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中文摘要

這篇論文包含兩個部份。於第一部份我們證明了一個平滑三維多樣體和其極小模型的

貝堤數的差可被該平滑三維多樣體的皮喀數所限制。於第二部份我們證明了任一小平

維度為一的平滑三維多樣體的第九十六個複正則系統會決定其飯高纖維。

關鍵詞：

複三體，極小模型計劃，貝堤數，複正則系統，有效飯高猜想，黑肯-瑪柯能猜想。
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Abstract

This thesis consists of two parts. In the first part we prove that the difference of the Betti numbers

of a smooth threefold and its minimal model can be bounded by a constant depending only on the

Picard number of the smooth threefold. In the second part we prove that the 96-th pluricanonical

system of a smooth threefold of Kodaira dimension one defines the Iitaka fibration.

Keywords:

Complex threefolds, minimal model program, Betti numbers, pluricanonical systems, effective

Iitaka conjecture, Hacon-McKernan conjecture.
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Chapter 1

Introduction

In birational geometry, people study algebraic varieties in birational ways. That is, comparing

varieties which are isomorphic on a dense open set. If two varieties are birational, then they have

the same function field. Hence the category of birational classes is a reasonable category and

the theoreies in birational geometry could have many applications in other branch of algebraic

geometry. There is a fundamental approach in birational geometry, so called the minimal model

program, concerning with how to find a good representative in each birational class. In the end

of 20 century, the minimal model program for varieties with mild singularities and dimension

less than or equal to three was established. Over the past twenty years, the three-dimensional

minimal model program becomes a foundation of three-dimensional birational geometry.

After the minimal model theorem being proved, there are two basic approaches in the three-

dimensional birational geometry: study minimal threefolds, and compare the given smooth

threefold with its minimal model. A minimal threefold has several good property. For example,

the abundance conjecture is known to be true in dimension three, so that a sufficiently divisible

pluricanonical system of a minimal threefold is base point free and defines the Iitaka fibration. If

additionally we assume that the given minimal threefold is of general type, then the plurigenura

can be directly computed and one can estimate some important geometric invariants such as the

volume or the self-intersection of the canonical divisor. J. A. Chen and M. Chen have work on

minimal threefolds of general type for many years. They have good estimate for the volume of

threefolds of general type, and they can precisely describe those minimal threefolds of general

type with small volume.

The second approach is to explicitly describe each step of the minimal model program.

Three-dimensional minimal model program consists divisorial contrations to points or curves
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and flips. Hayakawa, Kawakita and Yamamoto had classified three-dimensional divisorial con-

tractions to points. J. A. Chen and Hacon proved that one can factorize divisorial contractions to

curves and flips into (inverse of) divisorial contractions to points, blowing-up local complete in-

tersection curves and flops. Hence the comparison of a smooth threefold and its minimal model

is possible nowadays.

In this paper we discuss two different problems, which correspond to the two approaches we

mentioned above. The first problem is the comparison of Betti numbers between a smooth three-

fold and its minimal model. This problem is motivated by the estimate of the self-intersection

of the canonical divisor. The self-intersection of the canonical divisor is an important geomet-

ric quantity. For smooth varieties, this number is exactly the first Chern number (up to a sign),

which could be linked to the theories of algebraic topology. Since this number is not a birational

invariant, it is an important issue that how dose this number change under birational morphisms.

In dimension three, one can prove that under elementary birational morphisms the change of this

number can be bounded by Betti numbers. Hence it becomes an interesting problem that how

does Betti numbers change under elementary birational maps. We will prove that among steps

of minimal model program begin with a smooth threefold, the change of Betti numbers could

be bounded by some constant depending on the Picard number of the original threefold.

Another problem we are going to discuss is to study threefolds via its Iitaka fibration. Given

a smooth threefold, the Kodaira dimension could be −∞, 0, 1, 2 or 3. Threefolds of Kodaira

dimension three, so call threefolds of general type, were recently studied in detail by J. A. Chen

and M. Chen. They can estimate the volume of threefolds of general type and they proved that

the 61-th pluricanonical system defines the Iitaka fibration. They can also describe the extreme

cases in detail. In the Kodaira dimension two case, since the Iitaka fibration gives an elliptic

fibration structure, threefolds of Kodaira dimension two can be studied simply using Fujino-

Mori’s canonical bundle formula. Ringler have proved that the 48-th pluri canonical system

defines the Iitaka fibration. For threefolds of Kodaira dimension zero, Kawamata and Morrison

proved that the m0-pluricanonical system is non-empty where m0 = 25 × 33 × 52 × 7 × 11 ×

13× 17× 19.

We will study threefolds of Kodaira dimension one here. The main difficulty is that the

technique used to study threefolds of Kodaira dimension 2 or 3 do not behave well in Kodaira

dimension one case. In the research of threefolds of general type people use Reid’s singular

Riemann-Roch formula to compute the dimension of the pluricanonical system. This technique

2
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do not work in non-general type cases. When dealing with threefolds of Kodaira dimension

two the Iitaka fibration is an elliptic fibration, so the canonical bundle formula were simple.

However in our situation the Iitaka fibration is a two-dimensional fibration and the canonical

bundle formula has very large denominators, so we can not get any reasonable bound from

it. The solution is to apply the theories of terminal threefolds and study the structure of Iitaka

fibration at the same time. We will prove that the 96-th pluricanonical system defines the Iitaka

fibration and we can give the geometric description in the extreme cases.

This thesis is organized as follows. Chapter 2 is a preliminary section. We will introduce of

minimal model program and several basic theories for terminal threefolds. We will discuss the

change of Betti numbers in the minimal model program in Chapter 3 and threefolds of Kodaira

dimension one in Chapter 4.

1.1 Convention and notation

Through this paper a variety is always projective and over complex numbers.

The word “divisor” always means a Weil divisor. A Q-divisor means a finite sum of prime

divisors D =
∑n

i=1 aiDi such that ai ∈ Q. The round down of D is the integral divisor ⌊D⌋ =∑
i⌊ai⌋Di, where ⌊ai⌋ is the largest integer smaller than or equal to ai. Similarly the round up

ofD is the integral divisor ⌈D⌉ =
∑

⌈ai⌉Di with ⌈ai⌉ being the smallest integer greater than or

equal to ai.

For any divisorD on an varietyX ,OX(D)will denote the sheaf associated toD. Given two

divisor D and D′, the notation D ∼ D′ means D is linear equivalent to D′. Assume that both

D and D′ are Q-Cartier divisors, then the notation D ≡ D′ means D is numerically equivalent

to D′, i.e. D.C = D′.C for any curve C.

1.2 Algebraic geometric background

1.2.1 Ample, nef and big divisors

Recall that a Cartier divisor D is said to be ample if nD is very ample for some integer n, that

is, |nD| defines an embedding to a projective space.

Theorem 1.2.1 (Nakai-Moishezon criterion, cf. [KM92] Theorem 1.37). Let X be a proper

scheme over a field andD be a Cartier divisor onX . ThenD is ample if and only ifDdimZ .Z > 0

3
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for any closed integral subscheme Z ⊂ X .

Definition. A Cartier divisor D is said to be nef if D.C ≥ 0 for any curve C.

Definition. A Cartier divisor D on an n-dimensional projective variety X is called big if

h0(X,OX(kD)) > ckn

for some c > 0 and and for all k ≫ 1.

Lemma 1.2.2 ([KM98], Lemma 2.60). LetX be an n-dimensional projective variety andD be

a Cartier divisor. The following are equivalent:

1. D is big.

2. mD ∼ A+ E where A is ample and E is effective for somem > 0.

3. For somem > 0 the rational map ϕ|mD| is birational.

1.2.2 Iitaka fibration and the Kodaira dimension

LetX be a normal algebraic variety and L be a line bundle onX such thatH0(X,L) ̸= 0. Then

exists a rational map ϕ|L|X 99K PH0(X,L).

Definition. Assume that there exists n ∈ N such that H0(X,Ln) ̸= 0. We define the Iitaka

dimension of L to be

κ(X,L) = max
{
dim im(ϕ|Ln|) n ∈ N

}
.

If H0(X,nL) = 0 for all n ∈ N, then we define κ(X,L) = −∞.

Now assume thatX is smooth, then we define the Kodaira dimension ofX to be κ(X,KX)

and we will denote it by κ(X). When X is singular, we define κ(X) = κ(X̃) for any smooth

model X̃ of X .

Note that if X and X ′ are two smooth varieties birational to each other, then there exists a

smooth variety X̃ such that there exists birational morphisms f : X̃ → X and f ′ : X̃ → X ′.

One has KX̃ = f ∗KX + E = f ′∗KX + E ′ where E and E ′ are effective exceptional divisors.

It follows that

dim im(ϕ|nKX |) = dim im(ϕ|nKU |) = dim im(ϕ|nKf−1U |) = dim im(ϕ|nKX̃ |)

4
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where U is the open set on X such that f |U is isomorphic. This tell us that κ(X) = κ(X̃) and

similarly κ(X ′) = κ(X̃). Thus the definition of Kodaira dimension is well-defined.

Theorem 1.2.3 (Iitaka fibration theorem, [Laz04] Theorem 2.1.19). LetX be a normal projec-

tive variety and L be a line bundle onX such that κ(X,L) > 0. Then there exists an algebraic

fiber space (i.e. surjective morphism with connected fiber) ϕ∞ : X∞ → Y∞ such that for all

sufficiently large and divisible integer k, we have the following commutative diagram

X

ϕk

���
�
� X∞

u∞oo

ϕ∞
��

Yk Y∞oo_ _ _

,

where ϕk = ϕ|Lk|, Yk is the closure of im(ϕ|Lk|), the horizontal maps are birational and (u∗
∞L)|F

has Kodaira dimension zero for a very general fiber F of X∞ → Y∞.

5
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Chapter 2

Minimal Model Program and Terminal

Threefolds

The goal of the minimal model program is to find a good representative in each birational class.

Assume thatX is a smooth projective curve, then any smooth curve Y birational toX is in fact

isomorphic toX . Hence any birational class for algebraic curves has a unique smooth element.

However, when the dimension is greater than one, things become complicated.

Assume X is a smooth variety of dimension greater than or equal to two. One can always

blow-up a point onX , and obtained another smooth varietywhich is birational toX . The original

idea of the minimal model program is to find a variety which is not the blow-up of other smooth

variety. This approach works in dimension two. Assume thatX is a projective smooth surface,

then one can always contract a minus-one curve (a rational curve which has self-intersection−1)

on it and get another smooth surface which contains no−1-curves (so that it is not a blow-up of

any other smooth surface). This surface is called the minimal model of X . The word minimal

means that it can not map to any other smooth surface birationally.

In higher dimensional cases things become more and more complicated. Instead of working

on the category of smooth varieties, one should study varieties with mild singularities, or even

more generally, study a pair. That is, a variety plus a boundary divisor. The approach of higher

dimensional minimal model program leads to lots of interesting problems and there are rich

theories associated to it.

The category of terminal varieties is the smallest category such that the minimal model pro-

gram works. In dimension less than three being terminal is equivalent to being smooth. How-

ever, there exist non-smooth terminal threefolds. Fortunately, three-dimenisonal terminal sin-

6
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gularities are not hard to study: their canonical cover has only compound Du Val singularities.

Reid and Mori give a complete classification of three-dimenisonal terminal singularities. With

the help of the classification one can study terminal threefolds in detail.

This chapter contains two parts. In the first section we will introduce the notion of minimal

model program. In the second section wewill quickly review some known results about terminal

threefolds.

2.1 Minimal model program

2.1.1 Minimal model program for surfaces

Through this subsection S will denote a complex projective smooth surface.

Castelnuovo’s contraction theorem

Definition. An irreducible curve C ⊂ S is called a −1-curve if C is a smooth rational curve

and C2 = −1.

Theorem 2.1.1 (Castelnuovo’s contraction theorem, [Bea78] Theorem II.17). Assume that C is

a −1-curve on S. Then there is a birational morphism f : S → S ′ to a smooth surface S ′, such

that f(C) is a point and S − C is isomorphic to S ′ − f(C).

Note that the Picard number decreased by one after constracting a −1-curve. Since the

Picard number is always a positive integer, there are only finitely many −1-curve on a smooth

surface. Thus Castelnuovo’s contraction theorem implies that there exists a birational morphism

S → Smin for some smooth surface Smin, such that Smin do not contain any −1-curve. Such

kind of surfaces are called minimal surfaces.

If we blow-up a point on a smooth surface, then the exceptional divisor is a−1-curve. Hence

if S is minimal, then S cannot be the blowing-up of other smooth surfaces. In fact, by Theorem

2.1.2, there is no birational morphism S → S ′ to any smooth surface S ′. Thus S is a minimal

element in the smooth birational class, where the partial order in defined by S ≥ S ′ if there

exists a morpshim S → S ′.

Theorem 2.1.2 ([Bea78], Theorem II.11). Let f : S → S0 be a birational morphism. Then

7
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there exists a sequence of blow-ups

S ∼= Sk → Sk−1 → ... → S1 → S0

such that f is the composition of above morphisms.

Classification of algebraic surfaces

Definition. A surface is said to be ruled if it is birational to C×P1. If C ∼= P1, then the surface

is said to be rational.

The Hirzebruch surfaces Fn is defined by PP1(OP1 ⊕OP1(n)), for all integer n ≥ 0.

Theorem 2.1.3 ([Bea78], Theorem V.10). Let S be a minimal rational surface. Then S is iso-

morphic to P2 or Fn for some n ̸= 1.

We remark that F1 is isomorphic to P2 blowing-up a point, which is not minimal.

Theorem 2.1.4 (Enriques’ Theorem, [Bea78] Theorem VI.17). Assume that S is a smooth sur-

face and H0(S, 12KS) = 0, then S is ruled. In particular, any minimal surface with negative

Kodaira dimension is ruled.

Theorem 2.1.5 ([Bea78], Theorem VIII.2). Assume that S is minimal of Kodaira dimension

zero, then S belongs to one of the four following cases:

1. pg = q = 0 and 2K ∼ 0. We say S is an Enriques surface.

2. pg = 0, q = 1 and S is a bielliptic surface.

3. pg = 1, q = 0 and K ∼ 0. We say S is a K3 surface.

4. pq = 1, q = 2 and S is an abelian surface.

Proposition 2.1.6 ([Bea78], Proposition IX.2 (b)). Assume that S is a minimal surface of Ko-

daira dimension one. Then there is a smooth curve B and a surjective morphism S → B whose

generic fiber is an elliptic curve.

Theorem 2.1.7 ([Iit70], Corollary after Proposition 8). Assume that S is an surface of Kodaira

dimension one. Then |86KS| defines the Iitaka fibration.

Theorem 2.1.8 ([Bom70]). Assume that S is a surface of general type, then |5KS| defines a

birational map.

8
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2.1.2 Cone theorem

Definition. Let K = Q or R and V be a K-vector space. A subset N ⊂ V is called a cone if

0 ∈ N and N is closed under multiplication by positive scalars.

A subcone M ⊂ N is called extremal if v, w ∈ N and v + w ∈ M implies v and w ∈ M .

An one dimensional extremal subcone is called an extremal ray.

Definition. Let X be a proper variety. A 1-cycle is a formal linear combination of irreducible,

reduced and proper curves C =
∑

i aiCi. We say C is effective if ai ≥ 0 for all i. Given

two 1-cycles C and C ′, we say that C is numerically equivalent to C ′, denoted by C ≡ C ′, if

D.C = D.C ′ for all Cartier divisor D on X . The space of 1-cycles on X with real coefficient

module numerical equivalence is denoted byN1(X), which is a finite dimensional vector space.

We will denote NE(X) = {effective 1-cycles} ⊂ N1(X) and NE(X) is the closure of

NE(X) in N1(X).

Theorem 2.1.9 (Cone theorem, [KM98], Theorem 1.24). LetX be a smooth projective variety.

1. There are countably many rational curves Cj ⊂ X such that 0 < −KX .Cj ≤ dimX +1,

and

NE(X) = NE(X)KX≥0 +
∑

R≥0[Cj].

2. For any ϵ > 0 and ample divisor H ,

NE(X) = NE(X)KX+ϵH≥0 +
∑
finite

R≥0[Cj].

Theorem 2.1.10 ([Mor82], Theorem 3.1). Let X be a smooth projective threefold and R ⊂

NE(X) be an extremal ray, then there exists a morphism ϕ : X → Y such that ϕ∗OX = OY

and for any irreducible curve C in X , ϕ(C) is a point if and only if [C] ∈ R.

Theorem 2.1.11 ([Mor82], Theorem 3.3, Corollary 3.4). Notation as in the previous theorem.

Assume that R is not numerically effective (that is, there exists an effective divisor D such that

D.C < 0 for some curve C with [C] ∈ R), then there is a divisor D on X such that ϕ is

isomorphism on X −D and dimϕ(D) ≤ 1. One of the following holds.

1. Y is smooth and X = Blϕ(D)Y , ϕ(D) is either a point or a smooth curve.

9
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2. ϕ(D) = Q is a point. The completion OŶ ,Q of OY,Q is given by

k[[x, y, z, u]]/(x2+y2+z2+u2), k[[x, y, z, u]]/(x2+y2+z2+u3) or k[[x, y, z]]Z2 ,

where the Z2 action is given by (x, y, z) 7→ (−x,−y,−z).

Theorem 2.1.12 ([Mor82], Corollary 3.5). If R is numerically effective, then Y is smooth and

we have

1. dimY = 2, X → Y is a conic bundle (i.e., the generic fiber Xη is a conic in P2).

2. dimY = 1, X → Y is a del Pezzo fibration (i.e. the generic fiber Xη is an irreducible

reduced surface such that −KXη is ample).

3. dimY = 0, −KX is ample.

2.1.3 Singularities in minimal model program

Definition. A pair (X,∆) is a normal projective varietyX and an (effective)Q-divisor∆ such

thatKX +∆ is Q-Cartier.

Definition. Let (X,∆) be a pair over complex numbers. Let E be an exceptional divisor over

X . We define the discrepancy of E over (X,∆), denoted by a(X,∆, E), to be the coefficient

of KY − f ∗(KX +∆) along E.

We say that (X,∆) is terminal (resp. canonical, log terminal, kawamata log terminal, log

canonical) if a(X,∆, E) > 0 (resp. ≥ 0, > −1, > −1 and ⌊∆⌋ = 0, ≥ −1).

Those singularities has their geometric meaning. The category of terminal varieties is the

smallest category which is closed under minimal model program, and the category of varieties of

kawamata log terminal (klt for short) singularities is the largest category such that the minimal

model program works. Canonical singularities coming from the pluricanonical maps of smooth

varieties of general type. Log canonical singularities are the worst singularities which can be

described using the language of the discrepancy.

2.1.4 Higher dimensional minimal model program

Theorem 2.1.13 (Relative cone theorem, [KM98] Theorem 3.25). Let (X,∆) be a klt pair and

assume that ∆ is effective. Let g : X → Z be a projective morphism. Then

10
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1. There are countably many rational curves Cj ⊂ X such that g(Cj) is a point, 0 <

−KX .Cj ≤ 2 dimX and

NE(X/Z) = NE(X/Z)KX+∆≥0 +
∑

R≥0[Cj].

2. For any ϵ > 0 and f -ample divisor H ,

NE(X/Z) = NE(X/Z)KX+∆+ϵH≥0 +
∑
finite

R≥0[Cj].

3. Let F ⊂ NE(X/Z) be a KX-negative extremal subcone. Then there exists a unique

morphism fF : X → Y over Z, such that (fF )∗OX = OY and an irreducible curve C

maps to a point if and only if [C] ∈ F .

4. Assume that L is a line bundle such that L.C = 0 for all curve C such that [C] ∈ F . Then

L ∼= f ∗
FLY for some line bundle LY on Y .

Definition. Let (X,∆) be a pair. AKX+∆-flipping contraction is a proper birational morphism

f : X → Y such that Exc(f) has codimension greater than or equal to two and −(KX +∆) is

f -ample.

