18.0 13.0 12.7 14.0 5.9 17.9 10.3 16.9
math 8.0 5.5 10.3 10.1 12.5 10.7 11.6 13.0 7.1 8.2 5.9 3.7 9.4 8.9
bit shift 0.0 2.2 4.5 8.1 5.4 8.0 6.1 0.0 3.8 2.2 0.0 8.5 0.9 3.8
bit logic 0.0 0.0 0.0 14.2 11.0 17.9 0.3 0.0 1.9 3.6 0.0 5.7 0.0 4.2

Branches 12.0 10.9 15.5 4.0 5.8 2.3 5.1 17.4 10.5 16.0 13.6 14.7 19.2 11.3
Invoke 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.9 0.3 0.0 0.1
Others 0.0 1.0 0.6 0.2 2.5 2.4 9.4 0.0 7.1 4.7 2.2 4.2 5.9 3.1
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

STACK (bytes)
Max. stack 6 8 4 24 20 14 10 6 18 16 12 22 16 13.5
Avg. stack 2.08 2.37 2.14 11.76 6.30 6.77 3.36 1.89 2.73 3.15 2.19 4.83 3.08 4.1

B.sort H.sort Bin.Search XXTEA MD5 RC5 FFT Outlier LEC CoreMark MoteTrack HeatCalib HeatDetect average
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As noted before, to what extent an application is affected by the VM’s slowdown is

highly application dependent. The Amulet smart watch system discussed in Chapter 1

notes that energy consumed when the CPU is in active mode is significant, and their

breakdown of the CPU active time shows most is spent in application code rather than

the OS. Similarly, the Mercury motion analysis platform show the energy spent on feature

extraction or FFT becomes significant or dominant in the total energy consumption when

multiplied by the typical slowdown seen in interpreting VMs.

We argue that some form of array processing will be common in many sensor node

applications, and especially so in applications that are significantly affected by the VM’s

slowdown. First, arrays of data appear in many sensor node application, both in the form

of sensor data, and as sent or received radiomessages that need to be constructed or parsed.

Second, processing such arrays is likely to be a significant part of the total processing time,

for the simple reason that looping over an array of elements quickly takes more time than

processing a single value.

Finally, we note that compared to complex high performance CPUs, performance on

sensor node CPUs is less affected by the exact workload. The simple CPUs found on sen-

sor nodes typically have no caches, and no (ATmega and MSP430) or very short (Cortex-

M0) pipelines. Thus, factors like branch prediction and cache line alignment that can have

a very large impact on more complex CPUs, have no impact on the results presented here.

The largest performance difference found in all benchmarks is between a 1.18x slowdown

for FFT, and 2.56x slowdown for MoteTrack.

7.1.1 Implementation details

To ensure the results can be reproduced, we describe the implementation of our bench-

marks in this section. For most benchmarks a C version is available in the sources men-

tioned in Table 7.1. The sources for heat detection, LEC and outlier detection are not

available online, but are listed in the appendices.

The bubble sort, heap sort, FFT, binary search, and outlier detection benchmarks

could all be implemented for different data sizes. In this evaluation 16-bit data is used.
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8-bit data is too small for many tasks, for example the ATmega’s has 10-bit ADCs, and the

memory constraints of sensor nodes mean developers will often be reluctant to use 32-bit

variables where 16 bits are sufficient. Therefore, the middle option is used for the main

evaluation, and the effect on the performance of 8-bit or 32-bit data is discussed in Section

7.9.

The C versions of these benchmarks were first translated directly to Java, keeping

both implementations as close as possible. The result was then manually optimised as

described in Section 5.2. These optimisations did not affect the performance of the C

version significantly, indicating avr-gcc already does similar transformations on the

original code.

The C version was followed as closely as possible to avoid bias by optimising specif-

ically for our VM. We take a bit more liberty for the MoteTrack and heat calibration

benchmarks, since these could not be directly translated. There are cases where a devel-

oper who is aware of the performance characteristics of the VM may choose a different

approach than the one used in the C version when directly implementing in Java. We

discuss some of the issues when translating C to Java for the CoreMark benchmark in

Section 7.2.2, including two extra optimisations that could not be done automatically by

an optimising compiler, but do lead to better performance.

The benchmarks exposed some limitations of using aVM instead of native code, which

are common to most sensor node VMs. Specifically, the lack of support for constant data,

high memory overhead for code containing many small objects, and high performance

overhead for allocating temporary objects. These are discussed in more detail in Chapter

8, where we also suggest options to solve some of these limitations.

FFT

Both 8-bit and 16-bit versions of the fix_fft.c implementation exist. In the main

evaluation the 16-bit version is used, taken from the Harbor source code [94]. Both ver-

sions contain a table of precalculated sine wave values, which are stored in flash using the

constant array optimisation introduced in Section 5.3.5.
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Outlier detection

The outlier detection algorithm was implemented as described in [49]:

The outlier detector samples a set of sensor values and stores them in a

buffer. Once the buffer is filled, it computes the distance between all pairs

of samples in the buffer and stores the result in a matrix. Using a distance

threshold, the algorithm marks the distance measurements in the matrix that

are greater than the threshold. If the majority of the distance measurements

for a sensor readings are marked, then the sensor reading is classified as an

outlier.

Note that there is no reason to store the distances in a matrix, and having to allocate this

matrix limits us to small arrays of input data. The same result can be calculated directly,

without the distance matrix, by examining the samples one at a time, and counting the

number of other samples with a distance higher than the threshold.

Because this benchmark will be used to compare CapeVM’s safety cost to Harbor’s,

it was implemented as described in the paper.

LEC compression

The LEC algorithm is described in detailed pseudo code in [63]. Our implementation

follows this pseudo code as closely as possible, and is listed in Appendix A. The input is

a set of 256 16-bit ECG measurements downloaded from PhysioNet [71].

MoteTrack

The MoteTrack application uses received signal strength (RSSI) measurements from a

number of beacon nodes to do indoor localisation. It contains a database in flash memory

of reference RSSI signatures, stored in a complex structure of many small structs and

arrays in C.

The memory overhead when translating this directly to Java was too high to run the

application, forcing us to make twomodifications. First, MoteTrack has the option to store
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RSSI signatures at different transmission powers, but the authors note this may not always

improve results. The original C code only uses a single transmission power setting, which

results in arrays of a single element that get optimised away at compile time. In the Java

version these were replaced with simple variables. Second, a two element array with RSSI

values for different channels was flattened into two separated variables to eliminate the

overhead from allocating too many small arrays.

Again, the constant array optimisation was used to place the data in flash memory.

Without this optimisation, it would be impossible to implement this application in Java

because the 20 KB database is too large to fit in RAM. Since this only allows arrays of

integer types, the single array of nested C structs was split into 7 arrays for the individual

fields.

Thus, while our Java implementation of MoteTrack does execute the same algorithm

as the C version, we were forced to modify its implementation significantly, which clearly

highlights some of the weaknesses of current sensor node VMs. These changes do not

affect the results of the current version of the code, but we note that while it would be

possible to use multiple transmission powers or more channels in the C version, this would

require too much memory for the Java version.

Heat detection

The heat detection application is adapted from code used by a different project in our

group to track persons and fire hazards using Raspberry Pi devices equipped with an 8x8

heat sensor.

It contains two phases: first the heat sensor is calibrated with no heat sources in view

to determine the average and standard deviation of the sensor readings. In the next phase

the algorithm tracks the position of a person moving within the field of view of the sensor,

and detects extreme temperatures that may indicate a fire. In the evaluation both phases

are listed separately.

The calibration phase was modified to allow it to run on the more resource-constrained

sensor node, but the results of the calibration are identical. The code for the detection
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phase was copied directly from the source used on the Raspberry Pi, but modified slightly

to avoid repeatedly allocating temporary objects as described in Section 8.8.

Our implementation reads sensor measurements using a native call to read from a table

in flash memory, simulating to how a real version would use a library call to read from a

sensor.

7.1.2 Experimental setup

Each benchmark is implemented as a C and a Java version. We compile these usingjavac

version 1.8.0, ProGuard 5.2.1, and avr-gcc version 4.9.1. The C benchmarks are com-

piled at optimisation level -O3, the rest of the VM at -Os.

A manual examination of the compiled code produced by avr-gcc revealed some

points where more efficient code could have been generated. But with the exception of the

lack of some constant shift optimisations discussed in Section 5.3.5, these did not affect

performance by more than a few percent. This leads us to believe avr-gcc is a fair

benchmark to compare to.

Each benchmark was run in the cycle-accurate Avrora simulator [91], emulating the

ATmega128 processor. Avrora was modified to emit traces of the AOT translation process

and of the run-time performance. During AOT translation, the VM writes to a specific

memory address monitored by Avrora to inform it of each step in the process. When

running both the C and AOT compiled benchmarks, Avrora tracks the number of cycles

spent in each instruction. These traces, combined with debug output from the infuser and

disassembled native code provide a detailed view of the performance on a per-instruction

basis.

The main measure for both code size and performance is the overhead compared to

optimised native C. To compare different benchmarks, this overhead is normalised to a

percentage of the number of bytes or CPU cycles used by the native implementation: a

100% overhead means the AOT compiled version takes twice as long to run, or twice

as many bytes to store. The exact results can vary depending on factors such as which

benchmarks are chosen, the input data, etc., but the general trends are all quite stable.
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7.2 CoreMark

The CoreMark benchmark was developed by the Embedded Microprocessor Benchmark

Consortium as a general benchmark for embedded CPUs. It consists of three main parts:

• Matrix multiplication

• A state machine

• Linked list processing

Since CoreMark is the largest benchmark, we will use it to discuss some of the chal-

lenges when translating its C code to Java.

The biggest complication is that CoreMark makes extensive use of pointers, which

do not exist in Java. In cases where a pointer to a simple variable is passed to a

function, we simply wrap it in a wrapper object. A more complicated case is the

core_list_mergesort function, which takes a function pointer parameter cmp

used to compare list elements. Two different implementations exists, cmp_idx and

cmp_complex. Here we initially choose the most canonical way to do this in Java,

which is to define an interface and pass an object with the right to implementation to

core_list_mergesort.

The C version of the linked list benchmark takes a block of memory and constructs a

linked list inside it by treating it as a collection of list_head and list_data structs,

shown in Listing 7.1. One way to mimic this as closely as possible is to use an array of

shorts of equal size to the memory block used in the C version, and use indexes into this

array instead of C pointers. However this leads to quite messy code.

1 typedef struct list_data_s {
2 ee_s16 data16;
3 ee_s16 idx;
4 } list_data;
5
6 typedef struct list_head_s {
7 struct list_head_s *next;
8 struct list_data_s *info;
9 } list_head;

public static final class ListData {
public short data16;
public short idx;
}

public static final class ListHead {
ListHead next;
ListData info;

}

Listing 7.1: C and Java version of the CoreMark list data structures
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Table 7.3: Effect of manual source optimisation on the CoreMark benchmark

list matrix state total
time a vs. nat. C time a vs. nat. C time a vs. nat. C time a vs. nat. C

native C 17.9 49.2 18.0 85.1
baseline 124.3 (+594%) 360.5 (+633%) 289.0 (+1506%) 774.4 (+810%)
optimised, using original source 55.9 (+212%) 231.4 (+370%) 75.9 (+322%) 363.4 (+327%)

manually inline small methods -0.8 (-4%) -37.3 (-76%) -17.4 (-97%) -55.5 (-65%)
use short array index variables -0.1 (-1%) -104.6 (-213%) 0.0 (0%) -104.7 (-123%)
avoid recalculating expressions in a loop +0.1 (+1%) -7.6 (-15%) 0.0 (0%) -7.5 (-9%)
reduce array and object access -0.1 (-1%) -18.0 (-37%) -2.4 (-13%) -20.5 (-24%)
reduce branch cost in crcu8 -3.6 (-20%) -0.5 (-1%) -3.2 (-18%) -7.3 (-9%)

using optimised source 51.4 (+187%) 63.4 (+29%) 52.9 (+194%) 167.9 (+97%)

(non-autom.) avoid creating objects 0.8 (+4%) 0.0 (0%) -10.6 (-59%) -9.9 (-12%)
(non-autom.) avoid virtual calls -22.8 (-127%) 0.0 (0%) 0.0 (0%) -22.7 (-27%)

after non-automatic optimisations 29.4 (+64%) 63.4 (+29%) 42.3 (+135%) 135.3 (+59%)
a in millions of cycles

Instead we choose the more natural Java approach and define two classes to match

the structs in C and create instances of these to build the list. This is also the faster op-

tion because accessing object fields is faster than array access. The trade-off is memory

consumption, since each object has its own 5-byte heap header.

7.2.1 Manual optimisations

After translating the C code to Java, we do some manual optimisations to produce better

bytecode. Since CoreMark is the most comprehensive benchmark, we use it to evaluate

the effect of these manual optimisations.

Table 7.3 shows the slowdown over the native C version, broken down into Core-

Mark’s three main components. The baseline version, using the original Java code and

without any optimisations, is 810% slower than native C. Even after applying all optimi-

sations to the AOT compilation process, the best we can achieve with the original code is

a 327% slowdown.

Next we manually optimise the Java source code, starting with the optimisations as

described in Section 5.2 and add a small extra optimisation to crcu8 which can be easily

reorganised to reduce branch overhead. These are all optimisations that a future optimising

infuser could do automatically.

The effect depends greatly on the characteristics of the code. The matrix part of the
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benchmark benefits most from using short array indexes, the state machine frequently calls

a small method and benefits greatly from inlining it, etc. Combined these optimisations

reduce the overhead for the whole benchmark from 327% to 97%, proving the importance

of a better optimising infuser.

We also applied all these optimisations to the native C version to ensure a fair com-

parison, but the difference in performance was negligible.

7.2.2 Non-automatic optimisations

After these optimisations, CoreMark is still one of the slower benchmarks. We can im-

prove performance further using two more optimisations. While these cannot be done

automatically, even by an optimising infuser, they do not change the meaning of the pro-

gramme, and a developer writing this code in Java from the start maymake similar choices

to optimise performance.

Table 7.3 shows that in the native version, over half of the time is spent in the matrix

part of the benchmark, but for the final Java version all three parts aremuch closer together.

The state machine and linked list processing both suffer from amuch larger slowdown than

the matrix part, which by itself would be the third fastest of all our benchmarks.

One of the reasons for the slow performance of the state machine is that it creates two

arrays of 8 ints, and an little wrapper object for a short to mimic a C pointer. Allocat-

ing memory on the Java heap is much more expensive than it is for a local C variable.

For linked list processing the biggest source of overhead is in the virtual method call to

the comparer objects in core_list_mergesort that was used instead of a function

pointer. Virtual methods cannot be made lightweight.

This is the best we can do when strictly translating the C to Java code, using only

optimisations that could be done automatically. If this constraint is relaxed, these two

sources of overhead can be removed as well: we can avoid having to repeatedly create the

small arrays and objects in the state machine, by creating them once at the beginning of

the benchmark and passing them down to the methods that need them. This significantly

speeds up the state machine, although the list processing part incurs a small extra overhead
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because it needs to pass these temporary arrays and objects to the state machine.

The virtual call to the comparer object in the list benchmark is the most natural way to

implement this in Java, but since there are only two implementations, we can make both

compare methods static and pass a boolean to select which one to call instead of the

comparer object. This saves the virtual method call, and allows ProGuard to inline the

methods since they are only called from a single location.

Combined, this improves the performance of CoreMark to only 59% overhead over

native C, right in the middle of the spectrum of the other benchmarks.

Similar toMoteTrack in the previous section, these results point out some weaknesses

of Java when used as an embedded VM. The lack of cheap function pointers, or a way of

allocating small temporary objects or arrays in a method’s stack frame means there will be

a significant overhead in situations where the optimisations used here cannot be applied.

We discuss a way to reduce the cost of temporary objects in future VMs in Section 8.8.

In the rest of the evaluation, the manually optimised code is used for all benchmarks.

