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Abstract

Generalized frequency division multiplexing (GFDM) is a recent block

filtered multicarrier modulation scheme featuring low out-of-band (OOB) ra-

diation and low latency. By using a matrix-based characterization of GFDM

transmittermatrices, opposed to traditional vector-based characterizationwith

prototype filters, and deriving properties of GFDM (transmitter) matrices, one

can design prototype filters that are found to correspond to the use of unitary

GFDM matrices many scenarios, while avoiding the problem of noise en-

hancement, thereby showing the same MSE performance as orthogonal fre-

quency division multiplexing (OFDM).

In this thesis, a new problem related to bandwidth efficiency, and espe-

cially for OOB part, has been formulated in order to manage and design the

number of used subcarriers and used subsymbols, so that the spectral effi-

ciency can be maximized, regarding specifications needed by the prototype

filters designers. A previous work introducing a filter optimization algorithm,

originally introduced as a non-convex problem, tackled to an algorithm of two

convex problems, that minimizes OOB radiation while maintaining good in-

band performance is developed for GFDM is used in order to solve this prob-

lem, knowing that the spectral efficiency will be a main constraint.

Since themain problem is about amaximization of sets of used subcarriers

and used subsymbols, the resolution technique is however not well developed

vi



doi:10.6342/NTU201801489

in the literature, while it is a known encountered problem. From that point

on, the thesis proposes three methods to address this problem. The first intro-

duces a raw force calculation, improved by a stopping criterion, knowing the

non-decreasing nature of the function put into play under constraint. The two

others methods propose an advanced algorithmic calculation in order to speed

up the resolution of the maximization problem, by comparing the values al-

ready calculated, and knowing before the next calculation, which solution can

potentially be better. The different simulations results show that the designer

can choose a method and this number of subcarriers and subsymbols so that

to treat the number of users, for the proper utilization of this characteristic

GFDM system.

Keywords:Generalized frequency division multiplexing (GFDM); charac-

teristic matrix; optimal prototype filters; out-of-band (OOB) radiation; spec-

tral efficiency; parameter design; performance constraints
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Chapter 1

Introduction

Generalized frequency division multiplexing (GFDM) [1], extensively studied in recent

years, is a potential modulation scheme for incoming wireless communication systems,

particularly in the Internet of things (IoT), because it features good properties including

low out-of-band (OOB) radiation and flexible time-frequency structures to adapt to var-

ious application scenarios, such as cognitive radios and low latency applications [2]. A

recent work [3] proposed a matrix characterization for GFDM systems. Specifically, it

introduced low complexity minimum mean-square error (MMSE) receivers and optimal

filters. In order to continue in this particular settlement, a filter optimization of OOB

radiation with performance constraints for GFDM systems has been studied [4]. An opti-

mization problem has been formulated, along with descriptions of the characteristic matrix

and closed-form expressions for the noise enhancement factor (NEF) and power spectral

density (PSD) of GFDM signals.

However, although this previouswork studied the feasibility of low-complexityMMSE

receivers in presence of multipath channels and propose the first implementation with lin-

earithmic complexity, it thus does not provide a preliminary research of design the number

and position of guard subcarriers and subsymbols. The prototype filters already used in

different studies involving GFDM choose these parameters in an undefined way, or even

in an arbitrary manner. Beside this, it is still unclear in the literature to find explanations

about a good management of those paramaters. That is why we want to arise this question
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in this thesis.

In addition, given that the optimization problem is formulated in terms of the proposed

characteristic matrix of the GFDM transmitter matrix, results of the previous work [4] have

shown that under the same spectral efficiency, optimized filters perform the best in terms

of both OOB radiation and symbol error rate (SER) performance, compared to RC filters,

Dirichlet pulses, and OFDM. Finally, the advantage of GFDMA using CMCM filters,

including the Dirichlet and modified Dirichlet pulses, over OFDMA has been verified

through numerical results. In this thesis, we manage some suggestions to design those

prototype filters [4], based on the previously introduced characteristic matrix, in order to

design the number and position of guard subcarriers and subsymbols, while maximizing

spectral efficiency under OOB radiation and keeping performance constraints.

This thesis thus offers one main contribution. Under prototype transmit filters in re-

ceiver mean square error (MSE), we investigate the utilization of the previous matrix char-

acterization [3], to introduce two methods of calculation, in the idea of minimizing the

number of calculation steps necessary to quickly and efficiently calculate the number of

subcarriers and subsymbols satisfying an optimization problem. This non-convex opti-

mization problem proposes to maximize the product of those numbers of subcarriers and

subsymbols. Then, thanks to the potential multiple results that could lead to the same

result given by this product, we show how it is possible to determine certainly the exact

number of subcarriers, and the exact one about subsymbols. This has to be shown, since

one of the constraints introduced in the optimization problem, is to keep the maximum

spectral efficiency under a limit fixed by the designer.

The remainder of this thesis is structured as follows. In Chapter 2, we present the

GFDM system model and a previous consistent research. We also remind some deriva-

tions of properties of GFDM matrices and present low-complexity transmitter implemen-

tations, to finally the maximization problem. In Chapter 3, we plan to emphasize the

2
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proposed methods to solve the problem introduced in the preceding chapter. In Chapter

4, simulation results about the problem are shown and discussed. Finally, the study con-

clusion is provided in Chapter 7.

Notations: Boldfaced capital letters denote matrices, and boldfaced lowercase letters

are reserved for column vectors. We use ⟨·⟩D, (·)∗, (·)T , and (·)H to denote modulo D,

complex conjugate, transpose, and Hermitian transpose, respectively. We also use (·)−H

to denote
(
(·)−1)H . Given a matrix A, we denote by [A]m,n, [A]:,r, ∥A∥F , vec(A), tr(A),

rank(A), andA−1 its (m,n)-th entry (zero-based indexing), r-th column, Frobenius norm,

column-wise vectorization, trace, rank, and Hadamard inverse (defined by
[
A−1

]
m,n

=

[A]−1
m,n, ∀m,n), respectively. For any diagonal matrix A, [A]n denotes [A]n,n. For any

matrices A and B, A ⊗ B denotes their Kronecker product, and A ◦ B their Hadamard

product. Given a vector u, we use [u]n to denote the n-th component of u, ∥u∥ the L2-

norm of u, diag(u) the diagonal matrix containing u on its diagonal, andΨ(u) the circulant

matrix whose first column is u. We define Ip to be the p× p identity matrix, 1p the p× 1

vector of ones,Wp the normalized p-point DFT matrix with [Wp]m,n = e−j2πmn/p/
√
p for

any positive integer p, and δkl the Kronecker delta. We use E{·} to denote the expectation

operator. Finally, we use H+
D to denote the set of Hermitian positive semidefinite D ×D

matrices, and ⪯ to denote the matrix inequality.
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Chapter 2

Characterization of GFDM Systems &

Problem Statement

2.1 Related work to matrix characterization for GFDM

systems

GFDM is a block-based communication scheme as shown in Figure 2.1 [2], which are

proposed to satisfy the requirements of 5G. In this section, we summarize some important

results of a previous work that we will use in this thesis to build up further investigations.

