BAi2B KEERETRAERTAIAEEAR
FA 3 T
Department of Computer Science and Information Engineering!

College of Electrical Engineering and Computer Scien¢a| £
National Taiwan University
Master Thesis

F) R H 12 R 04 42 B 2R e ik 2 95 Bk 69 21 4R
LEVERAGE EXPERIMENTS FROM OTHER TASKS
TO SPEED UP TRAINING

54

Ying Li

F B EE AR R4
Advisor: Winston H. Hsu, Ph.D.

FERE 107 F9 A
September, 2018

doi:10.6342/NTU201804197

.

3 \\ 5

R A N - e e AT A i
DREZEBEELE -~
ﬂ%ﬁ%ﬁ&%ﬁ%%m R ER B9 R

Leverage Experiments from Other Tasks to Speed Up
Training

XA ERE (23 R05922016) ARIEERLET ML
E ”‘ﬁkz»@é—lﬁim X HEE 107 £ 9 A 19 BATFHEHKEE
%_é_ R TR 4 3B

oRE B
()
; o +)
B 31677
4 W G

4 0% g2 éﬁiikﬁéF

doi:10.6342/NTU201804197

\

~ ~ e | | ;!
=} = P
\51:!\} "Ezl' ;

B FEEBHARGRAMAA R LR EE o L3 F BRHK
6745 ¥ 232 Winston TR LB BRI E - BRH T EZREFHBI &
APl ig AL 2 F 69483k 0 At Winston Fo LA E Bx £ X BF M FBUAR T 9%
K GPU F R » R#H R B 48 5 1] R 3% B Fo A AR AR 20 BR300 69 5 7 AR
B BHBREREEZER MIFFEREFAERERF ST EORES
R BRMENR LR s 2RALRFEF L) K ILIE 4
B BROX S BERLFF BRHBLEEAMUARAKETYHEERE
—FAE o M A B S AR ROARAEAEIT AR -
R — b 0 R A L R A BRI RRAKE

—HAMEARKS THMEY) RTEALE

il

doi:10.6342/NTU201804197

NI

$ARREBILEE (RL) 7208 SRR HEE EEDTAHSA
PR RAI B R R 22 RL IR ARG ZHF S oM At HER - A
ABBEERIRERE ERHROHRED TR AEFEFTRIE - T
BAF G eA B RAA) AR T 648 W Fok R mik 1L S @

W HBADEEA—ESIEF MM KB KF — LA IR HE
B RFH ko BBBERATPT » RIS agent MEILE B I R LB
WAL > A A IR B X KM EZRINRBEB A LS89 £
£ MR B A o KR RME £ L@ BRI F IR
B A2 A o 5 3] AT B SR A AT B P 0 AR A R — 2 R R 89 91 AR B
Wo BREAW AR TF B ARG KA B 7R IR T B 09 R

T VA be % BAL o

Mets @ #ILZH

v

doi:10.6342/NTU201804197

Abstract

Although the deep reinforcement learning (RL) approach has achieved
impressive results in a variety of video games, training by RL still requires a
lot of time and computational resources since it is difficult to extract informa-
tion from sparse reward by random exploration with the environment. There
have been many works attempts to accelerate the RL process by leveraging
relevant knowledge from past experience. Some formulated this as a transfer
learning problem, exploiting relevant knowledge from other games. Some
formulated this as a multitasking problem, tried to find some useful repre-
sentations which are capable of generalizing to new tasks. In this work, we
treat the process the agent interacts with the environment and collects experi-
ence as a way to generate training data, which needs more variance to make
the training process more efficient. We then try to load models trained on
other game environments to the new game we want to train, in order to gener-
ate some different training data. The results show that use policy from other
games with different goals instead of randomly taken action could speed up

the learning process.

Keywords: Reinforcement Learning

doi:10.6342/NTU201804197

Contents

S i
HE 2] iv
v
1 Introduction 1
2 Related Work 3
P.1 Hierarchical Reinforcement Learning 3
R.2 Learning from Demonstrationt v 3
P.3 Transfer Learning and Multi-task learning 4
6
B.1 System Frameworkl 8
B.2 Selecting existingmodeld 10
B.3 Action Space Mapping oo oe ot 10
4 Experiments 13
#.1 Experimental Settingst 13
#.2 Successfully Speed Up Training v v v v v v 13
#.3 Simply Finetune From existingmodels 14
.4 Most Valuable Plaver 17
5 Conclusion 19