For CoreMark this includes the two non-automatic optimisations. The optimisation to

avoid repeatedly creating temporary objects was also applied to the LEC and MoteTrack

benchmarks.
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Table 7.4: Performance data per benchmark

B.sort H.sort Bin.Search XXTEA MD5 RC5 FFT Outlier LEC CoreMark MoteTrack HeatCalib HeatDetect average

PERFORMANCE OVERHEAD USING ORIGINAL SOURCE (% of native C)
Total 1277.1 1927.2 1319.4 714.5 470.6 409.9 437.8 549.0 885.3 809.7 1018.7 210.2 203.9 787.2
push/pop 640.1 356.7 233.7 197.2 115.7 70.1 66.6 207.2 106.6 220.4 166.5 80.9 78.8 195.4
load/store 360.1 197.4 175.3 67.0 46.7 33.2 29.3 190.3 110.7 136.8 218.2 67.6 43.8 129.0
mov(w) 10.0 41.1 8.4 6.6 3.6 0.1 5.2 21.5 5.1 5.5 38.6 -3.0 9.5 11.7
other 266.9 331.4 902.1 82.8 104.0 67.8 76.8 130.1 370.6 234.2 220.0 37.4 65.6 222.3
vm 0.0 1000.6 0.0 361.1 200.4 238.7 260.0 -0.1 292.2 212.9 375.4 27.3 6.2 228.8

OVERHEAD REDUCTION FROM SOURCE CODE OPTIMISATION (% of native C)
Source optimisation -613.2 -1234.0 -843.6 -464.1 -244.2 -285.6 -315.0 -56.5 -612.7 -433.7 -227.9 0.0 1.7 -409.9

PERFORMANCE OVERHEAD BEFORE COMPILER OPTIMISATIONS (% of native C)
Total 663.9 693.2 475.8 250.4 226.4 124.3 122.8 492.5 272.6 376.0 790.8 210.2 205.6 377.3
push/pop 266.9 200.8 202.2 166.4 105.3 61.9 57.2 205.5 105.6 123.8 137.7 80.9 77.5 137.8
load/store 240.3 177.5 191.0 42.5 43.9 28.5 25.2 190.4 111.7 89.2 165.3 67.6 47.6 109.3
mov(w) 23.3 14.8 4.5 3.9 2.6 -1.2 4.2 8.0 5.1 5.3 17.6 -3.0 10.9 7.4
other 133.5 118.4 78.1 37.7 74.6 35.1 36.2 88.8 49.0 97.7 94.8 37.4 63.4 72.7
vm 0.0 181.7 0.0 0.0 0.0 0.0 0.0 -0.1 1.1 60.0 375.4 27.3 6.2 50.1

OVERHEAD REDUCTION PER COMPILER OPTIMISATION (% of native C)
Impr. peephole -233.5 -157.7 -149.4 -60.3 -48.2 -23.1 -36.5 -186.9 -54.2 -58.8 -60.2 -35.2 -54.5 -89.1
Stack caching -40.0 -56.0 -57.3 -98.4 -58.0 -39.8 -16.2 -27.8 -67.7 -40.7 -63.1 -41.4 -24.2 -48.6
Pop. val. caching -133.1 -84.9 -67.4 -6.8 -12.9 -8.8 -10.7 -51.0 -28.8 -24.5 -41.5 -15.4 -15.5 -38.5
Mark loops -102.9 -46.8 -85.4 +5.0 -10.9 -8.0 -7.9 -114.9 -18.0 -40.0 -54.3 -38.2 -28.6 -42.4
Const shift 0.0 -17.1 -35.4 -18.4 -45.2 -20.9 -3.8 0.0 -9.6 -10.1 0.0 -17.2 -3.3 -13.9
16-bit array index -53.2 -34.9 -15.7 -13.9 -5.5 -4.2 -2.8 -36.2 -9.7 -38.9 -19.7 -1.7 -9.0 -18.9
SIMUL 0.0 0.0 0.0 0.0 0.0 0.0 -27.2 0.0 0.0 -36.6 0.0 0.0 0.0 -4.9
Lightw. methods 0.0 -207.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -67.5 -395.7 -30.6 -0.3 -54.0

PERFORMANCE OVERHEAD AFTER COMPILER OPTIMISATIONS (% of native C)
Total 101.2 88.5 65.2 57.6 45.7 19.5 17.7 75.7 84.6 58.9 156.3 30.5 70.2 67.0
push/pop 0.0 -2.8 0.0 37.4 0.1 2.9 2.0 -0.2 -13.7 2.5 20.4 5.6 1.7 4.3
load/store 1.0 29.3 27.0 -2.3 20.3 4.3 2.4 4.5 54.3 17.1 72.0 2.7 13.5 18.9
mov(w) 10.0 9.4 11.8 5.6 1.5 0.1 2.9 6.8 7.4 9.6 14.9 5.1 4.4 6.9
other 90.2 52.5 26.4 16.9 23.8 12.2 10.4 64.7 35.5 28.8 35.7 17.0 46.1 35.4
vm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 1.1 0.8 13.2 0.0 4.4 1.5

B.sort H.sort Bin.Search XXTEA MD5 RC5 FFT Outlier LEC CoreMark MoteTrack HeatCalib HeatDetect average
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7.3 AOT translation: performance

Next we will look at the effect of our optimisations to the baseline AOT translation ap-

proach, for all our benchmarks. The trace data produced by Avrora gives us a detailed

view into the run-time performance and the different types of overhead. We count the

number of bytes and cycles spent on each native instruction for both the native C and our

AOT compiled version, and group them into 4 categories that roughly match the types of

AOT translation overhead discussed in Section 5.1.2:

• PUSH,POP instructions: Matches the type 1 push/pop overhead.

• LD,LDD,ST,STD instructions: Matches the type 2 load/store overhead and directly

shows the amount of memory traffic.

• MOV,MOVW instructions: For moves the picture is less clear since the AOT compiler

emits them for various reasons. Without stack caching, it emits moves to replace

push/pop pairs, and after adding the mark loops optimisation to save a pinned value

when it is popped destructively.

• other instructions: the total overhead, minus the previous three categories. This

roughly matches the type 3 overhead.

The overhead from each category is defined as the number of bytes or cycles spent

in the AOT version, minus the number spent in the native version for that category, and

again normalised to the total number of bytes or cycles spent in the native C version. The

detailed results for each benchmark and for each type of overhead are shown in tables 7.4

and 7.5. In addition, Table 7.4 also lists the time spent in the VM on method calls and

allocating objects. The constant array optimisation is already included in these results,

since MoteTrack cannot run without it. Its effect is examined separately in section 7.6.

Table 7.4 first shows the results without any optimisation to either the AOT compila-

tion process or the original, direct translation of the C source code to Java. This results

in a large overhead of up to 20x slowdown for heap sort, which in this case is mostly

due to method calls since small functions and macros in the C code are not inlined in
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Figure 7.1: Performance overhead per category

this version. Optimising the source code reduces overhead dramatically, but this is partly

because the other optimisations, which target some of the same overhead, have not yet

been applied. For example, in Table 7.4 optimising the source code reduces CoreMark’s

overhead by 434%, while the previous section showed that when all other optimisations

are applied first, the difference is only 268%. Since the source code optimisations were

discussed in the previous section, the rest of this evaluation will focus on the effect of the

other optimisations on the already optimised source.

Figure 7.1 starts with the manually optimised source code and incrementally adds each

optimisation to the AOT compiler to show how they combine to reduce performance over-

head. We take the average of all benchmarks, and show both the total overhead, and the

overhead for each instruction category. Figure 7.2 shows the total overhead for each in-

dividual benchmark.

Using the baseline AOT compilation on the optimised sources, the types 1, 2 and 3

overhead are all significant, at 138%, 109%, and 73% respectively, and the 50% overhead

in the VM is mainly spent on method calls since the overhead from allocating temporary

objects is already removed by the source code optimisations. The basic approach does not

havemany reasons to emit amove, so in some cases theAOTversion actually spends fewer

cycles on move instructions than the C version, resulting in small negative values. When
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Figure 7.2: Performance overhead per benchmark

we improve the peephole optimiser to include non-consecutive push/pop pairs, push/pop

overhead drops by 100.2% (of native C performance), but if the push and pop target dif-

ferent registers, they are replaced by a move instruction, and we see an increase of 11.5%

in move overhead. For a 16-bit register pair this takes 1 cycle (for a MOVW instruction),

instead of 8 cycles for two pushes and two pops. The increase in moves shows most of

the extra cases that are handled by the improved peephole optimiser are replaced by a

move instead of eliminated, since the 11.5% extra move overhead corresponds to a 92%

reduction in push/pop overhead.

Next stack caching is introduced to utilise all available registers and eliminate most of

the push/pop instructions that cannot be handled by the peephole optimiser. As a result

the push/pop overhead drops to nearly 0, and so does the move overhead since most of

the moves introduced by the peephole optimiser, are also unnecessary when using stack

caching.

Having eliminated the type 1 overhead almost completely, popped value caching is

added to remove a large number of the unnecessary load instructions. This reduces the

memory traffic significantly, as is clear from the reduced load/store overhead, while the

other types remain stable. Adding the mark loops optimisation further reduces loads, and

this time also stores, by pinning common variables to a register. But it uses slightly more
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move instructions, and the fact that fewer registers are available for stack caching means

stack values are spilled to memory more often. While 53.0% is saved on loads and stores,

the push/pop and move overhead increase by 6.0% and 5.6% respectively.

Most of the push/pop and load/store overhead has now been eliminated and the type

3 overhead, unaffected by these optimisations, has become the most significant source of

overhead. This type has many different causes, and only part of it can be eliminated with

the instruction set optimisations. These optimisations, especially the 16-bit array index,

also reduce register pressure, which results in a slight decrease in the other overhead types,

although this is minimal in comparison. The CoreMark and FFT benchmarks are the only

ones to do 16-bit to 32-bit multiplication, so the average performance improvement for

SIMUL is small, but Table 7.4 shows it is significant for these two benchmarks.

Finally, the lightweight optimisation could be applied to almost every method.

Lightweight methods still incur some overhead, which will be discussed in more detail in

Section 7.7, but since they do not call the VM, the time spent in the VM on method calls

is effectively eliminated.

Combined, the optimisations to the AOT compilation process reduce performance

overhead from 377% to 67% of native C performance.
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Table 7.5: Code size data per benchmark

B.sort H.sort Bin.Search XXTEA MD5 RC5 FFT Outlier LEC CoreMark MoteTrack HeatCalib HeatDetect average

CODE SIZE OVERHEAD USING ORIGINAL SOURCE (% of native C)
Total 449.2 298.0 208.2 287.2 166.0 239.3 94.9 316.3 186.4 159.4 255.0 26.2 238.5 225.0
push/pop 159.3 99.3 71.2 140.6 110.7 108.6 47.7 92.6 60.7 69.6 78.1 31.7 93.9 89.5
load/store 128.8 65.8 76.7 68.9 40.8 56.5 20.3 103.2 71.4 51.6 75.9 22.6 56.4 64.5
mov(w) 1.7 17.4 9.6 10.1 -3.6 0.0 2.5 14.7 5.7 -3.1 24.1 -14.3 15.1 6.1
other 159.3 115.4 50.7 67.6 18.0 74.3 24.5 105.8 48.6 41.2 76.9 -13.8 73.1 64.7

OVERHEAD REDUCTION FROM SOURCE CODE OPTIMISATION (% of native C)
Source optimisation -195.0 -58.4 -26.0 -124.2 +45.9 +110.2 +4.5 -47.4 +4.3 -31.2 -27.7 0.0 -12.7 -27.5

CODE SIZE OVERHEAD BEFORE COMPILER OPTIMISATIONS (% of native C)
Total 254.2 239.6 182.2 163.0 211.9 349.5 99.4 268.9 190.7 128.2 227.3 26.2 225.8 197.5
push/pop 71.2 80.5 60.3 103.7 133.3 165.3 52.6 86.3 63.6 55.2 72.8 31.7 83.3 81.5
load/store 88.1 73.8 74.0 28.4 56.7 67.9 19.7 101.1 72.9 45.8 68.2 22.6 60.1 59.9
mov(w) 10.2 9.4 4.1 2.6 -1.0 2.2 4.3 4.7 5.7 -3.4 19.6 -14.3 16.2 4.6
other 84.7 75.8 43.8 28.2 22.9 114.1 22.8 76.8 48.6 30.5 66.7 -13.8 66.2 51.3

OVERHEAD REDUCTION PER COMPILER OPTIMISATION (% of native C)
Impr. peephole -67.8 -53.0 -45.2 -38.3 -49.4 -62.5 -32.2 -77.8 -33.9 -24.7 -27.4 -13.6 -49.8 -44.3
Stack caching -25.4 -26.2 -24.7 -59.4 -85.4 -111.2 -20.9 -30.6 -39.7 -27.6 -26.7 -12.6 -38.3 -40.7
Pop. val. caching -16.9 -29.5 -6.8 -6.2 -18.7 -18.7 -13.5 -5.2 -18.5 -9.9 -26.7 -8.1 -20.7 -15.3
Mark loops +1.7 0.0 +21.9 +5.9 -1.2 -2.6 -4.2 -16.4 +2.5 -1.5 -8.7 -1.3 -11.4 -1.2
Const shift 0.0 -6.1 -6.9 +1.7 +2.8 -16.0 -4.6 -2.6 -1.8 -1.5 0.0 -1.7 -0.1 -2.8
16-bit array index -27.2 -22.8 -8.2 -11.6 -5.1 -16.7 -11.6 -25.8 -10.7 -7.4 -16.9 -2.2 -10.7 -13.6
SIMUL 0.0 0.0 0.0 0.0 0.0 0.0 -9.9 0.0 0.0 -3.4 0.0 0.0 0.0 -1.1
Lightw. methods 0.0 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.5 -3.8 -3.9 +0.6 -1.1

CODE SIZE OVERHEAD AFTER COMPILER OPTIMISATIONS (% of native C)
Total 118.6 100.0 112.3 55.1 54.9 121.8 2.5 110.5 88.6 46.7 117.1 -17.2 95.4 77.4
push/pop 23.7 16.1 27.4 13.3 0.0 6.2 1.9 -2.1 -5.0 1.7 16.3 3.9 -3.1 7.7
load/store 33.9 41.6 49.3 14.8 37.2 25.3 -2.6 57.9 45.0 30.1 40.9 8.0 37.6 32.2
mov(w) 1.7 6.7 6.8 2.5 -2.4 11.9 -0.8 1.1 7.1 -0.2 15.4 -10.7 13.3 4.0
other 59.3 35.6 28.8 24.4 20.1 78.5 4.0 53.7 41.4 15.1 44.5 -18.4 47.6 33.4

B.sort H.sort Bin.Search XXTEA MD5 RC5 FFT Outlier LEC CoreMark MoteTrack HeatCalib HeatDetect average
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Figure 7.3: Code size overhead per category

7.4 AOT translation: code size

Next we examine the effects of our optimisations on code size. Two factors are important

here: the size of the VM itself and the size of the code it generates.

The size overhead for the generated code is shown in figures 7.3 and 7.4, again split

up per instruction category and benchmark respectively. For the first three optimisations,

the two graphs follow a similar pattern as the performance graphs. These optimisations

eliminate the need to emit certain instructions, which reduces code size and improves

performance at the same time.

The fourth optimisation, mark loops, moves loads and stores for pinned variables out-

side of the loop. This reduces performance overhead by 42%, but the effect on code size

varies per benchmark: some are slightly smaller, others slightly larger.

For each variable that is live at the beginning of the loop, the VM emits a load before

the mark loop block, so code size is only reduced if the variable is loaded more than once.

Code size may actually increase if the value is then popped destructively, since this causes

the VM to emit a mov. Stores follow a similar argument. Also, for small methods the

extra registers used may mean more call-saved registers have to be saved in the method

prologue. Finally, we get the performance advantage for each run-time iteration, but the

effect on code size, whether positive or negative, only once.
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Figure 7.4: Code size overhead per benchmark

The constant shift optimisation unrolls the loop that is normally generated for bit shifts.

This significantly improves performance, but the effect on the code size depends on the

number of bits to shift by. The constant load and loop take at least 5 instructions. In most

cases the unrolled shifts are smaller, but MD5 and XXTEA show a small increase in code

size since they contain shifts by a large number of bits.

Using 16-bit array indexes also reduces code size. The benchmarks here already have

the manual source code optimisations, so they use short index variables. This means the

infuser emits S2I instructions to cast them to 32-bit ints if the array access instructions

expect an int index. Not having to emit those when the array access instructions expect

a 16-bit index, and the reduced work the access instruction needs to do, saves 14% code

size overhead in addition to the 19% reduction in performance overhead. Using 32-bit

variables in the source code also removes the need for S2I instructions, but the extra

effort needed to manipulate the 32-bit index variable would make the net code size even

larger.

7.4.1 VM code size and break-even point

These more complex code generation techniques do increase the size of our compiler. The

first column in Table 7.6 shows the difference in code size between the AOT compiler and
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Darjeeling’s interpreter. The basic AOT approach is 6863 bytes larger than the interpreter,

and each optimisation adds a little to the size of the VM.

They also generate significantly smaller code. The third column shows the reduction

in the generated code size compared to the baseline approach. Here we show the reduction

in total size, as opposed to the overhead used elsewhere, to be able to calculate the break-

even point. Using the improved peephole optimiser adds 276 bytes to the VM, but it

reduces the size of the generated code by 14.6%. If we have more than 1.9 KB available

to store user programmes, this reduction will outweigh the increase in VM size. Adding

more complex optimisations further increases the VM size, but compared to the baseline

approach, the break-even point is well within the range of memory typically available on

a sensor node, peaking at at most 17.8 KB.