In a GFDM block,M complex-valued subsymbols are transmitted on each of theK sub-

carriers, so a total ofD = KM data symbols are transmitted. The data symbol vector d[l]

is decomposed as

d[l] = [d0,0[l] · · · dK−1,0[l] d0,1[l] · · · dK−1,1[l] · · · dK−1,M−1[l]]
T ,

where dk,m[l] is the data symbol on the k-th subcarrier and m-th subsymbol in the l-th

block, taken from a complex settlement. Therefore, it is possible to engineer the spectrum

regarding given requirements and enabling pulse shaping on a subcarrier basis. By con-

sidering that the data symbols are zero-mean and independent and identically distributed

(i.i.d.) with symbol energyES , id est,E{d[l]dH [n]} = ESIDδln. Each data symbol dk,m[l]
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is thus transmitted via a pulse-shaped filter by the vector gk,m whose n-th entry is a circu-

larly shifted version of gk,0, and the complex exponential designates the shifting operation

in the frequency domain :

[
gk,m

]
n
= [g]⟨n−mK⟩D ej2πkn/K , n = 0, 1, · · · , D − 1 (2.1)

where g is a D × 1 vector, referred to as the prototype transmit filter [2]. Let x[l] =

[x0[l]x1[l] · · · xD−1[l]]
T be the vector containing the transmit samples. They are under-

stood as the superposition of all transmit symbols. Then, the GFDM modulator can be

formulated as the transmitter matrix [2]

A =
[
g0,0 · · · gK−1,0 g0,1 · · · gK−1,1 · · · gK−1,M−1

]
(2.2)

such that x[l] = Ad[l]. The matrix A as defined in (2.2) is called hereafter a GFDM

matrix with a prototype filter g. The vector x[l] is further added a cyclic prefix (CP) before

sending to the receiver through a linerar time-invariant (LTI) channel. The complexity of

Figure 2.1: Block diagram of the transceiver.

this form is in O(KM logKM). Yet, it has been shown in [3] that this implementation is

advantageous for receiver implementation.

2.1.1 Characterization of GFDMMatrices: Basic Definition

In the literature, GFDM transmitter matrices are often characterized by a prototype trans-

mit filter g. We will mainly use this notation in order to continue our study.
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In this thesis, we use another means for characterizing a GFDM transmitter matrix,

namely, the characteristic matrixG of sizeK×M . A formal definition of this character-

ization of a GFDM transmitter matrix necessary for the understanding and continuation

of the study, is given as follows.

Definition (Characteristic matrix) Consider a KM ×KM GFDM matrix A in (2.2)

with a prototype filter g. We define the characteristic matrixG of the GFDM matrix A as

G =
√
D reshape(g,K,M)WM (2.3)

where reshape(g,K,M) is a K ×M matrix whose (k,m)-entry is [g]k+mK , ∀ 0 ≤ k < K,

0 ≤ m < M . The reshape process needs to be used many times, especially for the de-

velopment of our future methods. Since we will limit our study to a 2 dimensional matrix,

we simply explain that the processus of reshaping proposes to rearrange the order of the

elements of an initial matrix, under new conditions of size, so that the number of elements

is still kept.

2.1.2 Unitary and Invertible GFDMMatrices

With the characteristic-matrix-domain implementation, we can also easily identify the

class of unitary GFDM matrices as follows.

Theorem 1 (Unitary GFDMmatrices) Let A be a GFDM matrix with aK ×M char-

acteristic matrix G. Then, A is unitary if and only if G contains unit-magnitude entries:

|[G]k,l| = 1 ∀ 0 ≤ k < K, 0 ≤ l < M .

The following theorem introduced in [3] is needed to express the conditions for the

non-singularity of a GFDM matrix in terms of its characteristic matrix and related prop-

erties.

7
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Theorem 2 (Properties of A−1) Let A be a GFDM with aK×M characteristic matrix

G. Then,

a A is invertible if and only if G has no zero entries ;

b if A is invertible, then A−H is also a GFDM matrix whose characteristic matrix H

satisfies [H]k,l = 1/[G]∗k,l, ∀ k, l, id est,

H = (G∗)◦−1 ; (2.4)

c if A is invertible, the squared norm of each row of A−1 equals the energy of

A−H , ξH = ∥H∥2F/D.

Note: a proof of this theorem is proposed in [3].

2.1.3 GFDM Transmitter Implementations

The transmitter simply modulates the data symbol vector by

x[l] = Ad[l]. (2.5)

Then, x[l] is passed through a parallel-to-serial (P/S) converter, and a CP of length L is

added, as shown in 2.1. Denote K ⊆ {0, 1, · · · , K − 1} and M ⊆ {0, 1, · · · ,M − 1}

as the set of used subcarriers and set of used subsymbols respectively, that are actually

enrolled.

The digital baseband transmit signal of GFDM is expressed as

x[n] =
∞∑

l=−∞

∑
k∈K

∑
m∈M

dk,m[l]gm[n− lD′]ej2π
k(n−lD′)

K , (2.6)

8
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where D′ = D + L and

gm[n] =


[g]⟨n−mK−L⟩D , n = 0, 1 . . . , D′ − 1

0, otherwise
(2.7)

which is finally the transmitted part as shown in Figure 2.1.

Because GFDM is confined in a block structure ofD samples, withK subcarriers car-

rying M subsymbols each, it is possible to design the time-frequency structure to match

the time constraints of low latency applications. Different filter impulse responses can

be used to filter the subcarriers and this choice affects the OOB emissions and the SER

performance. However, a simple example of M-ary Frequency Shift Keying (MFSK) has

shown [5] that increasing the number of symbols leads to a poor spectral efficiency. Spec-

tral efficiency means to utilize the available spectrum as efficient as possible. One could

say that maximizing the spectral efficiency should base on the channel gains of the users.

It is also known that using by convention guard subcarriers or subsymbols for engineer-

ing is still affordable and understandable, since it generally stems from a inter-symbol

interference. Instead of just dividing the spectrum into subcarrier and separating them by

introducing guard bands these carriers overlap but are orthogonal due to the nature of the

pulse shaping.

As a reminder, we denote K ⊆ {0, 1, · · · , K − 1} and M ⊆ {0, 1, · · · ,M − 1} as

the set of used subcarriers and set of used subsymbols. In [4], K has been selected as an

odd number for each case because RC filters are essentially not applicable to cases where

bothK andM are even, as GFDM transmitter matrices under such cases are singular. By

computing the method in [4], we can also notice that setting different couples (|K|; |M|)

give a better spectral efficiency for a same result of a product of these parameters. Since

it is still unclear to obtain a true determination of a design for the utilization of involved

subcarriers for the set K and involved subsymbols for the setM in a GFDM system, this

raises a main consequent problem, that is to say how to settle and designK andM so that

9
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we can maximize the number of users through maximizing the spectral efficiency.

2.2 Definition of Prototype Filters for Maximizing Spec-

tral Efficiency

In this section, we use the design of previous prototype filters [4] considering performance

and OOB radiation simultaneously.

The following lemma would be useful for derivations of low-complexity transceiver

implementations and optimal prototype filters later, whose proofs can be consulted in [3].