A normal variety X+ together with a proper birational morphism f+ : X+ → Y is called

a KX +∆-flip of f if KX+ +∆+ is Q-Cartier and f+-ample and Exc(f+) has codimension at

least two, where ∆+ is the birational transform of ∆.

Definition. Let (X,∆) be a pair. A proper morphism f : X → S is called a Mori fiber space

if dimS < dimX , ρ(X/S) = 1 and −(KX +∆) is f - ample.

Now let (X,∆) be a Q-factorial projective klt pair. The ideal minimal model program goes

as follows: Assume that KX + ∆ is nef, then we have done. If it is not nef, then there is an

KX +∆-negative extremal ray. By Theorem 2.1.13 one can contract the extremal ray and get a

morphism f : X → Y such that −(KX +∆) is f -ample. We have the following three possible

situaiton.

1. X → Y is a divisorial contraction. Note that Y is Q-factorial and (Y, f∗∆) is klt by

Proposition 2.1.14 and Lemma 2.1.16. In this case we replace (X,∆) by (Y, f∗∆) and

continue the process. We have ρ(Y ) = ρ(X) − 1, hence there are only finitely many

divisorial contractions could occur in this process.

11
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2. X → Y is a flipping contraction. We have to construct a KX + ∆-flip X 99K X+. By

Proposition 2.1.15 and Lemma 2.1.16 X+ is Q-factorial and (X+,∆+) is klt provided

that X+ exists, so one can keep doing this process with (X+,∆+).

3. dimY < dimX . By Proposition 2.1.14 we have ρ(X/Y ) = 1 and we get a Mori fiber

space.

Proposition 2.1.14 ([KM98], Proposition 3.36). Let (X,∆) be a porjectiveQ-factorial klt pair

and g : X → Y is a contraction of KX + ∆-negative extremal ray. Assume that either g is

divisorial or dimY < dimX , then Y is also Q-factorial and ρ(Y ) = ρ(X)− 1.

Proposition 2.1.15 ([KM98], Proposition 3.37). Let (X,∆) be a porjectiveQ-factorial klt pair

and X 99K X+ is a KX +∆-flip. Then X+ is Q-factorial and ρ(X+) = ρ(X).

Lemma 2.1.16 ([KM98], Lemma 3.38). Consider a commutative diagram

X
ϕ //_______

f   @
@@

@@
@@

@ X ′

f ′
~~}}
}}
}}
}}

Y

where X , X ′ and Y are normal varieties and f , f ′ are proper and biraitonal. Let ∆ (resp. ∆′)

be aQ-divisor onX (resp. X ′) such that f∗∆ = f ′
∗∆

′, and both−(KX +∆) andKX′ +∆′ are

Q-Cartier and f -nef. Then for any exceptional divisor E over Y , we have

a(E,X,∆) ≤ a(E,X ′,∆′).

Strict inequality holds if either −(KX +∆) is f -ample and f is not an isomorphism above the

generic point of CenterYE, or KX′ + ∆′ is f ′-ample and f is not an isomorphism above the

generic point of CenterYE.

To successfully run the minimal model program there are two problems should be solved: the

existence of flips and the termination of flips. In dimension three it had been already solved.

Theorem 2.1.17 ([Mor88], Theorem 0.2.5). Let X → Y be a three-dimensional flipping con-

traction, then the KX-flip exists.

Theorem 2.1.18 (Shokurov, cf. [Mor88] Theorem 0.2.7). To each algebraic threefold with only

terminal singularities there is a well-defined non-negative integer d(X) called the difficulty,

such that d(X+) < d(X) if X 99K X+ is a KX-flip.

12
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Corollary 2.1.19 (Minimal model program for terminal threefolds). Let X be a Q-factorial

projective terminal threefold. Then there exists a sequence of birational morphism between

Q-factorial terminal threefolds

X = X0 99K X1 99K ... 99K Xk−1 99K Xk

such thatXi 99K Xi+1 is either a divisorial contraction or a flip, andXk is either minimal (that

is, KXk
is nef), or has a Mori fiber space structure.

For dimension greater than three the existence of flips and termination of flips are still open.

In [BCHM10], Birkar, Cascini, Hacon and McKernan proved that the existence and termination

of some special flips, and proved that in very general case the minimal model program still

works.

Theorem 2.1.20 ([BCHM10], Theorem 1.2). Let (X,∆) be a klt pair. Let π : X → U be a

projective morphism of quasi-projective varieties.

If either ∆ is π-big and KX +∆ is π-pseudo-effective orKX +∆ is π-big, then

1. KX +∆ has a minimal model over U .

2. The OU -algebra
⊕

m∈N π
∗OX(⌊m(KX +∆)⌋) is finitely generated.

Corollary 2.1.21 ([BCHM10], Corollary 1.1.1). LetX be a smooth projective variety of general

type, then

1. X has a minimal model.

2. X has a canonical model.

3. The ring
⊕

m∈N H
0(X,OX(⌊m(KX +∆)⌋) is finitely generated.

2.1.5 Abundance conjecture

Assume that (X,∆) is a pair such that its minimal model (Xmin,∆min) exists. People expect

that the minimal model satisfied the following good property.

Conjecture 2.1.22 (Abundance conjecture). Assume that (Xmin,∆min) isminimal, thenKXmin
+

∆min is semi-ample. That is, |m(KXmin
+∆min)| is basepoint-free for somem ∈ N.

13
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The abundance conjecture is known for lower-dimensional varieties.

Theorem 2.1.23 (Abundance theorem for log surfaces, cf. [Kol92] Theorem 11.1.3). Let (X,∆)

be a two-dimenisonal minimal log canonical pair. ThenKX +∆ is semi-ample.

Theorem 2.1.24 (Abundance theorem for terminal threefolds, cf. [Kol92] Theorem 11.1.1). Let

X be a minimal terminal threefold. ThenKX is semi-ample.

2.2 Terminal threefolds

Through this section X will be a terminal threefold.

2.2.1 Classification of terminal threefolds

The local classification of terminal threefolds were done by Reid [Rei83] for Gorenstein case

and Mori [Mor85] for non-Gorenstein case.

Definition. A compound Du Val point P ∈ X is a hypersurface singularity locally analytically

defined by f(x, y, z) + tg(x, y, z, t) = 0, where f(x, y, z) defines a Du Val singularity.

Theorem 2.2.1 ([Rei83], Theorem 1.1). Let P ∈ X be a point of threefold. Then P ∈ X is an

isolated compound Du Val point if and only if P ∈ X is terminal of index one.

LetG be a cyclic group of order r and assume thatG acts onAn
(x1,...,xn)

by xi 7→ ξair xi, where

ξr is a fixed r-th roots of unity and ai ∈ Z. We will denote

An/G = An/
1

r
(a1, ..., an).

Theorem 2.2.2 ([Mor85], cf. [Rei87] Theorem 6.1). Let P ∈ X be a germ of three-dimensional

terminal singularity of index r > 1. Then

X ∼= (f(x, y, z, u) = 0) ⊂ A4
(x,y,z,u)/

1

r
(a1, ..., a4)

such that f(x, y, z, u), r and ai is given by Table 2.1.

By [Rei87, (6.4)] any three-dimensional terminal singularity of indice greater than one could

be deformed to cyclic quotient singularities. These data is called the basket of the singularity.

14
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Type f(x, y, z, u) r ai condition

cA/r xy + g(zr, u) any (α,−α, 1, r)
g ⊂ m2

P

α and r are coprime

cAx/4
xy + z2 + g(u)
x2 + z2 + g(y, u)

4 (1, 1, 3, 2) g ∈ m3
P

cAx/2 xy + g(z, u) 2 (0, 1, 1, 1) g ∈ m4
P

cD/3
x2 + y3 + z3 + u3

x2 + y3 + z2u+ yg(z, u) + h(z, u)
x2 + y3 + z3 + yg(z, u) + h(z, u)

3 (0, 2, 1, 1)
g ∈ m4

P

h ∈ m6
P

cD/2
x2 + y3 + yzu+ g(z, u)
x2 + yzu+ yn + g(z, u)
x2 + yz2 + yn + g(z, u)

2 (1, 0, 1, 1) g ∈ m4
P , n ≥ 4

n ≥ 3

cE/2 x2 + y3 + yg(z, u) + h(z, u) 2 (1, 0, 1, 1)
g, h ∈ m4

P

h4 ̸= 0

Table 2.1: Classification of terminal threefolds

Type deformation general elephant basket
cA/r f(x, y, z, u) + tu z = 0 k × (r, b)
cAx/2 f(x, y, z, u) + tx λz + µu = 0 2× (2, 1)
cAx/4 f(x, y, z, u) + tu x− y = 0 (4, 1), k − 1× (2, 1)
cD/2 f(x, y, z, u) + ty λz + µu = 0 k × (2, 1)
cD/3 f(x, y, z, u) + tx λz + µu = 0 2× (3, 1)
cE/2 f(x, y, z, u) + ty λz + µu = 0 3× (2, 1)

Table 2.2: Basket for three-dimensional terminal singularities

Uasally we denote (r, b) for the cyclic quotient 1
r
(1,−1, b). The number of the cyclic quotient

points is called axial weight. Please see Table 2.2 (cf. [Rei87, (6.4)], [CH11, Remark 2.1]) for

the explicit basket for each case.

2.2.2 Singular Riemann-Roch formula

An basic tool to study terminal threefolds is Reid’s singular Riemann-Roch formula [Rei87]:

χ(OX(D)) = χ(OX) +
1

12
D(D −KX)(2D −KX) +

1

12
D.c2(X)

+
∑

P∈B(X)

(
−iP

r2P − 1

12rP
+

iP−1∑
j=1

jbP (rP − jbP )

2rP

)
,

where B(X) = {(rP , bP )} is the basket data of X and iP is the integer such that OX(D) ∼=

OX(iPKX) near P .

15
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Take D = KX , one have

KX .c2(X) = −24χ(OX) +
∑

P∈B(X)

(
rP − 1

rP
.

)

Now take D = mKX and replace KX .c2(X) by χ(OX) and the contribution of singularities,

we get the following plurigenus formula [CH09, Section 2]:

χ(mKX) =
1

12
m(m− 1)(2m− 1)K3

X + (1− 2m)χ(OX) + l(m),

here

l(m) =
∑

P∈B(X)

m−1∑
j=1

jbP (rP − jbP )

2rP
.

If one assumes X is minimal and of Kodaira dimension one, thenK3
X = 0 and one has

χ(mKX) = (1− 2m)χ(OX) + l(m).

2.2.3 Weighted blow-up

Let X ∼= An/1
r
(a1, ..., an) be a cyclic quotient singularity. There is an elementary way to con-

struct a birational morphism Y → X , so called the weighted blow-up, defined as follows.

We write everything in the language of toric varieties. Let N be the lattice ⟨e1, ..., en, v⟩Z,

where e1, ..., en is the standard basic of Rn and v = 1
r
(a1, ..., an). Let σ = ⟨e1, ..., en⟩R≥0

. We

have X ∼= Spec C[N∨ ∩ σ∨].

Let w = 1
r
(b1, ..., bn) be a vector such that bi = λai + kir for λ ∈ N and ki ∈ Z. We define

a weighted blow-up of X with weight w to be the toric variety defined by the fan consists of

those cones

σi = ⟨e1, ..., ei−1, w, ei+1, ..., en⟩.

Let Ui be the toric variety defined by the cone σi and lattice N .

Lemma 2.2.3. Let

v′ =
1

bi
(−b1, ...,−bi−1, r,−bi+1, ...,−bn)

and

w′ =
1

rbi
(a1bi − aib1, ..., ai−1bi − aibi−1, rai, ai+1bi − aibi+1, ..., anbi − aibn).

16
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Assume that u = 1
r′
(a′1, ..., a

′
n) is a vector such that ⟨e1, ..., en, v′, w′⟩Z = ⟨e1, .., en, u⟩Z, then

Ui
∼= An/

1

r′
(a′1, ..., a

′
n).

In particular, if λ = 1, then Ui
∼= 1

bi
(−b1, ...,−bi−1, r,−bi+1, ...,−bn).

Proof. Let Ti be a linear transformation such that Tiej = ej if j ̸= i and Tiw = ei. One can see

that

Tiei =
r

bi
(ei −

∑
j ̸=i

bj
r
ej) = v′

and

Tiv =
∑
j ̸=i

aj
r
ej +

ai
r

r

bi
(ei −

∑
j ̸=i

bj
r
ej) =

ai
bi
ei +

∑
j ̸=i

ajbi − aibj
rbj

ej = w′.

Under this linear transformation σi becomes the standard cone ⟨e1, ..., en⟩R≥0
. Note that

kiv
′ + λw′ =

kir + λai
bi

ei +
∑
j ̸=i

λ(ajbi − aibj)− kibjr

rbi
ej

= ei +
∑
j ̸=i

λajbi − bibj
rbi

ej = ei −
∑
j ̸=i

kjej.

Hence ei ∈ TiN and TiN = ⟨e1, ..., en, u⟩Z. This implies Ui has cyclic quotient singularity

which is defined by the vector u.

Now assume that λ = 1, then one can see that

w′ = ei −
∑
j ̸=i

kjej − kiv
′,

so one can take u = v′.

Corollary 2.2.4. Let x1, ..., xn be the local coordinates of X and y1, ..., yn be the local coordi-

nates of Ui. The change of coordinates of Ui → X are given by xj = yjy
bj
r
i and xi = y

bi
r
i .

Proof. The change of coordinate is defined by T t
i , where Ti is defined as in Lemma 2.2.3.

Corollary 2.2.5. Assume that

S = (f1(x1, ..., xn) = ... = fk(x1, ..., xn) = 0) ⊂ X

is a complete intersection and S ′ is the proper transform of S on Y . Assume that the exceptional

17
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locus E of S ′ → S is irreducible and reduced. Then

a(S,E) =
b1 + ...+ bn

r
−

k∑
i=1

wtwfk(x1, ..., xn)− 1.

Proof. Assume first that k = 0. Denote ϕ : Y → X . Then on Ui we have

ϕ∗dx1 ∧ ... ∧ dxn =
bi
r
y

bi
r
−1

i

(∏
j ̸=i

y
bj
r
i

)
dy1 ∧ ... ∧ dyn,

henceKY = ϕ∗KX + ( b1+...+bn
r

− 1)E.

Now the statement follows from adjunction formula.

2.2.4 Divisorial contraction to points

We briefly introduce the classification of three-dimensional extremal divisorial contraction to

points between terminal threefolds. These result were done by Hayakawa, Kawakita and Ya-

mamoto [Hay99, Hay00, Hay05, Hay1, Hay2, Kawak01, Kawak05, Kawak12, Y].

Assume that Y → X be an extremal divisorial contraction to point between terminal three-

folds and let E be the exception divisor which maps to a point P ∈ X . Let rP be the index of

P , that is, the smallest integer such that rPKX is Cartier at P .

Theorem 2.2.6. There exists an local embedding

X ∼= (f(x, y, z, u) = 0) ↪→ A4
(x,y,z,u)/

1

r
(a1, ..., a4) or

X ∼= (f1(x, y, z, u, t) = f2(x, y, z, u, t) = 0) ↪→ A5
(x,y,z,u,t)/

1

r
(a1, ..., a5)

and Y is obtained by weighted blow-up of weight w and one of the following holds.

(i) rP > 1 and a(X,E) = 1/rP . In this case ai, fj and w is given by Table 2.3 and Table 2.4.

This kind of divisorial contraction to point is called a w-morphism.

(ii) rP = a(X,E) = 1. In this case fj and w is given by Table 2.5.

(iii) a(X,E) > 1/rP . In this case ai, fj and w is given by Table 2.6.

We use the notation that pk denote a polynomial which is weighted homogeneous of weight k

and g≥k denote a polynomial such that wtwg ≥ k.

18
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Proof. Please see Table 2.7 for the reference of (1), Table 2.8 for (2) and Table 2.9 for (3).
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No. defining equations (r; ai)
weight type condition

1 xy + g≥m(z, u)
(r;α,−α, 1, r)

1
r
(a, b, 1, r)

cA/r
a ≡ α( mod r)
a+ b = rm

2 x2 + y2 + g≥ 2k+1
2

(z, u)
(4; 1, 3, 1, 2)

1
4
(2k + a, 2k + b, 1, 2)

cAx/4
k even, (a, b) = (1, 3), or
k odd, (a, b) = (3, 1)

3
x2 + y2 ± (a− 3)xp 2k+1

4
(z, u)±

(b− 3)yp 2k+1
4

(z, u) + g≥ 2k+3
2

(z, u)
(4; 1, 3, 1, 2)

1
4
(2k + a, 2k + b, 1, 2)

cAx/4
k even, (a, b) = (5, 3), or
k odd, (a, b) = (3, 5)

4 x2 + y2 + g≥k(z, u)
(2; 0, 1, 1, 1)

1
2
(k + a, k + b, 1, 1)

cAx/2
k even, (a, b) = (0, 1), or
k odd, (a, b) = (1, 0)

5
x2 + y2 ± (a− 1)xp k

2
(z, u)±

(b− 1)yp k
2
(z, u) + g≥k+1(z, u)

(2; 0, 1, 1, 1)
1
2
(k + a, k + b, 1, 2)

cAx/2
k even, (a, b) = (2, 1), or
k odd, (a, b) = (1, 2)

6 x2 + y3 + zu(z ± su), or
x2 + y3 + z2u+ g≥2(y, z, u)

(3; 0, 2, 1, 1)
1
3
(3, 2, a, b)

cD/3 (a, b) = (1, 4) or (4, 1)

7 x2 + y3 + z3 + g≥2(y, z, u)
(3; 0, 2, 1, 1)
1
3
(3, 2, 4, 1)

cD/3

8 x2 + y3 + λy2u2+
z3 + z3 + g≥4(y, z, u)

(3; 0, 2, 1, 1)
1
3
(6, 5, 4, 1)

cD/3

9 x2 + y3 + g≥3(y, z, u)
(2; 1, 1, 1, 0)
1
2
(3, 2, a, b)

cE/2 (a, b) = (1, 3) or (3, 1)

10 x2 + y3 + λy2u2 + g≥3(y, z, u)
(2; 1, 1, 1, 0)
1
2
(3, 2, 1, 3)

cE/2

11 x2 + y3 + λy2u2 + g≥5(y, z, u)
(2; 1, 1, 1, 0)
1
2
(5, 4, 3, 1)

cE/2

12 x2 ± (λyu+ µzu2 + νu5)x+
y3 + g≥6(y, z, u)

(2; 1, 1, 1, 0)
1
2
(7, 4, 3, 1)

cE/2

13 x2 + y3 + g≥9(y, z, u)
(2; 1, 1, 1, 0)
1
2
(9, 6, 5, 1)

cE/2

14 x2 + yzu+ yr + zs + uw (2; 1, 1, 1, 0)
1
2
(a, b, c, d)

cD/2 (a, b, c, d) =

(3, 1, 1, 2)
(3, 1, 3, 2)
(3, 3, 1, 2)
(3, 1, 1, 4)

15
{
x2 + yt+ zr + us

zu+ y3 + t
(2; 1, 1, 1, 0, 1)
1
2
(3, 1, 1, 2, 5)

cD/2

16 x2 + y2u+ λyzk + g≥l(z, u)
(2; 1, 1, 1, 0)

1
2
(b+ 2, b, 1, 4)

cD/2
b ≤ min{k − 2, l − 2}

and b is odd

17 x2 + y2u+ λyzk + g≥l(z, u)
(2; 1, 1, 1, 0)
1
2
(b, b, 1, 2)

cD/2 b is odd, k = b ≤ l, or
l = b ≤ k

18
{
x2 + yt+ g≥2b(z, u)

yu+ λzb + t
(2; 1, 1, 1, 0, 1)

1
2
(b, b− 2, 1, 2, b+ 2)

cD/2 b is odd

19 x2 ± xpb(z, u) + y2u+
λyzk + g≥b+1(z, u)

(2; 1, 1, 1, 0)
1
2
(b+ 2, b, 1, 2)

cD/2 k ≥ b, b is odd.