As is often the case, there is a trade-off between size and performance. The interpreter

is smaller than each version of our AOT compiler, and Table 7.2 shows bytecode is smaller

than both native C and AOT compiled code, but the interpreter’s performance penalty may

be unacceptable in many scenarios. Using AOT compilation we can achieve much better

performance, but the most important drawback has been an increase in generated code

size. These optimisations help to mitigate this drawback, and both improve performance,

and allow us to load more code on a node.

For the smallest devices, or if we want to be able to load especially large programmes,

we may decide to use only a selection of optimisations to limit the VM size and still

get both a reasonable performance, and most of the code size reduction. For example,

dropping the markloop optimisation would reduces the size of the VM by 3 KB but keeps

most of the reduction in generated code size, while performance overhead would increase

to around 109%.

7.4.2 VM memory consumption

The last column in Table 7.6 shows the amount of data that needs to be kept in memory

while translating a method. We would like our VM to be able to load new code while other

tasks are running concurrently. Here we only list the data that the VM needs to maintain
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Table 7.6: VM size and memory consumption

Size vs Size vs AOT code Break Memory
interpreter baseline reduction even usage

Baseline 6863 B 25 B
Improved peephole 7139 B 276 B (+276) -14.6% 1.9 KB 25 B
Stack caching 7961 B 1098 B (+822) -27.8% 3.9 KB 36 B
Popped value caching 9229 B 2366 B (+1268) -33.1% 7.1 KB 80 B
Markloop 12511 B 5648 B (+3282) -33.4% 16.9 KB 87 B
Const shift 12955 B 6092 B (+444) -34.3% 17.8 KB 87 B
16-bit array index 12935 B 6072 B (-20) -38.7% 15.7 KB 87 B
SIMUL 13001 B 6138 B (+66) -39.2% 15.7 KB 87 B
Lightweight methods 13549 B 6686 B (+548) -39.7% 16.8 KB 87 B

The constant shift optimisation adds 170 bytes to theVM size. Because theMoteTrack bench-
mark cannot run without it, we cannot calculate the average code size reduction.

in between receiving messages with new code, since this is the amount of memory that

will not be available to other tasks during this process. Of course, when new code is being

processed, more stack memory is used, but this is freed after a batch of instructions has

been translated and can be reused by other applications.

For the baseline approach we only use 25 bytes for a number of commonly used values

such as a pointer to the next instruction to be compiled, the number of instructions in the

method, etc. The basic stack caching approach adds a 11 byte array to store the state of

each register pair we use for stack caching. Popped value caching adds two more arrays

of 16-bit elements to store the value tag and age of each value. Mark loops only needs

an extra 16-bit variable to mark which registers are pinned, and a few other variables.

Finally, the instruction set optimisations do not require any additional memory. In total,

our compiler requires 87 bytes of memory during the compilation process.

7.5 Benchmark details

Next, we have a closer look at some of the benchmarks and see how the effectiveness of

each optimisation depends on the characteristics of the source code. Table 7.2 shows the

size of each benchmark, the distribution of the executed bytecode instructions, and both

the maximum and average number of bytes on the VM stack. We can see some important

differences between the benchmarks. While the sort benchmarks on the left are almost
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completely load/store bounded, XXTEA, RC5 and MD5 are much more computation in-

tensive, spending fewer instructions on loads and stores, and more on math or bitwise

operations. The left three benchmarks and the outlier detection benchmark have only a

few bytes on the stack, but as the benchmarks contain more complex expressions, the

number of values on the stack increases.

Tables 7.4 and 7.5 show the performance and code size overhead for each benchmark,

split up per instruction category. First, the overhead using the unoptimised compiler and

original unoptimised source code is shown, followed by the effect of the source code op-

timisations. Then the resulting overhead using optimised source but the original AOT

compiler is shown, followed by the effect on the total overhead when the different opti-

misations are incrementally added to the compiler, and finally the resulting overhead per

category after applying all optimisations.

First, looking at the effect of the source code optimisations, the performance for all

benchmarks improves, except for heat detection which slows down by a small fraction.

One of the optimisations done is to store a computed value or value retrieved from an array

in a temporary variable if it is known the value will not change and is needed again later.

After the optimisations to the AOT compiler have been added, accessing local variables

is much cheaper than accessing an array and heat detection’s optimised source is slightly

faster. Using the baseline AOT compiler however, the extra loads and stores added by

this optimisation are much more expensive, which in this case just tipped the balance to a

small loss.

The source code optimisations also result in an average reduction of the code size over-

head in Table 7.5, but it increases for some benchmarks due to inlining of small methods.

This particularly affects RC5, for which 10 method calls were inlined. Again, without the

other optimisations, the overhead from this more significant. The difference between the

inlined and non-inlined versions with all other optimisations applied is shown in Table

8.3.

Looking at the compiler optimisations, the improved peephole optimiser and stack

caching both target the push/pop overhead. Stack caching can eliminate almost all, and
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replaces the need for a peephole optimiser, but it is interesting to compare the two. The

improved peephole optimiser does well for the simple benchmarks like sorting, binary

search and outlier detection, leaving less overhead to remove for stack caching. The more

computation intensive benchmarks contain more complicated expressions, which means

there is more distance between a push and a pop, leavingmore cases that cannot be handled

by the peephole optimiser. For these benchmarks, replacing the peephole optimiser with

stack caching yields a big improvement.

The benchmarks on the left spend more time on load/store instructions. This results

in higher load/store overhead, and the two optimisations that target this overhead, popped

value caching and mark loops, have a big impact. For the computation intensive bench-

marks, the load/store overhead is much smaller, but the higher stack size means stack

caching is very important for these benchmarks.

The smaller benchmarks highlight certain specific aspects of our approach, while the

larger CoreMark benchmark covers a mix of different types of processing. As a result, it

is an average case in almost every row in Table 7.4.

Bubble sort

Next we look at bubble sort in some more detail. After optimisation, most of the stack

related overhead has been eliminated and of the 101.2% remaining performance overhead,

most is due to other sources. For bubble sort there is a single, clearly identifiable source.

The detailed trace output shows that 79.8% is due to ADD instructions, but bubble sort

hardly does any additions. This is a good example of how the simple JVM instruction set

leads to less efficient code. To access an array the VM needs to calculate the address of

the indexed value, which takes one move and five additions for an array of shorts. This

calculation is repeated for each access. The C version is more efficient, using the auto-

increment version of the ATmega’s LD and ST instructions to slide a pointer over the array.

Of the remaining 101.2% overhead, 93.1% is caused by these address calculations.
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HeatCalib and FFT

Table 7.5 shows that after optimisation the HeatCalib benchmark has a negative code size

overhead. This is caused by the fact that the C versions are compiled using avr-gcc’s

-O3 optimisations, optimising for performance instead of code size. In this case, as well

as for FFT, this caused avr-gcc to duplicate a part of the code, which improves perfor-

mance but at the cost of a significantly larger code size.

MoteTrack

The MoteTrack benchmark is by far the slowest of our benchmarks, at a 156% overhead

compared to native C.MoteTrack stores a database of reference signatures in flash mem-

ory. In C this is a complex struct containing a number of sub-structures and fixed-sized

arrays. In Java this becomes a collection of objects and arrays, shown in Figure 8.1.

Since the layout of the complete C structure is known at compile time, the C function

to load a reference signature from the database can simply use memcpy_P to copy a block

of 80 bytes from flash memory to RAM. In Java, the method to read from flash memory

must follow several references to find the locations to put each value. As a result, reading

a single signature takes 1455 cycles in Java, and only 735 cycles in C.

After the reference signature is loaded, the fixed offsets in the C structure means using

the loaded signature is also more efficient in C than in Java, which must again follow a

number of references to reach the data. We discuss this in more detail in Section 8.3.

LEC

In Section 1.2.1 we calculated that the LEC compression algorithm reduced the energy

spent to transmit the sample ECG data by 650 μJ, at the expense of 246 μJ spent on CPU

cycles compressing the data, when implemented in C and using the ATmega128 CPU and

CC2420 radio.

A compression algorithm like LEC is a good example of an optimisation that may be

part of an application loaded onto a sensor node. However, if the overhead of using aVM is

too high, the cost of compression may outweigh the energy saved on transmission. Table
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Figure 7.5: XXTEA performance overhead for different number of pinned register pairs

7.4 shows that using the baseline AOT approach, the LEC benchmark has an overhead

of 885.3%, which drops to 272.6% after optimising the source code to avoid repeatedly

creating a small object. This means the CPU has to stay active longer, and compressing

the data would cost 246µJ ∗ 3.726 ≈ 917µJ , which is more than the 650 μJ saved on

transmission.

After we apply our optimisations, the overhead is reduced to 84.6%, resulting in

246µJ ∗ 1.846 ≈ 454µJ spent on compression. While the savings are less than when

using native C to compress the data, our optimisations mean that in this scenario, we can

save on transmission costs by using LEC compression, while using the baseline AOT

approach, LEC compression would have resulted in a net loss.

XXTEA and the mark loops optimisation

The XXTEA benchmark has the highest average stack depth of all benchmarks. As a result,

popped value caching does not have much effect: most registers are used for real stack

values, leaving few chances to reuse a value that was previously popped from the stack.

When the mark loops optimisation is applied, performance actually degrades by 5%!

Here we have an interesting trade-off: if a register is used to pin a variable, accessing that

variable will be cheaper, but this register will no longer be available for stack caching, so
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Figure 7.6: Per benchmark performance overhead for different numbers of pinned register
pairs

more stack values may have to be spilled to memory.

For most benchmarks, using the maximum of 7 register pairs to pin variables was also

the best option. At a lower average stack depth, the fewer number of registers available

for stack caching is easily compensated for by cheaper variable access. For XXTEA how-

ever, the cost of spilling more stack values to memory outweighs the gains from cheaper

variable access when too many variables are pinned. Figure 7.5 shows the overhead for

XXTEA from the different instruction categories. When the number of register pairs used

to pin variables is increased from 1 to 7, the load/store overhead steadily decreases, but the

push/pop and move overhead increase. For XXTEA, the optimum is at 5 pinned register

pairs, at which the total overhead is only 43%, instead of 58% at 7 pinned register pairs.

Interestingly, when we pin 7 pairs, the AOT version does fewer loads and stores than

the C compiler. Under high register pressure the C version may spill a register value

to memory and later load it again, adding extra load/store instructions. When the AOT

version pins too many registers, it will also need to spill values, but this adds push/pop

instructions instead of loads/stores.

Figure 7.6 shows the performance for each benchmark, as the number of pinned reg-

ister pairs is increased. The benchmarks stay stable or even slow down when the number

pinned pairs is increased beyond 5 are the benchmarks that have a high stack depth, while
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Table 7.7: Effect of constant arrays on memory consumption and performance

RC5 FFT LEC MoteTrack
Size of constant data 200 2,048 51 20,560

Using constant arrays no yes no yes no yes no yes
Performance overhead 19.5% 19.5% 17.7% 17.7% 86.5% 84.6% cannot run 156.3%
Size of constant data in flash 1998 204 26,714 2,052 930 59 cannot run 20,588
Size of constant data in RAM 208 0 2,056 0 67 0 cannot run 0

the benchmarks with low stack depth such as sort, binary search and outlier detection im-

prove significantly. It should be possible to develop a simple heuristic to allow the VM

to make a better decision on the number of registers to pin. Since our current VM always

pins 7 pairs, we used this as our end result and leave this heuristic to future work.

7.6 Constant arrays

Four benchmarks contain arrays of constant data, which were stored in flash memory by

placing them in classes with the @ConstArray annotation. To evaluate the effect of

this optimisation, we compare them to versions without this annotation. The results are

shown in Table 7.7. There are three advantages to this optimisation: a small improvement

in performance, reduced code size, and reduced memory usage.

When using constant arrays, the id of the array to read from is a bytecode parameter

in the GETCONSTARRAY instruction. No reference to the array needs to be loaded on the

stack, and the calculation to find the address of the target element is slightly easier, which

results in a modest reduction in performance overhead of 1.9% for the LEC benchmark.

The real advantage however, is the reduction in code size and memory usage. Without

this optimisation, an array of constant data is transformed into normal bytecode that creates

an array object on the heap and fills each element individually, as shown in Listing 5.2.

The class initialiser uses four bytecode instructions per element to fill each element

of the array. For an array of bytes, this can take up to 7 bytes of bytecode for each byte

of data, which increases even further after AOT compilation. In the LEC benchmark this

results in a class initialiser of 930 bytes, over 18 times the size of the original data.

For such a small array this might still be acceptable, but the 26 KB needed to store

FFT’s 2 KB of data is a significant overhead, and whileMoteTrack’s 20 KB of data could
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fit in flash memory, the resulting class initialiser cannot. When using the constant array

optimisation, the array is stored as raw data in the constant pool, resulting in just 4 bytes

of overhead per array.

The final, and most significant advantage of this optimisation is that the array is no

longer stored in RAM. Again, the 67 bytes of RAM needed to store LEC’s two constant

arrays, each with 8 bytes overhead for the heap and array headers, may be acceptable.

For RC5 the 208 byte RAM overhead is starting to be significant, and while the FFT

benchmark can still run without the constant array optimisation, its array consumes over

half of the ATmega128’s 4 KB of RAM. For MoteTrack, the size of its constant arrays

is well over the amount of RAM available, making it impossible to run this benchmark

without the constant array optimisation.

7.7 Method invocation

In this section we will examine the effect of lightweight method calls, compared to inlined

code and normal method calls.

Most of our smaller benchmarks consist of only a single method. ProGuard automati-

cally inlines methods only called from a single location, eliminating all method calls in the

LEC benchmark. We will examine the effect of lightweight methods using the CoreMark,

FFT, and Heap sort benchmarks.

Table 7.8 lists the functions of the CoreMark, FFT and heap sort benchmarks, and

the number of times they are called in a single run. Next, we list the way they are imple-

mented in C. CoreMark is the most extensive benchmark. It only defines normal func-

tions, which are inlined by avr-gcc in three cases. FFT only contains a single function:

FIX_MPY. This function is marked with the inline compiler hint, which was followed

by avr-gcc. Finally, Heap sort contains a macro to swap two array elements, and has

two loops which both repeatedly call the siftDown function.

The Java base version column shows the way these functions are implemented in the

Java versions of the benchmarks. C macros and the functions that are inlined by the C

compiler are manually inlined in the Java version. The other functions are converted to
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Table 7.8: Methods per benchmark and relative performance for normal, lightweight in-
vocation, and inlining

# calls C Java Java Java
Base version Alternative version Using normal method calls

CoreMark
ee_isdigit 3920 normal (inlined) manually inlined lightweight (handw.) manually inlined
core_state_transition 1024 normal lightweight lightweight normal
crcu8 584 normal (inlined) manually inlined manually inlined manually inlined
crcu16 292 normal lightweight lightweight normal
calc_func 223 normal lightweight lightweight normal
compare_idx 209 normal (inlined) ProGuard inlined ProGuard inlined ProGuard inlined
core_list_find 206 normal lightweight lightweight normal
compare_complex 110 normal ProGuard inlined ProGuard inlined ProGuard inlined
crcu32 64 normal lightweight lightweight normal
matrix_sum 16 normal lightweight lightweight normal
others (<16 calls each) 39 normal normal normal normal

cycles 2,705,654 2,863,302 3,855,242
overhead v native C 58.9% 68.2% 126.4%
code size 8990 9006 9,328

FFT
FIX_MPY 768 marked inline manually inlined lightweight(handw.) normal

cycles 179,692 215,020 661,360
overhead v native C 17.7% 40.8% 333.1%
code size 1,342 1,320 1,408

heap sort
SWAP 1642 #define manually inlined manually inlined manually inlined
siftDown 383 normal lightweight manually inlined normal

cycles 208,239 184,071 437,264
overhead v native C 88.5% 66.6% 295.8%
code size 596 662 602

Highlights indicate changes from the versions used to obtain the results in the previous sections.

Java methods, two of which were automatically inlined by ProGuard in the CoreMark

benchmark since they are only called from a single location. In heap sort, the siftDown

method is called from two places, and larger than ProGuard’s size threshold, so it is not

automatically inlined. The most commonly called methods are transformed to lightweight

methods, simply by adding the @Lightweight annotation.

In the next two columns these choices are varied slightly to examine the effect of

lightweight methods. For the CoreMark benchmark, we first replace the inlined imple-

mentation of themost frequently calledmethodwith a lightweight version. ee_isdigit

returns true if a char passed to it is between '0' and '9'. Since this is a very trivial

method, we manually wrote the bytecode for this lightweight method to use only the stack

and no local variables. This slowed down the benchmark by 6%, adding 157,648 cycles.
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Since the method is called 3920 times, this corresponds to an overhead of about 40 cycles

per call, which is on the high side for such a small method.