Lemma Let A be a GFDM matrix with a K × M characteristic matrix G, a D × 1

prototype filter g, and energy ξG, where D = KM . Then, the prototype filter g can be

expressed as g = vec
(
GWH

M

)
/
√
D.

2.2.1 Optimization Problem maximizing the spectral efficiency

In order to design our prototype filters, we need to include a filter optimization problem

minimizing OOB radiation while maintaining good in-band performance, introduced in

[4]. By considering a GFDM system with the GFDM transmitter matrix A and prototype

filter g, let K, M , L, K, ES , Ts, p(t) and BO denoting the set of frequencies considered

out of band. Let M = {1, 2, · · · ,M − 1}, id est, one guard subsymbol is used, which is

conventional in the literature [6]. LetD = KM and η be some positive real number. The

optimization problem is given by

minimizeg max
f∈BO

Sa(f) (2.8a)

subject to ∥g∥2F = 1, (2.8b)

ξH ≤ η, (2.8c)

where Sa(f) is the PSD (see 5) of the GFDM analog baseband transmit signal, and ξH is

the energy of A−1. Actually, ξH determines the signal-to-noise ratio (SNR) reduction of

10
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a GFDM system. The constraint (2.8c) pertains to maintain a sufficiently good MSE or

SER performance. The constraint (2.8b) is set as the normalization the prototype filter g.

Besides, according to (2.3) and the definition of energy of a GFDM matrix, the constraint

(2.8b) implies a natural constraint ξH ≥ 1. Thus, the problem (2.8) is feasible only if

η ≥ 1. In particular when η = 1, the feasible set is equivalent to using unitary transmitter

matrices.

2.2.2 Problem formulation

In this subsection, we bring the main problem that constitutes the main contribution of this

master’s thesis. As mentioned in 5, some guard symbols and guard subcarriers are often

used for GFDM [3].The design of the prototype filter based on the characteristic matrix

together with the design of the number and position of guard subcarriers and subsymbols

for maximizing spectral efficiency under OOB-radiation and performance constraints can

be studied. The motivations presented above therefore invite us to pose the problem in

this way.

Thus, we are led to introduce an optimization problem characterized by a maximiza-

tion of parameters of subcarriers and subsymbols values, while the in-band filter part is

efficient and the spectral efficiency is maximized. Let us introduce a GFDM system char-

acterized by a GFDM transmitter matrix and a prototype filter g. LetK,M ,K,M and BO

be set according to the frequency sample used, where BO designates the set of frequencies

classified out of band of the filter waveform. It should again be noted that K is the set in-

cluding the subcarriers involved in a situation, called used subcarriers. Respectively,M is

the set including the subsymbols involved in the same situation, called used subsymbols.

Let ξ be the noise enhancement factor, characterized as

ξ =
1

D

K−1∑
k=0

M−1∑
l=0

1

|[G]k,l|2

. Let ρ and η be some positive real numbers.

11
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We formulate the optimization problem as following :

maximize
g,K,M

|K||M| (2.9a)

subject to ∥g∥2F = 1, (2.9b)

max
f∈BO

Sa(f) ≤ ρ, (2.9c)

ξ ≤ η, (2.9d)

where the objective function (2.9a) induced about maximization, is written as the product

of the absolute values of the numbers of used subcarriers and used subsymbols, according

to the point of view adopted and willing to be satisfied. The constraint (2.9b) is the nor-

malization of the prototype filter used, under the Frobenius norm. The constraint (2.9c)

caracterized by maxf∈BO
Sa(f), particularly specifies the maximization of the spectral ef-

ficiency where Sa(f) is the PSD detailed in 5, detailed calculations of which are proposed

in 5, to ensure the veracity of the reformulations involved. Specifically, this is the PSD of

the GFDM analog baseband transmitted signal, which needs to be maximized because this

is one the main interests of this contribution work on designing prototype filters. Trivially,

f designates the frequency used, and is taken here in BO. The physical representation of

this constraint where the PSD maximization below the ρ parameter must be interpreted as

the maximum power spectral efficiency desired by the designer. Finally, the constraint

(2.9d) pertains to maintain a sufficiently good MSE or SER performance. This param-

eter is set to 1, to have a minimized mean-square error (MSE) for the zero-forcing (ZF)

receiver under AWGN channel.

12



doi:10.6342/NTU201801489

Chapter 3

Proposed methods

With regard to the problem statement introduced at the end of the previous chapter, we

propose to solve it here in this independent chapter. The objective function (2.9a) of this

problem, that is to remind maximizeg,K,M |K||M|, is to maximize the product of the num-

ber of used subcarriers in the set K and the number of used subsymbols in the set M

involved. To deal with the under- statement g, in the objective function for the maximiza-

tion problem, this will be settled as the prototype filter introduced in [4], so that it can be

based on the characteristic matrix involved and used by the designer. Precisely, the trans-

formation, is as the one proposed in 5. Since the constraint (2.9c) is the most important

constraint to understand in terms of definition and calculation (see 5 and 5), it will there-

fore be the heaviest mathematical part to exploit. By using an algorithm studied in [4]

and detailed in 5, which was recently designed to address the problem presented in the

equation (2.8), we are now able to deal with the different constraints of the optimization

problem (2.9) and to have an approach in order to solve the main problem of this thesis

described in it.

Thus, we are suggesting to solve this problem under three different aspects. We intend

to solve this optimization problem by first proposing a method by brute force, putting for-

ward a matrix of sizeK ×M , thus calculating all the elements of the matrix concerned to

determine the couple solution of the problem. Secondly, another method is to transform

the matrix of sizeK×M into a matrix of size 1×(K ∗M) knowing the possible combina-

13
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tions of couples (K′;M′), whereK′ andM′ are respectively the number of used subcarri-

ers in the set K and the number of used subsymbols in the setM, and the non-decreasing

property of the PSD function involved. The last method is finally a two-dimensional cal-

culation, of which we will present the details of calculations and the limits of the method.

3.1 Method 1: complete calculation by raw force

As mentioned earlier, we propose in this section to calculate the completeness of the

K × M size matrix elements, and to determine the maximum PSD values in the out-

of-band portion of the transmitted signal of the GFDM system. To do this, we use the

algorithm introduced in [4], a detailed explanation of which is provided in 5, which is

dealing with the constraint 2.9d introduced in our problem.

We make sure to choose the parameters of the sets of used subcarriersK and used sub-

symbolsM involved one by one, and by incrementation, first of the subsymbols and then

of the subcarriers, we complete the matrix of size K ×M , by entering the value of PSD

obtained in the out-of-band part after calculation and stop of the algorithm used, thanks to

the fixed stopping criterion for the loop involved in 5.

Finally, in order to to find the optimal solution, and more precisely the optimal cou-

ple (K′;M′) of the problem of maximization of these parameters that are the number of

used subcarriers K and used subsymbolsM involved to maximize the spectral density of

power out of band, and thanks to the desired maximum solution of PSD involved by ρ, we

can make a simple comparison about multiplied sets between them, under the constraints

of the problem (2.9), so that we can point out the sets of used subcarriers K and used sub-

symbolsM as the optimal solution.
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The method is summarized in the following algorithm:

Algorithm 1 Raw force complete calculation
Result: Optimal K′, OptimalM′

initialization: empty D = K ×M matrix

for K′ = 0 toK − 1 do Evolutionary loop

forM′ = 1 toM do Evolutionary loop
D(K′,M′) = maxf∈BO

Sa(f)

end

end

Find (Optimal K′;OptimalM′) such as maxD(K′;M′) ≤ ρ

Whatever other methods are introduced later, this method naturally holds its place

here, since it guarantees the solution of this problem including a non-decreasing function,

in all cases.

