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Abstract

This thesis consists of two parts. In the first part we prove that the difference of the Betti numbers
of'a smooth threefold and its minimal model can be bounded by a constant depending only on the
Picard number of the smooth threefold. In the second part we prove that the 96-th pluricanonical

system of a smooth threefold of Kodaira dimension one defines the litaka fibration.
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Chapter 1

Introduction

In birational geometry, people study algebraic varieties in birational ways. That is, comparing
varieties which are isomorphic on a dense open set. If two varieties are birational, then they have
the same function field. Hence the category of birational classes is a reasonable category and
the theoreies in birational geometry could have many applications in other branch of algebraic
geometry. There is a fundamental approach in birational geometry, so called the minimal model
program, concerning with how to find a good representative in each birational class. In the end
of 20 century, the minimal model program for varieties with mild singularities and dimension
less than or equal to three was established. Over the past twenty years, the three-dimensional
minimal model program becomes a foundation of three-dimensional birational geometry.

After the minimal model theorem being proved, there are two basic approaches in the three-
dimensional birational geometry: study minimal threefolds, and compare the given smooth
threefold with its minimal model. A minimal threefold has several good property. For example,
the abundance conjecture is known to be true in dimension three, so that a sufficiently divisible
pluricanonical system of a minimal threefold is base point free and defines the litaka fibration. If
additionally we assume that the given minimal threefold is of general type, then the plurigenura
can be directly computed and one can estimate some important geometric invariants such as the
volume or the self-intersection of the canonical divisor. J. A. Chen and M. Chen have work on
minimal threefolds of general type for many years. They have good estimate for the volume of
threefolds of general type, and they can precisely describe those minimal threefolds of general
type with small volume.

The second approach is to explicitly describe each step of the minimal model program.

Three-dimensional minimal model program consists divisorial contrations to points or curves
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and flips. Hayakawa, Kawakita and Yamamoto had classified three-dimensional divisorial con-
tractions to points. J. A. Chen and Hacon proved that one can factorize divisorial contractions to
curves and flips into (inverse of) divisorial contractions to points, blowing-up local complete in-
tersection curves and flops. Hence the comparison of a smooth threefold and its minimal model
is possible nowadays.

In this paper we discuss two different problems, which correspond to the two approaches we
mentioned above. The first problem is the comparison of Betti numbers between a smooth three-
fold and its minimal model. This problem is motivated by the estimate of the self-intersection
of the canonical divisor. The self-intersection of the canonical divisor is an important geomet-
ric quantity. For smooth varieties, this number is exactly the first Chern number (up to a sign),
which could be linked to the theories of algebraic topology. Since this number is not a birational
invariant, it is an important issue that how dose this number change under birational morphisms.
In dimension three, one can prove that under elementary birational morphisms the change of this
number can be bounded by Betti numbers. Hence it becomes an interesting problem that how
does Betti numbers change under elementary birational maps. We will prove that among steps
of minimal model program begin with a smooth threefold, the change of Betti numbers could
be bounded by some constant depending on the Picard number of the original threefold.

Another problem we are going to discuss is to study threefolds via its litaka fibration. Given
a smooth threefold, the Kodaira dimension could be —oo, 0, 1, 2 or 3. Threefolds of Kodaira
dimension three, so call threefolds of general type, were recently studied in detail by J. A. Chen
and M. Chen. They can estimate the volume of threefolds of general type and they proved that
the 61-th pluricanonical system defines the litaka fibration. They can also describe the extreme
cases in detail. In the Kodaira dimension two case, since the litaka fibration gives an elliptic
fibration structure, threefolds of Kodaira dimension two can be studied simply using Fujino-
Mori’s canonical bundle formula. Ringler have proved that the 48-th pluri canonical system
defines the Iitaka fibration. For threefolds of Kodaira dimension zero, Kawamata and Morrison
proved that the m-pluricanonical system is non-empty where my = 2° x 3% x 52 x 7 x 11 x
13 x 17 x 19.

We will study threefolds of Kodaira dimension one here. The main difficulty is that the
technique used to study threefolds of Kodaira dimension 2 or 3 do not behave well in Kodaira
dimension one case. In the research of threefolds of general type people use Reid’s singular

Riemann-Roch formula to compute the dimension of the pluricanonical system. This technique
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do not work in non-general type cases. When dealing with threefolds of Kodaira dimension
two the litaka fibration is an elliptic fibration, so the canonical bundle formula were simple.
However in our situation the litaka fibration is a two-dimensional fibration and the canonical
bundle formula has very large denominators, so we can not get any reasonable bound from
it. The solution is to apply the theories of terminal threefolds and study the structure of litaka
fibration at the same time. We will prove that the 96-th pluricanonical system defines the litaka
fibration and we can give the geometric description in the extreme cases.

This thesis is organized as follows. Chapter 2 is a preliminary section. We will introduce of
minimal model program and several basic theories for terminal threefolds. We will discuss the
change of Betti numbers in the minimal model program in Chapter 3 and threefolds of Kodaira

dimension one in Chapter 4.

1.1 Convention and notation

Through this paper a variety is always projective and over complex numbers.

The word “divisor” always means a Weil divisor. A QQ-divisor means a finite sum of prime
divisors D = """ | a;D; such that a; € Q. The round down of D is the integral divisor | D| =
>.la;] D;, where |a;] is the largest integer smaller than or equal to a;. Similarly the round up
of D is the integral divisor [ D] = > _[a;]|D; with [a;] being the smallest integer greater than or
equal to a;.

For any divisor D on an variety X, Ox (D) will denote the sheaf associated to D. Given two
divisor D and D', the notation D ~ D’ means D is linear equivalent to D’. Assume that both
D and D’ are Q-Cartier divisors, then the notation D = D’ means D is numerically equivalent

to D',i.e. D.C = D'.C for any curve C.

1.2 Algebraic geometric background

1.2.1 Ample, nef and big divisors

Recall that a Cartier divisor D is said to be ample if nD is very ample for some integer n, that

is, |nD| defines an embedding to a projective space.

Theorem 1.2.1 (Nakai-Moishezon criterion, cf. [KM92] Theorem 1.37). Let X be a proper
scheme over a field and D be a Cartier divisor on X. Then D is ample if and only if DY™Z .7 > (

3
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for any closed integral subscheme 7 C X.
Definition. A Cartier divisor D is said to be nef if D.C' > 0 for any curve C.

Definition. A Cartier divisor D on an n-dimensional projective variety X is called big if
ho(X,Ox (kD)) > ck"

for some ¢ > 0 and and for all £ > 1.

Lemma 1.2.2 ([KM98], Lemma 2.60). Let X be an n-dimensional projective variety and D be

a Cartier divisor. The following are equivalent:
1. D is big.
2. mD ~ A+ E where A is ample and F is effective for some m > Q.

3. For some m > ( the rational map ¢\,,p, is birational.

1.2.2 litaka fibration and the Kodaira dimension

Let X be a normal algebraic variety and L be a line bundle on X such that H°(X, L) # 0. Then
exists a rational map ¢, X --» PH°(X, L).

Definition. Assume that there exists n € N such that H°(X, L") # 0. We define the litaka

dimension of L to be

(X, L) = max {dimim(¢;n ) |n € N}.

If HY(X,nL) = 0 for all n € N, then we define x(X, L) = —o0.
Now assume that X is smooth, then we define the Kodaira dimension of X to be x(X, Kx)

and we will denote it by (X ). When X is singular, we define x(X) = x(X) for any smooth
model X of X.

Note that if X and X' are two smooth varieties birational to each other, then there exists a
smooth variety X such that there exists birational morphisms f : X — X and f' : X — X'.
One has Ky = f*Kx + E = f”"Kx + E’ where E and E’ are effective exceptional divisors.
It follows that

d1m im(qb|nKX|) = dlm im(¢|nKU|) = dlm im(gbanf*lU') = d1m im(gﬁ‘nKXO

4
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where U is the open set on X such that f|; is isomorphic. This tell us that x(X) = x(X) and

similarly x(X’) = x(X). Thus the definition of Kodaira dimension is well-defined.

Theorem 1.2.3 (Iitaka fibration theorem, [Laz04] Theorem 2.1.19). Let X be a normal projec-
tive variety and L be a line bundle on X such that k(X, L) > 0. Then there exists an algebraic
fiber space (i.e. surjective morphism with connected fiber) ¢, : Xo — Yo such that for all

sufficiently large and divisible integer k, we have the following commutative diagram

I

)‘(&XOO
b |
y

-

Yk'<__Yoo

where ¢ = ¢|k|, Yi is the closure of im/(¢ x| ), the horizontal maps are birational and (u} L)|r

has Kodaira dimension zero for a very general fiber F' of X, — Y.
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Chapter 2

Minimal Model Program and Terminal

Threefolds

The goal of the minimal model program is to find a good representative in each birational class.
Assume that X is a smooth projective curve, then any smooth curve Y birational to X is in fact
isomorphic to X. Hence any birational class for algebraic curves has a unique smooth element.
However, when the dimension is greater than one, things become complicated.

Assume X is a smooth variety of dimension greater than or equal to two. One can always
blow-up a point on X, and obtained another smooth variety which is birational to X. The original
idea of the minimal model program is to find a variety which is not the blow-up of other smooth
variety. This approach works in dimension two. Assume that X is a projective smooth surface,
then one can always contract a minus-one curve (a rational curve which has self-intersection —1)
on it and get another smooth surface which contains no —1-curves (so that it is not a blow-up of
any other smooth surface). This surface is called the minimal model of X. The word minimal
means that it can not map to any other smooth surface birationally.

In higher dimensional cases things become more and more complicated. Instead of working
on the category of smooth varieties, one should study varieties with mild singularities, or even
more generally, study a pair. That is, a variety plus a boundary divisor. The approach of higher
dimensional minimal model program leads to lots of interesting problems and there are rich
theories associated to it.

The category of terminal varieties is the smallest category such that the minimal model pro-
gram works. In dimension less than three being terminal is equivalent to being smooth. How-

ever, there exist non-smooth terminal threefolds. Fortunately, three-dimenisonal terminal sin-
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gularities are not hard to study: their canonical cover has only compound Du Val singularities.
Reid and Mori give a complete classification of three-dimenisonal terminal singularities. With
the help of the classification one can study terminal threefolds in detail.

This chapter contains two parts. In the first section we will introduce the notion of minimal
model program. In the second section we will quickly review some known results about terminal

threefolds.

2.1 Minimal model program

2.1.1 Minimal model program for surfaces

Through this subsection S will denote a complex projective smooth surface.

Castelnuovo’s contraction theorem

Definition. An irreducible curve C' C S is called a —1-curve if C' is a smooth rational curve

and C? = —1.

Theorem 2.1.1 (Castelnuovo’s contraction theorem, [Bea78] Theorem I1.17). Assume that C' is

a —1-curve on S. Then there is a birational morphism f : S — S’ to a smooth surface S’, such

that f(C) is a point and S — C' is isomorphic to S’ — f(C').

Note that the Picard number decreased by one after constracting a —1-curve. Since the
Picard number is always a positive integer, there are only finitely many —1-curve on a smooth
surface. Thus Castelnuovo’s contraction theorem implies that there exists a birational morphism
S — Sy for some smooth surface 5,,;,, such that S,,;, do not contain any —1-curve. Such
kind of surfaces are called minimal surfaces.

If we blow-up a point on a smooth surface, then the exceptional divisor is a —1-curve. Hence
if S is minimal, then S cannot be the blowing-up of other smooth surfaces. In fact, by Theorem
2.1.2, there is no birational morphism S — S’ to any smooth surface S’. Thus S is a minimal
element in the smooth birational class, where the partial order in defined by S > S’ if there

exists a morpshim S — 5’.

Theorem 2.1.2 ([Bea78], Theorem II.11). Let f : S — Sy be a birational morphism. Then
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there exists a sequence of blow-ups

S%Sk—>5k_1—>...—>51—>50

such that f is the composition of above morphisms.

Classification of algebraic surfaces

Definition. A surface is said to be ruled if it is birational to C' x P'. If C' = P!, then the surface
1s said to be rational.

The Hirzebruch surfaces F,, is defined by Pp1 (Op: & Op1(n)), for all integer n > 0.

Theorem 2.1.3 ([Bea78], Theorem V.10). Let S be a minimal rational surface. Then S is iso-

morphic to P? or IF,, for some n # 1.
We remark that ', is isomorphic to P blowing-up a point, which is not minimal.

Theorem 2.1.4 (Enriques’ Theorem, [Bea78] Theorem VI1.17). Assume that S is a smooth sur-
face and H°(S,12Kg) = 0, then S is ruled. In particular, any minimal surface with negative

Kodaira dimension is ruled.

Theorem 2.1.5 ([Bea78], Theorem VIIL.2). Assume that S is minimal of Kodaira dimension

zero, then S belongs to one of the four following cases:

1. pg=q=0and 2K ~ 0. We say S is an Enriques surface.
2. pg =0, q=1and S is a bielliptic surface.
3. pg=1q¢=0and K ~ 0. Wesay S is a K3 surface.

4. p, =1, q=2and S is an abelian surface.

Proposition 2.1.6 ([Bea78], Proposition IX.2 (b)). Assume that S is a minimal surface of Ko-
daira dimension one. Then there is a smooth curve B and a surjective morphism S — B whose

generic fiber is an elliptic curve.

Theorem 2.1.7 ([1it70], Corollary after Proposition 8). Assume that S is an surface of Kodaira

dimension one. Then |86 K| defines the Iitaka fibration.

Theorem 2.1.8 ((Bom70]). Assume that S is a surface of general type, then |5K| defines a

birational map.

doi:10.6342/N'TU201801712



2.1.2 Cone theorem

Definition. Let X' = QQ or R and V' be a K-vector space. A subset N C V'is called a cone if
0 € N and N is closed under multiplication by positive scalars.
A subcone M C N is called extremal if v, w € N and v + w € M implies v and w € M.

An one dimensional extremal subcone is called an extremal ray.

Definition. Let X be a proper variety. A 1-cycle is a formal linear combination of irreducible,
reduced and proper curves C' = ) .a,C;. We say C is effective if a; > 0 for all 7. Given
two 1-cycles C' and C’, we say that C' is numerically equivalent to C’, denoted by C' = (’, if
D.C = D.C" for all Cartier divisor D on X. The space of 1-cycles on X with real coefficient
module numerical equivalence is denoted by N; (X '), which is a finite dimensional vector space.

We will denote NE(X) = {effective 1-cycles} C N;(X) and NE(X) is the closure of
NE(X) in Ny (X).

Theorem 2.1.9 (Cone theorem, [KM98], Theorem 1.24). Let X be a smooth projective variety.

1. There are countably many rational curves C; C X such that 0 < —Kx.C; < dim X +1,

and

NE(X) = NE(X); 50+ Y _ Rxo[Cy].

2. For any € > 0 and ample divisor H,

NE(X) = NE(X)Kx+6HZO + Z RZO[Cj]’

finite

Theorem 2.1.10 ([Mor82], Theorem 3.1). Let X be a smooth projective threefold and R C

NE(X) be an extremal ray, then there exists a morphism ¢ : X — Y such that $,Ox = Oy
and for any irreducible curve C'in X, ¢(C') is a point if and only if [C] € R.

Theorem 2.1.11 ([Mor82], Theorem 3.3, Corollary 3.4). Notation as in the previous theorem.
Assume that R is not numerically effective (that is, there exists an effective divisor D such that
D.C < 0 for some curve C with [C| € R), then there is a divisor D on X such that ¢ is
isomorphism on X — D and dim ¢(D) < 1. One of the following holds.

1. Y is smooth and X = Blyp)Y, ¢(D) is either a point or a smooth curve.

doi:10.6342/N'TU201801712



2. ¢(D) = Q is a point. The completion Oy ,, of Oy, is given by
kl[z,y, z,u]] /(22 +y* + 22 +u?), K[z, y, z,u]]/(2® +y2 + 22 +u?)  or Kfz,y, 2]]72,

where the Z action is given by (x,y, z) — (—x,—y, —z).

Theorem 2.1.12 ([Mor82], Corollary 3.5). If R is numerically effective, then Y is smooth and

we have

1. dimY =2, X — Y is a conic bundle (i.e., the generic fiber X, is a conic in P?).

2. dimY =1, X — Y is a del Pezzo fibration (i.e. the generic fiber X, is an irreducible

reduced surface such that — Kx, is ample).

3. dimY =0, —Kx is ample.

2.1.3 Singularities in minimal model program

Definition. A pair (X, A) is a normal projective variety X and an (effective) Q-divisor A such

that K x + A is Q-Cartier.

Definition. Let (X, A) be a pair over complex numbers. Let E be an exceptional divisor over
X. We define the discrepancy of E over (X, A), denoted by a(X, A, F), to be the coefficient
of Ky — f*(Kx + A) along E.

We say that (X, A) is terminal (resp. canonical, log terminal, kawamata log terminal, log

canonical) if a(X, A, E) > 0 (resp. > 0,> —1,> —land [A| =0, > —1).

Those singularities has their geometric meaning. The category of terminal varieties is the
smallest category which is closed under minimal model program, and the category of varieties of
kawamata log terminal (klt for short) singularities is the largest category such that the minimal
model program works. Canonical singularities coming from the pluricanonical maps of smooth
varieties of general type. Log canonical singularities are the worst singularities which can be

described using the language of the discrepancy.

2.1.4 Higher dimensional minimal model program

Theorem 2.1.13 (Relative cone theorem, [KM98] Theorem 3.25). Let (X, A) be a kit pair and

assume that A is effective. Let g : X — Z be a projective morphism. Then

10
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1. There are countably many rational curves C; C X such that g(C;) is a point, 0 <
—Kx.C; <2dim X and

NE(X/Z) = NE(X/Z)x a5+ Y RaolCll.

2. Forany e > 0 and f-ample divisor H,

NE(X/Z) = NE(X/Z)KX+A+EH20 + Z RZO[CJ’]-

finite

3. Let F C NE(X/Z) be a Kx-negative extremal subcone. Then there exists a unique
morphism fr : X — Y over Z, such that (fr).Ox = Oy and an irreducible curve C

maps to a point if and only if [C] € F.