This is due to another overhead from using a lightweight method that’s hard to

quantify: the boolean result of ee_isdigit is used to decide an if statement.

Using inlined code, the VM can directly branch on the result of the expression

(c>='0' && c<='9'), but the lightweight method first has to return a boolean,

which is then tested after the lightweight call returns.

The last column shows the performance without lightweight methods, when all meth-

ods, except the manually inlined ee_isdigit and crcu8, have to be implemented as

normal Java methods. This adds a total of 1,149,588 cycles, making it 1.42 times slower

than the version using lightweight methods. Spread over 1,825 calls, this means the av-

erage method invocation added over 630 cycles, which is within the range predicted in

Section 5.4.

The FFT benchmark has a much lower running time than CoreMark, but still does

768 function calls. In the C and normal Java versions these are inlined. When we change

FIX_MPY to a normal Java method, it is too large for ProGuard to inline. Using a hand-

written lightweight method, the large number of calls relative to the total running time

means the average overhead of over 46 cycles per invocation slows down the benchmark

by 20%. Without lightweight methods, the overhead is 627 per call, slowing down the

benchmark by 268%.

Finally, for the heap sort benchmark we normally use a lightweight method for

siftDown. The version where siftDown is inlined shows that the lightweight

method call adds some overhead compared to the inlined version, but much less than a

normal method call would. However, while manually inlining it is possible, it is not an

attractive option since the siftDown method is much more complex than FIX_MPY or

ee_isdigit.

In terms of code size, using normalmethods take slightlymore space than a lightweight

method. Listing 5.4 showed that the invocation is more complex for normal methods, and

in addition the method prologue and epilogue are longer.
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The difference between inlining and lightweight methods is less clear. For the smallest

of methods, such as CoreMark’s ee_isdigit, the inlined code is slightly smaller than

the call, but the heap sort benchmark shows that inlining larger methods can result in

significantly larger code. Since siftDown is called from two places, duplicating it leads

to a 11% increase in code size for the 16-bit version of heap sort. For the 32-bit version,

where siftDown is relatively larger, this increases to 27%.

As these three examples show, using lightweight methods gives us an option in be-

tween a normal method call and inlining. This avoids most of the overhead of a normal

method call, and the potential size increase of inlining.
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Table 7.9: Cost of safety guarantees

B.sort H.sort Bin.Search XXTEA MD5 RC5 FFT Outlier LEC CoreMark MoteTrack HeatCalib HeatDetect average

EXECUTED BYTECODE INSTRUCTIONS (% of total executed bytecode instructions after optimisation)
Array element/object field STORES 18.0 7.8 0.0 2.9 4.5 1.5 6.1 5.8 3.7 2.6 10.0 1.4 4.7 5.3
Array element/object field LOADS 18.0 15.9 7.1 8.6 6.2 6.4 7.0 10.7 7.9 11.7 21.4 4.1 8.8 10.3

PERFORMANCE OVERHEAD VS. NATIVE C (% of native C)
unsafe 101.2 88.5 65.2 57.6 45.7 19.5 17.7 75.7 84.6 58.9 156.3 30.5 70.2 67.0
safe writes 247.5 153.9 65.2 68.2 60.3 22.2 30.3 128.4 118.4 76.7 266.1 33.9 88.2 104.6
safe reads and writes 393.9 287.8 151.7 100.0 80.3 33.4 43.0 226.6 179.8 155.0 445.1 43.9 120.8 173.9
PERFORMANCE OVERHEAD VS. UNSAFE VM (% of unsafe AOT)
safe writes 72.7 34.7 0.0 6.7 10.0 2.3 10.7 30.0 18.3 11.2 42.8 2.6 10.6 22.5
safe reads and writes 145.5 105.7 52.4 26.9 23.7 11.6 21.5 85.9 51.6 60.5 112.7 10.3 29.7 64.0

CODE SIZE OVERHEAD VS. NATIVE C (% of native C)
unsafe 118.6 100.0 112.3 55.1 54.9 121.8 2.5 110.5 88.6 46.7 117.1 -17.2 95.4 77.4
safe writes 125.4 105.4 112.3 56.2 55.7 125.3 5.0 118.9 94.3 50.5 125.4 -16.4 102.6 81.6
safe reads and writes 132.2 113.4 117.8 60.1 59.1 132.3 8.0 123.2 102.9 58.2 145.3 -13.9 106.2 88.1
CODE SIZE OVERHEAD VS. UNSAFE VM (% of unsafe AOT)
safe writes 3.1 2.7 0.0 0.7 0.5 1.6 2.4 4.0 3.0 2.6 3.8 1.0 3.7 2.4
safe reads and writes 6.2 6.7 2.6 3.2 2.7 4.7 5.4 6.0 7.6 7.8 13.0 4.0 5.5 6.0
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Figure 7.7: Overhead increase due to safety checks

7.8 The cost of safety

The advantage of using a VM to provide safety is that the necessary checks are easy to

do, compared to native code, and most can be done at translation time. This leads to both

a very modest increase in VM complexity due to the safety checks, and a lower run-time

overhead.

7.8.1 Run-time cost

Table 7.9 shows the increase in performance and code size overhead as a result of the run-

time safety checks for our 12 benchmarks. The performance overhead is also shown in

Figure 7.7. The baseline here is the unsafe version of our VM, which is on average 67.0%

slower than native C. Adding safety checks increases the average overhead to 104.6% of

native C, corresponding to a 22.5% increase in run time compared to the unsafe VM.

The cost of the run-time safety checks depends greatly on the benchmark we run. Most

checks are done at translation time, including writes to local and static variables. The only

check that adds significant run-time overhead is check R-4, which checks the target of an

147



doi:10.6342/NTU201800775

 0

 20

 40

 60

 80

 100

 0  5  10  15  20

O
ve

rh
ea

d 
(%

 u
ns

af
e 

VM
)

Percentage of executed array/object access instructions

Loads vs. read safety overhead
Stores vs. write safety overhead

Figure 7.8: Percentage of array/object load/store instructions and cost of read/write safety

-50
 0

 50
 100
 150
 200
 250
 300
 350
 400

Bub
ble

 so
rt

Hea
p s

ort

Bina
ry 

se
arc

h

XXTEA
MD5

RC5
FFT

Outl
ier LE

C

Core
Mark

Mote
Trac

k

Hea
tCalib

Hea
tDete

ct

av
era

ge

O
ve

rh
ea

d 
(%

 o
f n

at
iv

e 
C

 ru
n 

tim
e) bounds in memory

bounds in registers
difference

Figure 7.9: Comparison of safety cost with heap bounds in memory or registers
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object field or array write is within the bounds of the heap.

Thus, the run-time overhead is determined by the number of object or array writes a

benchmark does. The percentage of these is shown in the first part of Table 7.9. Since

bubble sort has by far the highest percentage of array writes, at 18% of all executed byte-

code instructions, it also incurs the highest overhead from adding safety, and slows down

by 72.7%. Binary search on the other hand, which does no writes at all, is unaffected.

As usual CoreMark, being a large benchmark with a mix of operations, is somewhere in

the middle. The correlation between the percentage of array and object writes, and the

slowdown compared to the unsafe version is shown in Figure 7.8.

Safe reads

Up to this point the VM only checks the application cannot write to memory it is not

supposed to write to, however, it may still read from any location.

The recently published Meltdown and Spectre vulnerabilities in desktop CPUs can

be exploited by malicious code to read from anywhere in memory, exposing both the

kernel’s and other applications’ private data, which may contain sensitive information

such as authentication tokens, passwords, etc. This sent OS vendors rushing to release

patches, which early report suggest may cause a performance penalty of up to 11% [82].

Whether this is also a problem on a sensor node depends on the scenario. If the VM

or other tasks contain sensitive information, then this may need to be protected. However,

in many sensor node applications the node may only be running a single application, and

CapeVM does not contain any state that would be useful to an attacker. In these cases,

write safety will be sufficient.

Adding read safety to our VM is trivial: instructions to load local and static variables

are already protected since they use the same code to access a variable as the store instruc-

tions. For heap access, we simply add the same call to heapcheck to the GETARRAY

and GETFIELD instructions just before the actual read.

Figure 7.7 shows the cost of providing read safety is higher than write safety. Most

applications read from an array or object much more frequently than they write to them.
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As a result, our VM with read and write safety turned on slows down by 64% on average,

corresponding to a 174% slowdown over native C. In addition to the sort benchmarks,

MoteTrack also suffers greatly from adding read safety, since it spends 21% of its instruc-

tions reading from objects and arrays, most of which is from reading the RSSI signatures.

RC5 is the fastest benchmark, since it not only does relatively few array reads and writes,

but also spends a large amount of time on expensive variable bit shifts, which have identi-

cal performance in both C and AOT compiled versions. The result is a slowdown of only

33% compared to native C for the fully sandboxed version.

Keeping heap bounds in registers

In Section 6.2.4 several alternatives for the heap bounds check were considered, one of

which is to keep the bounds in dedicated registers to avoid having to fetch them from

memory for each check. This section evaluate this choice.

Having the bounds in registers would reduce the cost of the check from 22 to 14 cycles,

reducing the overhead of safety checks by 8/22 ≈ 36%. However, this uses 4 registers

which cannot be used for stack caching.

To estimate how this would affect performance, the benchmarks were run using the

unsafe VM, with the number of registers available to the stack cache reduced by 4. Since

this does not affect the number of heap accesses, we then added the observed overhead for

safety checks, reduced by 36%.

Figure 7.9 shows the overhead for our chosen approach with the heap bounds in mem-

ory, compared to the expected overhead when the heap bounds are stored in registers. For

some benchmarks such as bubble sort andMoteTrack, the savings in heap bounds checks

outweighs the reduced effectiveness of the stack cache. But the improvement in perfor-

mance is relatively small, and for other benchmarks the reverse is true, showing minor

slowdowns when heap bounds are kept in registers. On average the benchmarks are quite

balanced, as is the larger CoreMark benchmark.

As future work we may consider using some basic statistics, such as the percentage

of array write instructions and average stack depth, to choose one of the two options on a
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per-method basis. But as usual there is a trade-off, in this case VM size and complexity,

and this may not be worth the effort given the relatively small gains.

7.8.2 Code-size cost

The cost of safety in terms of code size comes in two parts: increased VM complexity and

size, and an increase in the code it generates.

Most of the safety checks are no more complex than comparing two integers, and

rejecting or terminating the application if a condition is not met. The most complex part is

deciding the stack effects of instructions to guard against stack under- or overflow. This is

implemented as a table that encodes the effects of most instructions, and some specialised

code to analyse a handful of instructions without fixed effect. In total, the increase in VM

size for the safe version is a modest 1,468 bytes.

As shown in Table 7.9, the size of the code the VM generates increases by only 2.4%

for write only safety and 6.0% when reads are also protected. Since many checks occur

at translation time, most instructions produce exactly the same native code in the safe

version of the VM. The exceptions are INVOKEVIRTUAL and INVOKEINTERFACE,

which now contain the expected stack effects to realise check R-3, and the array and object

write instructions PUTFIELD and PUTARRAY, that emit a single extra CALL instruction

to the heapcheck routine. Since these instructions are both relatively rare, and already

generate a larger than average block of native instructions, the total effect on code size is

limited.

7.8.3 Comparison to native code alternatives

As discussed in Section 3.7, several non-VM approaches have been proposed to guarantee

safety on a sensor node. Two of these, t-kernel [35] and Harbor [49], allow the node to

guarantee safety independent of the host. Both target the Mica family of sensor nodes,

which use the same ATmega128 CPU used by CapeVM. In this section we compare them

to CapeVM and consider the question whether a VM is a good way to provide safety.

t-kernel reports a slowdown of between 50 and 200%, which is roughly in the same
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Table 7.10: Comparison of overhead in Harbor and CapeVM

Benchmark CapeVM overhead Harbor overhead

VM + safety checks = safe VM current hypothetical

Array writes 182.8% 268.7% 451.5% 1230% 416%
Outlier 75.7% 52.7% 128.4% 690% 234%
16-bit FFT 17.7% 12.6% 30.3% 380% 129%

range as CapeVM. However both t-kernel and CapeVM provide additional advantages.

In t-kernel’s case a form of virtual memory, and for the VM platform independence. This

makes them hard to compare, but we note that while the performance of both systems is

similar, t-kernel’s code size overhead is much higher at a 6-8.5x increase, limiting the size

of programmes that can be loaded onto a device.

A better comparison is possible for Harbor, which only provides safety. Harbor uses

three benchmarks to evaluate performance: writing arbitrary data to an array to mimic

copying a buffer of sensor data, and the outlier detection and FFT benchmarks also used

in the rest of CapeVM’s evaluation. The size of the data used for the first two is not

specified in the paper, but since it mentions they work on sensor data and the ATmega

CPU has 10-bit analogue-to-digital converters, we use 16-bit data for these benchmarks

as well.

As mentioned before, the FFT benchmark is taken from the Harbor sources [94], and

outlier detection implemented as described in the paper. The array writes benchmark is

implemented as a loop that fills an array of 256 elements with an arbitrary number, as

shown in Listing 7.2.

1 for (short i = 0; i < NUMBERS; i++) {
2 numbers[i] = (short)1;
3 }

Listing 7.2: Array writes benchmark (8-bit version)

The resulting overhead is shown in Table 7.10. Filling an array is a hard case for safe

CapeVM since consecutive array writes are expensive for two reasons: (i) it results in

repeated executions of the PUTARRAY instruction, which calculates the target address for

each write, while native code can slide a pointer over the array, and (ii) each of these writes
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will trigger a call to heapcheck.

CapeVM incurs overhead both related to the VM, and because of the added run-time

safety checks, while for Harbor all overhead is due to safety checks. Still, CapeVM’s total

overhead of 451.5% is much lower than Harbor’s 1230%.

While CapeVM is more than twice as fast as Harbor for this benchmark, the compari-

son is not entirely fair. Harbor lists the cycle overhead for all of its 5 run-time protection

primitives. We assume that without any function calls, only the ’Write access check’ is

relevant to this benchmark, which takes 65 cycles. In contrast, CapeVM’s heapcheck

routine only takes 22 cycles.

The difference is due to Harbor’s more fine grained protection, which allows it to grant

access to any aligned block of 8 bytes to the application, while CapeVM’s protection of the

entire heap as a single block is more coarse. If Harbor could be modified to use a similar

check as CapeVM’s, its overhead for the array writes benchmark could potentially be

reduced to 1230/65∗22 ≈ 416%, slightly faster than CapeVM’s total overhead. However,

it is not clear from the paper whether Harbor’s architecture could support such a coarse-

grained check since it requires all application data that needs run-time write checks to be

in a single block of memory.

While this shows CapeVM achieves a performance comparable to even a hypothetical

optimised version of Harbor, the array writes benchmark does not highlight the advantage

of using a VM to provide safety because it spends much of its time writing to an array,

for which both approaches insert a run-time check. However, the VM can verify writes

to local and static variables to be safe at translation time, while the Harbor sources [94]

show that its verifier requires all stores to go through the run-time write access check. The

authors do note that static analysis of the code could reduce the number of checks, but that

this would come at the cost of a significantly more complex verifier.

CapeVM’s total overhead for the array writes benchmark is slightly higher than the

hypothetical optimised Harbor, but the overhead due to safety checks is lower because

CapeVM does not need to check writes to the index variable i. This advantage should be

more pronounced in code with more frequent writes to local variables, which is exactly
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Table 7.11: Number or registers and word size for the ATmega, MSP430, and Cortex-M0

ATmega MSP430 Cortex-M0
[65, 64] [88, 87] [4]

Number of general purpose registers 32 12 13
Word size 8-bit 16-bit 32-bit
Total register file size (bytes) 32 24 52

the case for the more realistic outlier detection and FFT benchmarks.

The reported overhead is 690% and 380%, which would result in 234% and 129%

resp., when using the faster memory access check. For these benchmarks, CapeVM is

significantly faster at only 128.4% and 30.3% overhead.

7.9 Expected performance on other platforms

Platform independence is one of the main advantages of using a VM. The ATmega family

of CPUs is widely used in low power embedded systems, and CapeVM was implemented

for the popular ATmega128 CPU. However, the techniques described in this dissertation

do not depend on any ATmega specific properties and can be applied on other embedded

CPU platforms to improve performance and provide a safe execution environment. The

main requirements are a node’s ability to reprogramme its own programme memory, and

the availability of a sufficient number of registers for stack caching.

While it is impossible to determine exactly what the resulting performancewould be on

different platforms without porting the VM, this section presents some results that indicate

it is likely to be slightly worse than the results seen on the ATmega.