20
{

x2 + ut+ λyzk + g≥b+2(z, u)
y2 ± xp b

2
−1(z, u) + h≥b(z, u) + t

(2; 1, 1, 1, 0, 0)
1
2
(b+ 2, b, 1, 2, 2b+ 2)

cD/2 k is odd, k ≥ b+ 2

21 x2 + y2u+ λyzk + g≥b(z, u)
(2; 1, 1, 1, 0)

1
2
(b+ 1, b− 1, 1, 2)

cD/2 b is even, k ≥ b+ 1

Table 2.3: Classfication of divisorial contraction to points: w-morphism cases
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No. defining equations (r; ai)
weight type condition

22
{
x2 + ut+ λyzk + g≥b+1(z, u)

y2 + pb−1(z, u) + t
(2; 1, 1, 1, 0, 0)

1
2
(b+ 1, b− 1, 1, 2, 2b)

cD/2 b is even, k ≥ b+ 3

23
x2 ± yup b−1

2
(z, u) + y2u+

λyzk + g≥b+1(z, u)

(2; 1, 1, 1, 0)
1
2
(b+ 1, b+ 1, 1, 2)

cD/2 k ≥ b+ 1, b is even.

24 x2 + g≥b(z, u)+

(y − p b
2
−1

(z, u))(yu+ λzb + up b
2
−1

(z, u))

(2; 1, 1, 1, 0)
1
2
(b, b, 1, 2)

cD/2 b is odd.

25
{

x2 + yt+ g≥b(z, u)
yu+ pb(z, u) + λzb + t

(2; 1, 1, 1, 0, 0)
1
2
(b, b− 2, 1, 2, b+ 2)

cD/2 b is odd

Table 2.4: Classfication of divisorial contraction to points: w-morphism cases, continued

No. defining equations weight type condition
1 x2 + y2u+ λyzk + g≥2b(z, u) (b, b− 1, 1, 2) cD k ≥ b+ 1

2 x2 + y2u+ ypl(z, u) + λyzk +
g≥2l(z, u)

(b, b, 1, 1) cD
b = k ≤ l, or
b = l ≤ k

3
{
x2 + ut+ λyzk + g≥2b+2(z, u)

y2 + p2b(x, z, u) + t
(b+ 1, b, 1, 1, 2b+ 1) cD k ≥ b+ 2

4 x2 + y2u+ λyzk + g≥2b+1(x, z, u) (b+ 1, b, 1, 1) cD k ≥ b+ 1

5
{

x2 + yt+ g≥2b(z, u)
yu+ zb + pp(z, u) + t

(b, b− 1, 1, 1, b+ 1) cD

6 x2 + y3 + g≥4(y, z, u) (2, 2, 1, 1) cE
7 x2 + 2xp3(y, z) + y3 + g≥6(y, z, u) (3, 2, 1, 1) cE
8 x2 + y3 + g≥6(y, z, u) (3, 2, 2, 1) cE
9 x2 + y3 + 3λy2u2 + g≥8(y, z, u) (4, 3, 2, 1) cE
10 x2 ± xp4(y, z, u)+ y3 + g≥9(y, z, u) (5, 3, 2, 1) cE
11 x2 + y3 + y2p3(z, u) + g≥9(y, z, u) (5, 4, 2, 1) cE
12 x2 + y3 + g≥12(y, z, u) (6, 4, 3, 1) cE
13 x2 + y3 + y2p4(z, u) + g≥14(y, z, u) (7, 5, 3, 1) cE
14 x2±xp7(y, z, u)+y3+g≥15(y, z, u) (8, 5, 3, 1) cE
15 x2 + y3 + g≥18(y, z, u) (9, 6, 4, 1) cE
16 x2 + y3 + y2p6(z, u) + g≥20(y, z, u) (10, 7, 4, 1) cE
17 x2 + y3 + g≥24(y, z, u) (12, 8, 5, 1) cE
18 x2 + y3 + g≥30(y, z, u) (15, 10, 6, 1) cE

19
{
x2 + y3 + tu+ g≥6(y, z, u)

p4(x, y, z, u) + t
(3, 2, 1, 1, 5) cE

20 x2 + xp2(y, z, u) + y3 + g≥6(y, z, u) (4, 2, 1, 1) cE6

21
{
x2 + y3 + tp2(z, u) + g≥(y, z, u)

q3(y, z, u) + t
(3, 2, 1, 1, 4) cE7

22 x2 + y3 + y2p2(z, u) + yq3(z, u) +
g≥6(y, z, u)

(3, 3, 1, 1) cE7

23
{
x2 + yt+ g≥10(y, z, u)
y2 + p6(y, z, u) + t

(5, 3, 2, 1, 7) cE

Table 2.5: Classfication of divisorial contraction to points: Gorenstein and discrepancy one cases
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No. defining equations (r; ai)
weight

type
a(X,E)

condition

1 xy + zrm + g≥ma(z, u)
(r;α,−α, 1, r)

1
r
(b, c, a, r)

cA/r
a/r

b ≡ α,
b+ c = rma

2 x2 + y2 + z3 + xu2 + g≥6(x, y, z, u)
(1;−)

(4, 3, 2, 1)
cA2

3

3 x2 + y2u+ zm + g≥2b+1(x, y, z, u)
(1;−)

(b+ 1, b, a, 1)
cD
a

ma = 2b+ 1

4
{
x2 + yt+ g≥2b+2(y, z, u)
yu+ zm + upb(z, u) + t

(1,−)
(b+ 1, b, a, 1, b+ 2)

cD
a

ma = b+ 1

5
{

x2 + λyzm + ut+ g≥b+1(z, u)
y2 + 2xp b−3

2
(z, u) + qb−1(z, u) + t

(1;−)

( b+1
2
, b−1

2
, 4, 1, b)

cD
4

8m ≥ b+ 3

6
{

x2 + λyzm + ut+ g≥b+1(z, u)
y2 + 2xp b−3

2
(z, u) + qb−1(z, u) + t

(1;−)

( b+1
2
, b−1

2
, 2, 1, b)

cD
2

4m ≥ b+ 3

7 x2 + y2u+ 2yupb−1(z, u)+
λyzm + zb + g≥2b(z, u)

(1;−)
(b, b, 2, 1)

cD
2 m ≥ b

2

8 x2 + y2u+ 2yup2(z, u)+
u3 + g≥6(z, u)

(1;−)
(3, 3, 1, 2)

cD4

2

9 x2 + y2u+ z3 + µyu2+
2yup2,3(z, u) + g≥6(z, u)

(1;−)
(3, 4, 2, 1)

cD4

3

10 x2 + y2u+ zm + g≥b+1(x, y, z, u)
(2; 1, 1, 1, 0)

( b
2
+ 1, b

2
, a
2
, 1)

cD/2
a/2

g(x, y, 0, 0) = 0
∂2

∂x2 g(x, y, z, u) = 0
∂2

∂y2
g(x, y, z, u) = 0

ma = 2b+ 2
a and b are odd

11
{

x2 + yt+ g≥b+2(z, u)
yu+ zm + p b

2
+1(z, u) + t

(2; 1, 1, 1, 0, 1)

( b
2
+ 1, b

2
, a
2
, 1, b

2
+ 2)

cD/2
a/2

ma = b+ 2
a and b are odd

12 x2 + y2u+ z4b + g≥4b(y, z, u)
(2; 1, 1, 1, 0)
(2b, 2b, 1, 1)

cD/2
1

13 x2 + yzu+ y4 + zb + uc (2; 1, 1, 1, 0)
(2, 2, 1, 1)

cD/2
1

b, c ≥ 4
b is even

14
{
x2 + ut+ λyzb+2 + αz2b+2 + g≥2b+2(y, z, u)

y2 + µxzb−1 + βz2b + p2b(x, z, u) + t

(2; 1, 1, 1, 0, 0)
(b+ 1, b, 1, 1, 2b+ 1)

cD/2
1

∂2

∂y2
g(y, z, u) = 0

∂2

∂x2p(x, z, u) = 0
b odd and α2 + βλ2 ̸= 0, or

b even and β2 + αµ2 ̸= 0

15
{
x2 + ut+ y4 + z4

yz + u2 + t
(2; 1, 1, 1, 0, 0)
(2, 1, 1, 1, 3)

cD/2
1

16
{

x2 + yt+ g≥4b+2(z, u)
yu+ z2b+1 + p2b+1(z, u) + t

(2; 1, 1, 1, 0, 1)
(2b+ 1, 2b, 1, 1, 2b+ 2)

cD/2
1

17
{
x2 + ut+ λyz

b+3
4 + µ′z

b+1
2 + g≥b+1(y, z, u)

y2 + λ′xz
b−3
4 + µz

b−1
2 + pb−1(x, z, t) + t

(2; 1, 1, 1, 0, 0)

( b+1
2
, b−1

2
, 2, 1, b)

cD/2
2

b = 8k + 1 and λµ ̸= 0, or

b = 8k + 7, λ′µ′ ̸= 0

18 x2 + (y − p2(z, u))
3+

yu3 + g≥6(y, z, u)
(1;−)

(3, 3, 2, 1)
cE6

2

19
{
x2 + yt+ g≥10(y, z, u)

y2 + p6(z, u) + t
(1;−)

(5, 3, 2, 2, 7)
cE7

2

20 x2 + y3 + u7 + g≥14(z, u)
(1;−)

(7, 5, 3, 2)
cE7,8

2

21 x2 + y3 + z4 + u8+
λy2u2 + g≥8(y, z, u)

(2; 1, 0, 1, 1)
(4, 3, 2, 1)

cE/2
1

∂2

∂y2
g(y, z, u) = 0

Table 2.6: Classfication of divisorial contraction to points: large disprepancy cases
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No. Reference
1 [Hay99, Theorem 6.4]
2 [Hay99, Theorem 7.4]
3 [Hay99, Theorem 7.9]
4 [Hay99, Theorem 8.4]
5 [Hay99, Theorem 8.8]
6 [Hay99, Theorem 9.9, Theorem 9.14]
7 [Hay99, Theorem 9.20]
8 [Hay99, Theorem 9.25]
9 [Hay99, Theorem 10.11, Theorem 10.17, Theorem 10.22, Theorem 10.28, Theorem 10.41]
10, 11 [Hay99, Theorem 10.33, Theorem 10.47]
12 [Hay99, Theorem 10.54, Theorem 10.61]
13 [Hay99, Theorem 10.67]
14 [Hay00, Proposition 4.4, Proposition 4.7, Proposition 4.12]
15 [Hay00, Proposition 4.9]
16 [Hay00, Proposition 5.4]
17 [Hay00, Proposition 5.8, Proposition 5.13]
18 [Hay00, Proposition 5.9]
19 [Hay00, Proposition 5.16]
20 [Hay00, Proposition 5.18]
21 [Hay00, Proposition 5.22, Proposition 5.32]
22 [Hay00, Proposition 5.25]
23 [Hay00, Proposition 5.28]
24 [Hay00, Proposition 5.35]
25 [Hay00, Proposition 5.36]

Table 2.7: Reference for Table 2.3, Table 2.4

No. Reference
1-5 [Hay1, Theorem 2.1-2.5]
6-23 [Hay2, Theorem 1.1]

Table 2.8: Reference for Table 2.5

No. Reference
1 [Kawak05, Theorem 1.2 (i)]
2 [Y, Theorem 2.6]
3,4 [Kawak05, Theorem 1.2 (ii)]
5 [Y, Theorem 2.2]
6 [Y, Theorem 2.3]
7,8 [Y, Theorem 2.4]
9 [Y, Theorem 2.7]
10,11 [Kawak05, Theorem 1.2 (ii)]
12-16 [Hay05, Theorem 1.1]
17 [Kawak12, Theorem 2]
18 [Y, Theorem 2.5]
19 [Y, Theorem 2.9]
20 [Y, Theorem 2.10]
21 [Hay05, Theorem 1.2]

Table 2.9: Reference for Table 2.6
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Chapter 3

Betti numbers in the three dimensional

minimal model program

The relations between topology and geometry are the research topic of many studies. A typical

question, which was originally asked by Hirzebruch and modified by Kotschick (cf. [Kot08])

states, if one fixes the topology of a smooth algebraic variety, can its Chern numbers only assume

finitely many values? This question is trivial in dimension one and has been proved in dimension

two (please see [Kot08]). Cascini and Tasin [CT17] have proved the statement in some special

cases in dimension three, but in general this question is still open for dimension greater than

two.

We will briefly introduce the result of three dimensional case [CT17]. One needs to show

that c31 and c1.c2 of a smooth threefold is bounded by a constant depending only on the topolog-

ical type of the threefold. The Riemann-Roch formula asserts that c1.c2 can be bounded by a

combination of Betti numbers. If our variety is minimal, then the Miyaoka-Yau inequality says

that one can use c1.c2 to bound c31. Assume the variety is not minimal, then a natural approach

is to run the minimal model program.

One has to estimate the change of c31 under the minimal model program. In the case of

divisorial contractions to points, this quantity can be bounded by b2 and in the case of blowing-up

smooth curves, it can be bounded by b3 and the cubic form. Hence for those smooth threefolds

with the property that the process of the minimal model program consists of only divisorial

contractions to points and blowing-up smooth curves, their c31 will be bounded by topology.

This is the main theorem of [CT17].

One can see that how to estimate the change of Betti numbers under the minimal model
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program becomes an important issue if we want to generalize the result of [CT17] into general

situations.

In the process of the three-dimensional minimal model program, one can prove that b0, b1,

b5 and b6 won’t change and b2 and b4 change regularly (cf. Proposition 3.1.12). However, the

change of b3 could be arbitrary positive or arbitrary negative (please see Section 3.4). The point

is that because other Betti numbers change regularly, computing the change of b3 is equivalent

to computing the change of topological Euler characteristic, which can be compute directly

thanks to the classification of three-dimensional divisorial contractions and the Chen-Hacon

factorization. The goal of this chapter is to prove Theorem 3.3.6, which states that the difference

of b3 under steps of minimal model program begin with a smooth threefold could be bounded

by some constant depends only on Picard number of the smooth threefold.

3.1 Preliminary

3.1.1 Biraitonal maps between terminal threefolds

In this subsection we introduce the Chen-Hacon factorization, which factorize a step of the

three-dimensional minimal model program into simple birational maps. Let X 99K X ′ be a

step of the minimal model program. IfX is Gorenstein, then this birational map is well studied

in [Cut88] (please see Remark 3.1.4). To study birational maps begin with a non-Gorenstein

terminal threefolds, we first recall the definition of depth, which is a quantity measures the

complexity of non-Gorenstein singularities.

Definition. Let X be a terminal threefold. A w-morphism is a extremal divisorial contraction

which contract exceptional divisor to a point of index r > 1, such that the discrepancy of the

exceptional divisor is 1/r.

The depth of X , denoted by dep(X), is the minimal length of sequence of w-morphisms

Xn → Xn−1 → ... → X1 → X , such that Xn is Gorenstein. Note that by [Hay00, Theorem

1.2], for any terminal threefold X , dep(X) exists and is finite.

In the world of birational geometry, depth satisfied some good property as follows.

Proposition 3.1.1 ([CH11], Proposition 2.15). If f : Y ⊃ E → X ∋ P be (the germ of) a

divisorial contraction to a point. Then dep(Y ) ≥ dep(X)− 1.
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Proposition 3.1.2 ([CH11], Proposition 3.8). LetX → W be a flipping contraction andX 99K
X ′ be the flip, then dep(X) > dep(X ′).

Remark 3.1.3. IfX 99K X ′ is a flop. Then by [Kol89] the singularities ofX andX ′ are locally

isomorphic, hence dep(X) = dep(X ′).

Remark 3.1.4. LetX be a terminal threefold. Then dep(X) = 0 if and only ifX is Gorenstein.

In this case, by [Ben85, Corollary 0.1], there is no flipping contraction. Also, if X → W is

a divisorial contraction to a curve, then X is obtained by blowing-up an LCI curve on W (cf.

[Cut88, Theorem 4]).

Now let X be a smooth threefold. Then the singularities appear in the minimal model pro-

gram of X can be bounded by the Picard number of X .

Proposition 3.1.5 (Cascini, D.-Q. Zhang, in the proof of [CZ14] Proposition 3.3). Let X be a

smooth projective threefold and assume that

X = X0 99K X1 99K ... 99K Xk = Z

is a sequence of steps for theKX-minimal model program of X . Then dep(Z) ≤ ρ(X).

Remark 3.1.6. In fact, the argument in [CZ14] Proposition 3.3 implies dep(Z) ≤ ρ(X/Z).

Now we are ready to state the Chen-Hacon factorization.

Theorem 3.1.7 ([CH11], Theorem 3.3). Let g : X ⊃ C → W ∋ P be an extremal neighbor-

hood which is isolated (resp. divisorial). If X is not Gorenstein, then we have a diagram

Y //_______

f
��

Y ′

f ′

��
X

g

  A
AA

AA
AA

A X ′

g′

}}||
||
||
||

W

where Y 99K Y ′ consists of flips and flops over W , f is a w-morphism, f ′ is a divisorial

contraction (resp. a divisorial contraction to a curve) and g′ : X ′ → W is the flip of g (resp. g′

is divisorial contraction to a point).

Remark 3.1.8. The diagram above satisfies more properties.
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(i) dep(Y ) = dep(X)− 1. This is by the construction of Y in [CH11].

(ii) Y 99K Y ′ can be decomposed into Y = Y0 99K Y1 99K ... 99K Yl = Y ′, such that

Yi 99K Yi+1 is a flip for i > 0 and Y0 99K Y1 is either a flip or a flop. This is the step 4 in

the proof of [CH11, Theorem 3.3].

3.1.2 Topology of terminal threefolds

In this subsection, we will compute the change of all Betti numbers except for b3 under three

dimensional birational maps. For the divisorial contraction cases it is known to experts.

Lemma 3.1.9 ([CT17], Lemma 2.17). Let Y → X be an elementary divisorial contraction

within Q-factorial projective threefolds with terminal singularities. Then bi(Y ) = bi(X) if

i = 0, 1, 5, 6, and bi(Y ) = bi(X) + 1 if i = 2, 4.

Corollary 3.1.10. If X → W is extremal divisorial contraction, then

b3(W )− b3(X) = χtop(X)− χtop(W )− 2.

The following statement is well-known to experts. However, we are unable to find appro-

priate reference hence we provide a proof here.

Lemma 3.1.11. Assume that X 99K X ′ is a three-dimensional terminal flop, then bi(X) =

bi(X
′) for all i.

Proof. By [Che11] (please see Theorem 3.4.4 below) there exists f : Y → X (resp. f ′ : Y ′ →

X ′) such that Y (resp. Y ′) is smooth and f (resp. f ′) is a combination of divisorial contractions

to points. By Lemma 3.1.9, we have bi(Y ) = bi(X) (resp. bi(Y ′) = bi(X
′)) for i = 0, 1, 5, 6,

and bj(Y ) = bj(X) + ρ(Y /X) (resp. bj(Y ′) = bj(X
′) + ρ(Y ′/X ′)) for j = 2, 4.

Claim. bi(Y ) = bi(Y
′) for i = 0, 1, 2, 4, 5 and 6.

Note that X and X ′ has the same singularities by [Kol89, Theorem 2.4], hence ρ(Y /X) =

ρ(Y ′/X ′). Thus the above claim implies

bi(X) = bi(X
′) for i = 0, 1, 2, 4, 5, 6.

To prove the claim, one only need to prove that b5(Y ) = b5(Y
′) and b2(Y ) = b2(Y

′) because

bi(Y ) = bi(Y
′) = 1 for i = 0, 6 and b1(Y ) = b5(Y ) (resp. b1(Y ′) = b5(Y

′)), b2(Y ) = b4(Y )
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(resp. b2(Y ′) = b4(Y
′)) since both Y and Y ′ are smooth. Let ϕ : Z → Y be the resolution of

the indeterminacy of Y 99K Y ′ which is obtained by a sequence of blowing-up smooth centers

on Y . Let ϕ′ : Z → Y ′ be the induced morphism. Then Z → Y is a composition of elementary

divisorial contractions, hence b5(Y ) = b5(Z) and b2(Y ) = b2(Z)−ρ(Z/Y ). By [CT17, Lemma

2.15] we have that

0 → H5(Y ′,Q) → H5(Z,Q)⊕H5(ϕ(E ′),Q) → H5(E ′,Q) → 0

is exact, where E ′ = Exc(ϕ′). This implies b5(Y ′) = b5(Z) = b5(Y ).