4. Assume that L is a line bundle such that L.C' = 0 for all curve C such that [C| € F. Then
L = f; Ly for some line bundle Ly on'Y .

Definition. Let (X, A) beapair. A K x+A-flipping contraction is a proper birational morphism
f X — Y such that Ezc(f) has codimension greater than or equal to two and — (K x + A) is
f-ample.

A normal variety X T together with a proper birational morphism f, : X* — Y is called
a Kx + A-flip of f if Kx+ + A, is Q-Cartier and f, -ample and Exc(f, ) has codimension at

least two, where A is the birational transform of A.

Definition. Let (X, A) be a pair. A proper morphism f : X — S is called a Mori fiber space
ifdim$S < dim X, p(X/S) =1land —(Kx + A) is f- ample.

Now let (X, A) be a Q-factorial projective klt pair. The ideal minimal model program goes
as follows: Assume that K x + A is nef, then we have done. If it is not nef, then there is an
Kx + A-negative extremal ray. By Theorem 2.1.13 one can contract the extremal ray and get a
morphism f : X — Y such that —(Kx + A) is f-ample. We have the following three possible

situaiton.

1. X — Y is a divisorial contraction. Note that Y is Q-factorial and (Y, f.A) is klt by
Proposition 2.1.14 and Lemma 2.1.16. In this case we replace (X, A) by (Y, f.A) and
continue the process. We have p(Y) = p(X) — 1, hence there are only finitely many

divisorial contractions could occur in this process.
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2. X — Y is a flipping contraction. We have to construct a Kx + A-flip X --» X*. By
Proposition 2.1.15 and Lemma 2.1.16 X is Q-factorial and (X, A1) is kit provided

that X exists, so one can keep doing this process with (X, A™T).

3. dimY < dim X. By Proposition 2.1.14 we have p(X/Y) = 1 and we get a Mori fiber

space.

Proposition 2.1.14 ([KM98], Proposition 3.36). Let (X, A) be a porjective Q-factorial kit pair
and g : X — Y is a contraction of Kx + A-negative extremal ray. Assume that either g is

divisorial or dimY < dim X, then Y is also Q-factorial and p(Y') = p(X) — 1.
Proposition 2.1.15 ([KM98], Proposition 3.37). Let (X, A) be a porjective Q-factorial kit pair
and X --» XV isa Kx + A-flip. Then X is Q-factorial and p(X ) = p(X).

Lemma 2.1.16 ([KM98], Lemma 3.38). Consider a commutative diagram

where X, X' and Y are normal varieties and f, f' are proper and biraitonal. Let A (resp. A')
be a Q-divisor on X (resp. X') such that f.A = f.A', and both —(Kx + A) and Kx' + A are

Q-Cartier and f-nef. Then for any exceptional divisor E overY, we have

a(E,X,A) <a(E, X' A").

Strict inequality holds if either —(Kx + A) is f-ample and [ is not an isomorphism above the
generic point of Centery E, or Kx: + A’ is f'-ample and [ is not an isomorphism above the

generic point of Centery E.

To successfully run the minimal model program there are two problems should be solved: the

existence of flips and the termination of flips. In dimension three it had been already solved.

Theorem 2.1.17 ([Mor88], Theorem 0.2.5). Let X — Y be a three-dimensional flipping con-

traction, then the K x-flip exists.

Theorem 2.1.18 (Shokurov, cf. [Mor88] Theorem 0.2.7). To each algebraic threefold with only
terminal singularities there is a well-defined non-negative integer d(X) called the difficulty,
such that d(X+) < d(X) if X --» X1 is a Kx-flip.
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Corollary 2.1.19 (Minimal model program for terminal threefolds). Let X be a Q-factorial
projective terminal threefold. Then there exists a sequence of birational morphism between

Q-factorial terminal threefolds
X=Xg--»>X1 ... X1 - X

such that X; --+ X, is either a divisorial contraction or a flip, and Xy, is either minimal (that

is, Kx, is nef), or has a Mori fiber space structure.
k

For dimension greater than three the existence of flips and termination of flips are still open.
In [BCHM10], Birkar, Cascini, Hacon and M®Kernan proved that the existence and termination
of some special flips, and proved that in very general case the minimal model program still

works.

Theorem 2.1.20 ((BCHM10], Theorem 1.2). Let (X, A) be a kit pair. Letm : X — U be a
projective morphism of quasi-projective varieties.

If either A is m-big and K x + A is m-pseudo-effective or Kx + A is w-big, then
1. Kx + A has a minimal model over U.
2. The Oy-algebra @,, . 7" Ox (|m(Kx + A)]) is finitely generated.

Corollary 2.1.21 ([BCHM10], Corollary 1.1.1). Let X be a smooth projective variety of general
type, then

1. X has a minimal model.

2. X has a canonical model.

3. Thering @,,.x HO(X, Ox(Im(Kx + A))) is finitely generated.

2.1.5 Abundance conjecture

Assume that (X, A) is a pair such that its minimal model (X, Amin) exists. People expect

that the minimal model satisfied the following good property.

Conjecture 2.1.22 (Abundance conjecture). Assume that (X, Apnin) is minimal, then Kx, . +

min

Ay is semi-ample. That is, |m(Kx, .+ Auuin)| is basepoint-free for some m € N.

min
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The abundance conjecture is known for lower-dimensional varieties.

Theorem 2.1.23 (Abundance theorem for log surfaces, cf. [Kol92] Theorem 11.1.3). Let (X, A)

be a two-dimenisonal minimal log canonical pair. Then Kx + A is semi-ample.

Theorem 2.1.24 (Abundance theorem for terminal threefolds, cf. [Kol92] Theorem 11.1.1). Let

X be a minimal terminal threefold. Then K x is semi-ample.

2.2 Terminal threefolds

Through this section X will be a terminal threefold.

2.2.1 Classification of terminal threefolds

The local classification of terminal threefolds were done by Reid [Rei83] for Gorenstein case

and Mori [Mor85] for non-Gorenstein case.

Definition. A compound Du Val point P € X is a hypersurface singularity locally analytically

defined by f(x,y, z) + tg(z,y, z,t) = 0, where f(z,y, z) defines a Du Val singularity.

Theorem 2.2.1 ([Rei83], Theorem 1.1). Let P € X be a point of threefold. Then P € X is an

isolated compound Du Val point if and only if P € X is terminal of index one.

.....

&, 1s a fixed r-th roots of unity and a; € Z. We will denote
1
A"/G=A"/-(aq,...,a,).
r

Theorem 2.2.2 ([Mor85], cf. [Rei87] Theorem 6.1). Let P € X be a germ of three-dimensional

terminal singularity of index r > 1. Then

1
X 2 (f(@,y,2,u) = 0) C Alyy o/~ (a1, ., 0a)

such that f(x,y, z,u), r and a; is given by Table 2.1.

By [Rei87, (6.4)] any three-dimensional terminal singularity of indice greater than one could

be deformed to cyclic quotient singularities. These data is called the basket of the singularity.
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Type flx,y, z,u) r a; condition

} - g C mp
cAfr zy + 9(2", u) any | (o, —a, 1,7) o and r are coprime
2
cAz/4 y+ 2 4 9() 4| (1,1,3,2) gemb

2+ 22+ g(y,u)
cAx/2 zy + g(z,u) 2 (0,1,1,1) g€ mp
TP+ A
cD/3 | 2+ P+ 22u+yg(z,u) +h(z,u) | 3 | (0,2,1,1)
22+ 3+ 23 +yg(z,u) + h(z,u)
2? +y° +yzu+g(z, u)
)

gemp
6
h € mp

cD/2 2+ yzu+y" +g(z,u 2 (1,0,1,1) geEMY, n>4
22 +y2? +y" + g(z,u) n>3
4
B2 | @ty bygleu) Hhzu) | 2 | (1L011) T
4

Table 2.1: Classification of terminal threefolds

Type deformation general elephant basket

cAlr | f(x,y,z,u) + tu z2=0 k x (r,b)
cAx/2 | f(z,y,z,u) +tx | Az+pu=0 2x(2,1)
cAzx/4 | f(x,y, z,u) + tu r—y=0 (4,1),k—1x(2,1)
cD/2 | f(x,y,z,u)+ty | Az+puu=0 kx(2,1)
cD/3 | f(z,y,z,u)+tx | Az4+pu=0 2x(3,1)
cE)2 | f(z,y,z,u)+ty | Az+pu=0 3x(2,1)

Table 2.2: Basket for three-dimensional terminal singularities

Uasally we denote (r,b) for the cyclic quotient £(1, —1,b). The number of the cyclic quotient
points is called axial weight. Please see Table 2.2 (cf. [Rei87, (6.4)], [CH11, Remark 2.1]) for

the explicit basket for each case.

2.2.2 Singular Riemann-Roch formula

An basic tool to study terminal threefolds is Reid’s singular Riemann-Roch formula [Rei87]:

W(Ox(D)) = x(Ox) + ~D(D — Kx)(2D — Kx) + %D.CQ(X)

12
9 ip—1—— e
. rp— 1 Jbp(rp — jbp)
¢ ¥ (et S )
PeB(X) j=1

where B(X) = {(rp,bp)} is the basket data of X and ip is the integer such that Ox (D) =
Ox(ipKx) near P.
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Take D = K, one have

1
Kx.CQ(X) = —24X(Ox)—|— Z (’f’p—r—.)
PEB(X) P
Now take D = mKx and replace Kx.co(X) by x(Ox) and the contribution of singularities,

we get the following plurigenus formula [CHO09, Section 2]:

X(mx) = gom(m = 1)(2m = DK + (1= 2m)x(Ox) + I(m),

here o
Jbp( TP—]bP)
P

HMS

eB(X
If one assumes X is minimal and of Kodaira dimension one, then K% = 0 and one has

x(mKx) = (1 —2m)x(Ox) + l(m).

2.2.3 Weighted blow-up

Let X = A"/ %(al, ..., ay,) be a cyclic quotient singularity. There is an elementary way to con-
struct a birational morphism Y — X, so called the weighted blow-up, defined as follows.

We write everything in the language of toric varieties. Let IV be the lattice (e, ..., €,,v)z,
where e, ..., e, is the standard basic of R” and v = %(al, ). Leto = (61, ..., €n)rsy- We
have X = Spec C[NY NoV].

Letw = %(bl, ..., by) be a vector such that b; = \a; + k;r for A € N and k; € Z. We define
a weighted blow-up of X with weight w to be the toric variety defined by the fan consists of

those cones

0; = (€1, .0 €21, W, €541, ..., En).

Let U; be the toric variety defined by the cone o; and lattice V.

Lemma 2.2.3. Let
1
U/ = b—(—bl, ceey _bi—17 r, _bi+17 ceey _bn)

i
and
w = _(albi — @iy, ..., @i 1b; — a;bi 1,704, Qi 110; — a;ibiy, ..., anb; — aibn)-
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1

Assume that u = —(a\, ..., ay,) is a vector such that (ey, ..., en, V', W' )z = (€1, .., €n, U)z, then

In particular, if \ = 1, then U; = b%_(—bl, ey =bi1, 7 =bit1, ., —by).

Proof. Let T; be a linear transformation such that Tie; = e; if j # 7 and T;w = e;. One can see

that

r bj ’
ﬂei = b—(ez — Z ?ej) =

and
a; a; r b a; a;b; — a;b;
' Z.rj rbi(l Z.r]) bi Z rb; 7
JF#i J#i J#i

Under this linear transformation o; becomes the standard cone (e, ..., en>R20. Note that

kir + Aa; Majb; — azb;) — kib;r
/ L i jVi iV Y5
ki'l} + ' = b—iei + g ' T’bi €;
J#
=e; + g Tej:ei— E kjej.

j#i ! j#i

Hence ¢; € T;N and T;N = (eq, ..., e,,u)z. This implies U; has cyclic quotient singularity
which is defined by the vector u.

Now assume that A = 1, then one can see that

U)/ =€; — E k:jej — ]i'i’U/,
J#

so one can take u = v'. O

Corollary 2.2.4. Let x4, ..., x,, be the local coordinates of X and v, ..., y,, be the local coordi-
bj b,

nates of U;. The change of coordinates of U; — X are given by x; = y;y,” and x; = yfl.
Proof. The change of coordinate is defined by 77, where T; is defined as in Lemma 2.2.3. [J

Corollary 2.2.5. Assume that

S =(filz1,..,xn) = .. = fe(z1,...,2,) =0) C X

is a complete intersection and S' is the proper transform of S on'Y . Assume that the exceptional
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locus E of S" — S is irreducible and reduced. Then

k
by + ...+ by
a’(Sv E) = L - ZWtwfk(xlv 7$n) — 1.

r ;
=1
Proof. Assume first that £k = 0. Denote ¢ : Y — X. Then on U; we have
o*dry A ... Ndx, = —yz (f[yZ ) dy; A ... N\ dy,,
J#i

hence Ky = ¢*Kx + (@ - 1)E.

Now the statement follows from adjunction formula. [

2.2.4 Divisorial contraction to points

We briefly introduce the classification of three-dimensional extremal divisorial contraction to
points between terminal threefolds. These result were done by Hayakawa, Kawakita and Ya-
mamoto [Hay99, Hay00, Hay05, Hay1, Hay2, Kawak(01, Kawak05, Kawak12, Y].

Assume that Y — X be an extremal divisorial contraction to point between terminal three-
folds and let F be the exception divisor which maps to a point P € X. Let rp be the index of

P, that is, the smallest integer such that rp K x is Cartier at P.

Theorem 2.2.6. There exists an local embedding

1
X = (f(l',y,Z,U) _O) (_>A4:L‘yzu /T(alw"aaé&) or

1
X = (fl(xa Y, %, U, t) = fg(ﬂf, Y, 2, U, t) = O) — AB&: Y2 ut)/;(ala ) a5)
and'Y is obtained by weighted blow-up of weight w and one of the following holds.

(i) rp > land a(X, E) = 1/rp. In this case a;, f; and w is given by Table 2.3 and Table 2.4.

This kind of divisorial contraction to point is called a w-morphism.
(ii)) rp = a(X, E) = 1. In this case f; and w is given by Table 2.5.
(iii) a(X,E) > 1/rp. In this case a;, f; and w is given by Table 2.6.

We use the notation that py. denote a polynomial which is weighted homogeneous of weight k

and g, denote a polynomial such that wt,,qg > k.
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Proof. Please see Table 2.7 for the reference of (1), Table 2.8 for (2) and Table 2.9 for (3). [
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(75 a:)

No. defining equations weight type condition
(r;a, —a, 1,7) a=a( modr)
! Y+ gom(2, 1) L(a,b,1,7) cAfr a+b=rm
5 o (4;1,3,1,2) k even, (a,b) = (1,3), or
2 75y + o (z,u) T2k +a,2k + b,1,2) cAz/4 X 11 oad) b) = (3, 1)
3 | Ay E (e - Bapun (2 u)E (4:1,3,1,2) cAw/s | keven (a.b) = (5.3).or
(b — Z’))wt)zk,TJr1(z7 u) + gzzz%s(z, u) 12k +a,2k +b,1,2) k odd, (a,b) = (3,5)
2 2 (2;0,1,1,1) k even, (a,b) = (0,1), or
4 7Y+ gon(z, ) Erakt L) | 2] fodd, () = (1,0)
5 v’ +y® £ (a — Daps (2, u)+ (2:0,1,1,1) cAzjz | Feven (@h) = (2,1)or
(b — 1)yp§(z,u) + gsri1(z, ) s(k+ak+0,1,2) k odd, (a,b) = (1,2)
z? + y° + 2u(z £ su), or (3;0,2,1,1)
6 ’ A58 ) D/3 b) = (1,4) or (4,1
2?2+ y° + 22U+ go0(y, 2,u) 5(3,2,a,0) b/ (@0) =@ 4or (4 1)
2 3 3 (3a 0727 1a ]-)
7 Y0+ 2%+ g>2(y, 2, u) I3.2.41) ¢D/3
2+ y® 4+ AyPuP+ (3;0,2,1,1)
8 ) ) ) Y D 3
’23 + 23 + 924(% 2 U’) (32((?[7 517 417 10)) ¢ /
2 3 7 Pt R _
9 r*+ Y0+ g>3(y, 2z, u) 1(3.2,0.0) cE/2 (a,b) = (1,3) or (3,1)
2 3 2,2 (2;1,1,1,0)
10 z® +y° 4+ Aytu® + g>3(y, 2, u) I(3,2,1,3) cE/2
2 3 2,2 (2;1,1,1,0)
11 4y’ + Aytut + g>5(y, 2, u) I(5,4,3,1) cE/2
2 + (Ayu + pzu® + vu’)r+ (2;1,1,1,0)
12 Ehh Ly cE/2
y3 +g26(y727u) 5(77 4737 1) /
5 3 (2;1,1,1,0)
13 oty —|—g29(y,z,u) —%(9,6,5,1) CE/2
(3,1,1,2)
2 T s w (2;17171’O> _ (3a17372)
14 r*+yzu+y + 2 +u Tabed cD/2 | (a,b,c,d) = (3.3.1.2)
(3,1,1,4)
22+ yt + 2" + u (2;1,1,1,0,1)
15 { : 17 )y Ty ) CD/2
sut Rt I1(3,1,1,2,5)
. ; (2;1,1,1,0) b<min{k — 2,0 — 2}
16 r* + yPu + Ayz" + g>1(z, u) %(b+2,b,1,4) cD/2 and b is odd
9 9 % (2;1,1,1,0) ) k=b<lor
17 4 yru + Ayz® + g>i(z,u) TI0,0,1,9) cD/2 | bisodd, I—b<k
2 :
18 {x Jgr/gi;&gfi(?w l(b(ij—l’zlﬁléo ’blzr 5 | P2 bis odd
2 \Y ) Ly 4
% + apy(z,u) + y*u+ 2;1,1,1,0 .
19 AMpﬁgﬂi(Zyu) . Eb+ o >2) ¢D/2 k> b, bis odd.
= ’ 2 ]
22+ ut + A\yz" + gspra(z,u) (2;1,1,1,0,0)
el Y 9 ? Y ? : >
20 {y2 tapy_y(zu) + hop(zw) | IO ob 12050 | P2 | Kiseddkzbwo
01 .
21 22 + y?u + M\y2® + gsp(z, u) (211,10 c¢D/2 biseven, k > b+ 1

s(b+1,0—1,1,2)