Note: Since the literature does not propose a good solution for this kind of known

problem, the raw force is the universal method to solve the problem (2.9). That is why, in

order to speed up the resolution of the problem, and given the function characterizing the

power spectral density partly out of band, and knowing that the values of the subcarriers

and subsymbols give this calculation a higher value plus their number increases, id est, the

power spectral density function is a non decreasing function, it goes without saying that

this method can be set a stop parameter during the calculation as soon as the desired PSD

value for a couple solution (K′;M′) is exceeded in the solution search under this constraint

(2.9c). To some extent, we expect to obtain a matrix rudely looking like a superior triangle

shape.
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Algorithm 2 Raw force complete calculation with stopping criterion
Result: Optimal K′, OptimalM′

initialization: empty D = K ×M matrix

for K′ = 0 toK − 1 do Evolutionary loop

forM′ = 1 toM do Evolutionary loop
D(K′,M′) = maxf∈BO

Sa(f)

if maxf∈BO
Sa(f) ≥ ρ then

K′ = K′ + 1

M′ = 1

Break current loop

end

end

end

Find (Optimal K′;OptimalM′) such as maxD(K′;M′) ≤ ρ

3.2 Method 2: 2D to 1D matrix reshaping

Thismethod proposes to reshape thematrix of sizeK×M into amatrix of size 1×(K∗M),

in order to carry out a linear research of the calculation of the optimal solution of the stud-

ied problem (2.9). Actually, it is a simple method to understand, since it is a question of

reforming from a 2-dimensional matrix to a 1-dimensional matrix. The general organiza-

tion of the algorithm is to take the half-sum between two values already calculated, and

this until convergence of the calculation, from which we can extract the couple solution,

by comparing both whether the calculated value is higher or lower than the desired PSD

value for the constraint (2.9c).

Beside this, knowing that the PSD expressed and used in one of the constraints (2.9c)

of the problem studied is a non-decreasing function, we know by default that the value of

the PSD obtained in the out-of-band part gradually increases in terms of used subcarriers

K′ and used subsymbols M′, that is to say the more the numbers of subcarriers and sub-

16



doi:10.6342/NTU201801489

symbols involved are important.

However, given that several solution pairs are possible, we obviously encounter a prob-

lem of reshaping coming from the choice of parameters and consequently, a way of or-

dering the elements to be positioned in the calculation matrix, before solving the problem

via the application of the algorithm concerned.

In fact, we will notice later, thanks to a conjecture attested by a large number of results,

that the primary ordering of the sets including the numbers of used subcarriersK′ and used

subsymbols M′ to be put into play for the calculation of the PSD and the resolution of

the maximization problem (2.9), must be done such that the number of used subcarriers

K′ is the largest, and respectively, the number of subsymbols M′ must be the smallest

and really small compared to K′, in order to guarantee a maximum out-of-band PSD. The

resolution process for knowing the optimal couple then remains the same, as it is simply a

matter of looking into a one-dimensional matrix, when the desired solution criterion is met.
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We denote (K(2);M(2)) the minimum couple (K′;M′) such as (K(2);M(2)) > ρ. Re-

spectively, we denote (K(3);M(3)) the maximum couple (K′;M′) such as (K(3);M(3)) ≤

ρ. The method is summarized in the following algorithm:

Algorithm 3 Reshaping 2D matrix to 1D matrix
Result: Optimal K′, OptimalM′

initialization:

empty D = K ×M matrix

D = sort(reshape(D, [1 K ∗M ]))

K′ = ⌈K/2⌉

M′ = ⌈M/2⌉

D(K′,M′) = maxf∈BO
Sa(f)

while 1 do

if D(K′,M′) ≤ ρ then
K′ = K′ + ⌊(K(2) −K′)/2⌋

M′ = M′ + ⌊(M(2) −M′)/2⌋

D(K′,M′) = maxf∈BO
Sa(f)

else
K′ = K′ − ⌈(K′ −K(3))/2⌉

M′ = M′ − ⌊(M′ −M(3))/2⌋

D(K′,M′) = maxf∈BO
Sa(f)

end

if D(K′,M′) ≤ ρ and D(K′ + 1,M′ + 1) > ρ then
Break while loop

end

end

Find (Optimal K′;OptimalM′) such as maxD(K′;M′) ≤ ρ

sort and reshape are two functions used respectively to sort a matrix and to reshape it.
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3.3 Method 3: 2D matrix calculation

In this last section, we propose an empirical method of calculation in order to solve this

problem in a higher dimension (here limited to two dimensions), which will achieve the

same results proposed in the two previous methods, as long as the limits we will see in 4

are respected, but which generally requires more calculation since the constraint involved

about PSD is a non decreasing function, because more parameters and criteria are natu-

rally and logically to be taken into account in order to arrive at the same convergence of

couple solutions (K′;M′) for the problem involved.

Since the algorithmic sequencing of this section is complex, we propose a flowchart

to explain and synthesize the operations performed. The method generally follows the di-

agram presented in the previous section, but has been considered for a convergence in two

dimensions, which is therefore presented on the following page in the form of a detailed

flow chart, indicating the different steps leading to convergence, then the solution of the

problem, verifying by a penultimate step, that no potential best couple solution (K′;M′)

has not already been calculated.

This last step is an additional calculation performed to ensure that the solution is the

best. The fact that we work on a matrix of two dimensions, requires this step of calcula-

tion, via the method that we propose, which implies beforehand a research of half-sum,

among the couples solutions already calculated, below the desired solution, which could

potentially be better, and those above, which are not possible for the user.
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Figure 3.1: Sequential flowchart of the proposed method
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3.3.1 Comparison between Method 3.2 and Method 3.3

Actually the second method, about matrix reshaping from a 2-dimensional matrix to a 1-

dimensional one and the third method, which is a 2-dimensional matrix calculation, both

methods deserve to be introduced and presented in the thesis, because they all converge to

the same results. In addition, the 1-dimensional matrix has precisely a O(KM logKM)

complexity, and the 2-dimensional matrix is about K2M2. A study about the complexity

part can be found in [3]. Obviously, the latter method has a higher cost since it requires

the last step of calculation, which is to verify that no better potential couple solution has

already been calculated.

However, we previously noticed that a problem by choosing the right couple (K′;M′)

when the product obtain by calculating the objective function give the same result, was

induced. Specifically, we found a conjecture about the settlement of those parameters,

which is such that the number of used subcarriers K′ is the largest, and respectively, the

number of subsymbolsM′ must be the smallest, so that to reduce the possibility of same

result for different couples (K′;M′) in order to guarantee the resolution of the maximum

out-of-band PSD.