Vi

doi:10.6342/NTU201804197

vii

doi:10.6342/NTU201804197

List of Figures

B.1 The Framework for Double DON: We could consider the process of in

teracting with the environment than collect the experiences, as the process

bf generating data for training. Refer to Sec. 3 for details) 7

B.2 The Training Data Produced: Here we show the policy that the agent

takes when generating training data. The upper graph shows that as thd

training time increases, the probability of randomly selecting actions will

decrease, and the learned policy will be selected. The lower graph shows

that if we use the policies of the existing models during the startup phase)

we will get more different and goal-oriented training data. (Note that the

two numbers 3e5 and 1e6 represent the required steps. More detailed set

tings will be shown in the experimental setting. Refer to Sec. 4.1 forl

................................... 8
B.3 The Framework to use existing models: Refer to Sec. 3.1 for details] . 9
viii

doi:10.6342/NTU201804197

‘.1

Comparison between using existing models or not: Black lines are tra{

(Gl TS s,
] 3 ke

dition method, orange lines are leveraging experience from existing m«
& !

els. The existing models are trained on Air Raid, Alien, Amldar

tipede, Chopper Command, Bank Heist, Battle Zone, Camiia'i,\&
LN

[Attack, Solaris, Space Invaders, Star Gunner, and Venture. Note tHﬁtﬁOn B

i o (51 [

bame will NOT take the model trained from itself as one of the existd

ing models, hence each game has 12 existing models in our experiments)

[Leveraging experience from existing model could make the startup phase

more efficiently. Moreover, in some game such as (b), experience undei

random decision cannot support enough information for DDQN to induce)

while DDON could learn from experience from some other models suc-

.................................. 15

@.2

Comparsion between finetuning from existing models and leveraging

experiments from existing models: the orange line is leveraging from

B existing models, Carnival, Air Raid, and Demon Attack. The resulf

shows that simply finetune from existing models cannot help us to shorten

the startup phase. To finetune from one of the existing models, we first

initialize the parameters of the Q Network by the selected model, then

ffollow the same process as training from scratch. Refer to Sec. 4.3 for

.................................... 16

iX

doi:10.6342/NTU201804197

List of Tables

“.1 Hyper-parameters: the values of these hyper-parameters are the same in

all the experiments. The network has 3 convolutional layers: with 32, 64

and 64 channels. The layers use 8 x 8, 4 x 4, 3 x 3 filters with strides

bf 4, 2, 1, respectively. Note that we have only 256 units in our hidden

layer, as in [7], not 516 units as in the original DQN paper [24] and DDOQN

paper [34]. Moreover, the maximum number of transitions stored in the

memory is much less than in [34] (1M transitions), since the device wed

pse could not afford more] 14

“.2 Directly load existing model to another game: we have 3 existed mod-

g, trained from scratch on Demon Attack, Carnival, and Space Invaders

respectively. These 3 games are all shooting game with 6 actions availd

able. This table shows the average scores of 300 rounds of each game)

loading one of the existing models than play directly without finetuning)

[We set the average score of using the model trained on the original game

as 100%. The result indicates that sometimes the model trained on ongd

bame are suit for the other game. Refer to Sec. 4.3 for details| 16

4.3 Most Valuable Player: The proportion of times an existing model (Col{

umn) had been selected to train a game (Row). Refer to Sec. 4.4 for mored

.................................... 17

.4 The Screenshot and the size of action space for each game (on the list off

existing models)| 18

doi:10.6342/NTU201804197

Chapter 1

Introduction

With thriving of deep reinforcement learning (RL) on innumerable areas, such as Atari
[24], playing Go [30], controlling continuous systems in robotic systems [21], and video
games [35], there has been a dramatic growth in attention and interest. Recent years,
researchers have to start to pay attention to some potential issues that can no longer be
ignored. [10] pointed out that reproducing results for state-of-the-art deep RL methods
are seldom straightforward. [14] addressed some challenges in RL, helping others to set

realistic research expectations. Some of these challenges are list as follows:
» Sample inefficient
* The results sometimes will be overfitting to weird patterns in the environment
* The final results may be unstable and hard to reproduce

In our opinion, the main reason for these problems is the way an RL agent explore the
environment. People would not explore a new environment completely random. Holding
a goal in hand helps a lot, even though this goal is usually different from the current task.
Before finding out how to teach an agent how to explore a new environment efficiently,
we tried to let the agent explore the environment with an old goal. It is not necessary for
this goal to be similar to the current one, the role of this goal is intended to guide the agent
to interact more systematically with the environment more organized, and try not to have

such many vague experiments.

doi:10.6342/NTU201804197

We have some toy experiments to observe the behavior of loading models trained on
one Atari game and play with those observations in the other Atari game..Some-modes
are working! It is needed to train from scratch for each Atari game separately. @owever,'
there are some components in common across games. Unlike some works disfdus%edl how
to define these common parts, such as Hierarchical RL []17], we want to simply use tﬁese
existed goals from other games to accelerate the training of a new game. In our work, we
load models that were trained in other games directly to generate transitional triples for
training. In the initial stage of training, we let our agent hold goals and perspectives from
existed models rather than random exploration. This could cause our agent to understand
the new environment more efficiently and speed up our training.