Two important parameters that influence performance are the number of available reg-

isters and the size of the registers. Table 7.11 lists these parameters for the ATmega, and

two other common families of embedded CPUs, the Texas InstrumentsMSP430 and ARM

Cortex-M0. These CPUs are similar in many ways, including the amount of RAM and

flash memory typically available, but differ in the number of registers and word size.
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Table 7.12: Performance overhead for different stack cache sizes (in pairs of registers)

Number of Overhead
register pairs push/pop load/store mov(w) vm+other total

4 8.7 80.5 2.4 38.1 129.7
5 7.8 64.0 3.8 37.5 113.0
6 6.7 50.3 4.7 37.0 98.7
7 6.4 40.2 4.9 37.0 88.4
8 5.7 31.6 5.8 36.9 80.1
9 5.5 25.6 6.7 36.9 74.6
10 4.9 20.1 6.8 36.9 68.7
11 4.3 18.9 6.9 36.9 67.0
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Figure 7.10: Performance overhead for different stack cache sizes (in pairs of registers)

7.9.1 Number of registers

The ATmega has 32 8-bit registers, which are managed as 16 pairs since the VM stores

data in 16-bit slots. The MSP430 only has 12 registers, but they are 16-bit. 5 register pairs

are reserved on the ATmega, leaving 11 pairs available for stack caching. Assuming the

same can be achieved by reserving 5 16-bit registers on the MSP430, 7 registers will be

available to the stack cache.

To evaluate the effect of a smaller number of registers on the stack cache, all bench-

marks were run while restricting the number of registers the cache manage may use. Since

the VM needs a minimum of 4 pairs to implement all instructions, the number of register

pairs is varied from 4 to 11.

The results are shown in Figure 7.10 and Table 7.12. As is common with caching
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Table 7.13: Performance overhead for different data sizes

8-bit 16-bit 32-bit

Bubble sort 139.5 101.2 94.4
Heap sort 128.4 88.5 66.2
Binary search 106.3 65.2 66.0
Outlier 159.0 75.7 121.6
Fill array 210.1 182.8 155.3
FFT 95.5 17.7

techniques, the first few registers have the most impact, with half of the extra overhead

reduction already realised when adding the first two additional register pairs. Ignoring all

other difference for the moment, the effect of reducing the number of register pairs from

11 to 7 is an increase in overhead by 21.4%, to 88.4%.

The Cortex-M0 has one general purpose register more than the MSP430, and at 8

register pairs the overhead drops to 80.1%. In addition, the M0’s registers are 32-bit,

which means in cases where 32-bit values are used, the cache size is effectively doubled

since values can be stored in a single register instead of two pairs of 8-bit registers.

A final interesting thing to note in Figure 7.10 is the fact that increasing the cache

size mostly reduces the load/store overhead. Using only 4 pairs, stack caching has already

removedmost of the push/pop overhead, which only drops slightlywhenmore registers are

used. However, these extra registers reduce load/store overhead significantly since more

registers are available for the markloop optimisation, and using more registers increases

the chance that an old, popped value may still be present, allowing popped value caching

to eliminate more loads.

7.9.2 Word size

A second important difference between the CPUs in Table 7.11 is the size of the registers.

The main measure to evaluate our approach has been the overhead compared to native C

performance or code size. While having a large register size is good for absolute perfor-

mance, we expect it to hurt the relative performance of our VM.

A number of benchmarks can be implemented using different data sizes. Asmentioned

in Section 7.1, 16-bit data is used in the main evaluation. Figure 7.11 and Table 7.13 show
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Figure 7.11: Performance overhead for different data sizes

the resulting performance for 8, 16, and 32-bit versions of these benchmarks (no 32-bit

version of fix_fft.c was available).

In almost all cases, a smaller data size results in a higher relative overhead. This is be-

cause this reduces the time spent in code that is common to both C and AOT versions. For

example, the different versions usually do the same number of memory accesses. When

operating on 16-bit data, this only takes half as long as for 32-bit data, while the surround-

ing overhead either stays the same or is reduced by a smaller factor, thus increasing the

relative overhead.

Taking bubble sort as an example, all three versions do the same number of loads,

comparisons, and array stores. bubble sort’s overhead primarily comes from calculating

array element locations (see Section 7.5). 32-bit array access takes 17 cycles, 8 of which

are spent on the actual load or store. For 16-bit array access this is only 4 out of 11 cycles,

which drops further to 2 out of 10 cycles for 8-bit arrays. Thus the relative overhead for

accessing smaller elements is higher.

This effect is even clearer for more complex operations like multiplication. 16x16 to

16-bit multiplication can be implemented in a few instructions and only takes 10 cycles
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on the ATmega. 32x32 to 32-bit multiplication is implemented by calling avr-gcc’s

__mulsi3 function, and takes 85 to 100 cycles.

Thus, working with 16-bit or 32-bit data on an 8-bit CPU helps the VM’s relative

performance by introducing a larger common component that both C and AOT compiled

versions have to execute. On the MSP430 or Cortex-M0, that operate on 16-bit or 32-bit

values in a single step, this effect will be reduced or eliminated. The exact impact of this

is hard to estimate, but it is likely to be in the order of tens of percents extra overhead.

In Table 7.13we see the outlier detection and binary search benchmarks performworse

for 32-bit data compared to 16-bit data. This is due to a mismatch between the infuser and

ProGuard. In JVM bytecode, local variables are stored in 32-bit slots. The code generated

by javac uses a separate slot for each variable, but ProGuard attempts to reduce memory

consumption by mapping multiple variables to the same slot if their live ranges do not

overlap. The infuser processes the ProGuard optimised code, as shown in Figure 4.1,

and replaces the JVM’s 32-bit operations by 16-bit versions where possible. In the 32-bit

outlier detection benchmark, ProGuard mapped a 32-bit and 16-bit variable to the same

slot, which prevents the infuser from using the cheaper 16-bit operations for this variable.

This once again highlights the need for a unified, optimising compiler, combining the tasks

of javac, ProGuard and the infuser.

The large difference in performance for FFT is mostly due to bit shifts. The 8-bit

version does many shifts of a 16-bit value by exactly 6 bits. The VM simply emits 6

single-bit shifts, while avr-gcc has a special optimised version for this case, which we

considered too specific to include in the VM. The 32-bit version spends about half of its

time shifting a 32-bit value by 15 bits. This is one of the cases not optimised by avr-gcc,

and both the VM and avr-gcc implement this using the same loop, which again adds a

large common factor, thus reducing the relative overhead.

7.10 Limitations and the cost of using a VM

The quantitative evaluation in the previous sections has shown that AOT compilation tech-

niques can reduce the performance overhead of using a VM to within a range that will be
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acceptable for many applications. However, this is not the only cost associated with us-

ing a VM. This section discusses the limitations of CapeVM, and the cost of using a VM

compared to native code.

Since CapeVM is based on Darjeeling, we share many of its limitations. Like Dar-

jeeling, CapeVM does not support multidimensional arrays, reflection, 64-bit or floating

point data types [13]. In addition, CapeVM drops support for exceptions and threads since

they are much harder to implement in an AOT compiler than in an interpreter. As we will

argue in Chapter 8, we feel that if the goal is to provide useful, platform independent and

safe reprogramming of sensor nodes with adequate performance, instead of simply port-

ing Java, many of Java’s more advanced features, especially those that are expensive to

implement, should be replaced by more lightweight alternatives.

Besides these unsupported features, there are other costs to using CapeVMwhen com-

pared to native code. One of the most important concerns is size. While our optimisations

reduce the code size overhead significantly, AOT compiled code is still larger than native

C and the VM itself also takes up space. In terms of RAM, the heap adds a 5 byte overhead

to each object or array, and we have seen that Java cannot represent complex structures

like MoteTrack’s RSSI signature efficiently. For code that only uses a limited number of

large objects or arrays like the heat detection benchmark, this overhead will be acceptable,

but for code using many tiny objects likeMoteTrack this overhead is significant.

In terms of performance, a limitation of lightweight methods is that they don’t support

recursive function calls. However, we have not found such code in any benchmark, and

the limited amount of RAM on a sensor node means recursion would be a bad choice in

most situations.

When optimising code for performance, small choices can often have unexpected con-

sequences. We found this to be muchmore significant when writing Java code for the VM,

than when writing the same algorithms in C where avr-gcc’s optimisations often mean

two different approaches in C result in similar binary code. An optimising combined com-

piler and infuser will help a Java developer by doing some of the same optimisations, but

there are many examples where the most natural way to solve a problem in Java may not
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result in the best performance. For example, Suganuma [85] notes that Java code typically

results in many small methods and invocations, which can result in a serious performance

penalty if they cannot be made lightweight or eliminated by automatic inlining. Allocating

many temporary objects hurts performance, while creating them once and reusing them

usually results in slightly unnatural code. While this is also true for C, the impact of C

function calls and allocating temporary objects on the stack is much smaller.

The next chapter will look at some of these limitations and propose ideas on how to

improve them in future sensor node VMs.
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Chapter 8

Open issues in

resource-constrained JVMs

In Section 1.4 we defined two of our main research questions as how close an AOT com-

piling sensor node VM can come to native performance, and whether a VM is an efficient

way to provide a safe execution environment. These questions are not specific to Java,

and the main motivation to base CapeVM on Java was the availability of a rich set of tools

and infrastructure to build on, including a solid VM to start from in the form of Darjeeling.

In this chapter we consider the third question: whether Java is a suitable language for a

sensor node VM, and how it may be improved.

One aspect of the JVM that makes it an attractive choice for sensor nodes is its sim-

plicity, allowing a useful subset of it to be implemented in as little as 8 KB [38]. However,

it also lacks some important features which ultimately makes it a less good fit for typical

sensor node code. These range fromminor annoyances that reduce code readability, to the

lack of support for constant data and high memory consumption for nested data structures.

The last two issues make some applications that can run on a sensor node when written in

C, impossible to implement in standard Java.

In this chapter we discuss the most pressing issues we encountered, summarised in

Table 8.1, and suggest ways they could be improved in future VMs. Where possible,

the impact of these issues is quantified in Table 8.3. Although more study is required to
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Table 8.1: Point requiring attention in future sensor node VMs

Section Issue in affects

8.1 A tailored standard library Standard library VM size
8.2 Support for constant arrays Source language, VM memory usage, code size
8.3 Support for nested data structures Source language, VM memory usage, performance
8.4 Better lang. support for shorts and bytes Source language memory usage,

source maintainability
8.5 Simple type definitions Source language source maintainability
8.6 Explicit and efficient inlining Source language performance
8.7 An optimising compiler Compiler performance
8.8 Allocating objects on stack Source language, VM (predictable) performance
8.9 Reconsidering adv. language features Source language, VM VM size, complexity,

threads, exceptions, OO, garbage collection and performance

turn these suggestions into working solutions, many of the points raised here could be

improved with minor changes to Java, leading to a ’sensor node Java’, much like nesC

[30] is a sensor node version of C, but some require more drastic changes.

8.1 A tailored standard library

A minimum Java API for resource-constrained devices, the Connected Limited Device

Configuration (CLDC) specification, was proposed by Sun Microsystems [69]. The

CLDC was primarily intended for devices larger than typical sensor nodes, and not

tailored to the characteristics of typical sensor node code. Providing support for the

full CLDC specification would require a substantial amount of memory and programme

space for features that are rarely required by sensor node applications. Table 8.2 shows

the code size of library support as implemented in the original Darjeeling VM.

The largest mismatch comes from the CLDC’s string support, which takes up over 10

KB. While string support is one of the most basic features one would expect to find in the

standard library of any general purpose language, it is rarely required within sensor node

applications that usually do not have a UI and only communicate with the outside world

through radio messages.

On the other hand, the standard library should include abstractions for typical sensor

node operations that are missing from the CLDC. The CLDC Stream abstraction is in-

tended to facilitate file, network andmemory operations. The abstraction is not well suited
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Table 8.2: Size of Darjeeling VM components

Component std.lib VM total
(bytes) (bytes) (bytes)

Core VM 3529 7006 10535
Strings 8467 1942 10409
Interpreter loop 0 10370 10370
Garbage collection 80 3442 3522
Threads 909 2472 3381
Exceptions 1338 818 2156
Math 222 1274 1496
IO 530 680 1210
Total 15075 28004 43079

for communication protocols required by sensor node applications, such as I2C and SPI.

In CLDC, connections between devices can be initiated by specifying URI-like strings.

However, processing these is relatively expensive, and sensor nodes often identify each

other using a 16 or 32-bit identifier.

Aslam [7] discusses a method for dead code removal that could be used to remove

unused code from a library. The remaining library code becomes part of the application

that is uploaded to a device as a whole. While this can be useful to allow developers to

use a large library of seldom used functions that will only be included when needed, this is

much less efficient compared to a natively implemented standard library, and not possible

for library functions to access the hardware.

Therefore we argue a minimal tailored library is necessary that may be efficiently

implemented in native code and present on all devices, and that this library should be

designed from the ground-up specifically for sensor node applications. Such a library

should include functionality for: (i) basicmath; (ii) array operations; (iii) a communication

API that encapsulates the low-level protocols typically used (e.g. I2C); and (iv) a higher-

level generic radio and sensor API abstraction.
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Table 8.3: Quantitative impact of Java/JVM issues

Section Measure a B.sort H.sort Bin.Search XXTEA MD5 RC5 FFT Outlier LEC CoreMark MoteTrack HeatCalib HeatDetect

8.2 Size of constant data 200 2,048 51 20,560
Constant array RAM overhead 208 2,056 67 too big
Constant array flash overhead 1,998 26,714 930 too big

8.3 Size of main data structures in C 512 512 200 144 174 256 256 860 1024 1633 b 606 644 1088
Size of main data structures in Java 520 520 208 160 214 288 272 884 1058 1996 1387 c 676 1158
Size increase 1.6% 1.6% 4.0% 11.1% 23.0% 12.5% 6.3% 2.8% 3.3% 22.2% 128.9% 5.0% 6.4%

8.4 Casts 1 6 5 8 8 8 16 3 10 70 33 4 64
Lines of code d 11 24 16 38 165 27 73 44 77 849 475 51 266
Casts per 100 LOC 9 25 31 21 5 30 22 7 13 8 7 8 24

8.6 Slowdown non-inlined version 69% 57% 25% 37% 20% 13%
Size difference non-inlined version +42 -224 -1502 -94 -20 +48

8.7 Slowdown w/o optimisations 91% 52% 544% 3% 3% 23% 117% 76% 2%

8.8 Slowdown from heap allocations 330% 6% 65%
a A blank entry indicates the benchmark was not affected. Highlights indicate a significant impact.
b Actual amount of memory used. CoreMark’s C version allocates 2047 bytes, but the remaining space is not used.
c After replacing MoteTrack’s 2-byte RSSI array with two variables.
d Counted as the number of actual code lines, excluding blanks lines, comments, and brackets.
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8.2 Support for constant arrays

Constant data is relatively common in sensor node code. In our benchmarks, they appear

as the key schedule in the RC5 cipher, a table of precomputed sine wave values for the

FFT benchmark, a dictionary of codes in the LEC benchmark, and a database of RSSI

signatures in MoteTrack.

Sensor node CPUs differ from desktop systems in the fact that memory is split in a

small amount of RAM for volatile data, and a relatively large amount of flash memory for

code and constant data. Because Java was not designed for such systems, it has no way

to distinguish between the two, and both constant and variable data are always placed in

RAM.

There are two problems with Java’s approach: (i) an array of constant data will take

up RAM, which is a scarce resource, and (ii) the data is not stored as raw data, but as a

sequence of bytecode instructions that initialise each element of an array individually. In

the worst case, an array of bytes, this means 7 byte of bytecode are needed for each byte

of data, which increases even further after AOT compilation.

An extension that allows developers to place arrays of constant data in flash memory

was presented in Section 5.3.5.

8.3 Support for nested data structures

Besides the need to support constant data, theMoteTrack benchmark also exposes another

weakness of Java: it does not support data structures of many small objects efficiently.

Listing 8.1 shows the main RefSignature data structure used in MoteTrack. This

structure consists of a location, which is a simple struct of 3 shorts, and a signature, which

has an id, and an array of 18 signals. A signal is defined by a source ID, and an array of 2

elements with RSSI values.

Since all the arrays are of fixed length, in C the layout of the whole structure is known

at compile time, shown in Figure 8.1. As described in Section 2.2.2, in Java every object

is made up of a list of primitive values: either an int or a reference to another object. In
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1 #define NBR_RFSIGNALS_IN_SIGNATURE 18
2 #define NBR_FREQCHANNELS 2
3
4 struct RefSignature
5 {
6 Point location;
7 Signature sig;
8 };
9
10 struct Point
11 {
12 uint16_t x;
13 uint16_t y;
14 uint16_t z;
15 };
16
17 struct Signature
18 {
19 uint16_t id;
20 RFSignal rfSignals[NBR_RFSIGNALS_IN_SIGNATURE];
21 };
22
23 struct RFSignal
24 {
25 uint16_t sourceID;
26 uint8_t rssi[NBR_FREQCHANNELS];
27 };

Listing 8.1: MoteTrack RefSignature data structure

Java we cannot have an array of objects, only an array of references to objects. Thus, the

most natural way to translate the C structures in Listing 8.1 to Java, is as a collection of

objects and arrays on the heap, as shown in the right half of Figure 8.1. Note that every

one of the 18 RFSignal structs becomes an object, which in turn has a pointer to an

array of RSSI values.