Table 2.3: Classfication of divisorial contraction to points: w-morphism cases
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) ) (r; a;) ..
No. defining equations weight type condition
22 4 ut + A\yz" + gspia(z, u) (2;1,1,1,0,0) ;
= ) ) b ) ) ) >
22 { N B %(b+1,b—1,1,2,2b) cD/2 biseven,k > b+ 3
2 + B 2 :
23 . yulf?%(z,u)—i-y ut . (211,1,1,0) cD/2 k> b+ 1,bis even.
Ayz ‘|’92b+1(27u) §(b+1?b+17172)
22 + gsp(z,u)+ (2; 1,1, 1,0) .
24 = —_ D/2 b is odd.
(v =Py (5 W) (yu+ A2 + upy_, (2,u)) 5(6,0,1,2) eD/ oo
22 + yt + gsp(z, u) (2;1,1,1,0,0) .
25 {yu+pb(2,u)+)\zb+t I0,6—2,1,2,b+2) cD/2 bis odd
Table 2.4: Classfication of divisorial contraction to points: w-morphism cases, continued
No. defining equations weight type condition
1 2+ y*u + M\y2F + gsan(2, u) (b,b—1,1,2) cD E>b+1
=k <
2 22+ y?u + ypi(z, u) + Ayzk + (b,b,1,1) cD b b _k:l_<l,k0r
gzm(Z,U) o
22+ ut + M\yz® + gsopio(z, u)
= ’ 1,b,1,1,2 1 D > 2
4 | 2?4+ y?u+ MyzF + gsopa (2, u) (b+1,b,1,1) cD Ek>b+1
22+ yt + gsop(2, u)
5 N b,b—1,1,1,b+1 D
{yu+zb+pp(z,u)+t (b, 11b+1) ¢
6 I2+y3+g24<y,Z,U) (2727171) clk
7 | 2+ 2xp3(y, 2) +y° + g>6(y, 2, 1) (3,2,1,1) cE
8 * +y° + g6(y, 2,u) (3,2,2,1) ck
9 | ¥4y’ + 3\’ + g>s(y, 2, 1) (4,3,2,1) ck
10 :E2:|::Ep4(y,z,u)—I—y?’—l—gzg(y,z,u) (5737271) ck
11 x2+y3+y2p3(z,u) +gZ9(y727u) (5747271) ck
12 IQ +y3 +9212(y727u) (6747371) ck
13 552"‘3/3"‘3/2174(27”)+gzl4(3/azau> (7757371) clk
14 x2i$p7(yaz7u)+y3+9215(yaZ?”) (875>3a1) cE
15 2* +y + g>18(y, 2, u) (9,6,4,1) cE
16 :E2+y3—|—y2p6(z,u) +g220(yazvu) (107774a1) ck
17 $2+y3 +9224<ya27u) (127875a1> ck
18 1‘2 +y3 +9230<y727u) (157 107671) cE
r? +y° + tu+ g=6(y, 2, u)
1 =P 2,1, 1 E
9 { m(x,y,z,u)—i—t (37 (] a5) c
20 $2+Ip2(yaz7u>+93+926(9727U) (4727171) CEﬁ
2+ y? 4 tpa(z,u) + gy, 2, u)
21 ’ =\ 3,2,1,1,4 cE
{ as(y, 2 0) + £ ( ) 7
22 | 2+ 7 +yPpa(z,u) + ygs(z, u) + (3,3,1,1) cEr
9>6(y, 2, u)
2?4+ yt + g>10(y, 2, u)
23 = T 5,3,2,1,7 cE
{ y> + ps(y, 2, u) + ( )

Table 2.5: Classfication of divisorial contraction to points: Gorenstein and discrepancy one cases
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No. defining equations 7(7’;.@2-) _pe condition
weight a(X, E)
o (r;a, —a, 1,7) cA/r b= a,
1 Y + 2" + goma(z, 1) %(quaﬂa) a/r bk 2 rma
2,24 .3 2 (1;-) cAy
2 Tty + 27+ ru +926(x7y727u) (4737271) 3
1;— cD
3 x2—{—y2u—i—zm—|—922b+1(x,y,z,u) (b+(1 b)a 1) a ma =2b+1
1’2 + yt + g>2b+2(y> Z, u) (17 _) cD
4 {yu—i—zm—l—upb(z,u)—l—t (b+1,b,a,1,b+2) a ma=b+1
22+ My2™ + ut + gspi1(2,u) 1;—) cD
= ) >
: {?/2 2 (2 ) Hga(zw) £ (B L4 LD) RS 8m 2 b+3
22 4+ Ayz™ + ut + gspi1(z, u) 1;—) cD
= b >
i {y +2pua(zu) Hga(mu) +E) (5552 1LD) 2 dm 2 b+3
; 22 + y*u + 2yupy_1 (2, u)+ (1;-) cD s b
Ayz™ + 2° + gsop(z, u) (b,b,2,1) 2 =2
g 22 + y?u + 2yups(z, u)+ (1;-) cDy
ud + gs6(2,u) (3,3,1,2) 2
9 2%+ yPu+ 23+ pyu®+ (1;-) cDy
2yups 3(2, u) + g>¢(2, ) (3,4,2,1) 3
9(7,y,0,0) =0
o2 -
) ) . (2’17171’()) CD/2 881.229(1:7y7zyu) O
10 T+ yu+z +ga+1(xayazau) (é—{—l b a 1) CL/2 8—ygg(9€,y,z,u) =0
2 T2 ma = 2b+ 2
a and b are odd
" 2% + Yyt + gopp0(z, 1) (2;1,1,1,0,1) cD/2 ma="b+2
yu+ 2" +psq(zu) +1 (b+1,2,212+72) a/2 a and b are odd
2;1,1,1,0 cD/2
12 22+ y?u+ 2% + gy, 2, 0) ((Qb TR 1; 1/
9 . . (2;1,1,1,0) cD/2 b,c >4
13 TAyRuty et (2,2,1,1) 1 b is even
2
E?—ng(y,z,u) =0
2
14 {x2 + ut + Ayzbt2 4 az20+2 + g>o04+2(¥, 2, u) (2a 17 17 17 07 O) CD/2 %p(l’, z, U) =0
Y2+ pxzb=l 4 B220 4 poy(x, 2z, u) +t (b—|— 1,b,1,1,2b—|—1) 1 bodd and a2 + BA2 # 0, or
bevenand 2 + au? # 0
5 2 +ut +y* + 22 (2,1,1,1,0,0) cD/2
yr+ i (2,1,1,1,3) L
16 $2+yt+924b+2(zau> (27 71717071> CD/2
yu + 22+ pop i1 (z,u) +t (20 +1,2b,1,1,2b + 2) 1
17 {x2+ut+)\yzbt3 +M/2% + gopi1 (Y, 7, 1) (2, 1,1,1,0, O) CD/2 b =8k + 1and Ay # 0, or
9 ; b=3 b—1 » b_l b—_l _ 1,0
y*+Nez T +pz 2 +pp_i(z,z,t) +t ( 5 ) 5 ,2,1,[)) 2 b=8k+T7,\Nu #0
18 xQ + (y - p2(27 ’LL))3+ (17 _) CEﬁ
yu3 +g26(y7z7u) (373727 1) 2
19 ZL’2—|—’yt—|—ngO(y,Z,U) (L_) CE7
y? + pe(z,u) +t (5,3,2,2,7) 2
2 3 7 (L) cErg
20 " +y  +u +9214(z,u) (77573’2) 5
2?43+ 2t + Ut (2;1,0,1,1) cE/2 5
21 Ay2u? + gss(y, 2, u) (4,3,2,1) 1 a9, 21) =0

Table 2.6: Classfication of divisorial contraction to points: large disprepancy cases
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No. Reference

1 [Hay99, Theorem 6.4]

2 [Hay99, Theorem 7.4]

3 [Hay99, Theorem 7.9]

4 [Hay99, Theorem 8.4]

5 [Hay99, Theorem 8.8]

6 [Hay99, Theorem 9.9, Theorem 9.14]

7 [Hay99, Theorem 9.20]

8 [Hay99, Theorem 9.25]

9 [Hay99, Theorem 10.11, Theorem 10.17, Theorem 10.22, Theorem 10.28, Theorem 10.41]
10, 11 | [Hay99, Theorem 10.33, Theorem 10.47]
12 [Hay99, Theorem 10.54, Theorem 10.61]
13 [Hay99, Theorem 10.67]

14 [Hay00, Proposition 4.4, Proposition 4.7, Proposition 4.12]
15 [Hay00, Proposition 4.9]

16 [Hay00, Proposition 5.4]

17 [Hay00, Proposition 5.8, Proposition 5.13]
18 [Hay00, Proposition 5.9]

19 [Hay00, Proposition 5.16]

20 [Hay00, Proposition 5.18]

21 [Hay00, Proposition 5.22, Proposition 5.32]
22 [Hay00, Proposition 5.25]

23 [Hay00, Proposition 5.28]

24 [Hay00, Proposition 5.35]

25 [Hay00, Proposition 5.36]

Table 2.7: Reference for Table 2.3, Table 2.4

No. | Reference
1-5 | [Hayl, Theorem 2.1-2.5]
6-23 | [Hay2, Theorem 1.1]

Table 2.8: Reference for Table 2.5

20
21

Y, Theorem 2.10]
HayO05, Theorem 1.2]

No. Reference
1 [Kawak05, Theorem 1.2 (1)]
2 [Y, Theorem 2.6]
3.4 [Kawak05, Theorem 1.2 (ii)]
5 [Y, Theorem 2.2]
6 [Y, Theorem 2.3]
7,8 [Y, Theorem 2.4]
9 [Y, Theorem 2.7]
10,11 | [KawakO5, Theorem 1.2 (ii)]
12-16 | [Hay05, Theorem 1.1]
17 [Kawak12, Theorem 2]
18 [Y, Theorem 2.5]
19 [Y, Theorem 2.9]
[
[

Table 2.9: Reference for Table 2.6
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Chapter 3

Betti numbers in the three dimensional

minimal model program

The relations between topology and geometry are the research topic of many studies. A typical
question, which was originally asked by Hirzebruch and modified by Kotschick (cf. [Kot08])
states, if one fixes the topology of a smooth algebraic variety, can its Chern numbers only assume
finitely many values? This question is trivial in dimension one and has been proved in dimension
two (please see [Kot08]). Cascini and Tasin [CT17] have proved the statement in some special
cases in dimension three, but in general this question is still open for dimension greater than
two.

We will briefly introduce the result of three dimensional case [CT17]. One needs to show
that ¢ and c;.c, of a smooth threefold is bounded by a constant depending only on the topolog-
ical type of the threefold. The Riemann-Roch formula asserts that c;.co can be bounded by a
combination of Betti numbers. If our variety is minimal, then the Miyaoka-Yau inequality says
that one can use c;.c, to bound ¢}. Assume the variety is not minimal, then a natural approach
is to run the minimal model program.

One has to estimate the change of ¢} under the minimal model program. In the case of
divisorial contractions to points, this quantity can be bounded by b, and in the case of blowing-up
smooth curves, it can be bounded by b3 and the cubic form. Hence for those smooth threefolds
with the property that the process of the minimal model program consists of only divisorial
contractions to points and blowing-up smooth curves, their ¢} will be bounded by topology.
This is the main theorem of [CT17].

One can see that how to estimate the change of Betti numbers under the minimal model
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program becomes an important issue if we want to generalize the result of [CT17] into general
situations.

In the process of the three-dimensional minimal model program, one can prove that by, by,
bs and bg won’t change and b, and b, change regularly (cf. Proposition 3.1.12). However, the
change of b3 could be arbitrary positive or arbitrary negative (please see Section 3.4). The point
is that because other Betti numbers change regularly, computing the change of b3 is equivalent
to computing the change of topological Euler characteristic, which can be compute directly
thanks to the classification of three-dimensional divisorial contractions and the Chen-Hacon
factorization. The goal of this chapter is to prove Theorem 3.3.6, which states that the difference
of b3 under steps of minimal model program begin with a smooth threefold could be bounded

by some constant depends only on Picard number of the smooth threefold.

3.1 Preliminary

3.1.1 Biraitonal maps between terminal threefolds

In this subsection we introduce the Chen-Hacon factorization, which factorize a step of the
three-dimensional minimal model program into simple birational maps. Let X --» X’ be a
step of the minimal model program. If X is Gorenstein, then this birational map is well studied
in [Cut88] (please see Remark 3.1.4). To study birational maps begin with a non-Gorenstein
terminal threefolds, we first recall the definition of depth, which is a quantity measures the

complexity of non-Gorenstein singularities.

Definition. Let X be a terminal threefold. A w-morphism is a extremal divisorial contraction
which contract exceptional divisor to a point of index » > 1, such that the discrepancy of the
exceptional divisor is 1/r.

The depth of X, denoted by dep(X), is the minimal length of sequence of w-morphisms
X, — X1 — ... = X; — X, such that X, is Gorenstein. Note that by [Hay00, Theorem

1.2], for any terminal threefold X, dep(X) exists and is finite.
In the world of birational geometry, depth satisfied some good property as follows.

Proposition 3.1.1 ([CH11], Proposition 2.15). If f : Y D E — X > P be (the germ of) a

divisorial contraction to a point. Then dep(Y) > dep(X) — 1.
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Proposition 3.1.2 ([CH11], Proposition 3.8). Let X — W be a flipping contraction and X --+
X' be the flip, then dep(X) > dep(X").

Remark 3.1.3. If X --» X' is a flop. Then by [Kol89] the singularities of X and X" are locally
isomorphic, hence dep(X) = dep(X").

Remark 3.1.4. Let X be a terminal threefold. Then dep(X') = 0 if and only if X is Gorenstein.
In this case, by [Ben85, Corollary 0.1], there is no flipping contraction. Also, if X — W is
a divisorial contraction to a curve, then X is obtained by blowing-up an LCI curve on W (cf.

[Cut88, Theorem 4]).

Now let X be a smooth threefold. Then the singularities appear in the minimal model pro-

gram of X can be bounded by the Picard number of X.
Proposition 3.1.5 (Cascini, D.-Q. Zhang, in the proof of [CZ14] Proposition 3.3). Let X be a
smooth projective threefold and assume that

X=Xo-2X; ... X, =7

is a sequence of steps for the K x-minimal model program of X. Then dep(Z) < p(X).
Remark 3.1.6. In fact, the argument in [CZ14] Proposition 3.3 implies dep(Z) < p(X/Z).
Now we are ready to state the Chen-Hacon factorization.

Theorem 3.1.7 ([CH11], Theorem 3.3). Let g : X D C — W > P be an extremal neighbor-

hood which is isolated (vesp. divisorial). If X is not Gorenstein, then we have a diagram

Y- - ---- =Y’
| /|
X X'
X y
W

where Y --» Y consists of flips and flops over W, f is a w-morphism, f' is a divisorial
contraction (resp. a divisorial contraction to a curve) and g' : X' — W is the flip of g (vesp. ¢’

is divisorial contraction to a point).

Remark 3.1.8. The diagram above satisfies more properties.
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(i) dep(Y') = dep(X) — 1. This is by the construction of Y in [CH11].

(i) Y --» Y’ can be decomposed into Y = Yy --» Y7 --» ... --» Y} = Y, such that
Y; --» Y,y isaflip fori > 0 and Y, --» Y] is either a flip or a flop. This is the step 4 in
the proof of [CH11, Theorem 3.3].

3.1.2 Topology of terminal threefolds

In this subsection, we will compute the change of all Betti numbers except for b3 under three

dimensional birational maps. For the divisorial contraction cases it is known to experts.

Lemma 3.1.9 ([CT17], Lemma 2.17). Let Y — X be an elementary divisorial contraction
within Q-factorial projective threefolds with terminal singularities. Then b;(Y) = b;(X) if
i=0,1,5,6, and b(Y) = b;(X) + Lifi = 2, 4.

Corollary 3.1.10. If X — W is extremal divisorial contraction, then

bs(W) = b3(X) = Xtop(X) = Xiop(W) = 2.

The following statement is well-known to experts. However, we are unable to find appro-

priate reference hence we provide a proof here.

Lemma 3.1.11. Assume that X --+ X' is a three-dimensional terminal flop, then b;(X) =
bi(X") for all i.

Proof. By [Chell] (please see Theorem 3.4.4 below) there exists f : Y — X (resp. f': Y’ —
X") such that Y (resp. Y”) is smooth and f (resp. f’) is a combination of divisorial contractions
to points. By Lemma 3.1.9, we have b;(Y) = b;(X) (resp. b;(Y") = b;(X’)) fori = 0,1,5,6,
and b;(Y) = b;(X) + p(Y/X) (resp. b;(Y") = b;(X") + p(Y'/X")) for j = 2, 4.
Claim. b;(Y) = b;(Y') fori =0, 1, 2,4, 5 and 6.

Note that X and X’ has the same singularities by [Kol89, Theorem 2.4], hence p(Y /X)) =
p(Y'/X"). Thus the above claim implies

bi(X) = b;(X') fori =0,1,2,4,5,6.