On the other hand, in the proof of [CT17, Lemma 2.16] one can see that

0 → H2(Z/Y
′,C) → H2(Z,C) → H2(Y

′,C) → 0

is exact, whereH2(Z/Y
′,C) ⊂ H2(Z,C) is the subspace generated by the image ofH2(E

′,C)

in H2(Z,C). Hence

b2(Z) = b2(Y
′) + dimH2(Z/Y

′,C).

As mentioned in [CT17, Lemma 2.16] we have H2(Z/Y
′) is generated by algebraic cycles,

hence ρ(Z/Y ′) ≤ dimH2(Z/Y
′,C). Also we have

ρ(Z/Y ′) = ρ(Z/X ′)− ρ(Y ′/X ′) = ρ(Z/X)− ρ(Y /X) = ρ(Z/Y ).

The conclusion is

b2(Y
′) = b2(Z)− dimH2(Z/Y

′,C) ≤ b2(Z)− ρ(Z/Y ′) = b2(Z)− ρ(Z/Y ) = b2(Y ).

However by the symmetry of Y and Y ′ one can also show that b2(Y ) ≤ b2(Y
′), hence b2(Y ) =

b2(Y
′).

Now we have proved that bi(X) = bi(X
′) for i ̸= 3. Since χtop(X) = χtop(X

′) by the

construction in [Kol89, Theorem 2.4], we have b3(X) = b3(X
′).

After applying the Chen-Hacon factorization, one can deal with the flip case.

Proposition 3.1.12. Let X be a smooth threefold and X = X0 99K X1 99K ... 99K Xm be

the process of minimal model program. Then b0, b1, b5 and b6 are constant and both b2 and b4
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decrease. Moreover, b2 and b4 strictly decrease by one ifXi → Xi+1 is a divisorial contraction,

and remain unchanged if Xi 99K Xi+1 is a flip.

Proof. If Xi → Xi+1 is a divisorial contraction we can use Lemma 3.1.9. Assume that Xi 99K
Xi+1 is a flip. We will apply Theorem 3.1.7 and induction on dep(Xi). One has the diagram

Y //________

f
��

Y ′

f ′

��
Xi

g

  B
BB

BB
BB

Xi+1

g′

||yy
yy
yy
yy

W

.

Note that by Remark 3.1.8 we have dep(Y ) = dep(Xi)− 1. One can write

Y = Y0 99K Y1 99K ... 99K Yl = Y ′

and Yj 99K Yj+1 is a flip or flop for all j, hence dep(Yj) ≥ dep(Yj+1) by Proposition 3.1.2 and

Remark 3.1.3. By the induction hypothesis and Lemma 3.1.11, we have

bi(Y ) = bi(Y
′) for i ̸= 3.

Hence

bi(Xi) = bi(Y ) = bi(Y
′) = bi(Xi+1) for i = 0, 1, 5, 6

and

bi(Xi) = bi(Y )− 1 = bi(Y
′)− 1 = bi(Xi+1) for i = 2, 4.

3.2 The estimate on topology

The purpose of this section is to estimate the topological Euler characteristic of the exceptional

divisor of a birational morphism which is contracted to a point. We know that any such kind

of divisorial contractions is obtained by weighted blow-up. In most common situation the ex-

ceptional divisor is contained in a weighted projective space. However in some special cases

the exceptional divisor is contained in a cyclic quotient of a weighted projective space. To deal
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with such kind of special cases we have to introduce the following generalization of weighted

projective spaces.

Definition. An n-dimensional variety X is a generically cyclic quotient space if there exists a

Zariski open set U ⊂ X such that

1. U ∼= An/1
r
(a1, ..., an) for some natural numbers r and a1, ..., an.

2. X − U is also a generically cyclic quotient space.

Let D be an integral Weil divisor on X . We define

degD = max{degϕ−1
U (D|U), degD|X−U},

where ϕU : An → U is the natural quotient map and we define the degree of a divisor in An to

be the degree of the defining equation of this divisor.

Remark 3.2.1. It is clear that a weighted projective space is a generically cyclic quotient space.

Moreover, let W ∼= An/1
r
(a1, ..., an) be a cyclic quotient singularity and let W ′ → W be the

weighted blow-up the origin ofW with a weight w so that w(x, y, z, u) = 1
r
(b1, ..., bn). Assume

that bi ≡ λai(mod r) with λ = 1 or r. One can see that the exceptional divisor E of W ′ → W

is a generically cyclic quotient space. In fact, E is a weighted projective space if λ = 1 and a

cyclic quotient of a weighted projective space if λ = r. Assume that D is a Weil divisor on W

such that wtw(D) = m
r
, then degD ≤ m.

By the classification of divisorial contractions to points, one can check that if Y → X is

a divisorial contraction to a point, then the exceptional divisor is an LCI locus in a generically

cyclic quotient space of dimension four or five.

Theorem 3.2.2. Fix three positive integers n, k and d.

(i) There is an integer Nn
d,k such that for any algebraic set XI ⊂ An defined by an ideal

I = (f1, ..., fk) with deg fi ≤ d for all i, we have |χtop(XI)| ≤ Nn
d,k.

(ii) There is an integer Mn
d,k satisfying the following property. Let Y be an n-dimensional

generically cyclic quotient space and letW = D1∩...Dk be a finite intersection of reduced

prime Weil divisors such that degDi ≤ d for all i = 1, ..., k. Then

|χtop(W )| ≤ Mn
d,k.
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Note that Theorem 3.2.2 (i) can be easily proved using Milnor-Thom Theorem which states

as follows.

Theorem 3.2.3 ([Mil64], Theorem 2, cf. also [Tho07]). Let V ⊂ Rm is defined by polynomials

f1, ..., fk. If deg fi ≤ d, then the sum of Betti numbers of V is bounded by d(2d− 1)m−1.

However we will write a pure algebraic proof here. To prove the existence of N -constants

andM -constants, the basic idea is to reduce the question into lower dimensional cases. We will

prove:

Proposition 3.2.4. Assume that Nn−1
e,l exists for all e, l ∈ N, then Nn

d,k exists.

Proposition 3.2.5. IfMm
d,k exists for allm < n and Nn

d,l exists for all l ≥ k, thenMn
d,k exists.

3.2.1 The existence of N -constant

In this subsection we prove Proposition 3.2.4. GivenXI ⊂ An, where I = (f1, ..., fk) satisfying

deg fi ≤ d. Consider the natural map

K[x1, ..., xn−1] ↪→ K[x1, ..., xn] → K[x1, ..., xn]/I,

here K is the ground field. This gives a morphism ϕ from XI to {xn = 0} ∼= An−1. Fix

p = (a1, ..., an−1) ∈ An−1, then

ϕ−1(p) = {(a1, ..., an−1, xn) ∈ An f1(a1, ..., an−1, xn) = ... = fk(a1, ..., an−1, xn) = 0} .

Thus ϕ−1(p) can be studied via the equations f1, ..., fk. Now assume that the topology of the

image is known, then since the fibres can be studied, the topology of the original spaceXI could

be computed. This is the reason why one can reduce the problem to the lower dimensional case.

For the induction reason, we will prove a stronger statement.

Proposition 3.2.6. Assume Nn−1
c,m exists for all integers c and m. Let Z be an algebraic subset

inAn−1 which is defined by an ideal J = (g1, ..., gl) and assuming deg gj ≤ e for some constant

e. Then there is an fixed integer Ln
d,k,e,l such that |χtop(ϕ

−1Z)| ≤ Ln
d,k,e,l.

We divide this subsection into four parts. In the first part we study the common roots of a

collection of polynomials, which is the main tool we will use to study the fibre of the projection
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ϕ. After the tool is developed, we could get much information between the points in H and its

fibre in An, provided that the degree of f1, ... fk do not be too small. This is the second part

of this subsection. In the third part we deal with the case when the degree of fi is too small

for some i so that above technique does not work. Finally in the last part we run a complicated

induction and prove Proposition 3.2.6.

The generalized resultant

We generalize the idea of the resultant in classical algebra to describe the condition that a col-

lection of polynomials has a common zero.

Let g1, ..., gk ∈ K[x] be one variable polynomials with deg gi = di > 0. One write gi =∑
j ai,jx

j and we will denote

Ai
g1,...,gk

=



ai,di

ai,di−1 ai,di
... ... . . . ai,di

ai,0
... . . . ...

ai,0
...

ai,0


which is a (di + dk)× dk matrix satisfying

(Ai
g1,...,gk

)pq =

ai,di−q+p 0 ≤ p− q ≤ di

0 otherwise
.

Also define

Bi
g1,...,gk

=



ak,dk

ak,dk−1 ak,dk
... ... . . . ak,dk

ak,0
... . . . ...

ak,0
...

ak,0
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be a (di + dk)× di matrix such that

(Bi
g1,...,gk

)pq =

ak,dk−q+p 0 ≤ p− q ≤ dk

0 otherwise
.

Consider

Tg1,...,gk =


A1

g1,...,gk
B1

g1,...,gk
0 · · · 0

A2
g1,...,gk

0 B2
g1,...,gk

0
...

... ... 0
. . . 0

Ak−1
g1,...,gk

0 · · · 0 Bk−1
g1,...,gk

 ,

which is a (d1 + ...+ dk−1 + (k − 1)dk)× (d1 + ...+ dk) matrix.

Lemma 3.2.7. The polynomials g1, ..., gk have common zeros if and only if the matrix Tg1,...,gk

is not full rank. Moreover, the number of the common zeros is exactly the nullity of Tg1,...,gk ,

counted with multiplicity.

Proof.

Claim. g1, ..., gk has common zero if and only if there is polynomials h1, ..., hk such that

deghi < deg gi and higk = hkgi for all i < k.

Indeed, if the polynomials has common zeros, then they have a common factor in the poly-

nomial ringK[x]. So we may write gi = bhi, where b = gcd(g1, ..., gk) and then deghi < deg gi
and higk = hkgi. Conversely, assume higk = hkgi for some h1, ..., hk with deghi < deg gi. If

gk and hk has no common root, then every root of gk is a root of gi for all i thanks to the relation

higk = hkgi. Otherwise let l = gcd(gk, hk) and define ḡk = gk/l, h̄k = hk/l. Then deg ḡk > 0.

We still have the relation hiḡk = h̄kgi and gcd(ḡk, h̄k) = 1. As the previous discussion the root

of ḡk will be a root of gi for all i.

Thus to prove the lemma, one only need to find hi satisfied the condition above. Let

v =
(
rk,dk−1, ..., rk,0,−r1,d1−1, ...,−r1,0,−r2,d2−1, ...,−rk−1,dk−1−1, ...,−rk−1,0

)t
be a column vector in Kd1+...+dk , and let hi =

∑
j ri,jx

j , then one can check that the condition

higk = hkgi is exactly the linear condition Tg1,...,gkv = 0. Hence g1, ..., gk has common zeros if

and only if Tg1,...,gk is not full rank.

Now notice that if b = gcd(g1, ..., gk) and let αi = gi/b, then the number of common zeros

of g1, ..., gk is exactly deg b. For 1 ≤ j ≤ deg b, Let vj be the vector in Kd1+...+dk corresponds
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to the collection of polynomials {xj−1αi}ki=1, then vj is lying on the null space ofM and v1, ...,

vdeg b are linearly independent.

Conversely assume Tg1,...,gkw = 0 for some w ∈ Kd1+...+dk , then w corresponds to a col-

lection of polynomials h1, ..., hk satisfying higk = hkgi and deghi < deg gi. We claim that αi

divides hi for all i.

Let ci = gcd(gi, gk), gi = ciβi and gk = ciγi. The relation higk = hkgi yields hiγi = hkβi.

Since gcd(βi, γi) = 1 we have γi divides hk for all i, hence l.c.m.(γ1, ..., γk−1) divides hk.

On the other hand we have the relation gk = bαk = ciγi. Note that b = gcd(c1, ..., ck−1),

hence γi divide αk for all i and so l.c.m.(γ1, ..., γk−1) divides αk. If αk ̸= l.c.m.(γ1, ..., γk−1)

then αk/l.c.m.(γ1, ..., γk−1) will divide ci for all i, contradict to b = gcd(c1, ..., ck−1). Thus

αk = l.c.m.(γ1, ..., γk−1) divides hk. Finally the relation higk = hkgi gives that hiαk = hkαi.

Since αk divide hk, we have αi divide hi for all i.

Now deghi < deg gi = deg b+degαi, hence hi = h′αi for some polynomial h′ and degh′ <

deg b. Thus w is lying on the subspace generated by v1, ..., vdeg b and then null(Tg1,...,gk) = deg b

and the last part of the lemma is proved.

Lemma 3.2.8. Assume deg gi > 1 for all i. Let

s0 = null(Tg1,...,gk); s1 = null(Tg1,...,gk,g
′
1,...,g

′
k
),

here g′i denotes the formal derivative of polynomials. Then the number of distinct common roots

of g1, ..., gk is exactly s0 − s1.

Proof. Let b = gcd(g1, ..., gk). We will show that g.c.d(b, b′) = gcd(g1, ..., gk, g′1, ..., g′k). In-

deed, if we write gi = bhi, then g′i = b′hi + bh′
i, hence g.c.d(b, b′) divides gi and g′i for all i and

then gcd(b, b′) divides gcd(g1, ..., gk, g′1, ..., g′k). Conversely, if p is a polynomial divides gi and

g′i for all i, then p will divide gcd(g1, ..., gk) = b. The condition p divides g′i implies p divides

b′hi for all i. However, gcd(h1, ..., hk) = 1. Thus p divides b′ and hence p divides gcd(b, b′).

That is, gcd(g1, ..., gk, g′1, ..., g′k) divides gcd(b, b′).

Now write b = (x− a1)
r1 ...(x− am)

rm , then the number of distinct common roots of g1, ...,

gk ism. On the other hand,

b′ =
(
(x− a1)

r1−1...(x− am)
rm−1

)(∑
i

ri(x− a1)...(x− ai−1)(x− ai+1)...(x− am)

)
.
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Hence gcd(b, b′) = (x− a1)
r1−1...(x− am)

rm−1. By Lemma 3.2.7, s0 = deg b = r1 + ...+ rm

and s1 = deg(gcd(b, b′)) = (r1 − 1) + ...+ (rm − 1) = r1 + ...+ rm −m. A conclusion is that

s0 − s1 = m, as we want.

The geometry of the projection map

In this part we study the fibre of ϕ : XI → An−1. We will view fi as a polynomial in xn and we

will denote f ′
i =

∂
∂xn

fi. Let

T 0 =

 Tf1,f ′
1

if k = 1,

Tf1,...,fk if k > 1.
T 1 =

 Tf1,f ′
1,f

′′
1

if k = 1,

Tf1,...,fk,f
′
1,...,f

′
k

if k > 1.

provided that all the polynomials are non-constant. Note that T 0 and T 1 are matrices with all

entries being a polynomial inK[x1, ..., xn−1].

Convention. For j = 0, 1, we say the condition (Aj) are satisfied if T j is defined. That is,

deg fi > j (resp. j + 1) for all i if k > 1 (resp. k = 1).

When (Aj) is satisfied, one could study the fiber of ϕ via the nullity of T j . There are three

possibility of the fiber of ϕ: empty, finite points or a A1. The fiber is a A1 at a point P ∈ An−1

if and only if all fi vanishes at P , which is easy to detect. The main question is that how to find

the locus on An−1 such that the pre-image is finite, and how to find the cardinality of the fiber.

Assume (A0) one could solve the first question (cf. Lemma 3.2.9, Lemma 3.2.10). If (A1)

holds and assuming more conditions one could count the cardinality of the fiber (cf. Lemma

3.2.11).

Lemma 3.2.9. Assume (A0). Fix p ∈ An−1 and assume that T 0(p) is full rank. Then

|ϕ−1(p)| =

deg f1 if k = 1,

0 if k > 1.

Proof. Assume k = 1. If the leading coefficient vanishes over p, then the first row of T 0 is

always zero. Since T 0 is a square matrix, this implies T 0 is not full rank. Hence we may assume

the leading coefficient do not vanishing at p, so both f1 and f ′
1 are non-constant. Using Lemma

3.2.7, we see that T 0(p) is full rank implies f1 and f ′
1 consist no common zero. Hence f1 consists

no multiple roots over p, so |ϕ−1(p)| = deg f1.
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Now assume k > 1. First assume fi is constant over p for some i. Then if fi is identically

zero, T 0 can not be full rank. On the other hand, if fi is a non-zero constant, then ϕ−1(p) is

always empty so the conclusion is always true. Finally assume fi is non-constant for all i, then

for any p ∈ H , ϕ−1(p) is non-empty only if f1, ..., fk admit common zeros. By Lemma 3.2.7,

this implies the matrix T 0 is not full rank.

Lemma 3.2.10. Assume (A0). Given p ∈ An−1 and assume that T 0(p) is not full rank. Assume

further that the leading coefficient of fi do not vanish at p for all i. Then if k > 1, we have that

p is contained in the image of ϕ. For k = 1, one can say that ϕ is a finite morphism near p and

p is lying on the ramification locus.

Proof. First assume k > 1. The hypothesis implies that f1, ..., fk is non-constant polynomial in

xn over p. By Lemma 3.2.7, T 0 is not full rank at p if and only if f1, ..., fk admits a common

zero, say ξ ∈ K. If we write p = (a1, ..., an−1), then the point (a1, ..., an−1, ξ) is lying on XI

and is mapped to p by ϕ. Hence p is contained in the image of ϕ.

For the k = 1 case, note that T 0 is defined implies deg f1 > 1. By assumption, the leading

coefficient of f1 do not vanish at p, hence it do not vanish on a neighborhood U of p. We see

that for any point q ∈ U we have f1 is a polynomial of positive degree in xn over q, so the

pre-image of ϕ consists only finitely many points and so ϕ is a finite morphism on U . Now the

condition that T 0(p) is not full rank implies f1 consists multiple root over p, hence p is lying in

the ramification locus of ϕ.

Now let Z ⊂ An−1 be a subset contained in the image of ϕ. For p ∈ Z we will denote

r(p) = |ϕ−1(p)| and r(Z) = maxp∈Z{r(p)}. Also define s0(p) = null(T 0(p)) and s1(p) =

null(T 1(p)). What we want to do is to find the locus which consists of the points p ∈ Z such

that r(p) ̸= r(Z). Such point could be determined using the number s0 and s1, under suitable

conditions.

Lemma 3.2.11. Fix Z ⊂ An−1 be any subset. Assume that the leading coefficient of fi do not

vanish over Z for all i. When k = 1 (resp. k > 1) assume (A0)(reps. (A1)). Then for any p ∈ Z

we have

(i) Assume k = 1, then r(p) = deg f1(p)− s0(p).

(ii) Assume k > 1, then r(p) = s0(p)− s1(p).
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Proof. First assume k > 1. By Lemma 3.2.8 we have r(p) = s0(p)− s1(p) for all p ∈ Z. Now

assume k = 1. The assumption that T 0 exists and the leading coefficient of f1 do not vanish

implies that ϕ is a finite morphism over Z. For any p in Z the number r(p) is the number of

distinct roots of f1 over p. Assume f1(p) = (xn− a1)
r1 ...(xn− am)

rm(xn− b1)...(xn− bl) with

ri > 1. We have r(p) = m+ l, deg f1(p) = r1+ ...+rm+ l, s0(p) = (r1−1)+ ...+(rm−1) =

r1 + ...+ rm −m by Lemma 3.2.7, hence r(p) = deg f1 − s0(p).