There are two problems with this. First, since the location of these Java objects is not

known until run time, there is a performance penalty for having to follow the chain of

references. MoteTrack will loop over the signals in the rfSignals array. Starting from

this array, Java needs to do 3 lookups to get to the right RSSI value: the address of the

current RFSignal object, the address of the rssi array, and then the actual RSSI value.

For the C version, all the offsets are known at compile time, so the compiler can generate

a much more efficient loop, directly reading from the right locations.

The second problem is the added memory usage. The C struct only takes up 80 bytes,

all used to store data. The Java version allocates a total of 40 objects, 36 of which are

spent on the RFSignal objects and their arrays of RSSI values. Each of these requires a

heap header, which takes up 5 bytes. In addition, the 18 byte arrays have a 3 byte header,
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Figure 8.1: The RefSignature data structure: as a C struct, and as a collection of Java
objects

the signal array a 4 byte header, and the whole structure contains a total of 39 references

which each take up 2 bytes. In total, the collection of Java objects use 80 + 40 ∗ 5 + 18 ∗

3 + 4 + 39 ∗ 2 = 416 bytes.

Combined with MoteTrack’s other data structures, this is too large to fit in memory,

which forced us to refactor the 2 elementrssi array into two byte variables stored directly

in RFSignal, as explained in Section 7.1.1. This allowed us to run the benchmark, but

a RefSignature still takes up 236 bytes, and reading an RSSI value still takes two lookups

instead of one.

Table 8.3 shows the size of the main data structures used by each benchmark. For most

benchmarks that operate on a handful of objects and arrays, the overhead is limited to at

most tens of bytes. Besides MoteTrack, the CoreMark benchmark also has a significant

overhead. Here the cause is the linked list of ListHead and ListData objects, each

of which has a 5 byte header.

Generally, large arrays of primitive types do not suffer from this problem and can be

stored with low relative overhead, but for programmes containing large numbers of small

objects the overhead is significant. In some cases this can be mitigated by flattening the

structure. Section 7.2 described an alternative for CoreMark to replace the linked list
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with a single array, and in MoteTrack’s case the array of RFSignal objects could be

replaced with three separate arrays for sourceID, rssi_0 and rssi_1. In both cases

the reduced memory overhead comes at a significant cost in readability.

8.4 Better language support for shorts and bytes

Because RAM is scarce, 16-bit short and single byte data types are commonly used in

sensor node code. The standard JVM only has 32 and 64-bit operations, and variables and

stack values are stored as 32-bit, even if the actual type is shorter. On a sensor node this

wastes memory, and causes a performance overhead since most nodes have 8-bit or 16-bit

architectures. Therefore, many sensor node JVMs, including Darjeeling, introduce 16-bit

operations and store values in 16-bit slots.

However, this is only one half of the solution. At the language level, Java defines that

an expression evaluates to 32-bits, or 64-bits if at least one operand is a long. Attempting

to store this in a 16-bit variable will result in a ‘lossy conversion’ error at compile time,

unless explicitly cast to a short.

As an example, if we have 3 short variables, a, b, and c, and want store the sum of

b and c in a, a cast is needed to avoid errors from the Java compiler:

a=(short)(b+c);

Passing literal integer values to a method call treats them as ints, even if they are small

enough to fit in a smaller type, which results in calls like:

f((byte)1);

While seemingly a small annoyance, in more complex code that frequently uses of

shorts and bytes, these casts can make the code much harder to read. Table 8.3 shows that

over 25 casts per 100 lines of code appear in some benchmarks.

Possible solutions We argue that C-style automatic narrowing conversions would

make most sensor node code more readable, but to leave the option of Java’s default

behaviour open, this may be implemented as new data types: declaring variable a as

unchecked short would implicitly narrow to short when needed, so a=b+c; would
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not need an explicit cast, while it would if a is declared as a normal short.

8.5 Simple type definitions

When developing code for a sensor node, the limited resources often result design patterns

different from desktop software. In normal Java code we usually rely on objects for type

safety and keeping code readable and easy to maintain. On sensor nodes, objects are

expensive and we frequently make use of shorts and ints for a multitude of different tasks

for which we would traditionally use objects.

In these situations we often found that our code would be much easier to maintain if

there was a way to name new integer types to explicitly indicate their meaning, instead of

using many of int or short variables. Having type checking on these types would add

a welcome layer of safety.

Possible solutions At a minimum, there should be a way to define simple aliases for

primitive types, similar to C’s typedef. A more advanced option that fits more naturally

with Java, would be to have a strict typedef which also does type checking, so that a

value of one user defined integer type cannot be accidentally assigned to a variable of

another type, without an explicit cast.

8.6 Explicit and efficient inlining

Java method calls are inherently more expensive than C functions. On the desktop, JIT

compilers can removemuch of this overhead, but a sensor node does not have the resources

for this. We often found this to be a problem for small helper functions that are frequently

called. As an example, the C version of the XXTEA benchmark contains this macro:

1 #define MX (((z>>5^y<<2) + (y>>3^z<<4)) \\
2 ^ ((sum^y) + (key[(p&3)^e] ^ z)))

This macro is called in four places, and implementing it as a lightweight method still

slows down the benchmark by 57%. Tools like ProGuard [36] can be used to inline small
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methods or methods that are only called from a single location, but MX is called from

multiple places and is larger than ProGuard’s size threshold. This leaves developers with

two unattractive options: either leaving it as a method and accepting the performance

penalty, or manually copy-pasting the code, which is error-prone and leads to code that is

harder to maintain.

Inlining larger methods called from multiple locations does run the risk of increasing

code size. However, the data in Table 8.3 shows the increase in code size is often mod-

est. In two cases the inlined version is actually smaller. The code generated by the AOT

compiler for a lightweight method call is still larger than for most other bytecode instruc-

tions, and in CoreMark’s case inlining the ee_isdigitmethod means the code directly

branches on the result of the inlined expression, instead of having to perform an additional

branch on the returned boolean value.

Possible solutions Developers should be given more control over inlining, which could

be achieved by an inline keyword to force the compiler to inline important methods.

8.7 An optimising compiler

As discussed in previous chapters, but listed here again for completeness, Java compilers

typically do not optimise the bytecode but translate the source almost as-is. Without a

clear performance model it is not always clear which option is faster, and the bytecode

is expected to be run by a JIT compiler, which can make better optimisation decisions

knowing the target platform and run-time behaviour. However, a sensor node does not

have the resources for this and must execute the code as it is received. This leads to

significant overhead, for example by repeatedly re-evaluating a constant expression in a

loop.

Possible solutions Even without a clear performance model, some basic optimisations

can be done. Table 8.3 shows the resulting performance without the manual optimisations

discussed in Section 5.2. These optimisations could be further expanded, and combining
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the tasks of the optimiser and infuser can further improve performance as shown in Section

7.9.2.

8.8 Allocating objects on the stack

In Java anything larger than a primitive value has to be allocated on the heap. This intro-

duces a performance overhead, both for allocating the objects, and the occasional run of

the garbage collector that may take several thousand cycles.

In our benchmarks we encountered a number of situations where a temporary object

was needed. For example, the encode function in the LEC benchmark needs to return

two values: bsi and the number of bits in bsi. In C this is done by passing two pointers to

encode. In Java we can wrap both values in a class and either create and return an object

from encode, or let the caller create it and pass it as a parameter for encode to fill in.

In code that frequently needs short-lived objects the overhead for allocating them can

be significant, and unpredictable garbage collector runs are a problem for code with spe-

cific timing constraints. Besides LEC, we saw similar situations in the CoreMark and

MoteTrack benchmarks. The problem is especially serious on a sensor node, where the

limited amount of memory means the garbage collector is triggered frequently even if

relatively few temporary objects are created.

1 public static short LEC(short[] numbers, Stream stream) {
2 BSI bsi = new BSI(); // Allocate bsi only once
3 for (...) {
4 ...
5 compress(ri, ri_1, stream, bsi);
6 ...
7 }
8 }
9
10 private static void compress(short ri, short ri_1, Stream stream, BSI bsi) {
11 ...
12 encode(di, bsi); // Pass bsi to encode to return both value and length
13 ...
14 }
15
16 private static void encode(short di, BSI bsi) {
17 ...
18 bsi.value = ... // return value and length by setting object fields
19 bsi.length = ...
20 }

Listing 8.2: Avoiding multiple object allocations in the LEC benchmark
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This overhead can often be reduced by allocating objects earlier and reusing the same

objects in a loop. In Listing 8.2 this is implemented for the LEC benchmark, where the

bsi object is used to return two values from encode to compress. Instead of creating

a new object in each iteration in the compressmethod where it is needed, bsi is created

once, outside of the main loop, and passed to compress multiple times.

This technique of pulling object creation up the call chain can often be used to remove

this sort of overhead, and it worked in all three benchmarks mentioned before. However,

it gets very cumbersome if the number of objects is more than one or two, or if they need

to be passed through multiple layers. Readability is also reduced, since objects that are

only needed in a specific location are now visible from a much larger scope. Table 8.3

shows the performance without this optimisation.

Possible solutions On desktop JVMs, escape analysis [17, 32] is used to determine if an

object can be safely allocated on the stack instead of the heap, thus saving both the cost

of heap allocation, and the occasional garbage collection run triggered by it.

While the analysis of the bytecode required for this is far too complex for a sensor

node, it could be done offline, similar to TakaTuka’s offline garbage collector analysis

[7]. The bytecode can then be extended by adding special versions of the new opcodes

to instruct the VM to place an object in the stack frame instead of on the heap. A field

should also be added to the method header to tell the VM how much extra space for stack

objects needs to be reserved in the stack frame.

There is a risk to doing this automatically. In CapeVM, the split between heap and

stack memory is fixed, and both are limited. If the compiler automatically puts all objects

that could be on the stack in the stack frame instead of on the heap, we may end up with

an empty heap, and a stack overflow. Therefore, it is better to leave this optimisation to

the developer by also introducing a new keyword at the language level, so developers can

explicitly indicate which objects go on the stack and which on the heap. Of course escape

analysis is still necessary to check at compile time that this keyword is only used in places

where it is legal for the object to be allocated on the stack.
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8.9 Reconsidering advanced language features

Finally, we conclude with some discussion on more fundamental language design choices.

Many sensor node JVMs implement some of Java’s more advanced features, but we are

not convinced this is always a good choice on a sensor node.

While features like threads, exceptions and garbage collection are all useful, they come

at a cost. The trade-off for a sensor node VM is significantly different from a desktop VM:

many of Java’s more advanced features are vital to large-scale software development, but

the size of sensor nodes programmes is much smaller. And while VM size is not an issue

on the desktop, these features are relatively expensive to implement on a sensor node with

limited flashmemory. We believe a VMdeveloped from scratch, with the aim of providing

platform independence, safety, and performance through AOT compilation, would end up

with a design very different from the JVM.

Table 8.2 shows the code size in Darjeeling for some features discussed below. This

was determined by only counting the size of functions directly related to specific features.

The actual cost is higher since some, especially garbage collection, also add complexity to

other functions throughout the VM. Combined, the features below and the string functions

mentioned in Section 8.1 make up about half of the original Darjeeling VM.

Besides an increase in VM size, these features also cause a performance penalty, and

features such as threads and exceptions are much harder to implement in an AOT compiler

where we cannot implement them in the interpreter loop. This means that if we care about

performance and the corresponding reduction in CPU energy consumption, we either have

to give them up, or spend considerably more in terms of VM complexity and size.

8.9.1 Threads

As shown in Table 8.2, support for threads accounts for about 10% of the VM size, if we

exclude the string library. In addition, each thread requires a stack. If the VM allocates a

fixed block, it must be large enough to avoid stack overflows, but too large a block wastes

precious RAM. Darjeeling allocates each stack as a linked list of frames on the heap. This

is memory efficient, but allocating on the heap is slower and will occasionally trigger the
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garbage collector.

A more cooperative concurrency model, where lightweight tasks voluntarily yield the

CPU and share a single stack, is more appropriate for sensor nodes. This is also the ap-

proach to concurrency chosen by a number of native code systems, including t-kernel [34],

nesC [30], and more recently Amulet [40].

8.9.2 Exceptions

In terms of code size, exceptions are not very expensive to implement in an interpreter,

but they are hard to implement in an AOT compiler. We also feel the advantage of having

exceptions is much lower than the other features mentioned in this section, since they

could be easily replaced with return values to signal errors.

8.9.3 Virtual methods

It is hard to quantify the overhead of implementing virtual methods since the code for

handling them is integrated into several functions. In terms of size it is likely less than

2 KB, but the performance overhead is considerable. The target of a virtual method call

must be resolved at run time, they cannot be made lightweight, and an AOT compiler can

generate much more efficient code for calls to static methods.

In practice we seldom use virtual methods in sensor node code, but some form of

indirect calls is necessary for things like signal handling. It should be possible to develop a

more lightweight form of function pointers that can be implemented efficiently. However,

the details will require more careful study.

8.9.4 Garbage collection

Finally, garbage collection is clearly themost intrusive aspect of the JVM to change. While

the first three features could be changed with minor modifications to Java, the managed

heap is at its very core.

Still, there are good reasons for considering alternatives. Table 8.2 shows the garbage
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collector functions in Darjeeling add up to about 3.5 KB, but the actual cost is much higher

as many other parts of Darjeeling are influenced by the garbage collector.

Specifically, it is the reason Darjeeling splits references and integers throughout the

VM. This makes it easy for the garbage collector to find live references, but leads to

significant code duplication and complexity. Using AOT compilation, the split stack adds

overhead to maintain this state, and requires two extra registers as a second stack pointer

that cannot be used for stack caching.

8.10 Building better sensor node VMs

In this chapter we described a number of issues we encountered over the years while using

and developing sensor node VMs. They may not apply to every scenario, but the wide

range of the issues presented here, and the data in Table 8.3, suggest many applications

will be affected by at least some.

Most sensor node VMs already modify the instruction set of the original VM and usu-

ally support only a subset of the original language. The issues described here indicate

these changes do not go far enough, and we still need to refine our VMs further to make

them truly useful in real-world projects.

There are two possible paths to follow: a number of issues can be solved by improving

existing Java-based VMs. Staying close to Java has the advantage of being able to reuse

existing knowledge and infrastructure.

However some of the issues require more invasive changes to both the source language

and VM. If the goal is to run platform independent code safely and efficiently, rather than

running Java, we should start from the specific requirements and constraints of sensor

node software development, which would lead to more lightweight features and a more

predictable memory model.

For either path, we hope the points presented in this chapter can help in the develop-

ment of better future sensor node VMs.
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Chapter 9

Conclusion

This dissertation described the CapeVM sensor node virtual machine. CapeVM extends

the state of the art by combining the desirable features of platform independent reprogram-

ming, a safe execution environment, and acceptable performance. CapeVMwas evaluated

using a set of benchmarks, including small benchmarks to highlight specific behaviours,

and five examples of real sensor node applications.

To come back to the research questions stated in Section 1.4, we can conclude the

following:

a. After identifying the sources of overhead in previous work on Ahead-of-Time com-

pilers for sensor nodes, we introduced a number of optimisations to reduce the per-

formance overhead by 82%, and the code size overhead by 61%, resulting in an

average performance overhead of 67%, and the code size overhead of 77% com-

pared to native C.

The optimisations introduced by CapeVM do increase the size of the VM, but the

break-even point at which this is compensated for by the smaller code it generates,

is well within the range of programme memory typically available on a sensor node.

The price to pay for platform independence and a safe execution environment comes

in three forms. There is still a performance overhead, but it is at a level that will be

acceptable for many applications. The increase in code size however, and the space

taken by the VM, do limit the size of applications that can be loaded onto a device.
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Finally, the overhead inmemory usage is a problem for programmes allocatingmany

small objects.

b. CapeVM’s second contribution is providing a safe execution environment. Com-

pared to native binary code, the higher level of abstraction of CapeVM’s bytecode

allowed us to develop a relatively simple set of safety checks.

This results in a modest overhead in terms of VM size, and because most checks

are performed at translation time, the overhead for providing safety is limited to a

slowdown of 23% and a 2% increase in code size, compared to the unsafe version.