That is why the last method is present here, because it permits the algorithm to favour

the direction of calculation. To be more precise, the conjecture proposes that M′ is very

small in front of K′ so that the second method (1D-matrix) is faster than Method 3.3 (2D-

matrix) and would therefore require fewer calculations. Conversely, whenK′ is very close

to M′, the method does not work and is therefore the limit we find to problem solving

through this method. The second method is thus really useful for some narrow cases. Fi-

nally, it thus introduces some limits about both last methods, since this calculation problem

is already known, but the literature does not propose a clever method yet.
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Chapter 4

Results and discussion

Through the resolution method introduced in 5, and by conscientiously following the al-

gorithms presented in the previous chapter, we are able to present the problem (2.9) results

for different numerical values. Specifically, we need to know the utilization of the CVX

tool [7] to understand how our algorithm works under the specific constraints, especially

(2.9c). In order to define the out of band part BO of our filters, we define a discretiza-

tion on f about 1/(16DTs) Hz. Thus, in order to have a good shape representation of the

prototype filters involved, we choose to set BO is defined as :

BO =

(
−∞;

−K′ + 2

16Ts

)
∪
(
K′ + 2

16Ts

;∞
)

We can note therefore that we will not obtain a result for cases where K′ = K, which

can be understood and used as a guard subcarrier, even if the calculation can be run well

for upper values of K′ and M′, that is to say the problem can always be solved. The

prototype filter is normalized, and the sets of used subcarriers K and used subsymbols

M, are changed regarding the method used. For the Method 3.1, using raw force, the

numbers of used subcarriers K′ and used subsymbols M′ are set to the minimum value,

and increased one by one in order to complete the empty matrix. Precisely, the value of

M′ is firstly increased from 1 toM , before the value of K′ is increased from 0 toK − 1.

The Method 3.2 and 3.3, as mentioned in the Algorithm 3 and the following flowchart,

has an initialization of K′ = ⌈K/2⌉ andM′ = ⌈M/2⌉.
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The other parameters used for the constraint (2.9c) follow the ones introduced in [4].

The results are translated into decibels to have a more physical aspect of the result ob-

tained by the constraints of the problem (2.9). Then, in all the results, the desired solution

corresponding to ρ in the constraint (2.9c) has been fixed arbitrarily to−27 (dB). To avoid

confusion, this is the value that the user does not want to exceed in maximizing the out-

of-band PSD of the signal transmitted by the prototype filter. Also, to facilitate reading

of results of the problem in 2D matrices involving the results of the PSD out of band, the

first row and the first column of each matrix indicate the number of used subcarriers K′

and used subsymbolsM′ involved in the calculation.

4.1 Simulation results

4.1.1 Method 3.1: complete calculation by raw force

Algorithm 1

In this case, K = 10 and M = 5. We can verify in the following table that, while K′

and M′ are incrementing, the value of the out of band PSD the function is well non-

decreasing. We propose in the following table to see the product of K′ and M′ obtained
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for the objective function of the problem (2.9) :



1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50


The optimal solution of the problem in this case is therefore 25.

Algorithm 2

Since the Algorithm 2 is based on Algorithm 1, and simply add the changing criterion to

redefine K′ andM′, the results obtained are obviously the same.

The results introduced in the following subsection, are settled for three cases. In case 1,

K = 5 andM = 3, while in case 2, K = 8 andM = 3, and finally in case 3, K = 8 and

M = 7. For the Method 3.2, the result should be read in a 1× (K ∗M) matrix, that is to

say read line by line. The two-dimensional reading remains unchanged for Method 3.3.
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4.1.2 Method 3.2: 2D to 1D matrix reshaping and Method 3.3: 2D

matrix calculation

Case 1 : K = 5 andM = 3

This first case is simple and give a understanding about the results of the given processes

of different algorithms. The first matrix is corresponding to second method :

0 0 0 0 0

0 0 −55.97 0 0

0 −37.03 0 −33.67 0

This second matrix is corresponding to the third method :



1 2 3 4 5

1 0 0 0 0 0

2 0 0 −55.97 0 0

3 0 0 −37.03 −33.67 0


Once again, we propose in the following table to see the product of K′ and M′ obtained

for the objective function of the problem (2.9) :


1 2 3 4 5

2 4 6 8 10

3 6 9 12 15


Since the algorithm constantly searches which new couple to calculate according to which

it can be a better couple solution (K′;M′) to the problem, that is why no more calculations

are needed to find the solution here, to be 12.
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Case 2 : K = 8 andM = 3

In this case, we propose to improve more the number of used subcarriers K′. The first

matrix is corresponding to second method :

0 0 0 0 0 0 0 0

0 0 0 −33.01 0 0 0 0

0 0 −28.54 0 0 −28.03 −26.78 0

This second matrix is corresponding to the third method :



1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0

2 0 0 0 0 −31.26 0 −28.54 0

3 0 0 0 0 0 −28.03 −26.78 0


The following table is about seeing the product of K′ and M′ obtained for the objective

function : 
1 2 3 4 5 6 7 8

2 4 6 8 10 12 14 16

3 6 9 12 15 18 21 24


The result obtained for this case is therefore 18.
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Case 3 : K = 8 andM = 7

We now present the last case where the first following matrix is still the second method :

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −30.00 0 0 0 0

0 0 0 0 0 0 0 0

0 −27.28 −27.58 −25.54 −26.49 0 0 0

−24.57 0 0 0 0 0 0 0

We notice here the main limitation of the Method 3.2, obtained when M′ is close to K′.

We can not determine precisely in one dimension, when a lot of so many different couple

solutions (K′;M′) are present.

As a same schema from the previous cases, we present the Method 3.3 in this case :



1 2 3 4 5 6 7 8

1 0 0 0 0 0 −32.80 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 −28.03 0 0

4 0 0 0 0 −28.24 −26.78 −25.54 0

5 0 0 0 0 −27.28 0 0 0

6 0 0 0 −28.24 −26.49 −25.02 0 0

7 0 0 0 −27.58 0 0 0 0


The final table is to determine the product ofK′ andM′ obtained for the objective function
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: 

1 2 3 4 5 6 7 8

2 4 6 8 10 12 14 16

3 6 9 12 15 18 21 24

4 8 12 16 20 24 28 32

5 10 15 20 25 30 35 40

6 12 18 24 30 36 42 48

7 14 21 28 35 42 49 56


The result obtained for this case is therefore 28.

4.2 Limits of the methods and discussion

Other simulations that are not appropriate for the presentation suggest strongly that the

number of used subcarriers K′ has to be really important face to the number of used sub-

symbols M′ in order to be efficient, guarantee to maximize the out of band PSD, and

furthermore, being more efficient that the last method. since the Method 3.2 is easy to

understand and determine how it works. A few narrow cases, such as the Case 1, are how-

ever working for this method, since we do not meet so many times different couples for a

same result obtained for the objective function.

And that is precisely there that we finally expect to propose the last method (Method

3.3) which promises to be strong and efficient in calculation, and sure to find the results.

Knowing the already calculated values, the algorithm still compare them with the last cal-

culated value, in order to see where a new potential solution should be encountered, in

order to satisfy the resolution of the problem (2.9). We expect finally helping and propos-

ing the literature another line of study in order to develop and advance in the search for

solutions to this known problem.