In this work, we show that once the agent has some reasonable goals, it will have the
opportunity to explore a new environment more efficiently. Though that some of these

goals seem to be not similar to the real one, they are much better than random exploration.

doi:10.6342/NTU201804197

Chapter 2

Related Work

2.1 Hierarchical Reinforcement Learning

To improve sample efficiency of unknown tasks, some recent works [[17, 9, 27] attempt
to define a set of lower-level policy over atomic actions to satisfy the given goal, which
could be used for different tasks. These methods tried to provide an abstract state space
or a way to define a set of sub-goals. It is very important and very useful to let agents
learn by analogy. However, it is too difficult to take a small step. In fact, this field, called
hierarchical reinforcement learning, started even before 2000 [31], 26]. Researchers have
tried many ways to learn hierarchical policies given various manual specifications, such as
a set of sub-goals [31, 26], low-level-skills []13, B, 20], and state abstractions []11, [15, [16].
In recent works, the state abstraction in [27] is provided by experts, and [[17] also uses
handcrafted sub-goals for specific tasks. [9] tries to learn a master policy and several
fixed-length sub-policies that could not be automatically terminated.In our work, we want

a simpler and more versatile way to improve sample efficiency.

2.2 Learning from Demonstration

Learning from expert demonstrations, which is known as behavioral cloning in traditional
RL literature, has been tried by many researchers to solve complex tasks. A recent work[2]

tries to let agent learn from human demonstrators from Youtube videos, while the most

3

doi:10.6342/NTU201804197

challenge part is not to imitate but to deal with the domain gap between the Arcade Learn-
ing Environment [23] and given videos. Such methods attempt to imitate‘the trajectorics
have another strong limitation: the agent learning through imitation cannot adapf4o the

new situations, as described in []1].

2.3 Transfer Learning and Multi-task learning

There is a problem in RL that has been discovered for a long time, a well-trained model and
even a problem definition can only be applied to a single task. Since the 1990s, there have
been many attempts to apply the idea of transfer learning to RL tasks, and in 2009 there
was a survey report on RL transfer learning [32]. As described in [32], the researchers
believe that not only generalization can be carried out in tasks, but also generalization
between tasks, thus effectively speeding up learning. However, after nearly two decades,
which parts should be transferred from which sources, and how to do this, have not been
well resolved.

In order to define what should be transferred, some researchers try to define an em-
bedding for states, actions or the task, such as [25, 4, 22]. Some motivated by the idea
of the student-teacher paradigm introduced by Knowledge Distilling [12], make existing
models to be the teachers for a multi-task agent to shorten the time to adapt to the new
environment, such as [28, 33, 29, 36, 5].

Whether the researchers want to transfer something from one task to another, or if
they want to do multi-task training, the definition of the common part remains a problem.
Furthermore, [8] points out the importance of prior knowledge, claimed that general priors,
such as the importance of objects and visual consistency, are critical for efficient game-
play. This claim, which was supported by experiments, reveas the fact that this problem
is much more difficult than the researchers known.

One of the most similar works with ours is [[19]. This work defines a framework for
dynamically reusing source policies during training. However, like other transfer learning
methods, this work has significant limitations on the source policies: the same action space

and the same state space as the new task. Even simple as Atari games are not suitable for

4

doi:10.6342/NTU201804197

this assumption. In fact, this work only experiments on a series of navigation tasks in the
same environment. To make this framework more versatile, we relaxed 'the restrictions

by setting the problem as a goal-oriented exploration rather than reusing 'souréé:;poi_'icies."
N2
We want to take advantage of the models we’ve trained as well, while we donl’}t ilfinki iPis
SN |)

necessary to extract common components between tasks before doing so.

doi:10.6342/NTU201804197

Chapter 3

Method

Here, we consider the process of collecting experience as a process for generating training
data, as shown in Fig. B.1. Therefore, the process of evaluating the policy and updating
the Q-function could be considered as the process of training on generated training data.
As shown in Fig. B.J, the training data generated by the traditional method only comes
from the Q-Function which are not yet well-trained, and the random policy without a tar-
get. In this way, we need to spend a lot of steps in the startup phase to get a few successful
experiences. Most training data generated by random policy has less information, which
makes it difficult for an agent to introduce some rules. Here, we want to spend most of the
steps in the startup phase to use those policies from the existing models, which are trained
on other Atari games, instead of random policy. These policies will have different goals
because they are designed for different games and have different perspectives since the
screen will vary from game to game. To observe the influence of those policies trained
on other games, we directly load the model trained on one game, say game A, to the other
game B. We found that sometimes the policy from game A will work on game B, and the
way the agent solve game B will be different with using the policy trained on game B. We
assume that using the policy trained on other game will cause the agent to make a different
decision in the same situation and that the decision should be reasonable since the agent
has a goal to achieve. Whether or not this goal is similar to the real goal of the current
game, keeping a goal during the game may result in more information on the training data

generated.