Since to the best of our knowledge only two native code systems exist that provide

safety independent of the host, we cannot exclude the possibility that these could

be further optimised. Currently however, CapeVM is on-par with or faster than

existing systems, and provides platform independence at the same time.

c. Regarding the question of whether Java is a suitable language for a sensor node VM,

we can conclude some aspects of it are a good match. An advantage of its simple

stack-based instruction set is that it can be implemented in a small VM, and while

we showed the stack-based architecture introduces significant overhead, most of

this overhead is eliminated by CapeVM’s optimisations.

However, the benchmarks also exposed several problems that ultimately make stan-

dard Java a poor choice. Specifically, the lack of support for constant data, and the

inefficient use of memory for programmes containing many small objects meant

some benchmarks could not be ported directly from C to Java. We proposed sev-

eral improvements, and developed an extension to allow constant data to be put in

flash memory, but conclude that more work is necessary to come to a more sensor

node specific language and make sensor node VMs truly useful in a wide range of

real-world projects.

Finally, we conclude by comparing CapeVM to existing work on improving sensor

node VM performance, and on safe execution environments in Table 9.1.
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Table 9.1: Comparison of CapeVM to related work

Approach Platform Safe Performance Code size
indep.

Native code No No 1x 1x
Interpreters Yes Mostly no 300a -55400% slower 50% smaller b
Ellul’s AOT Yes No 204-1927% slower 26-449% larger b
Safe TinyOS No Yes c 17% slower 27% larger
Harbor No Yes 380 to 1230% slower 30 to 65% larger
t-kernel No Yes 50 to 200% slower 500 to 750% larger
CapeVM (unsafe) Yes No 67% slower 77% larger
CapeVM (safe) Yes Yes 105% slower 82% larger
a In SensorScheme for a single call to a natively implemented random number generator.
The next fastest benchmark is 1070% slower than native code.

b No support for constant data.
c Requires a trusted host.

Taking unsafe and platform specific native C as a baseline, we first note that existing

interpreting sensor node VM’s are typically not safe, and suffer from a 1 to 2 orders of

magnitude slowdown. The performance overhead was reduced drastically by Ellul’s work

on Ahead-of-Time compilation, but still a significant overhead remains and this approach

increases code size, reducing the size of programmes we can load onto a device.

On the safety side, Safe TinyOS achieves safety with relatively little overhead, but this

depends on a trusted host. Harbor and T-kernel provide safety independent of the host,

but at the cost of a significant performance overhead, or increase in code size respectively.

None of these approaches provide platform independence.

Finally, we see CapeVM provides both platform independence and safety, at a cost in

terms of code size and performance that is lower than or comparable to previous work.
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Appendix A

LEC benchmark source code

1 public class LEC {
2 public static short benchmark_main(short[] numbers, Stream stream) {
3 BSI bsi = new BSI();
4 short ri_1 = 0;
5 short NUMNUMBERS = (short)numbers.length;
6 for (short i=0; i<NUMNUMBERS; i++) {
7 short ri = numbers[i];
8 compress(ri, ri_1, stream, bsi);
9
10 ri_1 = ri;
11 }
12
13 // Return the number of bytes in the output array
14 return (short)(stream.current_byte_index+1);
15 }
16
17 @ConstArray
18 public static class si_tbl {
19 public final static short data[] = {
20 0b00, 0b010, 0b011, 0b100, 0b101, 0b110, 0b1110, 0b11110, 0b111110,

0b1111110, 0b11111110, 0b111111110, 0b1111111110, 0b11111111110, 0b111111111110,
0b1111111111110, 0b11111111111110

↪→
↪→

21 };
22 }
23
24 @ConstArray
25 public static class si_length_tbl {
26 public static byte data[] = {
27 2, 3, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
28 };
29 }
30
31 // pseudo code:
32 // compress(ri, ri_1, stream)
33 // // compute difference di
34 // SET di TO ri - ri_1
35 // // encode difference di
36 // CALL encode() with di RETURNING bsi
37 // // append bsi to stream
38 // SET stream TO <<stream,bsi>>
39 // RETURN stream
40 public static void compress(short ri, short ri_1, Stream stream, BSI bsi_obj) {
41 // compute difference di
42 short di = (short)(ri - ri_1);
43 // encode difference di
44 encode(di, bsi_obj);
45 int bsi = bsi_obj.value;
46 byte bsi_length = bsi_obj.length;
47 // append bsi to stream
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48 byte bits_left_current_in_byte = (byte)(8 - stream.bits_used_in_current_byte);
49 while (bsi_length > 0) {
50 if (bsi_length > bits_left_current_in_byte) {
51 // Not enough space to store all bits
52
53 // Calculate bits to write to current byte
54 byte bits_to_add_to_current_byte =
55 (byte)(bsi >> (bsi_length - bits_left_current_in_byte));
56
57 // Add them to the current byte
58 stream.data[stream.current_byte_index] |= bits_to_add_to_current_byte;
59 // Remove those bits from the to-do list
60 bsi_length -= bits_left_current_in_byte;
61
62 // Advance the stream to the next byte
63 stream.current_byte_index++;
64 // Whole new byte for the next round
65 bits_left_current_in_byte = 8;
66 } else {
67 // Enough space to store all bits
68
69 // After this we'll have -bsi_length bits left.
70 bits_left_current_in_byte -= bsi_length;
71
72 // Calculate bits to write to current byte
73 byte bits_to_add_to_current_byte =
74 (byte)(bsi << bits_left_current_in_byte);
75
76 // Add them to the current byte
77 stream.data[stream.current_byte_index] |= bits_to_add_to_current_byte;
78 // Remove those bits from the to-do list
79 bsi_length = 0;
80 }
81 }
82
83 stream.bits_used_in_current_byte = (byte)(8 - bits_left_current_in_byte);
84 // Note that if we filled the last byte, stream_bits_used_in_current_byte
85 // will be 8, which means in the next call to encode the first iteration of
86 // the while loop won't do anything, except advance the stream pointer.
87 }
88
89 // pseudo code:
90 // encode(di)
91 // // compute di category
92 // IF di = 0
93 // SET ni to 0
94 // ELSE
95 // SET ni to CEIL(log_2(|di|))
96 // ENDIF
97 // // extract si from Table
98 // SET si TO Table[ni]
99 // // build bsi
100 // IF ni = 0 THEN
101 // // ai is not needed
102 // SET bsi to si
103 // ELSE
104 // // build ai
105 // IF di > 0 THEN
106 // SET ai TO (di)|ni
107 // ELSE
108 // SET ai TO (di-1)|ni
109 // ENDIF
110 // // build bsi
111 // SET bsi TO <<si,ai>>
112 // ENDIF
113 // RETURN bsi
114 private static void encode(short di, BSI bsi) {
115 // compute di category
116 short di_abs;
117 if (di < 0) {
118 di_abs = (short)-di;
119 } else {
120 di_abs = di;
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121 }
122 byte ni = computeBinaryLog(di_abs);
123 // extract si from Table
124 short si = si_tbl.data[ni];
125 byte si_length = si_length_tbl.data[ni];
126 short ai = 0;
127 byte ai_length = 0;
128 // build bsi
129 if (ni == 0) {
130 bsi.value = si;
131 bsi.length = si_length;
132 } else {
133 // build ai
134 if (di > 0) {
135 ai = di;
136 ai_length = ni;
137 } else {
138 ai = (short)(di-1);
139 ai_length = ni;
140 }
141 bsi.value = (si << ai_length) | (ai & ((1 << ni) -1));
142 bsi.length = (byte)(si_length + ai_length);
143 }
144 }
145
146 // pseudo code:
147 // computeBinaryLog(di)
148 // // CEIL(log_r|di|)
149 // SET ni TO 0
150 // WHILE di > 0
151 // SET di TO di/2
152 // SET ni to ni + 1
153 // ENDWHILE
154 // RETURN ni
155 private static byte computeBinaryLog(short di) {
156 byte ni = 0;
157 while (di > 0) {
158 di >>= 1;
159 ni++;
160 }
161 return ni;
162 }
163 }
164
165 public class BSI {
166 public int value;
167 public byte length;
168 }
169
170 public class Stream {
171 public Stream(short capacity) {
172 data = new byte[capacity];
173 current_byte_index = 0;
174 bits_used_in_current_byte = 0;
175 }
176
177 public byte[] data;
178 public short current_byte_index;
179 public byte bits_used_in_current_byte;
180 }

Listing A.1: LEC benchmark source code
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Appendix B

Outlier detection benchmark source

code

1 public class OutlierDetection {
2 public static void benchmark_main(short NUMNUMBERS, short[] buffer, short[]

distance_matrix, short distance_threshold, boolean[] outliers) {↪→
3 // Calculate distance matrix
4 short sub_start=0;
5 for (short i=0; i<NUMNUMBERS; i++) {
6 short hor = sub_start;
7 short ver = sub_start;
8 for (short j=i; j<NUMNUMBERS; j++) {
9 short buffer_i = buffer[i];
10 short buffer_j = buffer[j];
11 if (buffer_i > buffer_j) {
12 short diff = (short)(buffer_i - buffer_j);
13 distance_matrix[hor] = diff;
14 distance_matrix[ver] = diff;
15 } else {
16 short diff = (short)(buffer_j - buffer_i);
17 distance_matrix[hor] = diff;
18 distance_matrix[ver] = diff;
19 }
20
21 hor ++;
22 ver += NUMNUMBERS;
23 }
24 sub_start+=NUMNUMBERS+1;
25 }
26
27 // Determine outliers
28 // Since we scan one line at a time, we don't need to calculate
29 // a matrix index. The first NUMNUMBERS distances correspond to
30 // measurement 1, the second NUMNUMBERS distances to measurement 2, etc.
31 short k=0;
32 short half_NUMNUMBERS = (short)(NUMNUMBERS >> 1);
33 // This is necessary because Java doesn't have unsigned types
34 if (distance_threshold > 0) {
35 for (short i=0; i<NUMNUMBERS; i++) {
36 short exceed_threshold_count = 0;
37 for (short j=0; j<NUMNUMBERS; j++) {
38 short diff = distance_matrix[k++];
39 if (diff < 0 || diff > distance_threshold) {
40 exceed_threshold_count++;
41 }
42 }
43
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44 if (exceed_threshold_count > half_NUMNUMBERS) {
45 outliers[i] = true;
46 } else {
47 outliers[i] = false;
48 }
49 }
50 } else {
51 for (short i=0; i<NUMNUMBERS; i++) {
52 short exceed_threshold_count = 0;
53 for (short j=0; j<NUMNUMBERS; j++) {
54 short diff = distance_matrix[k++];
55 if (diff < 0 && diff > distance_threshold) {
56 exceed_threshold_count++;
57 }
58 }
59
60 if (exceed_threshold_count > half_NUMNUMBERS) {
61 outliers[i] = true;
62 } else {
63 outliers[i] = false;
64 }
65 }
66 }
67 }
68 }

Listing B.1: Outlier detection benchmark source code
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Appendix C

Heat detection benchmark source code

C.1 Calibration

1 public class HeatCalib {
2 public static short[] ACal;
3 public static int[] QCal;
4 public static short[] stdCal;
5 public static short[] zscore;
6 public static short z_min, z_max;
7
8 @Lightweight
9 public static native void get_sensor_data(short[] frame_buffer, short frame_number);
10
11 public static void benchmark_main() {
12 short[] frame_buffer = new short[64];
13
14 for (short i=0; i<100; i++) {
15 get_heat_sensor_data(frame_buffer, i);
16 fast_calibration(frame_buffer, i);
17 }
18 get_heat_sensor_data(frame_buffer, (short)100);
19 zscoreCalculation(frame_buffer);
20 }
21
22 private static void fast_calibration(short[] frame_buffer, short frame_number) {
23 short frame_number_plus_one = (short)(frame_number+1);
24 for(short i=0; i<64; i++) {
25 short previous_ACal = ACal[i];
26 ACal[i] += (frame_buffer[i] - ACal[i] + (frame_number_plus_one >>> 1)
27 ) / frame_number_plus_one;
28 QCal[i] += (frame_buffer[i] - previous_ACal) * (frame_buffer[i] - ACal[i]);
29 }
30 for(short i=0; i<64; i++) {
31 stdCal[i] = isqrt(QCal[i]/frame_number_plus_one);
32 }
33 }
34
35 // http://www.cc.utah.edu/~nahaj/factoring/isqrt.c.html
36 @Lightweight
37 private static short isqrt (int x) {
38 int squaredbit, remainder, root;
39
40 if (x<1) return 0;
41
42 /* Load the binary constant 01 00 00 ... 00, where the number
43 * of zero bits to the right of the single one bit
44 * is even, and the one bit is as far left as is consistant
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45 * with that condition.)
46 */
47 squaredbit = (int) ((((int) ~0L) >>> 1) &
48 ~(((int) ~0L) >>> 2));
49 /* This portable load replaces the loop that used to be
50 * here, and was donated by legalize@xmission.com
51 */
52
53 /* Form bits of the answer. */
54 remainder = x; root = 0;
55 while (squaredbit > 0) {
56 if (remainder >= (squaredbit | root)) {
57 remainder -= (squaredbit | root);
58 root >>= 1; root |= squaredbit;
59 } else {
60 root >>= 1;
61 }
62 squaredbit >>= 2;
63 }
64
65 return (short)root;
66 }
67
68 private static void zscoreCalculation(short[] frame_buffer) {
69 short tempMax = -30000;
70 short tempMin = 30000;
71
72 for(int i=0; i<64; i++) {
73 short score = (short)(100 * (frame_buffer[i] - ACal[i]) / stdCal[i]);
74
75 zscore[i] = score;
76
77 if(score > tempMax) {
78 tempMax = score;
79 }
80
81 if(score < tempMin) {
82 tempMin = score;
83 }
84 }
85
86 z_max = tempMax;
87 z_min = tempMin;
88 }
89 }

Listing C.1: Heat detection benchmark source code (calibration phase)

C.2 Detection

1 package javax.rtcbench;
2
3 import javax.rtc.RTC;
4 import javax.rtc.Lightweight;
5
6 public class HeatDetect {
7 public static final byte THRESHOLD_LEVEL1 = 2;
8 public static final byte THRESHOLD_LEVEL2 = 3;
9 public static final byte RED = 4;
10 public static final byte ORANGE = 3;
11 public static final byte YELLOW = 2;
12 public static final byte WHITE = 1;
13
14 public static final byte ARRAY_SIZE = 8;
15 public static final byte WAITTOCHECK = 90;
16 public static final byte CHECKED = 91;
17 public static final byte NEIGHBOR = 92;
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18 public static final byte BOUNDARY = 99;
19
20 public static final byte LEFT_UP = 7;
21 public static final byte RIGHT_UP = 63;
22 public static final byte LEFT_DOWN = 0;
23 public static final byte RIGHT_DOWN = 56;
24
25 public static int x_weight_coordinate = 0;
26 public static int y_weight_coordinate = 0;
27 public static int xh_weight_coordinate = 0;
28 public static int yh_weight_coordinate = 0;
29
30 public static int yellowGroupH = 0;
31 public static int yellowGroupL = 0;
32 public static int orangeGroupH = 0;
33 public static int orangeGroupL = 0;
34 public static int redGroupH = 0;
35 public static int redGroupL = 0;
36
37 public static boolean[] zscoreWeight = null;
38 private static short[] neighbor = new short[8];
39
40 private static final short zscore_threshold_high = 1000;
41 private static final short zscore_threshold_low = 500;
42 private static final short zscore_threshold_hot = 5000;
43 private static final short zscore_threshold_recal = 1000;
44
45
46 public static void benchmark_main(short[] frame_buffer, byte[] color, byte[] rColor,

int[] largestSubset, int[] testset, int[] result) {↪→
47 HeatCalib.zscoreCalculation(frame_buffer);
48
49 ShortWrapper maxSubsetLen = new ShortWrapper();
50 maxSubsetLen.value = 0;
51 get_largest_subset(largestSubset, maxSubsetLen, testset, result);
52
53 reset_log_variable(color);
54
55 if (maxSubsetLen.value > 1) {
56 if (HeatCalib.z_max > zscore_threshold_hot) {
57 get_filtered_xy(largestSubset, maxSubsetLen.value);
58 } else if (HeatCalib.z_max > zscore_threshold_low) {
59 get_xy(largestSubset, maxSubsetLen.value);
60 }
61 labelPixel(largestSubset, maxSubsetLen.value, color);
62 rotateColor(color, rColor);
63 findGroup(rColor);
64 } else {
65 RTC.avroraBreak();
66 }
67 }
68
69 private static void get_largest_subset(int[] largestSubset, ShortWrapper