To prove the claim, one only need to prove that b5(Y) = b5(Y”) and by (Y') = by(Y”) because
bZ<Y) = bz<Y/> =1for: = O, 6 and bl(Y) = b5(Y> (resp. bl(Y,) = b5(Y’)), bg(Y) = b4(Y)
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(resp. bo(Y') = by(Y")) since both Y and Y’ are smooth. Let ¢ : Z — Y be the resolution of
the indeterminacy of Y --» Y’ which is obtained by a sequence of blowing-up smooth centers
onY. Let¢' : Z — Y’ be the induced morphism. Then Z — Y is a composition of elementary
divisorial contractions, hence b5(Y') = b5(Z) and bo(Y) = bo(Z)—p(Z/Y). By [CT17, Lemma
2.15] we have that

0— H(Y' Q) = H(Z,Q) & H(¢(£),Q) = H*(E',Q) = 0

is exact, where £/ = Exc(¢'). This implies b5(Y') = b5(Z) = b5(Y).
On the other hand, in the proof of [CT17, Lemma 2.16] one can see that

0— Hy(Z)Y',C) — Hy(Z,C) — Hy(Y',C) = 0

is exact, where Ho(Z/Y',C) C Ho(Z,C) is the subspace generated by the image of Hy(E', C)
in Hy(Z,C). Hence
ba(Z) = by(Y") + dim Hy(Z /Y, C).

As mentioned in [CT17, Lemma 2.16] we have Hy(Z/Y") is generated by algebraic cycles,
hence p(Z/Y") < dim Ho(Z/Y’,C). Also we have

p(Z)Y') = p(Z)X') = p(Y'/X) = p(Z/X) = p(Y/X) = p(Z]Y).
The conclusion is
bo(Y') = bo(Z) —dim Hy(Z)Y',C) < bo(Z) — p(Z)Y") = 0o(Z) — p(Z]Y) = ba(Y).

However by the symmetry of Y and Y one can also show that by(Y") < bo(Y”), hence by(Y') =
ba(Y7).

Now we have proved that b;(X) = b;(X’) for i # 3. Since Xtop(X) = Xtop(X') by the
construction in [Kol89, Theorem 2.4], we have b3(X) = b3(X"). O

After applying the Chen-Hacon factorization, one can deal with the flip case.

Proposition 3.1.12. Let X be a smooth threefold and X = Xy --» X1 --» ... -——» X,,, be

the process of minimal model program. Then by, by, b; and bg are constant and both by and b,
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decrease. Moreover, by and by strictly decrease by one if X; — X1 is a divisorial contraction,

and remain unchanged if X; --+ X, is a flip.

Proof. 1f X; — X, is a divisorial contraction we can use Lemma 3.1.9. Assume that X; --»

X1 is a flip. We will apply Theorem 3.1.7 and induction on dep(X;). One has the diagram

Yoo -y
g /|
Xz Xi+1
X %

w

Note that by Remark 3.1.8 we have dep(Y') = dep(X;) — 1. One can write
Y=Y,->»Y,-—>...-Y, =Y

and Y; --» Y4 is a flip or flop for all j, hence dep(Y;) > dep(Y;11) by Proposition 3.1.2 and
Remark 3.1.3. By the induction hypothesis and Lemma 3.1.11, we have

Hence

and

3.2 The estimate on topology

The purpose of this section is to estimate the topological Euler characteristic of the exceptional
divisor of a birational morphism which is contracted to a point. We know that any such kind
of divisorial contractions is obtained by weighted blow-up. In most common situation the ex-
ceptional divisor is contained in a weighted projective space. However in some special cases
the exceptional divisor is contained in a cyclic quotient of a weighted projective space. To deal

29
doi:10.6342/N'TU201801712



with such kind of special cases we have to introduce the following generalization of weighted

projective spaces.

Definition. An n-dimensional variety X is a generically cyclic quotient space if there exists a

Zariski open set U C X such that

1. U= A"/1(ay, ..., a,) for some natural numbers r and ay, ..., a,.

2. X — U is also a generically cyclic quotient space.

Let D be an integral Weil divisor on X. We define
deg D = max{deg ¢y (D|v),deg D|x—v},

where ¢y : A" — U is the natural quotient map and we define the degree of a divisor in A" to

be the degree of the defining equation of this divisor.

Remark 3.2.1. It is clear that a weighted projective space is a generically cyclic quotient space.
Moreover, let W = A"/ %(al, ..., a,) be a cyclic quotient singularity and let W/ — W be the
weighted blow-up the origin of W with a weight w so that w(z, y, z, u) = (b, ..., b,). Assume
that b; = Aa;(mod r) with A = 1 or . One can see that the exceptional divisor £ of W/ — W
is a generically cyclic quotient space. In fact, E is a weighted projective space if A = 1 and a
cyclic quotient of a weighted projective space if A = r. Assume that D is a Weil divisor on W/
such that wt,,(D) = ™, then deg D < m.

By the classification of divisorial contractions to points, one can check that if Y — X is

a divisorial contraction to a point, then the exceptional divisor is an LCI locus in a generically

cyclic quotient space of dimension four or five.
Theorem 3.2.2. Fix three positive integers n, k and d.

(i) There is an integer N such that for any algebraic set X; C A" defined by an ideal
I=(f1,.-, fr) with deg fi < d for all i, we have |Xop(X1)| < Ni,.

(it) There is an integer My, satisfying the following property. Let Y be an n-dimensional
generically cyclic quotient space and let W = Dy ...Dy, be a finite intersection of reduced

prime Weil divisors such that deg D; < d foralli =1, ..., k. Then

Xtop(W)| < Mg
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Note that Theorem 3.2.2 (i) can be easily proved using Milnor-Thom Theorem which states

as follows.

Theorem 3.2.3 ([Mil64], Theorem 2, cf. also [Tho07]). Let V' C R™ is defined by polynomials
f1, oo fr. If deg f; < d, then the sum of Betti numbers of V is bounded by d(2d — 1)™ 1,

However we will write a pure algebraic proof here. To prove the existence of /V-constants
and M -constants, the basic idea is to reduce the question into lower dimensional cases. We will

prove:
Proposition 3.2.4. Assume that N :l_l exists for all e, | € N, then N, ok exists.

Proposition 3.2.5. If M, exists for all m < n and Ny, exists for all | > k, then M) exists.

3.2.1 The existence of N-constant

In this subsection we prove Proposition 3.2.4. Given X; C A", where I = (f1, ..., fx) satisfying

deg f; < d. Consider the natural map
Klxy,...,xn 1] = Kz, ..., 2] = Klxq, ..., 2] /1,

here K is the ground field. This gives a morphism ¢ from X7 to {z, = 0} = A"! Fix

p=(ay,...,a,_1) € A"1, then

¢ (p) = {(ay, ..., an_1,7,) € A™| filay, ...;an_1,7,) = ... = frlay, ..., an_1,7,) =0} .

Thus ¢~ (p) can be studied via the equations fi, ..., fr. Now assume that the topology of the
image is known, then since the fibres can be studied, the topology of the original space X; could
be computed. This is the reason why one can reduce the problem to the lower dimensional case.

For the induction reason, we will prove a stronger statement.

Proposition 3.2.6. Assume N, C”lel exists for all integers c and m. Let Z be an algebraic subset
in A"~ which is defined by an ideal J = (g1, ..., gi) and assuming deg g; < e for some constant

e. Then there is an fixed integer L}, such that |Xiop(¢™' Z)| < Ly ..

We divide this subsection into four parts. In the first part we study the common roots of a

collection of polynomials, which is the main tool we will use to study the fibre of the projection
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¢. After the tool is developed, we could get much information between the points in H and its
fibre in A", provided that the degree of f1, ... fr do not be too small. This is the second part
of this subsection. In the third part we deal with the case when the degree of f; is too small
for some ¢ so that above technique does not work. Finally in the last part we run a complicated

induction and prove Proposition 3.2.6.

The generalized resultant

We generalize the idea of the resultant in classical algebra to describe the condition that a col-
lection of polynomials has a common zero.
Let g1, ..., gr € K[x] be one variable polynomials with degg; = d; > 0. One write g; =

>~ aijo’ and we will denote

azvdz
Qi d;—1 Qg d;
i . . . - Q44
gl?"'7gk3 _
;.0
;0
;0

which is a (d; + di) x dj, matrix satisfying

i ai,d,-—q-i—p 0 S pP—9q S dz
( gl,...,gk)pq = .

0 otherwise
Also define
ak7dk
Akdy—1 Ak dy
B B Ak, dy,
gl A ‘?gk -
Qg0
07X}
Qa0
32
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be a (d; + dj.) x d; matrix such that

pdy—grp 0 < p—q<dy

0 otherwise
Consider

1 1

A.‘Jl ~~~~~ Ik Bgl ----- 9k O 0
2 2

T _ Ag1 ,,,,, Ik 0 B 91ye-sGk 0
gi,---, 9k Y
0 0

k-1 k—1

Agl 7777 9k O 0 Bgl 7777 9k

whichisa (dy + ... + dg_1 + (k — 1)dy) X (d1 + ... + dj) matrix.

Lemma 3.2.7. The polynomials g, ..., g have common zeros if and only if the matrix T,
is not full rank. Moreover, the number of the common zeros is exactly the nullity of Ty, .,

counted with multiplicity.
Proof.

Claim. ¢, ..., g has common zero if and only if there is polynomials Ay, ..., hy such that
degh; < degg; and h;gr = hig; forall ¢ < k.

Indeed, if the polynomials has common zeros, then they have a common factor in the poly-
nomial ring K'[z]. So we may write g; = bh;, where b = ged(gy, ..., gx) and then deg h; < deg g;
and h;gr = hpg;. Conversely, assume h;gx, = hyg; for some hq, ..., h; with degh; < degg;. If
gi and hy, has no common root, then every root of g, is a root of g; for all ¢ thanks to the relation
higr = hrg;. Otherwise let | = ged(gy, hy) and define g, = gx/1, hi = hi/l. Then deg gy, > 0.
We still have the relation ;g = hig; and ged(g, hi) = 1. As the previous discussion the root
of g, will be a root of g; for all s.

Thus to prove the lemma, one only need to find A; satisfied the condition above. Let

t
v = (Tk,d,rl? cos Tl =T 1dy—15 -+ —T1,0, =T2,do—15 -5 T Th—1,dj_1—15 -+ —Tkﬂ,o)

be a column vector in K@ ++d and let h; = > y ri,j:cj , then one can check that the condition

higr = hig; 1s exactly the linear condition 7,, ., v = 0. Hence g, ..., gx has common zeros if

-----

and only if T}, . 1is not full rank.

-----

Now notice that if b = ged(g, ..., gx) and let a; = g;/b, then the number of common zeros

of g1, ..., gx is exactly degb. For 1 < j < degb, Let v; be the vector in KT+ corresponds
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to the collection of polynomials {z/~'c; }¥_,, then v; is lying on the null space of M and vy, ...,
Vdegs are linearly independent.

lection of polynomials hy, ..., hy satisfying h;gr = hig; and deg h; < degg;. We claim that o
divides h; for all 2.

Let ¢; = ged(gi, gx), 9i = ¢i5; and gx = ¢;y;. The relation h;gy, = hyg; yields hyy; = hyi 5.
Since ged(F;,vi) = 1 we have ~; divides Ay, for all 4, hence [.c.m.(vq, ..., vx—1) divides hy.
On the other hand we have the relation g, = bay = ¢;7y;. Note that b = ged(cy, ..., k1),
hence ; divide oy, for all i and so l.c.m.(7y1, ..., Vk—1) divides ag. If ap # Lema (v, .oy Ye—1)
then oy, /l.c.m.(7y1, ..., Yk—1) will divide ¢; for all 4, contradict to b = ged(eq, ..., cx—1). Thus
ay = l.e.m.(v1,...,k—1) divides hy. Finally the relation h;gr = hyg; gives that h;o = hiay.
Since «y, divide hy, we have «; divide h; for all <.

Now deg h; < deg g; = degb+deg «;, hence h; = h'«; for some polynomial 2’ and deg ' <
degb. Thus w is lying on the subspace generated by v, ..., Vgegs, and then null(T,

-----

and the last part of the lemma is proved. ]

Lemma 3.2.8. Assume degg; > 1 for all i. Let

so =null(Ty,, . g.); 51 = null(T,

/ /
1syeeey Gks915-+s gk)’

-----

here g. denotes the formal derivative of polynomials. Then the number of distinct common roots

of g1, ..., gi is exactly sg — si.

Proof. Let b = gcd(gy, ..., gr). We will show that g.c.d(b, V') = ged(g1, ., Gk, g1, -+ Jr)- In-
deed, if we write g; = bh,, then g} = b'h; + bh, hence g.c.d(b, b’) divides g; and ¢; for all i and
then ged (b, 0') divides ged(gu, .-, gk, 91, ---» gj, ). Conversely, if p is a polynomial divides g; and
g. for all 4, then p will divide ged(gs, ..., gx) = b. The condition p divides ¢, implies p divides
b'h; for all i. However, gcd(hy, ..., hy) = 1. Thus p divides 0’ and hence p divides ged(b, V).
That is, ged(g1, .-, Gk, 915 -, g}.) divides ged(b, V).

Now write b = (x —aq)™...(x — a,,)"™™, then the number of distinct common roots of ¢, ...,

gx 18 m. On the other hand,

V= ((x — al)n—l,,.(l’ — am>7’m—1) (Z ri(x — al).,,(:L‘ — ai_l)(:L’ — CLH_l)...(ZE - am)) .

i
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Hence ged(b, V) = (z — a1)" ' ...(x — a,,)™'. By Lemma 3.2.7, s = degb =11 + ... + 7,
and s; = deg(ged(b,V')) = (ry — 1)+ ...+ (1, — 1) = 11 + ... + 7, — m. A conclusion is that

Sp — S; = m, as we want. ]

The geometry of the projection map
In this part we study the fibre of ¢ : X; — A"~!. We will view f; as a polynomial in z,, and we
will denote f/ = % fi- Let

TO — Tfhf{ if k = 17 Tl — Tflvf{hf{/ ifk = 1’

Ty k> 1. Thoofirtingy,  HE>1

provided that all the polynomials are non-constant. Note that 7° and 7! are matrices with all

entries being a polynomial in K[z1, ..., x,_1].

Convention. For j = 0, 1, we say the condition (A?) are satisfied if T? is defined. That is,

deg f; > j (resp. j + 1) forall ¢ if £ > 1 (resp. k = 1).

When (A7) is satisfied, one could study the fiber of ¢ via the nullity of 77. There are three
possibility of the fiber of ¢: empty, finite points or a A!. The fiber is a A! at a point P € A"~!
if and only if all f; vanishes at P, which is easy to detect. The main question is that how to find
the locus on A" ! such that the pre-image is finite, and how to find the cardinality of the fiber.

Assume (A°) one could solve the first question (cf. Lemma 3.2.9, Lemma 3.2.10). If (A%)
holds and assuming more conditions one could count the cardinality of the fiber (cf. Lemma

3.2.11).

Lemma 3.2.9. Assume (A°). Fix p € A" and assume that T°(p) is full rank. Then

deg fi ifk=1,
0 ifk > 1.

o~ (p)| =

Proof. Assume k = 1. If the leading coefficient vanishes over p, then the first row of 7 is
always zero. Since TV is a square matrix, this implies 7 is not full rank. Hence we may assume
the leading coefficient do not vanishing at p, so both f; and f{ are non-constant. Using Lemma
3.2.7, we see that T%(p) is full rank implies f; and f{ consist no common zero. Hence f; consists

no multiple roots over p, so ¢~ (p)| = deg fi.
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Now assume k& > 1. First assume f; is constant over p for some ¢. Then if f; is identically
zero, T° can not be full rank. On the other hand, if f; is a non-zero constant, then <b_1(p) is
always empty so the conclusion is always true. Finally assume f; is non-constant for all 7, then
for any p € H, ¢~ '(p) is non-empty only if fi, ..., fr admit common zeros. By Lemma 3.2.7,

this implies the matrix 7° is not full rank. [

Lemma 3.2.10. Assume (A°). Given p € A"! and assume that T°(p) is not full rank. Assume
further that the leading coefficient of f; do not vanish at p for all i. Then if k > 1, we have that
p is contained in the image of ¢. For k = 1, one can say that ¢ is a finite morphism near p and

p is lying on the ramification locus.

Proof. First assume k& > 1. The hypothesis implies that fi, ..., fi is non-constant polynomial in
x, over p. By Lemma 3.2.7, TV is not full rank at p if and only if fi, ..., f; admits a common
zero, say & € K. If we write p = (aq, ..., a,_1), then the point (a4, ..., a,_1,§) is lying on X,
and is mapped to p by ¢. Hence p is contained in the image of ¢.

For the k = 1 case, note that 7° is defined implies deg f; > 1. By assumption, the leading
coefficient of f; do not vanish at p, hence it do not vanish on a neighborhood U of p. We see
that for any point ¢ € U we have f; is a polynomial of positive degree in x,, over ¢, so the
pre-image of ¢ consists only finitely many points and so ¢ is a finite morphism on U. Now the
condition that 7°(p) is not full rank implies f; consists multiple root over p, hence p is lying in

the ramification locus of ¢. [

Now let Z C A™! be a subset contained in the image of ¢. For p € Z we will denote
r(p) = |¢7'(p)| and r(Z) = max,cz{r(p)}. Also define so(p) = null(T°(p)) and s1(p) =
null(T*(p)). What we want to do is to find the locus which consists of the points p € Z such
that r(p) # r(Z). Such point could be determined using the number s, and s;, under suitable

conditions.

Lemma 3.2.11. Fix Z C A" be any subset. Assume that the leading coefficient of f; do not
vanish over Z for all i. When k = 1 (vesp. k > 1) assume (A°)(reps. (A')). Then foranyp € Z

we have

(i) Assume k = 1, then r(p) = deg f1(p) — so(p).

(ii) Assume k > 1, then r(p) = so(p) — s1(p).
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Proof. First assume k > 1. By Lemma 3.2.8 we have r(p) = so(p) — s1(p) forall p € Z. Now
assume k¥ = 1. The assumption that 7° exists and the leading coefficient of f; do not vanish
implies that ¢ is a finite morphism over Z. For any p in Z the number r(p) is the number of
distinct roots of f1 over p. Assume fi(p) = (z,, — a1)™...(xy, — @)™ (2, — b1)...(x,, — b)) With
r; > 1. Wehaver(p) = m+1,deg fi(p) =r1+...+rm+Lso(p) = (rm—1)+..+(rm=1) =
r + ... + 1y —m by Lemma 3.2.7, hence r(p) = deg fi — so(p).