doi:10.6342/NTU201804197

Start (an episode)

Next episode

[
L g ®
8o
3 2 Select an action by
: O°F € — greedy, and execute
OE

|_
g o Evaluate the policy and
S CDU update Q-function
o2
£
. £T
= [Use pairs in memory to
1 update the Q function

End (an episode)

Figure 3.1: The Framework for Double DQN: We could consider the process of inter-
acting with the environment than collect the experiences, as the process of generating data
for training. Refer to Sec. P for details.

Inspired by [19], we use the existing policies to interact with the current environment
directly, rather than loading one of the existing models as initial values. Though [[19] has
strong limitations on the method they proposed, each source policies should have the same
action space and state space as the task currently being solved, we could still use the same
framework as proposed in [[19] since the reason for our use of the old policies are different.
[19] and many other works want to leverage from those learned policies, based on the
assumption that some common sense is hidden in learned policies which are useful for the
current task. While in this work, we only want some policies that are different from the
random policy and the Q-function being updating. We assume that to use centain policies
under different goals in the same environment could produce some different experiences.
These different experiences could increase the diversity of our training data, and make our
training more effective. The experimental results in Sec. § shows that those training data
generated by policies trained on other games will make training easier than generated by

random policy.

doi:10.6342/NTU201804197

Start-up Stage

Traditional

Random Action

S Q Function

Models

Use Existed Models

Figure 3.2: The Training Data Produced: Here we show the policy that the agent takes
when generating training data. The upper graph shows that as the training time increases,
the probability of randomly selecting actions will decrease, and the learned policy will be
selected. The lower graph shows that if we use the policies of the existing models during
the startup phase, we will get more different and goal-oriented training data. (Note that
the two numbers 3e5 and 1e6 represent the required steps. More detailed settings will be
shown in the experimental setting. Refer to Sec. for details.)

3.1 System Framework

In our approach, we will have one or more pre-trained models, each of them were trained
in a single game. The only limitation on the games they trained in is the game should be
one of the 59 Atari games supported by [6]. Therefore, by using the Deep Q-Network
algorithm (DQN, [24]), we could place models under a similar architecture. One of the
important contributions of DQN is that we could train in different games with one ar-
chitecture and the same hyper-parameters. All models have 3 convolution layers and 2
fully-connected layers. The only difference between models is the size of the final fully-
connected layer, depending on the size of the action space of the game it trained in, refer
to Sec. }.1. We will introduce the method we use to overcome this difference in Sec. B.3.
This similar network architecture and mapping from different action space make us able
to directly load one model trained on game A to play directly in game B. As illustrated
in Fig. B.3, this is almost the same as the framework in[[19], we will put all the models

available in the pool. Each time before a new episode of the game begins, the agent will

8

doi:10.6342/NTU201804197

l = Start (an episode)

Select a existed model

model A

Produce Trainind Data

Update Q-function

End (an episode)

Figure 3.3: The Framework to use existing models: Refer to Sec. for details.

have a probability p;, which will decrease over time, to select a model in the pool. Oth-
erwise, the agent will enter the traditional path of Q-Learning (the right path in Fig. B.3),
using the Q-function in training, as shown in Alg. [. When the agent obtains a policy,
from an existing model or the policy which will be updated through time, there is another
probability of € to be evaluated every time step. The agent will have a probability of € to

select an action randomly or select the best action based on the policy it obtains.

To train the agent by the Q-Learning method, here we use Double Q-Learning (DDQN,

[B4]), update the policy Tqpunc Using the loss

(Ris1 + Yer10y (Ser1. @) — qo(Si, Ar))?,

where ¢ is a time step randomly selected from the memory, S; and A, are the state and
the action in time ¢ respectively. The parameters 6 of the online network is used to select
actions, and the parameters 6~ of a target network, which is a periodic copy of the online

network, will not be directly optimized.

doi:10.6342/NTU201804197

3.2 Selecting existing models

Once an episode of a game is over, the environment will return a done signal, The agent
then needs to choose a policy for the next episode. Here, the problem of select_ing;ﬁ" mogdéel
from existing models without any prior knowledge of the current game is fo'rmiliated és.-the
multi-armed bandit problem as [19] did. Different policies loaded from different models
could be regarded as bandits with stochastic rewards in muti-armed bandit problem. Since
the multi-armed bandit problem has been discussed for a long time, there are many simple
and effective algorithms that can achieve the optimal logarithmic regret of this problem,
such as the UCB family ([[18]). UCBI1, which is used in Alg. [, is one of the algorithms
in the UCB family. For each policy 7; in existing models, the number of selected times
Ty(m;) in the previous k episodes (Vj = 1,...,n) and the average reward Ry (m;) will be
kept. After all the policies in existing models have been taken once, UCBI1 selects the
policy 7; with the equation:

J = argmaxi=i n > p—1..rx(Rr(m)) + ;Zl(gj)))

3.3 Action Space Mapping

To map one action chosen by the policy from an existing model, which is not included
in the action space of the current game, we encode each action using a three-dimensional
vector and then performs the action in the action space that is closest to the action selected
by the given policy. The 18 actions available in Atari games are Not-Move, Up, UpRight,
Right, DownRight, Down, DownLeft, Left, UpLeft, Fire, Up-Fire, UpRight-Fire, Right-
Fire, DownRight-Fire, Down-Fire, DownLeft-Fire, Left-Fire, and UpLeft-Fire. Those

actions could be divided into three group of components:
* Up, Not-Move, Down
 Right, Not-Move, Left

* Fire, Not-Move

10

doi:10.6342/NTU201804197

Function learning(env, existing models):

obs < env.reset();

k <+ 0;

total reward < 0;

for each 7; in existing_models do

end

policy use < policy_selection (7}, Ry, existing models);
for ¢t = 1 to max_timestep do

act < 71-policy_use<0bs);

new_obs, rew, done < env.step(act);

Add obs, act, rew, new_obs, done into memory;
total reward < total reward + rew;

if done then

k< k+1;

total_reward <— 0;

obs < env.reset();

Tk (ﬂ-policyiuse) < Tk—l(ﬂ-policyiuse) + 1a
Ri(Tpoticy use) < total_reward,

With probability p,: ;

policy use < policy_selection (7}, Ry, existing models);
With probability 1 — p,: ;

policy_use < Ty func;

end

Ty func < train(memory);

4. :"‘.‘u 1

end

end
Algorithm 1: Q-learning procedure with existing models to explorate at the startup
phase

Function policy_selection(Tk, Ri, existing models):
max; < 0 ;
for each 7; in existing models do

if T (m;) = 0 then

| return g ;
end
. 2n(K
J 4 argmaxi—i_ ., > 1. x(Re(m)) + TK((ﬂ'i))) ;
return 7; ;
end

Algorithm 2: select policy from existing models

11

doi:10.6342/NTU201804197

We encode the components Up, Right and Fire to 1, encode Down and Left to -1, and
encode Not-Move to 0. Using this encoding, the action UpRight-Fire will be eﬁco"('iec__l__ as

(1,1,1), actions with the distance 1 to UpRight-Fire are Up-Fire, UpRight,.'and' R:glqtrF ire

12

doi:10.6342/NTU201804197

Chapter 4

Experiments

4.1 Experimental Settings

Here, we compare the results of using existing models with the results obtained by the
traditional method, based on Baselines provided by OpenAl ([[7]), in the Gym environment
([6]). All experiments used the same hyper-parameters listed in Table. }.1], training from
scratch without additional knowledge. When using the traditional method, the agent has
a probability of 0.99 to react to the environment with random action (e = 0.99), and this
probability will decrease to 0.02 linearly within the first 1 000 000 time steps (e = 0.02).
While in the method to use existing models, the probability to chose from existing models,
p, 1s set to 1.0 at first and decrease to 0.02 linearly within the first 300 000 time steps. € is

set to 0.1 at first and decrease to 0.02 within the first 300 000 time steps.

4.2 Successfully Speed Up Training

As shown in Fig. [.1|, leveraging from existing models successfully shorten the startup
phase. Here we trained our model using one Tesla K80 GPU. To collect 100 000 transi-
tions of experience, it spent about 3 hours GPU time. Without the help from other existing
models, we need at least 45 hours, 19 hours, and 3 hours to get a model for Amidar, Chop-
per Command, and Demon Attack respectively, while we need less than 3 hours for each

game now. Moreover, we even have the opportunity to leverage from some of the experi-

13

doi:10.6342/NTU201804197

Hyper-parameter | Value

Q network: channels 32, 64, 64

Q network: filter size 8x 8 4x4,3x3

Q network: stride 4,2, 1 =
Q network: hidden units 256 H 1
Q network: output units | Size of action space (Maximum: L&)
Memory size 10000 transitions

Replay period Every 4 agent steps

Table 4.1: Hyper-parameters: the values of these hyper-parameters are the same in all
the experiments. The network has 3 convolutional layers: with 32, 64 and 64 channels.
The layers use 8 x 8, 4 x 4, 3 x 3 filters with strides of 4, 2, 1, respectively. Note that
we have only 256 units in our hidden layer, as in [[7], not 516 units as in the original DQN
paper [24] and DDQN paper [34]. Moreover, the maximum number of transitions stored
in the memory is much less than in [34] (1M transitions), since the device we use could
not afford more.