Unfortunately, the limitation of the computer’s memory capacity does not allow us to

offer more calculation results for much larger matrices, especially for Method 3.2. How-
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ever, Method 3.3 will use the same process to solve the calculation for larger matrices,

whose memory usage is different.
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Chapter 5

Conclusion

In this thesis, we used a matrix-based characterization of generalized frequency division

multiplexing (GFDM), in order to design and improve prototype filters used here to max-

imize the spectral efficiency. This characterization used properties derived from the con-

ventional GFDM matrix transmitter, which were not easily exploitable from the conven-

tional filter prototypes observed in the research. From here, we settled to manage the sets

of used subcarriers K and used subsymbols M, in order to maximize the spectral effi-

ciency in out of band.

In addition, the new optimization problem introducing, firstly solved by raw force, the

product maximization of used subcarriers and used subsymbols for out-of-band radiation

was addressed under two other main aspects: one resolution in one dimension, and the

other in two dimensions. The results showed in the first case and for objective function

values having the same result, that the higher the number of used subcarriers K′ is, the

better the maximization result will be. Thus, we will choose to maximize this number of

used subcarriersK′, within the physical limit possible, to keep an convenient compromise

between the devices to maintain and maximize out-of-band spectral efficiency.

The third method, for its part, proposes a solution as convergent as the second, but

currently requiring a much larger number of calculations than for the first method, in or-

der to solve the proposed maximization problem (2.9).
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Moreover, we have emphasized that a good management and design of pairing the

couples given by used subcarriers and used subsymbols does permit the maximization

of spectral efficiency, a demonstration of this is given is more detailed in the following

5. The contribution involved by this work thus show that an improvement can be studied

and developed in order to brighten and perfect the utilization of various prototypes already

encountered in the literature, whose primary choice of parameters studied in our main ob-

jective function was not adequately defined.

For possible further work, a search for a new effective method for rapid calculation

this type of problem certainly already encountered but not yet solved in a formal way,

leading to a convergence known in advance. Also, other mathematical methods can be

introduced in order to decrease, even drastically and effectively reduce the logarithmic

complexity involved in this maximization calculation for a non-decreasing function in

both directions (two-dimensional matrix). In view of the memory problem encountered

for very large matrices, it could also be envisaged to propose other means of calculation

in order to accommodate a larger number of users on a large scale.
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Power Spectral Density and OOB

Leakage

In this section, which serves as an aid for simulation later, we define the OOB leakage O

as a performance measure for the OOB radiation of transmit signals. To evaluate O for

GFDM, we first address the power spectral density (PSD) of GFDM signals. We derive

an analytical PSD expression encompassing an interpolation filter used in a D/A converter.

Actually, from the GFDM digital baseband transmit signal x[n], we obtain the analog

baseband transmit signal xa(t) is obtained by passing x[n] through a D/A converter with

a sampling interval Ts and an interpolation filter p(t), id est, xa(t) =
∑∞

n=−∞ x[n]p(t −

nTs). The PSD of xa(t) is defined as Sa(f) = limT→∞ E{ 1
2T
|
∫ T

−T
xa(t)e

−j2πft dt|2}. Let

P (f) =
∫∞
−∞ p(t)e−j2πft dt be the Fourier transform of p(t), and Gm(e

jw) =
∑∞

n=−∞

gm[n]e
−jwn be the discrete-time Fourier transform of gm[n], where gm[n] is defined in

(2.7). Assuming the data symbols are zero-mean and i.i.d. with symbol energy ES , we

can derive that

Sa(f) =
ES|P (f)|2

D′Ts

∑
k∈K

∑
m∈M

∣∣∣Gm

(
ej2π(fTs− k

K )
)∣∣∣2 . (1)

With some derivations, we further obtain that

Gm(e
jw) =

D′−1∑
l=0

[
g(m)
f

]
l
sincD′(w′

l)e
−jw′

l
D′−1

2 , (2)
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where w′
l = w − (2πl/D′) and

[
g(m)
f

]
l
=

D

D′

D−1∑
k=0

{
[gf ]ksincD′

(
2π

(
k

D
− l

D′

))
ejπ(

k
D
− l

D′ )(D′−1)e−j2πkmK+L
D

}
. (3)

Since gf is the frequency-domain prototype transmit filter, defined as theD-point DFT of

g, id est,

gf =
√
DWDg, (4)

and

sincp(x) =


(−1)k(p−1), x = 2πk, k ∈ Z

sin(px/2)
p sin(x/2)

, otherwise
(5)

is the periodic sinc function for any positive integer p. Using (1), (2), (3) and (4), we can

express the PSD with gf , which enables designing the PSD in terms of the frequency-

domain prototype transmit filter. A special case that leads to a simple expression of

Gm(e
jw) is L = 0. When L = 0, (2) can be reduced to

Gm(e
jw) =

D−1∑
l=0

[gf ]le
−j2π lm

M sincD(wl)e
−jwl

D−1
2 , (6)

where wl = w − (2πl/D).

To characterize the OOB radiation, we define the OOB leakage as

O =
|BI |
|BO|

·
∫
f∈BO

Sa(f) df∫
f∈BI

Sa(f) df
. (7)

In (7), BO and BI are the set of frequencies considered out of band and in band respec-

tively, and |BO| and |BI | denote the lengths of the corresponding intervals. Recall that K

is the set of subcarrier indices actually used. The nominal frequencies of the subcarriers

in K lie in BI , several guard subcarriers are used between BO and BI , and BO is reserved
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for the use of other users.

Finally, note that in (2.6), the setsK andM are not required to beK = {0, 1, · · · , K−

1} orM = {0, 1, · · · ,M − 1}. This means some guard symbols or guard subcarriers can

be used. GFDM is proposed to exhibit low OOB radiation. This advantage is particularly

significant if some guard symbols and guard subcarriers are used [6].
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Used algorithm

To solve the optimization problem (2.8),the techniques for solving convex optimization

problems [8] have been used. Since the problem (2.8) is non convex, some transformations

on the problem have been made. After introduction of some variable S ∈ HD
+ , defined as

S = vec(G)(vec(G))H , where G is defined in (2.3). By the definition of the energy ξH

and Theorem 2, we have

ξH =
1

D

K−1∑
k=0

M−1∑
l0

1

|[G]k,l|2
. (8)

Using (8), we obtain an equivalent form of the problem

minimize
S ∈ HD

+

max
f∈BO

Sa(f) (9a)

subject to tr(S) = D, (9b)

tr(S◦−1) ≤ Dη, (9c)

rank(S) = 1. (9d)

According to (1), (2), (3), we have

Sa(f) =
ES|P (f)|2

D′Ts

∑
k∈K

∑
m∈M

∣∣∣∣∣
D−1∑
n=0

an(2π(fTs − k/K),m)[gf ]n

∣∣∣∣∣
2

, (10)

where

an(ω,m) =
D′

D

D′−1∑
l=0

{
sincD′

(
2π

(
k

D
− l

D′

))
· ejπ(

k
D
− l

D′ )(D′−1)e−j2πkmK+L
D sincD′(w′

l)e
−jw′

l
D′−1

2 .