Corollary 3.2.12. Fix Z ⊂ An−1. Assume that the leading coefficient of fi do not vanish over

Z for all i and one of the following condition holds:

(i) k = 1 and (A0) holds.

(ii) k > 1, (A1) holds and s0 is constant over Z.

Then ϕ is a finite morphism over Z. When k = 1 (resp. k > 1) the ramification locus of ϕ is

exactly the locus where the function s0 (resp. s1) do not reach its minimum.

The small degree cases

In this section we deal with the cases that the deg fi is too small so that (A0) or (A1) dose not

hold.

Lemma 3.2.13. Under the assumption and notation in Proposition 3.2.6, if k = 1 and (A0) dose

not hold over Z, then the conclusion of Proposition 3.2.6 is true.

Proof. The assumption says that deg f1 < 2 over Z. If deg f1 = 0, then f1 ∈ K[x1, ..., xn−1] is

independent of xn. Let Z ′ be the zero locus of the ideal J+(f1), then |χtop(Z
′)| ≤ Nn−1

max{e,d},l+1.

One see that outsideZ ′, the pre-image ofϕ is empty, andϕ−1Z ′ ∼= Z ′×A1. Hence |χtop(ϕ
−1Z)| =

|χtop(ϕ
−1Z ′)| = |χtop(Z

′)| ≤ Nn−1
max{e,d},l+1.

On the other hand, assume deg f1 = 1. Write f1 = a1xn + a0. Let Z0 be the zero locus

defined by J +(a1) and Z1 = Z −Z0. Then χtop(ϕ
−1Z0) can be computed in the previous case

since we can replace f1 by a0 and replace Z by Z0. On the other hand, since f1 is a degree one

polynomial over any points in Z1, we have ϕ−1Z1
∼= Z1. Now |χtop(ϕ

−1Z1)| = |χtop(Z1)| =

|χtop(Z)− χtop(Z0)| ≤ Nn−1
e,l +Nn−1

max{e,d},l+1 can be compute. Thus the lemma is proved.

The other case is that (A0) holds but (A1) dose not hold. This happened when k = 1 and

deg f1 = 2 or k > 1 and deg fi = 1 for some i.
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Lemma 3.2.14. Let Z ⊂ H and assume the following.

(i) (A0) holds but (A1) dose not hold.

(ii) T 0(p) is not full rank for all p ∈ Z.

(iii) The leading coefficient of fi do not vanishing for all i for any point p ∈ Z.

Then ϕ is one-to-one over Z. In particular, χtop(ϕ
−1Z) = χtop(Z).

Proof. First assume k > 1. By Lemma 3.2.10 the assumption yields that Z is contained in the

image of ϕ. On the other hand, T 0 is defined but T 1 is not defined implies deg fi = 1 for some

i, hence ϕ is one-to-one over Z.

Now assume k = 1. Since T 0 is defined but T 1 is not defined, we have deg f1 = 2, hence

ϕ is two-to-one over some open neighborhood of Z. However, Lemma 3.2.10 implies that Z is

lying on the ramification locus, hence ϕ is one-to-one over Z.

The main proof

We will need the following lemma.

Lemma 3.2.15. Let S = S1 ∪ S2 ∪ ... ∪ Sk for some algebraic set Si. For any I ⊂ {1, ..., k},

we denote SI =
∩

i∈I Si. Assume that |χtop(SI)| ≤ M for some integer M and for all I ⊂

{1, ..., k}. Then

|χtop(S)| ≤ (2k − 1)M.

Proof. We prove by induction on k. The case that k = 1 is trivial. In general let S ′ = S1 ∪ ...∪

Sk−1, then S ′ ∩ Sk = (S1 ∩ Sk) ∪ ... ∪ (Sk−1 ∩ Sk), hence

|χtop(S
′ ∩ Sk)| ≤ (2k−1 − 1)M

by the induction hypothesis. We also have |χtop(S
′)| ≤ (2k−1 − 1)M . Thus

|χtop(S)| = |χtop(S
′ − (S ′ ∩ Sk)) + χtop(Sk − (S ′ ∩ Sk)) + χtop(S

′ ∩ Sk)|

≤ |χtop(S
′)|+ |χtop(Sk)|+ |χtop(S

′ ∩ Sk)|

≤ (2(2k−1 − 1) + 1)M = (2k − 1)M.
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Proof of Proposition 3.2.6. We will divide Z into many pieces, and treat each piece separately.

In each piece, either the topology of the pre-image can be easily computed, or after cut out some

closed subset the pre-image can be computed, and there is some quantumwhich strictly decrease

after restrict to the subset above. In the latter case we can use induction on the special quantum

and finally the problem could be solved. We will treat the following cases.

Case(I) (A0) holds.

Let

Z ′ =
{
p ∈ Z T 0(p) is not full rank

}
and Z ′′ = Z − Z ′. By Lemma 3.2.9,

χtop(ϕ
−1Z ′′) =

(deg f1)χtop(Z
′′) if k = 1,

0 if k > 1.

We further divide Z ′ into

Z− = {p ∈ Z ′ The leading coefficient of fi vanish over p for some i}

and Z+ = Z ′ − Z−. To compute χtop(ϕ
−1Z−), let ai be the leading coefficient of fi. For

S ⊂ {1, ..., k}, letWS be the zero locus defined by J + (ai0 ...aip) if S = {i0, ..., ip} and

J is the defining ideal of Z. ThenWS is the locus in Z such that the leading coefficient of

fi vanish for all i ∈ S. Hence Z− =
∪

1≤i≤k Wi and WS =
∩

i∈S Wi. Furthermore, one

may induction on the number deg f1 + ... + deg fk so that we may assume χtop(ϕ
−1WS)

can be computed. By Lemma 3.2.15, χtop(ϕ
−1Z−) can be bounded.

Now one has to compute χtop(ϕ
−1Z+). If (A1) is not true, then Lemma 3.2.14 implies

that χtop(ϕ
−1Z+) = χtop(Z+). Assume (A1) is true. We divide Z+ into

Z0 = {p ∈ Z+ s0(p) reach its minimum in Z+}

and Z ′
0 = Z+ − Z0. One may replace Z by Z ′

0 and induction on minp∈Z{s0(p)}. This

number is increasing and always less or equal than deg fi for all i, so after finite step, Z ′
0

would be empty.

39



doi:10.6342/NTU201801712

If k > 1 we further divide Z0 into

Z1 = {p ∈ Z0 s1(p) reach its minimum in Z0}

and Z ′
1 = Z0 − Z1. By Corollary 3.2.12, when k = 1 (resp. k > 1) ϕ is unramified over

Z0 (resp. Z1). Hence

|χtop(ϕ
−1Zi)| = r(Zi)|χtop(Zi)| ≤ d|χtop(Zi)|,

with i = 0 (resp. i = 1) in k = 1 (resp. k > 1) case.

When k > 1 we have r(Z ′
1) < r(Z0). We will replace Z by Z ′

1 and induction on the

number r. When r(Z0) = 1 Z ′
1 is always empty, so the induction works.

Case(II) (A0) does not hold. If k = 1, this case can be solved by Lemma 3.2.13. Now assume

k > 1. In this case deg fi = 0 for some i. If fi is a non-zero constant, then ϕ−1Z is empty,

so there is nothing to prove. If fi is identically zero, we can drop out fi from the generator

of I , and goes to the case with smaller k. By induction on k, this situation is solved.

We have to show that Z ′, Z−, Z ′
1 and Z ′

0 can be defined by algebraic equations, and the total

number and the degree of those equations can be bounded by some integer depends on d and k,

so the induction could work.

To see this, let ci and ri be the number of columns and rows of T i, respectively, for i = 0, 1.

Then c0 ≤ dk, r0 ≤ 2(k−1)d, and c1 ≤ 2c0, r1 ≤ 2r0. LetR be the ideal containing all maximal

minors of T 0, then R can be generated by Cr0
c0

many generators and each generator is a degree

at most dr0 polynomial. One can see that Z ′ is generated by J +R. Since Z− =
∪

1≤i≤k Wi and

the defining ideal ofWi are bounded, the defining ideal of Z− is bounded.

Now let ti = maxp∈Z rk(T i(p)). p ∈ Z satisfied si(p) do not reach minimum if and only

if si(p) + ti > ri. Hence one only need to find those points in Z such that the rank of T i at

that point is less than ti, or equivalently, all ti × ti minors of T i vanishes. Let Qi be the ideal

containing all ti × ti minors of T i, then Qi is generated by at most rici many elements and each

element is a degree at most dti ≤ dri polynomial in K[x1, ..., xn−1]. One can easily see that Z ′
i

is defined by J +Qi for i = 0, 1.

The other task is to compute χtop(Z
′′), χtop(Z+) and χtop(Zi) for i = 0, 1. Since Z ′ is
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generated by J +R,

|χtop(Z
′)| ≤ Nn−1

e+dr0,l+C
r0
c0

.

We have χtop(Z
′′) = χtop(Z)− χtop(Z

′). Thus

|χtop(Z
′′)| ≤ Nn−1

e,l +Nn−1
e+dr0,l+C

r0
c0

.

Now consider |χtop(WS)| ≤ Nn−1
e+d|S|,l+1

≤ Nn−1
e+dk,l+1

for all S ⊂ {1, ..., k}, hence

|χtop(Z−)| ≤ (2k − 1)Nn−1
e+dk,l+1

by Lemma 3.2.15. A conclusion is that χtop(Z+) = χtop(Z
′)− χtop(Z−) can be bounded.

Finally we try to bound χtop(Zi). As the argument above Z ′
i is defined by the ideal J +Qi

for i = 0 and 1, hence |χtop(Z
′
i)| ≤ Nn−1

e+dri,l+ricr
can be bounded. Thus

χtop(Z0) = χtop(Z+)− χtop(Z
′
0) and χtop(Z1) = χtop(Z0)− χtop(Z

′
1)

can be bounded.

Proof of Proposition 3.2.4. One can take Nn
d,k = Ln

d,k,0,1 by considering J in Proposition 3.2.6

to be the zero ideal.

3.2.2 The existence ofM -constant

We prove Proposition 3.2.5 in the following way: let Y be the given generically cyclic quotient

space. Then Y can be decomposed into a cyclic quotient part and a lower-dimensional generi-

cally cyclic quotient part. By induction on the dimension we may assume the lower dimensional

part can be controlled. The cyclic quotient part can be studied via the natural quotient map. One

only need to understand the ramification locus of the natural quotient map. Each irreducible

component of the ramification locus is a lower dimensional cyclic quotient, and one can write

it as a difference of two lower dimensional weighted projective spaces. Again by induction on

the dimension one can estimate the topological Euler characteristic of it. This leads to the proof

of Proposition 3.2.5.

Proof of Proposition 3.2.5. We use induction on the dimension n. When n = 1, one can take

M1,d = d. Now assume n > 1. We know that there exists an open set U ⊂ Y such that
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U ∼= An/1
r
(a1, ..., an). Let W ′ = W |U and W ′′ = W |Y−U . We have |χtop(W

′′)| ≤ Mn−1,d by

the induction hypothesis. One only need to estimate χtop(W
′).

Consider the natural quotient map ϕ : An → U . Let W̄ = ϕ−1W ′. One has |χtop(W̄ )| ≤

Nn
d,k by Theorem 3.2.2 (i). We know that W̄ → W ′ is a branched covering. Let R̄ ⊂ W̄ be the

branched locus and R ⊂ W ′ be the image of R̄′, then

|χtop(W
′)| = |1

r
χtop(W̄ − R̄) + χtop(R

′)|

≤ |χtop(W̄ − R̄)|+ |χtop(R
′)|

≤ |χtop(W̄ )|+ |χtop(R̄)|+ |χtop(R
′)| ≤ Nn

d,k + |χtop(R̄)|+ |χtop(R
′)|.

Hence one only have to estimate χtop(R̄) and χtop(R
′).

Note that the morphism An → U could only ramify at {xi1 = ... = xil = 0} for some i1,

..., il, where x1, ..., xn is the coordinate of An. Let Ξ1, ..., Ξj be irreducible components of the

ramification locus on An and let S̄i = Ξi ∩ R̄. One can see that

|χtop(S̄i)| ≤ Nn−li,d

if Ξi = {xi1 = ... = xili
= 0} and

|χtop(S̄i1 ∩ ... ∩ S̄im)| ≤ Nn−l′,d

if Ξi1 ∩ ... ∩ Ξim is of codimension l′. Moreover, the number of irreducible components of

ramification locus of An → An/1
r
(a1, .., an) is less than 2n. Hence by Lemma 3.2.15,

|χtop(R̄)| ≤
(
22

n − 1
)
Nn−1,d.

To compute χtop(R), we denote by Si the image of S̄i. Consider Ξi
∼= Ani for some ni and

the morphism Ξi → im(Ξi) can be viewed as a cyclic quotient Ani → Ani/ 1
ri
(bi1 , ..., bini

) for

some integers ri and bi1 , ..., bini
. Consider

Si ⊂ im(Ξi) ∼= Ani/
1

ri
(bi1 , ..., biri ) ⊂ P(ri, bii , ..., bini

)
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and let S̃i be the closure of Si in P(ri, bii , ..., biri ). We have

|χtop(S̃i)| ≤ Mni,d and |χtop(S̃i − Si)| ≤ Mni−1,d,

hence

|χtop(Si)| ≤ Mni,d +Mni−1,d.

Moreover, for any i1, ..., il ∈ {1, ..., j} we have Ξi1 ∩ ...∩Ξil
∼= Ani1...il for some integer ni1...il

and the same argument shows that

|χtop(Si1 ∩ ... ∩ Sil)| ≤ Mni1...il
,d +Mni1...il

−1,d.

One may assumeMn
d,k is an increasing function of n, then we have

|χtop(R)| = |χtop(S1 ∪ ... ∪ Sj)| ≤ 2
(
22

n − 1
)
Mn−1,d

by Lemma 3.2.15.

The conclusion is

|χtop(W
′)| ≤ Nn

d,k + |χtop(R̄)|+ |χtop(R
′)| ≤ Nn

d,k +
(
22

n − 1
)
Nn−1,d + 2

(
22

n − 1
)
Mn−1,d.

Hence

|χtop(W )| ≤ |χtop(W
′)|+ |χtop(W

′′)|

≤ Mn−1,d +Nn
d,k +

(
22

n − 1
)
Nn−1,d + 2

(
22

n − 1
)
Mn−1,d

≤ 22
n (

2Mn−1,d + d(2d− 1)2n−1
)
.

Proof of Theorem 3.2.2. One can easily see thatM1
d,k = N1

d,k = d. Hence Proposition 3.2.4 and

Proposition 3.2.5 implies the theorem.
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3.3 The boundedness of Betti numbers

In this section we will bound the variance of b3. Thanks to Corollary 3.1.10, it is equivalent to

bound the variance of the topological Euler characteristic, which is much easier to compute. The

following statement is a corollary of Theorem 3.2.2, which could help us to bound the variance

of the topological Euler characteristic under divisorial contractions to points.

Corollary 3.3.1. Assume that X is a cyclic quotient of a local complete intersection locus in

An of codimension k, and Y → X is a weighted blow-up of weight σ. If the σ-weight of the

defining equations of X is bounded by a constant d, then |χtop(Y )− χtop(X)| ≤ Mn
d,k + 1.

Proof. Write σ = 1
m
(a0, ..., an). The exceptional locus E of Y → X is contained in a generi-

cally cyclic quotient space and has degree less than d. Hence |χtop(E)| ≤ Mn
d,k. Now

|χtop(Y )− χtop(X)| = |χtop(E)− χtop(point)| ≤ Mn
d,k + 1.

Given a divisorial contraction Y → X which contracts a divisor to a point, we will show

that the difference of the topological Euler characteristic can be bound by a constant depending

only on dep(X) if Y → X is a w-morphism, and on dep(Y ) in general. The reason we need the

first statement is that the inverse of w-morphisms occur in the Chen-Hacon factorization.

Proposition 3.3.2. Let Y → X be a divisorial contraction which contracts a divisor E to a

point P ∈ X . Assume the index of P is r > 1 and assume a(E,X) = 1/r. Then

|χtop(Y )− χtop(X)| ≤ Ddep(X)

for some integer Ddep(X) depending only on dep(X).

Proof. We already known that Y → X is a weighted blow-up of a cyclic quotient of local

complete intersection locus in A4 or A5. We will denote by d the upper bound of the weight of

the exceptional locus viewed as a subvariety in the weighted projective space. What we have to

do is to show that d can be determined by dep(X) and then |χtop(Y )−χtop(X)| ≤ Mn
d,k +1 for

(n, k) = (4, 1) or (5, 2), which is an integer depends only on dep(X). We discuss each case in

Table 2.3 and 2.4.
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cA/m. We are in the case No. 1 of Table 2.3. One can check that there are two cyclic quo-

tient points on Y , one is of index a and the other one is of index b. We conclude that

dep(X) ≥ a+b−1 and the exceptional locus can be viewed as a weighted hypersuface

in P(a, b, 1,m)with weightmk = a+b ≤ dep(X)+1, hence we take d = dep(X)+1.

cAx/4. In case No. 2 there is a cyclic quotient point on Y of index 2k+3 which implies hence

dep(X) ≥ 2k + 3. In case No. 3 there is a cyclic uotient point on Y of index 2k + 5

and so dep(X) ≥ 2k + 5. In the both cases we take d = 2dep(X)− 4.

cAx/2. Using similar argument as the previous case, one can take d = 2dep(X)− 2.

cD/3. We are in the cases No. 6-8. One can check that d = 12 satisfied the condition.

cE/2. In the cases No. 9-13, one can check that one can take d = 18.

cD/2. In case No. 14 and 15 one can see that d = 6. For case No. 16-23, one can check

that Y contains at least one cyclic quotient or cA/r singularity and the lower bound of

dep(X) = dep(Y ) + 1 can be derived. Please see the following table.
No. d singular point on Y lower bound of dep(X)

16 2b+ 4 1
b
(2,−2, 1) b

17 2b cA/b 2b− 1

18 2b 1
b−2

(2,−2, 1) 2b

19 2b+ 2 1
b
(2,−2, 1) b

20 2b+ 4 1
2b+2

(b+ 2, b, 1) 2b+ 2

21 2b 1
b−1

(2,−2, 1) b− 1

22 2b+ 2 1
2b
(b+ 1, b− 1, 1) 2b

23 2b+ 2 cA/b+ 1 2b+ 1

24 2b cA/b 2b− 1

25 2b 1
b−2

(2,−2, 1) b− 2

One can take d = 2dep(X) + 4

The conclusion is that one can take

Ddep(X) = max
n=4,5

{Mn
2dep(X)+4,n−3,M

n
18,n−3}+ 1.
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Proposition 3.3.3. Assume that f : Y → X is a divisorial contraction to a point. Then there is

an integer D′
dep(Y ) depending only on dep(Y ) such that

|χtop(Y )− χtop(X)| ≤ D′
dep(Y ).

Proof. By Theorem 2.2.6 X is a LCI locus in cyclic quotient of A4 or A5 and Y is obtained by

weighted blow-up. One only to show that there is an upper bound d of the weight of defining

equation of X , which can be bounded by some constant depends only on dep(Y ).

(i) Y → X belongs to Theorem 2.2.6 (i). Then Y → X is a w-morphism and the statement

follows by Proposition 3.3.2.

(ii) Y → X belongs to Theorem 2.2.6 (ii). We discuss each case in Table 2.5.

No. 1. We have d = 2b and there are a cyclic quotient point of type 1
b−1

(1,−1, 1) on

Y . Hence d ≤ 2dep(Y ) + 4.

No. 2. We have d = 2b and Y contains a cA/b point. Hence d ≤ dep(Y ) + 2.

No. 3. We have d = 2b + 2 and Y contains a 1
2b+1

(b + 1, b, 1) point. Hence d ≤

dep(Y ) + 2.

No. 4. We have d = 2b+1 and Y contains a 1
b
(1,−1, 1) point. Hence d ≤ 2dep(Y )+

3.