O

Corollary 3.2.12. Fix Z C A" '. Assume that the leading coefficient of f; do not vanish over
Z for all © and one of the following condition holds:

(i) k=1 and (A°) holds.
(ii) k > 1, (AY) holds and s is constant over Z.

Then ¢ is a finite morphism over Z. When k = 1 (resp. k > 1) the ramification locus of ¢ is

exactly the locus where the function s, (resp. s1) do not reach its minimum.

The small degree cases

In this section we deal with the cases that the deg f; is too small so that (A”) or (A!) dose not
hold.

Lemma 3.2.13. Under the assumption and notation in Proposition 3.2.6, if k = 1 and (A°) dose

not hold over Z, then the conclusion of Proposition 3.2.6 is true.

Proof. The assumption says that deg f; < 2 over Z. If deg f; = 0, then f; € K[xq,...,x,_1] is
independent of z,,. Let Z’ be the zero locus of the ideal .J 4 ( f1), then |10, (Z7)] < an;f{@d},lﬂ.
One see that outside Z', the pre-image of ¢ is empty, and ' 7" = Z'x A'. Hence | x10p(¢ ' Z)| =
a0 2] = (2] < Ny -

On the other hand, assume deg f; = 1. Write fi = a1z, + ag. Let Zy be the zero locus
defined by J + (a1) and Zy = Z — Zy. Then X1o,(¢~" Zo) can be computed in the previous case
since we can replace f; by ag and replace Z by Z,. On the other hand, since f; is a degree one

polynomial over any points in Z;, we have ¢~ Z; = Z;. Now |Xiop(0 71 Z1)| = |Xtop(Z1)| =

Xtop(Z) = Xtop(Z0)| < N2TH + Ng;(l{ad}JH can be compute. Thus the lemma is proved. [

The other case is that (A%) holds but (A') dose not hold. This happened when k& = 1 and
deg f1 =2 or k > 1 and deg f; = 1 for some :.
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Lemma 3.2.14. Let Z C H and assume the following.

(i) (A°) holds but (A') dose not hold.

(ii) T°(p) is not full rank for all p € Z.
(iii) The leading coefficient of f; do not vanishing for all i for any point p € Z.
Then ¢ is one-to-one over Z. In particular, X1, Z) = Xtop(2).

Proof. First assume k£ > 1. By Lemma 3.2.10 the assumption yields that Z is contained in the
image of ¢. On the other hand, T is defined but 7" is not defined implies deg f; = 1 for some
1, hence ¢ is one-to-one over 7.

Now assume k = 1. Since 7" is defined but T"! is not defined, we have deg f; = 2, hence
¢ is two-to-one over some open neighborhood of Z. However, Lemma 3.2.10 implies that 7 is

lying on the ramification locus, hence ¢ is one-to-one over Z. ]
The main proof

We will need the following lemma.

Lemma 3.2.15. Let S = S} U Sy U ... U Sy, for some algebraic set S;. Forany I C {1,...,k},
we denote S; = (\,c; Si. Assume that |x.0,(S1)| < M for some integer M and for all I C
{1,...,k}. Then

Xtop(S)] < (2° = 1)M.

Proof. We prove by induction on k. The case that £ = 1 is trivial. In general let S’ = S; U ... U
Sk—1, then S’ N S, = (S1 N Sk) U ... U (Sk_1 N Sk), hence
|Xtop<S/ A Sk’)‘ < (2k_1 - 1)M

by the induction hypothesis. We also have |x;0,(S")| < (2871 — 1) M. Thus

Xtop(S)| = [Xtop(S” = (5" N Sk)) + Xitop(Sk — (S" N Sk)) + Xeop(S' N Sy)]
< Xtop (S| + [Xtop(Si)| + [top(S" N S|

< (2@ 1)+ 1)M = (28 —1)M.

]
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Proof of Proposition 3.2.6. We will divide Z into many pieces, and treat each piece separately.
In each piece, either the topology of the pre-image can be easily computed, or after cut out some
closed subset the pre-image can be computed, and there is some quantum which strictly decrease
after restrict to the subset above. In the latter case we can use induction on the special quantum

and finally the problem could be solved. We will treat the following cases.

Case(I) (A°) holds.

Let
Z'={p e Z|T°p) is not full rank }

and 7" = Z — Z'. By Lemma 3.2.9,

(deg fl)Xtop(Z”) ifk = 17
0 ifk > 1.

Xtop<¢71Z//) —

We further divide Z’ into
Z_ = {p € Z'| The leading coefficient of f; vanish over p for some i}

and Z, = Z' — Z_. To compute X;,p(¢~'Z_), let a; be the leading coefficient of f;. For
S C {1,...,k}, let W be the zero locus defined by J + (a;,...a;,) if S = {4, ..., i, } and
J is the defining ideal of Z. Then W is the locus in Z such that the leading coefficient of

fi vanish for all i € S. Hence Z_ = |, <ick Wiand Ws = (N;cs Wi. Furthermore, one

i€s
may induction on the number deg f1 + ... + deg f; so that we may assume Y0, (¢ W)

can be computed. By Lemma 3.2.15, X1,,(¢ ' Z_) can be bounded.

Now one has to compute x;o,(¢'Z). If (A') is not true, then Lemma 3.2.14 implies

that x;op(0 ' Z1) = Xtop(Z4). Assume (A') is true. We divide Z, into
Zy =A{p € Z,|so(p) reach its minimum in 7, }

and Z = Z, — Zy. One may replace Z by Z/, and induction on min,cz{so(p)}. This
number is increasing and always less or equal than deg f; for all 7, so after finite step, Z;,

would be empty.
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If & > 1 we further divide Z, into
Zy = {p € Zy|s1(p) reach its minimum in Zy}

and Z| = Zy — Z;. By Corollary 3.2.12, when k& = 1 (resp. k > 1) ¢ is unramified over
Zy (resp. Z1). Hence

’pr(@bilzm = 1(Zi) | Xtop(Zi)| < d|Xtop(Zi)],

with7 =0 (resp. i = 1) in k = 1 (resp. k > 1) case.

When k£ > 1 we have r(Z]) < r(Z,). We will replace Z by Z; and induction on the

number . When r(Z,) = 1 Z] is always empty, so the induction works.

Case(IT) (A%) does not hold. If k& = 1, this case can be solved by Lemma 3.2.13. Now assume
k > 1. Inthis case deg f; = 0 for some i. If f; is a non-zero constant, then ¢~'Z is empty,
so there is nothing to prove. If f; is identically zero, we can drop out f; from the generator

of 1, and goes to the case with smaller £. By induction on £, this situation is solved.

We have to show that Z’, Z_, Z] and Z can be defined by algebraic equations, and the total
number and the degree of those equations can be bounded by some integer depends on d and £,
so the induction could work.

To see this, let ¢; and r; be the number of columns and rows of 1%, respectively, for i = 0, 1.
Thency < dk,rg < 2(k—1)d,and ¢; < 2¢o, 71 < 2r9. Let R be the ideal containing all maximal
minors of 7, then R can be generated by Ce2 many generators and each generator is a degree
at most dry polynomial. One can see that Z' is generated by J + R. Since Z_ = |J, ;. Wi and
the defining ideal of I¥; are bounded, the defining ideal of Z_ is bounded.

Now let t; = max,cz rk(T%(p)). p € Z satisfied s;(p) do not reach minimum if and only
if s;(p) + t; > r;. Hence one only need to find those points in Z such that the rank of 7" at
that point is less than ¢;, or equivalently, all ¢; x t; minors of 7" vanishes. Let (); be the ideal
containing all ¢; x ¢; minors of 1%, then (), is generated by at most r;¢; many elements and each
element is a degree at most dt; < dr; polynomial in K[z, ..., x,_1]. One can easily see that Z/
is defined by J + @); fori =0, 1.

The other task is to compute X:op(Z”), Xtop(Z+) and Xiop(Z;) for i = 0,1. Since Z’ is
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generated by J + R,

|Xt0p(Z/) | < N:J:dlro,HC.fg )

We have x10p(Z2") = Xtop(Z) — Xtop(Z'). Thus

Xeap(Z")] < NITH+ NI o

Now consider |x;o,(Ws)| < N:Jdl\shlﬂ < NI gy forall S C {1,..., k}, hence

|Xtop(Z—)| < <2k - 1)Ng+_dlk7l+1

by Lemma 3.2.15. A conclusion is that X10,(Z+) = Xtop(Z') — Xtop(Z—) can be bounded.
Finally we try to bound X0, (Z;). As the argument above Z/ is defined by the ideal J + Q;

fori = 0 and 1, hence |x10,(Z])| < Ns-i-_dlri,l +r.e, €an be bounded. Thus

XtOP(ZO) = Xtap(Z+) - XtOP(Z(,)) and XtOP(Zl) = XtOP(ZO) - XtOP(Z{)

can be bounded. O]

Proof of Proposition 3.2.4. One can take N, = Ly, , by considering J in Proposition 3.2.6
to be the zero ideal. ]

3.2.2 The existence of )M -constant

We prove Proposition 3.2.5 in the following way: let Y be the given generically cyclic quotient
space. Then Y can be decomposed into a cyclic quotient part and a lower-dimensional generi-
cally cyclic quotient part. By induction on the dimension we may assume the lower dimensional
part can be controlled. The cyclic quotient part can be studied via the natural quotient map. One
only need to understand the ramification locus of the natural quotient map. Each irreducible
component of the ramification locus is a lower dimensional cyclic quotient, and one can write
it as a difference of two lower dimensional weighted projective spaces. Again by induction on
the dimension one can estimate the topological Euler characteristic of it. This leads to the proof

of Proposition 3.2.5.

Proof of Proposition 3.2.5. We use induction on the dimension n. When n = 1, one can take

M4 = d. Now assume n > 1. We know that there exists an open set U C Y such that
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U = A”/%(al, ). Let W' = W|y and W = Wly_y. We have |xi0,(W”)| < M, 1,4 by
the induction hypothesis. One only need to estimate ., (1V").

Consider the natural quotient map ¢ : A" — U. Let W = ¢~ 'W’. One has |x,(W)| <
N7 by Theorem 3.2.2 (i). We know that W — W is a branched covering. Let R C W be the
branched locus and R C W’ be the image of I/, then

1 _ _
Xtop(W')| = [ Xeop(W = 1) + Xtop(R)]
< ‘Xtop(W - R)’ + ’Xtop(R/>’

< |Xt0p(V_V)| + |Xt0p<R)| + |Xt0p(R/)| < Ng,k + |Xt0p(R)| + |Xt0p(R,)|-

Hence one only have to estimate y;,,(R) and x¢op(R').
Note that the morphism A" — U could only ramify at {z;, = ... = x;, = 0} for some i,
..., iy, where xy, ..., x, 1s the coordinate of A". Let =1, ..., Z; be irreducible components of the

ramification locus on A" and let S; = Z; N R. One can see that
[Xtop(Si)| < Npui,
if=; = {z;, =... =2, =0} and
[Xtop(Siy N . N S; )| < Ny

if Z;, N ...N E,, is of codimension /. Moreover, the number of irreducible components of

ramification locus of A™ — A"/X(ay, .., ay) is less than 2. Hence by Lemma 3.2.15,
‘Xtop(R)’ < (22” - 1) Nn-1,4-

To compute xy,,(R), we denote by S; the image of S;. Consider =; = A™ for some n; and
the morphism Z; — im(Z;) can be viewed as a cyclic quotient A™ — A" /L(b;,, ..., b, ) for

some integers r; and b;,, ..., b;, . Consider
1

1
Si C Zm(EZ) = Anl/—(bzl, 7bZTz) C ]P(Ti,bz‘“ ceey bini)

7
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and let S; be the closure of S; in P(r;, bi,, ..., b;, ). We have

‘Xtop(gi)‘ S Mni,d and |Xtop(‘§i - Sz)| S Mni—l,da

hence

’Xtop(si)’ S Mni,d + Mmfl,d-

Moreover, for any i1, ..., 4, € {1, ..., j} we have =;, N...N=,;, = A" for some integer n;,

and the same argument shows that

|Xt0p(Si1 n..n Slz)‘ < Mn¢1.4.il,d + Mnil...z‘l*Ld'

One may assume Mg, is an increasing function of n, then we have
[Xtop(R)| = |Xtop(S1 U ... U S;)| <2 (22” - 1) M, 14

by Lemma 3.2.15.

The conclusion is
|Xt0p(W,)| < Ng,k + |Xt0p(R)| + |Xt0p(R,)| < N(Zk + (22" - 1) Np-14+2 (22” - 1) M, _1.4.
Hence

|Xt0p(W)| < |Xt0p(W,)| + |Xt0p(W”)|
< Myo1g+ Njj+ (22 = 1) N g +2 (27 = 1) My1

< 2% (2My_1 4+ d(2d — 1)*71).

]

Proof of Theorem 3.2.2. One can easily see that M, = N;, = d. Hence Proposition 3.2.4 and

Proposition 3.2.5 implies the theorem. [
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3.3 The boundedness of Betti numbers

In this section we will bound the variance of b3. Thanks to Corollary 3.1.10, it is equivalent to
bound the variance of the topological Euler characteristic, which is much easier to compute. The
following statement is a corollary of Theorem 3.2.2, which could help us to bound the variance

of the topological Euler characteristic under divisorial contractions to points.

Corollary 3.3.1. Assume that X is a cyclic quotient of a local complete intersection locus in
A™ of codimension k, and Y — X is a weighted blow-up of weight o. If the o-weight of the
defining equations of X is bounded by a constant d, then |Xop(Y') — Xtop(X)| < M, + 1.

Proof. Write 0 = *(ay, ..., a,). The exceptional locus F of Y — X is contained in a generi-

m

cally cyclic quotient space and has degree less than d. Hence [x1,(F)| < Mj,. Now

|Xt0p(y) - XtOP(X)| = |Xt0p(E) - XtOP(pOintN < Mgk + 1L

O

Given a divisorial contraction ¥ — X which contracts a divisor to a point, we will show
that the difference of the topological Euler characteristic can be bound by a constant depending
only on dep(X) if Y — X is a w-morphism, and on dep(Y") in general. The reason we need the

first statement is that the inverse of w-morphisms occur in the Chen-Hacon factorization.

Proposition 3.3.2. Let Y — X be a divisorial contraction which contracts a divisor I to a

point P € X. Assume the index of P is r > 1 and assume a(E, X ) = 1/r. Then

|Xt0p(Y> - XtOP(X)| < DdEP(X)

for some integer Dge,(x) depending only on dep(X).

Proof. We already known that Y — X is a weighted blow-up of a cyclic quotient of local
complete intersection locus in A* or A5. We will denote by d the upper bound of the weight of
the exceptional locus viewed as a subvariety in the weighted projective space. What we have to
do is to show that d can be determined by dep(X) and then | X0, (Y) — X10p(X)| < M), + 1 for
(n,k) = (4,1) or (5,2), which is an integer depends only on dep(X ). We discuss each case in
Table 2.3 and 2.4.
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cA/m.

cAx/4.

cAx/2.

cD/3.
cE/2.

cD/2.

We are in the case No. 1 of Table 2.3. One can check that there are two cyclic quo-
tient points on Y, one is of index a and the other one is of index b. We conclude that
dep(X) > a+b—1 and the exceptional locus can be viewed as a weighted hypersuface
inP(a, b, 1, m) with weight mk = a+b < dep(X)+ 1, hence we take d = dep(X)+1.

In case No. 2 there is a cyclic quotient point on Y of index 2k + 3 which implies hence
dep(X) > 2k + 3. In case No. 3 there is a cyclic uotient point on Y of index 2k + 5
and so dep(X) > 2k + 5. In the both cases we take d = 2dep(X) — 4.

Using similar argument as the previous case, one can take d = 2dep(X) — 2.
We are in the cases No. 6-8. One can check that d = 12 satisfied the condition.
In the cases No. 9-13, one can check that one can take d = 18.

In case No. 14 and 15 one can see that d = 6. For case No. 16-23, one can check
that Y contains at least one cyclic quotient or cA/r singularity and the lower bound of

dep(X) = dep(Y') + 1 can be derived. Please see the following table.

No. d singular point on Y | lower bound of dep(X)
16 | 2b+4 1(2,-2,1) b
17 | 2 cA/b 2% — 1
18 | 2 L 2(2 —2,1) 20
19 [26+2|  (2,-2,1) b
20 | 2b+4 2b+2(b+2b1) 2 + 2
21 2 7= 1(2 —-2,1) b—1
22 [ 2b+2| Lb+1,0—1,1) 20
23 | 2b+2 cAJb+1 2b+ 1
24 | 2 cA/b 2 — 1
25 | 2 A(2,-2,1) b—2

One can take d = 2dep(X) + 4

The conclusion is that one can take

Ddep( X) = maX{MQdep X)+4,n—3> Ml%,n—?)} + L
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Proposition 3.3.3. Assume that f : Y — X is a divisorial contraction to a point. Then there is

an integer Dy, depending only on dep(Y') such that

’XtOp(Y> - XtOP( )| < Ddep( Y):

Proof. By Theorem 2.2.6 X is a LCI locus in cyclic quotient of A* or A’ and Y is obtained by
weighted blow-up. One only to show that there is an upper bound d of the weight of defining

equation of X, which can be bounded by some constant depends only on dep(Y).

(i) Y — X belongs to Theorem 2.2.6 (i). Then ¥ — X is a w-morphism and the statement

follows by Proposition 3.3.2.
(i1)) Y — X belongs to Theorem 2.2.6 (ii). We discuss each case in Table 2.5.
No. 1. We have d = 2b and there are a cyclic quotient point of type ﬁ(l, —1,1) on
Y. Hence d < 2dep(Y') + 4.
No. 2. We have d = 2b and Y contains a cA/b point. Hence d < dep(Y') + 2.

No. 3. We have d = 2b + 2 and Y contains a
dep(Y') + 2.