ence generated by existing models to deal with games where DDQN is underperforming,
such as Centipede. We guess that experience under random decision in Centipede does-
n’t support enough information for DDQN to induce, therefore the black line (train from
scratch) of Fig. drops immediately after the probability e decrease to 0.02 after the
first 100 000 time steps. Each model has its own rules and unique perspective since it was
trained in a completely different environment. These models may able to provide some
training data from other distributions, and some of them give Fig. the opportunity to

derive its own rule.

4.3 Simply Finetune From existing models

Here we will show the reason why we don’t simply finetune from an existing model.
As shown in Table. K.2, some models could perform well on the other game without
finetuning. For instance, to play the game Demon Attack, using the model trained on
Space Invaders could beat more than 80% of the average score using the model train on
Demon Attack itself. However, to finetune from Demon Attack to Space Invaders could
not speed up training, as shown in Fig. #.2. Moreover, we could not figure out which
model could works on another game without experiments. We guess that it is because that

the algorithm tries to update the Q function before there is enough training data to derive

14

doi:10.6342/NTU201804197

0\

)
|

G
W

——

TRAIN ON CENTIPEDE
TRAIN ON AMIDAR

Using Existed Models —Train from Scratch

\‘ !
GG UNT A L)

NPT A
RTINS Al Al o
') 'r‘ ‘

) |
All i “‘

Using Existed Models A A /‘
—Train from Scratch

(a) Amidar (b) Centipede

|
‘\‘\” bl]
il o M gt it Rk Lk LA
v W A A
)

TRAIN ON CHOPPER COMMAND

TRAIN ON DEMON ATTACK

Using Existed Models Using Existed Models
—Train from Scratch —Train from Scratch
(¢) Chopper Command (d) Demon Attack

Figure 4.1: Comparison between using existing models or not: Black lines are tradition
method, orange lines are leveraging experience from existing models. The existing models
are trained on Air Raid, Alien, Amidar, Centipede, Chopper Command, Bank Heist, Battle
Zone, Carnival, Demon Attack, Solaris, Space Invaders, Star Gunner, and Venture. Note
that one game will NOT take the model trained from itself as one of the existing models,
hence each game has 12 existing models in our experiments. Leveraging experience from
existing model could make the startup phase more efficiently. Moreover, in some game
such as (b), experience under random decision cannot support enough information for

DDQN to induce, while DDQN could learn from experience from some other models
successfully.

15

doi:10.6342/NTU201804197

TRAIN ON SPACE INVADERS

STEPS
0.00E+00 2.00E+05 4.00E+05 6.00E+05 8.00E+05 4/60E+05;
7 I

B 2
REWARD "7,

—Tain from Scratch ;

— Fine-tune from Carnival
Fine-tune from Air Raid

---Fine-tune from Demon Attack
Using Existed Models

0.0E+00 2.0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06

Figure 4.2: Comparsion between finetuning from existing models and leveraging ex-
periments from existing models: the orange line is leveraging from 3 existing models,
Carnival, Air Raid, and Demon Attack. The result shows that simply finetune from exist-
ing models cannot help us to shorten the startup phase. To finetune from one of the existing
models, we first initialize the parameters of the Q Network by the selected model, then
follow the same process as training from scratch. Refer to Sec. §.3 for details.

existing model \Playing Env. | Demon Attack Carnival Space Invaders
Demon Attack | 7.92 (100%) 1.98 (15%) 2.27 (41%)
Carnival 3.56 (45%) 13.04 (100%) 4.13 (75%)
Space Invaders 6.6 (83%) 2.01 (15%) 5.54 (100%)

Table 4.2: Directly load existing model to another game: we have 3 existed mode,
trained from scratch on Demon Attack, Carnival, and Space Invaders respectively. These
3 games are all shooting game with 6 actions available. This table shows the average
scores of 300 rounds of each game, loading one of the existing models than play directly
without finetuning. We set the average score of using the model trained on the original
game as 100%. The result indicates that sometimes the model trained on one game are
suit for the other game. Refer to Sec. §.3 for details.

centain rule. While in our work, we do not edit any of the parameters in the existing
model. The agent will update its own Q function from scratch, and the role of existing
models are demonstrating some interaction with the environment. The more scores one
existing model could earn, the more likely it is to be used. The orange line in Fig.

indicates that the agent has leverage experience from existing models successfully.