No. 5. We have d = 2b and Y contains a 1
b+1

(b, 1, 1) point. Hence d ≤ 2dep(Y ).

No. 6-23. One can take d = 30.

(iii) Y → X belongs to Theorem 2.2.6 (iii). We have to check each case in Table 2.6.

No. 1. The are two cyclic quotient points on Y with indices b and c respectively.

Hence dep(Y ) ≥ b+ c− 2 = d− 2, or d ≤ dep(Y ) + 2.

No. 2. One can take d = 6.

No. 3. We have d = 2b and there is a cyclic quotient point of type 1
b
(1,−1, a) on Y ,

hence d ≤ 2dep(Y ) + 2.

No. 4. We have d = 2b+2 and there is a cyclic quotient point of type 1
b+2

(b+1, a, 1),

hence d ≤ 2dep(Y ).
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No. 5, 6. We have d = b + 1 and there is a 1
b
( b+1

2
, b−1

2
, a) poiont on Y , for a = 2 or 4.

Hence d ≤ dep(Y ) + 2.

No. 7. We have d = 2b and there is a cA/b point on Y , hence d ≤ dep(Y ) + 2.

No. 8, 9. We have d = 6.

No. 10. We have d = 2b+2 and there is a 1
b
(2,−2, a) point on Y , hence d ≤ 2dep(Y )+

4.

No. 11. We have d = 2b + 4 and there is a 1
b+4

(b + 2, a, 2) point on Y , hence d ≤

2dep(Y )− 2.

No. 12. We have d = 4b and there is a cA/4b point on Y , hence d ≤ dep(Y ).

No. 13. One can take d = 4.

No. 14. We have d = 2b + 2 and there is a 1
4b+2

(−1, 1, 2b − 1) point on Y , hence

d ≤ dep(Y ).

No. 15. One can take d = 4.

No. 16. We have d = 4b + 2 and there is a 1
4b+4

(1, 2b + 1,−1) point on Y , hence

d ≤ dep(Y ).

No. 17. We have d = b+1 and there is a 1
2b
(1,−1, b+4) point on Y , hence d ≤ dep(Y ).

No. 18-21. One can take d = 14.

We conclude that one can take D′
dep(Y ) to be

max
n=4,5

{Ddep(Y )+1,M
n
2dep(Y )+4,n−3,M

n
30,n−3}+ 1.

In the case of blowing-up LCI curves, the difference of the topological Euler characteristic

is easy to compute.

Lemma 3.3.4. Assume that C ⊂ X is a LCI curve and f : Y = BlCX → X , then

χtop(Y )− χtop(X) = χtop(C).

Proof. LetE be the exceptional divisor of Y → X . At first we show that over any point P ∈ C,

the fiber f−1(P ) is isomorphic to P1. Indeed, assume that C is defined by the ideal I which is
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locally generated by two regular functions α and β. Then Y is isomorphic to Proj
⊕

n≥0 I
n

and the natural map OX [x, y] →
⊕

n≥0 I
n defined by x 7→ α, y 7→ β gives an inclusion

Y ↪→ X × P1. Hence every fiber over C is a P1.

Now there exists a open set U ⊂ C such that f−1U ∼= U×P1 since geometric ruled surfaces

are ruled, hence we have

χtop(E) = χtop(f
−1U) + χtop(f

−1(C − U)) = 2χtop(U) + 2χtop(C − U) = 2χtop(C)

and then

χtop(Y )− χtop(X) = χtop(E)− χtop(C) = χtop(C).

Now let X be a smooth threefold and consider the process of the minimal model program

X = X0 99K X1 99K ... 99K Xm.

We will use above results to estimate the third Betti number of Xi.

Proposition 3.3.5. Let X → W be a divisorial contraction and X 99K X ′ be a flip or a flop.

Then there is a constant Φdep(X) depending only on dep(X) such that b3(W ) ≤ Φdep(X)+ b3(X)

and b3(X ′) ≤ Φdep(X) + b3(X)

Proof. Assume that X → W is a divisorial contraction to point, then by Corollary 3.1.10 and

Proposition 3.3.3 we have |b3(X)− b3(W )| = |χtop(X)− χtop(W )− 2| ≤ D′
dep(X) + 2, hence

b3(W ) ≤ D′
dep(X) + 2 + b3(X).

If X → W is obtained by blowing-up an LCI curve C ⊂ W , then using Corollary 3.1.10 and

Lemma 3.3.4 one has

b3(W )− b3(X) = χtop(X)− χtop(W )− 2 = χtop(C)− 2 ≤ 0,

hence

b3(W ) ≤ b3(X).

If X 99K X ′ is a flop, then b3(X) = b3(X
′) by Lemma 3.1.11. Thus if dep(X) = 0, then the

48



doi:10.6342/NTU201801712

statement is proved by Remark 3.1.4.

Now assume that X → W or X 99K X ′ is not the three kinds of elementary maps we

mentioned above. We will prove by induction on dep(X). By Theorem 3.1.7 we have the

diagram

Y //_______

f
��

Y ′

f ′

��
X

g

  A
AA

AA
AA

A X ′

g′

}}||
||
||
||

W

.

At first note that by Corollary 3.1.10 and Proposition 3.3.2 one has

|b3(Y )− b3(X)| = |χtop(Y )− χtop(X)|+ 2 ≤ Ddep(X) + 2,

hence b3(Y ) ≤ Ddep(X) + 2 + b3(X). On the other hand, one may write

Y = Y0 99K Y1 99K ... 99K Yl = Y ′,

such that Yi 99K Yi+1 is a flip for i > 0 and Y0 99K Y1 is either a flip or a flop by Remark 3.1.8.

The conclusion is

0 ≤ dep(Yl) < dep(Yl+1) < ... < dep(Y1) ≤ dep(Y0) < dep(X).

Thus l ≤ dep(X).

By the induction hypothesis we have b3(Yi+1) < Φdep(Yi) + b3(Yi). Define Ψ0
dep(X) =

Ddep(X) + 2 and Ψn
dep(X) = Φdep(X)−1 +Ψn−1

dep(X), then we have

b3(Y0) = b3(Y ) ≤ Ψ0
dep(X) + b3(X)

and

b3(Yi+1) ≤ Φdep(Yi) + b3(Yi) ≤ Φdep(X)−1 + b3(Yi) = Ψi+1
dep(X) + b3(X)

by induction on i. We conclude that b3(Y ′) = b3(Yl) ≤ Ψ
dep(X)
dep(X) + b3(X). Finally

b3(X
′) ≤ Φdep(Y ′) + b3(Y

′) ≤ Φdep(X)−1 +Ψ
dep(X)
dep(X) + b3(X)
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since dep(Y ′) < dep(X). So we finish the case when X 99K X ′ is a flip.

Now assume thatX → W is a divisorial contraction to a curve. One has to estimate b3(W ).

In this case g′ : X ′ → W is a divisorial contraction to a point, hence one may apply Proposition

3.3.3 to get

|b3(X ′)− b3(W )| = |χtop(X
′)− χtop(W )|+ 2 ≤ D′

dep(X′) + 2

and then

b3(W ) ≤ D′
dep(X′) + 2 + b3(X

′) ≤ D′
dep(X) + 2 + Φdep(X)−1 +Ψ

dep(X)
dep(X) + b3(X).

Theorem 3.3.6. Let X be a smooth threefold and X = X0 99K X1 99K ... 99K Xm be the

process of minimal model program. Then

(i) bi(Xj) = bi(X) for i = 0, 1, 5, 6 and for all j.

(ii) If j > k, then bi(Xj) ≤ bi(Xk) for i = 2, 4. Equality holds if and only if Xj and Xk are

connected by flips.

(iii) There exists an integer Φ̄ρ(X) depending only on the Picard number ofX , such that b3(Xj) ≤

Φ̄ρ(X) + b3(X) for all j.

Proof. (i) and (ii) are Proposition 3.1.12. Also as in Remark 3.1.5 we have dep(Xi) ≤ ρ(X)

for all i. So Proposition 3.3.5 implies

b3(Xi) ≤ Φρ(X) + b3(Xi−1) ≤ iΦρ(X) + b3(X).

Now i ≤ 2ρ(X) by [CZ14, Lemma 3.1]. One conclude that one can take Φ̄ρ(X) = 2ρ(X)Φρ(X).

3.4 Examples and applications

Let Y → X be an extremal divisorial contraction between terminal threefolds. By Lemma 3.1.9

we know that 0 ≤ bi(Y ) − bi(X) ≤ 1 for i ̸= 3. In the previous section we have shown that
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|b3(Y )− b3(X)| can be bounded by some constant depending only on the depth ofX or Y . The

following examples assert that the dependence is non-trivial. If X or Y has very large depth,

then |b3(Y )− b3(X)| could be very large.

Example 3.4.1. Assume that X is isomorphic to

(x2 + y2 + z4k+2 + u2k+1 = 0) ⊂ A4
(x,y,z,u)/

1

4
(1, 3, 1, 2).

This is an isolated terminal point of type cAx/4. Assume that k is even and let Y be the weighted

blow up of the weight 1
4
(2k+1, 2k+3, 1, 2). Then Y → X is an extremal divisorial contraction

with discrepancy 1/4. Let E be the exceptional divisor. We have

b3(X)− b3(Y ) = χtop(Y )− χtop(X)− 2 = χtop(E)− 3.

Hence to compute b3(X)− b3(Y ) is equivalent to compute χtop(E).

Now in this case

E ∼= (x2 + z4k+2 + u2k+1 = 0) ⊂ P(2k + 1, 2k + 3, 1, 2).

On Uz = {z ̸= 0} we have E|Uz
∼= (x2 + u2k+1 + 1) ⊂ A3

(x,y,u). This is a line bundle over a

smooth curve C = (x2 + u2k+1 + 1) ⊂ A2
(x,u), which is of degree 2k + 1. Hence

χtop(E|Uz) = χtop(C) = −(2k − 2)(2k + 1)− (2k + 1).

On the other hand, one can show that E|{z=0} is isomorphic to P1. Hence

χtop(E) = −(2k − 2)(2k + 1)− (2k + 1) + 2

tends to −∞ when k tends to∞. This shows that b3(X)− b3(Y ) can be arbitrary negative.

Example 3.4.2. Assume that X is isomorphic to

(xy + zrk + uk = 0) ⊂ A4
(x,y,z,u)/

1

r
(α,−α, 1, r)

with (α, r) = 1. This is an isolated terminal point of type cA/r. Let Y be the weighted blow-up

of the weight 1
r
(a, b, 1, r) with a ≡ α mod r and a + b = rk. Then Y → X is an extremal
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divisorial contraction with discrepancy 1/r. The exceptional divisor E is isomorphic to

(xy + zrk + uk = 0) ⊂ P(a, b, 1, r).

On the affine open set Uy = {y ̸= 0} we have E|Uy
∼= (x + zrk + uk = 0) ⊂ A3/1

b
(a, 1, r),

which is isomorphic to A2/1
b
(1, r). One can compute that χtop(E|Uy) = 1.

Now let

E ′ = E|{y=0} ∼= (zrk + uk = 0) ⊂ P(a, 1, r).

We have E ′|{z ̸=0} ∼= (uk + 1 = 0) ⊂ A2
(x,u), which are k lines. Also E ′|{z=0} is a point, hence

χtop(E
′) = k + 1.

A conclusion is that χtop(E) = k+2 can be arbitrary large when k growth to infinity, hence

b3(X)− b3(Y ) can be arbitrary positive.

As an application of Theorem 3.3.6, we try to bound the intersection Betti numbers. In-

tersection homology was developed by Goresky and MacPherson in the eighth decade of the

twentieth century, which was defined on singular manifolds and satisfied some nice properties

as the original singular homology on smooth manifolds. One may expect that the difference

of original Betti numbers and intersection Betti numbers can be controlled by singularities. In

this paper we prove a weaker statement. We will denote by IH i(X,Q) the middle-perversity

intersection cohomology group and denote Ibi(X) by the dimension of IH i(X,Q).

Theorem 3.4.3. Let X be a projective Q-factorial terminal threefold over C. Then there is an

integer Θi depending only on singularities of X , such that

Ibi(X) ≤ bi(X) + Θi.

LetX be a projective Q-factorial terminal threefold over C. For any singular point P ∈ X ,

we say that there exists a feasible resolution for P if there is a sequence

Xn → Xn−1 → ... → X0 = X

so that Xn is smooth over P and Xi+1 → Xi is an extremal divisorial contraction to a point Pi

with discrepancy equals to 1/index(P ).
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Theorem 3.4.4 ([Che11], Theorem 2). Given a three-dimensional terminal singularity P ∈ X ,

there exists a feasible resolution for P ∈ X .

Corollary 3.4.5. LetX be a projectiveQ-factorial terminal threefold overC. There is a smooth

variety Y such that Y → X is a composition of steps of KY -minimal model program, and the

relative Picard number ρ(Y /X) depending only on the singularities (that is, the local equation

near singular points) of X .

Corollary 3.4.6. Notation as above. We have bi(Y ) ≤ bi(X) + Θi, where Θi is a constant

depending only on the singularities of X .

Proof. We apply Theorem 3.3.6. When i = 0, 1, 5, 6, one take Θi = 0. For i = 2, 4 we choose

Θi to be ρ(Y /X). Now assume i = 3 and assume that Y → X factors through

Y = Xn → Xn−1 → ... → X0 = X,

where Xi → Xi+1 is an extremal divisorial contraction to a point. By Proposition 3.3.3 and

Corollary 3.1.10 we have

|b3(Xi+1)− b3(Xi)| ≤ |χtop(Xi)− χtop(Xi+1)|+ 2 ≤ D′
dep(Xi+1)

+ 2.

Now n is equals to ρ(Y /X) and dep(Xi+1) is bounded by ρ(Y /X) by Remark 3.1.6. Hence

|b3(Y )− b3(X)| ≤ n(D′
ρ(Y /X) + 2),

which is a constant depending only on singularities of X .

Proof of Theorem 3.4.3. Let

Y = Xn → Xn−1 → ... → X0 = X

be a feasible resolution. By [CT17, Lemma 2.16] we have

0 → IH i(Xj,Q) → IH i(Xj+1,Q)⊕ IH i(Pj,Q) → IH i(Ej,Q) → 0

is exact for i ≥ 1, here Ej = exc(Xj+1 → Xj) and Pj is the image of Ej . Hence Ibi(Xj+1) ≥

Ibi(Xj) for all j and for all i ≥ 1. Thus Ibi(X) ≤ Ibi(Y ) = bi(Y ) ≤ bi(X) + Θi by Corollary
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3.4.6.
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Chapter 4

Threefolds of Kodaira dimension one

By the result of Hacon-McKernan [HM06], Takayama [Tak06] and Tsuji [Tsu07], it is known

that for any positive integer n there exists an integer rn such that ifX is an n-dimensional smooth

complex projective variety of general type, then |rKX | defines a birational map for all r ≥ rn.

It is conjectured in [HM06] that a similar phenomenon occurs for any projective variety of non-

negative Kodaira dimension. That is, for any positive integer n there exists a constant sn such

that, ifX is an n-dimensional smooth projective variety of non-negative Kodaira dimension and

s ≥ sn is sufficiently divisible, then the s-th pluricanonical map of X is birational to the Iitaka

fibration.

We list some known results related to this problem. In 1986, Kawamata [Kawak05] proved

that there is an integer m0 such that for any terminal threefold X of Kodaira dimension zero,

the m0-th plurigenera of X is non-zero. Later on, Morrison proved that one can take m0 =

25 × 33 × 52 × 7 × 11 × 13 × 17 × 19. Please see [Morsn86] for details. In 2000, Fujino and

Mori [FM00] proved that ifX is a smooth projective variety of Kodaira dimension one and F is

a general fiber of the Iitaka fibration of X , then there exists a integerM , which depends on the

dimension of X , the middle Betti number of some finite covering of F and the smallest integer

so that the pluricanonical system of F is non-trivial, such that theM -th pluricanonical map ofX

is birational to the Iitaka fibration. Viehweg and D.-Q. Zhang [VZh09] proved the analog result

for the Kodaira dimension two case. Recently, Birkar and D.-Q. Zhang [BZ16] proved that

Fujino-Mori type statement holds for every variety of non-negative Kodaira dimension. Note

that if C is a curve of Kodaira dimension zero, then |KC | is non-trivial and b1(C) = 2. Also if

S is a surface of Kodaira dimension zero, then |12KS| is non-trivial and b2(S) ≤ 22. Thus the

Hacon-McKernan conjecture holds for varieties of dimension less than or equal to three.
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It is also interesting to find an explicit value to bound the Iitaka fibration. In dimension

one, it is well-known that the third-pluricanonical map is the Iitaka fibration. For the surfaces

case, Iitaka [Iit70] proved that them-th pluricanonical system is birational to the Iitaka fibration

if m ≥ 86 and is divisible by 12. For threefolds of general type, J. A. Chen and M. Chen

[CM14] proved that the m-th pluricanonical map is birational if m ≥ 61. For threefolds of

Kodaira dimension two, Ringler [Rin07] proved that the m-th pluricanonical map is birational

to the Iitaka fibration ifm ≥ 48 and is divisible by 12. In this chapter we will prove that 96 is an

effective bound for Iitaka fibration for threefolds of Kodaira dimension one, please see Theorem

4.5.1 for details.

We now give a rough idea of the proof of Theorem 4.5.1. If the Iitaka fibration maps to a

non-rational curve, then the boundedness of the Iitaka fibration can be easily derived usingweak-

positivity. Now assume the Iitaka fibration ofX maps to a rational curve. We may assumeX is

minimal and hence the general fiber of the Iitaka fibration is a K3 surface, an Enriques surface,

an abelian surface or a bielliptic surface. If the general fiber has non-zero Euler characteristic,

i.e., if the Iitaka fibration is a K3 fibration or an Enriques fibration, we observe the following

fact. One may write KX as a pull-back of an ample Q-divisor. The degree of this Q-divisor is

determined by the singularities ofX . If the degree is large, then a small multiple ofKX defines

the Iitaka fibration. Assume the degree is small, then the singularities of X are bounded: the

local index of singular points of X can not be too large, and the total number of singular points

is bounded. This implies the degree has an lower bound. With the help of a computer, we get a

good estimate of this lower bound and hence a good effective bound for the Iitaka fibration.

If the Iitaka fibration is an abelian fibration or a bielliptic fibration, then above techniques

do not work. Instead, we use Fujino-Mori’s canonical bundle formula. The main difficulty is to

control the moduli part of the canonical bundle formula. If the moduli part is zero, then with the

help of the the theory of holomorphic two-forms developed by Campana and Peternell, one can

prove that the Iitaka fibration is isotrivial and it is not hard to estimate the degree of KX over

C. If the moduli part is non-zero, then one can show that the degree of the moduli part is large,

and hence it is easy to find enough section in the pluricanonical system.

One can always replace our smooth threefold by its minimal model, hence throughout this

article, we always assume our threefold is minimal and has terminal singularities. Since the

abundance conjecture is known to be true in dimension three, the Iitaka fibration is a morphism.

We will denote it by f : X → C and henceKX is a pull-back of some ampleQ-divisor on C. If
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C is not rational, we will prove the desired boundedness in Section 4.1. In the later sections we

will always assume C is a rational curve. We discuss K3/Enriques fibrations, abelian fibrations

and bielliptic fibrations in Section 4.2, 4.3 and 4.4 respectively. We will prove Theorem 4.5.1

in Section 4.5, which is a collection of the result in previous sections. We also compute sev-

eral examples, which are threefolds of Kodaira dimension one such that a small pluricanonical

system do not define the Iitaka fibration.