2b+1 (b + 1,b,1) point. Hence d <

No. 4. We have d = 2b+1and Y containsa 3 (1, —1, 1) point. Hence d < 2dep(Y")+

3.
No. 5. We have d = 2band Y’ contains a 75 (b, 1,1) point. Hence d < 2dep(Y").

No. 6-23. One can take d = 30.
(ii1)) Y — X belongs to Theorem 2.2.6 (iii). We have to check each case in Table 2.6.
No. 1. The are two cyclic quotient points on Y with indices b and c respectively.
Hence dep(Y) >b+c—2=d—2,ord < dep(Y) + 2.
No. 2. One can take d = 6.

No. 3. We have d = 2b and there is a cyclic quotient point of type + (1 —1,a)onY,
hence d < 2dep(Y') + 2.

No. 4. We have d = 2b+ 2 and there is a cyclic quotient point of type
hence d < 2dep(Y').

b+2(b+1 a, 1),
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No. 5,6.  Wehaved = b+ 1 and there is a 3 (%1, %=1 ) poiont on Y, for a = 2 or 4.
Hence d < dep(Y') + 2.

No. 7. We have d = 2b and there is a cA/b point on Y, hence d < dep(Y’) + 2.
No. 8,9. We have d = 6.

No. 10.  Wehaved = 2b+2andthereisa 3(2, —2, a) pointonY’, hence d < 2dep(Y')+
4.

No. 11. We have d = 2b + 4 and there is a b+—4(b + 2,a,2) point on Y, hence d <
2dep(Y) — 2.

No. 12.  We have d = 4b and there is a cA/4b point on Y, hence d < dep(Y).
No. 13. One can take d = 4.

No. 14. We have d = 2b + 2 and there is a
d < dep(Y).

4b+2( 1,1,2b — 1) point on Y, hence

No. 15. One can take d = 4.

No. 16. We have d = 4b + 2 and there is a
d < dep(Y).

(1,20 4+ 1, —1) point on Y, hence

No. 17.  Wehaved = b+1andthereisa 5-(1, —1,b+4) pointon Y, hence d < dep(Y).

No. 18-21. One can take d = 14.

We conclude that one can take Dézep(y) to be

max{Dd@p (Y)+1, M2ndep(Y)+4,n—3’ M;O,n—i%} + 1.

n=4

O

In the case of blowing-up LCI curves, the difference of the topological Euler characteristic

is easy to compute.

Lemma 3.3.4. Assume that C C X isa LCI curveand f :Y = Bloc X — X, then

Xtop<Y> - Xtop(X) - Xtop(C>'
Proof. Let E be the exceptional divisor of Y — X. At first we show that over any point P € C,
the fiber f~!(P) is isomorphic to P!, Indeed, assume that C' is defined by the ideal I which is
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locally generated by two regular functions v and 3. Then Y is isomorphic to Proj &D,5, "
and the natural map Ox[z,y] — €P,5o " defined by z — «, y ~— [ gives an inclusion
Y — X x IP'. Hence every fiber over C is a P!.

Now there exists a open set U C C such that f~'U = U x P! since geometric ruled surfaces

are ruled, hence we have

Xtop(E) = Xtop(fT'U) + Xtop(fTHC = U)) = 2X10p(U) + 2X10p(C' = U) = 2x10p(C)
and then
Xtop(Y) = Xtop(X) = Xtop(E) = Xtop(C) = Xtop(C).
]

Now let X be a smooth threefold and consider the process of the minimal model program
X=Xy--»X;-—>...-—>X,.

We will use above results to estimate the third Betti number of X;.

Proposition 3.3.5. Let X — W be a divisorial contraction and X --+» X' be a flip or a flop.
Then there is a constant ® 4 x) depending only on dep(X) such that b3(W) < @ gep(x) + b3(X)
and bg (X/> S CI)dep(X) -+ bg(X)

Proof. Assume that X — TV is a divisorial contraction to point, then by Corollary 3.1.10 and
Proposition 3.3.3 we have |b3(X) — b3(W)| = [xtop(X) = Xtap(W) — 2| < Dy ) + 2, hence

b3(W) < Diepixy + 2+ b3(X).

If X — W is obtained by blowing-up an LCI curve C' C W, then using Corollary 3.1.10 and

Lemma 3.3.4 one has
b3(W) — b3(X) = Xtop(X) = Xtop(W) = 2 = x10p(C) — 2 <0,

hence

bs(W) < bs(X).

If X --» X’ is a flop, then b3(X) = b3(X’) by Lemma 3.1.11. Thus if dep(X) = 0, then the
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statement is proved by Remark 3.1.4.
Now assume that X — W or X --» X' is not the three kinds of elementary maps we

mentioned above. We will prove by induction on dep(X). By Theorem 3.1.7 we have the

diagram
Y------ ~Y'.
P
X X'
N
w

At first note that by Corollary 3.1.10 and Proposition 3.3.2 one has

|b3<Y) - b3(X)| = |Xt0p(Y) - Xtop(X)| +2< Ddep(X) +2,
hence b3(Y') < Dgep(x) + 2 + b3(X). On the other hand, one may write
Y=Y)->»Y - ... .->Y =Y

such that Y; --» Y, is aflip forz > 0 and Y --» Y] is either a flip or a flop by Remark 3.1.8.

The conclusion is
0 < dep(Y)) < dep(Yi41) < ... < dep(Y1) < dep(Yp) < dep(X).

Thus [ < dep(X).
By the induction hypothesis we have b3(Yi11) < @uepy;) + b3(Y;). Define ¥ dep(X) =

Dyep(xy +2and W5 ) = Paep(x)-1 + \Ifdep , then we have
b3(Yo) = b3(Y) < Wgepx) + b3(X)

and

b3(Yir1) < Paep(v) + 03(Vi) < Paep(xy—1 +b3(Ya) = Ut ) + b3(X)

dep(

by induction on i. We conclude that by(Y”) = bs(V]) < W (%) ) + b3(X). Finally

dep(X

b3(X') < Puep(yry + b3(Y') < Paepxy—1 + ‘I’dep(x) + b3(X)

dep(X
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since dep(Y”') < dep(X). So we finish the case when X --» X" is a flip.
Now assume that X — W is a divisorial contraction to a curve. One has to estimate bs(11).
In this case ¢’ : X' — W is a divisorial contraction to a point, hence one may apply Proposition

3.3.3 to get
[b5(X") = bs(W)| = [Xtop(X') = Xtop(W)| + 2 < Dipepxry + 2
and then
bs(W) < Dlpepxry + 2+ b3(X') < Dl + 2+ Puepy—1 + Va0 + by(X).

O

Theorem 3.3.6. Let X be a smooth threefold and X = Xy --» X7 --» ... --» X, be the

process of minimal model program. Then
(i) b;(X;) =b;(X) fori=0,1,5,6 and for all j.

(i) If j > k, then b;(X;) < b;(Xy) fori = 2,4. Equality holds if and only if X; and X, are
connected by flips.

(iii) There exists an integer @p(x) depending only on the Picard number of X, such that b3(X;) <

P, x) + b3(X) for all j.

Proof. (i) and (i7) are Proposition 3.1.12. Also as in Remark 3.1.5 we have dep(X;) < p(X)

for all 7. So Proposition 3.3.5 implies
bg(Xi) < (I)p(X) + bg(Xi_l) < i@p(x) + bg(X).

Now i < 2p(X) by [CZ14, Lemma 3.1]. One conclude that one can take ®,(x) = 2p(X)®,(x).
[

3.4 Examples and applications

LetY — X be an extremal divisorial contraction between terminal threefolds. By Lemma 3.1.9

we know that 0 < b;(Y) — b;(X) < 1 for ¢ # 3. In the previous section we have shown that
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|b3(Y") — b3(X)| can be bounded by some constant depending only on the depth of X or Y. The
following examples assert that the dependence is non-trivial. If X or Y has very large depth,

then |b3(Y") — b3(X)| could be very large.

Example 3.4.1. Assume that X is isomorphic to

1
(@® + 97 + 2% T =0) C AL, L /1(1, 3,1,2).

This is an isolated terminal point of type cAx /4. Assume that & is even and let Y be the weighted
blow up of the weight i(Zk’ +1,2k+3,1,2). ThenY — X is an extremal divisorial contraction

with discrepancy 1/4. Let E be the exceptional divisor. We have
b3(X) = b3(Y) = Xeop(Y) = Xtop(X) — 2 = Xtop(E) — 3.

Hence to compute b3(X) — b3(Y') is equivalent to compute X0, (E).

Now in this case
B2 (2% 4 2% 4o = 0) C P(2k + 1,2k + 3,1, 2).

On U, = {z # 0} we have F
smooth curve C' = (22 + u?**!1 + 1) c A? ' which is of degree 2k + 1. Hence

(zu)?

v. = (2® +u® ! +1) C A}, ). This is a line bundle over a

Xeop(E|.) = Xtop(C) = —(2k — 2)(2k + 1) — (2k + 1).
On the other hand, one can show that £ |{Z:0} is isomorphic to P*. Hence
Xeop(E) = —(2k —2)(2k + 1) — 2k + 1) + 2

tends to —oo when k tends to oco. This shows that b3(X) — b3(Y") can be arbitrary negative.

Example 3.4.2. Assume that X is isomorphic to

1
(zy + 2™ +uF = 0) c A? /;(a,—a,l,r)

(x7y7z7u)
with («, ) = 1. This is an isolated terminal point of type cA/r. Let Y be the weighted blow-up
of the weight %(a, b,1,r) witha = amod r and @ + b = rk. Then Y — X is an extremal
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divisorial contraction with discrepancy 1/r. The exceptional divisor £ is isomorphic to
(zy 4 2" +u* = 0) C P(a, b, 1,7).

On the affine open set U, = {y # 0} we have Ely, = (z + 2™ + u* = 0) € A%/{(a,1,7),
which is isomorphic to A%/ (1, 7). One can compute that x.,(E|v,) = 1.
Now let
E = E|y-0y & (2" +u* =0) C P(a, 1,7).

We have E'|(, .0y = (uF +1=0) C A%x7u), which are k lines. Also £'|{.—¢y is a point, hence
Xtop(E,) = k + 1

A conclusion is that xt,,(E) = k+ 2 can be arbitrary large when &k growth to infinity, hence

b3(X) — b3(Y') can be arbitrary positive.

As an application of Theorem 3.3.6, we try to bound the intersection Betti numbers. In-
tersection homology was developed by Goresky and MacPherson in the eighth decade of the
twentieth century, which was defined on singular manifolds and satisfied some nice properties
as the original singular homology on smooth manifolds. One may expect that the difference
of original Betti numbers and intersection Betti numbers can be controlled by singularities. In
this paper we prove a weaker statement. We will denote by I H*(X, Q) the middle-perversity

intersection cohomology group and denote 7b;(X) by the dimension of T H' (X, Q).

Theorem 3.4.3. Let X be a projective Q-factorial terminal threefold over C. Then there is an

integer ©; depending only on singularities of X, such that
Ibi(X) < bi(X) + ©;.

Let X be a projective Q-factorial terminal threefold over C. For any singular point P € X,

we say that there exists a feasible resolution for P if there is a sequence
X,—w X 1—>.—>0Xo=X

so that X, is smooth over P and X;,; — X; is an extremal divisorial contraction to a point F;

with discrepancy equals to 1/index(P).
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Theorem 3.4.4 ([Chell], Theorem 2). Given a three-dimensional terminal singularity P € X,

there exists a feasible resolution for P € X.

Corollary 3.4.5. Let X be a projective Q-factorial terminal threefold over C. There is a smooth
variety Y such that Y — X is a composition of steps of Ky-minimal model program, and the
relative Picard number p(Y | X) depending only on the singularities (that is, the local equation

near singular points) of X.

Corollary 3.4.6. Notation as above. We have b;(Y') < b;(X) + ©,, where ©; is a constant
depending only on the singularities of X.

Proof. We apply Theorem 3.3.6. When ¢ = 0, 1, 5, 6, one take ©, = 0. For 7 = 2,4 we choose

©; to be p(Y'/X). Now assume i = 3 and assume that Y — X factors through
Y=X,—>X,_1—..— X=X,

where X; — X, is an extremal divisorial contraction to a point. By Proposition 3.3.3 and

Corollary 3.1.10 we have
[b3(Xit1) = b3(Xa)| < [Xeop(Xi) = Xeop(Xis1)| + 2 < Dijepx,,0) + 2-
Now 7 is equals to p(Y /X) and dep(X;,1) is bounded by p(Y /X') by Remark 3.1.6. Hence
[b3(Y) = b3(X)| < n(Dyyyyx) +2),

which is a constant depending only on singularities of X. [

Proof of Theorem 3.4.3. Let
Y=X,—-X,_1—..—> X=X
be a feasible resolution. By [CT17, Lemma 2.16] we have
0 TH'(X;,Q) = TH'(X;41,Q) & TH'(P;, Q) = TH'(E;, Q) = 0

is exact for i > 1, here £; = exc(X;11; — X;) and P; is the image of E;. Hence 1b;(X;1) >
Ib;(X;) forall j and for all i > 1. Thus Ib;(X) < Ib;(Y) = b;(Y) < b;(X) + ©; by Corollary
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3.4.6. ]
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Chapter 4

Threefolds of Kodaira dimension one

By the result of Hacon-M®Kernan [HMO06], Takayama [Tak06] and Tsuji [Tsu07], it is known
that for any positive integer n there exists an integer r,, such that if X is an n-dimensional smooth
complex projective variety of general type, then |r K x| defines a birational map for all r > 7,,.
It is conjectured in [HMO06] that a similar phenomenon occurs for any projective variety of non-
negative Kodaira dimension. That is, for any positive integer n there exists a constant s,, such
that, if X is an n-dimensional smooth projective variety of non-negative Kodaira dimension and
s > s, 1s sufficiently divisible, then the s-th pluricanonical map of X is birational to the litaka
fibration.

We list some known results related to this problem. In 1986, Kawamata [Kawak05] proved
that there is an integer m such that for any terminal threefold X of Kodaira dimension zero,
the mg-th plurigenera of X is non-zero. Later on, Morrison proved that one can take my =
25 x 33 x 52 x 7 x 11 x 13 x 17 x 19. Please see [Morsn86] for details. In 2000, Fujino and
Mori [FMO00] proved that if X is a smooth projective variety of Kodaira dimension one and F is
a general fiber of the litaka fibration of X, then there exists a integer M, which depends on the
dimension of X, the middle Betti number of some finite covering of F’ and the smallest integer
so that the pluricanonical system of F' is non-trivial, such that the M -th pluricanonical map of X
is birational to the litaka fibration. Viehweg and D.-Q. Zhang [VZh09] proved the analog result
for the Kodaira dimension two case. Recently, Birkar and D.-Q. Zhang [BZ16] proved that
Fujino-Mori type statement holds for every variety of non-negative Kodaira dimension. Note
that if C' is a curve of Kodaira dimension zero, then | K| is non-trivial and b, (C) = 2. Also if
S is a surface of Kodaira dimension zero, then |12Kg| is non-trivial and by(S) < 22. Thus the

Hacon-M®Kernan conjecture holds for varieties of dimension less than or equal to three.
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It is also interesting to find an explicit value to bound the litaka fibration. In dimension
one, it is well-known that the third-pluricanonical map is the litaka fibration. For the surfaces
case, litaka [Iit70] proved that the m-th pluricanonical system is birational to the litaka fibration
if m > 86 and is divisible by 12. For threefolds of general type, J. A. Chen and M. Chen
[CM14] proved that the m-th pluricanonical map is birational if m > 61. For threefolds of
Kodaira dimension two, Ringler [Rin07] proved that the m-th pluricanonical map is birational
to the litaka fibration if m > 48 and is divisible by 12. In this chapter we will prove that 96 is an
effective bound for litaka fibration for threefolds of Kodaira dimension one, please see Theorem
4.5.1 for details.

We now give a rough idea of the proof of Theorem 4.5.1. If the Iitaka fibration maps to a
non-rational curve, then the boundedness of the litaka fibration can be easily derived using weak-
positivity. Now assume the litaka fibration of X maps to a rational curve. We may assume X is
minimal and hence the general fiber of the litaka fibration is a K3 surface, an Enriques surface,
an abelian surface or a bielliptic surface. If the general fiber has non-zero Euler characteristic,
i.e., if the litaka fibration is a K3 fibration or an Enriques fibration, we observe the following
fact. One may write Ky as a pull-back of an ample Q-divisor. The degree of this Q-divisor is
determined by the singularities of X. If the degree is large, then a small multiple of K x defines
the litaka fibration. Assume the degree is small, then the singularities of X are bounded: the
local index of singular points of X can not be too large, and the total number of singular points
is bounded. This implies the degree has an lower bound. With the help of a computer, we get a
good estimate of this lower bound and hence a good effective bound for the litaka fibration.

If the litaka fibration is an abelian fibration or a bielliptic fibration, then above techniques
do not work. Instead, we use Fujino-Mori’s canonical bundle formula. The main difficulty is to
control the moduli part of the canonical bundle formula. If the moduli part is zero, then with the
help of the the theory of holomorphic two-forms developed by Campana and Peternell, one can
prove that the litaka fibration is isotrivial and it is not hard to estimate the degree of Kx over
C'. If the moduli part is non-zero, then one can show that the degree of the moduli part is large,
and hence it is easy to find enough section in the pluricanonical system.

One can always replace our smooth threefold by its minimal model, hence throughout this
article, we always assume our threefold is minimal and has terminal singularities. Since the
abundance conjecture is known to be true in dimension three, the litaka fibration is a morphism.

We will denote it by f : X — (' and hence Kx is a pull-back of some ample Q-divisor on C'. If
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C' is not rational, we will prove the desired boundedness in Section 4.1. In the later sections we
will always assume C' is a rational curve. We discuss K3/Enriques fibrations, abelian fibrations
and bielliptic fibrations in Section 4.2, 4.3 and 4.4 respectively. We will prove Theorem 4.5.1
in Section 4.5, which is a collection of the result in previous sections. We also compute sev-
eral examples, which are threefolds of Kodaira dimension one such that a small pluricanonical

system do not define the Iitaka fibration.