(11)
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By a lemma used in [3], we further involve a derivation as

Sa(f) =
ES|P (f)|2

D′Ts

∑
k∈K

∑
m∈M

∣∣∣∣∣
D−1∑
n=0

bn(f, k,m)[vec(G)]n

∣∣∣∣∣
2

, (12)

where

bn(f, k,m) =
K−1∑
k′=0

ak′M+⌊ n
K ⌋(2π(fTs −

k

K
),m)e−j2π⌊ n

K ⌋k′/De−j2π⟨n⟩Kk′/K . (13)

Letting b(f,k,m) be a D × 1 vector with [b(f, k,m)]n = bn(f, k,m), we obtain

Sa(f) =
ES|P (f)|2

D′Ts

∑
k∈K

∑
m∈M

bH(f, k,m)Sb(f, k,m). (14)

Therefore, the objective function (9a) is a supremum of affine functions of S, and thus

convex in S. We can also show that the constraints (9b) and (9c) are convex. However,

the problem (9) is still non convex because the rank constraint (9d) is non convex.

To approach the optimization problemwith a rank constraint, an iterative algorithm [9]

is used. The problem (9) is tackled by iterating the optimal point S̃ of

minimize
S ∈ HD

+

w
∣∣tr(SṼ)∣∣+ max

f∈BO

Sa(f) (15a)

subject to tr(S) = D, (15b)

tr(S◦−1) ≤ Dη. (15c)

with the optimal point Ṽ of

minimize
V ∈ HD

+

∣∣tr(S̃V)∣∣ (16a)

subject to 0 ⪯ V ⪯ ID, (16b)

tr(V) = D − 1. (16c)
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until convergence, where w > 0. The algorithm in [9] is used only for real variables. For

this part, the algorithm has been extended so that it can be used for complex variables.

Specifically, the domain is changed from the set of real symmetric positive semidefinite

matrices to the set of complex Hermitian positive semidefinite matrices, and we intro-

duce the operator | · | to assure that the objective functions are real-valued. According to

the simulation results of this algorithm presented in the next section, the extension worked.

The problems (15) and (16) are convex, so the techniques for solving convex opti-

mization problems can be applied. It is not difficult to show that all constraints of the two

problems are convex. Beside this, one note that w > 0 and that maxf∈BO
Sa(f) is convex

in S. Thus, to prove the convexity of the problems, it has been shown that tr(S̃V) is convex

in V. Regarding the complex variables V as independent real variables, id est, their real

parts and imaginary parts. Then, tr(S̃V) is a norm of a affine transformation of these real

variables. Since any norm is convex, and composition with an affine transformation of

these preserves and convexity, the problems are convex.

To understand the concept of the algorithm, it would have been beneficial to know the

solution of the problem (16). In fact, this problem can be solved analytically [9]. Specif-

ically, with the ordered (in the order of non-increasing eigenvalues) eigendecomposition

S̃ = QΛQH , the optimal point is Ṽ = UUH , where U is the submatrix of Q obtained by

removing the first column of Q. In other words, the first D − 1 eigenvectors of Ṽ are the

same as the last D − 1 eigenvectors of S̃, and all correspond to eigenvalue 1. The last

eigenvalue of Ṽ is 0. Therefore, the term w|tr(SṼ)| introduced in the objective function

(15a) can be considered as favoring the direction uuH , in the vector spaceHD
+ , where u is

the first column of Q. In this way, we expect that the algorithm can converge to a point

corresponding to a rank-1 S.

This iterative algorithm starts with the problem (15), so the initial value of Ṽ is a

parameter that can be designed. The choice of the weight w, which is also a parameter to
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be designed, can affect the rate of convergence and the result S at convergence. A small

report of the influence of w will be introduced.

Influence of the weight w The obtained prototype filter g at convergence is the same

for all w in the range. The rank constraint is not met if w is too small, and the obtained

objective gets greater if w is too large. As w increases above 0.003, NI increases nearly

proportionally. Thus, to minimize the obtained objective and maximize the rate of con-

vergence, w has been set to 0.003. In fact, w in [4] has been selected in this way for each

case.
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Proof of non-convexity for (B.2d)

We remind below themain involved algorithm lacking of explanation about non-convexity

about one element.

minimize
S ∈ HD

+

max
f∈BO

Sa(f) (17a)

subject to tr(S) = D, (17b)

tr(S◦−1) ≤ Dη, (17c)

rank(S) = 1. (17d)

whom rank-constraint is not convex.

Proof (as an example) : Let

J11 =

1 0

0 0

 J22 =

0 0

0 1

 (18)

Both matrices are rank-1, but the average of those two matrices is rank-2. The rank con-

straint is known to be a matrix analogue to the L0-norm on vectors, that is to say :

• L0-norm counts the number of zero-entries ;

• rank constraint counts the number of non-zero singular values.

Remind : L0-norm of x is :

∥x∥0 = 0

√∑
i

x0
i (19)
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whom optimization problem should be :

min ∥x∥0

subject to Ax = b
(20)

where x ∈ Rn, A ∈ Rm×n, m ≤ n and b ∈ Rm.

However, doing so is not an easy task. Because the lack of L0-norm’s mathematical rep-

resentation, L0-minimisation is regarded by computer scientist as an NP-hard problem,

simply says that it is too complex and almost impossible to solve.

In many cases, L0-minimisation problem is relaxed to be higher-order norm problem

such as L1-minimisation and L2-minimisation.
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Add-ons about about g settlement and

PSD calculation

.1 Proof of discrete-time Fourier transform of gm[n]

gm[n] is defined as :

gm[n] =


[g]⟨n−mK−L⟩D , n = 0, 1 . . . , D′ − 1

0, otherwise
(21)

The discrete Fourier transform of gm[n] is :

Gm(e
jω) =

+∞∑
n=−∞

gm[n]e
−jωn (22)

So, we can rewrite :

Gm(e
jω) =

D′−1∑
n=0

[g]⟨n−mK−L⟩De
−jωn (23)

.1.1 No cyclic prefix (L=0)

To simplify the problem, let first L = 0, so that D′ = D. Thus :

Gm(e
jω) =

D−1∑
n=0

[g]⟨n−mK⟩De
−jωn (24)

= [g]⟨0−mK⟩De
−jω0 + [g]⟨1−mK⟩De

−jω1 + · · ·+ [g]⟨−1−mK⟩De
−jω(D−1)
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=

[
e−jω0 e−jω1 . . . e−jωn

]
︸ ︷︷ ︸

1×D

[
g
]

︸︷︷︸
D×1

=
1√
D

[
e−jω0 e−jω1 . . . e−jωn

]
WH

D︸︷︷︸
D×D

[
gf

]

because g = 1√
D
WH

Dgf . Knowing that WD is the normalized D-point discrete-Fourier-

transform (DFT) matrix with [WD]m,n = e−j2πmn/D/
√
D, and interpreting the discrete-

time-Fourier-transform (DTFT) of the transmitted signal, we could rewrite every DTFT

Gm-element as following :

Gm(e
jω) =

1

D

D−1∑
l=0

[gf ]le
−jωle−jωlle−jωl

D−1
2

But :
1

D

D−1∑
l=0

e−jωlle−jωl
D−1
2

=
1

D
ej(D−1)