16

doi:10.6342/NTU201804197

existing models \Env. | Air Raid | Alien | Amidar | Bank Heist | Carnival | Centipede | Chopper Command | Demon Attack | Space Invaders

Air Raid 6% 4% 8% 1% 95% 23% 6% 50%

Alien 4% 8% 12% 1% 5% 9% 7% 16%

Amidar 3% 5% 18% 2% 22% 93% 27% 32%

Bank Heist 2% 5% 37% 1% 9% 9% 1% 2%

Battle Zone 2% 3% 11% 10% 1% 4% 8% 8%, 17%
Carnival 2% 3% 19% 8% 23% 12% 3% 2%

Centipede 9% 14% 5% 8% 1% 2% 3%) f_‘,’., 45%

Chopper Command 65% 52% 62% 22% 97% 3% 35% =T
Demon Attack 52% 12% 29% 27% 44% 35% 13% i " 1504
Solaris 2% 3% 10% 10% 1% 3% 13% 4%, | 12¢4

Space Invaders 3% 6% 7% 17% 1% 20% 28% 41% ol ’ .

Star Gunner 3% 30% 34% 10% 1% 3% 11% 4% 0%
Venture 2% 10% 7% 1% 1% 10% 12% 4% 5%

Table 4.3: Most Valuable Player: The proportion of times an existing model (Column)
had been selected to train a game (Row). Refer to Sec. f.4 for more details.

4.4 Most Valuable Player

We conducted a record of the frequency of one existing model has been select by another
game, as shown in 4.3, The 13 existing models have 3 different action space; in addition,
they could be roughly divided into two categories, shooting games and maze games (as
shown in Table. @, Alien, Amidar, Bank Heist and Venture are maze games, the rest are
all shooting games. Note that most of the shooting games we have are vertical shooting,
instead of Chopper Command and Star Gunner, which are horizontal shooting). Here,
we refer to the most frequently selected model as the most valuable player (MVP) in that
game.

We could find that the MVP of a game, not always the one we think /ooks like that
game. The MVP in Air Raid and Carnival is Chopper Command, all of them are shooting
games, while Chopper Command is horizontal shooting and the other two games are not.
MVPs in Alien, Amidar, Bank Heist are not maze games.

Likewise, we found that MVPs of Air Raid, Amidar, Carnival, Centipede and Chopper
Command have different action space than the game itself. This implies that mapping

different action spaces gives the agent more useful options.

17

doi:10.6342/NTU201804197

Screenshot

Environments

Air Raid

Alien

Amidar

Bank Heist

Battle Zone

Carnival

Centipede

Number of Ac-
tions

Environments

Screenshot

18

10

18

18

18

Chopper Com-
mand

Demon Attack

Solaris

Space Invaders

Star Gunner

Venture

Nombérvor dc-

tions"

18

18

18

18

Table 4.4: The Screenshot and the size of action space for each game (on the list of existing

models).

18

doi:10.6342/NTU201804197

Chapter 5

Conclusion

In this work, we tried to leverage some experiments from other tasks. We used models
trained on other games as the policy to explore the current new environment. Experimental
results show that even though these models have different goals and different perspectives,
they could explore the environment more efficiently than random attempts. There is only
one limitation to this approach: we need to provide a common network structure for each
task. With this limitation, we could extend this approach to other tasks without additional
computational costs or editing our framework. We hope that there will be a way to design
a learning path for the RL agent. Before that, we believe that there are still some more

efficient but simple ways to explore a new environment.

19

doi:10.6342/NTU201804197

Bibliography

[1] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. A brief survey

of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

[2] Y. Aytar, T. Pfaff, D. Budden, T. L. Paine, Z. Wang, and N. de Freitas. Playing hard

exploration games by watching youtube. CoRR, abs/1805.11592, 2018.

[3] P.-L. Bacon and D. Precup. Learning with options: Just deliberate and relax. In

NIPS Bounded Optimality and Rational Metareasoning Workshop, 2015.

[4] M. Baroni, A. Joulin, A. Jabri, G. Kruszewski, A. Lazaridou, K. Simonic, and
T. Mikolov. Commai: Evaluating the first steps towards a useful general ai. arXiv

preprint arXiv:1701.08954, 2017.
[5] G. Berseth, C. Xie, and P. Cernek. Multi-skilled motion control. 2018.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba. Openai gym, 2016.

[7] P.Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman,
S. Sidor, Y. Wu, and P. Zhokhov. Openai baselines. https://github.com/openai/
baselines, 2017.

[8] R. Dubey, P. Agrawal, D. Pathak, T. L. Griffiths, and A. A. Efros. Investigating

human priors for playing video games. CoRR, abs/1802.10217, 2018.
[9] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman. Meta learning shared hierar-
chies. CoRR, abs/1710.09767, 2017.