4.1 Preliminary

4.1.1 The canonical bundle formula

Let X be a minimal terminal threefold of Kodaira dimension one. Since the abundance con-

jecture holds for threefolds, KX is semi-ample. Hence the Iitaka fibration f : X → C is

a morphism and KX is a pull-back of an ample divisor on C. We denote a general fiber of

X → C by F . By [FM00] we have the following canonical bundle formula

bKX = f ∗(b(KC +M +B)),

here b is the smallest integer such that |bKF | is non-empty,M is a nefQ-divisor such that bNM

is integral for some N which depends on the middle Betti number of the finite covering of F

defined by |bKF |, B =
∑

i∈I siPi where si is of the form (1 − vi
bNui

) for some integers ui and

vi, such that vi ≤ bN . We will write A = KC +M +B for convenience.

Lemma 4.1.1. We have f∗OX(rbKX) = OC(⌊rbA⌋) for all integers r ≥ 0. In particular, if

C ∼= P1 and h0(X, rbKX) ≥ 2, then |rbKX | defines the Iitaka fibration.

Proof. By [FM00, Proposition 2.2] and the projection formula we have f∗OX(rbKX)
∗∗ =

OC(⌊rbA⌋). Since f∗OX(rbKX) is torsion free, it is locally free, hence f∗OX(rbKX)
∗∗ =

f∗OX(rbKX) and we have

f∗OX(rbKX) = OC(⌊rbA⌋).

Now if C ∼= P1 and H0(X, rbKX) ≥ 2, then ⌊rbA⌋ has positive degree, hence very ample.

Thus

H0(X,OX(rbKX)) = H0(X, f∗OX(rbKX)) = H0(C,OC(⌊rbA⌋)

defines the morphsim X → C.
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Lemma 4.1.2. Assume that C ∼= P1. Then either degM = 0, or ⌊2B⌋ ≥ 3.

Proof. We first prove that if degM ̸= 0, then there are at least three multiple fibers.

To see it, assume that the number of multiple fibers is less than three, then there exists a

finite morphism ϕ : C ′ → C which is étale over C∗, such that the base-change X ′ = X ×C C ′

has a semistable model f ′ : Z ′ → X ′ → C ′. Now we have

degϕ∗OC(⌊rbM⌋) = deg f ′
∗OZ′(rbKZ′/C′) = deg det(f ′

∗OZ′(rbKZ′/C′)) = 0

for all r ∈ N, where the first equality follows from [FM00, Corollary 2.5], the second equality

follows form the fact that f ′
∗OZ′(rbKZ′/C′) is a line bundle (cf. Remark 4.1.4 below) and the

last equality follows from [VZ01, Proposition 4.2]. This implies degM = 0.

Now assume that there are at least three multiple fibers. Let P1, P2 and P3 be three points on

C such that f−1Pi is not reduced for i = 1, ..., 3. Note that for all P ∈ C we have coeffPB =

1− lct(X, f ∗P ) (c.f. [FM00, proof of Proposition 4.7] or [Fuj03, Definition 3.4]). Since f−1Pi

is not reduced, we have lct(X, f ∗Pi) ≤ 1
2
for i = 1, ..., 3. Thus the coefficient of B over Pi is

greater than or equal to 1
2
and so ⌊2B⌋ ≥ 3.

4.1.2 Kollár vanishing theorem

Theorem 4.1.3 ([Kol95], Theorem 10.19). Let f : X → Y be a surjective morphism between

normal and proper varieties. LetN ,N ′ be rank 1, reflexive, torsion-free sheaves onX . Assume

that N ≡ KX +∆+ f ∗M , whereM is a Q-Cartier Q-divisor on Y and (X,∆) is klt. Then

1. Rjf∗N is torsion free for j ≥ 0.

2. Assume in addition thatM is nef and big. Then

H i(Y,Rjf∗N) = 0 for i > 0, j ≥ 0.

3. Assume that M is nef and big and let D be any effective Weil divisor on X such that

f(D) ̸= Y . Then

Hj(X,N) → Hj(X,N(D)) is injective for j ≥ 0.
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4. If f is generically finite and N ′ ≡ KX +∆+ F where F is a Q-Cartier Q-divisor on X

which is f -nef, then Rjf∗N
′ = 0 for all j > 0.

Remark 4.1.4. Under our assumption thatX is a minimal terminal threefold of Kodaira dimen-

sion one and f : X → C is the Iitaka fibration, Theorem 4.1.3 (1) implies that Rjf∗(mKX) is

locally free because any torsion-free sheaf on a curve is locally free.

Proposition 4.1.5 ([Kol86],Proposition 7.6). LetX , Y be smooth projective varieties, dimX =

n, dimY = k, and let π : X → Y be a surjective map with connected fibers. ThenRn−kπ∗ωX =

ωY .

Corollary 4.1.6. The same conclusion of above proposition holds ifX has canonical singular-

ities.

Proof. Let ϕ : X̃ → X be a resolution of X and π̃ : X̃ → Y be the composition of π and ϕ.

By the Grothendieck spectral sequence, we have

Ep,q
2 = Rpπ∗(R

qϕ∗ωX̃) ⇒ Rp+qπ̃∗ωX̃ .

By Grauert-Riemenschneider vanishing (or Theorem 4.1.3 (4) above) we haveRqϕ∗ωX̃ = 0 for

all q > 0, hence

ωY = Rn−kπ̃∗ωX̃ = Rn−kπ∗(ϕ∗ωX̃) = Rn−kπ∗ωX .

4.1.3 Weak positivity

Theorem 4.1.7 ([Vie83], Theorem III). Let g : T → W be any surjective morphism between

non-singular projective varieties. Then g∗ωk
T/W is weakly positive for any k > 0.

Remark 4.1.8. When T → W is the Iitaka fibration of T andW is a curve, we have g∗ωk
T/W is

a line bundle by Remark 4.1.4. By [Kawak12, Section 5], g∗ωk
T/W is pseudo-effective, which is

equivalent to say that deg g∗ωk
T/W ≥ 0.

Furthermore, the same conclusion holds if T has canonical singularities because if ϕ : T̃ →

T is a resolution of singularity, then ϕ∗ω
k
T̃
= ωk

T .

Proposition 4.1.9. Let X be a minimal terminal threefold with Kodaira dimension one and let

f : X → C be the Iitaka fibration ofX . Assume that g(C) ≥ 1. Let F be a general fiber and let
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b be an integer such that |bKF | is non-empty and b ≥ 2. Then |bKX | is non-empty and |3bKX |

defines the Iitaka fibration.

In particular, |mKX | defines the Iitaka fibration for allm ≥ 24 and divisible by 12.

Proof. First assume g(C) ≥ 2. By weak-positivity,

deg f∗OX(bKX) ≥ degOC(bKC) = b(2g(C)− 2).

We have

H0(X,OX(bKX)) = H0(C, f∗OX(bKX)) ≥ χ(f∗OX(bKX))

= deg f∗OX(bKX) + 1− g(C) ≥ (2b− 1)(g(C)− 1) > 0.

Moreover, deg f∗OX(2bKX) ≥ 8g(C) − 8 > 2g(C) + 1 under our assumption that b ≥ 2,

hence f∗OX(2bKX) is very-ample, which implies |2bKX | defines the Iitaka fibration. Since

H0(X,OX(bKX)) ̸= 0, |3bKX | also defines the Iitaka fibration.

In the case that g(C) = 1, one has deg f∗OX(bKX) ≥ 0. Moreover

H1(C, f∗OX(bKX)⊗ P ) = 0

for all P ∈ Pic0(C) by Theorem 4.1.3 (2). Hence deg f∗OX(bKX) should be positive since

otherwise after taking P = (f∗OX(bKX))
∗ we get H1(C,OC) = 0, which is a contradiction.

Thus h0(bKX) ̸= 0. Now we have deg f∗OX(3bKX) ≥ 3 since one has the natural inclusion

f∗OX(bKX)
⊗3 → f∗OX(3bKX). The conclusion is that f∗OX(3bKX) is very-ample, so |3bKX |

defines the Iitaka fibration.

Note that |mKX | defines the Iitaka fibration if m ≥ 3b and m is divisible by b. We know

that b ∈ {2, 3, 4, 6}. It is easy to see that |mKX | defines the Iitaka fibration for allm ≥ 24 and

divisible by 12.

4.2 K3 or Enriques fibrations

Let X be a minimal terminal threefold of Kodaira dimension one and

f : X → C ∼= P1
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be the Iitaka fibration. Let F be a general fiber of X → C and assume that F is a K3 surface

or an Enriques surface. We haveH1(F,KF ) = 0. Thus R1f∗OX(KX) = 0 because it is locally

free by Remark 4.1.4. We have

h1(X,OX) = h2(X,OX(KX)) = h0(C,R2f∗OX(KX)) + h1(C,R1f∗OX(KX))

= h0(C,OC(KC)) = 0

by Corollary 4.1.6 and

h2(X,OX) = h1(X,OX(KX)) = h0(C,R1f∗OX(KX))+h1(C, f∗OX(KX)) = h1(C, f∗OX(KX)).

If F is an Enriques surface, then H0(F,KF ) = 0, hence f∗OX(KX) = 0 since it is a line

bundle. We have h2(X,OX) = 0 and h3(X,OX) = h0(X,OX(KX)) = h0(C, f∗OX(KX)) =

0. Thus χ(OX) = 1. When F is a K3 surface by the weak positivity we have deg f∗OX(KX) ≥

OC(KC), hence f∗OX(KX) is of degree greater than or equal to−2 and so h1(C, f∗OX(KX)) ≤

1. Thus h2(OX) ≤ 1 which implies χ(OX) ≤ 2. If χ(OX) < 0, then h0(X,KX) ≥ 2 and |KX |

defines the Iitaka fibration by Lemma 4.1.1. From now on we assume 0 ≤ χ(OX) ≤ 2.

There exists integers m and d such that OX(mKX) = f ∗OC(d). We write λ = m
d
, so that

F ≡ λKX .

Lemma 4.2.1. h0(X,mKX) ≥ r ifm > λr + 1 and |mKF | is non-empty.

Proof. Choose r general fibers F1, ..., Fr. Consider the exact sequence

0 → OX(mKX − F1 − ...− Fr) → OX(mKX) →
r⊕

i=1

OFi
(mKX) =

r⊕
i=1

OFi
→ 0.

Note thatmKX −F1− ...−Fr ≡ KX +(m− 1−λr)KX . By our assumptionm− 1−λr > 0,

hence

H1(X,OX(mKX − F1 − ...− Fr)) → H1(X,OX(mKX))

is injective by Theorem 4.1.3 (3) withM = m−1−λr
λ

P ,D = F1 + ...+Fr and∆ = 0, here P is

a general point on C. Hence

H0(X,OX(mKX)) →
r⊕

i=1

H0(Fi,OFi
)
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is surjective and so h0(X,OX(mKX)) ≥ r.

Proposition 4.2.2. If X → C is a K3 fibration, then h0(X,mKX) ≥ 2 form ≥ 86. If X → C

is an Enriques fibration, we have h0(X,mKX) ≥ 2 if m is even and greater than or equal to

42. In particular, |mKX | defines the Iitaka fibration ifm ≥ 86 (resp. m is even andm ≥ 42) if

X → C is a K3 (resp. an Enriques) fibration.

Proof. We use the notation as in Lemma 4.2.1, so λ is the rational number such that F ≡ λKX .

We only need to say that λ ≤ 42 if F is a K3 surface and λ ≤ 20 if F is an Enriques surface.

Then Lemma 4.2.1 implies the statement.

We have

χ(OF ) =
1

12
c2(F ) =

1

12
F.c2(X) =

λ

12
KX .c2(X)

by the Noether’s equality. Hence

12

λ
χ(OF ) = KX .c2(X) = −24χ(OX) +

∑
P∈B(X)

(
rP − 1

rP

)
. (4.1)

Assume λ > N for some integer N , then

24χ(OX) <
∑

P∈B(X)

(
rP − 1

rP

)
< 24χ(OX) +

12

N
χ(OF ).

This tells us that rP ≤ 24χ(OX) +
12
N
χ(OF ) for all P and there is at most

2

3

(
24χ(OX) +

12

N
χ(OF )

)

non-Gorenstein points on X since r − 1
r
≥ 3

2
for all integer r > 1. Note that we assume

0 ≤ χ(OX) ≤ 2, hence there are only finitely many possible basket data. By Equation (4.1)

a basket data corresponds to a unique λ once χ(OX) is fixed. This tells us that λ has an upper

bound.

Note that the basket data should satisfy more conditions. We have h1(X,mKX) = 0

since h1(C, f∗(mKX)) = 0 by Theorem 4.1.3 (2) and R1f∗(mKX) is a zero sheaf because

h1(F,mKF ) = 0 and R1f∗(mKX) is locally free by Remark 4.1.4. Also h3(X,mKX) =

h0(X, (1−m)KX) = 0 for all m > 1 since KX is psudo-effective and not numerically trivial.
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Hence the plurigenus formula yields

0 ≤ χ(mKX) = (1− 2m)χ(OX) + l(m), (4.2)

where

l(m) =
∑

P∈B(X)

m−1∑
j=1

jbP (rP − jbP )

2rP
,

for all m > 1. As we have seen before, for a fixed integer N and assuming λ > N , there are

only finitely many possible basket data ofX . Using a computer, one can write down all possible

basket data and check whether such basket satisfies (4.2) or not. In the K3 fibration case if one

take N = 42, then there is no basket data satisfying (4.2) for all m > 1, hence λ ≤ 42. In the

Enriques fibration case using the same technique one can prove that λ ≤ 20.

Finally note that if h0(X,mKX) ≥ 2 then |mKX | defines the Iitaka fibration by Lemma

4.1.1.

Remark 4.2.3. We remark that the worst possible basket data occurs when X → C is a K3

fibration, χ(OX) = 2 and the basket data is

{(2, 1)× 8, (3, 1)× 6, (7, 1), (7, 2), (7, 3)}

with λ = 42. This kind of fibration exists. Please see Examle 4.5.6.

4.3 Abelian fibrations

Let X be a terminal minimal threefold of Kodaira dimension one and assume X → C ∼= P1

is the Iitaka fibration. Let F be the general fiber of X → C and assume that F is an abelian

surface. LetW → X be a resolution of singularities of X . We will denote by

g : W → X → C

the composition of the two morphisms.

Definition. LetW be a smooth threefold of Kodaira dimension one and let ω be a two-form on

W . Let g : W → C be the Iitaka fibration. We say ω is a vertical two-form (with respect to the
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Iitaka fibration) if ω corresponds to an element s such that

s ∈ H0(W,TW/C ⊗KW ) ⊂ H0(W,TW ⊗KW ) ∼= H0(W,Ω2
W ).

Here TW denotes the tangent bundle ofW and TW/C is the kernel of TW → g∗TC .

Theorem 4.3.1 ([CT00], Theorem 4.2). Let W be a smooth projective threefold of Kodaira

dimension one and let ω be a two-form on W . Assume that ω is not vertical with respect to the

Iitaka fibration. Let X be a minimal model with Iitaka fibration f : X → C. Then there is a

finite base change C̃ → C with induced fiber space f̃ : X̃ → C̃ such that X̃ ∼= F × C̃, where

F is abelian or K3.

Assume that there is a non-vertical two-form onW . We may assume that C̃ → C is Galois.

Let G = Gal(C̃/C). Note that there is a natural G-action on X̃ such that X ∼= X̃/G. We have

the induced action on F . Since finite automorphism groups of an abelian surface are discrete,

G acts on X̃ ∼= F × C̃ diagonally. We may assume further that G acts on F faithfully since

the kernel of G acting on F is a normal subgroup of G and one can replace C̃ by C̃ module the

kernel. In particular X̃ → X is étale in codimension one.

Proposition 4.3.2. If the smooth model of X admits a non-vertical two-form, then |mKX | de-

fines the Iitaka fibration ifm ≥ 86.

Proof. We have the diagram

X̃

f̃
��

ϕ̃ // X

f

��
C̃

ϕ // C.

One may writeKX = f ∗A for some Q-divisor A on C. We also haveKC̃ = ϕ∗(KC +B), here

B is a Q-divisor with coeffP (B) = 1− 1
m
if the stabilizer of pre-image of P is of orderm. We

have

ϕ̃∗f ∗A = ϕ̃∗KX = KX̃ = KF �KC̃ = f̃ ∗KC̃ = f̃ ∗ϕ∗(KC +B)

since ϕ̃ is étale in codimension one. Thus A ∼Q KC +B.

Take an integerm such that bothmA andm(KC+B) are integral andOC(mA) = OC(m(KC+

B)) = O(d). Let λ = m
d
and δ = 1

λ
= d

m
. Assume B =

∑
i∈I(1 − 1

mi
)Pi, then δ =

−2+
∑

i∈I(1−
1
mi
). Note that κ(X̃) ≥ κ(X) = 1, hence κ(C̃) = 1 and C̃ is of general type. It is

well-known that δ ≥ 1
42
(by a simple calculation or using the fact that |Aut(C̃)| ≤ 84(g(C̃)−1)),
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hence λ ≤ 42. By Lemma 4.2.1, for all r ≤ 86, we have h0(X, rKX) ≥ 2 and |rKX | defines

the Iitaka fibration.

From now on we assume that the smooth modelW of X admits no non-vertical two-form.

Lemma 4.3.3. h1(X,OX) ≤ 1.

To prove the lemma, we need the following estimate on the irregularity.

Theorem 4.3.4 ([Fuj05], Theorem 1.6). Let f : X → Y be surjective morphism between non-

singular projective varieties with connected fibers. Then

q(Y ) ≤ q(X) ≤ q(Y ) + q(F ),

where F is a general fiber of f .

Proof of Lemma 4.3.3. Assume that h1(X,OX) > 1, then h1(X,OX) = 2 by Theorem 4.3.4.

Let a : X → A = Alb(X) be the Albanese map of X and let F be a general fiber of X → C.

Note thatA is an abelian surface. Assume that a(F ) is two-dimensional, then there is a surjective

map F → A. The pull-back of the global two-form on A is a non-vertical two-form on X ,

contradicting our assumption that there is no non-vertical two-form.

Assume that a(F ) is one-dimensional. Note that a(F ) should be an elliptic curve since

otherwise there is a holomorphic map

F → a(F ) → Jac(a(F ))

and the image should be a (translation of) non-trivial sub-complex torus, which is impossible.

Since there are only countably many elliptic curves up to translation contained in a fixed abelian

variety, we have a(F ) ∼= E for some one-dimensional abelian subvarietyE ofA, for general F .

By [BL04], Theorem 5.3.5, There is an isogenyA → E×T for some elliptic curve T . Consider

the morphism

X → A → E × T → T

which contracts the general fiber of X → C. Thus there is an induced morphism C → T . But

C ∼= P1 and T is an elliptic curve, which is impossible.
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Finally assume a(F ) is a point, then a(X) is a curve of genus ≥ 2. However this induces a

morphism C → a(X), which is again impossible.

Consider the following diagram.

0 // TW/C ⊗KW
//

��

TW ⊗KW

∼ ��

0 //ΩW/C ⊗ g∗ΩC

π(α)⊗ β

// Ω2
W

α ∧ η(β)
//�

where η : g∗ΩC → ΩW and π : ΩW → ΩW/C denote the natural maps. Note that the bottom

map is well-defined and injective since g∗ΩC is locally free of rank one.

Under the condition that there is no non-vertical two-form onW , one has

H0(W,TW/C ⊗KW ) ∼ //

��

H0(W,TW ⊗KW )

∼
��

H0(W,ΩW/C ⊗ g∗ΩC)
� � // H0(W,Ω2

W ).

Hence H0(W,ΩW/C ⊗ g∗ΩC) ∼= H0(W,Ω2
W ).

Lemma4.3.5. If there is no non-vertical two-form onW , thenh2(W,OW ) = 0. Henceh2(X,OX) =

h1(X,KX) = 0.

Proof. We compute h0(W,ΩW/C ⊗ g∗ΩC) = h0(W,Ω2
W ) = h2(W,OW ). Consider the exact

sequence

0 → g∗ΩC ⊗ g∗ΩC → ΩW ⊗ g∗ΩC → ΩW/C ⊗ g∗ΩC → 0.