4.1 Preliminary

4.1.1 The canonical bundle formula

Let X be a minimal terminal threefold of Kodaira dimension one. Since the abundance con-
jecture holds for threefolds, Kx is semi-ample. Hence the litaka fibration f : X — (C'is
a morphism and Kx is a pull-back of an ample divisor on C. We denote a general fiber of

X — C' by F. By [FM00] we have the following canonical bundle formula

here b is the smallest integer such that |bK r| is non-empty, M is a nef Q-divisor such that bN M
is integral for some N which depends on the middle Betti number of the finite covering of F'
defined by |bKr|, B =

v;, such that v; < bIN. We will write A = K~ + M + B for convenience.

v

bNu

s;P; where s; is of the form (1 — -) for some integers u; and

el

Lemma 4.1.1. We have [.Ox(rbKx) = Oc(|rbA]) for all integers v > 0. In particular, if
C =P and h°(X,rbKx) > 2, then |rbK x| defines the litaka fibration.

Proof. By [FMO00, Proposition 2.2] and the projection formula we have f,Ox(rbKx)™ =
Oc(|rbA]). Since f.Ox(rbKy) is torsion free, it is locally free, hence f.Ox(rbKx)™ =
f+Ox(rbKx) and we have

f:O0x(rbKx) = Oc([rbA]).

Now if C' = P! and H°(X,rbKy) > 2, then |rbA| has positive degree, hence very ample.
Thus
HY(X,0x(rbKx)) = H (X, f.Ox(rbKx)) = H*(C, Oc(|rbA))

defines the morphsim X — C. [
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Lemma 4.1.2. Assume that C = P'. Then either deg M = 0, or [2B| > 3.

Proof. We first prove that if deg M # 0, then there are at least three multiple fibers.
To see it, assume that the number of multiple fibers is less than three, then there exists a
finite morphism ¢ : C! — C' which is étale over C*, such that the base-change X' = X x ('

has a semistable model f': 7' — X’ — C’. Now we have
deg ¢*OC( LT’bMJ ) = deg flOZ’ (TbKZ’/C/) = deg det(f:‘OZ/ (rbKZ’/C’)) =0

for all » € N, where the first equality follows from [FMO0O0, Corollary 2.5], the second equality
follows form the fact that f, Oz (rbKz:cv) is a line bundle (cf. Remark 4.1.4 below) and the
last equality follows from [VZ01, Proposition 4.2]. This implies deg M = 0.

Now assume that there are at least three multiple fibers. Let P;, P, and P be three points on
C' such that f~!P; is not reduced for i = 1, ..., 3. Note that for all P € C we have coeffp B =
1 —let(X, f*P) (c.f. [FMO00, proof of Proposition 4.7] or [Fuj03, Definition 3.4]). Since f~' P,
is not reduced, we have lct(X, f*P;) < % fori = 1, ..., 3. Thus the coefficient of B over P; is

greater than or equal to £ and so [2B] > 3. O

4.1.2 Kollar vanishing theorem

Theorem 4.1.3 ([Kol95], Theorem 10.19). Let f : X — Y be a surjective morphism between
normal and proper varieties. Let N, N' be rank 1, reflexive, torsion-free sheaves on X. Assume

that N = Kx + A+ f*M, where M is a Q-Cartier Q-divisor on'Y and (X, A) is kit. Then
1. RV f.N is torsion free for j > 0.

2. Assume in addition that M is nef and big. Then

H{(Y,RIf.N)=0 fori>0,j>0.

3. Assume that M is nef and big and let D be any effective Weil divisor on X such that
f(D)#Y. Then

H’(X,N) — H’(X,N(D)) is injective for j > 0.
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4. If f is generically finite and N' = Kx + A + F where F is a Q-Cartier Q-divisor on X
which is f-nef, then R f,N' = 0 for all j > 0.

Remark 4.1.4. Under our assumption that X is a minimal terminal threefold of Kodaira dimen-
sion one and f : X — C is the litaka fibration, Theorem 4.1.3 (1) implies that R’ f,(mKx) is

locally free because any torsion-free sheaf on a curve is locally free.

Proposition 4.1.5 ([Kol86],Proposition 7.6). Let X, Y be smooth projective varieties, dim X =
n, dimY =k, andletm : X — Y be a surjective map with connected fibers. Then R Frwy =

Wy.

Corollary 4.1.6. The same conclusion of above proposition holds if X has canonical singular-
ities.
Proof. Let ¢ : X — X be a resolution of X and 7 : X — Y be the composition of 7 and ¢.

By the Grothendieck spectral sequence, we have
Eg’q = Rpﬂ*(Rq¢*wX) = Rp+q7~T*wX.

By Grauert-Riemenschneider vanishing (or Theorem 4.1.3 (4) above) we have R/¢,w = 0 for
all ¢ > 0, hence

wy = R"*rws = R r,(powg) = R Frwyx.

4.1.3 Weak positivity

Theorem 4.1.7 ([Vie83], Theorem IIl). Let g : T' — W be any surjective morphism between

non-singular projective varieties. Then g.wk. s weakly positive for any k > 0.

Remark 4.1.8. When 7' — W is the litaka fibration of 7" and WV is a curve, we have g,w?. W is
a line bundle by Remark 4.1.4. By [Kawak12, Section 5], g*w§ W is pseudo-effective, which is
equivalent to say that deg g.wf. y;, > 0.

Furthermore, the same conclusion holds if 7" has canonical singularities because if ¢ : 7' —

T is a resolution of singularity, then gb*w:’; = wh.

Proposition 4.1.9. Let X be a minimal terminal threefold with Kodaira dimension one and let

f: X — C bethe litaka fibration of X. Assume that g(C') > 1. Let F be a general fiber and let
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b be an integer such that |bK | is non-empty and b > 2. Then |bK x| is non-empty and |3bK x|
defines the litaka fibration.
mK x| defines the litaka fibration for all m > 24 and divisible by 12.

In particular,

Proof. First assume g(C') > 2. By weak-positivity,
deg f.Ox (bKx) > deg Ou(bc) = b(29(C) - 2).
We have

H°(X,0x(bKx)) = H°(C, f.Ox(bKx)) > x(f.Ox(bKx))
= deg f.Ox(bKx) +1— g(C) > (2b— 1)(g(C) — 1) > 0.

Moreover, deg f.Ox(20Kx) > 8g(C) — 8 > 2¢(C) + 1 under our assumption that b > 2,
hence f.Ox(2bKx) is very-ample, which implies |2bK x| defines the litaka fibration. Since
H°(X,0x(bKx)) # 0, |3bK x| also defines the Iitaka fibration.

In the case that g(C') = 1, one has deg f.Ox(bKx) > 0. Moreover

H'(C, f.Ox(bKx) ® P) =0

for all P € Pic°(C) by Theorem 4.1.3 (2). Hence deg f.Ox(bKx) should be positive since
otherwise after taking P = (f.Ox(bKx))* we get H'(C,O¢) = 0, which is a contradiction.
Thus h°(bKx) # 0. Now we have deg f.Ox(30Kx) > 3 since one has the natural inclusion
[:0x(bKx)®3 — f.Ox(3bKx). The conclusion is that f,Ox (30K x ) is very-ample, so |30 K x|
defines the Iitaka fibration.

Note that |m K x| defines the litaka fibration if m > 3b and m is divisible by b. We know
that b € {2,3,4,6}. Itis easy to see that |[m K x| defines the litaka fibration for all m > 24 and
divisible by 12. ]

4.2 K3 or Enriques fibrations

Let X be a minimal terminal threefold of Kodaira dimension one and
f:X—>C=p!
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be the litaka fibration. Let F' be a general fiber of X — (' and assume that F'is a K3 surface
or an Enriques surface. We have H'(F, K) = 0. Thus R' f.Ox(Kx) = 0 because it is locally
free by Remark 4.1.4. We have

RY(X,O0x) = h*(X,O0x(Kx)) = h°(C, R*f,0x(Kx)) + h'(C, R' f.Ox(Kx))
= h(C,00(K¢)) =0

by Corollary 4.1.6 and

h2(X,0x) = hY(X, Ox(Kx)) = h%(C, R f.Ox (Kx))+hY(C, f.Ox(Kx)) = hM(C, f.Ox(Kx)).

If F is an Enriques surface, then H°(F, Kr) = 0, hence f.Ox(Kx) = 0 since it is a line
bundle. We have h?(X,Ox) = 0 and 2*(X, Ox) = h°(X,O0x(Kx)) = h°(C, f.Ox(Kx)) =
0. Thus x(Ox) = 1. When F'is a K3 surface by the weak positivity we have deg f.Ox (Kx) >
Oc(K¢), hence f,Ox(Kx) is of degree greater than or equal to —2 and so b (C, f.Ox(Kx)) <
1. Thus h?(Ox) < 1 which implies x(Ox) < 2. If x(Ox) < 0, then h°(X, Kx) > 2 and |K x|
defines the Iitaka fibration by Lemma 4.1.1. From now on we assume 0 < x(Ox) < 2.

There exists integers m and d such that Ox (mKx) = f*Oc(d). We write A = 2, so that
F=)\Ky.

Lemma 4.2.1. 1°(X, mKx) > rif m > \r + 1 and |mKFp| is non-empty.

Proof. Choose r general fibers F, ..., F,.. Consider the exact sequence

0— OX(mKX — F1 — .= FT) — Ox(me) — @OFZ(me) = @OFZ — 0.
=1 1=1
Note that mKx — Fy —...— F, = Kx + (m —1— \r)Kx. By our assumption m — 1 — Ar > 0,
hence
HYX,Ox(mKx — Fy — ... — F,)) = H'(X,0x(mKx))

is injective by Theorem 4.1.3 (3) with M = %*MP, D=F+..+F.and A =0, here P is

a general point on C'. Hence

HY(X,0x(mKx)) — @ HY(F;,OF,)

i=1
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is surjective and so h°(X, Ox(mKx)) > r. O

Proposition 4.2.2. If X — C is a K3 fibration, then h°( X, mKx) > 2 for m > 86. If X — C
is an Enriques fibration, we have h°(X, mKx) > 2 if m is even and greater than or equal to
42. In particular, |m K x| defines the litaka fibration if m > 86 (resp. m is even and m > 42) if

X — C'is a K3 (resp. an Enriques) fibration.

Proof. We use the notation as in Lemma 4.2.1, so A is the rational number such that F' = AKx.
We only need to say that A < 42 if F' is a K3 surface and A < 20 if F' is an Enriques surface.

Then Lemma 4.2.1 implies the statement.

We have
(O8) = —ea(F) = = Fay(X) = 25 Kx.eo(X)
X\Ufr) = 1262 BED .Co D x.Co
by the Noether’s equality. Hence

12 1

TX(OF) = KXCQ(X) = —24)((0)() + E (Tp — —) . (41)
rp

PeB(X)

Assume A > N for some integer NV, then

24x(0x) < Z (TP - i) < 24x(0x) + %X(OF)'

.
PeB(X) P

This tells us that rp < 24x(Ox) + 2 x(Op) for all P and there is at most

g (24x(0x) + 1—5;&(%))

non-Gorenstein points on X since r — 1 > % for all integer » > 1. Note that we assume
0 < x(Ox) < 2, hence there are only finitely many possible basket data. By Equation (4.1)
a basket data corresponds to a unique A once x(Oyx) is fixed. This tells us that A has an upper
bound.

Note that the basket data should satisfy more conditions. We have h'(X,mKx) = 0
since h'(C, f.(mKx)) = 0 by Theorem 4.1.3 (2) and R'f,(mKx) is a zero sheaf because
h'(F,mKr) = 0 and R'f,(mKx) is locally free by Remark 4.1.4. Also h*(X,mKyx) =

h(X, (1 —m)Kx) = 0 for all m > 1 since K x is psudo-effective and not numerically trivial.
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Hence the plurigenus formula yields
0 < x(mKx) = (1 —2m)x(Ox) + l(m), (4.2)

where

l Z mz_: b T’p—jbp)7

PeB(X
for all m > 1. As we have seen before, for a fixed integer N and assuming A > N, there are
only finitely many possible basket data of X. Using a computer, one can write down all possible
basket data and check whether such basket satisfies (4.2) or not. In the K3 fibration case if one
take NV = 42, then there is no basket data satisfying (4.2) for all m > 1, hence A < 42. In the
Enriques fibration case using the same technique one can prove that A < 20.

Finally note that if h%(X, mKx) > 2 then |mK x| defines the litaka fibration by Lemma
4.1.1. O]

Remark 4.2.3. We remark that the worst possible basket data occurs when X — (' is a K3
fibration, x(Ox) = 2 and the basket data is

{(2,1) x 8, (3,1) x 6,(7,1),(7,2),(7,3)}

with A = 42. This kind of fibration exists. Please see Examle 4.5.6.

4.3 Abelian fibrations

Let X be a terminal minimal threefold of Kodaira dimension one and assume X — C = P!
is the Iitaka fibration. Let /' be the general fiber of X — (' and assume that F' is an abelian

surface. Let W — X be a resolution of singularities of X. We will denote by
g:W—-=X-=C

the composition of the two morphisms.

Definition. Let 1V be a smooth threefold of Kodaira dimension one and let w be a two-form on

W. Let g : W — (' be the litaka fibration. We say w is a vertical two-form (with respect to the
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litaka fibration) if w corresponds to an element s such that
s€ H W, Tw,c @ Kw) C H (W, Ty @ Ky) = H (W, Q3).

Here Ty denotes the tangent bundle of W and Tyy ¢ is the kernel of Ty — g™ T¢.

Theorem 4.3.1 ([CT00], Theorem 4.2). Let W be a smooth projective threefold of Kodaira
dimension one and let w be a two-form on W. Assume that w is not vertical with respect to the
litaka fibration. Let X be a minimal model with litaka fibration f : X — C. Then there is a
finite base change C' — C' with induced fiber space f: X — Csuch that X = F x C, where
F is abelian or K3.

Assume that there is a non-vertical two-form on 1¥. We may assume that C' — C' is Galois.
Let G = Gal(C/C'). Note that there is a natural G-action on X such that X = X /G. We have
the induced action on F'. Since finite automorphism groups of an abelian surface are discrete,
G acts on X = F x C diagonally. We may assume further that G acts on F' faithfully since
the kernel of G acting on F is a normal subgroup of G and one can replace C' by C' module the

kernel. In particular X — X is étale in codimension one.

Proposition 4.3.2. If the smooth model of X admits a non-vertical two-form, then |mK x| de-
fines the litaka fibration if m > 86.

Proof. We have the diagram
X x
f l lf
c—2-c.
One may write Kx = f*A for some Q-divisor A on C'. We also have K = ¢*(K¢ + B), here
B is a Q-divisor with coeffp(B) = 1 — L if the stabilizer of pre-image of P is of order m. We

have

O fA=¢"Kx =Ky =KpRKg= f*Ks= f*¢"(Kc + B)

since ¢ is étale in codimension one. Thus A ~¢ K¢ + B.

Take an integer m such that both m A and m( K+ B) are integral and O (mA) = Oc(m(Kc+
B)) = O(d). Let A\ = B andd = § = £ Assume B = ), /(1 — ;-)P;, then § =
—2—1—21.6[(1—7”%). Note that £(X) > x(X) = 1, hence x(C') = 1 and C'is of general type. It is
well-known that § > - (by a simple calculation or using the fact that | Aut(C)| < 84(g(C)-1)),
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hence A\ < 42. By Lemma 4.2.1, for all < 86, we have h%(X,rKx) > 2 and |rK x| defines
the Iitaka fibration.
O

From now on we assume that the smooth model W of X admits no non-vertical two-form.
Lemma 4.3.3. ' (X,0x) < 1.
To prove the lemma, we need the following estimate on the irregularity.

Theorem 4.3.4 ([Fuj05], Theorem 1.6). Let f : X — Y be surjective morphism between non-

singular projective varieties with connected fibers. Then

q(Y) < q(X) <q(Y) +q(F),

where F' is a general fiber of f.

Proof of Lemma 4.3.3. Assume that h' (X, Ox) > 1, then h!'(X,Ox) = 2 by Theorem 4.3.4.
Leta : X — A = Alb(X) be the Albanese map of X and let F' be a general fiber of X — C.
Note that A is an abelian surface. Assume that a(F') is two-dimensional, then there is a surjective
map ' — A. The pull-back of the global two-form on A is a non-vertical two-form on X,
contradicting our assumption that there is no non-vertical two-form.

Assume that a(F’) is one-dimensional. Note that a(F') should be an elliptic curve since

otherwise there is a holomorphic map

F — a(F) — Jac(a(F))

and the image should be a (translation of) non-trivial sub-complex torus, which is impossible.
Since there are only countably many elliptic curves up to translation contained in a fixed abelian
variety, we have a(F') = F for some one-dimensional abelian subvariety F of A, for general F'.
By [BL04], Theorem 5.3.5, There is an isogeny A — E x T for some elliptic curve 7". Consider
the morphism

X A—-ExT =T

which contracts the general fiber of X — C. Thus there is an induced morphism C' — 7. But

C = P! and T is an elliptic curve, which is impossible.
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Finally assume a(F") is a point, then a(X) is a curve of genus > 2. However this induces a

morphism C' — a(X), which is again impossible. O

Consider the following diagram.

| .

0——=OQw,c ® "Qc—> Q%/V
(o) ® B a An(B)

where 7 : g*Qc — Qw and 7 : Oy — Qo denote the natural maps. Note that the bottom
map is well-defined and injective since g*{2¢ is locally free of rank one.

Under the condition that there is no non-vertical two-form on W, one has

HY(W, Twc ® Kw) ——= H'(W, T ® Kw)
HY (W, Qw /e ® g*Qc)——= HO(W, Qfy).

Hence H°(W, Qw /e @ g*Qc) = HO(W, Q).

Lemma 4.3.5. Ifthere is no non-vertical two-form on W, then h*(W, Oy,) = 0. Hence h*(X,Ox) =
hY(X, Kx) = 0.