maxSubsetLen, int[] testset, int[] result) {↪→
70 int pixelCount=0;
71 for(short i=0; i<64; i++){
72 testset[i]=0;
73 }
74 for(short i=0; i<64; i++){
75 if (HeatCalib.zscore[i] > zscore_threshold_high) {
76 testset[pixelCount]=i;
77 pixelCount++;
78 zscoreWeight[i]=true;
79 } else if (HeatCalib.zscore[i] > zscore_threshold_low) {
80 if (zscoreWeight[i] || check_neighbor_zscore_weight(i)) {
81 testset[pixelCount]=i;
82 pixelCount++;
83 zscoreWeight[i]=true;
84 }
85 } else {
86 zscoreWeight[i]=false;
87 }
88 }
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89 testset[pixelCount] = BOUNDARY;
90
91 find_largestSubset(testset, pixelCount, maxSubsetLen, largestSubset, result);
92
93 // If subset only has one pixel higher than zscore threshold,
94 // it will be consideredd as a noise.
95 // This subset will be reset here.
96 if (maxSubsetLen.value == 1) {
97 maxSubsetLen.value = 0;
98 largestSubset[0] = -1; // reset
99 }
100 }
101
102 private static void find_largestSubset(int[] testset, int testsetLen, ShortWrapper

maxSubsetLen, int[] largestSubset, int[] result){↪→
103 for(short i=0; i<64;i++){result[i]=WAITTOCHECK;}
104 int subsetNumber = 0;
105 ShortWrapper startIndex = new ShortWrapper();
106 startIndex.value = 0;
107 while(get_startIndex(testset, testsetLen, result, startIndex)){
108 result[testset[startIndex.value]]=subsetNumber;
109 label_subset(testset, testsetLen, result, subsetNumber);
110 subsetNumber++;
111 }
112 select_largest_subset(testset, testsetLen, result,
113 subsetNumber, maxSubsetLen, largestSubset);
114 }
115
116 private static void select_largest_subset(int[] testset, int testsetLen, int[]

result, int subsetNumber, ShortWrapper maxSubsetLen, int[] largestSubset){↪→
117 int maxSubsetNumber = 0;
118 for(short i=0; i<subsetNumber; i++){
119 short lengthCount = 0;
120 for(short j=0; j<testsetLen; j++){
121 if(result[testset[j]] == i){
122 lengthCount++;
123 }
124 }
125 if(lengthCount > maxSubsetLen.value){ // if equal, no solution currently
126 maxSubsetLen.value = lengthCount;
127 maxSubsetNumber = i;
128 }
129 }
130
131 // largestSubset = (int*)malloc(sizeof(int)*(*maxSubsetLen));
132 short index=0;
133 for(short i=0; i<64; i++){
134 if(result[i]==maxSubsetNumber){
135 largestSubset[index]=i;
136 index++;
137 }
138 }
139 }
140
141
142 private static void reset_log_variable(byte[] color)
143 {
144 for(short i=0; i<64; i++) {
145 color[i] = WHITE;
146 }
147
148 x_weight_coordinate = -1;
149 y_weight_coordinate = -1;
150 xh_weight_coordinate = -1;
151 yh_weight_coordinate = -1;
152
153 yellowGroupH = 0;
154 yellowGroupL = 0;
155 orangeGroupH = 0;
156 orangeGroupL = 0;
157 redGroupH = 0;
158 redGroupL = 0;
159 }
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160
161 private static void get_filtered_xy(int[] largestSubset, int maxSubsetLen) {
162 short x_weight_zscore_sum = 0;
163 short y_weight_zscore_sum = 0;
164 int zscore_sum = 0;
165 byte low_zscore_length = 0;
166
167 short xh_weight_zscore_sum = 0;
168 short yh_weight_zscore_sum = 0;
169 int zscore_sum_h = 0;
170 byte hot_zscore_length = 0;
171
172 for(short i=0; i<maxSubsetLen; i++) {
173 short _zscore = HeatCalib.zscore[largestSubset[i]];
174 if (_zscore > zscore_threshold_hot) {
175 zscore_sum_h += _zscore;
176 hot_zscore_length += 1;
177 } else if (_zscore > zscore_threshold_low) {
178 zscore_sum += _zscore;
179 low_zscore_length += 1;
180 }
181 }
182
183 for(short i=0; i<maxSubsetLen; i++) {
184 int _x = largestSubset[i] % 8;
185 int _y = largestSubset[i] >>> 3;
186 short _zscore = HeatCalib.zscore[largestSubset[i]];
187 if (_zscore > zscore_threshold_hot) {
188 xh_weight_zscore_sum += _x * _zscore / zscore_sum_h;
189 yh_weight_zscore_sum += _y * _zscore / zscore_sum_h;
190 } else if (_zscore > zscore_threshold_low) {
191 x_weight_zscore_sum += _x * _zscore / zscore_sum;
192 y_weight_zscore_sum += _y * _zscore / zscore_sum;
193 }
194 }
195
196 if (hot_zscore_length > 0) {
197 xh_weight_coordinate = xh_weight_zscore_sum;
198 yh_weight_coordinate = yh_weight_zscore_sum;
199 }
200
201 if (low_zscore_length > 0) {
202 x_weight_coordinate = x_weight_zscore_sum;
203 y_weight_coordinate = y_weight_zscore_sum;
204 }
205 }
206
207 private static void get_xy(int[] largestSubset, int maxSubsetLen) {
208 short x_weight_zscore_sum = 0;
209 short y_weight_zscore_sum = 0;
210 int zscore_sum = 0;
211
212 for(short i=0; i<maxSubsetLen; i++) {
213 short _zscore = HeatCalib.zscore[largestSubset[i]];
214 zscore_sum += _zscore;
215 }
216
217 for(short i=0; i<maxSubsetLen; i++) {
218 int _x = largestSubset[i] % 8;
219 int _y = largestSubset[i] >>> 3;
220 short _zscore = HeatCalib.zscore[largestSubset[i]];
221 x_weight_zscore_sum += 100 * _x * _zscore / zscore_sum;
222 y_weight_zscore_sum += 100 * _y * _zscore / zscore_sum;
223 }
224 x_weight_coordinate = x_weight_zscore_sum;
225 y_weight_coordinate = y_weight_zscore_sum;
226 }
227
228
229 private static void labelPixel(int[] largestSubset, int maxSubsetLen, byte[] color)
230 {
231 for(short i=0; i<maxSubsetLen; i++) {
232 int pixelIndex = largestSubset[i];
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233 if (HeatCalib.zscore[pixelIndex] > zscore_threshold_hot) {
234 color[pixelIndex] = RED;
235 } else if (HeatCalib.zscore[pixelIndex] > zscore_threshold_high) {
236 color[pixelIndex] = ORANGE;
237 } else if (HeatCalib.zscore[pixelIndex] > zscore_threshold_low) {
238 color[pixelIndex] = YELLOW;
239 }
240 }
241 }
242
243 private static void rotateColor(byte[] color, byte[] rColor)
244 {
245 for(short i=0; i<8; i++) {
246 for (short j=0; j<8; j++) {
247 rColor[(i<<3)+j] = color[LEFT_UP + (j<<3) - i];
248 }
249 }
250 }
251
252 private static void findGroup(byte[] color)
253 {
254 for(short i=0; i<32; i++){
255 byte cl = color[i];
256 if(cl == YELLOW){
257 yellowGroupL |= 1<<i;
258 }else if(cl == ORANGE){
259 orangeGroupL |= 1<<i;
260 }else if(cl == RED){
261 redGroupL |= 1<<i;
262 }
263 cl = color[i+32];
264 if(cl == YELLOW){
265 yellowGroupH |= 1<<i;
266 }else if(cl == ORANGE){
267 orangeGroupH |= 1<<i;
268 }else if(cl == RED){
269 redGroupH |= 1<<i;
270 }
271 }
272 }
273
274 private static boolean get_startIndex(int[] testset, int testsetLen, int[] result,

ShortWrapper startIndex) {↪→
275 boolean rv = false; // done this way to avoid values on the stack at a brtarget
276 for(short i=0; i<testsetLen; i++){
277 if(result[testset[i]] == WAITTOCHECK){
278 startIndex.value = i;
279 rv = true;
280 break;
281 }
282 }
283 return rv;
284 }
285
286 private static void label_subset(int[] testset, int testsetLen, int[] result, int

subsetNumber) {↪→
287 while(label_neighbor(result, subsetNumber)){
288 for(short i=0; i< testsetLen; i++){
289 if(result[testset[i]] == NEIGHBOR){
290 result[testset[i]]=subsetNumber;
291 }
292 }
293 for(short i=0; i<64; i++){
294 if(result[i] == NEIGHBOR){
295 result[i]=CHECKED;
296 }
297 }
298 }
299 }
300
301 private static void get_eight_neighbor(short loc, short[] neighbor) //neighbor

length maximum is 8↪→
302 {
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303 for (short i=0; i<8; i++) {
304 neighbor[i] = -1;
305 }
306 if((loc >>> 3)==0 && (loc % ARRAY_SIZE)==0){
307 neighbor[0]=(short)(loc+1); neighbor[1]=(short)(loc+ARRAY_SIZE);

neighbor[2]=(short)(loc+ARRAY_SIZE+1);↪→
308 }else if((loc >>> 3)==0 && (loc % ARRAY_SIZE)>0 && (loc %

ARRAY_SIZE)<(ARRAY_SIZE-1)){↪→
309 neighbor[0]=(short)(loc-1); neighbor[1]=(short)(loc+1);

neighbor[2]=(short)(loc+ARRAY_SIZE-1); neighbor[3]=(short)(loc+ARRAY_SIZE);
neighbor[4]=(short)(loc+ARRAY_SIZE+1);

↪→
↪→

310 }else if((loc >>> 3)==0 && (loc % ARRAY_SIZE)==(ARRAY_SIZE-1)){
311 neighbor[0]=(short)(loc-1); neighbor[1]=(short)(loc+ARRAY_SIZE-1);

neighbor[2]=(short)(loc+ARRAY_SIZE);↪→
312 }else if((loc >>> 3)> 0 && (loc >>> 3)<(ARRAY_SIZE-1) && (loc % ARRAY_SIZE)==0){
313 neighbor[0]=(short)(loc-ARRAY_SIZE); neighbor[1]=(short)(loc-ARRAY_SIZE+1);

neighbor[2]=(short)(loc+1); neighbor[3]=(short)(loc+ARRAY_SIZE);
neighbor[4]=(short)(loc+ARRAY_SIZE+1);

↪→
↪→

314 }else if((loc >>> 3)>0 && (loc >>> 3)<(ARRAY_SIZE-1) && (loc % ARRAY_SIZE)>0 &&
(loc % ARRAY_SIZE)<(ARRAY_SIZE-1)){↪→

315 neighbor[0]=(short)(loc-ARRAY_SIZE-1); neighbor[1]=(short)(loc-ARRAY_SIZE);
neighbor[2]=(short)(loc-ARRAY_SIZE+1); neighbor[3]=(short)(loc-1);
neighbor[4]=(short)(loc+1); neighbor[5]=(short)(loc+ARRAY_SIZE-1);
neighbor[6]=(short)(loc+ARRAY_SIZE); neighbor[7]=(short)(loc+ARRAY_SIZE+1);

↪→
↪→
↪→

316 }else if((loc >>> 3)>0 && (loc >>> 3)<(ARRAY_SIZE-1) && (loc %
ARRAY_SIZE)==(ARRAY_SIZE-1)){↪→

317 neighbor[0]=(short)(loc-ARRAY_SIZE-1); neighbor[1]=(short)(loc-ARRAY_SIZE);
neighbor[2]=(short)(loc-1); neighbor[3]=(short)(loc+ARRAY_SIZE-1);
neighbor[4]=(short)(loc+ARRAY_SIZE);

↪→
↪→

318 }else if((loc >>> 3)==(ARRAY_SIZE-1) && (loc % ARRAY_SIZE)==0){
319 neighbor[0]=(short)(loc-ARRAY_SIZE); neighbor[1]=(short)(loc-ARRAY_SIZE+1);

neighbor[2]=(short)(loc+1);↪→
320 }else if((loc >>> 3)==(ARRAY_SIZE-1) && (loc % ARRAY_SIZE)>0 && (loc %

ARRAY_SIZE)<(ARRAY_SIZE-1)){↪→
321 neighbor[0]=(short)(loc-ARRAY_SIZE-1); neighbor[1]=(short)(loc-ARRAY_SIZE);

neighbor[2]=(short)(loc-ARRAY_SIZE+1); neighbor[3]=(short)(loc-1);
neighbor[4]=(short)(loc+1);

↪→
↪→

322 }else if((loc >>> 3)==(ARRAY_SIZE-1) && (loc % ARRAY_SIZE)==(ARRAY_SIZE-1)){
323 neighbor[0]=(short)(loc-ARRAY_SIZE-1); neighbor[1]=(short)(loc-ARRAY_SIZE);

neighbor[2]=(short)(loc-1);↪→
324 }
325 }
326
327 private static void get_four_neighbor(short loc, short[] neighbor) //neighbor length

maximum is 4↪→
328 {
329 for (short i=0; i<4; i++) {
330 neighbor[i] = -1;
331 }
332 if((loc >>> 3)==0 && (loc % ARRAY_SIZE)==0){
333 neighbor[0]=(short)(loc+1); neighbor[1]=(short)(loc+ARRAY_SIZE);
334 }else if((loc >>> 3)==0 && (loc % ARRAY_SIZE)>0 && (loc %

ARRAY_SIZE)<(ARRAY_SIZE-1)){↪→
335 neighbor[0]=(short)(loc-1); neighbor[1]=(short)(loc+1);

neighbor[2]=(short)(loc+ARRAY_SIZE);↪→
336 }else if((loc >>> 3)==0 && (loc % ARRAY_SIZE)==(ARRAY_SIZE-1)){
337 neighbor[0]=(short)(loc-1); neighbor[1]=(short)(loc+ARRAY_SIZE);
338 }else if((loc >>> 3)> 0 && (loc >>> 3)<(ARRAY_SIZE-1) && (loc % ARRAY_SIZE)==0){
339 neighbor[0]=(short)(loc-ARRAY_SIZE); neighbor[1]=(short)(loc+1);

neighbor[2]=(short)(loc+ARRAY_SIZE);↪→
340 }else if((loc >>> 3)>0 && (loc >>> 3)<(ARRAY_SIZE-1) && (loc % ARRAY_SIZE)>0 &&

(loc % ARRAY_SIZE)<(ARRAY_SIZE-1)){↪→
341 neighbor[0]=(short)(loc-ARRAY_SIZE); neighbor[1]=(short)(loc-1);

neighbor[2]=(short)(loc+1); neighbor[3]=(short)(loc+ARRAY_SIZE);↪→
342 }else if((loc >>> 3)>0 && (loc >>> 3)<(ARRAY_SIZE-1) && (loc %

ARRAY_SIZE)==(ARRAY_SIZE-1)){↪→
343 neighbor[0]=(short)(loc-ARRAY_SIZE); neighbor[1]=(short)(loc-1);

neighbor[2]=(short)(loc+ARRAY_SIZE);↪→
344 }else if((loc >>> 3)==(ARRAY_SIZE-1) && (loc % ARRAY_SIZE)==0){
345 neighbor[0]=(short)(loc-ARRAY_SIZE); neighbor[1]=(short)(loc+1);
346 }else if((loc >>> 3)==(ARRAY_SIZE-1) && (loc % ARRAY_SIZE)>0 && (loc %

ARRAY_SIZE)<(ARRAY_SIZE-1)){↪→
347 neighbor[0]=(short)(loc-ARRAY_SIZE); neighbor[1]=(short)(loc-1);

neighbor[2]=(short)(loc+1);↪→
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348 }else if((loc >>> 3)==(ARRAY_SIZE-1) && (loc % ARRAY_SIZE)==(ARRAY_SIZE-1)){
349 neighbor[0]=(short)(loc-ARRAY_SIZE); neighbor[1]=(short)(loc-1);
350 }
351 }
352
353 private static boolean label_neighbor(int[] result, int subsetNumber){
354 boolean hasNeighbor = false;
355 for(short i=0; i<64; i++){
356 if(result[i]==subsetNumber){
357 get_eight_neighbor(i, neighbor);
358 for(short j=0; j<8;j++){
359 if(neighbor[j] != -1 && result[neighbor[j]] == WAITTOCHECK){
360 result[neighbor[j]]=NEIGHBOR;
361 hasNeighbor = true;
362 }
363 }
364 }
365 }
366 return hasNeighbor;
367 }
368
369 private static boolean check_neighbor_zscore_weight(short index) {
370 boolean rv = false; // done this way to avoid values on the stack at a brtarget
371 get_four_neighbor(index, neighbor);
372 for(short i=0; i<4;i++){
373 if (neighbor[i] != -1) {
374 if (zscoreWeight[neighbor[i]]) {
375 rv = true;
376 break;
377 }
378 }
379 }
380 return rv;
381 }
382 }
383
384 public class ShortWrapper {
385 public short value;
386 }

Listing C.2: Heat detection benchmark source code (detection phase)
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