Applying the push-forward functor we get

0 → g∗(g
∗ΩC⊗g∗ΩC) → g∗(ΩW ⊗g∗ΩC) → g∗(ΩW/C⊗g∗ΩC) → R1g∗(g

∗ΩC⊗g∗ΩC) → . . .

which induces the following exact sequences

0 → g∗(g
∗ΩC ⊗ g∗ΩC) → g∗(ΩW ⊗ g∗ΩC) → F → 0,

0 → F → g∗(ΩW/C ⊗ g∗ΩC) → G → 0,
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and

0 → G → R1g∗(g
∗ΩC ⊗ g∗ΩC).

Note that

H0(C,R1g∗(g
∗ΩC⊗g∗ΩC)) = H0(C,R1g∗(OW⊗g∗OC(−4))) = H0(C,R1g∗OW⊗OC(−4)).

Since h0(C,R1g∗OW ) ≤ 1 (otherwise h1(W,OW ) = h1(X,OX) > 1, contradicting Lemma

4.3.3) and R1g∗OW is torsion free (cf. [Kol86, Step 6 in the proof of Theorem 2.2]), we have

R1g∗OW
∼= OC(α)⊕OC(β) with both α and β ≤ 0. Hence

H0(C,R1g∗OW ⊗OC(−4)) = 0

and so H0(C,G) = 0. Thus

H0(C, g∗(ΩW/C ⊗ g∗ΩC)) ∼= H0(C,F).

Now g∗ΩW is locally free of rank two. One may write g∗ΩW
∼= OC(d1)⊕OC(d2). Note that

either d1 = 0 and d2 < 0, or both d1 and d2 < 0 since otherwise h1(X,OX) = h1(W,OW ) =

h0(W,ΩW ) > 1. In particular d1 + d2 < 0. Now the third exact sequence becomes

0 → OC(−4) → OC(d1 − 2)⊕OC(d2 − 2) → F → 0.

Since F is locally free of rank one (use the fact that g∗ΩW/C is torsion free), F ∼= OC(d1 + d2).

We know that d1 + d2 < 0, so h0(C,F) = 0, hence

h2(W,OW ) = h0(W,ΩW/C ⊗ g∗ΩC) = h0(C, g∗(ΩW/C ⊗ g∗ΩC)) = 0.

Lemma 4.3.6. Using the notation as in Section 4.1.1. Assume h1(X,OX(KX)) = 0, then we

have deg⌊M⌋ ≥ 1.

Proof. We have h1(C, f∗OX(KX)) = 0 since

0 = h1(X,OX(KX)) = h1(C, f∗OX(KX)) + h0(C,R1f∗OX(KX)).
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By Lemma 4.1.1, we have h1(C,OC(⌊A⌋)) = 0. Hence deg⌊A⌋ ≥ −1, so deg⌊M⌋ ≥ 1.

Proposition 4.3.7. Assume the smooth model of X admits no non-vertical two-form. Then

|mKX | defines the Iitaka fibration ifm = 2 orm ≥ 4.

Proof. We has to prove that deg⌊mA⌋ = deg⌊m(KC + M + B)⌋ ≥ 1. By Lemma 4.3.5 and

Lemma 4.3.6, we have deg⌊M⌋ ≥ 1. In particular degM ̸= 0. Lemma 4.1.2 implies that

deg⌊2B⌋ ≥ 3. Now we have

deg⌊mA⌋ = −2m+ deg⌊mM⌋+ deg⌊mB⌋ ≥ −m+ 3⌊m
2
⌋ ≥ 1

ifm = 2 orm ≥ 4.

4.4 Bielliptic fibrations

Assume X is a minimal terminal threefold of Kodaira dimension one and X → C ∼= P1 is a

bielliptic fibration. We apply the same construction as [FM00, Remark 2.6] to get g : Z → X

such that Z is smooth, the general fiber F̄ of Z → C is an étale covering of F and |KF̄ | in

non-empty.

Note that we have a natural inclusion g∗OX(KX) ↪→ OZ(KZ) since the pull-back of a top-

form on X is a top-form on Z, hence KZ = g∗KX + R for some effective divisor R. Since

Z → X is étale over general points on C, R is supported over singular fibers of Z → C. Thus

Z is of Kodaira dimension one. Let h : Z0 → C be the relative minimal model of Z over C.

Then KZ as well as KZ0 is Q-linearly equivalent to a sum of effective vertical divisors. Thus

KZ0 intersects horizontal curves positively. This implies Z0 is in fact minimal and Z0 → C is

the Iitaka fibration of Z0, which is an abelian fibration.

Write

KZ = (g ◦ f)∗(KC +MZ +BZ) + EZ

and

KZ0 = h∗(KC +M0 +B0)

as the canonical bundle formula over C. Recall that in Section 4.1.1 we denote

bKX = f ∗(b(KC +M +
∑
i∈I

siPi)),
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Lemma 4.4.1. EitherM = 0 or deg⌊M⌋ ≥ 1.

Proof. By [FM00, Lemma 3.4] we have MZ = M . Since the the moduli part is a birational

invariant, we haveMZ = M0. ThusM0 = M . Hence we only need to show that eitherM0 = 0

or deg⌊M0⌋ ≥ 1. If Z0 → C is isotrivial, then M0 = 0. Assume Z0 → C is not isotrivial,

then there is no non-vertical two-form on Z by Theorem 4.3.1. Lemma 4.3.5 and Lemma 4.3.6

imply our statement.

Proposition 4.4.2. |mKX | defines the Iitaka fibration ifm ≥ 96 and divisible by 12.

Proof. If deg⌊M⌋ ≥ 1, then using the same argument as in the proof of Proposition 4.3.7, one

can show that |rbKX | defines the Iitaka fibration if rb is even or rb ≥ 4. In particular, |mKX |

defines the Iitaka fibration ifm is divisible by 12.

Now assumeM = 0. In this case Z0 is isotrivial and we have the following diagram.

F̄ × C ′ //

��

Z0

��

Z
bir.
oo_ _ _

��

Z ′oo

bir.
xx NQTY_ejmp

��
X

��

X ′

��

oo

C ′ // C
= // C C ′oo

whereC ′ → C is a finite Galois covering, the left square is a fiber product, Z ′ andX ′ are the

normalizations of the base-change of Z andX respectively. Let U ⊂ C be an open set such that

Z → X is étale over U . Let U ′ be the pre-image of U on C ′. One may assume U ′ → U is étale.

Let XU , ZU and (Z0)U be the pre-images of X , Z and Z0 over U respectively and let X ′
U and

Z ′
U be the pre-images of X ′ and Z ′ over U ′. We may assume ZU

∼= (Z0)U and Z ′
U
∼= F̄ × U ′.

Note that ZU → XU is a cyclic cover defined by |bKXU
|, hence there exists a cyclic group

H such that XU = ZU/H and the restriction of the action on fibers over U is the natural action

on the abelian surface F̄ such that F̄/H = F . Hence there exists anH-action on Z ′
U
∼= F̄ ×U ′

by acting on F̄ and fixing U ′. Note that for any point P ∈ Z ′
U , theH-orbit of P maps to a point
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through the morphism Z ′
U → X ′

U . Since the diagram

ZU

��

Z ′
U

oo

��
XU X ′

U
oo

commutes, the H-orbit on Z ′
U maps to a H-orbit on ZU . Thus we have a natural map

F × U ′ ∼= Z ′
U/H → ZU/H = XU .

The morphism F × U ′ → XU factors through the fiber product X ′
U → XU . Since both mor-

phisms are finite with the same degree, we have X ′
U

∼= F × U ′. Let G = Gal(C ′/C) =

Gal(U ′/U), then there exists aG-action onX ′
U such thatX ′

U/G
∼= XU . ThusX is birational to

(F × C ′)/G.

Now we have the étale covering Z0
∼= (F̄ × C ′)/G → (F × C ′)/G. Since Z0 is terminal,

we have (F × C ′)/G is terminal. Replacing X by (F × C ′)/G one may assume that our given

bielliptic fibration is isotrivial. In this case using the same argument as in the proof of Proposition

4.3.2 one can show that |mKX | is birational to the Iitaka fibration ifm ≥ 86 and is divisible by

12, or equivalently,m ≥ 96 and divisible by 12.

4.5 Boundedness of Iitaka fibration for Kodaira dimension

one

Theorem 4.5.1. Let X be a smooth complex projective threefold of Kodaira dimension one.

Then |mKX | defines the Iitaka fibration ifm ≥ 96 and is divisible by 12. More precisely, let F

be a general fiber of the Iitaka fibration of X , we have

1. If F is birational to a K3 surface, then |mKX | defines the Iitaka fibration ifm ≥ 86.

2. IfF is birational to an Enriques surface, then |mKX | defines the Iitaka fibration ifm ≥ 42

and is even.

3. If F is birational to an abelian surface, then |mKX | defines the Iitaka fibration ifm ≥ 86.

Moreover, assume the Iitaka fibration is not isotrivial, then |mKX | defines the Iitaka

fibration ifm = 2 orm ≥ 4.
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4. If F is birational to a bielliptic surface, then |mKX | defines the Iitaka fibration ifm ≥ 96

and is divisible by 12.

Proof. IfC is not rational, this follows from Proposition 4.1.9. The K3 or Enriques cases follow

by Proposition 4.2.2. The isotrivial abelian fibration case follows from Proposition 4.3.2 and the

non-isotrivial abelian fibration case follows from Proposition 4.3.7. The bielliptic case follows

from Proposition 4.4.2.

Combining the work of J. A. Chen-M. Chen [CM14] and Ringler [Rin07], we have the

following effective bound for threefolds of positive Kodaira dimension.

Corollary 4.5.2. LetX be a smooth complex projective threefold of positive Kodaira dimension.

Then |mKX | defines the Iitaka fibration ifm ≥ 96 and is divisible by 12.

We remark that we do not know whether our estimate is optimal or not. However, as in

Example 4.5.6, one can construct a threefold of Kodaira dimension one, such that |iKX | is not

birational to the Iitaka fibration for all i < 42. Since the optimal value of the Iitaka fibration for

threefolds of Kodaira dimension one should be divisible by 12, we have the following estimate.

Corollary 4.5.3. Ifm is the smallest integer such that |mKX | is birational to the Iitaka fibration

for all smooth projective threefold of Kodaira dimension one, then 48 ≤ m ≤ 96.

In the remaining part we will compute several examples.

Example 4.5.4. The first example is a trivial example. Let F be a bielliptic curve such that

|6KF | is non-empty but |iKF | is empty for all i ≤ 5 and let C be a curve of general type. Then

X = F ×C is a smooth threefold of Kodaira dimension one such that |6KX | defines the Iitaka

fibration but |iKX | is empty for all i ≤ 5.

Example 4.5.5. Let E be an elliptic curve. Pick two different points P and Q on E. One can

find a line bundle L such that L2 = OE(P +Q). Let C be the cyclic cover corresponds to L2.

Then C is a curve of genus two and ϕ : C → E is a double cover ramified at P and Q. Let

G = Aut(C/E), which is a cyclic group of order two and let F be an abelian surface. One can

define a G-action on F via −Id. Let X = (F × C)/G.

The singular points of X are of the type 1
2
(1, 1, 1), hence X has terminal singularities. We

want to show that |4KX | defines the Iitaka fibration, and |iKX | does not define the Iitaka fibra-

tion for i ≤ 3. One has

H0(X,mKX) = H0(F × C,mKF �mKC)
G = H0(C,mKC)

G
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since the unique section in H0(F,mKF ) is fixed by G for all m. To compute H0(C,mKC)
G,

note thatϕ∗OC = OE⊕L−1 andOC(2KC) = ϕ∗OE(2KE+P+Q) = ϕ∗L2, henceϕ∗OC(2kKC) =

L2k ⊕ L2k−1 by the projection formula. The G-invariant part of H0(C, 2kKC) is H0(E,L2k)

and L2k is very ample if and only if k ≥ 2. Hence |2KX | does not define the Iitaka fibration,

but |4KX | does.

On the other hand, by Grothendieck duality we have

ϕ∗(2k + 1)KC = ϕ∗HomOC
(−2kKC , KC) ∼= HomOE

(ϕ∗(−2kKC), KE) ∼= L2k ⊕ L2k+1.

This shows that h0(C, 3KC)
G = h0(E,L2) = 2 and hence |3KX | do not define the Iitaka

fibration.

We remark that this is the worst example we know for abelian fibrations.

Example 4.5.6. Let C be the Klein quartic

(x3y + y3z + z3x = 0) ⊂ P2.

It is known that

|G| = |Aut(C)| = 168 = 42(2g(C)− 2)

(c.f. [Dol12, Section 6.5.3]). Let

F = (x3y + y3z + z3x+ u4 = 0) ⊂ P3,

which is a K3 surface. Define the G-action on F by g([x : y : z : u]) = [g([x : y : z]) : u]. Let

X = (F × C)/G. We will prove the following:

(1) X has terminal singularities.

(2) H0(X, iKX) ≤ 1 for i ≤ 41 and H0(X, 42KX) = 2.

Hence the smooth model ofX is a threefold of Kodaira dimension one, such that |42KX | defines

the Iitaka fibration, but |iKX | do not define the Iitaka fibration for i ≤ 41.

First we prove (1). Since |Aut(C)| = 168 = 42(2g(C) − 2), it is well-known that the

morphism C → C/G ramified at three points P2, P3 and P7 ∈ C/G and the stabilizer of points

over Pr is a cyclic group of order r for r = 2, 3 and 7 (cf. also [Elk99, Proposition in Section

2.1]). Let Fr ⊂ X be the fiber over Pr. We need to compute the singularities of Fr.
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(i) r = 7. Note that any order 7 subgroup of G is a Sylow-subgroup, which is unique up to

conjugation. To compute the singularities we may assume the stabilizer is the cyclic group

generated by the element (please see [Elk99, Section 1.1] for the description of elements

in G)

σ =


ξ4 0 0

0 ξ2 0

0 0 ξ

 , ξ = e
2πi
7 .

One can compute that H7 = ⟨σ⟩ has three fixed point [1 : 0 : 0 : 0], [0 : 1 : 0 : 0] and

[0 : 0 : 1 : 0] on F7. TheH7 action around those fixed points is of the form 1
7
(4, 3), 1

7
(2, 5)

and 1
7
(1, 6) respectively. The conclusion is thatX has three singular points over P7 which

are cyclic quotient points of the form 1
7
(1, 6, 1), 1

7
(2, 5, 1) and 1

7
(3, 4, 1) respectively.

(ii) r = 3. As before any order 3 subgroup of G is a Sylow-subgroup and hence we may

assume the stabilizer is generated by

τ =


0 1 0

0 0 1

1 0 0

 .

There are six fixed points on F3, namely [1 : ω : ω2 : 0], [1 : ω2 : ω : 0] and [1 : 1 : 1 :

ui]i=1,...,4, where w = e
2πi
3 and u1, ..., u4 are four roots of the equation u4 + 3 = 0. Let

P = [1 : ω : ω2 : 0]. The local coordinates near P ∈ A3 are y′ = y/x− ω, z′ = z/x− ω2

and u′ = u/x. Let α = y′ + z′ and β = ωy′ + ω2z′. Then α, β and u′ are also local

coordinates near P and the defining equation of F3 near P can be written as

(1 + 3ω)α + higher order terms,

hence the local coordinate of P ∈ F3 is β and u′.

We have

τ(u′) = τ(
u

x
) =

u

z
=

1

z′ + ω2
u′ = ωϕu′,

where ϕ is a holomorphic function satisfying ϕ(P ) = 1 and ϕτ(ϕ)τ 2(ϕ) = 1. Let λ be a
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holomorphic function near P such that λ3 = ϕ and λ(P ) = 1. One can check that

τ(λ′u′) = ωλ′u′, where λ′ = λ2τ(λ).

On the other hand,

τ(β) =
ω

z′ + ω2
β = ω2ϕβ

and we also have

τ(λ′β) = ω2λ′β.

The conclusion is that the singularity of P ∈ F3 is of the form 1
3
(1, 2), and hence the

singularity ofP ∈ X is a terminal cyclic quotient 1
3
(1, 2, 1). A similar computation (simply

interchange ω and ω2 in the calculation) shows that P ′ = [1 : ω2 : ω : 0] ∈ F3 ⊂ X is also

a terminal cyclic quotient point.

Finally we compute the singularities of Qi = [1 : 1 : 1 : ui] for i = 1, ..., 4. Let

y0 = y/x− 1 and z0 = z/x− 1. We take α0 = ωy0 + ω2z0 and β0 = ω2y0 + ωz0 as local

coordinates of Qi ∈ F3. One can see that

τ(α0) = τ(ωy0 + ω2z0) = τ(ω
y

x
+ ω2 z

x
+ 1) =

x

z
(ω + ω2 y

x
+

z

x
) =

ω

z0 + 1
α0

and

τ(β0) =
ω2

z0 + 1
β0.

Using the same technique above we can say that the singularity of Qi ∈ F3 is of the form
1
3
(1, 2), hence Qi ∈ X is also a terminal cyclic quotient point for i = 1, ..., 4.

(iii) r = 2. Letµ ∈ G be an order two element. We have to compute the singularities ofF2/⟨µ⟩.

By [Elk99, Proposition in Section 2.1], µ fixes a line and a point in P2. By the character

table of G (cf. [Elk99, Section 1.1]), we know that the three-dimensional character of µ

is equal to −1. This implies the fixed line of µ in P2 corresponds to the two-dimensional

eigenspace with eigenvalue −1, and the fixed point of µ in P2 corresponds to the one-

dimensional eigenspace with eigenvalue 1. Assume that L is the fixed line of µ in P2,

L ∩ C = [xi : yi : zi]i=1,...,4 and the fixed point of µ in P2 is [x5 : y5 : z5]. One can check

that the fixed point of µ on F2 is [xi : yi : zi : 0] for i = 1, ..., 4 and [x5 : y5 : z5 : uj]j=1,...,4,

where uj are the roots of the equation u4+x3
5y5+ y35z5+ z35x5 = 0. The conclusion is that
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there are eight cyclic quotient points of indices two on F2. Since they are isolated, all the

singular points should be the from 1
2
(1, 1). The conclusion is that there are eight singular

points on X which is of the from 1
2
(1, 1, 1).

Note that the Iitaka fibration of X is a K3 fibration, and the basket data of X is

{(2, 1)× 8, (3, 1)× 6, (7, 1), (7, 2), (7, 3)}.

It is the worst case in Section 4.2.

Now we prove (2). We need to compute H0(X,mKX) = H0(F × C,mKF � mKC)
G.

Consider the long exact sequence

0 →H0(P3,mKP3 + (m− 1)F ) → H0(P3,m(KP3 + F )) → H0(F,mKF ) →

H1(P3,mKP3 + (m− 1)F ) → · · · .

Since H i(P3,mKP3 + (m− 1)F ) = 0 for i = 0, 1, we have

H0(F,mKF ) = H0(P3,m(KP3 + F )) = H0(P3,OP3).

Thus any section in H0(F,mKF ) is G-invariant. This tell us that

H0(X,mKX) = H0(F × C,mKF �mKC)
G = H0(C,mKC)

G.

One can consider the following long exact sequence

0 →H0(P2,mKP2 + (m− 1)C) → H0(P2,m(KP2 + C)) → H0(C,mKC) →

H1(P2,mKP2 + (m− 1)C) → · · · .

Since H1(P2,mKP2 + (m− 1)C) = 0, the restriction map

H0(P2,m(KP2 + C)) = H0(P2,OP2(m)) → H0(C,mKC)

is surjective. Thus to findG-invariant sections inH0(C,mKC) is equivalent to findG-invariant

polynomials of degree m on C. It is known that (c.f. [Elk99, Section 1.2]) the G-invariant

polynomials are generated by three elements f6, f14 and f21, where fd is a polynomial of degree
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d, satisfying f 2
21 = f 3

14 − 1728f 7
6 . Hence h0(C, iKC)

G ≤ 1 for all i ≤ 41 andH0(C, 42KC)
G is

spanned by f 7
6 and f 3

14. Thus h0(X, iKX) ≤ 1 for i ≤ 41 and h0(X, 42KX) = 2.
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