Proof. We compute h°(W, Qe ® g*Qc) = RO(W,Q3,) = h*(W, Ow ). Consider the exact
sequence

0— Q*QC & g*QC — QW & Q*QC — Qw/c (%9 g*QC — 0.

Applying the push-forward functor we get
0= g.(6" Q@9 Q) = 9. (Qw @9 Q) = 9.(Qwc®g Q) = R'g(9" g Q) — ...
which induces the following exact sequences

0= g:(9"c ® g"Qc) = g(Qw ® g"Qc) = F — 0,

0— F— g*(QW/c ® g Qc) — G — 0,
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and

0—G = Rlg.(9" @ g"Qc).

Note that
H(C, R'g.(4"Qc®g™Qc)) = H*(C, R'g.(Ow®g* Oc(—4))) = H°(C, R' g.Ow®Oc(—4)).

Since h°(C, R'g.Ow) < 1 (otherwise h' (W, Oy ) = h'(X,Ox) > 1, contradicting Lemma
4.3.3) and R'g,Oyy is torsion free (cf. [Kol86, Step 6 in the proof of Theorem 2.2]), we have
R'¢.O0w = Oc¢(a) ® Oc(B) with both o and 8 < 0. Hence

H°(C,R'g.0w ® Oc(—4)) =0
and so H°(C,G) = 0. Thus
H°(C, g.(Qwc ® g"Qc)) = H(C, F).

Now ¢.Qy is locally free of rank two. One may write g.Qw = Oc(dy) ® Oc(ds). Note that
either d; = 0 and dy < 0, or both d; and dy < 0 since otherwise h! (X, Ox) = b1 (W, Ow) =

hO(W, ) > 1. In particular d; + dy < 0. Now the third exact sequence becomes
0— Oc(—4) = Oc(di —2) ® Oc(dy —2) — F — 0.

Since F is locally free of rank one (use the fact that g.{yy ¢ is torsion free), F = O¢(di + da).
We know that d; + dy < 0, so h°(C, F) = 0, hence

R (W, Ow) = hO(W, Qwc ® g*Qc) = h*(C, g.(Qw e @ g"Qc)) = 0.

]

Lemma 4.3.6. Using the notation as in Section 4.1.1. Assume h'(X,Ox(Kx)) = 0, then we
have deg| M | > 1.

Proof. We have h!(C, f.Ox(Kx)) = 0 since
0 = h'(X, Ox(Kx)) = B (C, £.Ox(Kx)) + B(C, R £.Ox (K ).
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By Lemma 4.1.1, we have h'(C,O¢(| A])) = 0. Hence deg| A] > —1,sodeg| M| >1. [

Proposition 4.3.7. Assume the smooth model of X admits no non-vertical two-form. Then

|m K x| defines the litaka fibration if m = 2 or m > 4.

Proof. We has to prove that deg|mA| = deg|m(Kc+ M + B)| > 1. By Lemma 4.3.5 and
Lemma 4.3.6, we have deg| M| > 1. In particular deg M # 0. Lemma 4.1.2 implies that
deg|2B| > 3. Now we have

deg|mA| = —2m + deg|mM | + deg|mB]| > —m + SL%J >1

ifm=2orm > 4. O]

4.4 Bielliptic fibrations

Assume X is a minimal terminal threefold of Kodaira dimension one and X — C' = Plisa
bielliptic fibration. We apply the same construction as [FM00, Remark 2.6] to getg : Z7 — X
such that Z is smooth, the general fiber F' of Z — C' is an étale covering of F and | K| in
non-empty.

Note that we have a natural inclusion ¢*Ox (K x) < Oz (K ) since the pull-back of a top-
form on X is a top-form on Z, hence Ky = ¢g*Kx + R for some effective divisor R. Since
Z — X is étale over general points on C, R is supported over singular fibers of Z — C'. Thus
Z 1is of Kodaira dimension one. Let i : Z; — C be the relative minimal model of Z over C.
Then K, as well as Kz, is Q-linearly equivalent to a sum of effective vertical divisors. Thus
Kz, intersects horizontal curves positively. This implies Z; is in fact minimal and Z, — C'is
the Iitaka fibration of Z,, which is an abelian fibration.

Write

Kyz= (g0 f)"(Ke+Mz+ Byz)+ Ey

and

Ky, = h* (K¢ + My + By)

as the canonical bundle formula over C'. Recall that in Section 4.1.1 we denote
bEx = f*(b(Kc+ M+ s:P)),
icl
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Lemma 4.4.1. Either M = 0 ordeg| M| > 1.

Proof. By [FMO00, Lemma 3.4] we have M, = M. Since the the moduli part is a birational
invariant, we have My = M. Thus My, = M. Hence we only need to show that either My = 0
or deg|My| > 1. If Zy — C is isotrivial, then My = 0. Assume Z, — C'is not isotrivial,
then there is no non-vertical two-form on Z by Theorem 4.3.1. Lemma 4.3.5 and Lemma 4.3.6

imply our statement.

Proposition 4.4.2. |m K x| defines the Iitaka fibration if m > 96 and divisible by 12.

Proof. Tf deg| M | > 1, then using the same argument as in the proof of Proposition 4.3.7, one
can show that |rbK x| defines the litaka fibration if 7 is even or b > 4. In particular, |m K x|
defines the litaka fibration if m is divisible by 12.

Now assume M = 0. In this case Z is isotrivial and we have the following diagram.

bir.

— ~
—~ ~

~

FxC —=Zy<--Z<~—27'

bir. i l

—X

|

C/

/

'’ C—

where C" — (' is a finite Galois covering, the left square is a fiber product, Z’ and X" are the
normalizations of the base-change of Z and X respectively. Let U C C' be an open set such that
Z — X is étale over U. Let U’ be the pre-image of U on C’. One may assume U’ — U is étale.
Let Xy, Zy and (Zy)y be the pre-images of X, Z and Z, over U respectively and let X/, and
Z}; be the pre-images of X’ and Z’ over U’. We may assume Zyy = (Zy)y and Zj;, =2 F x U,

Note that Z;; — Xy is a cyclic cover defined by |bK x,, |, hence there exists a cyclic group
H such that Xy = Z;/ H and the restriction of the action on fibers over U is the natural action
on the abelian surface F’ such that F'/H = F. Hence there exists an H-action on Z}; = F x U’

by acting on F’ and fixing U’. Note that for any point P € Z},, the H-orbit of P maps to a point
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through the morphism Z;, — X{,. Since the diagram

ZU%Z,U

|

Xy <~— X},

commutes, the H-orbit on Z}, maps to a H-orbit on Z;. Thus we have a natural map
FxU 2Z,/H— Zy/H = Xy.

The morphism F' x U’ — Xy, factors through the fiber product X;, — Xy . Since both mor-
phisms are finite with the same degree, we have X/, = F' x U'. Let G = Gal(C'/C) =
Gal(U'/U), then there exists a G-action on X/, such that X/, /G = X;. Thus X is birational to
(FxC")/G.

Now we have the étale covering Z, = (F x C")/G — (F x C")/G. Since Zj is terminal,
we have (F' x C")/G is terminal. Replacing X by (F' x C’)/G one may assume that our given
bielliptic fibration is isotrivial. In this case using the same argument as in the proof of Proposition
4.3.2 one can show that |m K x| is birational to the Iitaka fibration if m > 86 and is divisible by

12, or equivalently, m > 96 and divisible by 12. [

4.5 Boundedness of litaka fibration for Kodaira dimension

one

Theorem 4.5.1. Let X be a smooth complex projective threefold of Kodaira dimension one.
Then |mK x| defines the litaka fibration if m > 96 and is divisible by 12. More precisely, let F
be a general fiber of the litaka fibration of X, we have

1. If F is birational to a K3 surface, then |mK x| defines the Iitaka fibration if m > 86.

2. If F is birational to an Enriques surface, then |mK x| defines the litaka fibration if m > 42

and is even.

3. If'F is birational to an abelian surface, then |mK x| defines the litaka fibration if m > 86.
Moreover, assume the litaka fibration is not isotrivial, then |mK x| defines the litaka

fibration if m = 2 or m > 4.
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4. If F is birational to a bielliptic surface, then |mK x| defines the litaka fibration if m > 96
and is divisible by 12.

Proof. 1f C is not rational, this follows from Proposition 4.1.9. The K3 or Enriques cases follow
by Proposition 4.2.2. The isotrivial abelian fibration case follows from Proposition 4.3.2 and the
non-isotrivial abelian fibration case follows from Proposition 4.3.7. The bielliptic case follows

from Proposition 4.4.2. ]

Combining the work of J. A. Chen-M. Chen [CM14] and Ringler [Rin07], we have the

following effective bound for threefolds of positive Kodaira dimension.

Corollary 4.5.2. Let X be a smooth complex projective threefold of positive Kodaira dimension.
Then |mK x| defines the Iitaka fibration if m > 96 and is divisible by 12.

We remark that we do not know whether our estimate is optimal or not. However, as in
Example 4.5.6, one can construct a threefold of Kodaira dimension one, such that |i x| is not
birational to the litaka fibration for all 7 < 42. Since the optimal value of the litaka fibration for

threefolds of Kodaira dimension one should be divisible by 12, we have the following estimate.

Corollary 4.5.3. If m is the smallest integer such that |m K x | is birational to the litaka fibration

for all smooth projective threefold of Kodaira dimension one, then 48 < m < 96.
In the remaining part we will compute several examples.

Example 4.5.4. The first example is a trivial example. Let F' be a bielliptic curve such that
|6 K| is non-empty but |i K| is empty for all ¢ < 5 and let C' be a curve of general type. Then
X = F x C'is a smooth threefold of Kodaira dimension one such that |6 K x| defines the Iitaka

fibration but |i K x| is empty for all i < 5.

Example 4.5.5. Let E be an elliptic curve. Pick two different points P and () on E. One can
find a line bundle L such that L? = Og(P + Q). Let C be the cyclic cover corresponds to L.
Then C' is a curve of genus two and ¢ : C' — FE is a double cover ramified at P and (). Let
G = Aut(C/E), which is a cyclic group of order two and let F' be an abelian surface. One can
define a G-action on F' via —Id. Let X = (F' x C)/G.

The singular points of X are of the type %(1, 1,1), hence X has terminal singularities. We
want to show that |4 K x| defines the litaka fibration, and |i K x| does not define the Iitaka fibra-

tion for ¢« < 3. One has

H(X,mKx) = H"(F x C,mKprXmKq)® = H(C,mK¢)®
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since the unique section in H°(F, mK7y) is fixed by G for all m. To compute H°(C,mK¢)®,
note that »,Oc = Op® L~ and Oc(2K¢) = ¢*Op(2Kp+P+Q) = ¢* L%, hence ¢, Oc(2kK¢) =
L** @ [?*~1 by the projection formula. The G-invariant part of H°(C,2kK¢) is H*(E, L*)
and L?* is very ample if and only if & > 2. Hence |2K x| does not define the litaka fibration,
but [4K x| does.

On the other hand, by Grothendieck duality we have

0.2k + K¢ = ¢ Homo, (—2kKe, K¢) =2 Home, (¢.(—2kK¢), Kg) = L* @ L
C E

This shows that h°(C,3Ks)¢ = h°(E, L*) = 2 and hence [3K x| do not define the litaka
fibration.

We remark that this is the worst example we know for abelian fibrations.

Example 4.5.6. Let C be the Klein quartic
(2*y +y°2 + 2z = 0) C P2
It is known that
|G| = |Aut(C)| = 168 = 42(2¢(C) — 2)

(c.f. [Dol12, Section 6.5.3]). Let
F=@Py+y*2+ 22 +u* =0) C PP

which is a K3 surface. Define the G-actionon F by g([z : y : 2z : u]) = [g([z : y : 2]) : u]. Let
X = (F x C)/G. We will prove the following:

(1) X has terminal singularities.
(2) H(X,iKx) < 1fori <41 and H°(X,42Kx) = 2.

Hence the smooth model of X is a threefold of Kodaira dimension one, such that |42 x| defines
the Iitaka fibration, but |i K x| do not define the Iitaka fibration for i < 41.

First we prove (1). Since |Aut(C)| = 168 = 42(2¢(C) — 2), it is well-known that the
morphism C' — C'/G ramified at three points P, P; and P; € C'/G and the stabilizer of points
over P, is a cyclic group of order r for » = 2, 3 and 7 (cf. also [Elk99, Proposition in Section

2.1]). Let F,. C X be the fiber over P,.. We need to compute the singularities of F,.
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(i) » = 7. Note that any order 7 subgroup of GG is a Sylow-subgroup, which is unique up to
conjugation. To compute the singularities we may assume the stabilizer is the cyclic group
generated by the element (please see [E1k99, Section 1.1] for the description of elements
in G)

&0 0
c=|0 & of, ¢=¢%
0 0 ¢

One can compute that H; = (o) has three fixed point [1 : 0 : 0 : 0], [0 : 1 : 0 : 0] and
[0:0:1:0]on Fr. The Hy action around those fixed points is of the form 1 (4, 3), 1(2,5)
and %(1, 6) respectively. The conclusion is that X has three singular points over P; which

are cyclic quotient points of the form 1(1,6,1), £(2,5,1) and £(3,4, 1) respectively.

(i) » = 3. As before any order 3 subgroup of GG is a Sylow-subgroup and hence we may

assume the stabilizer is generated by

010
T=10 0 1
100

There are six fixed points on F3, namely [1 : w : w? : 0], [1: w? :w:0land [1:1:1:

P =[1:w:w?:0]. The local coordinates near P € A are yy/ = y/v —w, 2’ = z/z — w?
and v = u/x. Leta = 3 + 2/ and B = wy’ + w?z’. Then a, B and v’ are also local

coordinates near PP and the defining equation of F3 near P can be written as
(14 3w)a + higher order terms,

hence the local coordinate of P € F3is (5 and u'.

We have

= ——u = wp,

U 1
z 2+ w?

where ¢ is a holomorphic function satisfying ¢(P) = 1 and ¢7(¢)7%(¢) = 1. Let A be a
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holomorphic function near P such that A*> = ¢ and A(P) = 1. One can check that

T(Nu') = wXu/, where N = A\?7()).

On the other hand,
w

z2 4+ w?

T(B) = B =uwep

and we also have

T(NB) = w?NB.

The conclusion is that the singularity of P € Fj3 is of the form %(1, 2), and hence the
singularity of P € X is a terminal cyclic quotient 5 (1,2, 1). A similar computation (simply
interchange w and w? in the calculation) shows that P’ = [1 : w? : w : 0] € F3 C X isalso

a terminal cyclic quotient point.

Finally we compute the singularities of Q; = [1 : 1 : 1 : w fori = 1, ..., 4. Let
Yo =y/x — land 2y = z/x — 1. We take ag = wyo + w?zp and By = w?yo + wzp as local

coordinates of (); € F3. One can see that

w

z
2y+_):

2 y QZ X
= — — — 1 — — z
T(ag) = T(wyo + w’20) = T(W= + W=+ 1) . (w+w ol )

T T

%)

and

w2

ZQ—I—l

7(Bo) = Bo-

Using the same technique above we can say that the singularity of ); € F3 is of the form

%(1, 2), hence @); € X is also a terminal cyclic quotient point for i = 1, ..., 4.

(iii) r = 2. Let u € G be an order two element. We have to compute the singularities of 5 /().
By [EIk99, Proposition in Section 2.1], u fixes a line and a point in P2, By the character
table of G (cf. [Elk99, Section 1.1]), we know that the three-dimensional character of p
is equal to —1. This implies the fixed line of ;1 in P? corresponds to the two-dimensional
eigenspace with eigenvalue —1, and the fixed point of x in IP? corresponds to the one-
dimensional eigenspace with eigenvalue 1. Assume that L is the fixed line of y in P2,
that the fixed point of jpon Fyis [x; : y; : z; : O] fori =1, ..., 4and [x5 : ys : 25 : uj]j=1,. 4,
where u; are the roots of the equation u? + z3ys + y3 25 + 2525 = 0. The conclusion is that
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there are eight cyclic quotient points of indices two on F5. Since they are isolated, all the
singular points should be the from %(1, 1). The conclusion is that there are eight singular

points on X which is of the from %(1, 1,1).

Note that the Iitaka fibration of X is a K3 fibration, and the basket data of X is
{(2,1) x 8,(3,1) x6,(7,1),(7,2),(7,3)}.

It is the worst case in Section 4.2.
Now we prove (2). We need to compute H*(X, mKyx) = H°(F x C,;mKpr X mK¢)°.

Consider the long exact sequence

0 —=H (P> mKps + (m — 1)F) — H° (P>, m(Kps + F)) — H'(F,mKp) —

HY(P?, mKps + (m — 1)F) — -+
Since H (P3, mKps + (m — 1)F) = 0 for i = 0, 1, we have
HY(F,mKp) = H'(P* m(Kps + F)) = H (P, Ops).
Thus any section in H°(F, mKr) is G-invariant. This tell us that
H(X, mKx) = H(F x C,mKprKXmKq)% = H(C,mK¢)°.
One can consider the following long exact sequence

0 = H°(P*, mKp2 + (m — 1)C) — H°(P*, m(Kpz + C)) — H°(C,mK¢) —

HY(P* mKp> + (m — 1)C) — - --
Since H*(P?, mKp2 + (m — 1)C') = 0, the restriction map
H°(P?, m(Kp2 + C)) = H°(P?, Op2(m)) — H*(C,mKc)

is surjective. Thus to find G-invariant sections in H°(C, mK() is equivalent to find G-invariant
polynomials of degree m on C'. It is known that (c.f. [Elk99, Section 1.2]) the G-invariant

polynomials are generated by three elements fs, f14 and fo;, where f; is a polynomial of degree
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d, satisfying f2 = f3, — 1728 f7. Hence h°(C,iKc)“ < 1forall i < 41 and H%(C, 42K¢)“ is
spanned by f{ and f3,. Thus h?(X,iKy) < 1fori < 41 and h°(X, 42K x) = 2.
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