ωl
2 · 1− (e−jωl)D

1− e−jωl
· e−jωl

D−1
2

= e−jωl
D−1
2 · 1

D
ej(D−1)

ωl
2 · 1− e−jωlD

1− e−jωl

= e−jωl
D−1
2 · 1

D

(
ej

Dωl
2 − e−j

Dωl
2

)
(
ej

ωl
2 − e−j

ωl
2

) · e
−j

ωl
2

e−j
ωl
2

= e−jωl
D−1
2 · sin(Dωl/2)

D sin(ωl/2)

The Dirichlet function is defined as :

Dx = sincp(x) =


(−1)k(p−1), x = 2πk, k ∈ Z

sin(px/2)
p sin(x/2)

, otherwise
(25)

Following that expression, we can write Gm as :

Gm(e
jω) =

D−1∑
l=0

[gf ]le
−jωlsincD(ωl)e

−jωl
D−1
2
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Gm(e
jω) =

D−1∑
l=0

[gf ]le
−j2π lm

M sincD(ωl)e
−jωl

D−1
2

.1.2 With cyclic prefix (L=0)

Now, we keep the cyclic prefix, so that D′ = D + L. Thus :

Gm(e
jω) =

D′−1∑
n=0

[g]⟨n−mK−L⟩De
−jωn (26)

=
D′−1∑
n=0

[g]⟨n−(mK+L)⟩De
−jωn

= [g]⟨0−(mK+L)⟩De
−jω0 + [g]⟨1−(mK+L)⟩De

−jω1 + · · ·+ [g]⟨−1−(mK+L)⟩De
−jω(D′−1)

=

[
e−jω0 e−jω1 . . . e−jωn

]
︸ ︷︷ ︸

1×D

[
g
]

︸︷︷︸
D×1

=
1√
D

[
e−jω0 e−jω1 . . . e−jωn

]
WH

D︸︷︷︸
D×D

[
gf

]

because g = 1√
D
WH

Dgf . Knowing that WD is the normalized D-point discrete-Fourier-

transform (DFT) matrix with [WD]m,n = e−j2πmn/D/
√
D, and interpreting the discrete-

time-Fourier-transform (DTFT) of the transmitted signal, we could rewrite every DTFT

Gm-element.

Given that the CP has been introduced, one length is added in the transmitted part

of the system. To keep this length, the operation is iterated once again (so that we can

eliminate inter-symbol interference (ISI)). That is why we repeat the end of the symbol as

:
1

D′

D′−1∑
l′=0

e−j2π( k
D
− l

D′ )ejπ(
k
D
− l

D′ )(D′−1)
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We can use one again the Dirichlet function to write Gm as :

Gm(e
jω) =

D′−1∑
l=0

[
1

D′

D−1∑
k=0

{
[gf ]k

1

D′

D′−1∑
l′=0

e−j2π( k
D
− l

D′ )l′ejπ(
k
D
− l

D′ )(D′−1)e−j2πkmK+L
KM

}]
1

D′

D′−1∑
l=0

e−jω′
lle−jω′

l
D′−1

2

(27)

Gm(e
jω) =

D′−1∑
l=0

[
1

DD′2

D−1∑
k=0

{[gf ]ksincD′

(
2π

(
k

D
− l

D′

))
ejπ(

k
D
− l

D′ )(D′−1)

e−j2πkmK+L
D }]sincD′(ω′

l)e
−jω′

l
D′−1

2

(28)

.2 Rewriting Sa(f )

We know that :

Sa(f) =
ES|P (f)|2

D′Ts

∑
k∈K

∑
m∈M

∣∣∣Gm

(
ej2π(fTs− k

K )
)∣∣∣2 (29)

that can be rewritten as :

Sa(f) =
ES|P (f)|2

D′Ts

∑
k∈K

∑
m∈M

∣∣∣∣∣
D′−1∑
n=0

an(2π(fTs − k/K),m)[gf ]n

∣∣∣∣∣
2

(30)

where

an(ω,m) =
1

DD′2

D−1∑
l=0

{
sincD′

(
2π

(
k

D
− l

D′

))
ejπ(

k
D
− l

D′ )(D′−1)e−j2πkmK+l
D

}
sincD′(ω′

l)e
−jω′

l
D′−1

2

(31)

Using the proposed Lemma in [3], saying that :

The frequency-domain prototype filter gf =
√
DWDg can be expressed as
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gf = vec
(
GTWK

)
, we can obtain a further derivation :

Sa(f) =
ES|P (f)|2

KD′2Ts

∑
k∈K

∑
m∈M

∣∣∣∣∣
D′−1∑
n=0

bn(f, k,m)[vec(G)]n

∣∣∣∣∣
2

(32)

where

bn(f, k,m) =
K−1∑
k′=0

ak′M+⌞ n
K⌟

(
2π

(
fTs −

k

K

)
,m

)
e−j2π⌞ n

K
⌟k′/De−j2π<n>Kk′/K (33)

Indeed :

Sa(f) =
ES|P (f)|2

KD′2Ts

∑
k∈K

∑
m∈M

∣∣∣∣∣
D′−1∑
n=0

an

(
2π

(
fTs −

k

K

)
,m

)[
vec

(
GTWK

)]
n

∣∣∣∣∣
2

(34)

Let ak,m ∈ C/[ak,m]n = an
(
2π

(
fTs − k

K

)
,m

)
.

Then, we propose to rewrite vec
(
GTWK

)
:

vec
(
GTWK

)
=

(
WT

K ⊗ I
)
vec

(
GT

)

=
(
WT

K ⊗ I
)
Π vec

(
G
)

=
(
WT

K ⊗ I
)
Π vec (G ◦WK×M)

=
(
WT

K ⊗ I
)
Π diag (vec (WK×M))︸ ︷︷ ︸

B

vec (G) (35)

So :

Sa(f) =
ES|P (f)|2

KD′2Ts

∑
k∈K

∑
m∈M

∣∣aTBvec(G)
∣∣2

=
ES|P (f)|2

KD′2Ts

∑
k∈K

∑
m∈M

(aTBvec(G))(aTBvec(G))H

=
ES|P (f)|2

KD′2Ts

∑
k∈K

∑
m∈M

aTBvec(G)(vec(G))HBH(aT )H
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=
ES|P (f)|2

KD′2Ts

∑
k∈K

∑
m∈M

aTBSBH(aT )H

where

S = vec(G)(vec(G))H (36)

Sa(f) =
ES|P (f)|2

KD′2Ts

∑
k∈K

∑
m∈M

tr((aTB)HaTBS)

=
ES|P (f)|2

KD′2Ts

∑
k∈K

∑
m∈M

tr(|aTB|2S)

=
ES|P (f)|2

KD′2Ts

∑
k∈K

∑
m∈M

|aTB|2tr(S)

Finally, we would rewrite Sa(f) as :

Sa(f) =
ES|P (f)|2

D′2Ts

∑
k∈K

∑
m∈M

bH(f, k,m)Sb(f, k,m) (37)

where

[b(f, k,m)]n = bn(f, k,m) (38)
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