20

doi:10.6342/NTU201804197

https://github.com/openai/baselines
https://github.com/openai/baselines

[10] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep

reinforcement learning that matters. CoRR, abs/1709.06560, 2017.

[11] B. Hengst. Discovering hierarchy in reinforcement learning with hexq. Iirl OME,

volume 2, pages 243-250, 2002.

[12] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[13] M. Huber and R. A. Grupen. A feedback control structure for on-line learning tasks.

Robotics and autonomous systems, 22(3-4):303-315, 1997.

[14] A.Irpan. Deep reinforcement learning doesn’t work yet. https://www.alexirpan.

com/2018/02/14/rl-hard.html, 2018.

[15] J. Z. Kolter, P. Abbeel, and A. Y. Ng. Hierarchical apprenticeship learning with
application to quadruped locomotion. In Advances in Neural Information Processing

Systems, pages 769-776, 2008.

[16] G.Konidaris and A. G. Barto. Building portable options: Skill transfer in reinforce-

ment learning. In LJCAI, volume 7, pages 895-900, 2007.

[17] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. B. Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation.

CoRR, abs/1604.06057, 2016.

[18] T.Laiand H. Robbins. Asymptotically efficient adaptive allocation rules. Adv. Appl.
Math., 6(1):4-22, Mar. 1985.

[19] S.Liand C. Zhang. An optimal online method of selecting source policies for rein-

forcement learning. CoRR, abs/1709.08201, 2017.

[20] R. Liaw, S. Krishnan, A. Garg, D. Crankshaw, J. E. Gonzalez, and K. Goldberg.
Composing meta-policies for autonomous driving using hierarchical deep reinforce-

ment learning. arXiv preprint arXiv:1711.01503,2017.

21

doi:10.6342/NTU201804197

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

[21] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning.. CoRR, ab-

s/1509.02971, 2015.

= :"‘.‘u 1

[22] D. Lopez-Paz et al. Gradient episodic memory for continual learning. il Advdh_.ces

in Neural Information Processing Systems, pages 6467-6476, 2017.

[23] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. J. Hausknecht, and
M. Bowling. Revisiting the arcade learning environment: Evaluation protocols and

open problems for general agents. CoRR, abs/1709.06009, 2017.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control

through deep reinforcement learning. Nature, 518(7540):529, 2015.

[25] M. Nickel and D. Kiela. Poincaré embeddings for learning hierarchical represen-
tations. In Advances in neural information processing systems, pages 6338—6347,

2017.

[26] R. E. Parr and S. Russell. Hierarchical control and learning for Markov decision

processes. University of California, Berkeley Berkeley, CA, 1998.
[27] M. Roderick, C. Grimm, and S. Tellex. Deep abstract g-networks. In AAMAS, 2018.

[28] A. A. Rusu, S. G. Colmenarejo, C. Giilgehre, G. Desjardins, J. Kirkpatrick, R. Pas-
canu, V. Mnih, K. Kavukcuoglu, and R. Hadsell. Policy distillation. CoRR, ab-

s/1511.06295, 2015.

[29] T. Shu, C. Xiong, and R. Socher. Hierarchical and interpretable skill acquisition in

multi-task reinforcement learning, 2017.

[30] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-

man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,

22

doi:10.6342/NTU201804197

K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with deep

neural networks and tree search. Nature, 529(7587):484—489, Jan. 2016.

[31] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdpsi A ffé:mework
for temporal abstraction in reinforcement learning. Artificial intelligeﬁce, li-2__(1-

2):181-211, 1999.

[32] M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A

survey. Journal of Machine Learning Research, 10(Jul):1633—-1685, 2009.

[33] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor. A deep hierar-

chical approach to lifelong learning in minecraft, 2016.

[34] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double

g-learning. CoRR, abs/1509.06461, 2015.

[35] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Kiittler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaftney,
S. Petersen, K. Simonyan, T. Schaul, H. van Hasselt, D. Silver, T. P. Lillicrap,
K. Calderone, P. Keet, A. Brunasso, D. Lawrence, A. Ekermo, J. Repp, and R. Tsing.
Starcraft II: A new challenge for reinforcement learning. CoRR, abs/1708.04782,
2017.

[36] H. Yin and S. J. Pan. Knowledge transfer for deep reinforcement learning with

hierarchical experience replay. In 4447, pages 1640—-1646, 2017.

23

doi:10.6342/NTU201804197

	誌謝
	摘要
	Abstract
	Introduction
	Related Work
	Hierarchical Reinforcement Learning
	Learning from Demonstration
	Transfer Learning and Multi-task learning

	Method
	System Framework
	Selecting existing models
	Action Space Mapping

	Experiments
	Experimental Settings
	Successfully Speed Up Training
	Simply Finetune From existing models
	Most Valuable Player

	Conclusion
	Bibliography

